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ABSTRACT 

Conversion of once forested areas to other land uses such as agriculture has resulted in the loss of above 

ground biomass which stores a large amount of carbon. This has led recently to the recognition of trees 

on agricultural lands in addition to forests as major potential sinks of carbon. Trees on farmlands could 

absorb large quantities of carbon if they are retained and reintroduced to these systems and managed 

together with crops and or animals. As a response to the emerging carbon markets through the REDD+ 

programme such mechanisms are needed to sequester carbon through biological means. Efforts to 

estimate carbon stocks potential of agricultural lands have been conducted in African countries including 

Ghana and Kenya, but these efforts used practices which are costly and impractical at broader scales. Also 

despite there being many remote sensing approaches to carbon estimation, their application has been 

largely narrowed to forest environments with little emphasis on farmland tree resources. High resolution 

imagery could be a solution but the relative cost associated with their acquisition limits their application to 

local scales, thus creating the need for up-scaling approaches to better understand process at broader / 

regional scales. 

 

The objective of the research was therefore to develop an approach to map carbon stocks for trees on 

farmlands using Object Based Image Analysis (OBIA) for high resolution data and up-scaling techniques 

to medium resolution. Multiresolution segmentation, a bottom-up approach designed to minimize 

heterogeneity in image objects, was used to generate image objects from the high resolution World View-2 

satellite image. Crown Projection Area (CPA) derived through automatic masking of Oil palm using the 

whole image extent and manual masking of Oil palm using a only a subset of the image were used to 

develop models to predict carbon on farmlands. These image objects, representing tree CPA, were then 

used as training data for up-scaling carbon estimates from the high resolution satellite image to the 

medium resolution Aster image.  

Despite confusion brought about in rule set development by Oil palm, which is widely grown in the area. 

Multiresolution proved to be a useful technique to delineate tree crowns on farmlands evidenced by the 

high tree identification rates 72% and 83% whole image and subset respectively. The developed model for 

carbon estimation for the subset had a higher coefficient of determination, R2 of 0.66 compared to that of 

the whole image, R2 of 0.61 and a total of 45.9 MgC/ha-1 was observed for the study area. The near 

infrared band was better able to predict carbon for tree crowns, R2 of 0.50, compared to the red and green 

band which had R2 of 0.23 and 0.09 respectively and therefore was used for the up-scaling process. The 

research showed the potential of OBIA for carbon estimation on farmlands and that use of vegetation 

indices alone cannot clearly separate Oil palm from trees. Other parameters like texture or manual 

delineation can be considered as an option.   

Keywords: Object Based Image Analysis, Farmlands, Carbon Stocks, Up-scaling, High Resolution image 
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1. INTRODUCTION 

1.1. Background 
Forests present an important sink of carbon dioxide (CO2) and are estimated to store more than one 

trillion tonnes of carbon worldwide (FAO, 2008). As a result, compliance markets for carbon have  

emerged through the Kyoto Protocol as well as voluntary mechanisms in order to mitigate global climate 

change (Dumanski, 2004). Signatories of the United Nations Framework Convention on Climate Change 

through the Bali Action Plan Conference of Parties (COP-13) opened the way for developing countries to 

play a part in the carbon market with the development of the programme for Reducing Emissions from 

Deforestation and Forest Degradation (REDD+). Through REDD+ developing countries can be 

compensated for developing afforestation and reforestation programmes, sustainable management of 

forests and enhancement of forest carbon stocks (UN-REDD, 2009). 

 

Conversion of once forest area to other land uses such as agriculture has resulted in the loss of this 

important carbon sink globally. This is because forest above ground biomass store a large amount of 

carbon as living matter (Kale et al., 2009). Worldwide, forest resources are increasingly under threat. Rates 

of forests loss are largest in South America, Africa and South East Asia with an estimated rate of 12.9 

million hectares per year between 2000 and 2005.  This is mainly as a result of converting forests to 

agricultural land, but also due to expansion of settlements, infrastructure, and unsustainable logging 

practices (IPCC, 2007). This has led recently to the recognition of trees on agricultural lands, in addition to 

forests, as major potential carbon sink.  Farmlands have the potential to absorb large quantities of carbon 

if trees are retained and reintroduced to these systems and managed together with crops and or animals. 

Thus, the importance of agroforestry as a land-use system is gaining recognition not only for agricultural 

sustainability but also in issues related to climate change(Albrecht andKandji, 2003).  

 

Because of agriculture’s important role in the economy of Ghana with cultivable area estimated to be 

66.4% of the total area of the country (FAO, 2011), the varied agriculture systems practiced, such as 

perennial cropping and bush fallow have had considerable impact on the forest resources in Ghana. 

Forest cover had reduced to less than 18,000 km2 by the late 1980s and as of 2007 to an estimate of about 

16,000 km2, representing an annual rate of forest loss of around 220 to 650 km2 annually (Kusimi, 2008). 

The main causes of deforestation are poverty-driven agriculture, lack of rural wage employment other than 

farming, high household population levels, and conflict in traditional land practices (Appiah et al., 2009). 

This has resulted in only remnants of once forested areas being left as patches on farmlands. However, in 

spite of the important ecosystem services of these trees such as carbon sequestration, wind breaks, fruit 
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provision, animal fodder, wildlife habitat and other economic farm uses, these trees are threatened by 

deforestation as little value is assigned to them by farmers. Also the unequal land and tree tenure system 

and share in the timber trade has resulted in loss of these tree resources to deforestation as the current 

policy is viewed as unfavourable by farmers (Hansen, 2011). 

 

Tree resources on farmlands are distributed mainly along the boundaries of fields or inside and in 

homesteads depending on farmer preferences (Asamoah-Boateng, 2003). Information on these non-forest 

tree resources is often lacking and research on them is minimal as effort is mostly put on forest reserves in 

Ghana (Owubah et al., 2001). However, in order for Ghana to effectively participate in the REDD+ 

programme and to enhance benefits, assessment or accounting of carbon stocks of woody resources 

outside the forests and especially farmlands, which account for 66.4% of the total area of the country 

(FAO, 2011) needs to be conducted.  

 

Various efforts to estimate carbon stocks potential of agricultural lands have been conducted in African 

countries including Ghana and Kenya, but these efforts were limited in scope to only below ground 

carbon (soil) and were using practices which are costly and impractical at broader scales (Gonzalez-

Estrada et al., 2008). Also a study to assess the carbon storage potential of small holder farmlands in West 

Africa concluded that there is need for more research into sustainable farm management practices to 

enhance the carbon stocks of farmlands and improve the livelihoods of farmers (Gonzalez-Estrada, et al., 

2008).  

 

The use of remote sensing has enabled estimation of biomass, and hence carbon, on a wider scale from 

local , national and even to global scale (Gibbs et al., 2007; Kale, et al., 2009), but this comes with other 

requirements such as the need for allometric equations which are generally established using destructive 

techniques (Deans et al., 1996; Djomo et al., 2010). The most promising remote sensing approaches to 

biomass and hence carbon estimation are through using active sensors, Radar and Lidar. Radar operates in 

the microwave region and therefore is not affected by atmospheric conditions such as light precipitation 

and clouds (Patenaude et al., 2005). The most useful Radar sensor is the Synthetic Aperture Radar (SAR) 

which is found on satellites such as ERS-1, JERS-1 and  Envisat (Gibbs, et al., 2007).  However, the major 

limitation of Radar data is that it does not operate well with decreasing amount of biomass  (Gibbs, et al., 

2007). The Light Detection and Ranging sensor (LIDAR)which, though very accurate is more expensive, 

limited to more local levels and restricted range of environments (Rosenqvist et al., 2003). Flights are only 

conducted on requests, unlike optical sensors, which are in orbit and acquire data continuously or on 

demand. Optical sensors have produced inconsistent results when it comes to biomass estimation with 

weak models having been produced especially for the tropics (Gibbs, et al., 2007; Patenaude, et al., 2005).   
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Recent developments of very high resolution commercial satellites such as Geo-Eye, World View-2 and 

IKONOS, have made it possible to extract more accurate image information and enable the development 

of relations between image features and ground measurements (Blaschke, 2010) which can improve 

carbon estimation. Coupled with this is the development of object oriented image analysis approaches and 

image segmentation algorithms which incorporate the spectral, textural and geometry properties of the 

objects to be detected (Gamanya et al., 2007). Different segmentation techniques have been developed 

such as edge based, region growing and multiresolution segmentation (Ardila et al., 2011)  and selection of 

appropriate image segmentation algorithm and parameters is of crucial importance for successful image 

segmentation(Lamonaca et al., 2008). However, despite the availability of high resolution satellites in 

space, their high costs and limited geographic coverage  have increased the need for up-scaling in order to 

understand ecosystem processes at regional scale (Hay et al., 2001; Patenaude, et al., 2005). In this process 

spatial statistics (Stein et al., 1998) and relations of reflectance and objects (Gibbes et al., 2010; Hansen. et 

al., 2002) found in high resolution images can be applied in transforming scales at different levels.  

1.2. Problem statement and Justification  
Tree management on Ghanaian farmlands, off-reserves, is affected by a number of environmental 

problems. First, there is insecurity of land tenure induced by the increased value of land. This has led to 

conflicts between the traditional chiefs and ordinary farmers (Ubink andQuan, 2008) thereby increasing 

deforestation in off-reserves or farmlands (Owubah, et al., 2001) as farmers lack security of tenure and 

therefore find no incentives to maintain trees on farms than rather increase area under cultivation in order 

to achieve maximum benefits during the period under which they hold the land.      
 

Second, the application of policy on the environment is not uniform especially in the high forest zones of 

southern Ghana where laws to protect the environment are only intensively applied in the commercially 

valuable timber reserves (Wiggins et al., 2004). A situation which has greatly increased vulnerability of tree 

resources on farmlands to illegal cutting especially from chain saw operators (Hansen, 2011). Coupled 

with this is the long and cumbersome processes involved for farmers to obtain permits to cut 

merchantable trees on their farmlands, a situation perceived by farmers as violating their moral values and 

thus worsening the situation (Hansen, 2011; Owubah, et al., 2001) .  

 

“The value of a resource is a function of what one knows about the resource” (Smith., 1990). The 

selective application of environment policies only to commercially high value reserve forests (Wiggins, et 

al., 2004) suggests that there is need for information generation to show the important value of tree 

resources on farmlands or off-reserves, especially with reference to the emerging carbon markets through 

the REDD+ programme.  The programme may provide an option for landholders as an alternative source 

of income and act as an incentive for conservation of tree resources on farmlands. Carbon markets need 
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mechanisms which sequester carbon through biological means (Flugge andAbadi, 2006), a service which 

tree resources on farmlands are capable of providing. 

 

Therefore, the development of an approach to generate information on the carbon stocks of farmland tree 

resources is of major focus in the research. Although there are many remote sensing approaches to carbon 

estimation, their application has been largely narrowed to forest environments with little emphasis on 

farmland tree resources (Blaschke, 2010; Rasmussen et al., 2011). Many studies that have used Object 

Based Image Analysis (OBIA) have applied it mostly on tropical or temperate forests environments. 

Results of carbon estimation using high resolution satellite images with OBIA have been very promising 

(Gibbs, et al., 2007; Patenaude, et al., 2005). Accurate individual tree crown identification is important on 

farmlands as trees are more isolated unlike in forest environments, therefore minimizing the problem of 

intermingling crowns. The hierarchical approach used in OBIA which classifies objects based on 

contextual attributes rather than spectral characteristics only is likely to improve the accurate identification 

and classification of tree crowns within farmland conditions. Also the availability of functions to calculate 

statistical information, such as band ratios like simple ratio and mean layer values at object level enables 

better discrimination of trees from surrounding environments such as grassland and built-up 

environments (Benz et al., 2004).  Despite this, the presence of both large and small Oil palm plantations 

(Elaeis guineensis) in the study area pose a serious problem in separating this crop from trees using broad 

bands within the visible-near infrared region. Therefore the availability of new narrow bands included in 

World View-2 imagery, coastal blue, 400-450 nanometer (nm) and red edge 700-745 nm (Digital Globe, 

2008) is likely to enhance the separation between Oil palm and trees.   

 

Also, despite the availability of very high resolution satellites at satellite platform level their acquisition is 

expensive and application for estimation of carbon stocks is only possible at local scales; therefore an up-

scaling technique is needed. A technique, which utilizes and conserves information from high resolution 

satellite imagery (Hay, et al., 2001; Stein, et al., 1998) is likely to improve extrapolation of carbon estimation 

to broader scales. OBIA  offers accurate identification of tree spatial distribution as it allows analysis of 

the object of interest (Gibbes, et al., 2010), and therefore offers the potential for establishing relations 

between ground measured information and coarse resolution images. Integration of high and medium 

resolution data therefore offers an efficient and affordable basis on which landscape processes can thus be 

understood(Hansen., et al., 2002). Therefore, the research aims to develop an approach to assess carbon 

stocks using Object Based Image Analysis of a very high resolution satellite image, World View-2, and 

explore the potential of up-scaling carbon estimates for tree resources on Ghanaian farmlands. 
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1.3. Research Objectives 
Overall Objective: Development of a method to accurately map carbon stocks for tree resources on 

Ghanaian farmlands using OBIA and up-scaling techniques  

Specific Objectives 

 To assess the relation between Crown Projection Area (CPA) on a high resolution image and field 

measured biomass, and hence carbon, for tree resources on farmlands  

 To establish how Oil Palm affect individual tree delineation / identification on farmlands 

 Assess whether carbon estimates on farmlands can be up-scaled from high (World View-2) to 

medium (Aster) resolution satellite image 

Research Questions 

 How may OBIA be used to map tree crowns and biomass /carbon of trees on farmlands?  

 How does Oil palm affect individual tree delineation / identification on farmlands? 

 Which regression model best describes the relation between carbon and CPA for tree resources 

on farmlands? 

 Is there a relation between World View-2 objects and pixels reflection in a medium resolution 

Aster image? 

Hypotheses 

 OBIA can be used to identify and map carbon for farmlands trees with high accuracy level 

(overall tree identification accuracy >70%)  

 Tree biomass in farmlands can be predicted from crown projection area at significant level of 

p<0.05 

 There is a significant relation (p<0.05) between World View-2 objects or tree crowns and 

reflection from medium resolution Aster image 

1.4. Study Assumptions 
Farmlands are very dynamic ecosystems with micro and macro changes taking place within short time 

intervals as humans alter the landscape. These changes affect accurate estimation of carbon as trees are 

removed and therefore up-scaling strategies which rely on reflectance for medium and coarse resolution 

data. In this study, despite a time lag between image acquisition and field work, it is assumed that 

conditions remained stable and that field observations are the same as they would have been at the time of 

image acquisition.  
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2. CONCEPTS AND DEFINITIONS 

2.1. Conceptual framework 
Estimation of carbon stocks requires accurate and timely reliable data on available biomass in a particular 

ecosystem, which can be provided by satellite remote sensing (Kale, et al., 2009; Patenaude, et al., 2005). A 

major concern is the relative costs associated with this data acquisition technology (Patenaude, et al., 

2005), but it becomes more favourable when compared to direct field measurements which are laborious, 

more costly and time consuming therefore making them non-applicable at large scales such as regional 

applications (Henry et al., 2009; Patenaude, et al., 2005). Despite the relatively low cost of satellite remote 

sensing, no sensor is able to measure carbon directly from space (Drake et al., 2003; Rosenqvist, et al., 

2003) and therefore need to couple satellite data with ground based inventory data. This data can be 

combined and converted to carbon estimates using allometric relationships (Gibbs, et al., 2007).   

  
Observable forest stand parameters deduced from remote sensing data such as leaf area index, canopy 

cover, crown projection area (Gibbs, et al., 2007) have made it possible for the estimation of terrestrial 

carbon stock. Through the use of statistical modelling techniques relationships are established for forest 

stand parameters such as tree height, Diameter at Breast Height (DBH) and crown diameter and remotely 

sensed observables such as Crown Projection Area (CPA) to model biomass and hence carbon. Hirata et 

al, (2009), found a relationship between DBH from field survey with DBH predicted based on CPA 

extracted from Quickbird imagery. Using DBH and CPA relations (Avsar andAyyildiz, 2005) and the 

emergent of OBIA (Trimble, 2010) statistical modelling of biomass and hence carbon has been made 

possible. Also relations between DBH and crown diameter were established recently by Mugo et al, (2011), 

with high coefficient of determination (R2) between 0.65 to 0.87. However, despite the ability of very high 

resolution images to allow the direct interpretation of the object of interest (Hansen., et al., 2002), their 

costs remain high and therefore up-scaling by spatial aggregation is needed to understand processes at a 

broader scale. Figure 1 below is an illustration of the research conceptual framework.  

 
 
 
 
 
 
 
 
 
 
 
 



ASSESSMENT OF CARBON STOCKS FOR TREE RESOURCES ON FARMLANDS USING AN OBJECT BASED IMAGE ANALYSIS OF A VERY HIGH RESOLUTION 
SATELLITE IMAGE: A CASE STUDY IN EJISU JUABEN DISTRICT, GHANA 

7 

 
Figure 1: Research Conceptual Framework 

2.2. Farmlands 
Farmlands are managed lands designated and reserved for crop production and are categorized into three 

broad divisions; annual, perennial and fallow land (IPCC, 2006). These can be further categorized into 

croplands (annual and perennial), young fallow and old fallow (Gelens et al., 2010). The latter classification 

was adopted for this research. Farmlands in Ghana comprise mostly of non-forest reserve areas and, 

according to the 1992 Constitution, ownership of these lands is vested in the appropriate traditional 

authority on behalf of and in trust for their people (Ubink andQuan, 2008). 

 

Various vegetation or cover types characterize these farmland categories. Croplands are continually under 

cultivation. These are characterized by annual crops like cocoyam (Xanthosoma sagittifolium), rice and maize 

(Zea mays) and perennials such as cassava (Manihot esculenta), plantain (Musa paradisiaca). Tree retention in 

these systems is mostly minimal as crop production is given more emphasis, with few trees mainly found 

intercropped or at the margins of fields (Gelens, et al., 2010). 
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Young fallow is land that has not been cultivated for a period of one to five years and is mostly 

characterized by dense shrubs as the main vegetation type. Old fallow is a secondary forest type landscape 

with potential for regeneration into a forest. The land has not been in cultivation for many years spanning 

between six to ten years. Tree density in this land use category is high as compared to other categories of 

croplands and young fallow (Gelens, et al., 2010).  

2.3. Biomass and Carbon  
 
Biomass is the dry weight of trees and is divided into above and below ground biomass. Above ground 

(AGB) constitutes the leaves, stems and branches whilst below ground constitutes the roots.  Carbon is 

stored in living plant material or biomass of trees, dead mass of litter, woody debris and soil organic 

matter (Fuchs et al., 2009). AGB is directly impacted by anthropogenic activities such as deforestation and 

degradation. Carbon and biomass have a direct relationships with carbon constituting between 45% to 

50% of above ground biomass and these ratios can be used for landscape wide studies of carbon (Kale, et 

al., 2009). Information about the status and distribution of  above ground biomass is critical for 

monitoring changes of carbon stocks (Fuchs, et al., 2009).  

 

Biomass measurements can be classified into two broad approaches, direct field measurements which 

make use of biomass expansion factors (BEF) (Fuchs, et al., 2009) and allometric models derived from in 

situ destructive sampling techniques (Deans, et al., 1996). The other classification is based on remote 

sensed data coupled with field data (Fuchs, et al., 2009) collection as remote sensing on its own cannot 

measure biomass directly (Gibbs, et al., 2007).  

2.4. Crown Projection Area (CPA) 
CPA refers to proportion of the ground covered by the vertical projection of the individual tree crown. It 

is an important stand parameter as it determines undergrowth, sunlight penetration and hence the type of 

vegetation (Jennings et al., 1999). As remote sensing data collection is mostly from above, individual 

crowns are therefore important as they are the stand parameters that can be viewed by the sensor.  

2.5. Allometric Equations 
The use of remote sensing to estimate biomass and hence carbon (Gibbs, et al., 2007; Kale, et al., 2009) 

comes with requirements for allometric equations which are established using destructive techniques 

(Deans, et al., 1996; Djomo, et al., 2010) and regression models which relates image retrievals such as CPA 

to measured ground observables (Djomo, et al., 2010).  Allometric equations are developed using tree 

samples where DBH, height and wood density are used to predict or explain dry weight of total above-

ground biomass (Brown, 1997). Usually, species or site-specific allometric equations or models are 
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developed and used to estimate carbon with the use of easy to measure plant variables such as DBH 

(Fuchs, et al., 2009). 

2.6. Object Based Image Analysis (OBIA) 
Increased spatial resolution and the recent launch of very high resolution satellites (Blaschke, 2010) such 

as Quickbird, Ikonos, Geoeye and Worldview-2 with spatial resolution of less than a meter, has broadened 

the use of optical satellite systems into domains which were only possible using airborne sensors (Gibbs, et 

al., 2007). Coupled with this has been the development of techniques to better extract image features as 

pixels are now smaller than the object of interest (Blaschke, 2010). This has led to OBIA to better extract 

image features such as CPA (Ardila, et al., 2011; Gibbs, et al., 2007) and the development of allometric 

relations (Gibbs, et al., 2007) and regression models (Djomo, et al., 2010) to better relate image features to 

ground based field measurements to estimate biomass, and hence carbon, with relatively low uncertainty.  

  

OBIA uses the spectral, geometry and contextual characteristics of objects (Ardila, et al., 2011; Boggs, 

2010) to come up with less or more homogeneous objects which yield more information than the single 

pixel (Trimble, 2010). These characteristics make it superior over pixel based classification as objects are 

now relatively large than pixels an issue which may result in error if pixel based classification is applied 

(Blaschke, 2010; Boggs, 2010). Different segmentation techniques are available such as chessboard, region 

growing and multiresolution segmentation (Ardila, et al., 2011; Trimble, 2010). Chessboard is a top-down 

algorithm which cuts the image into smaller objects of a given size unlike bottom-up approaches like 

multiresolution and region grow which merge pixels or existing objects in the case of chessboard 

segmented data to create larger ones (Trimble, 2010). Selection of appropriate image segmentation 

algorithm and parameters is of crucial importance for successful image segmentation (Lamonaca, et al., 

2008). 

2.7. Up-scaling 
“Scale is the ratio between a unit on the map and the unit in reality” (Stein, et al., 1998). Up-scaling 

involves the use of a very high resolution satellite data to generate a low or coarse resolution data which is 

assumed to preserve the spatial information content of the high resolution image (Atkinson, 2006; Hay, et 

al., 2001; Stein, et al., 1998). The choice of any up-scaling technique is dependent on the type of data for 

example for quantitative data spatial averaging or aggregation is applied and for qualitative a majority value 

is used (Stein, et al., 1998). The need to conserve information through scale has resulted in the use of high 

resolution segmented objects to transfer data from fine to coarse scales as the variable of interest is easily 

extracted from high resolution data (Hansen., et al., 2002; Hay, et al., 2001).  
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3. METHODS AND MATERIALS 

3.1. Study Area  

3.1.1. Location and Justification 
The research was conducted in the north-western part of Ejisu-Juaben district, which is one of the twenty 

seven administrative and political units in the Ashanti Region of Ghana. The district has a rich cultural 

heritage and tourist attractions notably the Kente weaving industry in Bonwire. The district covers an area 

of 637.2 km2 and has Ejisu as its main capital. There are four dominant urban settlements in the district 

namely, Ejisu, Juaben, Besease and Bonwire (Ministry of Local Government and Rural Development, 

2006).  

The district is located 60 43’ N and 10 28’ W and shares boundaries with six other Districts in the Region. 

To the North East and North West of the district are Sekyere East and Kwabre Districts respectively, to 

the South are Bosomtwe-Atwirna-Kwanwoma and Asante -Akim South Districts, to the East is the 

Asante-Akim North district and to the West is the Kumasi Metropolitan (Anornu et al., 2009; Ministry of 

Local Government and Rural Development, 2006).  

The research was conducted in the north western part of Ejisu-Juaben district as the area is experiencing 

rapid land use / cover change as it falls within the peri-urban Kumasi zone, a rapidly growing urban 

metropolitan area, which is influencing land use change to nearby areas (Ubink andQuan, 2008). There is 

also growing pressure on tree resources due to agricultural expansion, especially the rapidly growing Oil 

Palm plantations, of note the Juaben Oil Palm Outgrowers Co-operative Society scheme (JOPOCOS). 

Forest resources in the district are also coming under pressure from the increasing population as Ashanti 

Region has one of the highest population (Government of Ghana, 2011). Figure 2 below is an illustration 

of the study area geographic location. 
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Figure 2: Study Area Location 
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3.1.2. Climate  

The district experiences a bi-modal tropical rainfall pattern with annual rainfall ranging between 1092mm 

and 2344 mm and a mean annual value of about 1874 mm. Rainfall is experienced from March to July and 

again from September and normally ends in the latter part of November. Temperatures are high with a 

mean maximum monthly temperature of about 32°C occurring in February / March and a mean minimum 

monthly temperature of about 20°C in December / January. Average monthly temperature in the district 

is approximately 26°C. Relative humidity averages at 85% during the rainy season and 65% during the dry 

season (Anornu, et al., 2009; Ministry of Local Government and Rural Development, 2006).  

3.1.3. Vegetation 

The district is situated in the semi-deciduous forest zone. Trees shed their leaves during the dry spells, but 

not all at the same time (Hall andSwaine, 1976). The district has two broad types of tree tenure 

management systems, mainly the Bobiri forest reserve and the off-reserve trees mostly found on 

farmlands. Off-reserve trees are mostly composed of remnants of forest patches and trees on farmlands 

where management is solely by farmers.    

Outside forest reserve areas provide an important source of timber providing more than half of the 

nation’s annual timber (Tropenbos International- Ghana 2009). However, unfavourable tree tenure 

systems and forest legislation have contributed to deforestation of this important timber source in Ghana,  

including the Ejusi-Juaben district (Hansen, 2011). Also the ecologically unfriendly farming practices and 

stone quarrying activities have resulted in the natural vegetation cover being degraded into secondary 

forest (Ministry of Local Government and Rural Development, 2006). 

3.1.4. Soils 
The district is dominated by crystalline rocks of Granite formation which give rise to very rich soil 

formation in the district offering opportunity for the cultivation of traditional and non-traditional cash 

crops and other staple food (Anornu, et al., 2009; Ministry of Local Government and Rural Development, 

2006).  

3.1.5. Topography and drainage 

The district is relatively flat and lies between 240 to 300 metres above sea level. A condition, which has 

favoured the growing of Oil palm, which is a major cash crop grown in the district. The district has a 

connection of a number of river systems, notable  among them being the Oda, Anum, Bankro, Hwere and 

Baffoe rivers (Ministry of Local Government and Rural Development, 2006).  

3.1.6. Economy / Agriculture  
The major economic activity in the district is agriculture due to the favourable soils (Ministry of Local 

Government and Rural Development, 2006). Agricultural land area is estimated to be 180 931ha (annual 
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crops : 76,265 Ha, under tree crops: 38,113 Ha ,under fallow: 60,393 Ha, under forest: 6,160 Ha) and 

average farm size estimated to be around 1.9 acres per family (Ministry of Food and Agriculture, 2011). As 

the backbone of the district economy agriculture constitutes 58.55% of the Gross Domestic Product 

(GDP). The main food crops grown are plantain, cassava, maize and cocoyam. Oil palm is a cash crop 

that is grown widely in the district (Ministry of Food and Agriculture, 2011; Ministry of Local 

Government and Rural Development, 2006). Appendix 1 and 2 are an illustration of the major crops 

grown and animal reared in the district. 

3.1.7. Demographic Characteristics 
Currently, the population of Ejisu-Juaben district stands at 144,272 (Ministry of Food and Agriculture, 

2011). Majority of this population is employed in the agricultural sector (Anornu, et al., 2009). The increase 

in population is mostly influenced by the four urban settlements in the district namely, Ejisu, Juaben, 

Besease and Bonwire (Ministry of Local Government and Rural Development, 2006). 

3.2. Prefield work 

3.2.1. Sampling Design  
The study used a Stratified Random Sampling (STS) approach as trees on farmlands are found in various 

land use types or region of various tree density (Kleinn et al., 2001). Also Stratification was chosen as it 

yields more precise estimates (Husch et al., 2003).Six classes were derived using a preliminary unsupervised 

classification of the Aster 2010 image acquired on 6th February 2010. Unsupervised classification using the 

Isodata classifier in Erdas Imagine 2011 was performed after visual interpretation of the Aster image. 

Based on the spectral reflectance the initially classified six classes were merged into four based on visual 

assessment or interpretation of the unsupervised image and the original image. These strata or classes were 

later identified as Cropland, Young fallow, Old fallow and Forest relict prior to field work. This initial 

classification was only made to facilitate field work planning. Verification and true identification of each 

stratum was made in the field. The number of plots was calculated proportional to stratum size. A large 

number of sample plots (n>30) allow accurate estimation of carbon stocks, therefore the following 

formula was used: 

 
Source: Husch et al (2003) 



ASSESSMENT OF CARBON STOCKS FOR TREE RESOURCES ON FARMLANDS USING AN OBJECT BASED IMAGE ANALYSIS OF A VERY HIGH RESOLUTION 
SATELLITE IMAGE: A CASE STUDY IN EJISU JUABEN DISTRICT, GHANA 

 

14 

Although initially prior to field work a total of 102 plots, 38-Cropland (2108ha), 21-Young fallow 

(1178ha), 17-forest Relict (930ha) and 27-Old fallow (1550ha) had been planned based on unsupervised 

classification and the Aster image extent (5766ha). Due to time and accessibility aspects only 68 plots (22-

Cropland, 13-Young fallow, 17-forest Relict and 16-Old fallow) were sampled. Also field sampling was 

restricted to the boundary of the World View-2 image (4200ha). The image only became available during 

field work. 

3.2.2. Satellite Data 
Two Satellite images were acquired namely World View-2 of 4 January 2011 and an Aster Image of 6th 

February 2010. The World View-2 image was used for tree segmentation in Definiens software whilst the 

Aster image was used for up-scaling. World view-2 Digital Globe’s Satellite was launched on October 8, 

2009 and is the first high resolution commercial satellite to offer 8 multispectral bands. Worldview-2 

provides 0.46m panchromatic band (Black and White) resampled to 0.5m. It has additional 8 multispectral 

bands of 1.84m which are again resampled to 2m for the user (SIC, 2010) as illustrated in Appendix 3.  

Aster is one of the five sensor systems on-board Terra a satellite launched in December 1999 and was 

built by a consortium of Japanese government, industry, and research groups and covers a spatial 

resolution of 15 to 90 meters. The image was obtained by ITC already geo-referenced to UTM Zone 30N 

coordinates with WGS 84 datum. The satellite bands descriptions are detailed in table 1 below. 

  Table 1: Aster Bands Description 

Instrument Visible and Near Shortwave bands Thermal bands (TIR) 
Bands 1-3 4-9 10-14 
Spatial Resolution 15m 30m 90m 
Swath Width 60km 60km 60km 

3.2.3. Ejisu Boundary Shape file 
A shape file of boundaries for Ghana districts developed by the Ghana Land Commission in 1991 was 

acquired and used in the masking Aster image to the study area boundary.  

3.3. Field Work 

3.3.1. Field work Equipment 
Varied equipment for field data collection and navigation were used. A GPS and IPAQ with Arcpad 

software were used for navigation and determining plot centers in the field. A diameter tape and tape 

measure were used to measure tree DBH and crown diameter. The list of all equipment and usage is 

provided in the table 2 below. 
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Table 2: Fieldwork Equipment 

Equipment Usage / Purpose 
Garmin GPS and IPAQ Navigation 
Diameter tape (5m) DBH measurement 
Measuring tape (50m) Measuring radius of plot  
Haga Altimeter Tree height measurement 
Compass Plot orientation 
Suunto clinometer Slope 
Data sheet Recording plot parameters 

3.3.2. Sampling plots  
In determining the appropriate plot size for the different strata a guiding principle was that the plots 

should be large enough to contain a sufficient number of trees and relatively small so as not to take too 

much time per plot (Husch, et al., 2003). Therefore due to varying tree densities for the four strata, 12.62m 

radius circular plots were used for stratum Forest relict and old Fallow and 25.24m radius circular plots 

were used for stratum Cropland and Young Fallow. These plots were 500m2 and 2000m2 respectively 

(Gelens, et al., 2010). Slope correction was performed on those plots whose slope equaled 15% or more 

using a slope correction table (FAO, 2004). Circular plots were chosen as these are easy to project on the 

ground unlike other plots designs. Plot orientation was recorded using a compass and each tree in the plot 

marked with a numeric number with reference to the true north.  

3.3.3. Plot data 
Field data collection was conducted in September 2011. DBH was measured for each observed tree at 

1.3m above the ground. However, for circumstances were forked trees were encountered; the tree was 

counted as one if the fork begins above 1.3m above the ground. In cases where the fork was observed 

below 1.3m each stem meeting the required DBH range was considered as a tree. Diameter was recorded 

for those trees with DBH ≥10cm only as those with smaller DBH are assumed to have a minimal 

contribution to the total biomass per plot (Brown, 1997). GPS and Ipaq were used to establish the center 

of the plots after which circular plots with radius 12.62m and 25.24m were established and measurements 

conducted. Figure 3 below is an illustration of how tree DBH was measured in the field. 

 

 
Figure 3: Tree DBH Measurement Source (FAO, 2004) 

Data on tree species was also collected for each plot in the native language which was later translated into 

the scientific name using a field guide of tree species found in Ghana (Hawthorne andGyakari, 2006). Out 
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of the 524 trees measured only 10 trees were impossible to clearly identify the proper scientific name and 

these were classified as other species. Data on tree height and crown diameter was also collected for 62 

and 52 trees respectively. Crown diameter was measured as the average of the longest and shortest width 

as illustrated in figure 4 below.  

 
Figure 4: Crown Diameter Measurements 

3.4. Post Field Work  

3.4.1. Image preprocessing 
 
Pan sharpening 
Pan-sharpening is a technique that involves the combining of lower resolution colour pixels with the 

higher resolution panchromatic pixels to produce a high resolution multispectral image (Padwick et al., 

2010). The Hyperspherical Colour Sharpening algorithm which handles any number of input bands and 

especially applicable to World View-2 (Leica Geosystems, 2011a) was used to obtain a high resolution 

World View-2 image from the 8 multispectral bands. Figure 5 below is the methodology flow chart of the 

processes followed in the research. 

Filtering and edge enhancement 
Filtering is an image enhancement technique which involves the altering of spatial or spectral features of 

an image (Leica Geosystems, 2011a). Filtering was conducted in order to enhance the edges of pixels or 

features (trees) in the scene before the segmentation process. A 3 x3 low pass convolution filter was used 

which averages small sets of pixels within this window size to come up with an image whose features have 

more enhanced edges.  
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Figure 5: Methods Flowchart 



ASSESSMENT OF CARBON STOCKS FOR TREE RESOURCES ON FARMLANDS USING AN OBJECT BASED IMAGE ANALYSIS OF A VERY HIGH RESOLUTION 
SATELLITE IMAGE: A CASE STUDY IN EJISU JUABEN DISTRICT, GHANA 

 

18 

Geo-referencing 
The World View-2 and Aster satellite images were geometrically co-registered on the basis of six ground 

control points collected in the field from road junctions and root mean square errors obtained for each of 

the images. Although the two images were acquired already geo-referenced, this process was undertaken to 

increase accuracy of the images geographic coordinate system. Root Mean Square Error (RMSE) of 

0.210m and 0.18m per pixel size was obtained for the World View-2 and Aster image respectively. Image 

mosaic using the MosaicPro algorithm in Erdas was also conducted for the Aster image as it was obtained 

in two separate data sets which covered the study area. 
 
Atmospheric correction 
Atmospheric correction is the process of eliminating the effect of the atmosphere in an optical image in 

order to obtain ground reflection for each band. The atmosphere affects information recorded at the 

sensor mainly by scattering and absorption and it adds an additional signal independent of the earth’s 

surface (Leica Geosystems, 2011b). Therefore in the process of converting from digital numbers to 

reflectance values, effect of the atmosphere was also removed on the Aster image in order to effectively 

model the relation of segmented objects from the high resolution World View-2 image and reflectance 

from the medium resolution Aster. This conversion from Digital Numbers values to reflectance was 

performed using the ATCOR 2 module in Erdas imagine which computes a ground reflectance image for 

each band. The image was then re-sampled to a 15 x 15 m2 pixel size using the nearest neighbour 

technique. Information needed to conduct the correction were found in the metafiles of the Aster bands 

and this included date of acquisition, solar elevation angle and the number of inputs bands. The terrain in 

the study area is flat so the ATCOR 2 module was preferred as it is designed for flat terrain. 

3.4.2. Descriptive statistics 
Descriptive statistics such as mean biomass and tree density per strata and normality tests were calculated 

for field data using SPSS and R-Software’s.  Histograms and box plots were plotted to visualize DBH, 

biomass and tree density distribution. Also one way Analysis Of Variance (ANOVA) was conducted on 

per hectare up-scaled plot data on tree density and biomass for the four strata (Cropland, Young fallow, 

Old fallow and Forest relict). ANOVA is used to determine whether there are any significant differences 

between the means of three or more independent groups(Husch, et al., 2003).   

3.4.3. Object Based Image Analysis (OBIA) 
With increasing satellite spatial resolution has been the development of a technique to derive objects made 

up of several pixels termed OBIA. This technique utilizes spectral and contextual information for image 

processing (Blaschke, 2010). OBIA has proven effective for analysis of high resolution imagery as the 

pixel based approach cannot capture the spatial and spectral quality of these images. For example tree 

canopies, objects of interest in this research, may consist of a number of pixels with many different digital 

spectral values on high resolution image therefore making pixel based approach invalid (Lamonaca, et al., 

2008).  
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A way to build image objects in OBIA is image segmentation (Blaschke, 2010). Segmentation is the 

partitioning of a digital image into multiple regions or spatial clusters based on spectral and textural image 

information to simplify and/or change the representation of an image into building blocks which are 

useful for further analysis (Dragut et al., 2010; Gibbes, et al., 2010; Möller et al., 2007; Trimble, 2010). In 

this study image segmentation was conducted in Definiens software 8.64 version.  

 
 

 
Figure 6: Objects Hierarchy Levels: Source Trimble (2010) 

 
The segmentation process in OBIA results in image objects which are regions of homogeneity in terms of 

spectral and textural information (mean values per band, median values and variance) compared to single 

pixels making image analysis yield much more information (Blaschke, 2010). These objects are generated 

in a hierarchical network of image segments with increasingly homogeneous image segments as the 

hierarchical level decreases(Lamonaca, et al., 2008). Each image object is connected to a superior object as 

illustrated in figure 6 above. This connectedness makes analysis possible at multi-scales (Lamonaca, et al., 

2008) as illustrated in figure 6 where the super object, level 1, is connected to small sub-objects at lower 

levels 2 and 3. Level 3 represent refined tree crowns in this research which are the final product of image 

segmentation. 

 

Due to the complexity of the study area scenes which included a combination of built-up, bare surfaces, 

trees and Oil palm the segmentation process was divided into various stages. Built-up, bare surfaces and 

shadow were masked using the simple ratio index between the near infrared and red band of the World 

View-2 image. After masking out these surfaces and shadow segmentation was then conducted using two 

approaches. Approach one involved automatic masking of Oil palm and the whole extent of the image 

was used. In approach two as it was suspected that automatic separation of Oil palm from trees affect tree 

crowns, a subset with minimal Oil Palm was chosen and manual removal of the crop conducted. Steps 

followed in the segmentation process are discussed below.  
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Multiresolution segmentation 
Multiresolution segmentation is one of the most powerful algorithms found in Definiens software which 

makes analysis of high resolution images more efficient (Lamonaca, et al., 2008).  The algorithm creates 

image objects in a bottom up approach as individual pixels are perceived as the initial regions, which are 

merged into larger ones with the aim of minimizing the heterogeneity of the resulting objects. The 

algorithm results are controlled by the user through scale parameters (Mallinis et al., 2008). Scale 

parameters of 22 and 25 were chosen to segment the whole image and the subset respectively. Other 

parameters such as shape and compactness are also defined by the user in the multiresolution window. 

The more weight given to the shape window the more it will be considered in creating image objects and 

the more weight prescribed to the  compactness value the higher it will be given consideration (Trimble, 

2010).  The shape criterion is important in creating image objects with distinct shape and thus, which are 

more homogenous in terms of their texture. Figure 7 below is an illustration of the main steps conducted 

in image segmentation. 

 
Figure 7: Steps followed in image segmentation 
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Estimation of scale parameter (ESP) 
Prior to segmentation, scale was estimated using the Estimation of Scale Parameters (ESP) tool as this 

determines the size of segments so they best fit reality. As the Multiresolution approach was used in the 

study this tool proved useful as it works well with this image segmentation technique. The ESP tool builds 

on the idea of local variance (LV) for individual image objects / tree crowns within an image. Tree crowns 

have brighter tree tops and dark edges, with variance increasing with distance away from the centre of the 

crown to the edges. The local variance is plotted against each scale or average object size. In addition to 

the local variance the rates of change of local variance (ROC-LV) are calculated, which are found to 

decrease as the scale increase as opposed to local variance which is observed to increase as the scale 

increase (Dragut, et al., 2010). Dragut, et al.(2010) established that the local variance alone cannot indicate 

the threshold at which to segment the image and thus proposed the rate of change of local variance 

(ROC-LV) whose peaks indicate the scale levels at which the image can be segmented in conjunction with 

the local variance curve. Figure 8 is an illustration of the ESP plot with the bold black being the local 

variance curve and the gray curve being the rates of change of local variance curve and the dotted lines 

(red circles) being the best thresholds at which the image can be segmented which coincide with the peak 

of the rate of change of local variance curve. 

 

 
Figure 8: ESP tool plot, Source: Dragut et al (2010) 

 
 
Masking of buildings and Shadow  
A simple ratio is a division of the near infrared band and the red band reflectance which are very sensitive 

to vegetation and is one of the broadband greenness vegetation indices which measure the general 

quantity and vigour of green vegetation (Sims andGamon, 2002).In order to separate built-up and bare 

surfaces from vegetation the simple ratio was preferred as the contrast in reflectance within the near 

infrared and red band for built-up and vegetation surfaces is more distinct using these bands. The ratio 

ranges from 0 to 30 with vegetation having higher values above 2. In the study objects with values greater 



ASSESSMENT OF CARBON STOCKS FOR TREE RESOURCES ON FARMLANDS USING AN OBJECT BASED IMAGE ANALYSIS OF A VERY HIGH RESOLUTION 
SATELLITE IMAGE: A CASE STUDY IN EJISU JUABEN DISTRICT, GHANA 

 

22 

than 2.8 were classified as vegetation and those below were classifies as built-up or bare areas (Tucker, 

1979).  

 
Masking of Oil palm  
As Oil Palm is a major cash tree crop grown widely in the study area and likely to confuse with trees, 

automatic detection and masking of the tree crop was conducted. Two vegetation indices Red Edge 

Comparison (Digital Globe, 2008) and the Modified Vegetation indices (Sims andGamon, 2002) were 

used to separate Oil Palm from trees.  

 

World View-2 is the first satellite to offer the red edge band (705 -745 nm) at high resolution. According 

to Digital Globe, (2008), scientists have discovered that the red band (630 – 690 nm) to red-edge band 

comparison is more sensitive to vegetation type than the Normalized Difference Vegetation Index 

(NDVI). Use of the red and red edge bands has been shown to better seperate between species of weeds 

and conifer from broadleaf forest (Digital Globe, 2008). Also the red edge band has been shown not to be 

greatly affected by background (Sims andGamon, 2002), a condition which makes it useful for vegetation 

analysis. Oil palm have a needle like shape unlike deciduous trees which are found in the study area with 

broad leaves therefore due to this it was assumed that the red edge would aid in separation between Oil 

palm and trees considering variation in leaf structure. Cochrane, (2000), used the red edge to classify tree 

species in a study of tropical forests. Since tree canopies reflect high in the red edge and low in the red 

band as shown in figure 9, tree crowns have a higher value than Oil palms in this index. Values for the 

majority of Oil Palms were found to be less than 0.33 and that for trees were above 0.33. Thus based on 

this index the first separation between oil palm and tree crowns was achieved. The study used the red edge 

to red comparison by applying the formula below. 

 
 

Further separation of remaining Oil Palm objects was achieved through using the Coastal blue band (400 - 

450 nm) of the World View-2 image and the same Red Edge and Red bands in a modified vegetation 

index. The coastal blue band is new and better aid in vegetation analysis (Digital Globe, 2008). Oil Palms 

were found to reflect higher in the coastal blue band and red band than tree crowns, but lower in the red 

edge band as illustrated in figure 9 below. This is largely attributed to the different leaf structure and 

canopy architecture for Oil palm and trees. A threshold was established for tree crowns at values less than 

-0.25. Anything above was classified as Oil Palms. The formula for the index is illustrated below. 
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Figure 9: Trees and Oil Palm Reflectance 

Apart from using vegetation indices manual masking of Oil palm was also conducted using a subset of the 

image where there was minimal proportion of the tree crop. This manual masking was conducted after 

identification and refinement of tree crowns as Oil palm has a distinct star shape and can easily be 

separated using visual interpretation. 

 
Image differencing  
Overlay functions in Erdas and ArcGiS software using image differencing and extraction by mask 

algorithms respectively for the classified Oil Palm layer after export from Definiens software was used to 

assign zero values to the Oil Palm regions. After masking Oil Palm further analysis was then conducted to 

automatically delineate tree crowns.  

 
Watershed transformation 
This algorithm was used to split clusters of tree crowns or image objects. The function operates in the 

form of a watershed in hydrology where there should be a distinct boarder between one watershed and the 

other. The maxima (or tree tops with high brightness value) is inverted to become the minima, valleys, 

which are flooded by increasing the level (Trimble, 2010; Wang. L et al., 2004). Splitting is thus conducted 

where the watersheds meet, the edges of tree crowns creating individual crowns from clusters.  The 

outputs are separated objects calculated through an inverted distance map. 
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Morphology 
Morphology as a “discipline deals with the study of the shape and form of objects” (Shafri et al., 2011). 

The size of the shape control window / mask in morphology is very important to achieve image objects 

which conform to reality.  The mask is also important as it affects the changes induced in the objects for 

example the circular and square masks in Definiens software. In this study an open circular mask was 

chosen to depict tree crowns after which removal of non-circular objects was conducted for those objects 

with roundness values more than 1.2. 

 
Segmentation Validation  
Segmentation results need to be validated in order to assess their quality to ascertain whether they relate to 

true objects in reality (Clinton et al., 2010; Möller, et al., 2007). Two strategies were used to assess the 

accuracy of segmented image objects, visual interpretation known as 1:1 matching (Zhan et al., 2005) and 

calculating the D value (Clinton, et al., 2010). A total of 101 and 42 reference crowns were manually 

digitized for the whole image and subset image respectively.  

 

Overlay operations and visual interpretation were utilized to assess the area of intersection between 

manually digitized reference polygons and image segments as based on the work of Zhan (2005). Polygons 

were considered one to one matching if the area of intersection is above 50% for the 101 and 42 manually 

digitized tree crowns for the whole image and subset respectively. 

 
However visual interpretations are subjective and hence a further analysis was conducted using the D 

value as proposed by Clinton (2010) using the Intersector tool in Java environment. The tool overlays the 

reference polygons / digitized with the segmented and calculates over and under segmentation. The values 

are all subtracted from 1 and the closer the overall D value is to zero, the better the match between 

segmented and reference objects. Values close to 1 represent a large difference in extent between 

segmented and reference crowns (Ardila, et al., 2011; Clinton, et al., 2010). Over segmentation has occurred 

when the size of segmented objects is smaller than the size of reference objects and under segmentation is 

the vice versa (Clinton, et al., 2010). Calculation of the D value was conducted using the formula below. 

 

 
Source: Clinton et al (2010) 

3.4.4. Allometric Equations 
Use of remote sensing to estimate biomass, and hence carbon, comes with requirements for allometric 

equations established through destructive sampling to come up with biomass estimates from easy to 

measure variables such as DBH and or height (Deans, et al., 1996; Djomo, et al., 2010). In this study a 

general allometric equation for tropical moist regions developed by Brown, (1997), was used as no specific 
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equation for Ghana and specifically tree resources on farmlands exists. The equation was chosen as it is 

able to generate reliable biomass estimation for tropical moist regions and DBH alone explains well 

variability in biomass with coefficient of determination (R2) of more than 0.84 (Brown, 1997). This 

equation is used with tree DBH ranges between 5-148 cm and should not be used for those outside this 

range. The derived biomass were then converted to carbon using equation 2 below as carbon and biomass 

have a direct relationships with carbon constituting between 45% to 50% of above ground biomass (Kale, 

et al., 2009). 

 
Biomass = 42.690 -12.800*(DBH) +1.242*(DBH2)…………1 

Carbon = 0.47*biomass…………2 

3.4.5. Regression analysis and carbon modeling 
Regression modelling is used to establish a relation between predictor / independent variables and one 

response or dependant variable (Snee, 1977). This modelling approach was used in this study to come up 

with relations between biomass and CPA. However after a model has been established it needs to be 

validated therefore cross validation (Snee, 1977) approach was used as it was considered more useful. The 

data were split as 70% (estimation) and 30% (validation). The splitting of the data was conducted in a 

random way using the sample without replacement function in R software environment. Coefficients of 

determination (R2), p-value, Root Mean Square Error (RMSE) and the Relative Root Mean Square Error 

(RMSEr) were calculated to characterize the quality of the models. The RMSE and RMSEr reflect the 

proportion or amount of biomass, and hence carbon, that the model predicted biomass values differ from 

the field observed measurements. The coefficient of determination represents the extent of variation for 

the dependant variable explained by the explanatory / independent variable. These have been proved as 

useful checks for model quality (Muukkonen andHeiskanen, 2005; Snee, 1977). Candidate crowns for 

model development were those that were not greatly over and under segmented. Below is an illustration of 

the formulas for the calculation of the quality checks. 

 

………………………….1 

………………….2 
 
 

Source: Muukkonen and Heiskanen (2005) 
yi= Observed value of dependant variable 
ȳ= Mean of observed dependant variable 
n= Number of samples in the validation data 
ŷi = Predicted value of dependant variable 
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3.5. Up-scaling 
Up-scaling involves the transfer of information between scales (Stein, et al., 1998) of high resolution to 

lower coarse resolution which cover broader landscape levels. There are many image up-scaling techniques 

found in commercial software and Hay et al, (2001), found out that these techniques such as nearest 

neighbour, bilinear interpolation and cubic convolution perform less efficiently as compared to object 

specific up-scaling especially when dealing with high resolution satellite imagery. In high resolution images 

pixels are smaller than the objects of interest, tree crowns, therefore aggregation of pixels to objects which 

relate to reflection in medium resolution images is needed to transfer between scales (Gibbes, et al., 2010). 

Crown projection area derived from high resolution World View-2 image was used as training data to 

transfer information from high to medium resolution. The proportional areal coverage of tree crowns 

contribute much to reflection observed within a medium resolution pixel for a vegetated surface 

(Rasmussen, et al., 2011) and has been used in many applications to transfer between scales (Gibbes, et al., 

2010; Hufkens et al., 2008,).  

 

An area based averaging technique for carbon based on the spatial coverage of image objects (tree crowns) 

within a 30 x 30 m2 generated grid was used to upscale carbon from fine World View-2 (0.5 x 0.5 m2) to 

coarse scale Aster (15 x 15 m2). The generated grid covered four pixels in the Aster image in order to 

compensate for geo-referencing errors and these pixels were chosen at plot locations. Plots for strata 

cropland and young fallow (2000 m2) covered the full extent of the four Aster pixels whilst for strata old 

fallow and forest relict the Aster pixels were relatively larger than the plot size of 500m2. This was 

attributed to high tree density in forest relict and old fallow, thereby using smaller plots, as compared to 

cropland and young fallow. Average carbon was calculated for tree crowns within the 900m2 window and 

this was multiplied by the proportion areal coverage of these crowns to come up with an area based 

average carbon within the generated 900m2 Aster window (Hufkens, et al., 2008). Table 3 is an illustration 

of the calculation. The formula for the analysis is given below: 

 
 

Up-scaling strategy modified from Hufkens et al (2008) 
 

The obtained area based carbon average values were used to build a non-linear model to relate carbon and 

the extracted mean pixel reflection for the four pixels covered by the 900m2  window for the visible-near 

infrared bands of the Aster image. These bands were chosen as they are found within the range in which 

vegetation is most sensitive as vegetation absorbs the red and green band and reflects strongly in the near 

infrared region(Sims andGamon, 2002; Tucker, 1979). Mean reflection for the four Aster pixels covered 

by the generated 30 x 30 m2 window were extracted using a GIS zonal attributes function in Erdas 
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software. This function facilitate the extraction of mean values from a raster using a reference vector layer, 

in this case the 30 x 30 m2 grids (Leica Geosystems, 2011a). 

 

Table 3: Calculation of Area Based Carbon Average 

Plot 
Number 

Aster Grid 
size (m2) 

Area covered by 
Tree Crowns (m2)  

Average Tree 
Crowns Carbon (kg) 

Area based average 
carbon (kg) 

22 900 54 475 28 
62 900 189 407 85 
65 900 182 2176 440 
67 900 108 328 39 
57 900 178 813 161 
66 900 555 1140 703 
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4. RESULTS 

4.1. Descriptive statistics 
A total of 524 trees were measured their DBH in the study area and these were found to belong to 31 tree 

species (Appendix 4). Plot distribution was evenly distributed according to size of stratum with croplands 

having the highest plots as illustrated in table 4 below. 

 

Table 4: Plot and tree distribution within strata 

Stratum No of Trees No of plots Average DBH (cm) 
Cropland 104 22 37 
Young fallow 54 13 30 
Forest Relict 254 17 20 
Old fallow 112 16 26 
 
Trees with large DBH were found in croplands and young fallow strata and those with lower were 

distributed in forest relict and old fallow. Higher DBH classes were mostly found on cropland which had 

an average DBH of 37cm. This is mainly due to selective retention of some preferred tree species on 

croplands such as Ceiba Petandra and Alstonia boonei for shade and timber usage by farmers. DBH 

distribution in forest relict and old fallow followed an inverse J-shaped pattern (Appendix 5) and higher 

regenerative capacity as they were dominated mostly by lower DBH classes, a normal trend for healthy 

forests as compared to cropland and young fallow which had no distinct patterns as illustrated in figure 10 

below.    

 
Figure 10: Tree DBH (cm) distribution within strata 

Average biomass per tree was found to be high in cropland and young fallow 1925kg and 1251kg 

respectively and low in forest relict and old fallow 509kg and 975kg respectively. This is due to the large 

DBH ranges found within cropland and young fallow strata as compared to the relatively small DBH 

classes of the other two. Appendix 6 is a box plot of biomass distribution for trees within the four strata. 
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Despite having small amounts of biomass per individual tree in forest relict and old fallow, when 

extrapolated to per hectare / landscape level, the amount of biomass found in these strata is higher than in 

cropland and young fallow. Forest relict and old fallow had on average 152 and 136 tonnes of biomass per 

hectare whilst cropland and young fallow had on average 65 and 75 tonnes respectively.  This is attributed 

to high average tree density for forest relict (301trees/ha) and old fallow (141trees/ha) as compared to 

young fallow (51trees/ha) and croplands (35trees/ha) where trees are felled to give way to agricultural 

production. Figure 11 below is an illustration of biomass distribution per hectare and tree density within 

the four strata. 

 
Figure 11: Biomass and tree density distribution per hectare 

4.2. Testing Mean Difference 
Further analysis was conducted on per hectare tree density and biomass data to really ascertain whether 

the variations in mean values between strata were really significant. This analysis was conducted using the 

Analysis Of Variance (ANOVA) statistic. Since one of the crucial assumptions of ANOVA is that the data 

should be normally distributed, biomass data on cropland and young fallow were observed to be not 

normally distributed and therefore the data set was log transformed in order to conduct the analysis. The 

same was also done for tree density. Results of normality tests are in Appendix 7. Subsequently the results 

revealed that there were significant differences in mean biomass and tree density between the strata at 

95% confidence interval as illustrated in tables 5 and 6 below.  

Table 5: Results for logarithmically transformed biomass data 

ANOVA 
Source of Variation SS df MS F P-value F crit 

Between Groups 36.90977 3 12.30325625 5.346337613 0.002384216 2.748190911 
Within Groups 147.28 64 2.301249404       
              
Total 184.1897 67         
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Table 6: Results for logarithmically transformed tree density data 

ANOVA 
Source of Variation SS df MS F P-value F crit 
Between Groups 69.76672572 3 23.25557524 33.01501905 5.12787E-13 2.748190911 
Within Groups 45.0812042 64 0.704393816       
              
Total 114.8479299 67         
 

4.3. OBIA 
Object based image analysis was conducted to extract tree crowns from the high resolution World View -2 
image. This analysis followed a sequence of steps as discussed below. The study area presented a complex 
landscape ranging from settlements (built-up areas), Oil palm plantations and farmlands as illustrated in 
figure 12 below, which is part of the image. 

 
Figure 12: Illustration of complex scenes in the image (Farmlands, Built-up areas and Oil Palm 
Plantations 

4.3.1. Scale parameter estimation 
Estimation of scale parameter at which the World View-2 image could be best segmented revealed four 

main thresholds at 16, 18, 22 and 25. These thresholds were chosen as the best using the peaks in the rate 

of change of local variance plot as it was observed by Dragut, et al, (2010), that this curve explains best the 

best segmentation threshold. Scale parameters 22 and 25 were used to segment the whole image and 

subset respectively as they provided the best objects with meaningful shape size (1:1 matching) and low D 

value as shown in table 7. Figure 13 is the results obtained using the ESP tool. 
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Figure 13: Results of ESP tool 

4.3.2. Segmentation with automatic masking of Oil Palm 
Image segmentation was first conducted with automatic identification and masking out of Oil palm using 

vegetation indices as explained in chapter three. Oil palm identification was conducted as an intermediate 

step before final identification and refinement of tree crowns. Figure 14 below is an illustration of part of 

the image showing segmented tree crowns and Oil palm with its unique star shape. 

      
     Figure 14: (a) Segmented Tree Crowns              (b) Segmented Oil Palm 
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4.3.3. Segmentation accuracy assessment 
Both visual and automated validation techniques were employed in the study to assess the correctness of 

produced segments by the Definiens software. CPA derived using automatic masking of Oil palm using 

the whole image extent had a 72% 1:1 matching using a scale parameter of 22. Figure 15 is an illustration 

of how 1:1 matching was conducted using overlay function.  

 
Figure 15: One to one matching validation procedure 

However, better tree identification and a much higher 1:1 matching and lower error (D value) was 

obtained for CPA derived when manually masking Oil palm using a subset of the image as discussed latter 

in section 4.3.6 below. Table 7 is an illustration of segmentation validation results for the whole image and 

the subset. 

Table 7: Segmentation Validation 

Image Reference Crowns  1:1 Matching Percentage 1:1 D value 
Whole Image 101 73 72% 0.32 
Subset 42 35 83% 0.28 
 

4.3.4. Carbon Modeling for Segmentation with Automatic masking of Oil Palm 
Cross validation was applied to data and out of the 73 segmented crowns found to have 1:1 matching; 

those with perfect match and corresponding well with visual interpretation of crowns and data collected in 

the field were used to develop the model. A total of 55 crowns were used to establish a relation between 

biomass and crown projection area. Of these 39 were used for estimation and 16 for validation. Linear and 

non-linear models were evaluated and the latter was chosen as it had a higher coefficient of determination 

and low RMSE. The coefficient of determination (R2) obtained was 0.61 and significant at 95% 

confidence interval, meaning that segmented CPA explained well the proportion of variability in biomass 

(response variable). The model also showed a high correlation (r) of 0.78 between the two variables. Table 

8 below is a summary of the model developed. 
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Table 8: Summary of Regression model for model developed using automatic masking of Oil 
palm 

Anova 

 Sum of Squares df Mean Square F Sig. 

Regression 9.960E7 2 4.980E7 27.978 .000 

Residual 6.408E7 36 1779908.610   

Total 1.637E8 38    
 

Coefficients 

 Unstandardized Coefficients Standardized 

Coefficients 

 

 

t 

 

 

Sig. B Std. Error Beta 

CPA 1.892 42.345 .020 .045 .965 

CPA ^ 2 .679 .397 .761 1.711 .096 

(Constant) 656.383 936.517  .701 .488 
 

Biomass = 0.679*CPA^2+1.892*CPA+656.383 

 
Figure 16: Non linear model for Biomass and CPA for model developed using automatic masking 
of Oil palm 

Model validation was conducted using 16 test crowns and the relative root mean square error observed 

was 41.3% for validation and 60.7% for estimation data. A model was also developed between the 

predicted biomass and the observed and the coefficient of determination obtained was R2=0.88 as 

illustrated below.   
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Figure 17: Linear model of predicted against observed Biomass for model developed using 
automatic masking of Oil palm 

4.3.5. Oil Palm Problem 
Results of image segmentation revealed that Oil palm affected accurate tree crown identification. Tree 

crown identification was affected in two ways. First, the automatic masking of Oil palm using outlined 

vegetation indices resulted in removal of parts of tree crowns. This is illustrated in figure 18 below where 

within the same area, tree crowns are represented differently. Figure 18 (a) shows part of tree crowns, 

classified green areas, having been lost due to Oil palm masking and figure 18(b), shows how well the 

crowns are reserved if Oil palm is removed manually and not through automatic detection an approach 

discussed and illustrated further in section 4.3.6 below. Second, tree identification was greatly affected as 

less tree crowns were identified when automatically masking out Oil palm than when manually removing 

the tree crop. 

           
Figure 18: (a) With automatic masking of Oil Palm  (b) Without automatic masking of Oil Palm 

 
.  
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4.3.6. Segmentation with manual masking of Oil Palm  
As it was suspected that use of vegetation indices to automatically mask out Oil palm affected tree crowns 

delineation, it was decided to extract a subset of the image where minimal Oil palm was found and 

manually detect and delete it after the segmentation process. Oil palm has a distinct star shape clearly 

different from tree crowns and is more homogenous especially in large scale plantations. Only built up and 

bare areas were automatically masked out and the remaining layer was assumed tree crowns.  Watershed 

transformation and morphology algorithms were then applied to image objects as explained in the method 

section to obtain individual tree crowns. Tree crowns obtained had better shape and high tree 

identification as compared to the approach where Oil Palm was automatically masked out. Figure 19 

below is an illustration of results obtained using this approach. 

 
Figure 19: Tree crowns obtained after manually masking Oil Palm 

4.3.7. Carbon Modeling for Segmentation with manual masking of Oil Palm  
 

Cross validation method was applied and 23 segmented tree crowns were used for model development 

and 11 were used as test data. The coefficient of determination obtained using the estimation data was 

found to be higher R2=0.66 using the non-linear model than that obtained when automatically masking 

out Oil Palm meaning that CPA explained better the variation in biomass. The model was significant at 

95% confidence interval. Table 9 below is a summary of the model. 
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Table 9: Summary of Regression model developed using manual masking of Oil Palm 

Anova 

 Sum of Squares df Mean Square F Sig. 

Regression 2.102E7 2 1.051E7 19.978 .000 

Residual 1.052E7 20 526129.329   

Total 3.154E7 22    
 

Coefficients 

 Unstandardized Coefficients Standardized 

Coefficients 

 

 

t 

 

 

Sig. B Std. Error Beta 

CPA 38.930 51.379 .395 .758 .457 

CPA ^ 2 .507 .619 .428 .820 .422 

(Constant) -402.902 984.230  -.409 .687 
 

The model developed for Biomass and Crown projection area for approach 2 was: 

Biomass = 0.507*CPA^2+38.930*CPA-402.902 

 
Figure 20: Non linear model for Biomass and CPA for model developed using manual masking of 
Oil Palm 

Model validation was conducted using 11 test crowns and the relative root mean square error observed 

were 45.6% for estimation and 38.1% for validation data as compared to the model developed after 

automatically detecting and masking out Oil Palm. A model was also developed between the predicted 

biomass and that observed and the coefficient of determination obtained was (R2) 0.81 as illustrated in 

figure 21 below.   
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Figure 21: Linear model of predicted against observed Biomass for model developed using 
manual masking of Oil palm 

4.3.8. Carbon Mapping 
 

As the developed method (rule set) for manual masking of Oil palm resulted in better tree identification   

and model development, with less error, relative root mean square errors of 45.6% and 38.1% for 

estimation and validation data. This approach was used to generate image segments after which manual 

masking / removal of Oil palm was conducted for the whole image. The model for manually masking of 

Oil palm was adopted for coming up with the final carbon map for the study area. Carbon was derived 

from biomass using a conversion factor of 47%. The carbon map produced is illustrated in figure 22 

below. 
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Figure 22: Carbon Map for Ejisu Juaben farmlands 
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4.4. Up-scaling 
A Non linear relation was established between spectrally delineated CPA segmented from the higher 

resolution World View-2 and band 3 (near infrared) reflection values from the medium resolution Aster 

image. Samples of tree crowns falling within the 30 x 30 m2 Aster generated window were obtained from 

35 plots. As carbon for the tree crowns had already been obtained through regression modelling as 

explained above, average carbon per tree (based on segmented CPA) was calculated for each window and 

this was multiplied by the proportion area covered by tree crowns in the window as explained earlier in the 

methods section. Mean reflection values for the near infrared for the four pixels falling within the 30 x 30 

m2 Aster window showed a moderate correlation (r) with area based average carbon for image segments. 

Results of the correlation analysis are illustrated in table 10 below. 

 

Table 10: Correlation analysis for average carbon and Aster bands  

Bands (Aster Visible-Near Infrared) r (Pearson Correlation Coefficient) 
1 (Green band) -0.18 

                               2 (Red band) -0.41 
   3  (near infrared) 0.66 

 
The near infrared band predicted well carbon within the segmented tree crowns with a high coefficient of 

determination (R2) of 0.50 as compared to other bands which had low R2=0.23 and R2=0.09 for red and 

green band respectively as illustrated in Appendix 8. The near infrared band followed a non-linear direct 

relation to carbon as compared to the red and green band which had an inverse non-linear relation, an 

observation made by Tucker, (1979), who investigated the relation between individual band radiance and 

biomass in vegetation. This relation is mostly due to the peak of reflection by vegetation in the near 

infrared region and peak absorption in the red band.  The developed model was significant at 95% 

confidence interval as illustrated in table 11 below. 
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Table 11: Summary of Regression model for Up-scaling 

Anova 

 Sum of Squares df Mean Square F Sig. 

Regression 2531567.260 2 1265783.630 10.774 .001 

Residual 2467153.001 21 117483.476   

Total 4998720.261 23    
 

Coefficients 

 Unstandardized Coefficients Standardized 

Coefficients 

 

 

t 

 

 

Sig. B Std. Error Beta 

Band 3 -9.730 10.529 -3.213 -.924 .366 

Band 3^2 .003 .002 3.907 1.124 .274 

(Constant) 9068.120 11792.814  .769 .450 
 

The model developed for up scaling was: 

Average Carbon = 0.003*Band 3^2 – 9.730*Band 3 + 9068.120 

 
Figure 23: Up-scaling model 
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Validation resulted in a relative root mean square error of 40% for the validation data set. A model was 

also developed between the predicted area based average carbon and that observed and the coefficient of 

determination obtained was R2=0.68 as illustrated in figure 24 below. 

 

 
Figure 24: Up-scaling model Validation 

Since the near infrared predicted better average carbon with higher coefficient of determination (R2) 0.50 

and relative root mean square error of 40 % it was used to come up with an up-scaled map of carbon 

from the Aster image for the study. Masking of the study area extent from the Aster image was conducted 

using the World View-2 image after which the model developed was applied to the near infrared band 

using the raster calculator in ArcGIS environment to come up with an up-scaled map of carbon. Figure 25 

below is an illustration of the up-scaled carbon map for the study area.  
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Figure 25: Up-scaled Carbon Map for Ejisu Juaben Farmlands 
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5. DISCUSSION  

5.1. Image segmentation 
 

Multiresolution segmentation, a bottom-up approach designed to minimize heterogeneity in image objects 

(Trimble, 2010), was chosen for the study as it has proven useful in the extraction of information in high 

resolution images in complex landscapes with many cover types (Benz, et al., 2004). The approach has also 

been found to be a powerful technique in determining occurrence of canopy gaps and tree spatial 

distribution (Lamonaca, et al., 2008), a situation found mostly with regards to trees on farmlands as trees 

are sparsely distributed as compared to forest environments. Although tree crops such as Oil palm affect 

segmentation results, the technique proved useful as evidenced by the relatively high tree identification 

rates 72% and 83% for the whole image (automatic Oil palm masking) and subset (manual masking of Oil 

palm) respectively indicating that it can be adopted as an approach for delineating tree crowns on 

farmlands were tree distribution is sparse unlike in forests environments. 

 

Despite being a trial and error procedure, estimation of scale parameter is of prime importance in 

generation of meaningful image objects from high resolution satellite images. Scales of 22 and 25 were 

used based on the best representation and perfect match to reference manually digitized crowns (Clinton, 

et al., 2010; Zhan, et al., 2005). The chosen scales could be considered as fine scales based on the work of 

Benz et al,(2004), who established that trees, buildings and roads are better discriminated from other land 

cover at a fine scale.   

5.2. Palm Oil Masking  
Due to the ability to compute object statistics based on single input layers or combinations within the 

image (Benz, et al., 2004), use of vegetation indices was employed to automatically detect and mask out Oil 

palm. This proved useful as trees and Oil palms have different leaf structure and therefore reflectance 

characteristics. The distinct advantage offered by World View-2 satellite image of having new bands at 

high resolution, coastal blue and red edge bands, with improved potential for detailed vegetation analysis 

(Digital Globe, 2008) enabled the automatic detection of Oil palm from trees. 

 

However, automated identification and masking of Oil palm trees using vegetation indices had an effect 

on the final tree CPA in two ways. First, part of tree crowns which had different spectral reflectance as the 

rest of the tree crown were lost in the masking as they fell within the set thresholds 0.33 and -0.25 for the 

red edge comparison and the modified vegetation index respectively for oil palm. This is so as the image 

was acquired during the dry season when leaves were dry and thus having low greenness since trees found 

in the study area are semi-deciduous (Hall andSwaine, 1976).  
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Therefore after object primitives are identified which represent a part of a tree or a tree (Benz, et al., 2004), 

in the masking of Oil palm those which fell within the thresholds were lost together with Oil palm. This is 

best illustrated in figure 26 below which shows part of crowns, black regions separated from the reddish, 

which were lost as a result of use of vegetation indices to automatically detect and mask out Oil palm 

(figure 26(a)). Figure 26(b) is the false colour image of the plot and figure 26(c) is the same plot with 

segmentation results overlaid black tree crowns after segmentation is applied without automatically 

masking out Oil palm. The sizes of tree crowns in figure 26 (a) and 26 (c) are different especially with 

regards to tree crowns on the bottom left of the plot. 

Figure 26: (a) With Oil Palm masking (b) False Colour Image   (c) Without Oil Palm Masking 

Second, apart from losing part of tree crowns as illustrated above some trees were completely lost in the 

process of automatic masking of Oil palm. Leaf dryness resulted in low reflectance as the image was 

acquired during the dry season. Figure 27 below is an illustration of a sample plot with figure 27(a) being a 

result of image segmentation without automatic detection and masking of Oil palm and figure 27 (b) being 

a result of segmentation after automatic detection and masking of Oil palm. Tree identification in figure 

27(a) is high as opposed to figure 27 (b) on the right were some trees were lost as a result of automatic 

masking. This was further illustrated by the high tree identification in the subset 83% as opposed to the 

whole image extent 72%. 

 

                                                     
Figure 27: (a) Without automatic masking of Oil Palm (b) With automatic masking of Oil Palm 
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As a result of the above mentioned reasons the non linear model developed using automatic masking of 

Oil palm showed high relative root mean square error than that developed using manual masking. Non 

linear models were preferred as they had high coefficient of determination and less RMSE contrary to 

linear models. Tree growth exhibits a non-linear pattern even in open environments such as farmlands 

where trees are said to have “free growth” (Cabanettes et al., 1998).  Non-linear models have also been 

shown to predict well DBH from crown diameter as observed by Mugo et al,(2011), in a study of open 

grown trees in farmlands of Sondu-Nyando river catchment in Kenya. Also in a study of open widely 

grown trees similar to natural trees found on farmlands where there is human disturbance and damage 

caused by animals, Cabanettes et al,(1998) found better results using non linear exponential function 

between DBH and height as dependent variables and the age of the tree as an explanatory variable. 

5.3. Up-scaling 
 
Area based carbon averaging rather than the average carbon of tree crowns gave satisfactory measure 

against which reflection from the Aster image could relate to the image objects / tree crowns from the 

World View-2 satellite image. This observation corresponds well to other studies conducted by Hufkens et 

al, (2008), and Gibbes (2010), who calculated proportion of crown coverage to upscale Leaf Area Index 

point measurements and tree crowns derived from IKONOS imagery to Landsat pixel resolution 

respectively. Using average carbon values of tree crowns alone without factoring in the proportional area 

covered by tree crowns yielded unsatisfactory results as reflection in the Aster image is due to the 

proportion of cover dominant in that pixel. Therefore area was utilized to come up with an area based 

carbon average value for up-scaling purpose. As plot size differed, the four pixel window covered the 

whole plot in the case of forest and old fallow strata and fell within the plot in the case of cropland and 

young fallow strata as illustrated in figure 28(a) and (b) below. Four pixels and averaging of reflection 

values was applied to cover for geo-referencing errors in locating plots(Fuchs, et al., 2009). 

 

                              
Figure 28: (a) Forest and Old Fallow strata (b) Young Fallow and Cropland strata (Black square 

represents the 30 x 30 m2 window and the circles represent the plots for the strata) 
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Rasmussen et al (2011) established that tree crown area coverage is an essential remote sensing parameter 

as it affects greatly the amount of reflectance from a surface. Although unfavourable results were 

obtained, Rasmussen et al (2011), attempted to create a relation between NDVI from Aster 15m resolution 

and tree crowns derived from Quickbird imagery for study area in Sudan. Reasons for low correlation 

found being the low crown coverage in the study area (Rasmussen, et al., 2011). However, spatial 

aggregation using crown area rather than relying on pixel information yield better results as evidenced by 

Hansen et al, (2002), who used crown cover from IKONOS as training data to aggregate to 30 meters 

Landsat ETM+ resolution using regression tree analysis and obtained relative root mean square error of 

10%. The results revealed that high resolution satellite data allow direct interpretation of the variable of 

interest, crown projection area,  while medium Aster resolution data enable the mapping of that variable 

over a wide region (Hansen., et al., 2002). 

 

Band 3 (near infrared) of the Aster image showed great potential for the up-scaling approach as the model 

had a high coefficient of determination (R2=0.50) when compared to other bands. This is due to the high 

sensitivity of the band to vegetation cover. Vegetation reflects more in the infrared than any other bands 

(Tucker, 1979). Results observed in the study correspond well to Tucker, (1979), who observed a direct 

non linear relation between the near infrared and biomass for plants which could also explain the positive 

correlation (r=0.66) as also observed in this study.  

5.4. Biomass and Tree density  
Assessment of differences in biomass and tree density per stratum showed that there are more trees and 

biomass per hectare in old fallow and forest strata than in young fallow and croplands. Mostly shrubs and 

bare land characterize croplands and young fallow as these are continually under cultivation and therefore 

low tree density and biomass per hectare (Gelens, et al., 2010). Also on farmlands humans and animals 

damage trees by activities such as lopping which affect tree growth. This has an influence on allometric 

models, which relate different tree parameters to each other since trees are not allowed to grow 

undisturbed (Rasmussen, et al., 2011). Despite this estimation of carbon in the study area revealed that the 

area had 45.9 Mg C/ha-1. Tree retention on farmlands is estimated to have a potential of carbon storage of 

between 12 and 228 Mg C/ha-1, with this large variability explained mainly by the diverse management 

system practised within farmlands (Albrecht andKandji, 2003). 

5.5. Sources of uncertainty in carbon modelling 
 
Error is inevitable in GIS and remote sensing applications and this error is brought about in number of 

ways which include data acquisition, processing, analysis and conversion. Errors increase in a 

multiplicative way up to the final product preparation (Lunetta et al., 1991).  In carbon estimation there are 

many ways through which error can be brought about in the estimation process either by the individual or 
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through generalization in image processing techniques (Lunetta, et al., 1991) and sampling error, 

measurement error and error associated with the type of regression model chosen (Brown, 2002). In this 

study error in the carbon modelling and up-scaling were mainly brought about by shadows, time of image 

acquisition, Oil palm and the choice of allometric equation as discussed below. Figure 29 is a schematic 

representation of the main steps for error propagation in a GIS and remote sensing analysis. 

 

 
Figure 29: Error propagation within a GIS and Remote sensing system: Source Lunetta et al 
(1991)  

5.5.1. Shadow 
Satellite-images recorded at off-nadir geometry of the sensor show shadows, which complicates proper 

tree identification especially during image segmentation process in Definiens software (Rasmussen, et al., 

2011). The World View-2 satellite image used in the study was acquired at 13.10 off nadir which explains 

the present of shadow in some parts of the image as illustrated in figure 30 below where part of the tree 

crown in figure 30 (b) are obscured.  

 

     
                     Figure 30: (a) Without shadow              (b) With Shadow 
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5.5.2. Time of image acquisition 
Since the World view-2 image was acquired during Ghana’s dry season, the contrast between Oil palm and 

tree crowns could not be well established as some trees were probably dry making reflectance low and 

difficult to separate tree from Oil palm. Therefore an image acquired during peak greenness for trees 

might yield better results for separation between tree crowns and Oil palm. 

5.5.3. Allometric Equations and biomass estimation 
The use of the general equation for all species results in bias as some trees may be over predicted whilst 

other may have an under prediction in terms of their biomass values. Despite DBH explaining much of 

the variability of above ground biomass in the tropics with high coefficient of determination as observed 

by Brown, (1997), including other measurements such as height in the allometric equation significantly 

improves the estimates. For example in the study area there are tree such as Ceiba petandra with large DBH, 

but relatively small crowns and very tall in height, which raises the need of species specific equation for 

accurate biomass estimation. Therefore, use of recent technological developments such as the LIDAR to 

extract height information for trees will greatly improve carbon estimates on farmland. Chave et al, (2004), 

established that the most important source of error in biomass and carbon estimation is choice of the 

allometric model and recommended that efforts should be placed on improving the predictive power of 

allometric models for biomass. Trees on farmlands are also influenced by animals and people since they 

are not allowed to develop undisturbed (Rasmussen, et al., 2011) a factor which may greatly affect their 

growth. 

5.5.4. Up-scaling  
 
The model developed for carbon estimation had RMSEr of 45.5% and 38.1% for the estimation and 

validation data set respectively with tree crown identification, 1:1 matching, of 83%.  These relative errors 

from the subsequent process were taken into the up-scaling process as the tree crowns identified from the 

high resolution image were used as training data for the up-scaling process. Despite this however, visual 

assessment of the final carbon map produced in the up-scaling process showed a fair correspondence in 

relation to the proportion of crown cover in the study area as observed from the World view-2. Also the 

images used in the up-scaling process were of different dates and time span of a year between them, with 

the effect that a lot of land cover changes could have taken place in between the acquisition of the images, 

a situation very much likely especially when considering that the area is experiencing rapid population 

growth (Ministry of Food and Agriculture, 2011). Therefore, image acquisition should be exactly or almost 

close to each other with minimal time interval in between to reduce errors associated with these land cover 

changes. 
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The up-scaling approach for the research mainly focused on development of a method for transferring 

between scale from high to medium resolution image and not entirely coming up with a perfect carbon 

map. Also the validation of the up-scaled map was not conducted as only field data existed for the World 

View-2 image only and not other sites which covered the aster image extent. Therefore additional land 

cover data for those areas covering the Aster image need to be collected to perform a perfect validation 

for the up-scaled carbon map (Hansen., et al., 2002). 
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6. CONCLUSION AND RECOMMENDATIONS 

The study revealed the potential of biomass and hence carbon mapping for tree resources on farmlands 

using a combination of OBIA and an up-scaling strategy for Ejisu Juaben district in Ghana. The study was 

conducted to answer research questions which are outlined below: 

 

Question: How may OBIA be used to map tree crowns and biomass / carbon of trees on 
farmlands?  
Hypothesis: Object oriented segmentation can be used to identify and map carbon for farmlands trees with high accuracy level 

(overall accuracy tree identification >70%) 

Multiresolution segmentation approach has been proved to offer an effective approach of image 

segmentation for tree resources on farmlands where a combination of built up, bare and vegetation cover 

exists. Using multiresolution approach a high tree identification / accuracy rate was observed, 72% and 

83%, which indicate the potential of object based image segmentation for mapping of carbon for farmland 

trees. However, despite using algorithms, such as watershed transformation to reduce the occurrence of 

tree clusters the presence of clusters which represents multiple trees could not be avoided, an observation 

also made by Gibbes et al (2010). 

 

Question: How does Oil palm affect individual tree delineation / identification on farmlands? 
Two approaches to map biomass and hence carbon on farmland where tree crops having almost the same 

spectral characteristics as trees were presented. First, an approach were tree crops are automatically 

detected and masked out to estimate carbon and another were these are manually detected and deleted 

after segmentation were used. The study revealed that use of vegetation indices alone cannot clearly 

distinguish between Oil palm and trees without affecting the latter. This was observed through masking of 

parts of tree crowns or whole trees which might suggest use of other parameters like texture analysis to 

completely explore if Oil palm can successfully be distinguished from trees automatically. Also peak 

greenness (Hansen., et al., 2002) images could also aid greatly in separation of Oil palm from trees as this 

proved difficult using the dry season image. 
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Question: Which regression model best describes the relation between biomass, and hence 
carbon, and CPA for tree resources on farmlands? 
Hypothesis: Tree biomass can be predicted from CPA at significant level p <0.05 

The study showed the potential use of high resolution satellite imagery as noted by Gibbs et al,(2007), to 

map and estimate biomass, and hence carbon, as a respond to the need of the REDD+ programme. 

Biomass was modelled with a high significance level p <0.05 for both the whole image and subset 

approaches using crown projection area as derived from image segments as the independent variable. The 

non linear model explained well biomass on farmlands as it had a higher coefficient of determination and 

showed well goodness of fit unlike the linear model.  

 

Question: Is there a relation between World View-2 objects and pixels in a medium resolution 
Aster image? 
Hypothesis: There is a significant relation (p <0.05) between Worldview objects or object groups and medium resolution 

Aster pixels 

Using average carbon values based on the proportion of tree crown coverage a significant relation at p 

<0.05 was established between World Viev-2 image objects and reflection from the medium resolution 

Aster image. A non linear relation was established between near infrared band of the Aster image and 

objects from the high resolution image, showing the potential of the near infrared band for the up-scaling 

procedure. Results proved the potential use of combining high and medium resolution imagery to transfer 

between scales with the near infrared band of the Aster image showing great potential. The high resolution 

image being used for coming up with training data and studying the variable of interest (CPA) and the 

medium resolution being used to better understand processes at much broader scales. Data for validation 

of the up-scaled image need to be collected to properly assess the quality of up-scaled maps. In this 

research additional data was not collected as emphasis was mostly on method development. Further 

exploration of other image derived features such as texture and vegetation indices need to be explored 

together with the hierarchical function of Ecognition software in order to further refine up-scaling 

techniques. 

Limitations of the study 

 Satellite image used coincided with the dry season when leaves are dry therefore it might be most 

useful to use peak greenness images acquired during the wet season when vegetation growth is at 

its maximum 

 The use of non-site specific allometric equation made for forests environments and not trees 

outside forests were tree growth is affected by human interactions 

 Different acquisition dates for satellites used in the up-scaling bringing about a source of error as 

farmlands are very dynamic systems with changes experienced over a short timeframe 
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LIST OF APPENDEXES 
Appendix 1: Crops grown in Ejisu Juaben District 
Type of Crop Output per season (Tonnes) 
Maize 5,400 
Plantain 32,300 
Cassava 81,200 
Rice 1,632 
Cocoyam 16,660 
Yam 4,560 
Cocoa 2,500 
Oil palm 22,100.11 
Citrus 16,970,54 
Pepper 52.7 
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Appendix 2: Animals kept in Ejisu Juaben District 

Type of Animal Total Stock 
Sheep 8,097 
Goats 9,842 
Pigs 11,100 
Poultry local 118,198 
Poultry exotic 501,000 
Cattle 1,400 
Duck 1784 
Turkeys 92 
Rabbit 56 
Grasscutter 35 
Guinea fowls 1273 
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Appendix 3: World View-2 Spectral bands 

 

 

 

 

 

 

 

 

 

 



ASSESSMENT OF CARBON STOCKS FOR TREE RESOURCES ON FARMLANDS USING AN OBJECT BASED IMAGE ANALYSIS OF A VERY HIGH RESOLUTION 
SATELLITE IMAGE: A CASE STUDY IN EJISU JUABEN DISTRICT, GHANA 

59 

Appendix 4: Tree species found on Farmlands in Ghana 

Number Local Name Scientific Name 
1.  Odum Milicia excelsa 
2.  Pepia Margaritaria discoidea 
3.  Nyame dua Alstonia boonei 
4.  Pear Persea americana 
5.  Eno ni Ekyeni Cleistopholis patens 
6.  Otie Pycnanthus angolensis 
7.  Wawa Triplochiton scleroxylon 
8.  Kusia Nauclea diderrichii 
9.  Koto Bussea occidentalis 
10.  Okuo Zanthoxylum gilletii 
11.  Yaya Amphimas 
12.  Okoro fitaa Albizia zygia 
13.  Kyenkyen Antiaris toxicaria 
14.  Supua Vitex grandifolia 
15.  Foto' Glyphaea brevis 
16.  Nyankyeni Ficus exasperata 
17.  Onyina Ceiba pentandra 
18.  Opam Macaranga barteri 
19.  Onyina kobim Rhodognaphalon 
20.  Kwaku bisina Carapa procera 
21.  Emeri Terminalia ivorensis 
22.  Fotum Funtumia elastica 
23.  Dagoma Piptadeniastrum 
24.  Teak Tectona grandis 
25.  kuakunisuo Spathodea campanulata 
26.  Peperdiewuo Solanum erianthum 
27.  Woma Ricinodendron heudelotii 
28.  Otwisi Vitex ferruginea 
29.  Ofram Terminalia superba 
30.  Mango Mangifera indica 
31.  Sesei Trema orientalis 
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Appendix 5: DBH distribution within Strata 
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Appendix 6: Individual Tree Biomass distribution within stratum 
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Appendix 7: Normality tests results for strata 

 
Biomass 

Stratum Shapiro-Wilk normality test 

LogCropland W = 0.9847, p-value = 0.9727 

LogYoung fallow W = 0.9371, p-value = 0.4611 

LogOld fallow W = 0.9672, p-value = 0.7907 

LogForest Relict W = 0.9596, p-value = 0.6236 

 
Tree Density 

Stratum Shapiro-Wilk normality test 

LogCropland W = 0.9796, p-value = 0.9089 

LogYoung fallow W = 0.9132, p-value = 0.2344 

LogOld fallow W = 0.9507, p-value = 0.5002 

LogForest Relict W = 0.968, p-value = 0.7826 
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Appendix 8: Up-scaling models for Aster band 2(Red) and 1(Green) 
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