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ABSTRACT 

Sustainable decision making incorporating biological, ecological, social and economic component of 

forestry is reliant on precision forestry. As forest covers extensive landholdings, accurate, timely, 

repeatable, detailed and spatially explicit forest inventory characterisation and structural information are 

highly desirable for precision forestry needs. Light detection and ranging (LiDAR), a relatively recent 

active remote sensing technology, can provide accurate appraisal of vertical forest canopy structure. 

Individual tree and stand-level physical attributes such as height, vertical structure, canopy closure, and 

density can be retrieved from LiDAR data.  In the present research, a novel method to precisely detect 

individual trees from high density airborne LiDAR point cloud data has been tested. Tree Canopies are 

delineated using object based image analysis and a new approach of Thiessen polygons. Further an array 

of important tree parameters such as tree height, canopy projection area (CPA), canopy base height, 

canopy volume, canopy density, canopy gaps,local tree density and canopy inclination have been extracted 

from the LiDAR point cloud data to prepare geospatial forest inventory. The research also deals with tree 

species classification based on query method on structural tree parameters in inventory database. Lastly, 

the sequestered forest carbon in the study area has been assessed by developing regression equation from 

the extracted parameters. Tree peaks were detected with high accuracy of 96 %, while best crown 

segmentation accuracy for Region growing segmentation approach was 84 % with 93.5 % one to one (1:1) 

correspondence. Thiessen polygon segmentation approach proved to be a good estimator of CPA with 

94.2 % 1:1 correspondence and it could explain reference CPA with R2=0.9, RMSE=3.2 m2. Tree height 

was extracted with R2=0.86, RMSE=0.86 m while canopy base height was extracted with an accuracy of 

R2=0.73, RMSE=0.86 m. Species classification was achieved with an overall accuracy of 97 %. The best 

carbon model using extracted parameters had accuracy of R2=0.78, RMSE=0.23 kg. In this research, 

LiDAR has emerged as a potential technology to fulfil the needs of precision forestry. 

 
 
 
Key words: Forest inventory, Tree crown delineation, Region growing, Thiessen polygon, Object based 
image analysis 
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1. INTRODUCTION 

1.1. Background 
Forests, which occupy 31 per cent of the total land area of the world, sequester about 289 giga tonnes (Gt) 

of atmospheric carbon to their biomass alone(FAO, 2010). Deforestation and forest degradation alone 

account for 30% of the anthropogenic carbon emission(Goetz et al., 2009). The role of forest in reducing 

the atmospheric level of CO2 has been emphasised in United Nations Framework Convention on Climate 

Change (UNFCCC) and its Kyoto Protocol, which requires signatory countries to quantify their carbon 

stocks and its changes. The United Nations REDD (Reducing Emissions from Deforestation and Forest 

Degradation) programme offers incentives for developing countries to reduce emissions from forested 

lands by creating a financial value for the carbon stored in forests. Thus, with increasing commitment to 

climate change initiatives, there exists a greater requirement for precise estimates of biomass and forest 

productivity (Patenaude et al., 2005).  

 
Conventionally, the biomass has been estimated by field measurement based methods such as destructive 

sampling, allometric equations or conversion from volume to biomass (Houghton, 2005; Lu, 2006). These 

methods are the most accurate ways of biomass estimation but they require sufficient number of field 

measurements for developing above ground biomass estimation models (Houghton, 2005; Lu, 2006). 

However, these approaches are time consuming, labour intensive, highly expensive and destructive. 

Moreover, they are difficult to implement in remote and inaccessible areas; also they are unsuitable for 

providing biomass distribution over large areas. GIS based methods, using ancillary data like elevation, 

slope, soil, precipitation, etc. are also difficult in absence of good quality ancillary data, and because of the 

indirect relationship between ancillary data and biomass, and the comprehensive impact of environmental 

factors on biomass accumulation (Brown & Gaston, 1995; Lu, 2006). Remote sensing based biomass 

estimation has increasingly attracted scientific interest because of provision of systematic, repetitive and 

consistent data collection, a synoptic view in a digital format allowing fast processing of large data and the 

presence of correlations between spectral bands and vegetation parameters (Lu, 2006; Patenaude et al., 

2005).  

 

Radar system can collect Earth feature data irrespective of weather or light conditions which makes it very 

suitable for the areas persistently covered by cloud (Lu, 2006). Radar has been used for biomass 

assessment since late 1980 especially with L and P-band and cross polarized images. Previous research has 

shown the potential of radar data in estimating AGB (Castel et al., 2002; Hussin et al., 1991; Santos et al., 

2002; Sun et al., 2002; Treuhaft et al., 2004). Different radar data have their own characteristics in relating 

to forest stand parameters (Leckie & Ranson, 1998). For example, radar backscatter in the P and L bands 
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is highly correlated with major forest parameters, such as tree age, tree height, DBH, basal area, and AGB. 

In particular, SAR L-band data have proven to be valuable for AGB estimation (Luckman et al., 1997; 

Sader, 1987; Sun et al., 2002). However, low or negligible correlations were found between SAR C-band 

backscatter and AGB (Le Toan et al., 1992). Beaudoin et al. (1994) found that the HH-polarised return 

was related to both trunk and crown biomass, and the VV and HV-polarised returns were linked to crown 

biomass. Radar data collected over mountainous area with steep slopes provides much higher 

backscattering on slopes facing the radar antenna than with same cover type in flat terrain. However, the 

radar data suffers from saturation problem which depends on wavelength, polarization, vegetation stand 

structural characteristics and ground conditions. 

 

Light detection and ranging (LiDAR) is a relatively recent active remote sensing technology that operates 

in the visible or near infrared portion of the electromagnetic spectrum (Heritage et al., 2009). LiDAR data 

can provide accurate appraisal of vertical forest canopy structure (Lim et al., 2003), but are somewhat 

limited in the two-dimensional spectral domain (Kebiao et al., 2010). Passive optical data provide 

extensive coverage of generalized structural classes in the horizontal plane but are relatively insensitive to 

measure individual structural components in a vertical plane (Goetz et al., 2009). Individual tree and stand-

level physical attributes such as height, vertical structure, canopy closure, and density can be generated 

from LiDAR data (Kebiao et al., 2010; Lim et al., 2003) and correlated with density and horizontal canopy 

parameters from high-resolution optical data. 

 

No single sensor data is capable of giving infallible assessment for forest biomass (Goetz et al., 2009), 

especially in areas with complex forest stand structures and environmental conditions (Lu, 2006). The 

combination of high-resolution data from optical imagers and LiDAR systems permits individual tree and 

canopy height information to be extracted along with the species, health, and other biophysical tree 

attributes (Kim et al., 2010; Lim et al., 2003; Pilger, 2008). A relationship of vertical forest structure, 

obtained from LiDAR, with digital spectral values of optical images over species specific validation sites 

may then be extrapolated from local to regional and finally to national coverage (Li, 2009), substantially 

reducing the cost associated with field validation sites and improving on existing inventory methods.  

 

Space borne LiDAR system is a reality. The Geoscience Laser Altimeter System (GLAS) on the NASA 

Ice, Cloud and land Elevation Satellite (ICESat) launched in 2003 has provided a view of the Earth in 

three dimensions with unprecedented accuracy (Schutz et al., 2005). The GLAS laser transmits short 

pulses (4 nanoseconds) of infrared light at 1064 nm and visible green light at 532 nm 40 times per second 

and collects data at full waveform. The spatial resolution of the disk illuminated by the laser is 70 meters in 

diameter and spaced at 170-meter intervals along the Earth's surface (NSIDC, 2011). ICESat/GLAS has 

also been used to derive biomass parameters and canopy height for large areas (Kebiao et al., 2010; Lefsky 

et al., 2005; Pang et al., 2006). In near future commercial space borne LiDAR, providing global coverage 
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may be a reality, reducing the cost of LiDAR data substantially (Hudak et al., 2002; Lefsky et al., 2002). It 

is envisaged that the models developed for estimation of biomass using high density airborne LiDAR 

(HDAL) then become an important and practical tool for low cost accurate biomass assessment for large 

forest area.  

1.2. Overview of LiDAR technology 
 LiDAR (Light Detection And Ranging) is one 

of the active optical remote sensing technologies 

to collect topographic data. It works similar to 

Radar (Radio Detection and Ranging) but 

instead of radio waves, LiDAR systems emit 

laser light. LiDAR transmits laser pulses to the 

ground surface; the pulses are reflected from the 

surface back to the laser system. Based on the 

speed of light, the distance to the ground hit 

point can be calculated. LiDAR can provide 

highly accurate measurements of both forest 

canopy and the ground surface. It provides data 

that make it possible to detect and isolate 

individual trees and calculate attributes 

describing their size and form of individual 

trees. Airborne laser scanning systems have four 

major hardware components: (1) laser scanner, 

(2) differential global positioning systems (GPS; 

aircraft and ground units), (3) a highly sensitive inertial measurement unit (IMU) attached to the scanning 

unit, and (4) on-board computer to control the system to store data from the first three components 

(Figure 1). The position and attitude of the scanner at the time each pulse is emitted are determined from 

data collected by the GPS and IMU units. LiDAR systems used for topographic mapping applications 

usually operate in the near infrared range of the spectrum (700-1200 nm). The most commonly used lasers 

system emits light is at a wavelength of 1064 nm. Most systems have the capability of acquiring multiple 

measurements (i.e., 2-5 per laser pulse). The scan angle is typically limited to 15 - 20 degrees off-nadir 

allowing systems to acquire measurements along a “swath” beneath the aircraft (Figure 1). LiDAR systems 

have a beam divergence of approximately 0.25- 4 mrad; therefore, the “footprint” of the LiDAR pulse 

when it reaches the ground (or canopy surface) is approximately 15 - 90 cm in diameter, depending upon 

flying height. For topographic mapping applications, LiDAR data are acquired in leaf-off conditions to 

maximize the percentage of pulses that reach the ground surface. For canopy mapping or studying forest 

Figure 1. LiDAR scanning (Source: USGS) 
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attributes, data are acquired in leaf-on conditions to maximize laser returns from tree crowns and forest 

structures (McGaughey & Carson, 2003). 

 
Scanning laser systems may be mounted on different platforms: on a tripod (terrestrial LiDAR system), 

on aircraft (airborne LiDAR system), or on satellite (space-borne LiDAR system) (Heritage et al., 2009). 

Ground-based laser scanning is used to capture very high-resolution data describing architectural details in 

construction projects. Ground-based laser scanning systems have been used in forestry research, and they 

can provide detailed reconstructions of trunk, branch and leaf distribution from which tree locations, 

diameter and height, timber volume and canopy gap fraction can be quantified (Danson et al., 2008; 

Hopkinson et al., 2004; Li, 2009; Litkey et al., 2008), but the complexity of forest scenes makes analysis 

very complicated. Space-borne LiDAR system have often been used in atmospheric research and a few 

large-scale ecosystem studies (Boudreau et al., 2008; Large et al., 2009; Lefsky et al., 2002).  Due to limited 

data availability and coarse resolution, there are not many studies that apply space-borne LiDAR data for 

forest inventory (Pflugmacher et al., 2008). Airborne LiDAR systems are commercially available and have 

been used to map and model terrain elevation. In the past two decades, airborne LiDAR systems have 

been used to model forest canopy structure and function, mostly in the scientific research projects 

(Andersen et al., 2003; Drake et al., 2001; Holmgren & Persson, 2004; Lefsky et al., 1999; Lefsky et al., 

2002; Lim et al., 2003; Means et al., 1999; Naesset et al., 2004). There are also some efforts to promote 

airborne LiDAR system in operational forest inventory, especially in Scandinavia counties (Næsset, 2007). 

 

1.3. LiDAR for biomass  
An overview on the status of small footprint, multiple point or fullwave form of LiDAR data for general 

forest applications is provided by (Hyyppä et al., 2009), (Koch, 2010) as well as by (Mallet & Bretar, 2009). 

They show that the information related to height or structure of forests can be extracted with high quality. 

There exist several approaches to estimate biomass from LiDAR data. One of the pioneering studies is 

from (Nelson et al., 1988) using the tree height as a LiDAR derived parameter. Most authors concentrate 

on the above-ground biomass (Lefsky et al., 1999). Lefsky et al (2001) explained 84% of the aboveground 

biomass variance by regression from the LiDAR measured canopy structure. Overall, the study gives a 

good overview for large-area carbon storage estimation. (Popescu, 2007) managed to explain 93% of the 

biomass using individual tree metrics. The only known study focusing on the below-ground biomass is 

from (Naesset et al., 2004), in which they used regression methods to explain 86% of the below-ground 

and 92% of the above-ground biomass. For biomass estimation from LiDAR data, the indirect approach 

is often chosen. This means that tree heights are first calculated from LiDAR (Nelson et al., 1988), and 

then wood volume is modelled based on this  (Straub et al., 2009) and finally expansion factors are applied 

to estimated biomass. (Maltamo et al., 2009) combined LiDAR in a two-stage stratified sampling, showing 

an RMSE of 18% for biomass and carbon estimation. 
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1.4. Conceptual framework for carbon estimation 
Assessment of biomass/carbon estimation of the forest has recently gained more importance in the wake 

of global warming issues, UNFCCC’s Kyoto protocol and emerging carbon trade (Rosenqvist et al., 2003). 

The emphasis has shifted to ‘accuracy’ of carbon estimation when sequestered forest carbon has monetary 

value in international carbon markets. Remote sensing techniques to estimate forest carbon had been quite 

helpful to assess forest biomass/carbon estimation for large areas. Gibbs et al. (2007) reviewed the 

uncertainties in estimation of biomass for different methods such as forest inventory, biomes averages, 

optical remote sensing, Radar and LiDAR based active remote sensing. LiDAR and high resolution optical 

images have shown low to medium level of uncertainty (Gibbs et al., 2007). Fusion of LiDAR with VHR 

optical image has shown to give promising results of biomass estimation (Chen & Chiang, 2005; Deng et 

al., 2007; Erdody & Moskal, 2010; Heinzel et al., 2008; Huber et al., 2003; Kebiao et al., 2010; Kim et al., 

2010; Mumtaz & Mooney, 2008; Popescu et al., 2004; Zaremba & Gougeon, 2006). The present research 

becomes relevant here for assessing the accuracy of carbon estimation from high density airborne LiDAR 

data. The conceptual diagram showing relevance of proposed research is given in Figure 2. 

 

 

Figure 2. Conceptual diagram for biomass/carbon estimation using high density airborne LiDAR data.. 
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1.5. Problem Statement and justification 
Structural descriptions of forests, such as plant height, canopy width, canopy cover, biomass, vertical and 

horizontal heterogeneity, are essential to understand how forest ecosystems function  and help to advance 

studies of the global carbon cycle (Means et al., 1999). Moreover, these structural parameters are critical to 

study biogeochemical cycles, water budgets, sun radiation energy transfer in the forest system. (Lefsky et 

al., 2002; Lim et al., 2003). LiDAR technology has been demonstrated to permit such three-dimensional 

measurements of the forest canopy (Lim et al., 2003) with accuracies rivalling those of field based 

measurements. Accurate forest inventory is crucial to forest resource management and wildlife habitat 

assessment (Innes & Koch, 1998; Lefsky et al., 2002). An accurate assessment of forest biomass and 

carbon is a pressing requirement for many countries due to developing carbon trade and international 

obligation of United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto 

Protocol.   Before airborne LiDAR became available, aerial photogrammetry and InSAR had been used to 

extract forest structural information at various scales ranging from individual trees to landscapes (Sheng et 

al., 2001; Sun et al., 2002). However, these methodologies require matching multi-angular images and it is 

often difficult to obtain reliable results especially in hilly areas.  

 

1.5.1. Individual tree delineation 
The individual tree-based delineation approach was introduced by Samberg and Hyyppä (1999) using 

multispectral images (Kim et al., 2010; Koch et al., 2006). Many algorithms for delineation of individual 

tree crowns were developed using high resolution spectral images (Brandtberg et al., 2003; Gougeon, 

1995; Wulder et al., 2000) such as the valley-following method (Gougeon, 1995), multiple scale edge 

segmentation (Brandtberg & Walter, 1998), template matching (Pollock & Woodham, 1996), watershed 

segmentation (Schardt et al., 2002) and local maxima filtering (Dralle & Rudemo, 1996). Wulder et al. 

(2000) adopted local maximum filtering approach to locate trees on high  resolution imagery.  Among 

these methods, watershed segmentation, as proposed by Beucher and Lantuejoul (1979), is a well-known 

method that incorporates the advantages of many other image segmentation methods, such as the Region 

growing and edge detection methods (Soille, 2003). However, in these cases, the accuracy of delineating 

individual trees is relatively low due to the broad variation of spectral values in forest areas on the satellite 

images (Schardt et al., 2002). Although simple smoothing methods, such as Gaussian filtering, can reduce 

the depth of pits and small peaks, the technique remains unable to fully remove commission or omission 

errors. Therefore, for these methods, over-segmentation problems remain (Chen et al., 2006). To avoid 

the problem of over-segmentation, Meyer and Beucher (1990) introduced marker-controlled watershed 

segmentation, as a technique well-fitted for tree isolation (Chen et al., 2006). Images indicating the 

locations of markers are named as marker functions, and images for producing watersheds are named 

segmentation functions (Chen et al., 2006). With appropriate markers and segmentation functions, 

marker-controlled watershed segmentation can be used to delineate the boundaries of individual tree 

crowns. Wang et al. (2004) used a marker controlled watershed segmentation technique to extract crown 
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size and detect treetops based on high spatial resolution aerial imagery. These methods are based on 

optical imagery and assumed that treetops and crowns have higher reflected radiation because they expose 

more sunlit surface. However, treetop reflectance is dependent on Sun angle and weather conditions, 

therefore under cloudy imaging conditions or with dense canopy closure, treetops are difficult to identify, 

even visually.  

1.5.2. Delineation using LiDAR data 
LiDAR is an active ranging technique that can directly measure 3D forest canopy coordinates at laser 

illuminated locations. The high density LiDAR point cloud of the forest area contain rich forest structural 

information (Hyyppä et al., 2008).  Popescu (2003) explored the feasibility of LIDAR data for estimating 

tree crown diameters using variable window size techniques as well as other LiDAR measured parameters 

such as tree height and number of trees, and used a regression model to retrieve crown diameter to 

estimate forest biomass and stand volume. Bortolot (2006) adopted an object-oriented method using tree 

clusters as objects to assess canopy cover and density. Koch et al. (2006) used a pouring algorithm to 

delineate crown shape based on treetops detected by local maximum filtering algorithm. Chen  et al. 

(2006) adopted watershed segmentation to isolate individual trees and proposed an improved watershed 

segmentation algorithm with a distance-transformed image to reduce inadequate segmentation. In most 

cases, individual tree-based research using laser data focused on estimating forest parameters (Persson et 

al., 2002; Popescu et al., 2003). All of these methods rely on computer vision techniques based on  two 

dimensional optical image processing. The low density of the LiDAR point cloud is the limiting factor to 

the accuracy of crown shape delineation. There has still been limited research on tree crown delineation 

and extraction of forest parameters using high density airborne LiDAR data. 

1.5.3. Forest Inventory 
Sustainable decision making incorporating biological, ecological, social and economic component of 

forestry is reliant on precision forestry. As forest covers extensive landholdings, accurate, timely, 

repeatable, detailed and spatially explicit forest inventory characterisation and structural information are 

highly desirable for precision forestry needs. Advance remote sensing technologies have emerged as viable 

and effective monitoring tool to fulfil the needs of precision forestry. In recent years, the remote sensing 

technology has progressed towards making use of monitoring methodologies as the fundamental 

geospatial database deliverable for decision support tools. Such tools are needed in production forestry, 

wildlife and forest health management, estimating sequestered carbon, understanding efficient and optimal 

water interception, distribution of wildlife habitat (Moskal et al., 2008).  Among other remote sensing 

technologies, LiDAR technology has emerged as a promising method to estimate tree structural 

biophysical parameters because of its ability to provide reconstruction of vertical canopy structure. 

Therefore, the use of LiDAR technology for generating individual tree based geospatial forest inventory is 

pertinent to the need of precision forestry. 
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1.5.4. New approaches 
 
All these methods discussed so far, do not provide information about 3D canopy shape and  volume 

despite the fact that high density LiDAR data contains valuable information about it. Very little research 

has so far been done to extract the ground feature directly from the point cloud data. Working on 3D 

point cloud is computationally complex and requires new algorithms, research and software to support it. 

Bucksch (2008) generated tree skeletons directly from the point cloud using Terrestrial Laser Scanning 

(TLS) data employing CAMPINO (Collapsing and  merging procedures in octree-graphs) method. Lefsky 

(1999), Harding (2001), and Andersen (2003) using large-footprint LiDAR data with continuous 

waveform, estimated vertical canopy structure of forest through group of regression equations based on 

field investigations. A majority of the algorithms for single tree delineation are based on Digital Surface 

Model (DSM) where trees are delineated according to the features of the crowns on the DSM, therefore 

trees in the understory may not be detected. It is of interest for forest managers to assess the regeneration 

success in the understory. Wang et al. (2008) developed a procedure for both vertical canopy structure 

analysis and 3D single tree modelling based on a LiDAR point cloud. In this method, understory trees can 

also be detected and their canopy volume could be assessed. Pyysalo and Hyyppa (2002) have provided a 

process of reconstruction of tree crowns with prior knowledge of tree location and crown size. 

Furthermore, a new full-waveform based algorithm to detect single tree has been presented by Reitberger 

et al. (2007).  

1.5.5. Justification 
In view of the above research methodologies, an investigation into developing an appropriate individual 

tree based methodology for extraction of tree parameters and assessment of forest biomass/carbon in the 

study area using high density airborne LiDAR is proposed. 

1.6. Research Objectives 

1.6.1. Main Objective 
The main objective of this research is to develop  methods to extract tree biophysical structural 

parameters for generation of geospatial forest inventory and to accurately estimate biomass/carbon 

stocks in the Bois noir forests in the French Alps using high density airborne LiDAR data. 

 

1.6.2. Specific Objectives 

Individual Tree Delineation 
a) To develop a method and assess its accuracy for individual tree Peak identification from LiDAR 

point cloud data.  

b) To assess the accuracy of CPA (Canopy Projection Area) estimation by delineating tree canopies 

using Thiessen polygons segmentation and Region growing segmentation method in eCognition 
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with prior knowledge of tree peaks locations using LiDAR derived CHM (Canopy height Model) 

as a basic input. 

 

Forest Inventory 
To prepare individual tree based  geospatial inventory of the study area by  developing methods 

to extract tree structural parameters such as tree height, CPA, canopy diameter, canopy base 

height, canopy volume,  canopy density, canopy tilt  from high density LiDAR point cloud data.  

 

Species classification 
To develop a method to classify Larix deciduas, Pinus uncinata, Pinus sylvestris  in the study area using 

extracted tree structural parameters and to assess the accuracy of classification. 

Biomass/Carbon 
a) To develop regression models for biomass/carbon estimation using (CPA + Height) and (Canopy 

Volume + Height) as pair of explanatory variables.  

b) To check whether inclusion of additional explanatory variables such as local tree density, local 

canopy gaps around each tree improve the regression model significantly.  

c) To estimate total above ground biomass/carbon of  Pines in the study area and prepare a 

geospatial map of above ground carbon for pines in the study area.  

 

1.7. Research Questions 
 

1. How accurately the tree peaks can be detected in a Canopy Height Model of high density airborne 

LiDAR data?  

2. What is the difference in segmentation methods by Object based image analysis and Thiessen 

polygons using airborne LiDAR data with prior knowledge of tree peaks and inter canopy gaps.?  

3. How accurately the tree structural parameters such as tree  height, CPA, canopy base height, tree 

tilt can be estimated from LiDAR point cloud data? 

4. What is the accuracy of Biomass/carbon obtained from (CPA + Height) and (Canopy Volume + 

Height) as pair of explanatory variables in regression analysis? 

5. What is the accuracy of Biomass/carbon obtained from CPA, height with additional variables 

such as local tree density and local canopy gaps? 

6. What is the accuracy of species classification in the study area? 

7. What is the relationship between CPA, height and biomass/Carbon?  

8. What is the relationship between canopy volume, height and biomass/Carbon?  

9. What is the amount of biomass/carbon stock of pines in the study area?  
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1.8. Hypothesis 
 

1. It is possible to identify individual trees by locating tree peak points in LiDAR point cloud data. 

2. Thiessen polygons can provide a significantly accurate estimation of CPA with prior knowledge 

of tree peaks and inter canopy gaps.  

3. It is possible to extract tree structural parameters such as tree height, CPA, canopy base height, 

canopy volume, canopy density, canopy tilt and canopy shape from the LiDAR point cloud data 

with significant accuracy.  

4. Larix decidua, Pinus uncinata and Pinus sylvestris in the study area can be isolated using tree structural 

parameters with significant accuracy. 

5. There is a significant relationship of carbon with a pair of variables (CPA, height) and (canopy 

volume, height).  

6.  Tree canopy volume and height are better explanatory variables than CPA and height to estimate 

biomass/carbon. 

1.9. Thesis outline 
In Chapter 1, the LiDAR technology and conceptual framework for use of LiDAR data for carbon stock 

modelling has been introduced along with a background of application of remote sensing for biomass and 

carbon stock estimation. Thereafter, the research problem and research interest of this thesis have been 

described.  

Chapter 2 briefly describes the relevant topographic, climate and vegetation characteristics of the study 

area.  

Methods used in this research to answer research questions and achieve the research objectives are 

described briefly in Chapter 3. The chapter also provides information about data and materials used.  

Chapter 4 consists of the results of tree peak detection, tree crown delineation approaches and its 

quantitative comparisons, outcomes of species classification, extraction of forest structural parameters and 

regression modelling for carbon from extracted parameters.  

The results are discussed in Chapter 5 and conclusions from the discussion linked to research objectives 

and questions are drawn in Chapter 6. 
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2. DESCRIPTION OF THE STUDY AREA 

The study area for the present MSc thesis is Bois noir (Black Wood) situated in Barcelonnette basin in the 

south French Alps (Figure 4). The area is characterised by irregular topography (Figure 3) with slope 

gradient ranging between 10° and 35°, having 92 % of forest cover of the total surface area and consisting  

predominantly Pinus uncinata with some deciduous trees (Thiery et al., 2007). Predisposing geomorphic and 

climatic influences triggered various types of landslides in the area mostly covered by deciduous and 

coniferous forests. Trees are damaged and stand distorted by recurrent landslides in this area. 

2.1. Climate  
The climate is characterized by strong inter-annual rainfall variability and is influenced by the dry and 

mountainous Mediterranean intra-Alpine zone. It has an annual rainfall which varies between 400 and 

1100 mm 

2.2. Land Cover  
The Bois noir is mostly covered by coniferous forest (76%) followed by bare land (9%) in the South 

Eastern part, broad leaved forest (6%) in the Northern part, pastures (6%), and natural grassland (3%) 

spread over the whole area.  

2.3. Trees & Forests  
The details of tree species in the study area were collected from Dr. H.A.M.J. Hein van Gils during 

personal communication. The description of the dominant tree species is as follows. 

2.3.1. Pinus nigra Arnold (Le Pin noir) 
The Black pine (Pinus nigra Arnold) is indigenous in the Eastern and Central Alps, Balkan, Apennines and 

Corsica, where it constitutes mostly monospecific forests. The Flora Europaea does not mention The 

French Alp as part of the Pinus nigra Arnold distribution area. Plantations of Black pine, mostly for land 

rehabilitation, are common within and outside its natural distribution area, including the (French) Western 

Alps and sand dunes in the Netherlands. From plantations Black pine spontaneous disperses into the 

surroundings occasionally as high as the alpine tree line. The Black pine has five subspecies of which two 

are native in France subsp.  salzmannii (Cevennes and Pyrenees) and subsp. laricio (Corsica), but are not 

native in the French Alps.   

2.3.2. Pinus sylvestris L. (Le Pin sylvestre) 
The Scotch pine (Pinus sylvestris L.) is indigenous in, among others, the montane forest belt (<1700 m a.s.l.) 

of the dry inner-alpine valleys and the (dry) Western Alps, mostly as a monospecific forest. The Scotch 

pine is distinguished from other pines by its orange and peeling bark in the upper half of the stem. The 
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Scotch pine in the Alps is locally infested with Viscum album L. In Barcelonette this infestation is quite 

dramatic. 

2.3.3. Pinus uncinata Mill. ex Mirb.(Le Pin à crochet) 
The Mountain pine (Pinus uncinata) is found naturally at the tree line and from there down slope in scree 

slopes in the Pyrenees and the Western Alps. Pinus uncinata is aka is subspecies of Pinus mugo, the later 

found in the Central- to Eastern Alps and the Balkan in similar sites.  Plantations of Pinus uncinata are used 

for land rehabilitation in France. Pinus uncinata is distinguishable from the other pines by the hooked bracts 

(scales) of its cone (‘uncinata’= hooked). We have collected extremely hooked cones in pine plantations in 

the research area. 

2.3.4. Picea abies L. (Karsten) 
The spruce (Picea abies) is indigenous in Northern Europe and throughout the Alps in the montane belt 

often up to the tree line. It is widely planted outside its native distribution area. 

2.3.5. Larix decidua Miller 
The larch (Larix decidua) is a deciduous coniferous tree indigenous in the Alps and found often up to the 

alpine timberline also at the pass heights close to the Barcelonette research area.  

2.4. Geology and Geomorphology  
The Quaternary deglaciation of Pleistocene age has contributed to the formation of the hummocky 

topography in the Barcelonnette basin (Hippolyte & Dumont, 2000; Thiery et al., 2003). Mass wasting 

processes and the formation of badlands configure the  landscape in the Barcelonnette Basin (Maquaire, et 

al., 2003). Furrowed badlands are present in the North-West of Bois noir area (Thiery et al., 2003).   

  

In Bois noir, two litho-morphological zones can be distinguished, the Northern zone which shows mainly 

black marls overlaid by morainic deposits of vary thickness up to 15 m, and the Southern zone which is 

formed by limestone 

outcrops, weathered 

marls, flysch, and screes 

(Thiery et al., 2003). The 

southern zone is 

characterized by steep 

slopes of up to 70° with 

extensive screes near the 

bottom.  

 

 

Figure 3. 3D visualization of the study area terrain 
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Figure 4. Study area, Bois noir, Barcelonnette, France 
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3. DESCRIPTION OF METHODS AND DATA USED 

 

3.1. Dataset 
The active remote sensing LiDAR data 

and aerial photographs for the study 

area were acquired in July 2009 under 

snow-free conditions using a helicopter 

flying at an altitude of 300 m above the 

ground. An airborne hand-held laser 

scanner from the Helimap Company 

was used during the Airborne LiDAR 

Scanning (ALS) campaign. This 

scanner has been developed specifically 

for the mapping over mountainous 

forested areas (Vallet and Skaloud, 2004). A RIEGL VQ-480 laser scanner with a pulse repetition rate of 

up to 300 kHz was used to record the LiDAR data. Spatial positioning was done using a Topcon Legacy 

GGD capable of tracking GPS and GLONASS positioning satellites. The orientation of the aircraft was 

determined using the iMAR FSAS inertial measurement unit (IMU) (see Table 1 for details). In order to 

increase the point density seven flight lines were flown resulting in 50 million points, with resultant mean 

density of 164 points/m2. The last 

return of LiDAR pulse data had 35 

million points with a mean density of 

140 points/m2. The aerial photographs 

of 30 cm resolution (Figure 6) were co-

captured with the LiDAR data.   The 

dataset was primarily acquired for the 

study of the landslide activities in the 

study area. A sample visualization of 

the LiDAR data is shown in Figure 5 & 

Figure 7. 

 
 
 
 
 

Figure 5 . Cross sectional view of LiDAR point cloud over a water stream.

Figure 6. Sample aerial photograph of the study area. 
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Table 1: Metadata for the airborne LiDAR campaign 

Acquisition (month/year) Jul-09 
Laser scanner RIEGL VQ480i 
IMU system IMAR FSAS (record up to 500 Hz) 
Positional system Topcon legacy (record up to 5Hz) 
Laser pulse repetition rate 300 kHz 
Beam divergence 0.3 mrad 
Laser beam footprint 75 mm at 250 m 
Field of view 60°  
Scanning method Rotating multi-facet mirror 

 

 
 
 
 
 

3.2. LiDAR data 
The raw LiDAR data for the study area was obtained from the vendor in LAS1.2 format. The LiDAR 

flight data as obtained from the field was first pre-processed by the vendor using TerraScan software 

which combines GPS, IMU and laser pulse range data to produce (X,Y,Z)  point data in LAS1.2 format. 

The intention of the data format is to provide an open format that allows different LiDAR hardware and 

software tools to output data in a common format (ASPRS, 2008). The format contains binary data 

consisting of a header block, variable Length Records, and point data. The header block consists of 

generic data such as point numbers and coordinate bounds. The variable Length Records contain various 

types of data including projection information and user application data. The point data contains (X,Y,Z) 

coordinates, intensity, return number, scan direction, edge of flight line, classification, scan angle rank, 

point source ID and GPS time. The classification values are standardised by the ASPRS (American Society 

of Photogrammetry and Remote Sensing) as shown in the           

. 

 

Figure 7. 3D view of LiDAR point cloud of the study 
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         Table 1 ASPRS Standard LiDAR point classes 

Classification Meaning 
0 Created, never classified 
1 Unclassified 
2 Ground 
3 Low Vegetation 
4 Medium Vegetation 
5 High Vegetation 
6 Building 
7 Low Point (noise) 
8 Model Key-point (mass point) 
9 Water 
10 Reserved for ASPRS definition 
11 Reserved for ASPRS definition 
12 Overlap points 
13-31 Reserved for ASPRS definition 

 

 
          

 

 

The LiDAR data acquired from the vendor included  the classification for ground and non-ground points 

with classification values 2 and 0 respectively. The data was provided in 17 subsets for the study area in 

LAS file format. The summary of LAS data for the study area is given in Table 2. 

 

 
Summary LiDAR data 
LiDAR 
points 

Area  
(m2) 

Point density 
(points/m2) 

Ground 
points 

Non-ground 
points 

Ground 
points 
% 

No. of 
returns 

212,894,997 1,298,996 164 9,366,984 203,528,013 4.60 Up to 5 
Table 2 Summary of LiDAR point cloud for the study area 
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3.3. Field material 
 
Instruments used for field work are: iPAQ and Leica differential GPS system 1200, Suunto compass, 

measuring tape, slope- meter, Suunto PM5, Laser alti-meter, Caliper, increment borer and fieldwork 

datasheet.  

3.4. Processing software 
Software required for data analysis and thesis writing are given in Table 3 

 

Table 3. List of software used in this research 

 

Software Purpose of usage 
LAStools v111006 DSM, DTM, CHM and normalised point cloud 

generation 
Lasutility Generating LAS file from XYZ points 
SAGA GIS v2.0.8 Surface Interpolation methods 
Quick Terrain Modeler (INTL) v7.1.4 

LAS visualization 
LASViewer v1.0.0 
MARS v7.0 (32-bit) LAS visualization with shape files 

LP360 Overlaying LAS with raster datasets and feature 
classes 

LPS Ortho-rectification of aerial photographs 
ArcGIS 10 GIS  (Analysis) 
Erdas Imagine 10 

Image processing 
ENVI 4.7.2. 
 R  

Statistical analysis SPSS 
XLSTAT 
Word, Excel, Powerpoint, Visio and End 
note Thesis writing and editing 

 

3.5. Sampling design 
The study area is highly undulating with steep slopes and frequent landslides. Therefore, the sampling 

design was made to ensure access to the sampling plots. The sampling design strategy was based on plot 

sampling. Plots were selected on a purposive basis for taking readings in both landslide affected (unstable) 

and non-landslide (stable) areas in close proximity. A total of 13 plots were sampled, 6 in the unstable 
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areas, 7 in stable areas. The plots were evenly spread out throughout the study area leaving out 

broadleaved forests. Plots are shown in the Error! Reference source not found.. The plot based 

sampling was done to measure tree structural attributes, namely height, diameter at breast height (DBH), 

canopy width, canopy base height, tree tilt, orientation and type of deformation, disease if any. These tree 

structural attributes were measured primarily to validate LiDAR derived tree parameters and regression 

models using these parameters as explanatory variable. To get the age of trees, the increment borer was 

used on 6 trees per plot. The borer holes were carefully filled up and sealed for the protection of the tree. 

Canopy width was measured in North – South direction and East to West direction with a measuring tape. 

Tree height and Canopy base height were measured with the laser rangefinder. DBH was measured with 

the help of tree caliper. Inclination and orientation of tilted trees were measured by inclinometer and 

compass respectively. Differential GPS, in combination with the total station was used to get the precise 

location coordinates of the base of the sample trees. Since Differential GPS needs open space to get 

enough satellite signals to work accurately, a base station in the closest open space from the plot was 

selected. From the base station, additional points were selected for placement of the total station with 

unobstructed visibility. The location of each total station point was also recorded by Differential GPS for 

calibration of total station readings. Each differential GPS reading took 3 hour to 12 hour to reach mm 

accuracy. Therefore changing the location of the total station was restricted to one to two points per plot. 

Consequently, trees selected for sampling were limited to clear range of visibility from the total station. 

 

.  

3.6. Methodology 
Ortho image of the study area was prepared from mosaicking aerial photographs and  ortho-rectifying in 

LPS plugin of Erdas Imagine 10 using LiDAR derived DTM. The obtained image was  used for reference 

purposes. DTM, DSM and normalised point cloud were generated from processing of LiDAR data. 

Canopy Height Model (CHM) was obtained from subtracting DTM from DSM. Identification of tree 

peaks and delineation of inter canopy gaps were obtained using  CHM and smooth CHM. Segmentation 

was done using Region growing and Thiessen Polygon approaches on the CHM by supplying  information 

of tree peak locations and inter canopy gaps. Tree parameters were extracted from LiDAR derived layers 

within delineated tree crown segments. Species classification was achieved on the basis of structural and 

spatial differences of trees. Finally, the carbon modelling was done using selected extracted parameters as 

explanatory variables. The methodology for this research is described in the flowchart given in Figure 8. 

The detailed description is provided in the following sections. 
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Figure 8. Flowchart of research methodology 
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3.7. Grid size for Digital Elevation Models 
Before generating any LiDAR derived Digital Elevation Model (DEM), selection of grid size for DEM 

raster layer is crucial for minimizing the data loss during conversion.  The optimized DEM resolution 

must match the density of LiDAR data and be able to reflect the variability of the terrain surface to 

represent the majority of terrain features (Liu, 2008). McCullagh (1988) suggested that the number of grids 

should be roughly equivalent to the number of LiDAR points in the  covered area. The grid size (S) of a 

DEM can be estimated by: 

 

   S=
n
A

 

 

Where n is   the number of   terrain points and A is the covered area ((Hu et al., 2003)). This means that 

the DEM resolution should match the sampling density of the original terrain points. Average point 

density for the LiDAR data is 164 points/m2 (Table 2), 

 S=
164
1

=.078 m 

The grid size obtained is the minimum size of grid where the numbers of grids are equal to  number of 

LiDAR points. In practice, LiDAR points are vertically distributed, therefore many grids will have more 

than one LiDAR points implying several grids with no LiDAR points. The grid size of .078 m is not 

practical to use because of huge storage requirement and long processing time. Another researcher(Pouliot 

et al., 2002) suggested that ratio of crown dia with grid size should be sufficient to define crown shape. A 

grid size of 0.15 m was found appropriate as for smallest measured crown (1 m dia) in the field; total 

number of grids used to define the crown shape is 36. Therefore, in this research for rasterizing point 

cloud data, 0.15 m grid size was used. 

 

3.8. DSM, DTM, nDSM and normalized point cloud generation 
The Digital Surface Model (DSM) and Digital Terrain Model (DTM) were generated using LAStools 

software. DSM (Figure 10) is a raster image obtained from the elevation attribute of the first return of 

LiDAR point cloud data, the intermediate pixels are interpolated. Interpolation is a general process of 

estimating the elevation at a specified grid node from measurements at surrounding point locations (El-

Sheimy et al., 2005). Global interpolation methods use all of the known elevations at the reference points 

to estimate the unknown elevation at the reference point. Examples of global methods are: Trend surface 

analysis, Fourier analysis, and Kriging. DTM (Figure 9) was similarly generated from the elevation attribute 

of the last return of LiDAR point cloud data. Dense forest canopy do not allow full penetration of LiDAR 

signals to the ground, therefore all the last returns are not necessarily from the ground. Filtering is used to 

generate DTM, with the assumption that terrain does not change abruptly but gradually. DTM pixels are 
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interpolated on the basis of LiDAR return points hitting the ground by selecting minimum elevation 

points in a grid. The influence of forest parameters on LiDAR derived DTM has been investigated by 

Reutebuch et al.(2003). LiDAR data is in the form of discreet point clouds of ground features having 

X,Y,Z coordinates of all the points. The Z values in the LAS data contain elevation of each point. In the 

raw LAS file the elevation data (Z values) correspond to height from the mean sea level while in the 

normalised point cloud the elevation is absolute height of the point as measured from the bare ground 

surface. Normalised DSM (nDSM) is often referred as Canopy Height Model (CHM) (Figure 11a). It gives 

the absolute height of trees and was obtained through gridding normalised point cloud. Alternatively, it 

could also be obtained through subtracting DTM from DSM. The normalized point cloud is analogous to 

nDSM in the 3D cloud giving the absolute height of the ground feature (trees) on the Z-axis and was 

generated using lasheight tool provided in the LAStools software (Figure 11b). The detail procedure to 

prepare these layers is as follows; 

 

3.8.1. DSM 
Perform lasgrid in LAStools with grid size 0.15 m on point cloud data, keeping first returns and selecting 

highest option on elevation. DSM  (‘ ’ indicates the layer generated from the operation) 

 

3.8.2. DTM 
i. Perform lasground (LAStools) on point cloud data, selecting forest or hills option.  LasGrnd, 

This step will identify the ground points and classify them as value 2 in the Las file. 

ii. Perform las2dem or bast2dem in LAStools on elevation values with grid size 0.15 m on LasGrnd 

by selecting  kill triangles > 20 and keeping classification value 2 (ground points only). DTM 

 

3.8.3. Normalised point cloud 
i. Perform lasheight (LAStools) on LasGrnd by selecting classification value 2 and choosing replace 

z option. nLas 

ii. Perform lasheight (LAStools) on nLas by selecting classification value 2 and choosing drop points 

with height below 0 and height above 40 (to remove noise).  nLasCorr  
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3.8.4. CHM 
CHM was obtained from the normalised point cloud through gridding operation by selection of highest 

elevation within each grid of the first return with fill value of 6 pixels. CHM prepared in this way does not 

suffer from the aberration of the highest elevation values from corresponding values in the normalised 

point cloud.  

Figure 10. 3D Digital Surface Model (DSM) of part of the study area. 

Figure 9. 3D Digital Terrain Model (DTM) of part of the study area. 
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Method 
 

i. Perform lasgrid (LAStools) with grid size 0.15 m on nLasCorr (3.8.3), keeping first returns and 

selecting highest option on elevation with fill of value 6 pixels.  CHM  

ii. Alternatively, subtract DTM from DSM in raster calculator (ArcGIS).  CHM 
 

Figure 11. (a) CHM,  (b) Point Cloud & Normalised point cloud  

 

3.9. Tree Peak identification 
Tree identification in the LiDAR data is crucial for tree crown segmentation and for the extraction of 

biophysical structural parameters of trees. In most of the cases, tree detection and crown delineation are 

based on local maxima of the CHM (Brandtberg et al., 2003; Hyyppä et al., 2004; Popescu et al., 2003).  

Popescu, et al (2003) used variable size search window based on tree height to identify local maxima. 

Pitkänen et al (2004) used smooth CHM with degree of smoothing defined by the heights of the pixels for 

finding local maxima. Rahman and Gorte (2009) used densities of high points from the high density 

airborne LiDAR for individual tree crown delineation. In this research, a novel adaptive method of tree 

detection based on variable smoothing with height retaining local maxima of CHM using fixed size search 

window is presented. The CHM was smoothed using Gaussian mean filter and the degree of the 

smoothing was defined by heights of the pixels. After the smoothing, all the pixels which experience a 

drop in height values were identified and replaced back with their original values before successive 

filtering. The smooth CHM obtained was a convex hull surface, passing through tree crown boundary 

points smoothly. The detail procedure adopted is as follows; 

3.9.1. Smooth CHM 
Following procedure was adopted to make smooth CHM with height retaining local maxima. 

i. Prepare CHM raster layer (3.8.4). 
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ii. Perform focal statistics (mean) on CHM in ArcGIS by rectangular window size 3 (pixels).  

CHMfs3 

iii. Compare CHMfs3 to CHM and select all the pixels in CHMfs3 which drop in their values (pixel 

value decreased => higher value pixel in the neighbourhood) and replace back these pixels to 

CHM values using command line con(CHMfs3<CHM,CHM,CHMfs3) in raster calculator 

(ArcGIS). CHMfs3corr 

iv. Perform step (ii) and (iii) in succession 6 times using output raster of (iii) as input raster in (ii). 

v. Let the final raster be called sCHM 

3.9.2. Smooth CHM with varying degree of smoothness 
i. Perform focal statistics (mean) on sCHM (3.9.1(v)) in ArcGIS by rectangular window size 3 

(pixels)  one time.  sCHM3 

ii. Perform focal statistics (mean) on sCHM in ArcGIS by rectangular window size 5  and 3 (pixels) 

in succession.  sCHM5 

iii. Perform focal statistics (mean) on sCHM in ArcGIS by rectangular window size 7 and 3 (pixels) 

in succession.  sCHM7 

iv. Perform focal statistics (mean) on sCHM in ArcGIS by rectangular window size 9 and 3 (pixels) 

in succession.  sCHM9  

v. Add a random value of the order of 10-4 m to all these raster layers to get sCHM3R, sCHM5R, 

sCHM7R, sCHM7R and sCHM9R. 

3.9.3. Finding local maxima in CHM using ArcGIS 
i. Perform focal statistics (maximum) on sCHM3R (3.9.2(v)) in ArcGIS by rectangular window size 

3 (pixels)  sCHM3Rmx 

ii. Perform command line, 

setnull(sCHM3Rmx<2, setnull(sCHM3Rmx=!sCHM3R, sCHM3Rmx)) in raster calculator 

(ArcGIS)  Peaks_rast3R 

iii.  Convert  Peaks_rast3R to point feature to get local maxima point shape file. Peaks3 

iv. Perform set of operations (i, ii &  iii) on sCHM5R, sCHM7R, sCHM7R and sCHM9R (3.9.2(v))  

to get local maxima shape files, Peaks5, Peaks7, Peaks9 respectively. 

3.9.4. Selecting local maxima for tree locations 
To get true peaks from Peaks3, Peaks5, Peaks7 and Peaks9 (3.9.3), we adopted the following procedure. 

i. Perform segmentation in eCognition on layer CHM (3.9.1(i)) taking peaks3 (3.9.3(iv)) as thematic 

layer for region grow.  seg3 (polygon shape file)  

ii. Similarly, get seg5, seg7, seg9 taking peaks5, peaks7, peaks9 (3.9.3(iv)) as thematic layers for 

region grow on CHM raster layer in eCognition. 

iii.  Select all peaks > 20 in Peaks9 and make a layer of selection  Peaks9Gr20 
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iv. Select all segments in seg9 containing Peaks9Gr20 and a make a layer of selection  seg9Gr20 

v. Delete all points of Peaks7, Peaks5, Peaks3 falling in seg9Gr20 and make new layers with 

remaining points. Peaks7Lte20, Peaks5Lte20, Peaks3Lte20 

vi. Select all peaks > 16 in Peaks7Lte20 and make a layer of selection  Peaks7Gr16Lte20 

vii. Select all segments in seg7 containing Peaks7Gr16Lte20 and a make a layer of selection  

seg7Gr16Lte20 

viii. Delete all points of Peaks5, Peaks3 falling in seg7Gr16Lte20 and make new layers with remaining 

points.  Peaks5Lte16, Peaks3Lte16 

ix. Select all peaks > 11 in Peaks5Lte16 and make a layer of selection  Peaks5Gr11Lte16 

x. Select all segments in seg5 containing Peaks5Gr11Lte16 and a make a layer of selection  

seg5Gr11Lte16 

xi. Delete all points of Peaks3 falling in seg5Gr11Lte16 and make a new layer with remaining points. 

 Peaks3Lte11 

xii. Join layers Peaks9Gr20, Peaks7Gr16Lte20, Peaks5Gr11Lte16 and Peaks3Lte11 to get final tree 

peaks shape file.  FinalPeaks 

 

3.9.5. Validation of Tree peak identification 
The validation of tree peak identification was done on one to one (1:1) correspondence with reference tree 

peaks. Identified peaks which were completely contained within manually delineated reference segments 

of field observed tree crowns, were selected using spatial selection method in ArcGIS. Tree peaks were 

found matching only if there was a single peak within the reference crown segment corresponding to 

reference crown peak. 

3.10. Preparing inter canopy gaps mask  
The methodology used for preparation of canopy gaps was first to repair canopies in CHM for missing 

pixels by generating a smooth surface passing through the boundary points of tree crown (convex hull) 

and then selecting a cut-off limit (2 m) on elevation to identify gaps. 

3.10.1. Method 
i. Get normalised point cloud gridded with highest elevation and clipping on z axis by 2 m without 

interpolating for nodata pixels. Interpolation is not used as it will have an effect of growing the 

size of canopies adjacent to gaps due to clipping on z axis.  Rast1. 

ii. To fill the nodata pixels in canopies, we prepared smooth CHM from Rast1 (3.9.1).  Rast2 

iii. Set the pixel value to zero for all pixels in Rast2 which are less than 2 meter.  Rast3. 

iv. A binary gap raster was prepared by putting value 0 to all pixels with elevation less than 2 m in 

Rast3 and value 1 for the remaining pixels.  

v. To get shape file for gaps, convert Rast3 to polygon shape file.  
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3.11. Tree Crown Segmentation 

3.11.1. Tree crown delineation using Region growing approach in eCognition 
For the delineation of individual tree crowns, object based image analysis (OBIA) is used to create objects 

that roughly approximated the size and shape of the individual tree crown area (Kim et al., 2009). Region 

growing is a bottom-up approach of object segmentation, it starts with one pixel objects and subsequently 

merges pairs of adjacent objects into larger objects based on the smallest growth of heterogeneity, which 

may be  defined through spectral variance and geometry of the object (Definiens 2009). Region growing 

also can be done using specified seed points using rule based algorithms in eCognition. Starting at 

potential seed pixels, neighbouring pixels are examined sequentially and added to the growing region if 

they are sufficiently similar to the seed pixels (Ke & Quackenbush, 2008). In case of tree crown 

delineation, local maxima are used as  seed to grow and local minima are used as a restriction for growing 

region (Culvenor, 2002).  

Method 

The detail rule set is given in Error! Reference source not found..  

 We used CHM (3.8.4) and sCHM5 (3.9.2) as basic raster layers for Region Grow segmentation. Final 

Peaks (3.9.4) shape file was used as thematic layer for tree seeds while inter canopy gaps mask (3.10) was 

used as another thematic layer for gap delineation. The rule set was developed to delineate tree crowns 

upto 2 m height. eCognition was unable to perform chessboard segmentation at the resolution of the 

CHM  layers (15 cm) due to large requirement of memory and processing power. The best we could get 

was 4 pixel chessboard (60 cm) segmentation. The rule set was accordingly modified to work at finer 

resolution (upto 15 cm) only on edges of objects (crown and gap boundaries) where it was needed most. 

Gaps objects were modified gradually in eCognition from the imported objects in thematic layer by 

identifying pixels less than 2m in CHM. The gaps modification was required as gaps were imported from 

15 cm  original pixel resolution to 60 cm object resolution in eCognition, consequently making the gap 

edges coarser. Frequent merging of new gap objects was done to save on memory. The main steps of 

algorithm are as follows; 

We initially allowed small tree (2-4 m) seeds to grow with gap identified in CHM for pixels less than 0.5 m 

before importing inter canopy gaps mask (for CHM pixel < 2 m) as thematic layer. Then all tree objects 

were grown from the seeds (3.9.4) with direction of grow based on homogeneity criteria in sCHM5 (3.9.2). 

Minima were used to control the relative growth of tree objects adjacent to it by stopping tree growth for 

two growth iterations. Later minima were converted back to candidate object to prevent neighbouring 
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objects intruding into others space. The process was stopped when there was no available candidate object 

to merge into growing object.  

 
 

 

3.11.2. Thiessen polygons segmentation 
Thiessen polygons define the area that is closest to each point relative to all other points. They are 

mathematically defined by the perpendicular bisectors of the lines between all points. Using Thiessen 

polygons for crown delineation is a new topic of research. In this research the hypothesis was tested that 

Thiessen polygons segmentation could be a significant estimator of CPA. If we take tree peaks as nodes to 

create Thiessen polygons, it means that within each polygon any branch or leaf of the tree is closest to its 

own tree trunk then any surrounding tree trunk.   

 

 

3.11.3. Method 
i. Create Thiessen polygons from tree peaks shape file (3.9.4)  in ArcGIS. 

ii. Clip Thiessen polygons by study area boundary. 

iii. Update polygons by inter canopy gaps shape file (3.10 )using update function in ArcGIS. 

iv. Use smooth polygon in ArcGIS by setting   tolerance limit to 1m and 2m in succession. 

The Figure 12 shows the steps in Thiessen polygons segmentation. 

 

 

 

 

Figure 12    (a)Thiessen polygons Segmentation of tree crowns, 

    (b) Thiessen segmentation after updating with gaps and applying polygon smoothing 
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3.12. Validation of tree crown delineation 
The quality of segmentation is related to quality of data (noise, spatial and spectral resolution) and the 

optimal customization of parameter settings, which enables the adaptation of segmentation results on 

target objects (Möller et al., 2007). Validation of segmentation can be interpreted as ‘an issue of matching 

objects’ (Zhan et al., 2005) where at least two hierarchical object-levels have to be considered in terms of 

their topological and geometrical relationships (Möller et al., 2007). Topological relationships of interests 

are ‘containment’ and ‘overlap’, whereas; geometric relationships can be determined by the comparison of 

object positions.  

 

For segmentation validation, following approaches have been used by the researchers, 

i. Relative area of intersection between segmented objects and reference objects (Möller et al., 2007) 

ii. Distance between the centroids (Ke et al., 2010) 

iii. 1:1 spatial correspondence  (Gougeon & Leckie, 2006; Z Li et al., 2009) 

iv. Total number of pixel that segmented correctly (Coillie et al., 2008; Wang et al., 2004) are 

commonly used for validation of segmentation of tree crowns.  

 

Clinton et al. (2010) summarized different segmentation accuracy measures by many researchers and 

modified relative area metrics by Möller et al. (2007). Over segmentation and under segmentation as 

defined by Clinton et al. (2010)  are described as follows (Equation 1 and 2): 

 

                  …1 

 

               ...2 

 

Where  is a reference object and  is a corresponding segmented object. 

 

The value range of over segmentation and under segmentation is between 0 and 1, where 0 value means a 

perfect segmentation. Closeness of fit, D is a measure of error in  segmentation (Clinton et al., 2010). (see 

Equation 3).  

 

   ….3 
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Value of D ranges from 0 to 1 where D equals to 0 implies zero error or a perfect segmentation.  

 

For the purpose of detecting better tree crown delineation in this case, relative area measures modified by 

Clinton et al. (2010) and 1:1 spatial correspondence were selected as measure of accuracy. These accuracy 

measures were calculated for delineated tree crowns. For 1:1 spatial correspondence, overall accuracy was 

calculated by comparing the number of 1:1 corresponding tree crowns of the reference and delineated tree 

crowns and total number of reference tree crowns.  

 

The reference objects were manually delineated on the image as adopted in many tree crown delineation 

studies (Erikson & Olofsson, 2005; Gougeon & Leckie, 2006; Leckie et al., 2005; Wang et al., 2004). 

Manual delineation of tree crowns was done using CHM (3.8.4) image and tree peaks (3.9)  shape file. 

3.12.1. Visualising segmented trees in point cloud 
To further assess the accuracy of Region growing crown segmentation, point cloud of 1000 randomly 

selected tree crown segments was extracted from LiDAR point cloud data using lasclip for visual 

interpretation.   

 

3.13. Tree Parameter extraction for geospatial forest inventory 
For generation of geospatial forest inventory from LiDAR data, several biophysical structural parameters 

of tree were extracted (Table 4). Parameters listed in the first column of the Table 4 were obtained using 

LiDAR point cloud data or LiDAR derived elevation models. Parameters listed in column 2 were derived 

from column 1 parameters while parameters in third column were extracted from readymade layers. The 

detailed methodology for extraction of inventory parameters is given in the following sections. 

3.13.1. Tree Height 
In the present research, the tree height has been estimated in four ways to assess their variability and 

accuracy. Following is a brief description of their extraction methodology. 

3.13.1.1. Smooth CHM Height 
The smooth CHM height of a tree is defined as the highest elevation of the tree points in the smooth 

CHM (3.9.1). It was obtained by extracting pixel values in smooth CHM (3.9.1) corresponding to tree 

peak locations (3.9.4). 
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  Parameters extracted for inventory database 

 From point cloud Derived from 1st column  Other data layers 
1 Height    15 Canopy dia 24 Landuse 
2 CPA 16 Perimeter CPA 25 Landslide zone (Stable/Unstable) 
3 Canopy Volume 17 Major & minor axis CPA   
4 Canopy base height 18 Local tree density   
5 Canopy tilt 19 Local canopy gaps %   
6 Canopy orientation 20 Canopy Shape   
7 Canopy density 21 Tree species   
8 Elevation 22 Biomass   
9 Slope  23 Carbon   
10 Aspect       
11 Location of Peak (cloud)       
12 Location of Peak (CHM)       
13 Location centroid of CPA       
14 Average CPA height         
 

Table 4. List of tree parameters extracted for forest inventory 

 

 

  

 

Figure 13. Difference in CHM peak and Smooth CHM peak 
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3.13.1.2. CHM Height  
CHM height of a tree is defined as the highest elevation of the tree points in the CHM (3.8.4). Since in the 

CHM, the highest elevation corresponding to a tree is the same as that in the LiDAR normalised point 

cloud, the LiDAR highest hit for a tree can be extracted from the CHM more easily than from the LiDAR 

point cloud. It was observed that location of smooth CHM height and CHM height do not exactly overlap 

and the shift depended on the crown shape and degree of smoothing (Figure 13). This happens because 

smooth CHM makes a smooth convex hull of the crown points culminating at apex point (smooth CHM 

peak) where calculation of all points in CHM including apex point is based on neighbourhood points 

(filtering window size). Therefore to get CHM height, a buffer around the tree peak point location 

(3.9.4(xii))  was created. The maximum value of CHM pixel within the buffer was taken as the CHM 

height. The detail procedure is as follows; 

i. For each tree peak (3.9.4), calculate the distance of nearest peak using near function in ArcGIS, 

then create variable buffers with size [nearest peak distance]*0.25. Here a factor of 0.25 is taken to 

ensure that buffers completely fall within its tree crown segment avoiding overlapping with 

neighbouring tree crowns.  

ii. Now for extracting CHM height and finding its location, use Zonal Statistics selecting maximum 

as statistics type on CHM raster with buffer shape file as zone feature.  Rast1 

iii. Use raster calculator with command line 

iv. Setnull(Isnull(CHM), setnull(CHM!=Rast1,Rast1))  Rast2 

v. This will generate a raster of maximum pixel in CHM within each buffer polygon, all other pixels 

will be null.  

vi. Convert Rast2 to point feature. This point feature corresponds to CHM height location with 

height values in its attribute table.   

 

3.13.1.3. eCognition smooth CHM Height 
The eCognition smooth CHM Height is defined as maximum pixel value in the smooth CHM within tree 

crown boundary obtained through eCognition segmentation. This height is extracted from smooth CHM 

(3.9.1) layer in eCognition by creating a feature class for maximum pixel in tree crown objects. 

3.13.1.4. eCognition CHM Height 
eCognition CHM Height is defined as maximum pixel value in CHM within tree crown boundary 

obtained through eCognition segmentation. This height is extracted from CHM layer in eCognition by 

creating a feature class for maximum pixel in tree crown objects. 

3.13.2. CPA 
This is extracted by using calculate geometry (Area) of eCognition segmentation shape file in ArcGIS. 
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3.13.3. Canopy Volume 
Canopy Volume (CV) is defined as volume contained within canopy top enveloping surface and canopy 

base touching surface (Figure 14). The Canopy top enveloping surface is defined as smooth surface, 

enveloping canopy boundary points as visible from the top of the canopy in 3D. Canopy base touching 

surface is defined as the smooth surface passing through the lowest points of canopy. 

 
 
 
 Preparing canopy top enveloping surface 

i. Get sCHM (3.9.1(v)). 

ii. Perform Focal statistics (mean) on sCHM by rectangular window size 3 once.  TopRast. 

 

 
 

 
 
 
 
 
 

Canopy base touching surface 
i. Prepare CHM of 15 cm grid size by gridding operation on normalised point cloud in LAStools 

taking the lowest elevation point in the grid, dropping single returns, keeping zero  fill and 

clipping on the Z axis below 2 m. CHM_low 

Figure 14. Canopy surfaces 

Figure 15. (A) Tree point cloud, (B) Canopy top enveloping surface, (C) Tree with its enveloping surface 
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ii. Convert zero value pixels (missing grid values) to nodata by the raster calculator. Keeping zero 

will otherwise allow these pixels to participate in the operation performed in step (iii) and 

jeopardise selection of minimum value. 

iii. Perform Focal statistics (minimum) in ArcGIS by rectangular window  size 3 (pixels) two times. 

iv.  Perform Focal statistics (mean) by rectangular window size 3 (pixels)  two times. 

v. Missing pixels will be filled by now if not repeat  above step one more time. 

vi. Select all the pixels which have gained height (z value increased => lowest point in the 

neighbourhood) during minimizing and averaging operations by comparison to CHM_low (step 

(i)) and replace  these pixels to their original values in the CHM_low of  step(i) using raster 

calculator in ArcGIS. 

vii. Perform Focal statistics (mean) by rectangular window size 3 two times.  BaseRast 

Calculation of Canopy volume 
i. Subtract canopy top enveloping surface layer TopRast from canopy base touching layer 

(BaseRast) using raster calculator. Let this layer be Raster3. 

ii. Calculate  the sum of pixel values of Raster3 within each eCognition tree crown segmentation 

using Zonal Statistics as table tool in ArcGIS. 

iii. Multiply by square of grid size (i.e. 0.15*0.15) to sum value of each segmentation to get 

volume in cubic meter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. (A) Tree point cloud, (B) Canopy bottom touching surface, (C) Tree with its bottom touching 
surface 
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3.13.4. Canopy Base Height (CBH) 
CBH is defined as the lowest height above the ground above which there is sufficient canopy fuel to 

propagate fire vertically (Scott & Reinhardt, 2002). CBH  is a parameter in  fire behaviour models such as 

FARSITE (Finney & Station, 1998).  

 

 

 
 

 

 
 
CBH Calculation 

CBH is estimated from canopy base touching surface. 

CBH*CPA=Volume of canopy base touching surface 

                 = (grid size)2*(sum of pixel values) 
Or CBH= (grid size)2*(sum of pixel values)/CPA   …. 4 

 

CPA= (grid size)2*(Count of pixels) 

Therefore, CBH=sum of pixel values/count of pixels 

  =Average pixel value in Raster2 within tree crown segmentation 

Now use Zonal Statistics as table tool in ArcGIS on Raster2 taking eCognition segmentation shape file to 

define zones to get average pixel value for each zone (tree crown segmentation) 

  

3.13.5. Canopy tilt 
Canopy tilt was calculated on the basis of the coordinates of tree peaks in the smooth CHM (3.9) and the 

centroid of the CPA (3.13.12). It was assumed that trees are symmetrical objects, where tree trunk 

coincides with the centroid of CPA at canopy base height. The minimum height for the peak observation 

was 2m from the ground (3.9). Completely fallen trees or any tree having peak height less than 2m 

therefore, are not accounted for. If  P(X1,Y1,Z1)  and C(X2,Y2,Z2)  are coordinates of the DSM peak and 

the centroid of the CPA respectively and θ be the canopy tilt from horizontal plane (Figure 18) then, 

  

  
 
 
 
 

Figure 17. Canopy Base Height (CBH) 
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PD/DC=tanθ, 
PD= (Height-CBH) and DC is the distance between P(X1,Y1) and C(X2,Y2) in XY plane 

DC= 2
21

2
21 )()( YYXX  

Or tanθ= (Height-CBH) / 2
21

2
21 )()( YYXX  

Or Canopy tilt, θ=tan-1  (Height-CBH) / 2
21

2
21 )()( YYXX  

  Or Canopy tilt, θ=tan-1  (Z1-Z2) / 2
21

2
21 )()( YYXX   …. 5 

 

The coordinates of the CHM peak are obtained in the tree peak detection routine as discussed in section 

(3.9). The coordinates of centroid of CPA were determined by converting CPA polygon into point using 

feature to point tool in ArcGIS (3.13.12). 

 

3.13.6. Canopy Orientation 
Canopy orientation is the canopy tilt direction measured from North in a XY plane. Therefore, canopy 

orientation can be measured by the slope of the smooth CHM peak, P(X1,Y1) and centroid of CPA, 

C(X2,Y2) in the XY plane (Figure 19). A linear transformation on the slope angle would be required to 

correct the direction of measurement of the slope angle. As in the map coordinates, the X axis points 

towards East and the slope of a line in XY plane is measured from East in anti-clockwise direction, 

whereas orientation is measured from North in the clockwise direction. If the slope of the line PC in XY 

plane be φ then,  

 
 
 
 
 
 

  Figure 18 Schematic diagram of a tilted tree 
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Slope= tan φ= (Y2-Y1)/(X2-X1) 

 
 or, 

 φ=tan-1 (Y2- Y1 )/( X2-X1) , …. 6 

   

or, 

 Canopy orientation= Mod[(90- φ)+360,360]  …. 7 

 

3.13.7. Canopy density 
Canopy density (CD) is defined as the number of LiDAR hits per unit volume. It is a measure of biomass 

density and gives an indication of tree vigour and growth. If a forest is of same species and age, areas with 

poor soils are easily identified by the proportion of biomass.  

 
 
 
 
Method 

i. CD is calculated using lasgrid in LAStools at a  grid size of 0.15m as highest and ‘item’ as density. 

It prepares a raster of the total number of LiDAR hits within the grid.  

ii. Get the sum of pixel values in the raster obtained in step 1 by Zonal Statistics as table tool in 

ArcGIS with eCognition segmentation shape file (cross-reference) as defining zones. 

iii. Divide the sum (step 2) by canopy volume for each tree crown segmentation (3.11.1) to get the 

canopy density for each tree. 

iv. The LiDAR point cloud density in the study area was increased by taking multiple flights over the 

same area. Therefore, this canopy density was normalised by dividing canopy density of a tree by 

count of different source ID used for a tree point cloud data. Source ID is an attribute in LAS file 

which keeps the detail of flight tack ID for each point cloud data.   

  

Figure 19 Location of tree peak (point P) and centroid on CPA (Point C)  
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3.13.8. Elevation, Slope and Aspect 
i. Use Zonal Statistics as table tool in ArcGIS on DTM prepared in Section 3.8.2  with eCognition 

segmentation shape file (3.11.1) as defining zones to get average elevation for each tree crown 

segmentation. 

ii. Prepare slope raster from DTM using Slope tool in ArcGIS. Now use Zonal Statistics as table 

tool in ArcGIS on slope raster with eCognition segmentation shape file (3.11.1)  as defining zones 

to get average slope for each tree crown segments. 

iii. Prepare aspect raster from DTM using Aspect tool in ArcGIS. Now use Zonal Statistics as table 

tool in ArcGIS on aspect raster with eCognition segmentation shape file (3.11.1)  as defining 

zones to get average aspect for each tree crown segmentation. 

 

3.13.9. Average CPA height  
The average CPA height  is in between height and CBH and is a point around which maximum biomass is 

concentrated on the vertical axis. This parameter is used to determine  fire behaviour. 

Method 

Use Zonal Statistics as table tool in ArcGIS on CHM (3.8.4)  with eCognition segmentation shape file 

((3.11.1) ) as defining zones to obtain  average height for each tree crown segment. 

3.13.10. Canopy diameter 
It was calculated from CPA in two ways. 

i. As diameter of circle with equal area of CPA (3.13.2) 

ii. As sum of semi-major and semi-minor axis of inscribed ellipse of CPA (3.13.11) 

 

3.13.11. Perimeter, Semi Major and Minor axis 
Use Zonal geometry tool in ArcGIS on CHM (3.8.4)  with eCognition segmentation shape file as defining 

zones to get perimeter of the crown segmentation, the semi major and minor axis of the fitting ellipse of 

the crown segmentation for each tree. The sum of semi major and minor axis gives the estimation of 

crown diameter. They are also used to calculate eccentricity of the ellipse to identify elongated crown 

segments and slivers. 

3.13.12. Centroid of the crown segment 
Centroid of the tree crown segment was obtained by converting crown segmentation (3.11.1)  to points 
using feature to point tool in ArcGIS. 
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3.13.13. Local tree density 
The local tree density (LTD)  is defined as the number of trees per unit area (in Ha) falling within a buffer 

of 3 meter around tree crown segments. This parameter is calculated to investigate the impact of local tree 

density on tree growth. The selection of the buffer dimension is based on average crown size in the study 

area (6.7 m2). The idea is to obtain a minimum size buffer to cover all neighbouring trees around a tree.  

 

 

 

 

 
 

 

 

 

 

 

Figure 20 Local tree density 

 

 

Method 
i. Create buffer of 3 meter around eCognition segments using the buffer tool in ArcGIS. 

ii. Perform spatial join in buffer shape file with the centroid of tree crown segment shape file 

(3.11.1). 

iii. The count field in the Joined file gives the number of trees falling within each buffer. 

iv. Calculate area of each buffer by calculate geometry in ArcGIS on buffer shape file. 

v. Divide number of trees within the buffer (step iii) by buffer area (step iv) to get local tree 

density in number of trees per m2. 

vi. Multiply the result of step (v) by 10000 to get the density in number of trees per hectare. 
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3.13.14. Local canopy gaps (LCG) 
LCG is defined as percentage of gaps in annular buffer of 1m around tree crown segments.  

 

 

 

 

 

 

 

 

 

 

 

Method 

i. Create buffers of 1m around eCognition segmentations using buffer tool in ArcGIS.  Buff1m. 

ii. Convert inter canopy gaps mask shape file as prepared in Section 3.10 from 0.15m grid size to 1m 

size. Let this layer be called Rast1 

iii. The buffers obtained in step (i) are overlapping for being around a tree crown segment. 

Unfortunately, the Zonal Statistics tool in ArcGIS does not work on overlapping zones, 

therefore, this tool cannot be used. In fact, there is no easy way to get gap percentage in buffer 

polygon through ArcGIS. Therefore, resolution of gap raster is decreased to 1 meter and gap 

raster is converted to point shape file. To avoid the point shape file going very big, resolution of 

gap file was reduced to 1m (step ii). Each point now represents an area of 1 m2 of gap. These 

points now can be counted within buffer to assess gap percentage. 

iv. Rasterize buffer layer on attribute ‘val’ having value 1, let it be called Rast2 

v. Use raster calculator in ArcGIS with command line, Setnull(Isnull(Rast2), Rast1). This is done to 

reduce the size of gap raster to exclude gaps which are falling outside the buffer. Let this raster be 

called Rast3. 

vi. Now convert Rast3 to point using raster to point tool in ArcGIS. Let this shape file be called 

Rast3toPoint. 

vii. Spatial join Buff1m with Rast3toPoint in ArcGIS selecting SUM statistics. This took about an 

hour of processing in ArcGIS. 

viii. Look for Count or Sum attribute in the joined field of Buff1m. This is actually an area of gaps in 

m2. 

ix. Subtract the area of crown segment from its buffer area to get the area of annular buffer.  

Figure 21. Canopy gap percentage around 1m buffer 
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x. Get the gap percentage by dividing gaps in buffer ( step viii) by total area of annular buffer (step 

ix) and multiplying by 100. 

 

3.13.15. Canopy Shape 
Canopy shape (CS) is defined as the ratio of the canopy diameter with canopy height (USGS). Canopy 

shape volume may also be estimated from the volume formula for given shape ( 

Table 5). Canopy shapes were determined for all segmented trees based on the shape value, primarily to 

investigate whether Canopy shape may be indicative of species type. Further to know whether extreme 

shapes are indicative of wrong crown segmentation. 

Canopy height=Tree height-Canopy base height 

Shape Value=Canopy diameter/Canopy height 

Now based on shape value, shapes may be assigned to tree canopies. 

 
 

Table 5. Tree canopy shape and Volume. Source: USGS 

Value Name 
Volume 
Formula 

1 Cylinder a*.7854 
0.875 Rounded-edge cylinder a*0.6872 
0.75 Elongated spheroid a*0.5891 
0.667 Spheroid a*0.5236 
0.625 Expanded parabolic a*0.4909 
0.5 Parabolic a*0.3927 
0.375 Fat Cone a*0.2945 
0.333 Cone a*0.2619 
0.25 Neiloid a*0.1964 
0.125 Thin Neiloid a*0.0982 

a= (Canopy diameter)²*Canopy Height 
 

3.13.16.  Landuse 
The landuse information for the study area was provided by the ONF (Forest department, France). The 

landuse has 8 classes namely broad leved forests, coniferous forests, coniferous mix forests, natural 

grassland, pastures, bare rocks, black marks, urban fabric. Landuse was entered in landuse field for 

selected trees in the attribute table. 
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3.13.17. Stable and Unstable area 
A shape file delineating landslide active (Unstable) and non-landslide (Stable) area was provided by 

doctoral researcher Mr. Khamarrul A. Razak working in the study area on landslides. This field was added 

in the attribute table of eCognition crown segments. Stable/Unstable was entered in the Landslide field 

for selected trees in the attribute table. 

 

3.14. Species Classification 
Tree species classification was done by the query method on extracted parameters. LiDAR data has rich 

structural information, therefore tree species structurally different from other may be identified and 

suitably classified. To achieve this, first identifying differences among species were examined from 

descriptive statistics of extracted parameters such as canopy volume, CPA, height, CBH, elevation, canopy 

density. The next step was to formulate a suitable query on individual tree based geospatial inventory 

database on structural and spatial parameters. Distribution of Pinus uncinata and Pinus syslvestris  was found 

to have dependence on elevation while Larix decidua was found structurally distinct from Pines in shape, 

canopy volume, height and CPA. These facts were converted to a query to get the classification. 

Query 

Larix  
CPA>15 m2 

Height>12 m 
Canopy Volume>130 m3 

P. uncinata: Elevation>1600 m 
P.sylvestris: Elevation<=1600 m  
 

3.15. Allometric Equation 
We could not find any allometric equation for Pinus uncinata and Pinus sylvestris for France. The following 

allometric equation for Pinus nigra (Netherlands) was used for the estimation of carbon for pines in the 

study area (Hale et al., 2004).   

 
  

   … 8 

 

3.16. Regression analysis 
 
The objective of regression analysis in remote sensing based data is to quantify the relationship between 

response variable (measured in field or derived from measured parameters through allometric equations) 

and one or more explanatory variables which are derived from remote sensing data sets. Quantitative 
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relationship is expressed by an equation and its graphic representation (Husch et al., 2003). The coefficient 

of determination (R2) gives the proportion of variance of one variable that is predictable from the other 

variable or in other words is the ratio of the explained variation to the total variation. 

 

Regression modelling  is commonly used for biomass estimation studies (Lu, 2006). In this research three 

regression models were developed for prediction of biomass/carbon. Three sets of explanatory variables 

used were (CPA, height), (Canopy Volume, height), (CPA, height, Local tree density). Allometric equation 

for biomass was based on DBH and height. After calculating aboveground carbon stock using field 

measured DBH and height information in allometric equation, relationship of aboveground carbon stock 

and explanatory variables were analysed using regression analysis.  

 

Tree crowns that had 1:1 spatial correspondence with reference and delineated tree crowns having less 

error in terms of the relative area (less than 6 m2) were used for modelling. The significance and the 

strength of this relationship was determined using evaluation dataset, which was 30 % of field dataset.  
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4. RESULTS 

4.1. Descriptive Analysis of field data 
In total, forest stand parameters data of 275 trees was collected from 13 plots spread over the study area. 
All the sampled trees were manually delineated on CHM after locating the tree with the help of the tree 
base coordinates collected during the field campaign. The accuracy of differential GPS for base stations 
coordinates was 4 mm horizontally (XY plane) and 7mm vertically (Z axis).  The sample data comprised 
of mainly three species namely Pinus uncinate, Pinus sylvestris and Larix decidua. One tree of Picea abies was also 
sampled. The descriptive statistics of sampled trees is given in Figure 22. Frequency distribution of 
sampled trees species is shown in Figure 23.  The distribution of the measured tree parameters are 
illustrated in Figure 24  . 

Figure 22. Descriptive statistics of sampled trees 

Variable n Min Max Mean Std. deviation 
DBH (cm) 200 9.1 41 19.57 4.34 
Height (m) 200 5.2 17.8 11.14 2.59 
Canopy dia (cm) 192 1 6.7 3.15 0.90 
Pinus sylvestris 
Variable n Min Max Mean Std. deviation 
DBH (cm) 51 11 36 24.11 5.83 
Height (m) 51 6.5 15 10.85 2.35 
Canopy dia (m) 50 2.25 6.9 4.68 1.14 
Larix decidua 
Variable n Min Max Mean Std. deviation 
DBH (cm) 23 15 61 31.24 12.35 
Height (m) 23 12 21.2 15.21 2.50 
Canopy dia (m) 23 3.05 8.95 6.22 1.70 

 
 

 
Figure 23. Frequency of the sampled tree species 
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Figure 24. Tree Parameters Distribution (a) DBH,  (b) Height,  (c) Crown Diameter,  (d) Carbon 

 

4.2. Peak detection 
Tree peaks were detected as explained in Section (3.9.4). Out of 275 sample trees, peaks of 264 trees could 

be detected. Therefore, the accuracy of tree peak detection was 96 %.  The accuracy obtained relates with 

the tree peak detection only and it is not the accuracy of tree identification. Trees were identified in the 

crown delineation procedure as explained in Section (3.11). For the whole study area, in total 128,918 tree 

peaks were detected.  
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Table 6 shows the number of peaks identified in the CHM with varying degree of smoothness and the 

number of final peaks after removing false peaks, based on height criteria as explained in Section (3.9.4). 

 

 
 
 

Table 6. Number of peaks detected in smooth CHM with varying degree of  smoothness 

 

 

 
 
 

Smooth CHM Tree peaks detected Final Peaks 
sCHM3 164,787 128,918 
sCHM5 92,867 
sCHM7 72,609 
sCHM9 54,194 

Figure 25. (a) sCHM3 (3.9.2),  (b) sCHM9 (3.9.2), (c) Peaks detected in sCHM9,   (d) Final peaks 
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4.3. Tree Crown delineation 

4.3.1. Tree crown delineation using Region growing approach in eCognition 
The result of individual tree crown delineation using Region growing approach in eCognition is given in 

Figure 26. Table 7 shows accuracy measures of D of delineated crowns. Overall for the whole study area, 

over segmentation error was 16.5 %, under segmentation error was 21.5 % and total delineation of tree 

crowns was 81 % accurate (19 % error). When polygon smoothing was done on the Region growing 

segmentation, there was improvement in the overall segmentation accuracy by 3 %. With smooth 

segmentation, over segmentation error was 15 %, under segmentation error was 17 % and total 

delineation of tree crowns was 84 % accurate (16 % error).  For the accuracy measure of 1:1 

correspondence, 93.5 % of the total reference crowns were matching to the Region growing crown 

delineation with 1:1 correspondence (Table 8).  

 

 
 
Figure 26. (a) Region growing segmentation on pre-determined tree peaks,  (b) Polygon smoothing on segmentation 

 
Table 7. D Values (Segmentation error) for Region growing and Thiessen polygons segmentation 

D Value 
(Segmentation 
error fraction) 

Region 
growing 
Segmentation 

Region growing 
Segmentation 
(Smooth) 

Thiessen 
Segmentation 

Thiessen 
Segmentation 
(Smooth) 

fraction % fraction % fraction % fraction % 
Over Segmentation 0.165 16.5 0.15 15 0.189 18.9 0.197 19.7 

Under 
Segmentation 

0.215 21.5 0.168 16.8 0.242 24.2 0.218 21.8 

Overall 0.192 19.2 0.16 16 0.217 21.7 0.208 20.8 
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Table 8. 1:1 correspondence for segmentation accuracy of Region growing and Thiessen polygons. 

Tree 
species 

reference 1:1 correspondence   accuracy % 

Region growing Thiessen 
polygons 

Region 
growing 

Thiessen 
polygons 

Pinus uncinata 200 187 188 93.5 94.0 

Pinus Sylvestris 51 48 49 94.1 96.1 

Larix decidua 23 21 21 91.3 91.3 
Picea abies 1 1 1 100 100.0 
Total 275 257 259 93.5 94.2 
 
 
Visualising segmented trees in point cloud 
The result of  Region growing crown segmentation extracted from LiDAR point cloud as explained in 
Section 3.12.1 for visual interpretation is shown in Figure 27.  
 
 

 
Figure 27. A subset of  tree point cloud of 1000 randomly selected trees from segments of Region growing approach. 

 

4.3.2. Tree crown delineation using Thiessen polygons 
The result of individual tree crown delineation using Thiessen polygons is given in Figure 26. Table 7 
shows accuracy measures of D of delineated crowns. Overall for the whole study area, over segmentation 
error was 19 %, under segmentation error was 24 % and total delineation of tree crowns was 78 % 
accurate (22 % error). With polygon smoothing, the Region growing segmentation was improved by 
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marginally by 1 % in overall accuracy. With smooth segmentation, over segmentation error was 20 %, 
under segmentation error was 22 % and total delineation of tree crowns was 79 % accurate (21 % error).  
For the accuracy measure of 1:1 correspondence, 94.2 % of the total reference crowns were matching to 
the Region growing crown delineation with 1:1 correspondence (Table 8).  

 
 

 
Figure 28. (a) Thiessen segmentation on the CHM,   (b) Thiessen segmentation overlay on the ortho-image 

4.3.3. Comparison of delineated crowns from Region growing and Thiessen polygons approaches 
Figure 29 shows delineated crowns of Region growing and Thiessen polygons approaches (reference tree 
crowns in red and delineated tree crowns of Region growing in blue and that of Thiessen polygons in 
yellow. Tree peaks are shown in pink).  

Overall D value of Region growing and Thiessen polygons approaches was 0.19 and 0.22 respectively, 
while application of polygon smoothing on these segmentation resulted D value of 0.16 and 0.21 
respectively (Table 7). 

 
 

4.3.4. Species classification 
Delineated tree crowns of Region growing approach were classified into four species types namely Larix 
deciduas, Pinus uncinata, Pinus sylvestris and broadleaved with the help of a query approach on extracted 

Figure 29. Delineated crowns of Region Growing (a)  and Thiessen polygons (b) approaches. 
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parameters. The accuracy of species classification is given in Table 9. The count of classified species is 
given in Figure 31. 

 

 

 

 

 

 

 

 

Figure 30. Species classification in Bois noir forests, Barcelonnette, France. 
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Table 9. Species classification accuracy 

 

 
Cl

as
si

fie
d 

  Reference     

 Species Larix P. 
uncinata 

P. 
Sylvestris 

Picea 
abies 

n Error 
commission 

User 
accuracy 
% 

Larix decidua 20 5 0 1 26 23 77 
P. uncinata 3 195 0 0 198 2 98 
P. Sylvestris 0 0 51 0 51 0 100 
Picea abies 0 0 0 0 0 0 100 
total 23 200 51 1 275     
Error Omission 13 3 0 100       
Producer accuracy % 87 98 100 0   Overall 

accuracy 
97 

 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 31. Tree species distribution in the study area 

 
 
 
 

Larix Broad leaved P. sylvestris P. uncinata 
No. of Trees 3538 9724 45131 69790 
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4.4. Tree Height  
Tree height was estimated in four ways as described in Section 3.13.1. The coefficient of determination, R2 
and RMSE of these heights with field measured height is given in Table 10. Scatter plot for CHM height is 
given in Figure 32. 
 

 
Table 10. R2 for LiDAR derived heights 

Height R2 RMSE (m) 

CHM Height 0.86 0.8 

Smooth CHM Height 0.85 0.83 

eCognition CHM Height 0.81 0.93 

eCognition smooth CHM Height 0.81 0.93 

4.5. Canopy Base Height 
Scatter plot of field measured CBH and LiDAR derived CBH (3.13.4) is given in  
Figure 33. The R2  for the LiDAR derived CBH was 0.73 with RMSE=0.86 m. A correlation of field 
measured CBH with other extracted parameters such as height and average CPA height was also tested. 
CBH showed significant correlation with average CPA height (R2=0.72, RMSE=0.88 m ), while with 
height it was (R2=0.62, RMSE=1.0 m).  
 

 
 

Figure 33. R2 for LiDAR derived CBH 
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Figure 32. Scatter plot for CHM height 
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4.6. CPA 
Coefficient of determination, R2 and root mean square error (RMSE) for CPA obtained from Region 

growing and Thiessen polygons segmentation approaches are given in Table 11. The relation of Region 

growing CPA with manually delineated CPA is shown in Figure 34. 

 

Table 11. Accuracies of CPA obtained from Region growing and Thiessen polygons segmentation approaches 

CPA n Mean Std. deviation R² RMSE (m²) 
Field (manually digitised) 262 10.157 10.031     
Region growing segmentation 262 10.460 9.669 0.868 3.653 
Region growing segmentation (smooth) 262 10.214 9.708 0.867 3.671 
Thiessen polygons segmentation (smooth) 262 9.961 8.753 0.901 3.161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7. Canopy tilt 
Coefficient of determination, R2 for canopy tilt with field measured tree tilt at 2 m is given in Figure 35. A 
subset of extracted point cloud of trees with canopy tilt less < 70 degree is given in Figure 36. 

 

Figure 34. Relation of Region Growing CPA with 
manually delineated CPA 
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4.8. Application of inventory data 

4.8.1. Open canopies 
Using local canopy gaps (3.13.14) parameter in the inventory, trees having less than 50 % local canopy 
gaps were identified in landslide and non-landslide zones. In landslide zone 10.4 % trees had open 
canopies while in non-landslide zone 7.7 % tree had open canopies Table 12. Map showing distribution of 
trees with open canopies is given in Figure 37. 
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Figure 35. Scatter plot of canopy tilt and field measured tree tilt at 
2 m from base of tree. 

Figure 36. Extracted point cloud of tilted trees with canopy tilt < 70 degree 
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Table 12. Open canopy distribution. 

Open Canopies in different Zones 
Zone No of trees Gap%>50 % 
Landslide Zone 75690 7887 10.4 
Nonlandslide Zone 45778 3512 7.7 

 

Figure 37. Open canopies in landslide and non-landslide zones 

4.8.2. Close canopies  
Using local canopy gaps (3.13.14) parameter in the inventory, trees having no inter canopies gaps were 
identified in landslide and non-landslide zones in the study area. In landslide zone 38.8 % trees had open 
canopies while in non-landslide zone 37.4 % tree had open canopies ( 

Table 13). Map showing distribution of trees with open canopies is given in Figure 38. 
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Figure 38. Close canopies in landslide and non-landslide zones. 
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Table 13. Distribution of trees with close canopies  

Close Canopies in different Zones 

Zone No of trees Gap%=0 % 
Landslide Zone 75690 29358 38.8 
Non-landslide Zone 45778 17133 37.4 

 

 

4.8.3. Canopy tilt 
Using canopy tilt parameter in the geospatial inventory, trees having tilt less than 70 degree  were 
identified in landslide and non-landslide zones. Landslide zone and non-landslide zone had 1303 and 673 
tilted trees respectively. Map showing distribution of tilted trees is given in Figure 39. 

 

Table 14. Distribution of tilted trees 

Canopy tilt<70 degrees in different Zones 

Zone No of trees Tilt<70 degree % 
Landslide Zone 75,690 1303 1.7 
Non-landslide Zone 45,778 673 1.5 

 

 

4.8.4. Variation in tree parameters due to aspect 
Using aspect parameter in the geospatial inventory, trees were identified in the  northern and southern 
aspect. Their mean height and CPA in both aspect is given in Table 15. Map showing spatial distribution 
these trees is given in Figure 40. 

 

Table 15. Mean height and CPA of trees in Northern and Southern aspect. 

Variation in Tree Parameters due to aspect 

ASPECT No of trees Mean Height (m) Mean CPA (m2) 
Northern 79,168 9.9 6.3 
Southern 49,015 9.6 7.4 
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Figure 39. Distribution of tilted trees. 
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Figure 40. Variation in tree parameters due to aspect 
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4.9. Descriptive statistics of study area from inventory data 
Descriptive statistics of  extracted parameters is given in Table 16.  Trees falling within 2 m from the study 

area boundary were excluded due to incomplete crowns. 

 
Table 16. Descriptive Statistics of extracted parameters in the study area. 

Variable n Minimum Maximum Mean Std. deviation 
CHM height 126,653 0.03 34.53 9.82 4.12 
CPA 126,653 0.32 108.79 6.73 5.47 
Avg CPA height 126,653 2 26.53 7.69 3.39 
Canopy Volume 126,653 0.05 1211.3 37.91 46.82 
Crown diameter 126,653 0.63 11.77 2.74 1.03 
CBH 126,653 2 14.85 2.76 1.63 
CBH/Height 126,653 1.5 150.45 0.28 0.73 
Tree_Inclination 126,653 8.24 89.98 84.03 4.68 
SLOPE 126,653 0.9 86.91 21.07 11.11 
ELEVATION 126,653 1403.35 2037.73 1632.36 123.82 
TreeDensity 126,653 41.77 5259.88 1451.2 610.54 
LidarHits/Area 126,653 0 1605.72 122.43 90.43 
LiDAR_Pts/tree 126,653 0 55654 945.08 1407.09 
CanopyDensity(LidarPts/vol) 126,653 0 1609.1 28.18 26.34 
Gap_Percent 126,653 0 100 17.41 21.67 
CD/Height 126,653 0.04 95.88 0.32 0.55 

4.10. Tree height profile in the study area 
Tree height profile for the whole study area is given in Figure 41. It is based on the CHM height (3.13.1.2) 

obtained from the LiDAR data. 
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Figure 41. Tree height profile of the study area 
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4.11. Regression analysis 
Three linear regression models were developed for the estimation of biomass/carbon in the study area 
based on the set of LiDAR derived tree parameters. They are described in the following sections. 

4.11.1. Model 1 (CPA and Height) 
In this model CPA obtained as a result of Region growing segmentation in eCognition (3.11.1) and 
LiDAR derived CHM height (3.13.1.2) were used as explanatory variables to get linear regression model 
for biomass/carbon. Summary statistics of the parameters used in modelling is given in Table 17 and their 
correlation matrix is given in  

Table 18. Goodness of fit statistics is given Table 19. Error statistics of model coefficients is given in 
Table 20. Plot showing predicted carbon and reference carbon in training and validation data set is given 
in Figure 42. 

 

 

Table 17. Summary statistics of parameters used in the model 1. 

Training data 

Variable Observations Minimum Maximum Mean 
Std. 
deviation 

Carbon 
125 

25.76 264.17 107.84 49.45 
Height 6.91 19.42 12.46 2.63 
CPA 0.90 29.75 7.88 4.94 
Validation data 
Carbon 

38 
34.75 305.49 107.22 68.54 

Height 6.51 19.64 12.10 2.88 
CPA 1.26 48.40 9.28 8.20 

 

 

Table 18. Correlation matrix (Model 1) 

Variables Height CPA Carbon 
Height 1.00 0.18 0.73 
CPA 0.18 1.00 0.60 
Carbon 0.73 0.60 1.00 

 

Table 19. Goodness of fit statistics (Model 1) 

R² 0.757 
Adjusted R² 0.753 
MSE 604.457 
RMSE 24.586 
MAPE 23.907 
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Table 20. Model 1 Parameters 

Source Value 
Standard 
error t Pr > |t| 

Lower bound 
(95%) 

Upper bound 
(95%) 

Intercept -81.262 10.835 -7.500 
< 
0.0001 -102.710 -59.813 

Height 12.125 0.854 14.202 
< 
0.0001 10.435 13.815 

CPA 4.819 0.454 10.612 
< 
0.0001 3.920 5.718 

Equation of the Model 1 
Carbon (kg) = 
0.5*( -81.2618971572085+12.1247619660425*Height+4.81873720853689*CPA) 
 

 
Figure 42. Reference and predicted carbon in training and validation data sets (Model 1). 

 

4.11.2. Model 2 (Canopy Volume and Height) 
In this model Canopy Volume (3.13.3) and LiDAR derived CHM height (3.13.1.2) were used as explanatory variables 

to get linear regression model for biomass/carbon. Summary statistics of the parameters used in modelling is given in 

Table 21 and their correlation matrix is given in  

Table 22. Goodness of fit statistics is given in Table 23. Error statistics of model coefficients is given in  Table 24. 

Plot showing predicted carbon and reference carbon in training and validation data set is given in Figure 43. 
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Table 21. Summary statistics of parameters used in the model 2. 

Training data 

Variable Observations Minimum Maximum Mean 
Std. 
deviation 

Carbon 
125 

25.76 264.17 107.84 49.45 

Canopy_Vol 5.63 199.13 45.84 29.45 

Height 6.91 19.42 12.46 2.63 

Validation data 
Carbon 

38 

34.75 305.49 107.22 68.54 

Canopy_Vol 5.18 322.50 51.60 51.67 

Height 6.51 19.64 12.10 2.88 
 

 

 

Table 22. Correlation matrix (Model 2) 

Variables Canopy_Vol Height Carbon 
Canopy_Vol 1.00 0.54 0.79 
Height 0.54 1.00 0.73 
Carbon 0.79 0.73 1.00 

 

Table 23. Goodness of fit statistics (Model 2) 

R² 0.751 

Adjusted R² 0.747 

MSE 618.936 

RMSE 24.878 

MAPE 23.732 
 
 
 
 
Table 24. Model 2 Parameters 

Source Value 
Standard 
error t Pr > |t| 

Lower bound 
(95%) 

Upper bound 
(95%) 

Intercept -36.438 11.136 -3.272 0.001 -58.482 -14.393 

Canopy_Vol 0.929 0.090 10.350 
< 
0.0001 0.751 1.107 

Height 8.158 1.006 8.106 
< 
0.0001 6.165 10.150 
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Equation of the model: 

Carbon (kg) = 
 0.5*( -36.4376358958664+0.929230749280394*Canopy_Vol+8.15762627104967*Height) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.11.3. Model 3 (CPA, Height, LTD) 
In this model, additional explanatory variables like local tree density, local canopy gaps, aspect, slope were 
added to height and CPA to investigate the improvement in the previous models. All these explanatory 
variable were tested in SPSS statistical software using back elimination of parameters. The best model out 
of them was achieved for explanatory variables height, CPA and local tree density. This model is based on 
interaction of height with local tree density and CPA. The model parameters used were height, 
(height)x(CPA), (height)x(local tree density). Goodness of fit statistics is given in Table 25. Error statistics 
of model coefficients is given in   

Table 26. Plot showing predicted carbon and reference carbon in training and validation data set is given 
in Figure 44. 

 

 
Table 25. Goodness of fit statistics (Model 3) 

R² 0.787 
Adjusted R² 0.782 
MSE 532.589 
RMSE 23.078 
MAPE 21.831 
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Figure 43. Reference and predicted carbon in training and validation data sets (Model 2). 
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Table 26. Model 3 parameters. 

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%) 
Intercept -45.92 10.38 -4.42 < 0.0001 -66.47 -25.37 
LTDxHeight 0.00 0.00 -2.96 0.00 0.00 0.00 
Height 11.74 1.33 8.83 < 0.0001 9.11 14.37 
CPAxHeight 0.30 0.04 6.66 < 0.0001 0.21 0.38 
 
Equation of the model 3: 

Carbon (kg) = 
0.5*( -45.923634209894-1.44132788781274E-
03*LTDxHeight+11.7389720241281*Height+0.295287590676784*CPAxHeight) 
 
 

 
 
 

 
Figure 44. Reference and predicted carbon in training and validation data sets (Model 3) 

4.11.4. Selecting best model for Carbon estimation 
The best regression model was selected based on higher R2 and lower RMSE. From the results, model 3 
(4.11.3) was found to be the best with highest R2 and least RMSE. Carbon was calculated based on this 
model for Pinus uncinata and Pinus sylvestris in the whole study area. Spatial distribution of carbon for Pines 
in the  study is given in Figure 45. Based on the regression model, the total carbon in the study area was 
3811 tons with mean carbon per tree of 33.16 kg (Table 27). 
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Table 27. Carbon estimation of Pines in the study area 

Carbon estimation of Pines in the study area 

  Pines Mean 
Carbon(Kg)/tree 

Total Carbon (Tons) 

Carbon 114,921 33.16 3,811 
 

 

 

Figure 45. Carbon map for Pinus uncinata and Pinus sylvestris  
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5. DISCUSSION 

5.1. Tree Peak identification 

A precise individual tree based inventory parameter extraction leverages an accurate identification of trees. 

The main aim of the research was to extract inventory parameters, and such parameters cannot not be 

retrieved accurately unless trees are identified and delineated accurately. Therefore, much of the research 

efforts have gone in developing a method for tree peak detection. Tree peak detection accuracy obtained 

in this research was 96 % (4.2) with total number of identified tree peaks equal to 128,918 ( 

Table 6).  In comparison to previous research works, the accuracy of the result is quite statistically 

significant. Pitkänen et al (2004) could identify 40 % trees in CHM, Reitberger et al (2007) achieved 61 % 

accuracy in coniferous forests based on a stem detection algorithm using full waveform LiDAR data. 

Rahman & Gorte (2009) detected more than 70 % trees using density of high points in LiDAR data with 

sampling density of 70 points/m2. Koch et al (2006) achieved 87.3 % tree detection accuracy in douglas 

firs by searching local maxima in a smooth CHM using LiDAR data with sampling density of 5-10 

points/m2. Kwak et al (2007) achieved an accuracy of 86.7 % for P. koraiensis, L. leptolepis, and Quercus 

species, by removing spurious  local maxima in extended maxima transformation based on height values 

of local maxima using LiDAR data with a sampling density of 1.8 points/m2. 

 

Before we review the obtained accuracy of peak detection, it is pertinent to discuss how the algorithm for 

peak detection was developed. We had a small foot print high sampling density LiDAR data with average 

of 122 points per square meter on tree canopies. The density is equivalent to a point on the average in 

each 9 cm grid. The average number of LiDAR points on a tree were 945, the maximum LiDAR hits in a 

single tree was 55,654 in the study area (Figure 46).  The point cloud density was good enough to give 

structural definition to trees. To know how well the point cloud defines the trees, the LiDAR data was 

thoroughly visualised in 3D using software such as Quick Terrain Modeler and MARS (Figure 47). It was 

found that trees were structurally well defined with distinctive peaks (Conifers show distinctive peaks). 

The very next question was, how to identify these trees. Whether to look for tree peaks, tree stems or for 

density of  point clouds around peaks. We chose the first option as tree stem information was missing in 

large number of trees in the point cloud, the density of  peak was not reliable as the LiDAR data was over 

sampled with multiple flights (overlapping flight tracks or intersection of  tracks will show high density of 

point clouds). 
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Earlier research of tree peak detection is based on finding local maxima in CHM or smooth CHM or 

CHM with varying degree of smoothness in a fixed or variable size search windows. We wanted to know 

the best method for our study area and to improvise it for higher accuracy. 

 
Figure 47. Point cloud visualisation on the basis of elevation, returns, classification and intensity 

 

 

Figure 46. Larix tree with 55,654 LiDAR hits 
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5.1.1. Fixed size window 

In a fixed size search  window the size of the  window is decided on the basis of mean crown diameter of 

trees. eCognition based Region growing segmentation also gets the seeds by identifying local maxima in a 

fixed window size unless they are provided separately in a thematic layer. Fixed size window works best 

with the homogeneous, monoculture plantations as the standard deviation in the crown diameter is less. 

However, it is difficult to obtain accurate results of tree detection in a fixed size window in a mixed forests 

because of varying crown sizes resulting into a high error of omission . 

5.1.2. Variable size window 

Popescu and Wynne (2004) suggested variable search window for locating tree maxima and showed the 

improvement in accuracy in comparison to fixed size window. However, it requires a prior knowledge of  

height and CPA relation in the forests. Variable window will show a high error of omission if there 

doesn’t exist a fixed relation between tree height and crown size. For this reason  TreVaw (developed by 

Popescu ) could identify only 76,000  trees in the study area, whereas we detected  128,918 trees.  

5.1.3. Reasons for good accuracy  
It is difficult to compare the obtained accuracy of tree detection with the previous research results due to 

variation in point cloud densities, methods adopted and type of forests (coniferous or broadleaved). 

However,  error involved in  similar methods may be analysed. Both fix window and variable window 

methods do not take into account individual tree structural information but are based on mean crown 

diameter or height and crown diameter relation. While variable smoothing method takes into account each 

pixel of CHM to get a smooth CHM. The smoothing effect depends on the shape of individual tree and 

the degree of smoothing. A small fixed size window (45 cm) makes sure that there is only one local 

maxima within search window, reducing error of omissions. Since in the adopted approach smoothing is 

height retaining or in other words, it makes an enveloping surface over the tree (convex hull), merging of 

tree canopies due to flattening of tree canopies during smoothing is substantially reduced. Further, the 

merging effect of smoothing is controlled by varying degree of smoothing based on height. Care is 

required to select height cut off for a particular degree of smoothing. It is fine tuned in successive results 

by observing error of omission and commission to reach to optimal values for height cut off. Error of 

commission is reduced firstly due to coniferous forests (trees with distinctive peaks) and secondly for 

using high density LiDAR data where on the average each 9 cm apart there is a LiDAR hit. Figure xx 

shows how different local maxima based peak detection algorithm works. 

5.1.4. Limitation of the method 

i. The method requires a priori about height and crown size relation. 

ii. It is based on identifying local maxima in smooth CHM, therefore tree tops not appearing as local 

maxima in the smooth CHM may not be detected e.g. trees with top broken, deciduous trees with 

flatten top, trees with their top merging with neighbouring tree canopies, fallen trees. 
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5.1.5. Sources of error 

i. Close spacing of tree tops (< 45 cm (search window size)). 

ii. Small trees in the neighbourhood of  large trees resulting in canopy merging. 

iii. Low point cloud density. ( i.e. a point cloud density insufficient to give a point in the search 

window for a tree) 

5.2. Delineation of tree crowns 

The results of segmentation are given in Section 4.3. Tree crown delineation using Region growing 

approach resulted in D value of 0.16 (84 % accurate) with 93.5 % accuracy of 1:1. For segmentation using 

Thiessen polygon approach, the D value is  0.21 (79 % accuracy) with 94.2 %  accuracy of 1:1 

correspondence. Both segmentation approaches have performed well. High crown delineation accuracy is 

attributed to accurate identification of tree peaks and inter canopy gaps. Overall segmentation accuracy in 

both approaches was marginally increased when segmentation was smoothed with polygon smoothing. In 

Region growing the improvement in segmentation accuracy was 3% while in Thiessen polygons it was 1%. 

Region growing segmentation had jagged edges due to low resolution (60 cm) supported by eCognition 

while Thiessen segmentation was prepared in ArcGIS and had better resolution (15 cm). Therefore, the 

improvement in segmentation accuracy in  Thiessen approach was negligible due to segmentation 

smoothing. 

It was observed that for open canopies, both approaches gave almost similar segmentation (Figure 49). 

This is attributed to the fact that we used the same information of seeds (tree peaks) and gaps in both 

approaches.  With the fixation of tree peaks (seeds), the segmentation strategy for any algorithm is the 

allocation of space to each seed. Region growing works on the principle that it grows more towards the 

direction of homogeneity of pixel and stops at minima (Ke & Quackenbush, 2008). Whereas, Thiessen 

polygon works on the principle of allocating space to each node (tree peaks) such that any point in the 

polygon is closest to its node than to any other node. In case of open canopies, the accuracy of delineation 

comes from the well delineated inter canopy gaps. This is due to the fact that in both approaches for open 

canopies, the adjacent gap boundary becomes the common boundary as a result of segmentation. But in 

case of close canopies where inter canopy gaps cannot help the delineation process, Region growing 

Figure 48. (a) Region growing segmentation  (b) Thiessen segmentation 
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approach was observed to perform better. Better performance of Region growing may be explained in 

term of information it is using for delineation. Thiessen polygons approach only uses the information of 

tree seed (tree location) which puts a restriction of growth of a node  due to presence of surrounding 

nodes. However, Region growing approach, besides making use of tree location information (seed), uses 

tree structural information of canopy slopes and canopy intersection (minima). In case of homogenous 

forest stand, the Thiessen polygons perform well but in mixed forest where a  large tree stands near a 

small tree. The Thiessen Polygons approach does over segmentation of small tree and under segmentation 

of  large tree (Figure 48). However, Region growing approach has proven to be effective for the more 

complex forest structure of naturally regenerating forests (F. Gougeon, 1995). 

 

Thiessen polygons and Region growing approaches have showed similar results in 1:1 correspondence. It 

is attributed to the fact in both approaches the segmentation grew from the same set of seed information 

(tree peaks). 

For the assessment of segmentation accuracies, crowns are manually delineated. In case of intermingled 

trees, the manual delineation is difficult and subjected to human error. 

 

5.2.1. Visualising segmented trees in point cloud 

Validation of segmentation suffers from human bias due to manual delineation of reference segments. In 

case of intermingled trees it is difficult to delineate crown. Extraction of point cloud of segmented trees 

gives a visual result of the accuracy. Error of omission is clearly visible in a high density point cloud data. 

It has also helped in cross checking the accuracy of manually delineated crowns. Future research is 

required to develop it into an independent segmentation validation method.   

 

5.3. Species classification 

Conventionally, tree species information is extracted from hyper spectral images or high resolution colour 

infrared aerial photographs (Brandtberg et al., 2003; Hyyppä et al., 2008). LiDAR data has also been used 

Figure 49. (a) Thiessen segmentation    (b) Region growing segmentation 
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to classify tree species. Holmgren and Persson (2004)  tested species classification of Scots pine in Norway 

with classification accuracy of 96 %. Moffiet et al (2005) suggested that LiDAR singular returns is an 

important criterion for tree species classification. Brandtberg et al (2003) used LiDAR data under leaf off  

conditions (data taken in leaf fall season for broadleaved) for species classification. Persson et al (2002) 

used fusion of high resolution multi-spectral image with high density LiDAR data for species 

classification. Liang et al (2007) used a simple technique, the difference of first and last return under the 

leaf off condition to discriminate between deciduous and coniferous trees. 

 

Species classification based on individual tree parameters is a new topic of research. We obtained an 

overall accuracy of 97 % of species classification by identifying Pines and Larix in the study area, based on 

tree structural and spatial parameters. Larix decidua trees which were interspersed with other species and 

well distributed in the study area, were identified purely on structural information and had a classification 

accuracy of 77 %. The obtained overall accuracy of species classification (97 %) will be misleading to 

quantify  LiDAR capacity to classify species with this accuracy on structural differences in mixed 

conditions. It is increased due to accurate classification of Pinus uncinata and Pinus sylvestris which were 

distributed strictly on elevation basis. However, accuracy of Larix decidua is indicative of LiDAR potential 

to identify species in mix conditions using structural information.  Korpela et al (2010) studied the effects 

of stand and tree parameters for tree species classification using LiDAR data. Holmgren and Persson 

(2004) used CBH as strong separating factor between pine and spruce. 

5.3.1. Limitation 

In complex mixed forest, LiDAR derived structural and spatial parameters cannot fully explain the 

differences in species. Similarly, in sub-species having similar structural formation, use of LiDAR data only 

cannot suffice for classification. LiDAR cannot replace the hyper-spectral optical images for species 

classification. Therefore, fusion of LiDAR with high resolution spectral images has been frequently used 

to exploit both spectral and structural information for species classification. There have been attempts to 

use intensity data of LiDAR for species classification (Kim et al.).  Korpela et al (2010) indicated that use 

of intensity of first-or-only echoes is optimal for use in species classification. Intensity of LiDAR return 

depends on various factors such as target emitter distance, beam divergence (there is a loss of intensity  

with the diverging beam), the laser footprint size, angle of  incidence, atmospheric attenuation and signal 

processing. Moreover, canopy may contain different scatterers e.g. bark, needles, cones, flowers, twigs, all 

of which vary in reflectance. It makes difficult to use intensity with explanatory power in species 

classification. 
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5.4. Extracted parameters 

5.4.1. Height 

The height was estimated in four ways as described in the Section (3.13.1). The result of accuracies of 

LiDAR derived heights is given in Section (4.4). The best R2 (0.86) for LiDAR derived heights was 

achieved for CHM height. There was no significant change in R2 (0.85) when it was measured in smooth 

CHM. However, some research show better correlation of smooth CHM height with field measured 

height (Hyyppä et al., 2008). We wanted to investigate whether taking maximum pixel value in a tree 

crown segment is appropriate for a measure of tree height. It was observed that in Region growing as well 

as in Thiessen polygon segmentation, some crown segments overlap with a neighbouring crown. In such 

cases, the selection of maximum pixel value as a  tree height can be inaccurate due to influence of 

neighbouring crown pixels. It was found that height accuracy for eCognition CHM height (R2=0.81)  and 

eCognition smooth CHM height (R2=0.81)  was less than the accuracy of the CHM height. Therefore, 

CHM height and smooth CHM height proved to be a somewhat better estimator for field measured 

height. 

 

The obtained accuracy of height does not commensurate with the quality of LiDAR data we had. The past 

research shows better results with lesser sampling density than the data used in this research. The purpose 

of the research was not to assess the height estimation capacity of LiDAR. Several research have already 

been done to prove this point. Heurich et al (2004) estimated accuracy at 0.96 for coniferous and 0.98 for 

deciduous trees. However, to assess the accuracy of LiDAR derived height, we need comparable 

technology to measure trees in the field.  The Laser range finder used for height measurement has a 

standard error of 0.5 m. Furthermore, it requires a minimum distance from the object for accurate 

measurement.  It also requires unobstructed line of sight to tree base and tree top. We observed a 

variation up to 3 m in reading for the same tree when measured by different people. It was difficult to 

measure height with the laser rangefinder due to high density of forest with steep slopes, for this reason 

the accuracy of laser range finder was adversely affected. Therefore, a certain degree of error for difficult 

trees cannot be negated in measured heights. Andersen et al (2006) did a rigorous assessment of tree 

height measurement obtained from LiDAR and conventional field methods. He acquired an accuracy of 

(<2 cm error) in measurement of  tree heights using total station survey. It was shown that keeping into 

account the DTM error and missing tree top error, the overall height error was -.073(DTM)±0.43 m 

(missing tree top). 
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Causes of error in height 

Error in LiDAR derived height is combination of error due to tree top detection and error in the DTM at 

the base of the tree. Andersen et al (2006) showed that for point cloud density of 6 points/m2 the error 

contribution of DTM was 10 to 20 cm for relatively flat surface but in case of steep slopes DTM error 

contribution would be more. Yu et al. (2004b) and Hyyppä et al (2009) showed that flight altitude, point 

density and footprint size, all have effect on canopy height. With increase in flight height the accuracy 

decreases. Point density had the more influence on estimation of tree height than the footprint size. Our 

LiDAR dataset is quite dense therefore error of top detecting as well as error in DTM generation should 

be relatively low. 

 

5.4.2. CPA 

For eCognition derived CPA (4.6) the accuracy is 0.87 (R2), while for Thiessen polygon derived CPA the 

accuracy is  0.9 (R2). It shows that Thiessen polygon based segmentation is a good estimator for CPA 

assessment. The Thiessen polygon approach is relatively simpler and quicker to achieve. However, the 

accuracy in this approach is dependent on accurate detection of tree peaks and inter canopy gaps 

information from the LiDAR data. 

 

5.4.3. Canopy Volume 

Canopy volume was assessed in this study to see its usefulness as explanatory variable for estimation of 

forest biomass/carbon in a regression model. Canopy volume was found equally important explanatory 

variable in comparison to CPA. The set of explanatory variables (CPA, height) and (Canopy volume, 

height) had the same R2 = .75. The measurement of Canopy volume in the field is complex, therefore its 

validation from field observed data is not assessed. 

5.4.4. Canopy base height 

CBH showed good correlation with average CPA height of smooth CHM, R2 = 0.77 It indicates a 

possibility of regression model of CBH using LiDAR derived average CPA height which is relatively easy 

to measure.. 

5.4.5. Canopy tilt 

Measuring tilt of a tree from LiDAR point cloud is a new topic of research. Bucksch et al  (2009) 

developed an algorithm, SkelTre to measure individual tree dimensions as well as tree tilt and orientation 

from individual tree point cloud data. Measuring tree tilt at forest level using LiDAR data has not been 

tried. Folkesson et al (2006) developed an automatic detection method of wind thrown trees in forest 

using VHF SAR images. We developed a method to extract canopy tilt at forest level using LiDAR data. 
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We did not have data of canopy tilt from the field but we had the data of tree tilt at 2 m from the base. It 

was shown that variation in  tree tilt at 2 m could be explained by LiDAR derived canopy tilt with an 

accuracy of 0.57 (R2). The validation of our result from field measured canopy tilt is subject to future 

research. However, identified tilted trees were extracted from the point cloud using eCognition based 

segmentation shape file. The result is shown in Figure 36. 

 

Limitation 

i. The canopy tilt algorithm requires a precise delineation of tree crowns. 

ii. It is based on the assumption that trees are symmetrical objects with centroids of the crown 

segments coinciding with the tree trunks. 

iii. Canopy tilt was measured from the smooth CHM peak and the centroid of CPA segment. 

Therefore, malformed trees with broken tops or broken branches will show a shift of tree peaks 

from the centroid. Consequently, such trees will show a false tilt. However, a new insight is 

obtained for identification of malformed trees to assess forest disturbance . This may be studied 

in future research. 

5.5. Forest inventory 

We endeavoured to generate a detailed geospatial forest inventory by extracting structural tree parameters 

and spatial terrain information from LiDAR data. Forest inventory information has been crucial with 

respect to forest management. In addition, for sustainable forest management, the information is needed, 

not only for planning future forest management, but also for recording the previous status of the forested 

area (Koch et al., 2006). Moreover, single-tree-level forest information has been essential for various forest 

applications, such as monitoring forest regeneration, forest inventory, and evaluating forest damage (Chen 

et al., 2006). Therefore, detailed forest information, such as tree counts, tree heights, crown base heights, 

canopy volume, canopy tilt and forest biomass, are critical for the effective management and quantitative 

analysis of forests. We tested some applications of forest inventory with a view to show its importance as 

a decision support tool for forest managers. 

5.5.1. Open canopies 

Status of open canopies in the forest is important as an indicator of forest disturbance as well to know the 

potential area for regeneration. We identified trees having local canopy gaps percentage more than 50 %. 

Result (4.8.1) show that in the landslide zone the percentage of open canopies was 10.4 % while that in 

non-landslide zone was 7.7%. A greater canopy opening in the landslide zone may be an indication of 

forest disturbance in the zone but it needs further validation from the field data. 
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5.5.2. Close canopies 

Close canopies with no inter canopy gaps in the study area were identified. Results are shown in (0). It is 

found that about 38% trees in the study area have close canopies. It is an indication of closely packed 

forest. This information is important for forest managers for carrying out silvicultural operation like 

thinning or selective felling. The result show no difference in percentage of open canopies in landslide 

zone and non-landslide zone. 

5.6. Descriptive statistics of extracted parameters 

Descriptive statistics of some of the important parameters is given in the Section 4.9. Results provide a 

broad understanding of the forest area. The mean height of the trees in the study area is 9.82 m while 

average CPA is 6.73 m2, average crown diameter is 2.74 and  average canopy volume is 46.82 m3. Here 

trees with height less than 2 m have not been considered. The study area is mainly a coniferous forests and 

not subjected to any felling for last the 100 years. Results show that the forest has poor growth as tall trees 

are of small size. Average CBH is 2.76 m, it indicates that most of the leaves biomass is above this height. 

The average ratio of CBH with height is 0.28, it means on the average CBH starts at about one third of 

the height of a tree. Average tree tilt is 84  degree, indicating trees area mostly straight. Average local tree 

density is 1451 trees per ha and average local canopy gaps percentage is 17. 4 % which indicates high 

density of forests. Average point density of LiDAR on tree canopies is 122 points/m2 , while the average 

is 164 points/m2.  It shows LiDAR backscattering is reduced due to vegetation. The average canopy 

diameter to height ratio is 0.32 implying conical canopy shape (Table 5), indicating coniferous forests. 

5.7. Carbon Modelling 

Carbon modelling done for pair of explanatory variable (CPA, height) and (Canopy volume, height) gave 

almost similar results of R2 equal to 0.757 and 0.751 with RMSE of 24.59 kg and 24.88 kg respectively. In 

previous research, Lefsky et al (2002) obtained R2  of 92 % for above ground biomass. Heurich et al. 

(2004) was able to estimate timber volume in coniferous forests with an accuracy of 0.87-0.95. However, 

getting a poor regression is not uncommon. Popescu et al. (2003) got the maximum R2 of 0.33 for 

deciduous forests. Biomass is well explained by dbh and height. But direct measurement of dbh with 

LiDAR data at forest level is still not possible. Therefore accuracy of biomass estimation largely depends 

on how good the explanatory variables explain the biomass. 

 

We did not have measured biomass but calculated allometric equation of uncertain accuracy. We had the 

impression that we will get the local biomass equations for Pinus uncinata and Pinus sylvestris from the forest 

department France. Unfortunately allometric equations were not available. We have used allometric 

equation for Pinus nigra from Netherlands. Tree biomass is species and area dependent. There is a 

difference of climate, soil and specie for the equation used. Moreover, the forest is anomalous with 
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abandoned unthinned plantations. This is the reason that we did not get good accuracy despite the fact 

that explanatory variables had significant accuracy. 

 

Popescu et al. (2003) showed that   crown diameter alone could explain 83 % of the variation associated 

with biomass in coniferous forests in the south-eastern US. However, for our study area the crown 

diameter alone explains 36 % of the variation in biomass. We found a dbh anomaly with height as well as 

with CPA, where same dbh shows variation in height as well as in CPA. To improve the model we tried to 

include additional explanatory variables such as local tree density, local gap percentage, aspect, elevation, 

canopy volume, canopy density. Using backward elimination method in SPSS statistical software.  The 

best model we could get was with explanatory variables height, CPA and local tree density. The model was 

based on the interaction of height with local tree density and CPA. The R2 was 0.79 with RMSE of 23 kg 

for carbon. The model was improved in terms of R2 as well as RMSE, although the improvement was not 

very significant. The improvement may be explained in terms of tree behaviour in high tree density. Due 

to high tree density conditions, trees tend to grow vertically because of unavailability of lateral space. It 

results into higher height and lower CPA . 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusion 
How accurately the tree peaks can be detected in Canopy Height Model of high density airborne 
LiDAR data?  
Tree peaks could be detected with an accuracy of 96 %. The new adaptive approach for tree detection tested in 

this research has performed well. High density LiDAR point cloud with an average point density of 122 

points/m2 for trees has also contributed in improving the peak detection accuracy.  

 

What is the difference in segmentation methods by Object based image analysis and Thiessen 
polygons using airborne LiDAR data with prior knowledge of tree peaks and inter canopy gaps.?  
The performances of two crown delineation approaches were compared. The result indicated that both 

approaches provided useful results in delineating tree crowns in mixed dense coniferous  forest. The Region 

growing approach resulted in delineation accuracy of 84% with 93.5 % 1:1 correspondence while, Thiessen 

polygons approach resulted in tree crowns delineation accuracy of  79% with 94.2% 1:1 correspondence. 

Thiessen approach in comparison to Region growing is much simpler.  Thiessen segmentation showed 

marginally better R2 with manually delineated segments and proved to be a significant estimator for CPA. 

How accurately the tree structural parameters such as tree  height,  CPA, canopy base height, tree tilt 
can be estimated from LiDAR point cloud data? 
Tree height and  canopy base height could be achieved  with significant accuracy, (for CHM height, R2=0.86),  

(Canopy base height, R2  = 0.73), however, tree tilt could not be fully validated for want of relevant field data. 

Canopy tilt was compared with tree tilt at 2 m from the base. The extracted canopy tilt could explain the 

variation in tree tilt (at 2 m) with an accuracy of , R2 = 0.56  

What is the accuracy of Biomass/carbon obtained from (CPA + Height) and (Canopy Volume + 
Height) as pair of explanatory variables in regression analysis? 
For explanatory variables CPA and Height of biomass/carbon, the coefficient of determination R2 was 0.757 

and Root Mean Square Error, RMSE was 24.586 kg, while for explanatory variables Canopy Volume and 

Height, the R2 was 0.751 with RMSE of 24.878 kg 

What is the accuracy of Biomass/carbon obtained from CPA, height with additional variables such as 
local tree density and local canopy gaps? 
The best model we could achieve with inclusion of additional explanatory variables for determination of  

biomass/carbon, was achieved in interaction model approach. The model had three explanatory variables 

namely Height, (Tree Density)*Height, CPA*Height. The R2 for this model was 0.787 with RMSE of 23.078 kg. 

 
What is the accuracy of species classification in the study area? 
The overall accuracy of species classification at the tree crown level was 97%. For Larix decidua it was 77% while 

for Pinus uncinata and Pinus sylvestris it was 98% and 100% respectively. 

What is the relationship between CPA, height and biomass/Carbon?  
Biomass (kg) = a + b.CPA + c.Height 

Carbon (kg) = 0.5.(a + b.CPA + c.Height) 
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Where, a = -81.2618971572, b = 4.8187372085, c = 12.1247619660 

 

What is the relationship between canopy volume, height and biomass/Carbon?  
Biomass (kg) = a + b.CanopyVolume + c.Height 

Carbon (kg) = 0.5.(a + b.CanopyVolume + c.Height) 

Where, a = -36.4376358959, b = 0.9292307493, c = 8.1576262710 

What is the amount of biomass/carbon stock for pines in the study area?  
Biomass = 7622 tons,  Carbon = 3811 tons 

6.2. Recommendation 
 

LiDAR is full of possibilities to fulfil the needs of precision forestry. High density LiDAR is capable of 

recording enough structural information for enabling accurate inventory parameter extraction. Future 

research is required to extract tree tilt and orientation to address the issues of forest disturbance. The 

effectiveness of crown delineation was tried in dense unthinned plantations mixed with natural 

regeneration, this approach is recommended to be used in other natural mixed forests and plantation 

forests.  
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 APPENDICES 

 
Appendix 1. Barcellonnette catchment,  (B). Location of field plots for tree sampling in Bois noir forests, 
Barcelonnette, France. I to VI: Field photographs (source: (Azahari Razak et al., 2010)) 

 

 

 
 
 
 
 
 
 
  

Sample plots in Bois noir Forests, Barcelonnette France 
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 Appendix 2. Ruleset for Region Growing in eCognition 


