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ABSTRACT 

Estimating forest carbon stock is of paramount importance to assess the mitigation effects of forests on 
global warming and climate change. The drive for robust, accurate and cost-effective methods for carbon 
stock estimation over large areas is ever great with the launch of carbon crediting mechanisms in the 
developing countries such as UN-REDD. Traditional ground based measurement requires abundant 
manpower, resources, cost and time. Remote sensing based technologies aptly answer the need of time in 
enhancing the successful implementation of such programs. The integration of VHR satellite imagery and 
the LiDAR (Light Detection and Ranging) provide opportunities to estimate carbon with improved 
accuracy. However, high costs and low spatial extent of such data prohibit carbon estimation at a larger 
scale. The objectives of this study were to model and estimate forest carbon by integration of VHR 
satellite imagery and LiDAR, and upscale the carbon stock to a larger area using relatively coarser satellite 
imagery.  
 
The study used the 0.5m spatial resolution VHR GeoEye image and airborne LiDAR data for individual 
tree crown segmentation. CHM developed from LiDAR data explained about 75 % of the variance in field 
measured height. Individual tree crown segmentation through the region growing approach resulted in an 
accuracy of 74% using the 1:1 correspondence method and 70% using the D goodness measure approach. 
Using allometric equation, the aboveground carbon was calculated based on the field measured DBH and 
tree height. Log transformed multiplicative regression models were developed to establish relationships 
between the field based carbon and the CPA and tree height derived from the segmented objects. The 
significance of the models were tested using F-test and were found to be statistically significant at 95 % 
confidence level. The developed models for Shorea robusta and Other tree species explained about 86 % 
and 78 % of the variances in carbon stock respectively.  
 
The carbon stock derived from the combined VHR imagery and airborne LiDAR data were up-scaled to a 
relatively coarser 5m spatial resolution RapidEye imagery. Up-scaling was carried out by aggregating the 
carbon in each 5m pixel of the RapidEye image. Regression models were developed to establish the 
relationship between carbon and the spectral reflectance of RapidEye variables (NDVI, Red Edge NDVI, 
PC1 and the single bands of red edge and NIR). Weak relationships were observed between the carbon 
and the spectral reflectance of the RapidEye image. All the models resulted in low R2 (NDVI=0.10, 
RedEdge NDVI= 0.12, PC1=0.18, red edge band = 0.14 and NIR=0.11). 
 
In general, the methodology developed in this study established the usefulness of integrating the VHR 
satellite imagery and airborne LiDAR data for modelling and estimating carbon stock. Similarly, the 
methodology for up-scaling developed in this study can be used to up-scale the carbon stock from small 
areas to larger areas. However, further research is needed to explore the possibility of using cross- 
polarized L-band (i.e. ALOS Pal-SAR) and medium resolution satellite imageries with middle infrared 
bands for up-scaling the carbon stock to a landscape level. 
 
 
Key words: Aboveground carbon stock, Region growing, LiDAR, Crown projection area, Canopy height 
model, Up-scaling, Spectral reflectance 
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1. INTRODUCTION 

1.1. Background 
Carbon dioxide (CO2) together with other greenhouse gases (GHGs) plays an important role in the 
Earth’s climate. GHGs act as insulator or blanket to keep the earth warm by absorbing long-wave infrared 
radiations, so that is favourable to life. However, climate change caused by increase in CO2 concentration 
and other GHGs in the atmosphere is a worldwide concern. CO2 in the atmosphere is increasing by 1.4 
ppm per year and this increase will contribute to the increase in temperature by 1.8°C to 4°C by the end of 
the century (IPCC, 2007). The United Nations Framework Convention on Climate Change (UNFCCC) 
requires all Parties to the Convention commit themselves to develop, periodically update, publish, and 
make available to the Conference of Parties (COP) their national inventories of emissions by sources and 
removals by sinks of all GHGs using comparable methods (UNFCCC, 2009). Thus, carbon sequestration 
is a key topic in all climate change discussions. 
 
Forests play a crucial role in climate change adaptation and mitigation because forests are one of the 
largest carbon pools on earth. As both carbon sources and sinks, forests have the potential to form an 
important component in efforts to combat global climate change. According to the Food and Agriculture 
Organization of the UN (FAO, 2010), the world’s total forest area is presently estimated at 4 billion 
hectares corresponding to 31 percent of the total land area. The world’s forests store more than 650 
billion tons of carbon, 44 percent in the biomass, 11 percent in dead wood and litter, and 45 percent in the 
soil (FAO, 2010).  
 
The Intergovernmental Panel on Climate Change (IPCC) has identified deforestation and forest 
degradation in developing countries as a major cause of GHG emissions (IPCC, 2007). Deforestation and 
forest degradation accounts for nearly 20 percent of global GHG emission, more than the entire global 
transport sector and second only to energy sector (UNEP, 2010). The rate of deforestation and loss of 
forest is alarmingly high at an estimated loss of 13 million hectares per year during the last decade. Most of 
the forest loss continues to take place in the countries and areas in the tropical regions (FAO, 2010).  
 
In 2008, the United Nations Framework Convention on Climate Change (UNFCCC) launched an 
initiative known as “Reducing Emission from Deforestation and Forest Degradation” (REDD), whereby 
developing countries would be offered incentives to reduce emission from deforestation and increase 
carbon sequestration (UN-REDD, 2008). By stimulating sustainable forest management practices in the 
existing forests as well as increasing the forest areas, it is envisaged that REDD can increase the forest 
carbon stock and contribute significantly towards mitigation of global climate change.  
 
Nepal is signatory to UNFCCC and also a member country of the UN-REDD programme. Nepal’s forest 
area estimated at about 5.8 million hectares covering 40% of the country’s land (Dhital, 2009). The success 
of community forestry as a major forest management practice in Nepal offers significant potential to 
conserve forest and at the same time, reap benefits from international carbon crediting mechanisms such 
as UN-REDD or Clean Development Mechanism (CDM) of the Kyoto Protocol (Dhakal & Raut, 2010). 
However, the UN-REDD member countries are required to develop cost effective, robust and compatible 
methods for estimation of carbon stock in the country as a readiness requirement for the implementation 
of REDD (UN-REDD, 2010). 



UPSCALING THE ESTIMATED FOREST CARBON STOCK FROM VHR SATELLITE IMAGE AND AIRBORNE LIDAR TO RAPIDEYE SATELLITE IMAGE 
 

2 

1.2. Application of tools and techniques for biomass and carbon estimation  
The principal element in the estimation of carbon stock in a forest is the measurement of forest biomass 
which includes both aboveground and belowground living mass, dead wood and litter. The most accurate 
way to quantify the aboveground biomass (AGB) in the forest is to cut down all trees per unit area, dry 
them and weigh the biomass (Gibbs et al., 2007). Although, the field based method of harvesting and 
weighing is very accurate, it is time consuming, labour intensive and destructive method (Brown, 2002; 
Gibbs, et al., 2007; Lu, 2006). Using allometric equations and modelling, the field measurements of 
diameter at breast height (DBH) independently or in combination with tree height can be converted to 
AGB and carbon stock estimates (Gibbs, et al., 2007). However, this method is also laborious and is not 
practical for application in large and inaccessible forest areas. 
 
Remote sensing technologies offer alternatives to the conventional forestry inventory methods and it can 
be an essential tool in the estimation of AGB and carbon stock. Remote sensing techniques in 
combination with ground based measurements have been widely used to estimate forest biomass in a cost 
effective and faster method than traditional inventory methods with an acceptable degree of accuracy 
(Gibbs, et al., 2007). Several studies have been carried out to estimate forest biomass by the using different 
methods and different sensors (Asner, 2009; Johansen et al., 2007; Leckie et al., 2003; Muukkonen & 
Heiskanen, 2007; Zheng et al., 2004). The use of coarse resolution optical RS imageries such as NOAA-
AVHRR, MODIS, etc, for biomass estimation is limited due to occurrence of mixed pixels and 
inconsistent accuracy at regional or local scale (Lu, 2006; Patenaude et al., 2005). However, coarse 
resolution imageries still remains useful and produce consistent results at global scale (Gibbs, et al., 2007). 
Despite the usefulness of moderate resolution optical RS imageries (10-30 m spatial resolution) such as 
Landsat, ASTER, etc, for many applications, including AGB estimation at local and regional scale (Lu, 
2006), it is confronted with the problem of mixed pixels (Muukkonen & Heiskanen, 2007) and data 
saturation in complex biophysical environments (Lu, 2006). However, the launch of Very High Resolution 
(VHR) satellites such as IKONOS, QuickBird, GeoEye and Worldview in recent years, provide new 
opportunities to estimate forest biomass and carbon stock with improved accuracy. The VHR satellite 
imageries have been used in many studies to extract bio-physical parameters of vegetation such as the use 
of QuickBird (Gonzalez et al., 2010; Leboeuf et al., 2007), IKONOS (Song et al., 2010), GeoEye 
(Tsendbazar, 2011) and Worldview (Baral, 2011). 
 
Frequent cloud cover, haze and smoke conditions in the atmosphere control the acquisition of high 
quality remotely sensed data by optical sensors particularly in tropical landscape. These limitations can be 
overcome by using Radar (Radio Detection and Ranging) technology that observes under all weather 
conditions and also during day and night (Gibbs, et al., 2007; Rosenqvist et al., 2003). Radar uses 
microwave energy and captures the backscatter from the object. Radar wavelengths penetrate the 
vegetation and provide direct sensitivity to the vegetation structure and biomass (Patenaude, et al., 2005). 
Nevertheless, the use of Radar for quantifying forest carbon stock is limited to relatively homogeneous or 
young forest because the radar backscatter tends to saturate at certain biomass levels (Le Toan et al., 2004; 
Lu, 2006; Patenaude, et al., 2005).  Also, the use of Radar for biomass estimation is not efficient in hilly or 
mountainous areas due to increased error (Gibbs, et al., 2007; Le Toan, et al., 2004).  
 
The application of optical remote sensing for forest biomass estimation is also limited to produce only 2-
dimensional images and it cannot represent the 3-dimensional spatial features of forests (Gibbs, et al., 
2007; Omasa et al., 2003). Airborne Light Detection and Ranging (LiDAR) has established as a standard 
technology for high spatial three dimensional topographic data acquisition in recent years. In contrast to 
the optical remote sensing, LiDAR is able to penetrate the vegetation canopy through the gaps between 
leaves and branches till the ground surface (Jochem et al., 2011). Also, LiDAR has certain characteristics, 
such as high sampling intensity, direct measurement of heights, precise geo-location and automated 
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processing for deriving forest biomass (Popescu, 2007). Thus, the LiDAR data can represent full 3-
dimensional structure of the forest canopy and has been adopted by many studies for AGB quantification 
(Lefsky et al., 1999; Patenaude et al., 2004; Popescu, 2007; Popescu et al., 2004). Moreover, LiDAR offers 
substantial improvement over other sensors in the accuracy of its prediction of forest attributes 
(Gonzalez, et al., 2010; Lefsky et al., 2001; Sexton et al., 2009). Evaluating several sensors for prediction of 
forest structural attributes of Douglas-fir forest in United States, Lefsky et al (2001) reported that LiDAR 
performed better than other sensors such as single date Landsat TM and multi-temporal Landsat TM and 
Airborne Data Acquisition and Registration (ADAR), a high spatial resolution sensor. 

1.3. Research conceptual framework 
Accurate estimation of carbon stock in forests is important because forests are one of the largest carbon 
sinks on earth. The estimation of above ground biomass (AGB) is essential to estimate the total carbon 
pools in the forest (Brown, 2002; Gasparri et al., 2010). AGB is defined as the total amount of 
aboveground oven dry mass of a tree, which is expressed in tons per unit area (Brown, 2002). AGB can be 
directly converted to the total carbon content that is stored in a forest by a conversion co-efficient, which 
is usually about 0.47 of the AGB (Dong et al., 2003; Gibbs, et al., 2007). Remote sensing has been a 
valuable source of information for mapping and monitoring forest resources for the past few decades and 
has the potential to acquire forest biomass estimation with greater coverage at lower cost (Ke & 
Quackenbush, 2011a; Lu, 2006). 
 
Accurate measurements of forest carbon is difficult to obtain without the precise measurements of 
biomass (Singh et al., 2011). The use of allometric regression model is a crucial step in estimating biomass 
(Brown et al., 1989) and allometry generally relates measurable independent variables like diameter at 
breast height (DBH) and height to biomass (Basuki et al., 2009; Singh, et al., 2011). The field 
measurements of forest biophysical parameters such as DBH and height facilitates forest biomass 
estimation with improved accuracy (Brown, 2002). DBH is an important predictive variable among the 
biophysical parameters of tree (Leboeuf, et al., 2007) which explains more than 95% variation in biomass 
(Gibbs, et al., 2007). The CPA is strongly related to other parameters such as DBH, tree height and 
biomass (Hemery et al., 2005; Shimano, 1997; Song, et al., 2010). The relationship between CPA, height 
and DBH can be extended to model and estimate aboveground biomass and carbon.  
 
The increasing availability of VHR satellite images and LiDAR data provide opportunities to interpret 
forests at an individual tree level. The VHR satellite images can be used to recognize, identify and 
delineate individual tree crown (Gougeon & Leckie, 2006). However, VHR satellite imageries favours a 
shift in the image analysis paradigm from pixel based approach towards object based approach (Blaschke 
et al., 2006). This is because the spectral response of individual pixels in VHR imageries no longer 
represents the characteristics of a target of interest (e.g., forest stand, tree canopy) (Ke et al., 2010). Object 
Based Image Analysis (OBIA) allows extraction of meaningful objects during image segmentation and 
offers various advantage of using spectral characteristics, texture, size, shape, compactness, context 
information with adjacent image objects, etc, during classification (Liu et al., 2006). OBIA and image 
segmentation techniques have been used in many studies (Chubey et al., 2006; Conchedda et al., 2008; 
Johansen, et al., 2007). For instance, Johansen, et al.,(2007) applying OBIA technique to map vegetation 
structural classes using QuickBird image obtained an overall accuracy of 79% and Conchedda, et al., 
(2008) obtained an overall land cover classification accuracy of  86% using SPOT XS data. 
 
A wide variety of individual tree crown detection and delineation algorithms based on high spatial 
resolution optical imagery have been developed. Individual tree detection and delineation algorithms are 
not only limited to optical imagery but can be extended to the combined high spatial resolution imagery 
and LiDAR (Ke & Quackenbush, 2011a; Kim et al., 2010). Some commonly used tree detection and 
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delineation algorithms include 1) valley following (Gougeon & Leckie, 2006), 2) region growing (Culvenor, 
2002), 3) watershed segmentation (Wang et al., 2004) and 4) marker controlled watershed segmentation 
(Chen et al., 2006). Comparing the first three automatic tree detection and delineation methods, Ke & 
Quackenbush (2011a) found out that region growing algorithm produced higher accuracy than either 
valley following or watershed segmentation algorithms. Similarly, Tsendbazar (2011) also reported that 
region growing method resulted in higher accuracy than the valley following algorithm. Region growing 
approach assumes that the centre of the tree crown is brighter than the edge of the tree crown (Culvenor, 
2002). Detecting the brightest pixel of the crown gives a possibility to locate the tree crown centre, and 
growing a region from the crown centre based on illumination image helps to delineate individual tree 
crowns (Ke & Quackenbush, 2011a). 
 
With the increasing availability of VHR satellite images and commercial Airborne Laser Scanners over the 
last few years, an integration of optical imagery and airborne LiDAR is envisaged to estimate forest AGB 
and carbon with an improved accuracy. Several studies have combined LiDAR and multispectral optical 
images for estimation of forest biophysical attributes and obtained more accurate estimates than using 
either LiDAR or optical images independently (Holmgren et al., 2008; Ke, et al., 2010; Leckie, et al., 2003; 
Popescu, et al., 2004).  For instance, Holmgren et al., (2008) reported an increase in overall classification 
accuracy of individual trees by 8% when VHR imagery was fused with LiDAR. Similarly, Ke, et al., (2010) 
found that the integration of QuickBird imagery and LiDAR improved the forest classification accuracy 
(kappa=91.6%). LiDAR provides rich information on the vertical structure of forests such as tree height, 
canopy height, canopy closure and density (Hollaus et al., 2007; Lefsky, et al., 2001), but does not provide 
information to distinguish between tree species and health attributes (Popescu, et al., 2004). Similarly, the 
VHR imagery offers opportunity to isolate individual trees and also differentiate the species but does not 
provide direct three-dimensional information such as tree height and crown height (Kim, et al., 2010). 
Therefore, a great potential exists for combination of VHR optical imagery and LiDAR for the extraction 
of forest structural parameters for AGB and carbon estimation with higher accuracy than either optical 
imagery or LiDAR independently. Moreover, the need for data integration between optical images and 
LiDAR has been recommended by several previous studies (Baltsavias, 1999; Leckie, et al., 2003; 
Tsendbazar, 2011; Wulder et al., 2007). 
 
The VHR satellite images and LiDAR provides accurate AGB and carbon estimates than the medium or 
coarse resolution images (Gibbs, et al., 2007; Lu, 2006). However, drawbacks such as the need for large 
data storage, longer time for image processing and data analysis and high cost limits its application at a 
regional or national scale (Lu, 2006). Moreover, information on global carbon budget and fluxes are 
required at various spatial and temporal scales (Gibbs, et al., 2007). Alternatively, inexpensive 
microsatellites such as RapidEye (swath width 77 km) with daily revisit time has the potential to develop 
continuous global maps in a cost effective way (Kramer & Cracknell, 2008). In this context, RapidEye (5 
meters spatial resolution) represents a relatively coarser resolution image than VHR GeoEye image but 
such images may offer best option in developing countries. It is because the cost for image purchase may 
influence the application of VHR images for forest monitoring purposes in large areas. Therefore, there is 
a need to develop a methodology to upscale the carbon derived from the integration of VHR image and 
LiDAR data over small areas to a regional level by using relatively coarser satellite images.  
  
Many studies have demonstrated that vegetation indices such as normalized difference vegetation index 
(NDVI), perpendicular vegetation index (PVI), simple ratios (SR) and spectral vegetation index (SVI) 
obtained from satellite data as well as the individual bands of an image are useful predictors of biomass in 
forests through regression modeling (Lu et al., 2004; Roy & Ravan, 1996; Zheng, et al., 2004). In order to 
up-scale the AGB or carbon estimates to a regional level, vegetation indices and linearly transformed 
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images derived from satellite images and the individual bands can be linked to the AGB or carbon 
estimates (Lu, et al., 2004; Zheng, et al., 2004).   

1.4. Problem Statement 
Significant developments have been made in the estimation of forest AGB and carbon based on field 
measurement and remote sensing based approaches over the years. Although, the integration of VHR 
satellite imagery and LiDAR data for estimation of AGB and carbon is promising, the VHR satellite 
images and LiDAR data are very expensive compared to medium and coarse resolution satellite images. 
High cost and low spatial extent of the VHR satellite images (e.g. GeoEye) and LiDAR data are still a 
limitation for carbon estimation and mapping at regional scale. Also, the acquisition of data from such 
sensors cannot be performed routinely with high temporal frequency (Hudak et al., 2002). However, the 
accurate AGB and carbon estimates from VHR satellite imagery and LiDAR over smaller areas can be 
utilized as a reference data for estimating AGB and carbon for larger areas using a medium resolution 
satellite images (Asner, 2009; Gautam et al., 2010). Therefore, there is a need to develop techniques which 
are capable of combining the accurate carbon estimates derived from the combined VHR image and 
LiDAR data to relatively coarser resolution satellite images such as RapidEye. Successful development of 
such an approach can use the carbon estimates over limited areas and upscale it to coarser images for 
larger areas. 

1.5. Research objectives 
The overall objective of this study is to model and estimate aboveground carbon by integration of VHR 
GeoEye satellite image and airborne LiDAR data over a limited area and; up-scale and investigate the 
relationship between forest carbon stock and the spectral reflectance of RapidEye satellite image.  
 
The specific objectives: 

1. To assess the ability of combined VHR GeoEye satellite imagery and airborne LiDAR data for 
delineating individual tree crowns.  

2. To determine the relationship between CPA, height and aboveground carbon in the study area.  
3. To estimate and validate carbon stock using CPA and height from combined VHR satellite image 

and airborne LiDAR data in the study area. 
4. To upscale the carbon stock map and investigate its relationship with the spectral reflectance of 

RapidEye image. 
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1.6. Research Questions and Hypothesis 
Specific 

Objectives 
Research Questions Research Hypothesis 

1 How accurately can the tree crowns be 
segmented from the combined VHR GeoEye 
satellite image and LiDAR data? 

Individual tree crown can be segmented with 
a reasonable accuracy (≥75%) 

2 What is the relationship between CPA, height 
and carbon in the study area? 

There is a significant relationship between 
CPA, height and carbon. 

3 How accurately can the aboveground carbon 
stock be estimated using CPA and height from 
VHR satellite image and LiDAR data? 

Aboveground carbon can be estimated with a 
reasonable accuracy 

 
4 

a. How the estimated carbon from VHR 
satellite image and LiDAR data can be up-
scaled to the RapidEye image of 5m 
resolution? 

 

 b. What/how strong is the relationship 
between up-scaled carbon stock and the 
spectral reflectance of RapidEye image?  

There is a significant relationship between the 
up-scaled carbon stock and the spectral 
reflectance of RapidEye image. 

1.7. Thesis outline 
  
Chapter 1  
The general background of the research and the research conceptual framework for the application of 
VHR imagery and LiDAR data for modelling and estimation of aboveground carbon stock are discussed. 
Issues on the up-scaling are also discussed. Research problem and objectives follows thereafter.  
 
Chapter 2  
The description of study area in terms of its geographic location, climatic conditions and vegetation 
characteristics are covered. 
 
Chapter 3  
This chapter discusses the materials and methods used in this research to achieve the research objectives.  
 
Chapter 4 
Results of the carbon estimates including the tree crown delineation approaches and regression modelling 
are described. Results on up-scaling and the relationship between the carbon and the spectral reflectance 
of RapidEye satellite image are also described.  
 
Chapter 5  
Discussion of the results obtained in this study. It includes estimation of tree heights from the LiDAR 
data, image segmentation, classification of tree species, regression modelling, mapping of carbon, up-
scaling and the relationship between carbon stock and the spectral reflectance of RapidEye image.  
 
Chapter 6 
Conclusions with reference to the research objectives and questions are drawn in this chapter.  
Recommendations from this study are also included. 
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2. DESCRIPTION OF THE STUDY AREA 

2.1. Geographic location  
The study area is located in Ludhikhola watershed, which lies in Gorkha District of the Western 
Development Region of Nepal. The Ludhikhola watershed area is situated in the southern part of Gorkha 
district, located between 27°55'02"-27°59'43"N latitude and 84°33'23"- 84°40'41"E longitude (Figure 2.1). 
The total area of the watershed is 5750 hectares, out of which 4869 hectares is forest area, 632 hectares is 
agriculture land and the rest is barren, grassland and natural water bodies. There are 31 Community Forest 
User Groups (CFUGs) managing an area of 1888 hectares of forests as Community Forests (CF).  
 

 
Figure 2.1: Map of the Ludhikhola watershed with an inset of 5 Community Forests 

2.2. Topography and Demography 
Ludikhola watershed represents the hill physiographic region with elevation ranging from 318 m to 1714 
m above mean sea level. The Ludhikhola watershed falls in the mid-hill region of Nepal and lies in the 
middle mountain ecological zone. About 61% of the area consist of steep slope terrain (e.g. 30-60%) while 
the remaining 39% include flat lands and gentle slopes of less than 30%. This watershed is inhabited by 
socially ethnic and diverse communities of Magar, Gurung, Tamang, Dalit, Brahmin and Chhetri.  
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2.3. Climate 
The climate of the study area varies from sub tropical at lower altitudes to temperate at higher altitudes. 
The area has four main season namely autumn, monsoon, summer and winter with an average daily 
temperature of 14.5°C. The average temperature recorded in 2001-2006 was 23.10°C whereas between 
1978 -1982, the temperature recorded was 21.6 °C. The average annual rainfall ranges from 1,972 to 2000 
mm and the rainy season lasts from June to September (ICIMOD, 2010).  

2.4. Vegetation 
The area represents a typical sub-tropical forest that was exposed to high deforestation, and recently has 
been conserved through community forest management. The area is characterized by an altitudinal 
variation and has upper tropical to sub-tropical lower forests. The forest comprises of mixed forest with 
Shorea robusta (Sal) as the dominant tree species and is most commonly found in the southern aspects and 
lower altitudes of northern aspects. In the upper parts of northern aspects, the dominant species are 
Schima wallichii (Schima) and Castanopsis indica (Chestnut) followed by few other associated species like Rhus 
wallichii (Ceasar weed), Mangifera indica (Mango), Ficus racemosa (Fig), Terminalia bellirica (Belliric Myrobalan), 
Syzygium cumini (Black plum), Lyonia ovalifolia (Oval leaved Lyonia), Lagerstromia parviflora (Myrtle).  

2.5. Land Cover Classes  
There are five land cover types in the Ludhikhola watershed which is presented in Table 2.1. Two 
different types of forests are classified as Open Broadleaved Forest and Open Broadleaved Forest.  
 

Table 2.1: Land Cover types in Ludikhola watershed; Source (ICIMOD, 2010) 

Land Cover Class 
Area 

(Hectares) 
% of 
Area 

Close Broadleaved Forest 3837 67.34 
Open Broadleaved Forest 996 17.31 
Agriculture Areas/Built-up Areas     632 10.99 
Bare Soil 241 4.19 
Natural water bodies 9 0.17 

 

2.6. Criteria for study area selection 
Ludhikhola watershed is one of the pilot sites under the REDD project as it represents the middle part of 
Nepal and comprises of different forest types and species. Out of the 31 CFUGs in the watershed areas, 
only 5 CFUGs were selected for the following reasons. 

a. The selected CFUGs were comparatively accessible than other remaining CFUGs. 
b. The availability of satellite images from ICIMOD and FRA, Nepal facilitated the study. 
c. The altitudinal variations were also taken into account and the altitude in the selected CFUGs 

ranges from 470 -1050m  
d. The processing capability of eCognition software has a limitation for segmenting large areas.  
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3. DESCRIPTION OF METHOD AND DATA USED 

3.1. Dataset and Materials used 

3.1.1.  Satellite Imageries 
GeoEye1 data 
GeoEye1 satellite was launched on broad a United Launch Alliance (ULA) Delta III launch vehicle on 6th 
September 2008 in the United States. GeoEye1 has the highest resolution of any commercial optical 
imaging system and collect images with a ground resolution of 0.41-meters and 1.65-meters resolution in 
the panchromatic and multispectral modes respectively. While the satellite collects imagery at 0.41-meters, 
GeoEye's operating license from the U.S. Government requires re-sampling the imagery to 0.5-meter for 
all customers not explicitly granted a waiver by the U.S. Government. GeoEye1 has the distinction of 
offering exceptional geo-location accuracy, where the customers can map natural and man-made features 
to better than five meters of their actual location on the surface of the Earth without ground control 
points.  

GeoEye1 image acquired on 2nd November 2009 with the following specification listed in Table 3.1 was 
used in this study. The Ortho-rectification was carried out by ICIMOD, Kathmandu, Nepal. 

Table 3.1: GeoEye1 satellite image characteristics 

 

 

 

 

 

 

 
 

 

 
 
 
 
RapidEye Data 
RapidEye was launched by DNEPR-1 Rocket on 29th August 2008 in Kazakhstan. The RapidEye 
constellations consist of five satellites and have a unique ability to acquire high-resolution, large-area image 
data on a daily basis. RapidEye's satellites include the red-edge band, which is sensitive to changes in 
chlorophyll content. RapidEye satellite image acquired on 22th April 2011 with the following specification 
was used in this study. The characteristics of the RapidEye image is shown in Table 3 .2.  

Sensor Name Geo-Eye1 

Spatial resolution Panchromatic: 0.5m 
Multispectral: 2m 

Dynamic view 11 bits 

Spectral range 

Panchromatic: 450 - 800nm 
Blue:  450 - 510nm 
Green:  510 - 580nm 
Red:      655 - 690nm 
Near Infrared:  780 - 920nm 

Orbit height  684 kilometers 
Orbit type Sun-synchronous 
Swath width 15.2 km 
Projection UTM 45 N 
Datum WGS84 
Nominal collection azimuth 315.3 degree 
Nominal collection elevation 64.6 degree 
Sun angle azimuth 163.65 degree 
Sun angle elevation 46.0 degree 
Image Acquisition time 05:12 GMT, 10:57 AM (Kathmandu) 
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Table 3.2: RapidEye satellite image characteristics 

Sensor Name RapidEye 

Spatial resolution Ground sampling distance(Nadir): 6.5 m 
Pixel size (Ortho-rectified) :  5 m 

Dynamic view Up to 12 bit 

Spectral range 

Blue:  440 - 510 nm 
Green:  520 - 590 nm 
Red:      630 - 685 nm 
Red Edge:          690 - 730 nm 
Near Infrared:  760 - 850 nm 

Orbit height  630 kilometers 
Orbit type Sun-synchronous 
Swath width 77 km 
Revisit time Daily (Off-nadir) / 5.5 days (at nadir) 
Projection UTM 45 N 
Datum WGS84 
Image Acquisition time 05:55 GMT, 11:40 AM (Kathmandu) 

 

3.1.2. LiDAR data 
The LiDAR data for this study was acquired by Arbonaut Limited, Finland during the period 16th March 
2011 to 2nd April 2011 using a Leica ALS-40 (Airborne Laser Scanner) sensor with an aerial platform. The 
data was collected for Forest Resource Assessment (FRA) Project under the Ministry of Forest and Soil 
Conservation, Nepal. The laser scanner instrument was mounted abroad a 9N-AIW helicopter, which flew 
at an altitude of 2200m above ground level. The mean point densities within the study area are 0.8 points 
per m2. The original dataset covered the entire Terai Arc Landscape (TAL) and two ICIMOD’s biomass 
sites of Nepal. The LiDAR data used in this study is from ICIMOD’s biomass site of Ludhikhola 
watershed in Gorkha district. Additional information about the used LiDAR sensor is listed in Table 3.3.  
 

Table 3.3: LiDAR data characteristics 

Date Flown 20110316 / 20110328 / 20110401 / 20110402 

Times of collection (UTC) 02:45 – 08:20 / 03:46 – 05:00 / 04:01 – 05:45 / 
03:31 – 05:30 

Date Processed 20110530 
Projection /Datum UTM WGS84 
Files format ASPRS LAS 
Flying speed  80 knots 
Sensor pulse rate  52.9 khz 
Sensor Scan speed  20.4 lines/second 
Nominal outgoing pulse density @ground level  Average: 0.8 points per square meter 
Sun position >20 degrees 
Swath @ ground level 1601.47 m 
Point spacing max 1.88 m across, max 2.02 m down 
Sidelap/Side overlap 60%/30% 
Vertical accuracy 45 cm 
Horizontal accuracy 45 cm 
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3.1.3. Other ancillary data 
Topographic maps of Ludhikhola watershed at 1:25000 scale (Source: Survey Department of Government 
of Nepal). The watershed area and CFUGs boundary shape files of the study area were provided by 
ICIMOD.  

3.1.4. Field equipments  
Various field equipments were used during the field work campaign in the period from 20th September 
2011 to 20th October 2011. The equipments and the purpose of its use are shown in Table 3.4.  
 

Table 3.4: List of field equipments used 

Field Equipments Purpose/Usage 
iPAQ and GPS Navigation 
Suunto compass Orientation 
Häglof Vertex Hypsometer Tree height measurement 
Diameter tape (3m) DBH measurement 
Measuring tape (30m) Length measurement 
Spherical Densiometer Crown cover measurement 
Suunto clinometers Slope measurement 
Field data tally sheets Record field data 

3.1.5. Software 
Table 3.5 shows a list of software used for data preparation, processing and analysis to facilitate this 
research.  
 

Table 3.5: List of software(s) used 

Software Purpose 
ArcGIS version 10 GIS utilities and analysis 
eCognition Developer 8 Object Based Image Analysis 
ERDAS Imagine 2011 Image processing 
LASTools Visualising, processing and interpretation of 

LiDAR data Quick Terrain Modeler (Trial 
Version 7.4) 
ENVI 4.8 Image processing 
Microsoft Office suite Writing, presenting, analysing, etc.  
SPSS & R Statistical Analysis 
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3.2. Methods  
The overall method consists of two major parts namely 1). Modelling and estimating the carbon stock 
from the integration of VHR satellite imagery and LiDAR data; and 2). Up-scaling the carbon stock and 
analysing the relationship between the carbon stock and spectral reflectance of RapidEye image through 
regression modelling. The methodology (Part 1) for the modelling and estimation of carbon stock from 
the integration of VHR GeoEye satellite imagery and LiDAR data is presented as a schematic flowchart in 
Figure 3.1.  
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      Figure 3.1: The Methodological Flowchart for aboveground carbon estimation 
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The methodology (Part 2) for the up-scaling and analysing the relationship between the carbon stock and 
the spectral reflectance of the RapidEye image is presented as a schematic flowchart in Figure 3.2.  
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                        Figure 3.2: The Methodological Flowchart for Up-scaling 

3.3. Pre-fieldwork 

3.3.1. Pre-processing of optical data 
Pre-processing the raw data also called as image restoration and rectification is usually carried out prior to 
data analysis. The pre-processing corrects for any distortion due to the characteristics of the imaging 
system and imaging conditions. These procedures include radiometric correction to correct for uneven 
sensor response over the whole image and geometric correction to correct for geometric distortion due to 
Earth's rotation and other imaging conditions. Furthermore, if accurate geographical location of an area 
on the image needs to be known, ground control points (GCP's) are used to register the image to a precise 
map known as geo-referencing.  
 
The GeoEye image provided by ICIMOD, Nepal was already pre-processed and geo-referenced to WGS 
84 UTM Zone 45N projection system. The RapidEye image provided by FRA Project, Nepal was also 
geo-referenced to WGS 84 UTM Zone 45N projection system. Parts of three separate RapidEye image 
tiles covered the study area. Atmospheric correction to the RapidEye image was applied to each image 
tiles using the ATCOR2 module in ERDAS Imagine 2010. The metadata for ATCOR2 is provided in 
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Appendix 1. After the atmospheric correction, the images were mosiaced and then subset to the study 
area.  

3.3.2. Image fusion  
Image fusion refers to a technique of combining multiple images into composite images, so that the 
product contains more information than that of individual input images. In literature, several image fusion 
algorithms and techniques exist such as Intensity, Hue and Saturation (HIS), Principal Component 
Analysis (PCA), Brovey transform (BT), Multiplicative Transform (MT), High Pass Filter (HPF), etc.  
 
The IHS colour transform separates a standard red, green and blue image into spatial (I) and spectral (H, 
S) information (Zhang, 2002). IHS transform a colour image composite from RGB space into IHS space, 
replaces the intensity component by a panchromatic image with a higher resolution. This is followed by 
reversely transforming the replaced component from IHS space back to the original space to obtain a 
fused image. 
 
The High Pass Filter (HPF) resolution merge method involves a convolution of the high spatial resolution 
image using a high pass filter. The filtered high resolution image is then added to each multispectral band 
of the low spatial resolution image at the pixel level. The main advantage of the HPF over IHS method is 
they produce the same number of bands in the output as the original multispectral image. HPF resolution 
merge fusion was carried out in ERDAS Imagine 2010 using the GeoEye 0.5 meter panchromatic band 
and 2 meter multi-spectral bands of blue, green, red and near-infrared bands. The image fusion process 
resulted in pan-sharpened MSS image of 0.5 meter spatial resolution. 

3.4. Fieldwork 

3.4.1. Sampling Design 
There are several methods to sample a particular forest. A stratified random sampling (SRS) approach was 
chosen as a sampling design for the field work data collection. The stratum was based on the CFUGs 
boundary. Stratification reduces the variation within the strata and increases the precision of the 
population estimate (Husch et al., 2003). Moreover, SRS offers advantages such as; it ensures better 
coverage of the population than simple random sampling and yields more accurate estimates of the 
population for a given sampling intensity (Maniatis & Mollicone, 2010). The number of sampling plots for 
the study area was determined using the formula given below; 
 

Area of sampling (a) = Sampling Intensity (I) * Total area of Stratum (A)/100  
Source: (DOF, 2004) 
 
No. of plot (n) = Area of sampling (a)/ Area of one sample plot (p)  
 

3.4.2. Locating the sample plots  
With the aid of iPAQ, Garmin GPS and printed maps, the centre of the sample plots were located.  
However, the exact location of the plot centre varied between 3 – 5 meters from the true location due to 
weak signals received by iPAQ and GPS depending on the canopy cover and weather conditions. Plots 
were located on the imagery using identifiable reference points such as road crossings, footpath, open 
spaces, etc on the image and known distances and direction from these points.  
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3.4.3. Sampling Plots 
Circular plots are preferred because it is easy for plot layout in the field requiring only a single dimension 
of radius to define perimeter (Husch, et al., 2003). Also the determination of trees inside the plot is less 
problematic than other shapes such as square plots. Circular plots with a radius of 12.62 meters (plot size 
= 500m2) were established in the field. However, the radius of the plots varied after application of slope 
correction depending on the slope of the plot.  

3.4.4. Data collection from field work 
The fieldwork was carried out during the month of September and October, 2011. A total of 86 sampling 
plots were located. The specie of each individual tree was identified inside the sampling plot. Then DBH 
and tree height were measured for each tree inside the sampling plot. Crown diameter was measured for 
sample trees by averaging two cross directional measurements taken at north-south and west-east direction. 
The data was collected for trees with DBH of 10cm or more, since trees with DBH less than 10 cm are 
generally assumed to contribute little to the total biomass of forest (Brown, 2002). Sample trees were 
identified on the printed GeoEye image.   

3.5. Post Fieldwork 
Field data of the sampling plots in the study area were compiled and organized in Microsoft excel. 
Descriptive statistics were computed. Identified trees on the printed image in the field were manually 
delineated on screen by digitizing in ArcGIS 10. Crown diameter information of trees collected from the 
field aided in digitizing the identified individual tree crowns. To ensure consistency, a uniform map scale 
of 1: 300 was maintained throughout the manual delineation process. A total of 423 trees were manually 
delineated by on screen digitizing. 
 
3.6. LiDAR data Processing 
Pre-processed LiDAR data of the study area was provided by FRA, Nepal. Basic pre-processing of the raw 
LiDAR Data was carried out by Arbonaut Limited using Terrascan software. Filtering the point clouds 
into ground and non-ground returns is the core component of LiDAR data processing (Meng et al., 2010). 
This process enables the generation of a digital elevation model (DEM) and digital surface model (DSM) 
for further analysis such as deriving the tree height. The raw data (x, y, z coordinates) in las format were 
processed into DEM and DSM using the open source software LasTools. LasTools provides the tools 
required to generate DSMs and DTMs from raw or basically preprocessed LiDAR data. The processes for 
derivation of DEM, DSM and CHM are described in the following two sub-sections.  

3.6.1. Generation of DEM and DSM  
The most commonly used derivative of LiDAR data in forestry is the Canopy Height Model (CHM). 
Before deriving the CHM, the DEM and DSM were generated. Creating a raster dataset from the raw 
LiDAR data is a pre-requisite procedure for creation of DEM and DSM (Meng, et al., 2010). The DEM 
was created by filtering the last return LiDAR point clouds into ground points using the lasground 
function in LasTools. The filtered ground points were then interpolated by triangulated irregular network 
(TIN) method using the blast2dem function with a cell size of 0.5m. Similarly, the DSM was created by 
gridding the first return non ground LiDAR points using the lasgrid function with a cell size of 0.5m. The 
grid size of 0.5 meter was chosen for DEM and DSM to match the spatial resolution of the pan-sharpened 
MSS GeoEye image. The DEM and DSM are stored in a 2D raster image, where grayscale values 
represent the height values.  

3.6.2. Derivation of CHM 
The Canopy Height Model (CHM) is a LiDAR derived 3-D surface which provides vegetation height 
information above the ground level. The CHM was derived by subtracting the height value of the DEM at 
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each pixel from the height value of the DSM. A height difference between the DSM and DEM represents 
the absolute height of the trees (Ali et al., 2008; Kim, et al., 2010). Based on the maximum tree heights 
measured during the fieldwork, tree heights above 40 m were filtered out. CHM was also stored in a 2D 
raster image, where grayscale values represent the absolute tree height. The manually delineated tree crown 
polygons were overlaid on the CHM raster. The ground measured tree heights and its corresponding 
CHM raster value representing the tree heights from the CHM were extracted for validating the height. 
This process was carried out in ArcGIS 10.   

3.7. Co-registration of satellite images and LiDAR derived CHM 
Accurate co-registration between multiple datasets is extremely important in all image analysis tasks for 
precisely extracting information content from different datasets (Zitová & Flusser, 2003). It is because of 
their heterogeneity in terms of difference in sensors used, times of data collection, reference systems, etc. 
Co-registration usually involves integrating datasets from different sources to establish a correspondence 
among the features of interest. The most common strategy is to use the LiDAR data as the source of 
reference for image geo-referencing (Kim & Habib, 2009). However, it was difficult to identify distinct 
LiDAR features or points which can be recognized in the image. Therefore, an ortho-rectified aerial photo 
acquired during the same day and time as the acquisition of the LiDAR data was used as a reference 
image. The ortho-rectified pan-sharpened MSS GeoEye image was co-registered with the ortho-aerial 
photo using a total of 49 ground control points (GCP) in ERDAS Imagine 2010. An average RMSE of 1.9 
m was obtained for the image to image co-registration. Similarly, the RapidEye image was also geo-
rectified using the same ortho aerial photo. The operation was carried out in ERDAS Imagine 2010 
Autosync program. A total of 64 tie points were automatically generated and a RMSE of 1.3 m was 
obtained.  

3.8. Image filtering 
Image filtering is an image enhancement technique for improving the visual interpretability of an image. 
Filtering produces more homogeneous image segments and reduces the amount of convolution in the 
final segmented objects (Mora et al., 2010). The filtering process enhances the distinction between image 
objects and the background by removing the image noise occurred during data acquisition (Ke & 
Quackenbush, 2011b). An average filter size of 3x3 pixels and 5x5 pixels were tried for the MSS Geoeye 
image. Since the filter size of 3x3 pixels window gave better visualization, a 3x3 pixel filter was applied to 
the MSS GeoEye image in ERDAS Imagine 2010.  

3.9. Object Based Image Classification 
The basic units for object based image classification are the image objects or the segments rather than the 
pixels as compared to traditional pixel based classification (Blaschke, 2010). In addition to the spectral 
information of an image, the object-based classification also uses other information such as shape, texture, 
and contextual relationships (Ke, et al., 2010). Image segmentation and image classification are two major 
steps in the object based image classification approach. Image segmentation and image classification are 
discussed in the following two sub-sections; 

3.9.1. Image segmentation 
The tree crown delineation was carried out by image segmentation in eCognition Developer 8.7. 
Segmentation basically means grouping of neighbouring pixels based on similarity criteria such as digital 
numbers, shape, texture, size, etc. Image segmentation in this thesis means separation of tree crowns from 
the background image as well as the separation between individual tree crowns. Two basic segmentation 
approaches available in eCognition are top-down approach which cuts objects into smaller pieces and 
bottom-up approach which merges smaller pieces into larger objects (Definiens, 2009b). Among many 
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image segmentation algorithms, region growing segmentation was chosen in this study because it has been 
proven to be effective for the more complex structure of naturally regenerating forests (Erikson, 2003; Ke 
& Quackenbush, 2011a; Larsen et al., 2011). Region growing exploits spatial information and guarantees 
forming closed connected region (Weihong et al., 2008). Moreover, this study will serve as a comparative 
study in the same area conducted by Shah (2011), where region growing approach for individual tree 
crown segmentation was employed using the GeoEye imagery only.  

3.9.1.1. Region growing approach 
Tree crown delineation using the region growing approach in eCognition Developer 8.7 was based on the 
co-registered pan-sharpened MSS GeoEye image and the CHM derived from LiDAR data. The region 
growing algorithm aggregate pixels starting with the seeds and grows into the neighbouring pixels until a 
certain threshold is reached (Blaschke, et al., 2006). The basic assumption of tree crown delineation using 
region growing approach is that the centre of a crown appears radiometrically brighter than the edge or 
boundary of the crown (Culvenor, 2002). Identification of local maxima and local minima throughout the 
image and clustering of crown pixels are three main processes in region growing (Culvenor, 2002). 
Choosing the seeds and the similarity criteria are important factors because the region growing starts from 
the seeds by comparing neighbouring pixels and growing them into regions that satisfy a chosen 
homogeneity criteria (Weihong, et al., 2008).  
 
A filtered MSS pan-sharpened GeoEye image with four layers of (red, green, blue and NIR bands) and the 
LiDAR derived CHM layer were stacked in eCognition Developer 8.7 before segmentation. Gaussian filter 
of 3x3 pixel window size was applied to the LiDAR derived CHM layers before segmentation. The use of 
Gaussian filter was preferred over the median filter because the Gaussian filter preserves the edge features 
which aids in image segmentation (Wang, et al., 2004). The image smoothening also reduces noise caused 
by small branches and their shadow within one crown. Individual tree crowns were segmented in a 
sequence of steps which are discussed in the following sub-sections; 
 

a. Chess board segmentation and masking of shadow and open areas  
b. Finding the local maxima and local minima 
c. Growing from the seed (treetop) 
d. Watershed transformation to refine the shape of tree crowns 
e. Smoothening of tree crown shape and removal of undesired objects 

 
a. Chessboard segmentation and masking of shadow and open areas  

The chessboard segmentation algorithm was applied to the stacked layer of pan-sharpened MSS GeoEye 
image and the CHM layer. The purpose of the chessboard segmentation is to partition the image into 
homogenous area prior to application of region growing process for individual tree crown delineation. 
Chessboard segmentation is a top-down segmentation process which cuts the scene or image objects into 
equal squares of a given size (Definiens, 2009b). Figure 3.3 shows the diagrammatic representation of the 
chessboard segmentation. 
 
 

 

 

 

 

 Figure 3.3: Diagrammatic representation of chessboard segmentation  
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Based on the processing capabilities of the eCogntion Developer 8.7 software, chessboard segmentation 
with an object size of 2x2 pixels was found to be appropriate for creating identical sized objects. 
Chessboard segmented objects with pre-defined mean brightness values based on the pan-sharpened  MSS 
GeoEye image were used to assign the pixels to shadow and open area classes as indicated in Figure 3.3. 
The remaining objects were assigned to the trees class. The objective of this process was to separate trees 
from the background and other classes such as shadow and open areas. The mean layer values of CHM 
layer with a minimum threshold value of 2 m was used to separate trees from low lying and shrubby 
vegetation. In the shadowed region, objects above 2 meters were separated from the shadow and assigned 
to the trees class. The remaining pixels belonging to shadow and open areas were merged using the merge 
algorithm and were excluded from further analysis. Figure 3.4 shows the ruleset for assigning the 
chessboard segmented objects to different classes. 
 

 
 
 

 

 

     

 

 
 

b. Finding the local maxima and local minima  
The selection of seeds is a key step in the segmentation process because the segment result are sensitive to 
the selection of the initial growing points (Weihong, et al., 2008). Local maxima defines the position of 
seeds (i.e. top of the tree) which are used as a starting point for growing process (Culvenor, 2002). Careful 
selection of filter window size is important in seed selection, because smaller window size may assign large 
tree crown with more than one local maximum. Similarly, a large filter window size may fail to detect the 
local maxima of trees with small tree crowns. In this study, the local maxima were chosen based on the 
CHM layer with a filter window size of 4x4 pixels, as this kernel was appropriate considering the average 
crown diameter of 4 m measured during the field work. The local maxima were detected as treetops and 
were used as a seed to initiate a region growing based on threshold intensity within the image. Closely 
located seeds were merged to avoid over-segmentation by applying a merge region algorithm. On the 
other hand, the local minima defines the absolute boundaries of the tree crown during the growing 
process (Culvenor, 2002). Similar window filter size of 4x4 pixels was applied to locate the local minima 
throughout the image. A merge algorithm was applied to the local minima to form a network of tree 
crown boundaries. Figure 3.5 shows the ruleset for selecting the local maxima and local minima.  
 

 
    
 
 
 
 
 
 

 
 
 

Figure 3.4: Process for shadow and open area masking 

Figure 3.5: Finding the local maxima and local minima 
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c. Growing from the seed 
The near infrared (NIR) band was selected as the illumination image for the region growing process 
because near infrared band is sensitive to vegetation. Seeded region growing was an iterative process 
started in the seed pixels (treetop). The growing of seeds (treetop) continued until a given threshold 
brightness value is reached and was also conditioned by encountering a local minima and encountering a 
previously defined tree crown. Figure 3.6 shows the criteria set for growing individual tree crowns. 
 

 
    
 
 
 
 
 

 
 

d. Smoothening the shape of tree crowns and removal of undesired objects 
A watershed transformation was applied to separate large tree crowns into individual trees. Bigger sized 
tree crowns were separated by assigning a length factor parameter. The crown diameter information 
collected during the fieldwork was used to determine the length factor. A length factor of 14 pixels was 
used which is equivalent to a tree crown diameter of 7 meters. Further, a morphology operation was 
applied to smoothen the boundary of the object segments. Closed image object parameter was chosen and 
a circular mask of 8 pixels was applied to refine the shape of tree crowns. Closed image object adds 
surrounding pixels to an image object whereas the open image object removes isolated pixels from an 
image object (Definiens, 2009a). Tree crowns with asymmetrical shapes with a value of more than 0.8 
were merged to form a single tree crown. Moreover, small objects with an area of less than 4 pixels were 
removed because these objects were too small to represent tree crowns. To give a final shape to the tree 
crown segments, objects with roundness values of more than 1.3 were removed. Figure 3.7 shows the 
smoothening process to refine the shape of tree crowns. 
 

 
 
 

 

    

 

3.9.1.2. Validation of Segmentation 
Before the classification of species, validation of segments is important because the accuracy of the 
classification is partly depended on the representation of objects in the segmentation (Clinton et al., 2010). 
There are several methods to validate the accuracy of segmentation which can be broadly classified into 
goodness methods and discrepancy methods. In the goodness method, the segmentation results obtained 
by applying a segmentation algorithm are compared with reference segments (Zhang, 1996). The 
segmented individual tree crowns were assessed for quality with an goodness measure approach proposed 
by (Clinton, et al., 2010). The method takes into account the area and positional difference between 
reference objects and the segments. They have defined over segmentation and under segmentation as 
described in the following equations; 
 

Figure 3.6: Growing from the seed 

Figure 3.7: Smoothening process 



UPSCALING THE ESTIMATED FOREST CARBON STOCK FROM VHR SATELLITE IMAGE AND AIRBORNE LIDAR TO RAPIDEYE SATELLITE IMAGE 
 

20 

 
                  … Equation (i) 

 

                …. Equation (ii) 

 
where,  and  are reference objects and corresponding objects respectively. 
 
 
Over segmentation and under segmentation are in a range of 0 and 1, where a value of 0 in both the cases 
define a perfect segmentation with each segments matching the training objects accurately. Combining the 
over segmentation and under segmentation, the index D (goodness of fit) is interpreted as the “closeness” 
to an ideal segmentation result, in relation to a predefined reference set (Clinton, et al., 2010). The value of 
D ranges from 0 and 1 with 0 defining a perfect segmentation. 
 
 

              ….Equation (iii) 

 
The tree crown segments were also validated using the 1:1 correspondence method between manually 
delineated individual tree crowns and the automatic segments derived from eCognition. One to one 
matching takes position, shape and size of an object into consideration and the objects were considered to 
be matched if the reference object and the segmented object overlaps by at least 50% (Zhan et al., 2005). 
The manually delineated individual tree crowns were superimposed on the automatic segments in 1:1 
correspondence method. The individual tree crown segment was considered perfect match when there 
was an overlap of at-least 50% or more between the reference manually delineated individual tree crowns 
and automatic segments generated by eCognition.  

3.9.2. Image Classification  
After the image segmentation, each segment is a candidate object for classification. The segmented image 
objects were classified by the nearest neighbour classification in eCognition Developer 8. The nearest 
neighbour method computes the Euclidean distance from the observation to be classified to the nearest 
training sample observation and assigns it to that class. This method takes the spectral, spatial and 
contextual information necessary to interpret an image. eCognition supports a supervised classification 
technique to train and build up a knowledge base for the classification of image objects (Definiens, 2004). 
Features for classification in eCognition are computed based on image objects and not on single pixels. 
Height information from CHM and the mean brightness values from NIR band were selected in the 
feature space optimization to ensure classification of objects with similar height and spectral attributes. 
The maximum layer value of bands in the feature space represents the brighter pixel of tree crowns which 
enables separation of different classes (Gougeon & Leckie, 2006). The training dataset comprising of 70% 
of the identified trees on the image from the field work were used to train the sample tree species, while 
the remaining 30% was used for validating the classification result. The training dataset was used as a 
thematic layer to train the image objects for the classification of species.  
 
In this study, only two broad classes are considered for classification because earlier study in the same area 
indicated a weak class separability among different tree species using transformed divergence method 
(Shah, 2011). The best separability class was found for Shorea robusta while the other co-dominant tree 
species such as Schima wallichii, Rhus wallichi, Castanopsis indica showed weak class separability. Therefore, the 
tree species were classified into two classes only namely Shorea robusta and Other tree species. 
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3.9.3. Accuracy Assessment 
To evaluate the accuracy of the classification, an error matrix is a standard accuracy assessment procedure 
for image classification. An error matrix was generated and the producers and users accuracies were 
calculated for each class from the error matrix. A validation dataset comprising of 127 trees (96 Shorea 
robusta and 31 Other tree species) were used for classification accuracy assessment. The accuracy 
assessment of the classified image was carried out in ERDAS Imagine 2011. 

3.10. Aboveground Biomass and carbon stock calculation 
Aboveground biomass was calculated using allometric equation (Equation iv) with the field measured 
DBH and tree height. The application of appropriate allometric equation for biomass estimation is of 
crucial importance for reducing errors (Chave et al., 2005). However, species and site specific allometric 
equations were not available for the study area. The general allometric equation for moist mangrove forest 
stands developed by Chave et al., (2005) was used to calculate the AGB.  The AGB was then converted to 
carbon stock using the conversion co-efficient of 0.47 as recommended by IPCC (2007).  
 

AGB = 0.0509 ∗ ρD2H ……………Equation (iv) 
 

Where, 
AGB = aboveground tree biomass [kg]; 
ρ       = wood specific gravity [gcm-3]; 
D  = tree diameter at breast height (DBH) [cm]; and 
H  = tree height [m] 

 
The same allometric equation was also used by ICIMOD for implementation of REDD Pilot Project in 
three watershed areas of Nepal and justifies its use due to non-availability of site and species specific 
allometric equation for the study area. The specific wood gravity for three tree species and all other tree 
species used for AGB calculation are presented in Table 3.6.   
 

Table 3.6: Specific wood gravity of different tree species; Source (ICIMOD, 2010) 

Rank1 tree species Rank 2 tree species Rank 3 tree species All other species 

Shorea robusta 
(0.88 gcm-3) 

Schima wallichii 
(0.69 gcm-3) 

Castanopsis indica (0.74 
gcm-3) 

Mean of Terai/lower 
slope mixed hardwood 

forest 
(0.72 gcm-3) 

 

3.11. Regression Modeling 
Regression modelling is commonly used for biomass estimation studies. The multiple regression analysis is 
the most common approach for development of AGB estimation models (Lu, 2006). It is used to model 
the relationship between a dependent variable and one or more independent variables. Individual tree 
crown segments which were correctly classified and that have 1:1 spatial correspondences with the 
referenced manually delineated individual trees were used to develop the regression models. The 
relationship between the dependent variable (aboveground carbon) as obtained from the allometric 
equation and the two independent variables (tree height obtained from CHM and the CPA from the 
segmented tree crowns) were investigated through log transformed regression models. Both the 
dependent variable (aboveground carbon) and the independent variables (height and CPA) were log 
transformed. The log transformation was carried out because, when the histograms of the variables were 
plotted, the trend showed a positively skewed distribution (See Appendix 5 & 6). Log transformation of 
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the variables are recommended when the variables typically shows skewed distribution which can be made 
symmetric by transforming the data (Keene, 1995). Moreover, preliminary analysis of the relationship 
through scatter plots between dependent variable (aboveground carbon) and the single independent 
variables (height and CPA) exhibited non-linear relationships. Log transformation is used in allometry 
specifically to uniformly depict relative variation between variables and is a non-linear transformation 
(Kerkhoff & Enquist, 2009). Therefore, a natural logarithmic transformation was applied to both the 
independent and dependent variables.  
 
Prior to the developing the multiple regression models, a diagnostic test for multi-collinearity was 
conducted for the independent variables. In multiple regression modelling, highly correlated variables 
causes a problem for parameter estimation and the contribution of each variable is not reliable. The 
Variance Inflation Factor (VIF) is one of the indicators that measures how much variance of an estimated 
regression co-efficient is increased due to collinearity. 
 
Validation of the model performance and accuracy assessment of the estimated carbon are important in 
carbon estimation process. Two most widely used methods for model validation are co-efficient of 
determination (R2) for the models developed and the root mean square error (RMSE) (Lu, 2006). Co-
efficient of determination (R2) shows the percentage of variation in one variable that is associated with 
other variables. The strength and the significance of the models were validated using the partitioned 30% 
validation dataset. The following equation (v) was used to calculate the RMSE. 
 
 

                                   i i
2 ... ... ... ... .... Equation (v) 

 
Where,  
XO = Observed carbon,  
Xp = Predicted carbon,  
n   = number of observations 
 

3.12. Relationship between carbon Stock with spectral reflectance of RapidEye Image 

3.12.1. Derivation of variables from RapidEye image 
A comparative analysis of the relationship between spectral responses and forest biophysical parameters 
such as aboveground carbon stock is needed to be explored for up-scaling the aboveground carbon 
derived from small areas to larger areas. Vegetation indices such as normalized difference vegetation index 
(NDVI) are often used for biomass/carbon estimation by using the red and near infrared wavelengths. 
The most commonly used vegetation indices is the NDVI (Lu, et al., 2004). The NDVI was extracted 
from RapidEye image using the equation (vi) in ENVI 4.8.  
 

 

 
Moreover, the RapidEye image has a red edge band which is sensitive to chlorophyll useful for detecting 
vegetation. Similarly, the Red Edge NDVI was also extracted from the RapidEye image using equation 
(vii) adapted from (Wu et al., 2009) in ENVI 4.8.   
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The Principal Component Analysis (PCA) was performed on the image in ENVI 4.8. PCA transforms an 
original image into a smaller dataset of uncorrelated variables which contains the maximum information 
from the original images. The first component (PC1) contains the most variance and each subsequent 
component contains less variance than the previous components (Wang, et al., 2004). Hence, the first 
principal component was chosen for this study to test the relationship between up-scaled carbon stock 
and the spectral reflectance of the RapidEye image.  
 
Similarly, the red edge band and near infrared (NIR) bands were also used to test the relationship with the 
up-scaled carbon stock. Red edge and the NIR bands were chosen because these bands are sensitive to 
chlorophyll content in the vegetation (Wu, et al., 2009).  
 

3.12.2. Up-scaling from reference carbon to RapidEye Image 
Up-scaling also known as aggregation is a process of scaling up spatial data from a finer spatial resolution 
image to a coarser resolution image. The basic idea of the up-scaling process is to use a moderate or a 
relatively coarser resolution satellite image to estimate and map carbon stock at a landscape level. It is well 
known that the cost of VHR satellite images (e.g. GeoEye) and LiDAR data are very expensive and covers 
relatively small areas. Processing of such data requires longer time and several software packages and 
techniques. However, if a carbon estimate derived from the integration of VHR satellite image and the 
LiDAR data can be related to the data or product of image transformation (e.g. NDVI, RedEdge NDVI, 
PC1, red edge and NIR bands) from a moderate or relatively coarser satellite images, the cost and time for 
estimating carbon can be reduced significantly. Moreover, relatively coarser satellite images cover larger 
spatial extent and the development of such an approach will benefit the programs such as REDD for 
regional level carbon estimation and mapping in a cost effective way.  
 
Up-scaling of carbon derived from the integration of VHR Geoeye image and LiDAR data to a relatively 
coarser RapidEye image (5m spatial resolution) was carried out in ArcGIS 10. The carbon polygons were 
overlaid on the NDVI, RedEdge NDVI, PC1 images and the red edge and NIR band images. All the 
raster images were converted into 5m x 5m grids representing the spatial resolution of RapidEye image 
and each 5mx5m grid contained its corresponding raster values. In both the carbon polygon and the grids, 
the densities of both values were calculated. The carbon polygon and the raster grids were intersected in 
ArcGIS10 followed by calculating the area of intersection. The new carbon values inside the intersected 
area were calculated within each grid. The sum of carbon in each 5 m pixel of the RapidEye and its 
corresponding raster values were extracted for further analysis. Since the dataset obtained was huge, a grid 
of 100mx100m was created over the study area and 10 grids were chosen randomly for further analysis. 
Data was partitioned into 70:30% as training and validation datasets respectively. Individual tree crowns as 
visualised in the VHR imagery and its corresponding tree crowns as visualized in RapidEye imagery is 
shown in Figure 3.8. An example of the carbon polygons superimposed on the NDVI image derived from 
5 m RapidEye image for up-scaling is shown in Figure 3.9. The reddish colour represents areas with no 
vegetation and the black polygons represent the carbon from individual trees. 
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3.12.3. Regression modelling between Carbon and RapidEye variables 
 
The relationship between up-scaled carbon stock and the spectral reflectance of RapidEye image through 
NDVI, Red Edge NDVI, PC1 and the single bands of red edge and near infrared (NIR) were assessed by 
regression modelling. The up-scaled carbon was used as a dependent variable and the derived vegetation 
indices, PC1, red edge band and the NIR band were used as single independent variables. The 
performance of the regression models were assessed by comparing the co-efficient of determination (R2) 
for each independent variable. The co-efficient of determination measures the percentage of variation 
explained by the regression model. 
 
 
 
 
 

Figure 3.9: Carbon polygon superimposed on NDVI image  

NDVI
Value

High : 0.764

Low : 0.016

Figure 3.8: Visualization of individual tree crowns on GeoEye and RapidEye 
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4. RESULTS 

4.1. Descriptive Statistics of the field data 
Field inventory data comprising of DBH above 10 cm and tree height were recorded for 2793 tree in 86 
plots of Ludhikhola watershed, Gorkha, Nepal. A total of 423 trees were identified on the image which 
was manually delineated on screen by digitizing in ArcGIS 2010. The descriptive statistics of the DBH, 
height and crown diameter for Shorea robusta and other tree species is presented in Table 4.1. The DBH of 
Shorea robusta and Other tree species have a mean of 17cm and 18 cm respectively. Shorea robusta and Other 
tree species have a mean height of 13m and 10m respectively. The mean crown diameter is 4m for Shorea 
robusta and 5m for other tree species. 
 
Table 4.1: Descriptive statistics of Shorea robusta and Other tree species 

  Shorea robusta Other tree species 
Attributes Mean Min Max Std. Dev Mean Min Max Std. Dev 
DBH (cm) 17 10 83 8.74 18 10 60 8.64 
Height (m) 13 2 35 4.97 10 2 29 4.64 
Crown Diameter (m) 4 0.5 13 1.46 5 1 15 2.01 

 
DBH and tree heights measured in the field were analysed using box plot for Shorea robusta, Schima wallichii, 
Rhus wallichii, Castanopsis indica and other tree species. Species wise box plots of diameter at breast height 
(DBH) and height are shown below in Figure 4.1. 
 

SH=Shorea robusta, SC=Schima wallichii, RH=Rhus wallichii, CT=Castanopsis indica, OT=Other tree species) 

Figure 4.1: Box plots of the DBH and height of dominant tree species 
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Schima wallichii had the largest mean DBH and Shorea robusta had highest mean tree height. The box plot 
indicated that the tree species in the study area have high variability in terms of DBH and height. The 
maximum diameter and highest tree height were recorded for Shorea robusta at 83 cm and 35 m 
respectively.  
 
A total of 27 different species were 
recorded in the study area (See Appendix 2). 
Shorea robusta is the dominant tree 
constituting about 74% of the tree species 
followed by Schima wallichii at 12%, Rhus 
wallichii and Castanopsis indica at 3 % each. 
Terminalia alata constituted about 2% of the 
tree species. Pinus roxburghii is also found at 
elevations above 700 meters above mean 
sea level in the watershed area, but only a 
single sample plot occurred in this study. 
Figure 4.2 shows the tree species 
distribution in the study area.  
 
 
 

4.2. Derivation of CHM 
A Canopy Height Model (CHM) was derived by subtracting the digital elevation model (DEM) from the 
digital surface model (DSM). The DEM and DSM for a part of the study area as visualized in Quick 
Terrain Modeler are shown in Figure 4.3.  
 

The CHM with a spatial resolution of 0.5 m is a three dimensional surface that shows the vegetation 
height above the ground level. Figure 4.4 shows the subset of a three dimensional CHM with the 
individual tree crown apparent on the 3-D representation.  
 

74% 

12% 

3% 
3% 2% 6% 

 Species Distribution 

Shorea robusta 

Schima wallichii 

Rhus wallichii 

Castanopsis indica 

Terminalia alata 

Others 

Figure 4.2: Tree species distribution in the study area 

Figure 4.3: Digital Elevation Model (left) and Digital Surface Model (right) for a part of study area 
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Figure 4.4: 3-D representation of the Canopy Height Model 

 
The descriptive statistics of the field measured height and CHM estimated height is shown in Table 4.2.   
 

Table 4.2: Descriptive statistics of the field height and CHM height in meters 

Summary Field Height CHM Height 
Mean       16.4     15.3 
Standard Deviation         4.5       4.6 
Minimum         6.1       5.2 
Maximum       30.3     29.9 
Observations        410      410 

 
The field measured height as an independent 
variable was regressed against the CHM 
estimated height as a dependent variable. The 
co-efficient of determination (R2) was 0.75 and 
the correlation coefficient was 0.86. A t-test 
was employed to test the relationship between 
the field height and the CHM height. The 
relationship was found to be statistically 
significant at 95 % confidence level (Appendix 
4). Comparison between the field measured 
height and the LiDAR estimated height 
indicated that the LiDAR under predicted the 
actual tree heights measured in the field. There 
was an average underestimate of 1.1 m for the 
CHM tree height. The RMSE for the CHM 
predicted height obtained was 2.6 m with a 
RMSE percent of 16%. Figure 4.5 shows the 
scatter plot of field height and CHM height. 
 

Figure 4.5: Scatter plot of the CHM derived height and Field 
measured height 
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4.3. Image Segmentation 
 
Chessboard segmentation algorithm with 2x2 pixels was applied to the stacked layers of pan-sharpened 
MSS GeoEye image (0.5m spatial resolution) and CHM image (0.5m spatial resolution). The purpose of 
the chessboard segmentation was to partition the image into homogenous objects for individual tree 
crown delineation based on similar homogeneity conditions. Figure 4.6 shows a subset of a pan-sharpened 
image and a chessboard segmented image for further processing. 
 

The implementation of the region growing algorithm on the combined pan-sharpened MSS GeoEye 
image and the CHM layer resulted in the delineation of closed objects. As indicated in the Figure 4.7, 
individual trees were segmented after masking the open areas and low lying vegetation. The green colour 
represents the trees after masking the open areas (cyan colour) and; the low lying and shrubby vegetation 
(reddish colour). Trees with heights above 2 meters are considered for individual tree crown delineation 
because the minimum tree height measured in the field was 2 m. Figure 4.8 shows the treetops detected by 
the find local maxima algorithm in region growing approach. 
 

 

 

Figure 4.7: A subset of pan-sharpened image (left) and the masked open areas and low height vegetation (right) 

Figure 4.6: A subset of pan-sharpened image (left) and chessboard segmented image (right) 
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The accuracy assessment of the individual tree crown delineation was carried out using intersector tool. A 
total of 423 manually delineated reference tree crowns were used as training input against the automatic 
tree crown segments obtained from the region growing approach. Figure 4.9 shows a subset of the 
individual tree segments obtained from automatic delineation. An example of the manually delineated 
individual tree crowns superimposed on the automatic individual tree crowns for assessing the accuracy in 
1:1 correspondence method in a part of the study area is shown in Figure 4.10.   
 

The accuracy assessment report for the individual tree segments using the D goodness measure is given in 
Table 4.3. 
 

Table 4.3: Accuracy assessment for the segmented tree crowns 

Over Segmentation 0.18 
Under Segmentation 0.39 
D value 0.30 
Overall Segmentation accuracy  70 % 

Figure 4.8: Detected local maxima on pan-sharpened GeoEye image 

Figure 4.9: Individual tree crowns derived from 
eCognition 

Figure 4.10: Manual delineated tree crowns (red colour) 
superimposed on the automatic segments (black colour) 
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The over-segmentation and under-segmentation were 0.18 and 0.39 respectively with an overall D value of 
0.30. The D value of 0.30 explains an error of 30% in segmentation and thus the segmentation accuracy of 
is 70%.   
 
The segmentation accuracy was also assessed by 1:1 correspondence method using the same dataset of 
423 manually delineated tree crowns. The reference manually delineated tree crowns were considered 
perfectly matched if there was an area overlap of more than 50% with the automatic tree crowns 
segments. The result from the 1:1 correspondence for the segmentation accuracy is presented in Table 4.4. 
An overall segmentation accuracy of 74 % was obtained.  
 
Table 4.4: One-to-one correspondence of manually delineated tree crowns and eCognition segmented tree crowns 

Total number of matched tree crowns  Total reference tree crowns Correctly segmented tree crowns 

313 423 74 % 

4.4. Classification of tree species 
Individual tree segments were classified into two main classes namely Shorea robusta and Other tree species. 
A total of 296 trees were used for training the classifier and a total of 127 trees were used for assessing the 
classification accuracy. Accuracy assessment was carried out using the standard accuracy assessment 
procedure of an error matrix. Users and Producers accuracy were computed form the error matrix. The 
Users accuracy gives an indication on the reliability of the classified image as a predictive device relative to 
what species are on the ground. The Producers accuracy describes the accuracy by class, of the 
classification by the classification program. The accuracy matrix is given in Table 4.5.  
 

Table 4.5: Accuracy matrix for the nearest neighbour classification 

Class name 

Reference Data 

Shorea 
robusta 

Other tree 
species 

Total 
Classified 

Error of 
Commission 

(%) 
Users’ accuracy 

(%) 
Shorea robusta   92 19 111 17.1  82.9 
Other tree species     4 12  16 25.0 75.0 
Total    96 31 127     
Error of Omission (%)   4.2      61.2        
Producers’ accuracy (%) 95.8  38.7        

       Overall Accuracy = 81.8 % 
 

An overall accuracy of 81.8% was obtained from the nearest neighbourhood classification and a Kappa 
statistics value of 0.41 was obtained. The classification assessment report indicated that Shorea robusta was 
more correctly classified compared to the Other tree species with a producer’s accuracy of 95.8% and 
user’s accuracy of 82.9%. Figure 4.11 shows the classified map of the study area. 
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4.5. Regression Analysis 

4.5.1. Descriptive statistics of variables used for modelling  
A total of 230 trees (193 Shorea robusta and 37 Other tree species) were used for model development.  
These trees correspond to the total number of correctly classified trees and perfectly matched trees with 
1:1 correspondence method. The maximum value of CHM within the segmented tree crown was assigned 
as the height of individual trees and the area of the segmented crown as the CPA. The descriptive statistics 
of the variables used for carbon stock modelling is shown in Table 4.6.  
 

Table 4.6: Descriptive statistics of the variables used for regression modelling 

                                          Shorea robusta  Other tree species 
  Height CPA Carbon Height CPA Carbon 
Mean 16.35 20.52 215.16 14.51 21.49 163.03 
Standard Deviation   4.43 8.01 232.47 5.29 9.19 166.48 
Minimum   5.36 5.46 26.01 5.69 4.47 11.96 
Maximum 29.32 47.71 1102.2 28.87 43.23 858.94 
Observation            193               37 

Figure 4.11: Tree species classification map of the study area 
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4.5.2. Relationship between height, CPA and aboveground Carbon of Shorea robusta and Other tree species 
 
Relationship between CPA, Height and Carbon 
As a preliminary analysis, scatter plots were plotted with carbon as a dependent variable and the single 
independent variables of CPA and CHM height for both Shorea robusta and Other tree species. The best of 
fit was obtained using a polynomial regression between the carbon, CPA and CHM height. Figure 4.12 
shows the scatter plots of carbon as a dependent variable and the CPA and CHM height as a single 
independent variable for Shorea robusta. Figure 4.13 shows the scatter plots with the same variables for 
Other tree species. 
 

 

 

Figure 4.13: Scatter plots of carbon and the single independent variables for Other tree species 

Figure 4.12: Scatter plots of carbon and the single independent variables for Shorea robusta 
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Prior to the multiple regression analysis, the Variance Inflation Factor (VIF) were calculated to check for 
multi-collinearity between the dependent variables for both Shorea robusta and Other tree species. The 
Variance Inflation Factor (VIF) calculated for the independent variables was 2.08 for Shorea robusta and 
1.64 for Other tree species. In both cases, no multi-collinearity problem existed between the independent 
variables since the calculated VIFs were less than 10.  
 
Multiple regression models using a natural logarithmic transformation were used to assess the relationship 
between carbon and the extracted tree variables (CPA and the CHM height) for both Shorea robusta and 
Other tree species. The log transformation was carried out to correct for non-linearity and 
heteroscedascity exhibited by the variables. The log transformed multiplicative model used in this study is 
shown in Equation (viii). The carbon predicted from the multiplicative log transformed models was back 
transformed to obtain carbon values in kg/tree.  

 

ln Y = β0 + β1 ln X1+ β2 ln X2 ……………Equation (viii)  

 

Where,  Y: Aboveground carbon estimated from allometric equation 
 X1: Height extracted from individual trees 
 X2

: CPA derived from automated tree segments 
 ln: Natural logarithm 
 β0 : Intercept 
 β1, & β2 : Regression coefficients for X1 and X2 
 
The results from the multiple regression models explaining the aboveground carbon using the CPA of 
individual trees and the tree height are shown in Table 4.7.   
 

Table 4.7: Results from the multiple regression modelling 

Shorea robusta Other tree species 
Regression statistics CPA & Height Regression statistics CPA & Height 
Multiple R 0.86 Multiple R 0.87 
R Square 0.74 R Square 0.76 
Adjusted R Square 0.74 Adjusted R Square 0.75 
Stanard Error 0.44 Standard Error 0.50 
Observations 193 Observations 37 

Co-efficients Co-efficients 
Intercept -1.70 Intercept -1.75 
Slope (Height) 1.10 Slope (Height) 1.17 
Slope (CPA) 1.23 Slope (CPA) 1.12 

p-value p-value 
Intercept 2.98E-07 Intercept 0.007927 
Slope (Height) 4.61E-10 Slope (Height) 0.00022 
Slope (CPA) 1.22E-21 Slope (CPA) 1.97E-05 

 
The multiple regression models for Shorea robusta and Other tree species were tested using the F-test. The 
test revealed that the models were statistically significant at 95% confidence level. The results of the test of 
significance are shown in Appendix 7.   
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Model validation 
The multiple regression models were validated using the 30% partitioned dataset. Two of the most 
common statistical measures (co-efficient of determination and RMSE) were used for model validation. 
Observed and predicted aboveground carbon from the multiple regression models using CPA and height 
as independent variables were plotted against each other. The models were validated using 85 trees 
(observations) in case of Shorea robusta and 19 trees (observations) for other tree species. The graphical 
representation of the results obtained from the model validation is shown in Figure 4.14.  
 

The co-efficient of determination (R2) between the observed carbon and the predicted carbon were 0.86 
and 0.78 for Shorea robusta and Other tree species respectively. The co-efficient of determination (R2) of 
0.86 shows that 86% of the variability of the observed carbon in Shorea robusta was explained by the model. 
Similarly, 78 % of the variability of the observed carbon in Other tree species was explained by the model. 
The RMSE for Shorea robusta was 43 kg/tree with a RMSE percent of 32 % and for the Other tree species, 
a RMSE of 44 kg/tree with a RMSE percent of 34 % was obtained.  

4.6. Carbon Stock Mapping of the study Area 
Validated multiple regression models were used to estimate the aboveground carbon for Shorea robusta 
using the equation (ix) and for Other tree species using the equation (x). The individual tree crown 
segments classified as Shorea robusta and Other tree species through object based image classification and 
the multiple regression models described below were used to map the aboveground carbon in the study 
area.  
 
ln Carbon = -1.70 + 1.10 * ln Height + 1.23 * ln CPA …………….. Equation (ix) 
ln Carbon = -1.75 + 1.17 * ln Height + 1.12 * ln CPA . . . . . . . . . . . . Equation (x) 
 
Where,  ln: natural logarithm 
 
The carbon stock map for the study area is presented in Figure 4.15. The carbon stock maps of each CFs 
are presented in Appendix 8.  
 

Figure 4.14:Scatter plots of observed and predicted carbon 
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Figure 4.15: Carbon stock map of the study area 

The total carbon stock estimated for the five Community Forests was 36010 MgC.  The maximum carbon 
stock was found in Ludidamage CF with a total carbon stock of 14014 MgC and the lowest in Shikhar CF 
with a total carbon stock of 3543 MgC. The average carbon stock in the study area was estimated at 65 
MgCha-1. The CFUGs wise aboveground carbon stock is presented in Table 4.8.  
 
 

Table 4.8: CFUG wise estimated carbon stock 

Community 
Forests 

Shorea robusta Other tree 
species (MgC) 

Total Carbon 
(MgC) 

CF Area Per ha  
(MgC) (ha) 

Birenchok CF 5806 464 6270 84 75 
Chisapani CF 3026 707 3733 50 74 
Kuwadi CF 7705 745 8450 92 91 
Ludidamgade CF 12033 1981        14014 271 51 

Shikhar CF 3019 524 3543 51 70 

Total 31589 4421 36010 548   
Per ha 57 8 65     
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4.7. Up-scaling of carbon derived from intergration of VHR imagery and LiDAR data 
Up-scaling is the process of aggregating pixels from a high spatial resolution image or map to a low spatial 
resolution image or map. The carbon derived from the integration of VHR GeoEye imagery and the 
LiDAR data (both 0.5m spatial resolution) was up-scaled by aggregating the total carbon to each 5m pixel 
of RapidEye image, which originally consist of 100 pixels of 0.5 m resolution GeoEye image. Figure 4.16 
shows the carbon polygons obtained from the integration of VHR satellite imagery and LiDAR 
superimposed on GeoEye image and RapidEye image respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The carbon in each pixel of the RapidEye image was aggregated by summing up the total carbon of the 
tree crowns as a whole or parts of tree crown falling within that particular 5x5m grid of the RapidEye 
image. The results obtained from up-scaling the carbon polygon in 5m pixel of RapidEye image is shown 
in Figure 4.17. Figure 4.17 c shows the aggregated total carbon in each 5x5m grid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17: Up-scaling from GeoEye image to RapidEye image 

Figure 4.16: Individual tree crowns superimposed on 0.5 m GeoEye image (left) and on 5m RapidEye image (right) 
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4.8. Relationship between carbon and spectral reflectances of the RapidEye image 
 
The descriptive statistics of the variables used to test the relationship between up-scaled carbon and the 
spectral reflectance of RapidEye imagery through regression modelling is presented in Table 4.9.  
 

Table 4.9: Descriptive statistics of the variables used for modelling 

 NDVI Red Edge NDVI PC1 Red Edge Band NIR Band 
NDVI Carbon REVI* Carbon PC1 Carbon RE**  Carbon NIR  Carbon 

Mean   0.5 259.3 0.4 223.1 1324.2 258.5 5681.2 246.1 8220 256.6 
Std  Dev 0.04 110.8 0.04 95.9 463.9 110.3 371.0 111.2 444.1 250.3 
Min 0.4    6.4 0.26  6.9     105  7.1 4688    6.3 6899 6.1 
Max 0.7 568.1 0.50 580.8    2567 567.2 6667 534.9 9490 566.8 
Counts 2126 2475 2094 2173 2152 
* REVI= Red edge vegetation index; **RE=Red edge 
 
Linear regression models were used to study the relationship between the up-scaled carbon and the 
spectral reflectance of RapidEye imagery for up-scaling to larger scale using the 70% partitioned dataset. 
The results of the regression modelling using the sum carbon as dependent variable and its corresponding 
indices (NDVI, Red Edge NDVI and PC1) and the individual bands (Red Edge and NIR band) as the 
independent variables are shown in Table 4.10.  
 

Table 4.10: Results from the regression modelling 

Regression 
statistics 

NDVI RedEdge 
NDVI 

PC1 RedEdge 
DN 

NIR DN 

Multiple R 0.329 0.356 0.418 0.379 0.335 
R Square 0.108 0.127 0.175 0.144 0.112 
Adjusted R Square 0.108 0.126 0.174 0.143 0.111 
Standard Error 104.62 89.63 100.19 102.86 107.93 
Observations 2126 2475 2094 2173 2128 

Co-efficients 
Intercept -183.426 -107.21 126.7473 892.17 959.69 
Slope 815.2725 882.2938 0.099485 -0.11371 -0.08587 

p-value 
Intercept 3.93E-11 1.01E-09 2.94E-75 5.98E-133 5.60E-101 
Slope 5.07E-55 3.36E-75 1.57E-89 2.02E-75 3.01E-58 

 
 
The regression models for NDVI, Red Edge NDVI, PC1, red edge band and the NIR bands were tested 
using the F-test. The test revealed that all the models were statistically significant at 95% confidence level. 
The results of the test of significance are shown in Appendix 9.   
 
The co-efficient of determination (R2) were low for all five models. Amongst the vegetation indices and 
PC1, the highest R2 obtained was 0.18 for PC1 component and the least for NDVI with a R2 of 0.10. For 
the individual bands, the R2 obtained for red edge band and NIR band was 0.14 and 0.11 respectively. The 
variability of the aboveground carbon explained by the spectral data is very low. The scatter plots showing 
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the relationship between up-scaled carbon and the spectral reflectance of the RapidEye image are shown 
in Figure 4.18.  
  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18: Scatter plot showing the relationship between carbon and RapidEye variables 
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Since all the developed models resulted in low co-efficient of determination ranging from 0.10 to 0.18, the 
validations of the models were not carried out. With weak relationship between the up-scaled carbon and 
the spectral reflectance of the RapidEye image, the up-scaling of carbon to 5m spatial resolution of 
RapidEye image for larger areas could not be carried out.  
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5. DISCUSSIONS 

5.1. Derivation of CHM 
The CHM was derived by subtracting the DEM from DSM. Comparison of the field measured height and 
the LiDAR estimated height showed a coefficient of determination (R2) of 0.75. In general, the CHM 
estimated tree heights obtained in this study are in line with the findings of other studies. For instance, 
Kwak et al., (2007) reported that LiDAR predicted the tree heights with a R2 of 0.74 and a RMSE of 1.32 
m for Quercus species using LiDAR sampling density of 1.8 points/m2. In this study, there was an average 
underestimation of the ground measured tree heights by 1.1 m with a RMSE of 2.6 m. As reported in 
other studies, under estimation of tree heights by the CHM is a common phenomenon when field 
measured heights are compared with the CHM predicted height (Heurich et al., 2004; Kwak, et al., 2007; 
Leckie, et al., 2003; Lim et al., 2003). Leckie et al., (2003) observed that the tree height of the automated 
segments obtained from CHM were consistently underestimated versus the ground reference heights with 
an average error of 1.3 m. Similar results of tree height under prediction by the CHM was also observed 
by Lim et al., (2003) when the maximum field measured height of the sample plots was regressed against 
the maximum LiDAR height in a mixed hardwood deciduous forest. Heurich et al.,(2004) reported an 
underestimation of CHM estimated height by 0.42 m with a RMSE of 1.41m in a deciduous forest stand. 
However, in this study the RMSE was slightly higher than reported in other studies.  
 
Various reasons can be attributed to high RMSE such as the process of interpolating grid based DEM and 
gridding the DSM, co-registration error between the GeoEye and the CHM, the low point LiDAR 
sampling density, type of forests, etc. The LiDAR data was interpolated to a DEM in a raster format 
because the LiDAR provides point wise sampling data unlike the full coverage of an area as in optical 
imagery. The interpolation of LiDAR point clouds can introduce error into the DEM. It is because the 
average LiDAR point sampling density used in this study was 0.8 /m2, but the distribution of LiDAR 
points were not homogeneous. The occurrence of 3 or more points/m2 was observed in some areas, while 
few areas had no points at all. Few outliers were also found sparsely distributed over some areas which 
were recognised by unreasonably high elevation values in the DSM. High elevation outliers may be caused 
from the sensor itself. An illustration of non-uniform distribution of LiDAR points/m2 in the study area is 
shown in Figure 5.1. The white dots represent the LiDAR point clouds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: LiDAR points from all returns overlaid on 
1x1 m grid 
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Low density point LiDAR can also cause under-estimation of the height by CHM. For instance, Persson 
et al., (2002) reported that the average tree height underestimation was due to lower LiDAR sampling 
density. Similarly, Næsset et al., (2002) concluded that tree height estimation can be improved with 
increased LiDAR sampling density. Holmgren et al., (2008) reported a high correlation coefficient of 0.91 
between field measured height and the LiDAR predicted height using high LiDAR return density of 50 
returns per m2. The other reason for under-estimation and over estimation in this study is due to fact that 
the identification of trees in the field was based on the GeoEye image and the manual delineation of tree 
crowns were carried out on the co-registered GeoEye image. Although image to image co-registration of 
CHM raster and the GeoEye image was done with a RMSE of 1.9m, there existed some mis-registration 
error between the two dataset in some areas. This could have resulted in under estimation and over 
estimation of the tree heights by CHM due to mismatch between the actual positions of the trees in both 
datasets.  
 
The time difference between the LiDAR data acquisition and the field work would also cause some cases 
of over estimation. Personal observation in few plots indicated that some of tree tops were freshly lopped 
during the field work. The accuracy of the tree height measurement instrument coupled with the human 
error arising due to undulating terrain and steep slope also led some discrepancies in measuring the actual 
tree heights. Locating the true treetop under dense canopy was difficult and this led to measuring the 
wrong treetops because of the obstruction by the branches of neighbouring trees.  

5.2. Tree crown delineation 
Commercial eCognition software provides various tree crown delineation approaches (i.e. segmentation) 
such as watershed, multi-resolution and region growing. The individual tree crown delineation in this 
study was carried out by region growing method using the local maxima approach. The segmentation 
accuracy was assessed by two methods, D goodness of measure approach and the 1:1 correspondence 
method. Accuracy assessment of the individual tree crown delineation resulted in an overall accuracy of 
70% (D value 0.30) using the D goodness of measure approach and 74 % with the 1:1 correspondence 
method. The segmentation accuracy of this study is within the range published in other studies using the 
region growing approach. Many studies have been carried out in pure and mixed forest stands using the 
local maxima approach of the region growing method (Bunting & Lucas, 2006; Erikson, 2003; Leckie, et 
al., 2003; Tsendbazar, 2011). For example, Erikson (2003) segmenting individual trees in a mixed forest 
stand reported an accuracy of 73% with the manual delineated reference tree crowns using colour infrared 
aerial images. Similarly, Bunting & Lucas (2006) obtained a tree crown delineation accuracy of 72% in a 
diverse mixed species forest stand and Tsendbazar (2011) reported a tree crown segmentation accuracy of 
75% in a heterogeneous mixed forests in Nepal.  
 
The over-segmentation and under-segmentation of individual tree crowns obtained in this study was 0.18 
and 0.39 respectively. A reference object is over-segmented if the area of overlap is less than 100 % and 
under-segmented if the area of overlap is more than 100% (Clinton, et al., 2010). In other words, over-
segmentation represents smaller crown delineation compared to the reference crowns and under-
segmentation represents bigger crown delineation compared to the reference crowns. The under 
segmentation was higher than over segmentation because of intermingling tree canopies, irregular tree 
crown shapes and peculiar branches of broadleaved tree species. When the tree crowns are intermingled, 
local minima were not detected due to absence of distinct variation within the intermingled canopies. This 
led to under-segmentation of the individual tree crowns. Commission or omission errors in identifying the 
local maxima and local minima also led to the under segmentation and over segmentation. Although, 
Gaussian filters of 3x3 window size were applied to smoothen the images, there still remained some noise 
in parts of the tree crown. It is because, the varying degree of tree crown size requires different smoothing 
filter windows (Ke & Quackenbush, 2011b).  
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The lower segmentation accuracy was also due to identifying the false local maxima (treetops) and local 
minima. Selection of appropriate search range in detection of local maxima was important, because the 
local maxima are identified within a user defined search range and the region growing was started in a set 
of local maxima pixels (treetop). In principle, the number of local maxima should be equal to the actual 
number of tree crowns. In this study, a search range of 4x4 pixels was used, which is based on the average 
tree crown diameter measured in the field. The local maxima were searched using the brightness value of 
CHM layer assuming the lower heights correspond to darker pixels and taller heights to brighter ones. 
However, the brightest point of the tree does not necessarily always represent the tree top. The reasons 
are due to difference in the spectral reflectance between the centre and edge of the tree crown which are 
not always distinct (Wulder & Seemann, 2003). This problem is more pronounced in deciduous trees 
compared to the coniferous trees. Deciduous trees have ellipsoidal crown shape and causes significant 
within crown brightness variations in VHR imagery (Ke & Quackenbush, 2011b). Thus, recognising the 
tree top (peak/maxima) and the crown edge (local minima) was difficult in deciduous forest unlike in 
coniferous forest with conical crowns. Figure 5.2 shows two or more false treetops identified within one 
tree crown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The segmentation accuracy in this study was slightly higher compared to the study carried out by Shah 
(2011). She obtained a segmentation accuracy of 68% with D goodness measure method and 72% with 
the 1:1 correspondence method using the region growing algorithm in the same study area, although direct 
comparison cannot be made due to difference in study area size and the data used. In addition to the VHR 
imagery used by Shah (2011), low density LiDAR data was also used in this study. Compared to her study, 
the main reason for obtaining higher segmentation accuracy is because of the fact that height information 
from the CHM layer was used to mask out low lying vegetation (shrubby vegetation) which had similar 
reflectance characteristics with the trees on the VHR imagery. The CHM height information was also 
employed to detect trees (above 2 m) in the shadowed region. The use of LiDAR data in this study also 
helped to overcome the shadow effects inherent in the VHR images which are common in mountainous 
terrain. Tree crown delineation using either panchromatic or multispectral imagery was found to have 
encountered difficulties in dense and intermingled tree canopies because of indistinct intensity pattern 
(Leckie, et al., 2003).  
 
Although, the segmentation accuracy obtained in this study is comparable with other studies, many studies 
have reported that the accuracy of tree crown detection and delineation is higher in even-aged and evenly 

Figure 5.2: False tree top detection 
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spaced pure stands than in mixed and heterogeneous forest stands (Gougeon & Leckie, 2006; Leckie, et 
al., 2003). For instance,  Leckie et al., (2003) have obtained segmentation accuracy of 80 % in an even aged 
Douglas fir stand. They reasoned that higher segmentation accuracy which was obtained in even aged and 
evenly spaced pure stands to the fact that the trees with similar age and species are more likely to have 
uniform height and crown structure favourable for image segmentation. However, this study was carried 
out in a complex heterogeneous forest comprising of un-even aged trees with more than 27 different 
species as mentioned in Section 4.1. The forest structure consisted of trees with different crown sizes and 
shapes causing difficulties for the algorithm to produce reasonable segments. Further, the intermingling 
situation of trees where two or more individual trees overlapped and the close proximity of neighbouring 
trees also resulted in low segmentation accuracy as shown in Figure 5.3.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3. Classification of species and Accuracy Assessment 
Individual tree crown segments were classified into Shorea robusta and Other tree species. Only two classes 
were considered for tree species classification because Shorea robusta constitutes about 74% of the total tree 
species in the study area. Rest of the trees were grouped as Other tree species class for the classification 
purpose. Moreover, earlier study in the same area has indicated that the class separability between different 
species was poor (Shah, 2011). The classification of these two classes resulted in an overall accuracy of 
81.8% with a kappa value of 0.41. The values of Kappa is interpreted as poor when K<0.4, good when 
0.4<K>0.7 and excellent when K>0.75 (Landis & Koch, 1977). It was observed that user accuracy was 
high for Shorea robusta (82.9%) compared to other tree species (75%). The result indicates that Shorea 
robusta was classified more accurately than the Other tree species and it means that the chances for a user 
to find Shorea robusta in the field are high. The producers’ accuracy was also higher for Shorea robusta than 
the Other tree species. The reasons for Other tree species not being classified satisfactorily could be due 
to limited number of training samples assigned to the classifier (i.e. mix of different spectral reflectance 
from various species). During the classification process, the training samples assigned to the classifier for 
Shorea robusta and Other tree species were not in proportion. The ratio of training samples for Shorea 
robusta and other tree species was 3:1 respectively because the study area is dominated by Shorea robusta. 
Moreover, the difficulty in identifying tree species on the image for other species also led to acquiring 
limited number of samples for Other tree species. The classification accuracy also depended on the 
accuracy of the individual tree crown segmentation, because the classification was based on the segmented 
individual tree crowns (aggregation of pixels) rather than the individual pixels. 

Figure 5.3: Intermingled trees 
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 The integration of VHR imagery and the low density LiDAR data appeared to improve the tree species 
classification than using the VHR imagery alone. The overall classification accuracy obtained in this study 
is 81.8%, an increase in 7.8% higher compared to the earlier study conducted in the same area with similar 
number of classes by Shah (2011). She obtained an overall accuracy of 74% using the VHR imagery only. 
However, direct comparisons cannot be made as her study area was only one of the five CFs of this study 
area. The increase in classification accuracy is because during the feature space optimization during 
classification, additional information on the vertical structure of individual trees from LiDAR data was 
used in addition to the spectral information from the VHR imagery. An increase in classification accuracy 
of 8% was also reported by Holmgren et al., (2008) when integrating high density LiDAR data and high 
resolution aerial photograph for individual tree based classification. The reason for the increase in the 
classification accuracy is due to the fact that LiDAR CHM layer mitigates the shadow effect and relief 
displacement which are inherent in VHR imagery. For instance, Ke et al.,(2010) noted that classification 
accuracy increases by up to 20% when LiDAR derived topographic information including slope and 
aspect are used for classification. 
 
Compared to classification results of other studies where species classification was based on two or less 
classes, the classification accuracy obtained in this study is low. Many studies have reported good 
classification accuracy when tree species are grouped into three or less number of classes. For instance, 
Erikson (2004) reported an increase in classification results from 77% for four different species to 91 % 
when the tree species were grouped into two classes using an aerial image of 3 cm. Likewise, Tsendbazar 
(2011) also observed an increase in overall classification accuracy from 64.5% to 90.3% when five 
different tree species were grouped into two broad classes of broadleaved and needle leaved species. 
However, the higher accuracy obtained in other studies is because of the difference in the type of forest 
(plantation or mono-species stand and; broadleaved and conifer forests, time of image acquisition, the 
finer spatial resolution of images, etc). In general, the overall classification accuracy was satisfactory 
considering the fact that the image was acquired during the leaf shedding season in the month of 
November.  

5.4. Modelling and mapping of carbon stock 
Log transformed models were developed in this study by using the log transformed CPA and CHM height 
as the independent variables and the log transformed carbon as the dependent variable for Shorea robusta 
and Other tree species. Visualization of the scatter plots for dependent variable (carbon) and the single 
independent variables (CPA and CHM height) exhibited a non-linear relationship. Log transformation of 
the variables was carried out to correct for non-linearity and heteroscedascity. For trees, in particular, ideal 
allometry data are strongly heteroscedastic exhibiting increasing variation in biomass with increasing 
diameter (Chave, et al., 2005). Despite the non-linear relationship between dependent variable of carbon 
and single independent variables of CPA and CHM height, the multiplicative log transformed models were 
preferred over multiple non-linear regression in this study. It is because, fitting non-linear biomass 
allometry models produces systematic biases in estimating biomass from small diameter trees and leads to 
large errors in landscape biomass estimation from plot level dataset that are dominated by small trees 
(Mascaro et al., 2011). In this study, a similar characteristic of the forest stand was found with small trees 
with the mean DBH of 18 cm and mean height of 13 m for Shorea robusta and a mean DBH of 18 cm and 
mean height of 10 m for Other tree species. Moreover, the allometric equation used in this study for 
estimation of biomass from the field measured DBH and tree height was adapted from Chave et al., 
(2005), which assumes that log transformed diameter and height are linearly related.  
 
Several studies have used the multiplicative log transformed regression to estimate and biomass and tree 
volume in different forest types (Chave, et al., 2005; Lim, et al., 2003; Means et al., 2000; Takahashi et al., 
2010; Takahashi et al., 2005). For example, Means et al (2000) predicting the wood stem volume used the 
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regression fitted to natural logarithm of the response variable, since the dependent variable showed 
heteroscedasticity and an exponentially increasing curve when plotted against the best single independent 
variable. Similar situation were observed in this study when the dependent variable was plotted against the 
independent variables of CHM height and CPA, non linear relationship was observed. The reason for this 
observed relationship is that the study area comprises of both mature forests as well as young naturally 
regenerating forests. Shimano (1997) found that the relationship between DBH and CPA is non-linear in 
mature natural forest because the rate of increase in CPA decreases as the tree grows which is influenced 
by the competition with the neighbouring trees. Similarly, the tree trunk continues to grow at a reduced 
rate of increment in the later stage but CPA growth stabilises and become constant after diameter has 
reached certain growth (Shimano, 1997). Therefore, the partially observed non-linear relationship between 
the CPA and Carbon and; CHM height and Carbon in this study indicates some effect of competition for 
light, nutrients and space between neighbouring trees. However, linear relationship between DBH and 
crown diameter is also reported by other studies. For instance, Hemery et al., (2005) reported a strong 
linear relationship between DBH and crown diameter for trees within DBH range of 20-50 cm and a 
slight reduction of crown diameter growth for trees exceeding 50cm DBH. In this study, a large portion of 
the forest stand in the study area is relatively young naturally regenerating forest, while parts of the study 
area also represents mature forest stand with variations in DBH and crown sizes. In a young forest, the 
DBH and crown increases follow a linear relationship and as the tree matures, the tree crown increases in 
decreasing rate after the canopy starts touching each other (Shimano, 1997). Hence, multiplicative log 
transformed models were developed by log transforming both the dependent and independent variables.  
 
The coefficients of determination (R2) obtained in this study are 0.74 for Shorea robusta and 0.76 for Other 
tree species for the multiplicative log transformed regression models developed. The adjusted R2 obtained 
are 0.74 and 0.75 for Shorea robusta and Other tree species respectively for the model development. 
Validation of the model showed a R2 of 0.86 for Shorea robusta and 0.78 for Other tree species with a 
RMSE of 43 kg/tree for Shorea robusta and 44 kg/tree for Other tree species. The results obtained in this 
study are in line with the findings of other studies. For instance, Lim et al., (2003) predicting the wood 
volume and total aboveground biomass have obtained R2 of 0.86 and 0.78 respectively. Their models were 
based on the log transformed dependent variables of volume and biomass and the log transformed 
LiDAR derived height metrics in a temperate deciduous hardwood forests. Similarly, Takahashi et al., 
(2010) have obtained an Adjusted R2 of 0.95 and a RMSE percent of 34.3% when predicting stand volume 
using the multiplicative transformed log model with CPA and height from the combination of QuickBird 
and low density LiDAR in a Japanese cedar plantation.  
 
The total carbon stock estimated from the multiple regression modelling for the five CF was 36010 MgC 
in an area of 548 ha. The maximum carbon stock was found in Ludidamgage CF (14014 MgC) and the 
lowest in Shikhar CF (3543 MgC). Despite the large area in Ludidamgade CF (271 ha), the carbon stock 
per area was the least amongst the five CFs, because the forests in Ludidamgade CF is relatively young 
forest recovering from exposure to high deforestation. Baral (2011) have reported  an approximate carbon 
stock of 70 MgCha-1 in the tropical forests of Chitwan, Nepal. Similarly, the total carbon stock reported by 
Shah (2011) was estimated at 31 MgCha-1 in Ludidamgade CF. However, the carbon stock obtained in this 
study for Ludidamgade CF was higher at 51 MgCha-1.  

5.5. Up-scaling and the relationship between carbon and spectral reflectance of RapidEye imagery 
The carbon estimates from the integration of VHR GeoEye imagery and the LiDAR data were up-scaled 
to the 5 m spatial resolution of the RapidEye imagery as discussed in section 3.12.2. Although the 
methodology for up-scaling the carbon estimates from the integrated high resolution imagery and LiDAR 
data to a relatively coarser RapidEye image was developed, weak relationships were observed between the 
up-scaled carbon and the variables of the RapidEye image. The co-efficient of determination obtained for 
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NDVI, Red Edge NDVI and PC1 was low. The highest R2 (0.18) amongst the independent variables was 
obtained when carbon was regressed with PC1 and the lowest R2 (0.10) was for NDVI. Similarly, the 
relationship between the up-scaled carbon stock and the single individual bands of red edge and near 
infrared (NIR) were also weak. The co-efficient of determination (R2) obtained for red edge and NIR 
bands are 0.14 and 0.11 respectively.  
 
Studies on the relationship between the biomass/carbon estimates from the integration of VHR imagery 
and LiDAR and the spectral reflectance of a relatively coarser imagery have rarely been done. However, 
studies related to up-scaling forest stand height derived from LiDAR were carried out using mid-
resolution imagery such as Landsat-5 TM (Hudak, et al., 2002; Wulder & Seemann, 2003). For instance, 
Wulder & Seemann (2003) developed an empirical regression between LiDAR estimated height as a 
dependent variable and the co-georegistered Landsat TM DN values as the independent variable. They 
found a weak relationship between LiDAR derived heights and Landsat TM image with a R2 of 0.26. In 
this study, when the carbon estimates from VHR and LiDAR data as a dependent variable was regressed 
against the PC1 reflectance as an independent variable, a weak relationship with a R2 of 0.18 was observed. 
Similar weak relations were observed between the carbon estimates and the NDVI and Red Edge NDVI. 
Previous studies have similar findings stating that vegetation indices are not a good predictor of total 
biomass in uneven aged and mixed broadleaved forests (Hall et al., 1995; Lu, et al., 2004; Sader et al., 
1989). Hall, et al (1995) reported that the vegetation indices using the red and near infrared bands were 
not suitable predictors to study the forest attributes, because of weak correlation with certain vegetation 
parameters especially biomass. Similarly, Lu et al (2004) found a weak relationship between aboveground 
biomass and NDVI with a correlation coefficient (r) in the range of 0.15-0.45 in the tropical forests. The 
main cause of weak relationship between the biomass and vegetation indices as reported in literature is the 
saturation of biomass in dense forest canopies. Steininger (2000) found that the canopy reflectance 
saturated when the biomass reached about 15kg/m2 which makes biomass estimation difficult in mature 
forests. When saturation occurs, any further increase in biomass does not affect the values of the 
vegetation indices. Therefore, the vegetation indices derived from red, red edge and the NIR bands from 
RapidEye image were not suitable to establish a relationship between up-scaled carbon estimates and 
spectral reflectance for up-scaling to larger areas. 
 
The relationship between the carbon and the single bands of RapidEye image (red edge and NIR bands) in 
this study were found to be negatively linear with R2 of 0.14 for red edge and 0.11 for NIR band. Several 
previous studies have similar findings when assessing the relationship between the biomass and the single 
bands in the visible and infrared spectrum (Lu, et al., 2004; Ripple et al., 1991; Roy & Ravan, 1996). Roy et 
al., (1996) found that the biomass was negatively correlated with the single band values in visible and NIR 
spectrum. They have reported a strong negative relationship between biomass and all the bands of 
Landsat TM with R2 ranging from 0.49 to 0.66 except the NIR band (Band 4), which showed a weak 
negative relationship with a R2 of 0.09. The study conducted by Lu et al., (2004) also reported similar 
findings with a weak negative relationship between the aboveground biomass and NIR band. However, 
the relationship between the carbon and the red edge band was relatively higher with a co-efficient of 
determination of 0.14. This could be due to that fact that red edge band is more sensitive to vegetation 
than the NIR band(Wu, et al., 2009). 
 
There are other possible reasons for the low co-efficient of determination (R2) between the up-scaled 
carbon and the spectral reflectance of the RapidEye image. The optical sensors can only detect the 
horizontal (spatial extent) of the forest canopy and cannot detect how much biomass is found in the 
vertical dimensions (height) or under a canopy. The biomass in the stem that is hidden from the sensor 
comprises majority of the aboveground biomass. The aboveground biomass beneath the canopy in the 
woody stem of a tree is estimated to comprise about 40% to 93% of the total biomass (Montagu et al., 



UPSCALING THE ESTIMATED FOREST CARBON STOCK FROM VHR SATELLITE IMAGE AND AIRBORNE LIDAR TO RAPIDEYE SATELLITE IMAGE 
 

48 

2005). Image co-registration could have also affected the relationship between the carbon and the spectral 
reflectance. The accuracy for image to image co-registration between the VHR GeoEye image and the 
RapidEye image was achieved with a RMSE of 1.3m. However, there still existed some unsystematic shifts 
in the images. This co-registration error could have caused some discrepancies in not comparing the 
spectral response of the RapidEye with the matching carbon estimates from the integration of GeoEye 
image and the LiDAR data. Other sources of uncertainties include errors in the generation of the 
reference carbon map from the integration of VHR imagery and LiDAR data. The temporal difference 
between the image acquisition dates (GeoEye in November 2009 and RapidEye in April 2011) may have 
also contributed to weak relationship between the carbon and the spectral reflectance of RapidEye image.  
 
In general, this research attempted to develop a method for up-scaling carbon estimated from the 
combined VHR satellite imagery and LiDAR data over limited areas to a larger areas using relatively 
coarser optical satellite imagery as a spatial stratification. The method was developed, however, the 
relationship between the variables (NDVI, RedEdge NDVI, PC1, Red Edge and NIR bands) and the 
carbon/biomass was not reasonable to estimate the carbon at a larger scale.  
 

5.6. Sources of Uncertainty: Factors of Error 
The success of modeling and estimating aboveground carbon from the extracted tree parameters of the 
remotely sensed data either at individual tree level or stand level will depend on how the sources of error 
can be minimized at each level of carbon estimation protocol. There are several potential sources of error 
such as plot location error, sampling errors, field measurement errors, data processing errors, 
segmentation and species classification errors, and the errors associated with species and site specific 
allometric equations. In addition, the co-registration errors in using datasets from multiple sources also 
amplify uncertainties in modeling and estimating aboveground carbon stock. Errors in each step of the 
implementation of this research are discussed in the subsequent paragraphs.   
 
Field measurement and data processing errors are common in remote sensing data analysis. In the field, 
measurement errors include incorrect measurement of the tree parameters and the accuracy of the 
instruments used i.e. the accuracy of the GPS to locate the centre of plot and the accuracy of vertex 
hypsometer to measure tree height. The strength of signal received by the handheld GPS depends on the 
weather conditions and the density of the canopy. During the cloudy days and in the dense canopy forest, 
weak satellite signals were received posing difficulties to locate the centre of the sampling plots. Human 
errors can also occur during the field data collection phase. For instance, the difficulty in identifying the 
actual tree tops in a dense canopy forest obstructed by branches leads to measuring the heights of wrong 
trees. Further, sampling uncertainties will occur when only a fraction of the population is measured in an 
inherent natural variability.  
 
In all automatic image segmentation algorithms, the basic assumption is that each tree has a distinct 
boundary without any overlap between neighbouring tree crowns. However, such situations are rarely 
found in the naturally regenerating forests. In some cases, the tree crowns are found intertwined and 
clustered with the neighbouring trees. Therefore, the individual tree crown delineation from remotely 
sensed data leads to significant errors in the number of crowns delineated and its corresponding crown 
sizes due to over segmentation and under segmentation (Leckie, et al., 2003; Wulder et al., 2000). The view 
angle of the sensor during image acquisition also influences the shape of tree crown and its segmentation 
accuracy (Leckie et al., 2005). For example, due the variation in the position of the sun, the shape of tree 
crowns looked quite different from what is seen from the images. The tree crown appears circular in shape 
when the view angle is nearer to nadir and the solar elevation angle is high; and the tree crown displayed 
crescent shape in off nadir images (Leboeuf, et al., 2007). The time difference between the field data 
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collection and the image data acquisition can also influence the results of tree crown segmentation. The 
VHR imagery was acquired in November 2009, while the field work was carried out in October 2011, 
approximately after a time lag of two years. Although the tree growth during the lag period may not be 
significant, the crown size on the image looked slight different from the tree crown size measured in the 
field. 
 
Classification errors can also influence the carbon estimation results, when trees are classified into 
different species. If a particular tree is classified as other tree species and vice versa, it introduces error in 
the estimation of biomass as different tree species have different wood specific gravity. The inclusion of 
wood specific gravity is an important parameter in the allometric equation as it leads to improvement in 
the AGB estimation model (Chave, et al., 2005). The presence of shadow is another important factor that 
influences the segmentation results and subsequently leads to the classification error. The shadow effect is 
more common in mountainous terrain and shadow particularly obscures the canopy area (Gonzalez, et al., 
2010; Wulder & Seemann, 2003). Therefore, classification error leads to uncertainties in the estimation of 
biomass in the subsequent stages such as developing the carbon estimation regression models. 
 
Similarly, the choice of allometric equation is another important factor that influences the carbon 
estimation models. Since the site and species specific allometric equation for the study area were not 
available, the allometric equation used in this study was adapted from Chave et al., (2005) which was 
developed as a general allometric equation for moist mangrove forest stands. Preferably, species specific 
and site specific models should be used to reduce the errors in biomass/carbon estimation (Cairns et al., 
2003). It is because the species composition and stand structure differs significantly between secondary 
forest and primary forest. As mentioned in section 5.4, the study area comprised of both primary and 
secondary forests.   
 
Limitations of this study 

1. The image to image co-registration between VHR GeoEye image and the LiDAR derived CHM 
was not satisfactory. If the ground control points are acquired during the fieldwork campaign, the 
co-registration accuracy can be improved which would reduce the errors.  
 

2. The models were developed for Shorea robusta and Other tree species. Other tree species 
comprises of different tree species, which were grouped into one class due to difficulties in 
identifying adequate number of samples on the image. Species specific models would enhance 
better performance of the carbon estimation models.  
 

3. Site specific and species specific allometric equations were not available for biomass estimation in 
the study area and there are uncertainties from using non site and species specific allometric 
equation.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusion 
 
The overall objective of this study was to model aboveground carbon stock by integration of VHR 
GeoEye image and airborne LiDAR data and, upscale the results (carbon estimates) to a relatively coarser 
RapidEye imagery. In conjunction with the specific research objectives and questions, following 
conclusions were derived from this study.  
 
How accurately can the tree crowns be segmented from the combined GeoEye and LiDAR? 
The segmentation results obtained from the combined GeoEye and LiDAR from the D goodness 
measure method showed an accuracy of 70% (D value=0.30) and the 1:1 correspondence method showed 
an accuracy of 74%. Therefore, the combination of GeoEye image and LiDAR can be used to obtain 
accurate tree crown delineation for modelling aboveground carbon. However, the hypothesised accuracy 
of 75% could not be achieved due to the reasons mentioned in section 5.2.  
 
 
What is the relationship between CPA, height and carbon in the study area? 
There is a significant relationship between CPA, height and carbon at 95% confidence level (p<=0.05). 
The log transformed multiplicative regression models resulted in co-efficient of determination (R2) of 0.86 
and 0.78 for Shorea robusta and Other tree species respectively.  
 
 
How accurate can the aboveground carbon stock be estimated using CPA and height from VHR 
imagery and LiDAR data in the study area? 
Validation of the model showed that the aboveground carbon can be estimated with a reasonable accuracy 
with a RMSE of 43 kg/tree and a RMSE percent of 32% for Shorea robusta and a RMSE of 44kg/tree with 
a RMSE percent of 34% for Other tree species.   
 
 
How estimated carbon from the integration of VHR satellite image and airborne LiDAR data can 
be up-scaled to the RapidEye satellite image of 5 m resolution?  
GIS aggregation technique was used to up-scale the amount of carbon mapped in 100 pixels of 0.5 m 
resolution VHR satellite image and airborne LiDAR to one pixels value of the same grid of RapidEye 
satellite image of 5 m spatial resolution. 
 
 
What/how strong is the relationship between up-scaled carbon stock and the spectral reflectance 
of RapidEye image?  
Weak relationships between the up-scaled carbon and the spectral reflectance of the RapidEye image were 
observed. The co-efficient of determination (R2) obtained for NDVI, Red Edge NDVI and PC1 are 0.10, 
0.12 and 0.18 respectively. Similarly, the co-efficient of determination (R2) for the individual bands of red 
edge and NIR are 0.14 and 0.11 respectively. The co-registration error coupled with the biomass 
saturation problem in broadleaved forest could have influenced the weak relationship.  
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6.2. Recommendation 
In general, the results of this research demonstrated the usefulness of integrating VHR satellite imagery 
and low density airborne LiDAR data for modelling and estimating the aboveground carbon with an 
acceptable accuracy. The methodology for up-scaling carbon from the combined VHR imagery and 
LiDAR data to a relatively coarser RapidEye image was developed, but up-scaling the carbon stock to a 
larger scale could not be carried out due to weak relationship between up-scaled carbon stock and the 
spectral reflectance. Nevertheless, the methodologies developed in this research are expected to contribute 
towards successful implementation of carbon crediting mechanisms such as REDD in the developing 
countries.  
 
Errors in the development of models for estimation of carbon from VHR and LiDAR data should be 
reduced. Firstly, the co-registration between the datasets should be improved when using datasets from 
multiple sources. Secondly, for higher segmentation and classification accuracy, preferably VHR images 
acquired during tree growing season (summer-early autumn) should be used in order to capture variability 
in their structure, shape, colour of leaves, etc. The temporal difference between the acquisitions of 
different datasets should not be long especially when integrating data from multiple sources.  

For up-scaling the carbon derived from VHR satellite imagery and airborne LiDAR data to a coarser 
imagery, cross-polarized L-band radar image of 12.5 m ALOS Pal-SAR images can be used. If a cross- 
polarized L-band (i.e. ALOS Pal-SAR) of 12.5 meter resolution would have been used instead of 
RapidEye image, a reasonable relationship could have been established with the forest biomass/carbon. 
Thus, up-scaling would be done to even relatively coarser pixel size of 12.5 meters. Satellite images with 
middle infrared (MIR) bands such as Landsat or Aster look promising too. A non-forest mask for the 
coarser satellite images can be generated to mask out non vegetated areas in the coarser resolution satellite 
images. 
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APPENDICES 
Appendix 1: Meta data of RapidEye Imagery 

 

tile Id latitude longitude 
illumination 

AzimuthAngle zenith acquisitionDateTime 
azimuth 

Angle 

4551904 27.74195769 84.3168248 158.142 16.67825 
2011-04-22 

T05:55:48.259723Z 278.24 

4551905 27.74646548 84.5601024 158.9247 16.60403 
2011-04-22 

T05:55:47.697493Z 278.22 

4552005 27.96292758 84.5552488 159.1211 16.8114 
2011-04-22 

T05:55:44.279129Z 278.24 
 
 
 
 

Appendix 2: List of tree species found in the study area 

S.N Local name Scientific name 
1 Sal Shorea robusta 
2 Chilaune Schima wallichii 
3 Bhalayo Rhus wallichii 
4 Barro Terminalia bellirica 
5 Aap Mangifera indica 
6 Kyamuna Cleistocalyx operculata 
7 Karam Adina cordifolia 
8 Saaj Terminalia alata 
9 Kumbho Cochlospermum religiosum 

10 Januma Syzygium cumini 
11 Katus Castanopsisindica 
12 sallo Pinus roxburghii 
13 Khirro Sapium insigne 
14 Bot Dhayaro Lagerstroemia parviflora 
15 Mainkanda Xeromphis spinosa 

16 Khaniyo Ficussemi cordata 
17 Kaiyo Wendiandia puberula 
18 Mauwa Engelhardia spicata 
19 Amaro Spondias pinnata 
20 Chuwa Phlogacanthus thyrsiflorus 
21 Putalikath  Not available 
22 Anger  Lyonia ovalifolia 
23 Dungre  Ficus benjamina 
24 Kuhelo Litsea polyantha 
25 Panchpate  Ficus racemosa 
26 Taniyo  Not available 
27 Khallo  Albizia lebbek 
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Appendix 3: Field data collection sheet 

Name of Recorder: Date: 
Stratum ID: Sample Plot ID: 

Bearing from the road 
Bearing for the 1st tree from the 

centre of the plot Plot centre 
X     X     X   
Y     Y     Y   

Angle     Angle     

Slope:     
Plot 

radius: Aspect: Altitude: Crown density (%):     

Sl.No Tree Species 
DBH 
(cm) 

Crown 
Diameter 

(m) 
Height 

(m) 
Intermingled 
tree crowns Remarks 

1             
2             
3             
4             
5             
6             
7       

 
 

Appendix 4:  Results from regression analysis of Field Height Vs CHM Height 
 
 

Regression statistics Field Height                 ANOVA      

Multiple R 0.863451   df SS MS F Sig. F 
R Square 0.745548 Regression 1 6579.135 6579.135 1195.443 2.5E-123 
Adjusted R Square 0.744924 Residual 408 2245.432 5.50351   
Standard Error 2.345956 Total 409 8824.567       

Observations 410 
Co-efficients 

Intercept 0.570091 
Slope (Field Height) 0.896029 

p-value 
Intercept 0.198021 
Slope (Field Height) 2.5E-123 

 
Relationship: t calculated is 34.57, t critical is 1. 96. Since t calculated > than t critical, the relation is 
statistically significant at 95% confidence level.  
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Appendix 5:  Histogram for Shorea robusta 
  
 

a. Carbon (kg/tree) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. CPA (m2)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. CHM height (m)           
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Appendix 6:  Histogram for Other tree species 
 

a. Carbon (kg/tree) 
 

 
 
 
 
 
 
 
 
 
 
 
 

b. CPA (m2) 

 
 
 
 
 
 
 
 
 
 
 
 

c. CHM height (m)   
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Appendix 7: Test for significance for multiple regression models 
 
 
 

Shorea robusta 

  

Carbon stock explained by CPA & Height 

df SS MS F Significance F 
Regression 2 110.3806 55.19032 275.6592 6.78E-57  
Residual 190 38.04031 0.200212   
Total 192  148.421       

Other tree species 

  

Carbon stock explained by CPA & Height 

df SS MS F Significance F 
Regression 2 27.83156 13.91587 55.15583 2.12E-11 
Residual 34 8.578179 0.252299 

Total 36 36.40974       
 
 
F- test for Shorea robusta 
For Shorea robusta, F calculated is 275.6592 and the F critical from the F table is 3.043 at 95% confidence 
level. Since the F calculated is greater than the F critical, the model was statistically significant at 95 % 
confidence level. 
 
F- test for Other tree species 
For Other tree species, F calculated is 55.15 and the F critical from the F table is 3.259 at 95% confidence 
level. Since the F calculated is greater than the F critical, the model was statistically significant at 95% 
confidence level.  
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Appendix 8: Carbon Stock Map of the individual CF 
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Appendix 8: Carbon Stock Map of the individual CF (contd..) 
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Appendix 8: Carbon Stock Map of the individual CF (contd..) 
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Appendix 9: Test of significance for regression models for up-scaling 
 
Carbon as explained by NDVI 

 df SS     MS       F Significance F 
Regression 1 2832110 2832110 258.7232 5.07E-55  
Residual 2124 23250335 10946.49   
Total 2125 26082445       
Carbon as explained by Red Edge NDVI 

 df SS      MS F Significance F 
Regression 1 2898684 2898684 360.7608 3.36E-75 
Residual 2473 19870360 8034.921 

Total 2474 22769045       
Carbon as explained by PC1 
 df SS MS F   Significance F 
Regression 1 4457199 4457199     443.9465       1.57E-89 
Residual 2092 21003567 10039.95   
Total 2093 25460767    

Carbon as explained by Red Edge band   
 df SS MS F   Significance F 
Regression 1 3867023 3867023     365.47 2.02E-75 
Residual 2171 22970960 10580.82   
Total 2172 26837983    

Carbon as explained by NIR Band  
 df SS MS F   Significance F 
Regression 1 3202908 3202908 274.9525 3.01E-58 
Residual 2179 25383069 11648.95   
Total 2180 28585978    

 
 
F critical for NDVI  = 2.999959 
F critical for Rededge NDVI  = 2.999363  
F critical for PC1   = 2.999845 
F critical for red edge band  = 2.999872 
F critical for NIR band   = 2.999908 
 
Since the F calculated is greater than the F critical, all the models were statistically significant at 95% 
confidence level. 
 


