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ABSTRACT 

Traditional methods of counting wildlife (e.g., ground or aerial survey) not only disturb the animals but 
also can be exceedingly time consuming, labour intensive and costly. In contrast, high resolution satellite 
images, which have the advantage of covering large areas, short cycling time, silence, and demanding less 
manpower, offer an alternative method to support animal surveys in the in open savannahs. However, the 
question about whether current high resolution satellite images are capable of capturing medium to large-
sized herd animals such as wildebeest, zebra and buffalo still remain unknown. The present study was 
conducted in an attempt to map and estimate the population sizes of wildlife from the high resolution 
GeoEye-1 satellite images in the Masai Mara National Reserve. Two different image classification 
approaches, i.e. pixel-based approach and object-based approach have been selected to evaluate the 
capacity of GeoEye-1 imagery to detect animals. Besides, we analysed the factors affecting the 
performance of the two approaches and compared the performance of pixel-based and object-based 
approaches in the areas with different animal distribution. We successfully accomplished the objective of 
mapping wildlife in open savannahs. Specifically, we managed to detect the presence of wildlife in the pilot 
study area and give an estimation of the population size. Both image classification approaches produced 
satisfactory results in automated recognition of animals in the pilot study area. The producer’s accuracy 
ranged from 84.2% to 88.2% and the user’s accuracy ranged from 85.0% to 92.5% by using pixel-based 
and object-based approaches respectively. Statistical analysis indicates that the density of animals did not 
affect the accuracy of both pixel-based and object-based approach, and there is no significant difference 
between the performance of pixel-based and object-based approaches in user’s accuracy and population 
estimation. However, the pixel-based approach was proved having better producer’s accuracy than object-
based. We conclude that high resolution GeoEye-1 satellite imagery is suitable for mapping medium to 
large-sized wildlife as well as population estimation in open savannahs, but not ready for counting 
absolute number of animals. In addition to the conclusion, we also make recommendations regarding the 
application fields of the pixel-based and object-based approaches for mapping wildlife in open savannahs 
applied in this study. 
 



ii 

ACKNOWLEDGEMENTS 

I appreciate the EU Erasmus Mundus External Co-operation Window (China Lot) providing me the 
scholarship to study in the Faculty of Geo-information Science and Earth Observation (ITC), the 
University of Twente, which broadened and deepened my knowledge in various fields, including 
ecological and environmental issues, remote sensing and image processing. This thesis would not have 
been possible without the guidance and continuous support from many people who in one way or another 
contributed to the preparation and completion of this study. 
 
First and foremost I offer my sincerest gratitude to my first supervisor, Dr. Tiejun Wang, for introducing 
me such an exciting research topic and teaching me how to conduct an independent scientific research, 
whose sincerity and encouragement I will never forget. Without his support, I would not have gone so far. 
I am grateful beyond words for his continuous encouragement and help. One simply could not wish for a 
better or friendlier supervisor. 
 
I am truly indebted and thankful to Prof. Dr. Andrew Skidmore, my second supervisor, for his insightful 
advices and suggestions, which are crucial to the entire study. Without his guidance, I would have been 
struggling to make right decision for this study. I cannot thank him enough for all the support he gave me.  
 
My special thanks should be given to Dr. Jan de Leeuw from the International Livestock Research 
Institute in Kenya, for providing me the expert knowledge regarding visual interpretation of the wildlife in 
the study area on the images, which is extremely valuable for the conducting this study. Besides, I also 
appreciate his remarkable ideas which have enlightened me. 
 
I am grateful to Dr. Mohamed Said from the International Livestock Research Institute in Kenya and Mr 
Bernard Kuloba from the Kenya Wildlife Service, who contributed a lot in visual interpretation of the 
images as local experts. I am also obliged to many of the colleagues who supported me in completion of 
the study, especially Ms Qifei Han, Mr Martin Musangu and Mr Shaoqing Lu. 
 
I would like to thank the International Livestock Research Institute in Kenya for providing us the useful 
aerial photograph on the study area, and I gratefully acknowledge the GeoEye Foundation, which supplied 
the GeoEye-1 satellite imagery used in this study. 
 
Finally, I am forever indebted to my parents, for their unflagging love and support throughout my life, 
without whom all the achievements in my life would not have been possible. 
 
   



iii 

TABLE OF CONTENTS 
 
 
1. Introduction ........................................................................................................................................................... 1 

1.1. Background .............................................................................................................................................................. 1 
1.2. Feasibility of this study ........................................................................................................................................... 2 
1.3. Challenges of confounding factors ....................................................................................................................... 3 
1.4. Problem statement .................................................................................................................................................. 5 
1.5. Research objective .................................................................................................................................................. 5 
1.6. Research questions .................................................................................................................................................. 6 
1.7. Research hypothesis ................................................................................................................................................ 6 
1.8. Thesis outline ........................................................................................................................................................... 6 

2. Materials and methods ......................................................................................................................................... 8 
2.1. Study area ................................................................................................................................................................. 8 
2.2. Satellite imagery ....................................................................................................................................................... 8 
2.3. Image pre-processing ............................................................................................................................................. 8 
2.4. Pilot study area selection ...................................................................................................................................... 11 
2.5. Visual interpretation ............................................................................................................................................. 12 
2.6. Pixel-based approach ............................................................................................................................................ 18 
2.7. Object-based approach ........................................................................................................................................ 21 
2.8. Accuracy assessment............................................................................................................................................. 25 

3. Results .................................................................................................................................................................. 29 
3.1. Visual interpretation ............................................................................................................................................. 29 
3.2. Classification of pixel-based approach ............................................................................................................... 29 
3.3. Classification of object-based approach ............................................................................................................ 36 
3.4. Comparison between the results of pixel-based approach and object-baed approach................................ 42 

4. Discussion ........................................................................................................................................................... 46 
4.1. Accuracy ................................................................................................................................................................. 46 
4.2. Stability of performance ....................................................................................................................................... 46 
4.3. Population estimation ........................................................................................................................................... 46 
4.4. Spatial distribution patterns ................................................................................................................................. 46 
4.5. Advantages of high resolution satellite imagery for mapping wildlife ........................................................... 47 
4.6. Limitations of high resolution satellite imagery for mapping wildlife ........................................................... 47 

5. Conclusions and recommendations ................................................................................................................ 48 
5.1. Conclusions ........................................................................................................................................................... 48 
5.2. Recommendations ................................................................................................................................................ 48 

 
 



iv 

LIST OF FIGURES 
Figure 1 Counting teams in the Mara count 2002 (Reid, 2003) ............................................................................. 2 
Figure 2 (a) Panchromatic IKONOS satellite image at 1m resolution showing the cattle(Laliberte & 
Ripple, 2003) and (b) Panchromatic GeoEye-1 satellite image at 0.5m resolution showing the wildebeest .. 4 
Figure 3 Shadow of the trees (false colour image) ................................................................................................... 4 
Figure 4 Shadow of a herd of zebra and wildebeest, photographed by Robert B. Haas ................................... 5 
Figure 5 The overall framework of using high resolution satellite imagery for mapping wildlife in open 
savannahs ........................................................................................................................................................................ 7 
Figure 6 Location of the study area on the GeoEye-1 satellite imagery............................................................... 8 
Figure 7 Original and pan-sharpened images produced by different fusion techniques ................................. 10 
Figure 8 Pilot study area ............................................................................................................................................. 12 
Figure 9 A snapshot of large ungulates on the open savannahs ("Elephant, wildebeest and zebra," 2012) 13 
Figure 10 The great annual migration of wildebeest form Serengeti to Masai Mara, photographed by Felix 
Borner ........................................................................................................................................................................... 13 
Figure 11 Distribution of animals and surrounding landscapes in the feature space, Pilot_No.1 ................. 15 
Figure 12 Distribution of animals and surrounding landscapes in the feature space, Pilot_No.2 ................. 15 
Figure 13 Wildebeest on original aerial photograph and resampled aerial photograph ................................... 16 
Figure 14 Two validation areas selected from the pilot study area ..................................................................... 18 
Figure 15 The framework of pixel-based approach ............................................................................................... 19 
Figure 16 The framework of object-based approach ............................................................................................ 22 
Figure 17 Proportion of the area of animals and the area of non-animals in Pilot_No.1 and Pilot_No.2 .. 27 
Figure 18 Detected wildlife in the area of Pilot_No.1 by pixel-based approach .............................................. 30 
Figure 19 Detected wildlife in the area of Pilot_No.2 by pixel-based approach .............................................. 30 
Figure 20 Detected animals by using pixel-based approach in the validation area of Pilot_No.1 ................. 31 
Figure 21 Detected animals by using pixel-based approach in the validation area of Pilot_No.2 ................. 31 
Figure 22 Comparison between a snapshot of animals in Pilot_No.1 and three spatial distribution patterns
 ........................................................................................................................................................................................ 36 
Figure 23 Detected wildlife in the area of Pilot_No.1 by object-based approach ............................................ 36 
Figure 24 Detected wildlife in the area of Pilot_No.2 by object-based approach ............................................ 37 
Figure 25 Detected animals by using object-based approach in the validation area of Pilot_No.1 .............. 37 
Figure 26 Detected animals by using object-based approach in the validation area of Pilot_No.2 .............. 38 
Figure 28 Comparison between a snapshot of animals in Pilot_No.2 and three spatial distribution patterns
 ........................................................................................................................................................................................ 42 
Figure 29 Population estimation results by pixel-based approach (PBA) and object-based approach (OBA)
 ........................................................................................................................................................................................ 45 
 



v 

LIST OF TABLES 
Table 1 List of body sizes of dominant species on open savannahs in East Africa ........................................... 3 
Table 2 Characteristics of Pilot_No.1 and Pilot_No.2 ......................................................................................... 11 
Table 3 JM distance between animals and the surrounding landscapes including shadow in Pilot_No.1 ... 14 
Table 4 JM distance between animals and the surrounding landscapes in Pilot_No.2 ................................... 14 
Table 5 Status of the five interpreters ..................................................................................................................... 17 
Table 6 Regions of interest selected in Pilot_No.1 and Pilot_No.2 .................................................................. 20 
Table 7 Settings of segmentation parameters for refining the study area ......................................................... 23 
Table 8 Settings of segmentation parameters for automated recognition of animals ..................................... 23 
Table 9 Rule set of object-based classification on Pilot_No.1 and Pilot_No.2 ............................................... 24 
Table 10 Optimized feature space for nearest neighbor classification .............................................................. 24 
Table 11 Description of the rule set ........................................................................................................................ 25 
Table 12 Features exported with the object-based classification result of animals ......................................... 25 
Table 13 Area of animals and area of non-animals in the classification results, Pilot_No.1.......................... 26 
Table 14 Area of animals and area of non-animals in the classification results, Pilot_No.2.......................... 26 
Table 15 Error matrix ................................................................................................................................................ 27 
Table 16 Results and descriptive statistics of visual interpretation .................................................................... 29 
Table 17 Accuracy report of pixel-based approach in Pilot_No.1 ..................................................................... 32 
Table 18 Accuracy report of pixel-based approach in Pilot_No.2 ..................................................................... 32 
Table 19 Samples of producer’s accuracies of pixel-based approach ................................................................ 33 
Table 20 Samples of user’s accuracies of pixel-based approach ......................................................................... 33 
Table 21 Test for equality of variances for the samples of accuracies of pixel-based approach ................... 33 
Table 22 t-test of the samples of accuracies of pixel-based approach ............................................................... 33 
Table 23 Upper limit of the means of omission and commission errors of pixel-based approach on 
Pilot_No.1.................................................................................................................................................................... 34 
Table 24 Upper limit of the means of omission and commission errors of pixel-based approach on 
Pilot_No.2.................................................................................................................................................................... 34 
Table 25 Population size estimation by using pixel-based approach ................................................................. 35 
Table 26 Spatial statistics of the result by pixel-based approach ........................................................................ 35 
Table 27 Accuracy report of object-based approach in Pilot_No.1 ................................................................... 38 
Table 28 Accuracy report of object-based approach in Pilot_No.2 ................................................................... 39 
Table 29 Samples of producer’s accuracies of object-based approach .............................................................. 39 
Table 30 Samples of user’s accuracies of object-based approach ....................................................................... 39 
Table 31 Test for equality of variances for the samples of accuracies of object-based approach ................. 40 
Table 32 t-test of the samples of accuracies of object-based approach ............................................................. 40 
Table 33 Upper limit of the means of omission and commission errors of object-based approach on 
Pilot_No.1.................................................................................................................................................................... 40 
Table 34 Upper limit of the means of omission and commission errors of object-based approach on 
Pilot_No.2.................................................................................................................................................................... 41 
Table 35 Population size estimation by using object-based approach ............................................................... 41 
Table 36 Spatial statistics of the result by object-based approach ...................................................................... 42 
Table 37 Summary of the producer’s accuracies of pixel-based and object-based approaches ..................... 43 
Table 38 Test for equality of variances for the producer’s accuracies of pixel-based and object-based 
approaches ................................................................................................................................................................... 43 
Table 39 t-test of producer’s accuracies of pixel-based and object-based approaches ................................... 43 



vi 

Table 40 Summary of the user’s accuracies of pixel-based and object-based approaches .............................. 44 
Table 41 Test for equality of variances for the user’s accuracies of pixel-based and object-based 
approaches .................................................................................................................................................................... 44 
Table 42 t-test of user’s accuracies of pixel-based and object-based approaches ............................................. 44 
Table 43 Population estimation results by pixel-based and object-based approaches ..................................... 45 
Table 44 Test for equality of variances of population estimation results by pixel-based and object-based 
approaches .................................................................................................................................................................... 45 
Table 45 t-test of population estimation results by pixel-based and object-based approaches ...................... 45 
 
 
 



EVALUATING HIGH RESOLUTION GEOEYE-1 SATELLITE IMAGERY FOR MAPPING WILDLIFE IN OPEN SAVANNAHS 

1 

1. INTRODUCTION 

1.1. Background 
Biodiversity, including wildlife is decreasing at alarming rates all around the planet. According to a recent 
survey conducted by the International Union for the Conservation of Nature (IUCN), globally nearly a 
fourth of all mammals species are extinct or threatened (Vié, Hilton-Taylor, & Stuart, 2009). For example, 
nearly 70% of the wildlife has been lost from 1976 to 1996 in the Mara part of the Serengeti-Mara 
ecosystem (Njuguna, Wilson, & Lamprey, 2003). Monitoring of wildlife distribution and population 
dynamics is therefore essential for biodiversity conservation. In fact, wildlife managers, conservationists, 
and policy-makers all are interested in indicators which incorporate the information about population 
status and trend of multiple species (Mawdsley & O'Malley, 2009). For most managers, estimates of 
population totals are viewed as the most important information obtained from wildlife surveys (Khaemba 
& Stein, 2002).  
 
Generally, accurate estimates of wildlife populations are important for the following reasons. First, the 
richness of wildlife is an important indicator for accessing the performance of biodiversity conservation 
(O'Brien, 2010; Vierikko et al., 2010). Second, wildlife tourism contributes a great portion of the national 
income of many countries, especially in Africa. For example, mainly based on the abundance of wildlife, 
tourism in Tanzania constitutes 7.5% of country’s GDP, 25% total export earnings, and second leading 
foreign exchange earner (Wade, Mwasaga, & Eagles, 2001). Third, sustainable management of wildlife 
resources in regional development also requires a good understanding of population dynamics of the 
species (Federico & Canziani, 2005). 
 
Traditional methods used for counting wildlife like ground or aircraft survey have many problems 
(Fleming & Tracey, 2008). First of all, it is exceedingly time consuming, labour-intensive and costly. 
Moreover, sometimes the counting teams in field survey could experience challenges (Figure 2). The most 
recent population census for Mara ecosystem of eastern Africa is of the Mara count 2002, which involved 
22 vehicle counting teams, 3 aircraft counting teams, 20 organisations and 84 individuals (Njuguna, et al., 
2003). Figure 1 (Reid, 2003) show some details of the Mara count 2002. Though some of current census 
methods can guarantee relatively high accuracy, however, for wildlife biologists, balancing the need for 
accurate estimates of wildlife populations with survey costs is still going to be a great challenge (Noyes, 
Johnson, Riggs, Schlegel, & Coggins, 2000). Second, the results of traditional surveying method are not 
very reliable due to the bias and large standard error of the survey result (Quang & Lanctot, 1991; Samuel, 
Steinhorst, Garton, & Unsworth, 1992). Therefore, the existing methods are badly needed to be improved.  
 
Contrary to traditional way of animal surveying, the use of satellite imagery to count animals has three 
main advantages. First of all, satellites have wider covering area than traditional ground or aero survey, 
which makes it possible to finish animal survey in a short time using satellite imagery. Second, most 
animals are sensitive to disturbance by human beings (Edwards & Abivardi, 1998; Taylor & Knight, 2003) 
and also to low-flying airplanes because of the noise of the engine. This leads to another great advantage 
of using satellite imagery—silence. The survey can be done without disturbing animals and therefore the 
result potentially can be more accurate than with methods which disturb the animals. Third, using 
remotely sensed imagery is less manpower demanding than using traditional way (Laliberte & Ripple, 
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2003). All these points mentioned above make using satellite imagery can be an alternative method to 
support the animal survey in the large, open, and remote areas.  
 
Though there are many advantages in using satellite imagery to conduct animal survey, we do, however, 
have to be able to realize automated recognition of animals on the high resolution satellite imagery. This is 
a key issue for counting animals. Given that few studies have been made to identify animal objects in 
natural areas using high resolution satellite imagery, in addition to the research has been done about 
counting or recognizing animals, it may be wise for us to also refer to some relevant studies in other areas. 
 

  
 

   
 
 
Figure 1 Counting teams in the Mara count 2002 (Reid, 2003) 

1.2. Feasibility of this study 
Pixel-based classification methods using spectral reflectance to identify interest objects are being widely 
applied in the field of remote sensing. Now, with the development of remote sensing technologies, more 
and more studies were made with high resolution imagery. For example, GeoEye-1 high resolution 
satellite imagery was used to assess canopy mortality (Dennison, Brunelle, & Carter, 2010). The average 
canopy diameter of the trees in the study was 2.4 m, which is similar to the body length of large mammals 
on the open savannahs. Since large mammals and trees are similar in size, and they have distinct spectral 
signature, the animals could potentially be identified using pixel-based approach. 

Counting teams working Field survey challenges 

Counting teams briefing the members on tasks Counting teams ready to start
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Object-based classification and feature extraction from high resolution satellite images is an active research 
topic in the field of photogrammetry, and it has been applied primarily in urban areas for classification and 
extraction of urban objects (Kong, Xu, & Wu, 2006), such as roads, buildings, and even vehicles (Jin & 
Davis, 2007). Instead of pixel-based classification directly classifying each pixel on the image, object-based 
classification classifies the objects which stand for homogenous areas on the image (Liu & Xia, 2010). 
Both of spectral and spatial information would be considered in the object-based classification. Besides, 
expert knowledge can be integrated into the object-based approach as rule set. In fact, the characteristic of 
object-based classification that considering relationship between pixels in addition to pixels themselves 
stimulates the way of human eye identifying objects (Hudak & Wessman, 1998), which would be very 
helpful for recognizing objects in a complex background. Since large mammals have comparable size with 
vehicles, the object-based approach could potentially be applied as an alternative approach in this study.  
 
In past few years, many algorithms were developed for automated counting animals (Bajzak & Piatt, 1990; 
Cunningham, Anderson, & Anthony, 1996). However, most of them used aerial photograph or high 
resolution remotely sensed thermal data (Gilmer, Brass, Strong, & Card, 1988; Wyatt, Trivedi, & 
Anderson, 1980) instead of satellite imagery, perhaps due to the limitation in spatial and spectral resolution 
of satellite imagery. The only one attempt on counting animals using high resolution satellite imagery was 
made by Laliberte & Ripple (2003). It is concluded that animals could be counted in the area containing 
the cattle and not including trees or shrubs from the IKONOS satellite image, and a panchromatic 
QuickBird satellite imagery with a 0.61 m resolution would be capable of counting animals under the same 
condition.  
 
Now, with the new generation of high resolution satellite imagery, like QuickBird, IKONOS, and Geoeye-
1, it is becoming possible to apply these methods to automated recognition of wildlife using satellite 
imagery. Taking Geoeye-1 satellite imagery for example, it has a 0.41m panchromatic (resampled to 0.5m 
resolution when it is sold to commercial customers) and 1.65m multispectral resolution, which potentially 
could be enough for recognizing the animals. Based on what we have discussed above, we propose to use 
two different image classification approaches, i.e. pixel-based and object-based, to realize automated 
recognition of animals. 

1.3. Challenges of confounding factors 
Laliberte & Ripple (2003) concluded that the cattle could be counted from the IKONOS satellite image in 
the area not containing trees or shrubs. However, in this study, the landscapes in this study area are much 
more complicated than that previous study, including trees, grassland, shrubs, water bodies, bare soil and 
sand. Some of them can be easily confused with animals in geometric features, i.e. size and shape. Figure 2 
demonstrates the difference of landscapes between that pervious study conducted by Laliberte & Ripple in 
2003 and this study on the satellite imagery. Table 1 lists the body sizes of dominant species on the open 
savannahs in Africa (Macdonald, 2001; Nowak, 1999; "San Diego Zoo's Animals Bytes: Zebra," 2012). 
From the table we could possibly foresee that small shrubs and little ponds might be confused with 
animals by geometric features in spatial.  
 

Table 1 List of body sizes of dominant species on open savannahs in East Africa  

Body size African elephant African buffalo Wildebeest Zebra 

Head-body length (m) 5.4 - 7.5 2.1-3.4 1.5-2.4 2.2-2.5 

Shoulder height (m) 2.7-3.3 1.0-1.7 1.1-1.2 1.3-1.5 
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Figure 2 (a) Panchromatic IKONOS satellite image at 1m resolution showing the cattle(Laliberte & Ripple, 2003) 
and (b) Panchromatic GeoEye-1 satellite image at 0.5m resolution showing the wildebeest 

 
As a result of the much more detailed texture information when using the high resolution GeoEye-1 
satellite imagery, the shadow of trees or shrubs contributes to image complexity (Figure 4). Since animals 
seen on the image in this study area are large ungulates such as African buffalo and wildebeest, which are 
taller than 1m, shadow also becomes part of the animals’ appearance on the images. Figure 3 shows the 
shadow of trees and figure 4 shows the shadow of zebra and wildebeest. Therefore there might be overlap 
between animals and shadow in the feature space, namely poor spectral separability between these two 
classes. Besides, due to the limitation of the resolution, the edge of animals can be easily mixed up with 
the background on the images such as grassland or bare soil and this may make bare soil another 
confounding factor. Given the challenges of spatial and spectral confounding factors, it would be wise for 
us take a method in which both of spectral and spatial analysis would be applied to recognize the animals. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3 Shadow of the trees (false colour image) 

(a) (b) 

IKONOS GeoEye-1 
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Figure 4 Shadow of a herd of zebra and wildebeest, photographed by Robert B. Haas 

 
Considering the body sizes of large mammals listed in Table 1, one single zebra or wildebeest would be 
represented by in the pan chromatic band as an image object of 3 to 4 pixels length, and 1 to 2 pixels wide, 
while buffalo and elephants would be represented by even larger image objects. Given its resolution, the 
GeoEye-1 imagery should thus offer possibility to extract the geometric features for the large ungulates. 
 
From what have been discussed above, it seems feasible to develop an approach using high resolution 
satellite imagery (GeoEye-1) to accomplish mapping wildlife in open savannahs and thereby to be able to 
assess the capabilities of high resolution GeoEye-1 satellite imagery for doing this task. The study area 
would be the large, open and remote regions, such as the open savannahs in the east Arica. If this 
approach can be developed and prove that GeoEye-1 satellite imagery have the capabilities for mapping 
wildlife, the approach proposed in the thesis would be a very useful supplement and an alternative to the 
future animal population censuses. 

1.4. Problem statement 
The purpose of this study is to assess the capabilities of high resolution GeoEye-1 satellite imagery for 
mapping wildlife in open savannahs. To achieve this purpose, we have to be able to recognize the animals 
on the high resolution GeoEye-1 satellite imagery, which depends on whether high resolution GeoEye-1 
satellite imagery having enough spatial and spectral resolution. Therefore, the biggest research problem lies 
in whether the high resolution GeoEye-1 satellite imagery having the resolution fine enough for 
recognition of animals. 

1.5. Research objective 
The general research objective of this study is to assess the capability of high resolution GeoEye-1 satellite 
imagery for mapping wildlife in open savannahs. To achieve this main objective, the following specific 
objectives need to be addressed. 
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 Develop new image processing methods in order to detect the presence of animals on the imagery in 
all kinds of form, i.e. individuals, migrating herds, clustered herds 
 

 Develop new image processing methods in order to recognize the individual animals and estimate the 
population size of the animals; 
 

 Assess the accuracy of the pixel-based and object-based approaches and compare their capabilities for 
mapping wildlife. 

1.6. Research questions 
 How to differentiate the animals from the surroundings on the satellite imagery? 

 
 How to determine an individual of animal on the satellite imagery? 

 
 How to assess the accuracy of the different methods mentioned above and compare their capabilities 

for mapping wildlife? 
 

1.7. Research hypothesis 
The spatial and spectral information from pan-sharpened high resolution GeoEye-1 satellite maps wildlife 
at an acceptable accuracy of overall mapping accuracy >70% (in open savannahs) by applying different 
image classification approaches with expert knowledge. 

1.8. Thesis outline 
This thesis consists of five chapters: introduction, materials and methods, result, discussion, conclusion 
and recommendation. Chapter I introduces the background, practical significance and feasibility for this 
study. Research objective, research questions and hypothesis are also presented in this chapter. Chapter II 
presents the study area and materials, and then illustrates the methods for recognizing animals on the high 
resolution GeoEye-1 satellite imagery step by step. Chapter III explains the results by validating and 
analysing the results produced, including accuracy assessment, spatial analysis and statistical analysis. In 
addition, the performances of two different methods are compared and evaluated. Chapter IV discusses 
the advantages and limitation of the new approach for mapping wildlife, characteristics of the methods, 
and the future perspective. Chapter V gives a conclusion about the capacities of high resolution GeoEye-1 
satellite imagery for mapping wildlife in open savannahs, and provides some recommendations for 
relevant studies in future.  
 
Figure 5 demonstrates the overall framework for evaluating the capabilities of the high resolution 
GeoEye-1 satellite imagery for mapping wildlife in open savannahs. Generally it can be divided into three 
steps. Step 1 basically is the preparation for automated recognition of animals. Specifically it justifies the 
rule for recognizing animals and then prepares the data needed for next step. Step 2 is mainly focusing on 
how to recognize animals automatically. In this step two different methods are applied to recognize 
animals. In the final step, we will conduct accuracy assessment of the new approach being applied and 
analyse the refined result to give a conclusion about the capabilities of the high resolution GeoEye-1 
satellite imagery for mapping wildlife in open savannahs. 
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Figure 5 The overall framework of using high resolution satellite imagery for mapping wildlife in open savannahs 
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2. MATERIALS AND METHODS 

2.1. Study area 
The study area is located in north-western part of Masai Mara National Reserve, a game reserve in south-
western Kenya (Onchwati, Sommerville, & Brockway, 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Location of the study area on the GeoEye-1 satellite imagery   

2.2. Satellite imagery 
Two sets of GeoEye-1 images are available, each including a panchromatic band with 0.5m resolution and 
4 multispectral bands with 2m resolution. The multispectral bands include: blue, green, red, and near 
infrared (NIR). At the time of its launch, GeoEye-1 was the world’s highest resolution commercial earth-
imaging satellite. These two GeoEye-1 images were captured in August 2008, each of them covering an 
area of 129.53 km2. Most part in the images locates in the Masai Mara National Reserve. 

2.3. Image pre-processing 

2.3.1. Image fusion 
For this study, the 2m resolution of the multispectral images is not fine enough to identify the large 
mammals on the image. Image sharpening is therefore required. The existing image sharpening techniques 
being widely used such as intensity-hue-saturation (IHS) transform, wavelet transform and principal 
components analysis (PCA) methods can generally meet the requirement of processing low or medium 
resolution satellite imagery. However, they are not suitable for high resolution images (Hu & Zhang, 
2010). Specifically, these techniques still produce spatially enhanced pan-sharpened images but usually at 
the expense undermining spectral fidelity (Ehlers, 2008).  
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According to previous studies comparing fusion algorithms for sharpening high resolution commercial 
satellite images, Ehlers was found having better performance than common fusion algorithms like PCA or 
HIS in improving spatial resolution details and avoiding color distortion (Sascha Klonus & Ehlers, 2007; 
Nikolakopoulos, Vaiopoulos, & Tsombos, 2010). The Ehlers fusion algorithm is based on the IHS 
transform accompanied with a Fourier domain filtering (S. Klonus & Ehlers, 2009). However, in this 
study, we found that the Ehlers fusion algorithm is not suitable for sharpening GeoEye-1 high resolution 
images, at least not suitable for the images of the study area in this study. Specifically, we found the spatial 
fidelity was serious undermined in the pan-sharpened image by using Ehlers fusion algorithm. Besides, we 
also found the problem of color distortion. Figure 7 demonstrates the original panchromatic GeoEye-1 
satellite imagery at 0.5m resolution, multispectral Geoeye-1 satellite imagery at 2m resolution, and the pan-
sharpened images produced by Ehlers fusion and Gram-Schmidt at 0.5m resolution with cubic 
convolution resampling techniques.
 
We compared the results produced by several popular fusion techniques (HIS, PCA, wavelet transform 
and Gram-Schmidt spectral sharpening). By visual inspection, we found that the pan-sharpened images 
produced by Gram-Schmidt spectral sharpening and wavelet transform were found having more detailed 
texture and less spectral distortion than other pan-sharpened images produced by other sharpening 
techniques. As for the resampling techniques, bilinear interpolation and cubic convolution generally are 
supposed to have better performance than nearest neighbor, which is often believed having some impact 
on the precision of the pan-sharpened image (Q. X. Zhou, Jing, & Jiang, 2003). In the end, Gram-Schmidt 
spectral sharpening with cubic sampling method was chosen for the method of image fusion in this study.
 

 
 
 
 
 
 
 

(a) Panchromatic GeoEye-1 satellite imagery at 
0.5m resolution, large dark objects represent 
shadows cast by trees, small black objects are 
animals 

(b) Multispectral GeoEye-1 satellite imagery at 2 
m resolution, in which trees remain visible, but 
animal objects are not 
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Figure 7 Original and pan-sharpened images produced by different fusion techniques 

2.3.2. Image enhancement 
In this step, we will filer the images. Image filtering is an image enhancement technique which is generally 
believed to be a useful tool for improving the visual interpretability of an image by increasing distinction 
between different features or removing noise, etc. (Fevralev et al., 2010) and has been applied on a variety 
of data sets such as SAR, aerial and satellite imagery (Fatemi, Mirhassani, & Yousefi, 2009; Ponomarenko, 
Lukin, Zelensky, Egiazarian, & Astola, 2005; Xiao & Cai, 2011). However, it does not apply to this study 
for the reason that it would greatly distort the spectral information for pixels showing animals on the 
image. 
 
In general, image filtering uses a convolution kernel, for example, one 3*3 low pass convolution kernel, to 
change the pixel values on the image to fulfill the image enhancement. In this study, an individual animal 
takes approximately 4 to 8 pixels on the image on average. Therefore the pixels showing the animals on 
the image would be seriously affected. Via trying different filters, we found that there was no commonly 
used filter (low pass, high pass, edge detection and sharpening) which could improve visual interpretability 
for recognizing animals.  
 
By applying the filters which smooth the image such like 3*3 Low Pass convolution kernel, it would blur 
the edge of animals on the image and made it harder to recognize animals; for the filters used for 
sharpening image and enhancing contrast between classes, they did improve the interpretability for 
recognizing animals, but some confounding factors such as soil surface or shrubs were confused with 
animals in appearance. Perhaps it is because the average size of our study objects is too small compared to 
the objects commonly processed, such as buildings, vehicles, etc. and any changes in pixel values can lead 
to serious distortion in spectral reflectance and texture information. Nonetheless, image filtering, for 
example, a low pass filter with a 3*3 kernel, is still helpful for classifying objects using object-based 
approach on landscape level, such like shrubs (Laliberte et al., 2004). Therefore, we applied a 3*3 Low 
Pass convolution kernel on smoothing the image to facilitate the process of classifying confounding 
factors including trees, shrubs and water bodies.  

(c) Pan-sharpened image by using Ehlers fusion 
at 0.5 m resolution 

(d) Pan-sharpened image by using Gram-
Schmidt spectral sharpening at 0.5 m resolution 
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2.4. Pilot study area selection 
The size of each sharpened multispectral image is nearly 4 GB. Processing such mass data is exceedingly 
time consuming and a desktop is incapable of undertaking this task unless supercomputers. Therefore, it is 
necessary for us to conduct a pilot study by selecting representative regions in our study area. The total 
area each image covering is 8304m by 15598m. Each image was divided into 144 grids and the size of each 
grid is 1000m by 1000m. We have two images so technically we should select samples from the 288 grids 
from these two images. However, nearly half of the first image is outside of the Masai Mara National 
Reserve, so we only consider the 144 grids in the second image. There are grids which only partly inside 
the image, and therefore grids on the boundary will not be considered in the study. In the end, we selected 
2 representative regions for conducting the pilot study from these 120 grids in total (Figure 8). These two 
regions of the pilot study area are named as Pilot_No.1 and Pilot_No.2 respectively. For the selection 
criteria, we considered factors including the location of samples, characteristics and complexity of 
landscapes, density and distribution patterns of animals, etc. Table 2 lists the specific characteristics for 
each pilot study area selected. 
 
Table 2 Characteristics of Pilot_No.1 and Pilot_No.2 

Characteristics Pilot_No.1 Pilot_No.2 
 
Landscapes Complex landscapes including forest 

with shadow, shrubs, grassland, bare 
soil, sand, and water bodies 

Relatively simple landscapes compared with 
Pilot_No.1, basically high vegetation area 
(forest, grassland and shrubs mixed together) 

Distribution of 
animals 

Large herd of animals (hundreds of 
animals) clustering around forest 

Small amount herd of animals (around 30 to 
100) moving along the road 

 
 
 
                                                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Location of Pilot_No.1 on the image The first region in pilot study area, Pilot_No.1 
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Figure 8 Pilot study area 

2.5. Visual interpretation 
We perform visual interpretation to manually differentiate the animals from the surrounding landscapes 
and determine the features of individual animals, which is not only the foundation for developing new 
image processing methods in order to detect the presence of animals and recognize the individual animals, 
but also the reference for conducting validation of the classification results. 
 
There are two important facts about the study area we should be aware of. First of all, the study area 
locates in the Masai Mara National Reserve, which is famous for its abundance of all kinds of wildlife 
including large ungulate on the open savannahs (Caro, 2003) and it is part of the Serengeti-Mara 
ecosystem. Figure 9 shows a snapshot of one group of different kinds of large ungulates on the open 
savannahs. The Serengeti-Mara ecosystem is a vast area of rangelands, ranging from Tanzania to Kenya 
across the border in East Africa (Serneels & Lambin, 2001). Second, there is the great migration of 1.3 
million wildebeest and 0.6 million zebra (Equus burchelli) and gazelle (Gazella thomsoni) (Thirgood et al., 
2004) in each year occurring in the Serengeti-Mara ecosystem. The great migration of wildebeest from 
Serengeti to the Masai Mara National Reserve occurs during August to November each year (Musiega, 
Kazadi, & Fukuyama, 2006). The images of the study area are captured in August, 2008, when the 
wildebeest started the great migration from Serengeti to Masai Mara.  
 
Therefore, based on these two reasons, we are confident that the study area filled with large migratory 
ungulates, such as wildebeest and zebra. Accordingly, there should be lots of large ungulates on the 
satellite images of our study area. Figure 10 shows the great annual migration of wildebeest from Serengeti 
to Masai Mara. 

The second region in pilot study area, Pilot_No.2 Location of Pilot_No.2 on the image 
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Figure 9 A snapshot of large ungulates on the open savannahs ("Elephant, wildebeest and zebra," 2012) 

 

Figure 10 The great annual migration of wildebeest form Serengeti to Masai Mara, photographed by Felix Borner 
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2.5.1. Spectral separability 
Although we have various reasons based on the knowledge we have for visual interpretation, however, we 
cannot rule out the possibility that some confounding landscapes would be confused with animals in 
spatial. Under this circumstance, spectral reflectance becomes an important source for determining the 
characteristics of the animals from confounding factors. Therefore, using spectral reflectance to 
differentiate animals from the confounding factors in spatial would be a reliable method for this study.  
 
To check the spectral separability of the large mammals, the maximum Jeffries-Matusita (JM) distance was 
calculated. The Jeffries-Matusita (JM) distance between two classes indicates whether they are separable in 
multidimensional feature space. Specially, JM distance is asymptotic to the value 2 ranging from 0 to 2 and 
the spectral separability increases along with the value; a value of 2 indicates that two classes are 
completely separable by spectral reflectance (Richards, 1993). ENVI was selected as the platform for 
spectral separability checking. In preparation for this task, all kinds of landscapes including shadow and 
animals were selected for regions of interest in ENVI to check the spectral separability via computing the 
JM distance. Then we exported the regions of interest to n-D visualizer to visualize the distribution of 
these regions of interest in feature space. In this case, we found false color image could properly 
demonstrate the difference between animals and the surrounding landscapes in feature space. Therefore, 
we selected band 4, 3, 2, i.e. NIR, red and green as the three dimensions of the feature space.  
 
By general standard, a JM distance between two classes larger than 1.9 indicates good separability (Thomas 
et al., 2003). From the list of JM distance between animals and the landscapes including shadow (Table 3), 
we can see that animals have good separability with other landscapes and poor separability with shadow. 
The overlap in spectral reflectance between animals and the shadow confirms our conjecture in the 
section of analyzing the confounding factors, and the reason leads to the poor spectral separability has 
been discussed. Figure 11 and Figure 12 reflect the result of spectral separability by the distribution of 
animals and the surrounding landscapes in the feature space (axes 4, 3, 2 representing the band 4, 3, 2, i.e. 
NIR, red and green).  
 
In spite there is overlap of spectral reflectance between animals and shadow, we still can get rid of shadow 
by contextual analysis of the image. Specifically, we try to identify the shadow by its relationship with trees 
or shrubs in spatial (we will further explain this process in the next sections).  
 
Table 3 JM distance between animals and the surrounding landscapes including shadow in Pilot_No.1 

 Trees Grassland Bare soil Water 
bodies Sand Shadow 

JM distance 1.95 1.95 1.92 1.98 1.97 1.33 

 
Table 4 JM distance between animals and the surrounding landscapes in Pilot_No.2 

 Trees Shrubs Bare soil Water bodies Sand 

JM distance 1.99 1.93 1.91 1.99 1.99 
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Figure 11 Distribution of animals and surrounding landscapes in the feature space, Pilot_No.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Distribution of animals and surrounding landscapes in the feature space, Pilot_No.2 
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2.5.2. Expert knowledge 
Expert knowledge plays an important role in recognition of animals in this study. First of all, by 
comparing the body sizes of animals (Table.1) with the spatial resolution of the panchromatic or pan-
sharpened image, we can have a general idea that the number of pixels a large mammal would take on the 
satellite imagery. Second, we resampled the aerial photograph above the study area to the resolution 
similar to panchromatic satellite imagery. We carefully observed the geometric features of the animals on 
the resampled aerial photo (Figure 13). By this means, we had the idea about what geometric features the 
animals would have on the panchromatic or pan-sharpened satellite imagery. Figure 13 shows the aerial 
photo filling with wildebeest, provided by International Livestock Research Institute (ILRI), and the 
resampled image. Third, the dominant large ungulates on the open savannahs are living in herds. For 
example, the herd sizes of wildebeest can be ranging from thirty to more than one thousand (Joseph, 2006 
; Khaemba & Stein, 2002; Rija & Hassan, 2011; Unwin, 2003); therefore the animals would have certain 
spatial distribution patterns such as clustering pattern or moving pattern in general. We can rule out other 
landscape attributes might be confused with animals in geometric features by setting the standards about 
the distribution patterns of the animals.  

 
 
 
 
 
 
 
Original aerial photograph after image 
enhancement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Resampled aerial image at 1/4 
resolution of the original aerial 
photograph 
 
 
 
 
 
 
 

Figure 13 Wildebeest on original aerial photograph and resampled aerial photograph 
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2.5.3. Visual interpretation method 
Most of the animals on the imagery appear individually; however, some of them gather together forming a 
cluster or moving one after another forming a line feature. Clustered animals can only be recognized as a 
group of animals instead of individuals. For these objects, we may refer to the method of counting the 
number of bacteria. Specifically, we estimate number of animals it represents by the average size of the 
animals in this area (Grivet, Morrier, Souchier, & Barsotti, 1999). Then we compare the number with the 
number of objects, i.e. polygons in the vector layer. Therefore, in this case, we assess the accuracy by the 
estimated number of correct objects of animals being recognized.  
 
The validation is conducted based on the result of visual interpretation, which can be subjective. In order 
to reduce subjectivity, we validate the results eventually according to the opinions from multiple visual 
interpreters. Specifically, we have five visual interpreters who have different academic backgrounds and 
knowledge on the study area. Table 5 illustrates the status of the five interpreters. Finally we took the 
average accuracy of different validation results from the multiple interpreters.  
 
Table 5 Status of the five interpreters  

Interpreter Status 

No.1 Academic faculty member who has background knowledge of this area 

No.2 Researcher of this study 

No.3 Student not involved in other activities related to this study 

No.4 Researcher of another study sharing the same study area 

No.5 Student comes from Kenya who have been in the Masai Mara National Reserve 

 
According to the primary results for the estimation of population sizes by estimating the density of 
animals based on visual interpretation, the total number for the pilot study area is greater than 10000. 
Apparently it is not practical for us to count all of the animals being recognized. Therefore, we selected 
two representative areas (100m*100m) from Pilot_No.1 and Pilot_No.2 for validation. We named these 
two validation areas VA1 and VA2.  
 
These two regions are representative of the landscapes, animal density and distribution patterns for 
Pilot_No.1 and Pilot_No.2. Specifically, we conduct the validation of the classification result of pixel-
based approach and object-based approach based on the visual interpretation of the panchromatic and 
pan-sharpened images on the two validation areas mentioned above (Figure 14). From the panchromatic 
and pan-sharpened images we can clearly see that VA1 has a relatively complex surrounding landscapes 
and large amount of animals in migration while VA2 has relatively simple surrounding landscapes (high 
vegetation area) and small herd of animals in migration. 
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Figure 14 Two validation areas selected from the pilot study area 

2.6. Pixel-based approach 
Traditional pixel-based classification method is applied in this study since it has been widely used in 
remote sensing applications and it is proved to be a robust classification approach which can ensure 
relatively high accuracy. In this study, we used an artificial neural network (ANN) classifier for pixel-based 
classification. The biggest difference between ANN and other traditional classification methods lies in that 
ANN classifier is a non-parametric and non-linear approach which has a strong adaptability to handle 
complex nonlinear relationships (Bao & Ren, 2011).  
 

(a) Panchromatic image of VA1, the validation 
area in Pilot_No.1 

(b) Panchromatic image of VA2, the validation 
area in Pilot_No.2 

(c) Pan-sharpened image of VA1, the validation 
area in Pilot_No.1 

(d) Pan-sharpened image of VA2, the validation 
area in Pilot_No.2 
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Specifically, traditional parametric approaches such as support vector machine (SVM) and maximum 
likelihood classification are based on statistical information regarding statistical distribution and inferences 
of the data, so its success depends on correspondence of data with the statistical distribution inferred; on 
the contrary, ANN classifier is non-parametric and based on human learning and processing mechanism 
(Toshniwal, 2005). Figure 13 illustrates the learning process of a three layer ANN classifier and each node 
acts as a simplified biological neuron. Therefore the success of the ANN classifier more relies on the 
learning process instead of the data set. In previous study of image processing applying ANN filter, it is 
proved to be capable of processing complicated images, and has better performance than conventional 
image filters (Wit & Busscher, 1998).  
 
Given the complexity of the landscapes on the images and a variety of the appearance of animals such as 
individual animals, clustered animals, and moving animals, ANN would be a suitable choice for processing 
these high resolution satellite images in this study. We chose ENVI as the platform for this pixel-based 
classification. After conducting classification by ANN classifier, we conducted spatial analysis using expert 
knowledge in ArcMap. Specifically, the expert knowledge refers to the knowledge in three aspects: the 
geometric features of animals and the relationship of the features on the image, for example, shadow 
always appearing with the trees on the image. Therefore, the pixel-based approach applied in this study is a 
hybrid of pixel-based classification and spatial analysis based contextual contents. Figure 14 shows the 
framework of it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15 The framework of pixel-based approach 

2.6.1. Training sets selection 
As mentioned above, ANN is a non-parametric approach which directly depends on the learning process 
based on the input layers. Therefore, training sets selection is as vital for this machine learning method. 
We have to ensure that all the input training sets are separable by spectral reflectance. In previous work of 
checking spectral separability between animals and landscapes, we can see that animals and 6 kinds of 
landscapes are separable by spectral reflectance. Therefore, we selected regions of interest based on the 6 
basic landscapes which could be separated from animals in feature space (trees, shrubs, grass land, bare 
soil, sand, and water bodies).  
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Specially, we compared the classification results produced with different number of regions of interest 
ranging from 6 to 9 (some classes of landscapes may be merged or be subdivided) and we found the 
optimization number of regions of interest for classification, i.e. the regions of interest which could 
produce most satisfactory result. Besides, we also modified the training sets according the distribution of 
regions of interest in the feature space, namely getting rid of those outliners for each class in the training 
sets. After comparing different classification results produced with different regions of interest, we 
finalized the number of regions of interest for each pilot study area: 7 regions of interest for Pilot_No.1 
and 6 regions of interest for Pilot_No.2 (in Pilot_No.2 grassland and forest are not very separable by 
spectral reflectance and therefore both of them are categorized as ‘vegetation’ in regions of interest). Table 
6 shows the specific regions of interest selected in Pilot_No.1 and Pilot_No.2. 
 
Table 6 Regions of interest selected in Pilot_No.1 and Pilot_No.2 

Pilot study area Regions of interest selected for classification 

Pilot_No.1 animals, bare soil, forest, grassland, sand, shrubs, water bodies 

Pilot_No.2 animals, vegetation, water bodies, bare soil, sand 

 
Given that ANN is based on the spectral reflectance of each pixel on the image and as discussed above 
the pixels on the edge of animals easily mixed with the spectral reflectance of the background such as 
grassland or soil surface, thereby we only selected the central part of the animals as training sets to avoid 
spectral overlap between classes. 

2.6.2. Optimizing learning process 
After selecting the training sets, the next step is to optimize the training process. Specifically, we optimize 
the learning process in two aspects. One aspect is modifying the input layers, i.e. the training sets and the 
proportion of each class in the regions of interest. In addition to the external factors out of the ANN 
classifier such as data set and training sets selection, it is important for us to properly optimize settings for 
the internal parameters, including the number of hidden layers, type of activation function (logistic or 
hyperbolic), training rate, training momentum, training threshold contribution, and number of training 
iterations. Among them, number of hidden layers, activation function, and training rate are proved to have 
significant effect on the classification accuracy (L. B. Zhou & Yang, 2011).  
 
In this study, we conducted a trail-and-error process to optimize the internal parameters which have 
substantial impact on the classification result, i.e. number of hidden layers, type of activation function, and 
training rate. Specifically, we tried different values for each parameter while we kept other parameters 
constant values. We found that the optimal settings for these parameters are: one hidden layer, logistic 
activation function, a training rate ranging from 0.01 to 0.05, and training momentum of 0.8. After the 
training sets and internal parameters being finalized, we conducted the pixel-based classification and 
exported classification results.  

2.6.3. Exporting classification results 
After the classification result in ENVI being finalized, we exported the results to the platform i.e. ArcMap, 
for analysis and validation. The classified results are raster layers, which are inconvenient for spatial 
analysis. Therefore, it is needed to be converted to vector layers. Specifically, we imported the classified 
images in ArcMap and converted the raster layers of classified result to shpfiles and then extracted the 
polygons of animals by attribute to conduct the spatial analysis in the next step. 
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2.6.4. Refine classification results 
So far the pixel-based approach only considered the spectral reflectance of the pixels on the images; as we 
discussed above the spatial information also plays an important role in the framework of recognizing 
animals. We certainly are aware of the possibility that some animals in the pixel-based classification result 
might be misclassified. Instead of animals, they are confounding factors which may have overlap with 
animals in feature space, e.g. the shadow of trees or shrubs. We were aware of the mixture of animals with 
shadow already when we were selecting the training sets. Specifically, we chose ArcMap as the platform 
for the refinement of the pixel-based classification result and we also analyzed the attributes of the 
features exported.  
 
For the shadow in the vegetated areas, we came up with two solutions. One is to set the threshold of the 
upper limit of the area of individual animals according to the average body sizes. In this case we cannot 
refer to the actual body size of animals because when we were selecting the training sets we only selected 
the central part of the animals. Instead, we should refer to the average body size of the animals in the 
pixel-based classification result. The other solution is to detect the shadow by its relationship with trees or 
shrubs in spatial since shadow always is accompanied with trees or shrubs. By these means, we managed 
to get rid of most shadow in the pixel-based classification result. For the other confounding factors 
misclassified as animals, we use the layer of ‘Non-study area’ which contains the landscapes of trees, 
shrubs and water bodies to eliminate the unwanted result. 

2.7. Object-based approach 
High spatial resolution increases internal variability of the image and may lead to the ‘salt-and-pepper’ 
effect (Pu, Landry, & Yu, 2011). In this study, considering there is no remarkable difference between the 
average body sizes (body length ranging from 1.5m to 2.5m) of dominant migratory large ungulates 
(wildebeest, zebra, and gazelle) and resolution of the satellite images (0.5m), this ‘salt-and-pepper’ effect 
inevitably would decrease the classification accuracy of pixel-based classification approach. Moreover, 
such a small pixel size with only four spectral bands may lead to great variation of spectral reflectance 
within the same class (Laliberte, et al., 2004). According to the studies of land cover classification, object-
based classification generally would have better performance than traditional pixel-based classification 
methods in reduction of the speckle noise, overall accuracy in land cover classification (Huang & Ni, 2008; 
Ma, Zhang, Yang, & Xu, 2009; Qi, Yeh, Li, & Lin, 2010) and reducing spectral overlap between classes 
(Nichol & Wong, 2008). Therefore, we used object-based approach for recognizing the animals in 
addition to pixel-based approach in this study. It fits the requirement of classifying high resolution satellite 
imagery for its advantages over traditional pixel-based approaches.  
 
Specifically, we integrated the expert knowledge into the object-based approach as rule set. We conducted 
the object-based classification with two steps. The first step is to refine study area and the second step is 
automated recognition of animals. Specially, the second step includes two sections: nearest neighborhood 
classification and classification by the rule set based on expert knowledge. Figure 15 shows the framework 
of the object-based approach.  



EVALUATING HIGH RESOLUTION GEOEYE-1 SATELLITE IMAGERY FOR MAPPING WILDLIFE IN OPEN SAVANNAHS 

22 

 
Figure 16 The framework of object-based approach 

There are several choices of platforms for the object-based approach, such as SPRING, ENVI EX 
(formerly integrated in ENVI Zoom), Erdas Objective and eCognition. Among them eCognition and 
ENVI EX are most commonly used, and they have the same framework of object-based classification. In 
this study we used eCognition as the platform for this object-based approach.  

2.7.1. Image segmentation 
Segmentation is one of the most important aspects for object-based approach, since the rest work directly 
relies on the result of segmentation. There are several parameters for image segmentation as the following: 
segmentation approach, segmentation scale, image layer weights, composition of homogeneity criterion 
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(weight for shape/color and weight for compactness/smoothness). For the segmentation approach, we 
selected multi-resolution segmentation, which means it is possible to generate image objects at different 
resolution. Given the remarkable difference between the size of animals and the surrounding landscapes, 
multi-resolution segmentation is suitable for segmenting images to generate the objects of individuals of 
animals. For segmenting parameters, segmentation scales are proved to have a full impact on the 
segmentation accuracy and overall effect of classification (Liu & Xia, 2010). Accordingly for the first step 
of segmentation, segmentation parameters optimization was conducted. Given that pixel value varies with 
the pixels inside an individual animal, therefore a segmentation scale which can ensure each individual 
animal can be segmented as one integrated object would be a proper setting for our study. The body 
length for the dominant migratory species i.e. wildebeest is around 1.5-2.5m and most of individual 
animals are found having 4-12 pixels on the image. Accordingly we tested different segmentation scales 
from 4 to 12, and the segmentation with a segmentation scale of 8 could meet our requirement for image 
segmentation. For other segmentation parameters, we determine these parameters by referring to relevant 
studies and visual inspection of the segmentation results as well. Table 7 and Table 8 show the setting for 
the segmentation parameters. 
 
Table 7 Settings of segmentation parameters for refining the study area 

Segmentation parameters Pilot_No.1 Pilot_No.2 

Segmentation approach Multi-resolution segmentation Multi-resolution segmentation 

Segmentation scale  20 20 

Image layer weights 1,1,1,1 1,1,1,1 

Shape/color 0.1/0.9 0.1/0.9 

compactness/smoothness 0.5/0.5 0.5/0.5 
 
Table 8 Settings of segmentation parameters for automated recognition of animals 

2.7.2. Refine study area 
This part aims at providing a simplified background of the study area, namely, getting rid of the 
confounding factors on the imagery, including trees, shrubs, and water bodies, which may cause 
interference to the recognition of individual animals or herds of animals. However, we noticed that 
sometimes animals could be part of the confounding factors like vegetation. Therefore we have to strike a 
balance between getting rid of the confounding factors and do not misclassify animals as part of the 
confounding factors at the same time. Accordingly, we adjusted the threshold for each parameter in 
developing the rule set for each pilot study area. In this step, we applied the smoothened images from the 
previous section of ‘image enhancement’. This case includes three steps in general: image segmentation, 
optimize parameters in the rule set, rule-based classification. 

Segmentation parameters Pilot_No.1 Pilot_No.2 

Segmentation approach Multi-resolution segmentation Multi-resolution segmentation 

Segmentation scale  8 8 

Image layer weights 1,1,1,1 1,1,1,1 

Shape/color 0.1/0.9 0.1/0.9 

compactness/smoothness 0.5/0.5 0.5/0.5 



EVALUATING HIGH RESOLUTION GEOEYE-1 SATELLITE IMAGERY FOR MAPPING WILDLIFE IN OPEN SAVANNAHS 

24 

For the first step, as listed above (table 5), segmentation scale parameters optimization was conducted and 
a segmentation scale of 20 was found to be suitable for classifying vegetated areas and water bodies. 
According to general approaches for identifying vegetated areas and water bodies, we mainly used rule set 
with customized features as the following: Normalized Difference Vegetation Index (NDVI), brightness, 
area, and Ratio Blue (RB). Among them, NDVI and RB were used for identifying vegetation such as trees 
and shrubs and water bodies respectively. However, due to the detailed texture information on the high 
resolution satellite imagery, shadow also takes a great proportion in the vegetation areas. Therefore we 
applied brightness to identify shadow of trees or shrubs. Finally, given that animals might be misclassified 
as confounding factors, we also set the rule that only the objects larger than certain area would be 
considered as confounding factors. Specially, we have to define the rule set according to the situation of 
each pilot study area, to eliminate confounding factors as much as possible and prevent animals being 
misclassified at the same time. Of course it is almost impossible for us to eliminate the confounding 
factors without misclassifying any animals. Therefore, we have to strike a balance between eliminating 
confounding factors and misclassifying animals. Table 9 demonstrates the specific rule set defined in light 
of specific situation for each region in the pilot study area. 
 
Table 9 Rule set of object-based classification on Pilot_No.1 and Pilot_No.2 

 Pilot_No.1 Pilot_No.2 

Trees or shrubs NDVI >= 0.6 NDVI >= 0.65, then Area >= 800 for 
the objects merged 

Shadow Brightness <= 330  and Existence of 
tree (0) = 1 N/A 

Water bodies Ratio Blue >= 0.18 Ratio Blue >= 0.185  and Area >= 12 

2.7.3. Nearest neighbor classification 
Nearest neighbor classifier classifies different classes by the distribution of pixels in feature space and the 
cluster of pixels close to each other is considered to be as a class. It is also one of nonparametric methods 
and it has the advantage of handling multimode classes and not requiring the training set fitting in the 
Gaussian distribution for the remotely sensed date set (Jia & Richards, 2004). Given the complexity of the 
images in this study, it is an appropriate approach for this study. Here we used the nearest neighbor 
classifier integrated in eCognition. Specially, we selected the samples considering the background of 
landscapes, individual difference between animals, and distribution patterns of animals as groups. After 
selecting training samples, we also applied optimized feature space i.e. best separation distance and 
dimension for classification. Table 10 shows the optimized feature space for nearest neighbor 
classification in eCognition. The nearest neighbor classifier in eCognition uses fuzzy classification, and 
therefore each of the classes in the final result of object-based approach has a probability for assigning the 
class it has been classified. 
 
Table 10 Optimized feature space for nearest neighbor classification 

Feature space Pilot_No.1 Pilot_No.2 

Best separation distance 3.061 1.048 

Dimension 4 4 
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2.7.4. Rule set of expert knowledge 
We develop rule set based on expert knowledge and finalized by visual interpretation in two aspects: 
geometric features and relationship features. By trying different parameters to develop the rule set, among 
geometric features, area, length/width and roundness are found to be useful indicators for differentiating 
animals from other confounding factors. For relationship features, the existence of a herd larger than 
certain size is an effective indicator for determining if it fits in the distribution pattern for an animal in 
herd. Specifically, Table 11 shows the description of the features in the rule set. 
 
Table 11 Description of the rule set 

Features Expert knowledge Image interpretation 

Size Average body size for dominant migratory 
ungulate 

Average body size of the animals 
randomly selected 

Roundness  
An individual of animal on the image is close to 
a point feature, which indicates a small 
roundness 

Average roundness of the 
animals randomly selected 

Length/width 
Animals in migration close to line features, not 
fitting the standard for object size but having a 
relatively high value for length/width 

Minimum length/width of the 
animals in migration randomly 
selected 

Existence of a 
herd 

Dominant migratory animals live in herds 
ranging from 30 to more than 1000 animals 

Minimum number existence of 
animals within certain distance  

2.7.5. Export classification results 
After the project in eCognition being finalized, we exported the results to the platform for analysis and 
validation in ArcMap. Specifically, we exported the class of ‘animals’ with the features used in the rule set. 
Table 12 lists all of them. The exported results are shpfiles which can be viewed and analyzed in ArcMap. 
 
Table 12 Features exported with the object-based classification result of animals 

Features exported Description 

Spectral reflectance Values of layer 1,2,3,4 (blue, green, red and NIR) of the objects 

Geometric features  Area, length/width, roundness 

Relationship feature Existence of a herd 

Fuzzy classification Possibility of an object classified as some class 

2.8. Accuracy assessment 
Kappa indices of agreement have been widely used in the area of remote sensing and it has been a routine 
for assessing the classification result of remote sensing images (Congalton, 1991; Congalton & Green, 
1999). However, one of the most important assumptions of applying Kappa indices of agreement is 
randomness, specifically, random distribution of the quality and random spatial distribution of all the 
categories, and therefore Kappa indices of agreement are not suitable for the situations that do not fulfill 
the assumption of randomness discussed above (Pontius & Millones, 2011).  
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This study is exact one of the cases in which Kappa indices of agreement are not suitable the accuracy 
assessment. First of all, the area of all the objects in the category of animals only takes a tiny proportion in 
the pilot study area, namely Pilot_No.1 and Pilot_No.2. As we can clearly see from Figure 17, there is a 
great disproportion between the category of animals and the category of non-animals. Specific numbers 
are listed in Table 13 and Table 14. This means that there would be a great disproportion between the 
‘true negative’ field (the number of non-animals correctly classified) and other fields in the error matrix 
(Table 15) for accracy assessmet. Second, neither of animals in the reuslt of visual interpretation nor in the 
reuslt of automated recognition are randomly distributed in spatial. We will conduct spatial statistical 
analysis to conclude the spatial distribution patterns of animals in the pilot study area in next section to 
justify this hypothesis. 
 
Table 13 Area of animals and area of non-animals in the classification results, Pilot_No.1 

Method Area of animals (m2) Area of non-animals (m2) 

Pixel-based approach 11004.50 988995.50 

Object-based approach 15575.75 984424.25 

 
Table 14 Area of animals and area of non-animals in the classification results, Pilot_No.2 

Method Area of animals (m2) Area of non-animals (m2) 

Pixel-based approach 1761.00 988995.50 

Object-based approach 998239.00 996352.25 

 

 

 

1.10% 

98.90% 

Pixel-based approach, 
Pilot_No.1 

1.56% 

98.44% 

1

Object-based approach, 
Pilot_No.1 
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Figure 17 Proportion of the area of animals and the area of non-animals in Pilot_No.1 and Pilot_No.2 

 
Table 15 Error matrix  

 
 
 
True Positive (TP): all the animals on ground 
correctly    classified 
False positive (FP): the objects of non-animals 
misclassified as animals 
False negative (FN): the animals on ground not 
recognized 
True negative (TN): the objects of non-animals on 
ground are correctly classified
 
 
 

As we discussed above, there is a disproportion between the sum of FN+TN and the sum of TP+FP; 
moreover, considering a relatively satisfactory user’s accuracy, there is a disproportion between TN and 
the sum of the rest three fields.  
 
The overall accuracy is computed by dividing the sum of all the fields on the diagonal (TP+TN) by the 
sum of all fields in the error matrix. To properly evaluate the performance of each approach, we need to 
correct that disproportion between TN and other fields. One solution for that is weighing, i.e. using 
weighted fields to derive the overall accuracy; however, that would diminish the precision of evaluating the 
performance of each approach since it is difficult and subjective to decide the weight for each field.  
 
Therefore, to precisely evaluate the overall performance of each approach, we decide to avoid the 
disproportion by using the reference data only contains the animals on the imagery (true positive). 
Consequently, since there is only true positive in the reference data, therefore there are three fields in the 
error matrix, namely true positive, false negative and false positive and true negative in the error matrix is 
non-applicable. Although by that means overall accuracy would be non-applicable in this study, however, 
we can precisely evaluate the performance of each approach by assessing the capabilities in two aspects: 

 

Classified result

YES NO 

Reference 

YES True 
positive 

False 
negative 

NO False 
positive 

True 
negative 

0.18% 

99.82% 

0.

Pixel-based approach, 
Pilot_No.2 

0.36% 

99.64% 

0.36

Object-based approach, 
Pilot_No.2 
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one is the capability of correctly recognizing the animals on the imagery, i.e. the capability in reducing 
omission error; the other one is the capability of avoid misclassifying non-animals as animals, i.e. the 
capability of reducing commission error.  
 
Based on the discussion mentioned above, we assess the accuracy using producer’s accuracy and user’s 
accuracy to evaluate the performance of each approach in the two aspects mentioned above. Producer’s 
accuracy refers to the probability of a pixel in the reference data being correctly classified, which can be 
used for measuring omission error; on the other hand, user’s accuracy means the probability of a pixel 
being correctly classified in the category classified, i.e. the probability that it actually representing ground 
truth (Congalton, 1991; Story & Congalton, 1986).  
 
Besides, the great disproportion between the area of animals and non-animals means a disproportion 
between these two categories in pixel number to the same extent. Therefore, we will use the number of 
objects correctly classified or misclassified as the unit to assess the accuracy of classification result instead 
of the number of pixels. In this case, the producer set is all the animals recognized by some interpreter and 
the user set is the animals in the classification results of pixel-based approach and object-based approach.
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3. RESULTS 

3.1. Visual interpretation 
Table 16 shows the results of interpretation made by different interpreters and descriptive statistics about 
the different results.  
 
Table 16 Results and descriptive statistics of visual interpretation  

Interpreter Pilot_No.1 Pilot_No.2 

No.1 517 152 

No.2 508 147 

No.3 538 147 

No.4 515 134 

No.5 495 139 

Mean 515 144 

Standard deviation 16 7 

Coefficient of Variation 3.04% 5.00% 

3.2. Classification of pixel-based approach 

3.2.1. Mapping wildlife in the study area 
The main objective of this study is to evaluate the capabilities of using high resolution GeoEye-1 satellite 
imagery for mapping wildlife in open savannahs. Therefore, mapping wildlife in the study area is a 
necessity. According to the results of the pixel-based approach, we managed to produce two maps of the 
detected wildlife in the pilot study area, namely Pilot_No.1 and Pilot_No.2 (Figure 18 and Figure 19).  
 
To emphasize the presence of animals, we do not use the vector layer of all objects (polygons) from the 
classification result. Instead, we converted the extracted features to points, which are the centroids of the 
features. Therefore the detected wildlife on the map is presented by point features. Consequently the area 
of detected wildlife does not represent actual area of ground truth.   
 
In addition to the two maps of detected wildlife in the pilot study area, we also provide two snapshots of 
the pixel-based approach classification results in the validation areas (Figure 20 and Figure 21). 
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Figure 18 Detected wildlife in the area of Pilot_No.1 by pixel-based approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 19 Detected wildlife in the area of Pilot_No.2 by pixel-based approach 
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Figure 20 Detected animals by using pixel-based approach in the validation area of Pilot_No.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21 Detected animals by using pixel-based approach in the validation area of Pilot_No.2 
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3.2.2. Accuracy assessment 
Based on the results by multiple interpreters, we assessed the accuracy of the pixel-based approach. Table 
17 and Table 18 summary the accuracy reports of each validation area.  
 
Table 17 Accuracy report of pixel-based approach in Pilot_No.1 

Interpreter Reference 
totals 

Classified 
totals 

Number 
correct 

Omission 
error 

Commission 
error 

Producer’s 
accuracy 

User’s 
accuracy 

No.1 517 

530 

463 10.4% 12.6% 89.6% 87.4% 

No.2 508 445 12.4% 16.0% 87.6% 84.0% 

No.3 538 460 14.5% 13.2% 85.5% 86.8% 

No.4 515 447 13.2% 15.7% 86.8% 84.3% 

No.5 495 437 11.7% 17.5% 88.3% 82.5% 

Average 515 530 450 12.5% 15.0% 87.5% 85.0% 

 

Table 18 Accuracy report of pixel-based approach in Pilot_No.2 

Interpreter Reference 
totals 

Classified 
totals 

Number 
correct 

Omission 
error 

Commission 
error 

Producer’s 
accuracy 

User’s 
accuracy 

No.1 152 

142 

134 11.8% 5.63% 88.2% 94.4% 

No.2 147 132 10.2% 7.04% 89.8% 93.0% 

No.3 147 135 8.16% 4.93% 91.8% 95.1% 

No.4 134 115 14.2% 19.0% 85.8% 81.0% 

No.5 139 119 14.4% 16.2% 85.6% 83.8% 

Average 144 142 127 11.8% 10.6% 88.2% 89.4% 

3.2.3. Factors affecting the accuracy 
We are aware that there are some factors may have positive or negative effect on the final accuracy. 
Therefore, it is necessary for us to study the factors which potentially may have effect on the accuracy and 
to reveal whether these factors would lead to significant difference on accuracy. After refining the study 
area, Pilot_No.1 and Pilot_No.2 have similar background for image classification. Therefore, among all 
the factors, the density of animals is the most notable difference between Pilot_No.1 and Pilot_No.2 and 
our primary concern among all the factors.  
 
We conduct statistical analysis to test the significance of the effect of density of animal distribution on the 
accuracy of pixel-based approach. Considering the different samples of accuracies on Pilot_No.1 and 
Pilot_No.2 are independent with each other, conducting a two sample t-test to compare two sample 
means would be suitable for this study. Before conducting the t-test on the two sample means, we test the 
normality of the two samples and the result indicates they follow a normal distribution. Table 19 shows 
the samples of accuracies for t-test.  
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Table 19 Samples of producer’s accuracies of pixel-based approach 

No. of samples Pilot_No.1 Pilot_No.2 

No.1 89.6% 88.2% 

No.2 87.6% 89.8% 

No.3 85.5% 91.8% 

No.4 86.8% 85.8% 

No.5 88.3% 85.6% 

 
Table 20 Samples of user’s accuracies of pixel-based approach 

No. of samples Pilot_No.1 Pilot_No.2 
No.1 87.4% 94.4% 

No.2 84.0% 93.0% 

No.3 86.8% 95.1% 

No.4 84.3% 81.0% 

No.5 82.5% 83.8% 

 
Before conducting the t-test, we test the equality of variances to decide conducting a two sample t-test 
with equal variances or unequal variances. Table 21 shows the result of the test for equality of variances. 
 
Table 21 Test for equality of variances for the samples of accuracies of pixel-based approach 

 
Levene's Test for Equality of Variances 

F Sig. 
 Producer’s accuracies 1.76 0.221 
User’s accuracies 20.07 0.002 

 
From the test for equality of variances, we can see that there is no significant difference between the 
variances of the samples of producer’s accuracy, and there is significant difference between the variances 
of the samples of user’s accuracy. Therefore we conducted a two sample t-test with equal variances at a 
significance level of 0.05 for the samples of producer’s accuracy and a two sample t-test with unequal 
variances at a significance level of 0.05 for the samples of user’s accuracy. Table 22 shows result of t-test. 
 
Table 22 t-test of the samples of accuracies of pixel-based approach 

 Producer’s accuracies User’s accuracies 
df (degree of freedom) 8 5 
t Stat -0.51 -1.45 
P(T<=t) two-tail 0.624 0.206 
t Critical two-tail 2.31 2.57 

 
The result of t-test indicates that there is no significant difference between the means of the both 
producer’s and user’s accuracies of pixel-based approach on Pilot_No.1 and Pilot_No.2. 
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3.2.4. Estimation of the population size 
One of the most important potential applications of using high resolution satellite imagery for mapping 
wildlife is being a supplement and alternative for wildlife population estimation. Therefore, a preliminary 
attempt to estimate population size of wildlife was made in this study. Here we have two situations: the 
individual of the animals can be identified and it cannot be identified. For the first case, we can estimate 
the population size by counting the number of the individuals. For the second case, we count the 
individuals sticking together as one object of animals. Although this kind of situation is rare in the sample 
images, there definitely would be an underestimation of the population size to some degree for this 
reason. The number of animals recognized by pixel-based approach in the pilot study area is: 9539 in 
Pilot_No.1 and 2872 in Pilot_No.2. According to the results of pixel-based approach, we give an 
estimation of the population size by omission error and commission error since the overall accuracy is 
non-applicable in this study.  
 
To estimate the population size, we need to determine the upper limit of confidence interval for the 
means of omission error and commission error of the pixel-based approach. Before analyzing the 
confidence interval, we tested the normality of the samples of omission error and commission error and 
the result indicates that they follow the normal distribution. Table 19 and Table 20 list the upper limit of 
the confidence interval of the omission and commission error at a 95% confidence level respectively.  
 
Table 23 Upper limit of the means of omission and commission errors of pixel-based approach on Pilot_No.1 

 Omission error Commission error 

Average 12.5% 15.0% 

Standard deviation 0.0153 0.0205 

df  4 4 

t critical 2.78 2.78 

Upper limit of confidence 
interval (95%) 14.6% 17.9% 

 
Table 24 Upper limit of the means of omission and commission errors of pixel-based approach on Pilot_No.2 

 Omission error Commission error 
Average 11.8% 10.6% 

Standard deviation 0.0265 0.0655 

df  4 4 

t critical 2.78 2.78 

Upper limit of confidence 
interval (95%) 15.4% 19.7% 

 
We determine the lower limit of the estimation of the population by the commission error and determine 
the upper limit by the omission error. Table 21 shows the estimation of the population size using pixel-
based approach in the pilot study area. 
 

 Lower limit of population =classified number * (1- upper limit of commission error) 
 Upper limit of population =classified number * (1+upper limit of omission error) 
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Table 25 Population size estimation by using pixel-based approach 

 Pilot_No.1 Pilot_No.2 

Number classified 9539 2872 

Upper limit of commission error 17.9% 19.7% 

Lower limit of population 7834 2308 

Upper limit of omission error 14.6% 15.4% 

Upper limit of population 10929 3315 

Confidence interval of 
population size (95%) 

7834~10929 2308~3315 

 
Based the discussion above, we give the estimation of the population size as: 10142~14244 (12193 2051) 
in the pilot study area. Since the upper limit of the errors are derived from the confidence interval of the 
error (95%). This estimation is the range of the population size in each region of the pilot study area at a 
95% confidence level. 

3.2.5. Spatial statistics 
In addition to the estimation of the population size, we also conduct a spatial statistics about on the spatial 
distribution patterns of the animals being recognized. Generally there are three spatial distribution patterns: 
clustered, random and dispersed. Figure 22 shows a comparison between a snapshot of animals in 
Pilot_No.1 and three types of spatial distribution pattern. Specifically, we analyzed the spatial distribution 
patterns of the detected animals by using average nearest neighbor distance ArcMap. Table 26 summarizes 
the result of spatial statistics. Generally, an expected mean distance larger than observed mean of average 
nearest neighbor distance indicates clustering of the objects being analyzed (Dodds, Garman, & Ross, 
2006). From the result of z-test, we can see that there is a probability less than 1% that the clustered 
patterns of the results could be the result of random chance. Therefore, the distribution pattern of the 
animals in the pilot study area is clustered according to the result by pixel-based approach with a 
significance level of 0.01.  
 
Table 26 Spatial statistics of the result by pixel-based approach 

 Pilot_No.1 Pilot_No.2 

Observed Mean Distance (m) 3.7 5.2 

Expected Mean Distance (m) 5.1 9.3 

z-score -51.49 -45.62 

Critical value (z-score) <-2.58 or >2.58 with a significance level (p-value) of 0.01 

p-value 0.00 0.00 
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Figure 22 Comparison between a snapshot of animals in Pilot_No.1 and three spatial distribution patterns 

3.3. Classification of object-based approach 

3.3.1. Mapping wildlife in the study area 
According to the results of the object-based approach, we managed to produce two maps of the detected 
wildlife in the pilot study area, namely Pilot_No.1 and Pilot_No.2 (Figure 23 and Figure 24). In addition 
to the two maps of detected wildlife in the pilot study area, we also provide two snapshots of the object-
based approach classification results in the validation areas (Figure 25 and Figure 26). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 23 Detected wildlife in the area of Pilot_No.1 by object-based approach 
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Figure 24 Detected wildlife in the area of Pilot_No.2 by object-based approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25 Detected animals by using object-based approach in the validation area of Pilot_No.1 
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Figure 26 Detected animals by using object-based approach in the validation area of Pilot_No.2 

3.3.2. Accuracy assessment 
Based on the results by multiple interpreters, we assessed the accuracy of the object-based approach. 
Table 27 and Table 28 summary the accuracy reports on each validation area.
 
Table 27 Accuracy report of object-based approach in Pilot_No.1

Interpreter Reference 
totals 

Classified 
totals 

Number 
correct 

Omission 
error 

Commission 
error 

Producer’s 
accuracy 

User’s 
accuracy 

No.1 517 

517 

447 13.5% 13.5% 86.5% 86.5% 

No.2 508 465 8.46% 10.1% 91.5% 89.9% 

No.3 538 452 16.0% 12.6% 84.0% 87.4% 

No.4 515 450 12.6% 13.0% 87.4% 87.0% 

No.5 495 426 13.9% 17.6% 86.1% 82.4% 

Average 515 517 448 12.9% 13.3% 87.1% 86.7% 

 
 
 
 

Legend 
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Table 28 Accuracy report of object-based approach in Pilot_No.2 

Interpreter Reference 
totals 

Classified 
totals 

Number 
correct 

Omission 
error 

Commission 
error 

Producer’s 
accuracy 

User’s 
accuracy 

No.1 152 

131 

129 15.1% 1.53% 84.9% 98.5% 

No.2 147 126 14.3% 3.82% 85.7% 96.2% 

No.3 147 125 15.0% 4.58% 85.0% 95.4% 

No.4 134 112 16.4% 14.5% 83.6% 85.5% 

No.5 139 114 18.0% 13.0% 82.0% 87.0% 

Average 144 131 121 15.8% 7.48% 84.2% 92.5% 

3.3.3. Factors affecting the accuracy 
We conduct independent two-sample t-test to test the significance of the effect of density of animal 
distribution on the accuracy of pixel-based approach. Table 29 and 30 summarize the samples of 
accuracies of object-based approach.  
 
Table 29 Samples of producer’s accuracies of object-based approach 

No. of samples Pilot_No.1 Pilot_No.2 

No.1 86.5% 84.9% 

No.2 91.5% 85.7% 

No.3 84.0% 85.0% 

No.4 87.4% 83.6% 

No.5 86.1% 82.0% 

 

Table 30 Samples of user’s accuracies of object-based approach 

No. of samples Pilot_No.1 Pilot_No.2 

No.1 86.5% 98.5% 

No.2 89.9% 96.2% 

No.3 87.4% 95.4% 

No.4 87.0% 85.5% 

No.5 82.4% 87.0% 

 
Before conducting the t-test on the two sample means, we test the normality of the two samples and the 
result indicates they follow a normal distribution. Besides, we also test equality of variances to decide 
conducting a two sample t-test with equal variances or unequal variances. Table 31 shows the result of the 
test for equality of variances. 



EVALUATING HIGH RESOLUTION GEOEYE-1 SATELLITE IMAGERY FOR MAPPING WILDLIFE IN OPEN SAVANNAHS 

40 

Table 31 Test for equality of variances for the samples of accuracies of object-based approach 

 Levene's Test for Equality of Variances 
F Sig. 

Producer’s accuracies 0.742 0.414 

User’s accuracies 8.24 0.021 
 
From the test for equality of variances, we can see that there is no significant difference between the 
variances of the samples of producer’s accuracy, and there is significant difference between the variances 
of the samples of user’s accuracy. Therefore we conducted a two sample t-test with equal variances at a 
significance level of 0.05 for the samples of producer’s accuracy and a two sample t-test with unequal 
variances at a significance level of 0.05 for the samples of user’s accuracy. Table 32 shows result of t-test. 
 
Table 32 t-test of the samples of accuracies of object-based approach 

 Producer’s accuracies User’s accuracies 
df (degree of freedom) 8 6 
t Stat 2.03 -2.03 
P(T<=t) two-tail 0.077 0.088 
t Critical two-tail 2.31 2.45 

 
The result of t-test indicates that there is no significant difference between the means of the both 
producer’s and user’s accuracies of object-based approach on Pilot_No.1 and Pilot_No.2. 

3.3.4. Estimation of the population size 
The number of animals recognized by object-based approach in the pilot study area is: 10162 in 
Pilot_No.1 and 2598 in Pilot_No.2.  
 
Similar with the estimation for population size by pixel-based approach, before we can apply the method 
for estimating the population size, we should determine the confidence interval for the means of omission 
error and commission error. Before analyzing the confidence interval, we test the normality of the samples 
of omission error and commission error and the result indicates that they follow the normal distribution. 
Table 33 and Table 34 list the upper limit of the confidence interval of the omission and commission error 
at a 95% confidence level respectively.  
 
Table 33 Upper limit of the means of omission and commission errors of object-based approach on Pilot_No.1 

 Omission error Commission error 

Average 12.9% 13.4% 

Standard deviation 0.0277 0.0273 

df  4 4 

t critical 2.78 2.78 

Upper limit of confidence 
interval (95%) 

16.8% 17.1% 
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Table 34 Upper limit of the means of omission and commission errors of object-based approach on Pilot_No.2 

 Omission error Commission error 

Average 15.8% 7.48% 

Standard deviation 0.0147 0.0585 

df  4 4 

t critical 2.78 2.78 

Upper limit of confidence 
interval (95%) 

17.8% 15.6% 

 
We determine the lower limit of the estimation of the population by the commission error and determine 
the upper limit by the omission error. Table 35 shows the estimation of the population size using object-
based approach in the pilot study area. 
 

 Lower limit of population =classified number * (1- upper limit of commission error) 
 Upper limit of population =classified number * (1+upper limit of omission error) 

 
Table 35 Population size estimation by using object-based approach 

 Pilot_No.1 Pilot_No.2 

Number classified 10162 2598 

Upper limit of commission 
error 17.1% 15.6% 

Lower limit of population 8420 2193 

Upper limit of omission error 16.8% 17.8% 

Upper limit of population 11864 3060 

Confidence interval of 
population size (95%) 

8420~11864 2193~3060 

 
Based the discussion above, we give the estimation of the population size as: 10613~14924 (12769 2156) 
in the pilot study area. Since the upper limit of the errors are derived from the confidence interval of the 
error (95%). This estimation is the range of the population size in each region of the pilot study area at a 
95% confidence level. 

3.3.5. Spatial statistics 
Here we used the same method to check the spatial distribution patterns of the animals detected by 
object-based approach, i.e. analyzing the spatial distribution patterns of the animals using average nearest 
neighbor distance in ArcMap. Figure 27 show a comparison between a snapshot of animals in Pilot_No.2 
and three types of spatial distribution pattern. From the spatial statistics (Table 36), we can see an 
expected mean distance larger than observed mean of average nearest neighbor distance and there is a 
probability less than 1% that the clustered patterns of the results could be the result of random chance. 
Therefore, the distribution pattern of the animals in the pilot study area is clustered according to the result 
by object-based approach with a significance level of 0.01. 
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Table 36 Spatial statistics of the result by object-based approach 

 Pilot_No.1 Pilot_No.2 

Observed Mean Distance (m) 3.6 7.2 

Expected Mean Distance (m) 5.0 9.8 

z-score -52.99 -25.99 

Critical value (z-score) <-2.58 or >2.58 with a significance level (p-value) of 0.01 

p-value 0.00 0.00 

Figure 27 Comparison between a snapshot of animals in Pilot_No.2 and three spatial distribution patterns 

3.4. Comparison between the results of pixel-based approach and object-baed approach 
We conduct statistical analysis to test whether there is significant difference between the accuracy 
producer’s accuracy and user’s accuracy of pixel-based and object-based approaches. The normality for the 
accuracy of pixel-based and object-based approach in Pilot_No.1 and Pilot_No.2 has been tested, and the 
result proves that all samples of accuracies follow a normal distribution.  
 
Since previous independent two-sample t-test indicates that the there is no significant difference of the 
accuracy of these two approaches on Pilot_No.1 and Pilot_No.2, therefore, for the following statistical 
analysis, we categorize the samples of accuracies in the pilot study area into two groups: producer’s 
accuracy and user’s accuracy without specifying which region in the pilot study area.  

3.4.1. Producer’s accuracies 
We conducted an independent two-sample t-test for means at a significance level of 0.05 to check the 
significance of the difference between the producer’s accuracies of pixel-based approach and object-based 
approach. Table 37 summarizes the producer’s accuracies from different interpretation results by the 

Clustered 

Random  

Dispersed   
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multiple interpreters, which will be used for the dependent two-sample t-test. Table 38 shows the result of 
the test for equality of variances. Table 39 shows the result of the independent two-sample t-test. 
 
Table 37 Summary of the producer’s accuracies of pixel-based and object-based approaches 

 Group1: Pixel-based approach Group2: Object-based approach 

Pilot_No.1 

89.6% 86.5% 

87.6% 91.5% 

85.5% 84.0% 

86.8% 87.4% 

88.3% 86.1% 

Pilot_No.2 

88.2% 84.9% 

89.8% 85.7% 

91.8% 85.0% 

85.8% 83.6% 

85.6% 82.0% 

 
Table 38 Test for equality of variances for the producer’s accuracies of pixel-based and object-based approaches 

 Levene's Test for Equality of Variances 

F Sig. 
 Equal variances 
assumed 0.040 0.844 

 
Table 39 t-test of producer’s accuracies of pixel-based and object-based approaches 

 df t Stat P(T<=t) two-tail t Critical two-tail 

Value  18 2.13 0.047 2.10 

 
The result of the independent two-sample t-test indicates that there is a significant difference between the 
means of the accuracies of pixel-based approach and object-based approach. The positive t-value on the 
right side indicates that pixel-based approach having higher producer’s accuracy than object-based 
approach. 

3.4.2. User’s accuracies 
We conducted the independent two-sample t-test at a significance level of 0.05 to check the significance of 
the difference in user’s accuracies between pixel-based approach and object-based approach. Table 40 
summarizes the user’s accuracies from different interpretation results by the multiple interpreters. Table 41 
shows the result of the test for equality of variances. Table 42 shows the result of the independent two-
sample t-test. 
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Table 40 Summary of the user’s accuracies of pixel-based and object-based approaches 

 Group1: Pixel-based approach Group2: Object-based approach 

Pilot_No.1 

87.4% 86.5% 

84.0% 89.9% 

86.8% 87.4% 

84.3% 87.0% 

82.5% 82.4% 

Pilot_No.2 

94.4% 98.5% 

93.0% 96.2% 

95.1% 95.4% 

81.0% 85.5% 

83.8% 87.0% 

 
Table 41 Test for equality of variances for the user’s accuracies of pixel-based and object-based approaches 

 Levene's Test for Equality of Variances 

F Sig. 
 Equal variances 
assumed 0.016 0.902 

 
Table 42 t-test of user’s accuracies of pixel-based and object-based approaches 

 df t Stat P(T<=t) two-tail t Critical two-tail 

Value  18 -1.02 0.322 2.10 

 
The result of the independent two-sample t-test indicates that there is no significant difference between 
the means of the user’s accuracies between pixel-based approach and object-based approach.  

3.4.3. Population estimation 
So far we have compared the results of pixel-based and object-based approaches in producer’s and user’s 
accuracy. Since one of the most important potential uses of using high resolution satellite imagery for 
mapping wildlife is being a supplement and alternative for wildlife population estimation. Therefore, it is 
necessary to test the significance of the difference between these two approaches in wildlife population 
estimation of the pilot study area.  
 
First of all, we conduct the normality test of the upper limits and lower limits of the confidence interval 
for each methods and it proves that they follow the normal distribution. Then we test the equality of the 
variances. Since these two samples have equal variances, therefore we conduct an independent two-sample 
t-test for the means with equal variances of these two groups. Table 45 summarizes the result of t-test for 
means. 
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Table 43 Population estimation results by pixel-based and object-based approaches 

 Pixel-based approach Object-based approach

Lower limit of Pilot_No.1 7834 8420 

Upper limit of Pilot_No.1 10929 11864 

Lower limit of Pilot_No.2 2308 2193 

Upper limit of Pilot_No.2 3315 3060 

 
Table 44 Test for equality of variances of population estimation results by pixel-based and object-based approaches 

 Levene's Test for Equality of Variances 

F Sig. 
 Equal variances assumed 0.231 0.648 

 
Table 45 t-test of population estimation results by pixel-based and object-based approaches 

 df t Stat P(T<=t) two-tail t Critical two-tail 

Value  6 -0.095 0.928 2.45 

 
From the result of independent two-sample t-test we can see there is no significant difference between the 
population estimation results by pixel-based and object-based approaches. 

 
Figure 28 Population estimation results by pixel-based approach (PBA) and object-based approach (OBA)
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4. DISCUSSION 

4.1. Accuracy 
From the accuracy assessment of the pixel-based and object-based approaches, we can see that both of 
them have produced results with satisfactory accuracy, which proves that both of these two approaches 
are suitable for mapping wildlife in open savannahs. By conducting statistical analysis of the accuracies, we 
find that the pixel-based approach has better performance in producer’s accuracy than object-based 
approach, which is beyond our expectation.  
 
Here we summarized several reasons for that. First of all, ANN classifier did prove to be capable of 
handling images with complicated background. Second, the spatial analysis played an important role in 
refining the primary classification result produced by ANN classifier. Especially the ‘non-study area’ layer, 
it eliminated most of the unwanted pixels misclassified as animals due to the confounding factors in the 
primary pixel-based classification result. Therefore, for processing high resolution satellite imagery, how to 
deal with the complicated background or image noises is still an important issue. This study shows that 
incorporating pixel-based classification based on the spectral reflectance with spatial analysis on the 
context would be a practical solution. On the other hand, object-based approach being used in this study 
resulted in similar accuracy with pixel-based approach. Moreover, the layer produced by refining the study 
area contributed a lot in eliminating the noise of primary pixel-based classification result, which is 
important for improving the accuracy of finalized pixel-based classification result. 

4.2. Stability of performance 
From the results we can see that the statistical analysis result proves that there is no significant difference 
between the performance of both pixel-based and object-based approaches in areas with high density of 
animals (hundreds of animals) and areas with relatively low density of animals (ranging from 30 to 100). 
This demonstrates that both of these two approaches have stable performance in areas with different 
density of animals, which expends the application area of applying these two approaches in recognizing 
animals in open savannahs. 

4.3. Population estimation 
This study has made an attempt to estimate population size of wildlife in the study area and we 
successfully gave population estimation by using pixel-based and object-based approaches. By conducting 
t-test to compare the difference between the population estimation results by pixel-based and object-based 
approaches we find that there is no significant difference. This indicates that both of these approaches are 
suitable for population estimation in the study area. 

4.4. Spatial distribution patterns 
For our case, according to the expert knowledge, wildlife on the open savannahs lives in herds rather than 
living alone in East Africa. Therefore it should follow a highly clustered pattern. Consequently, we 
conducted spatial statistics to check whether the classification result follows the distribution pattern in 
ground truth. The result indicates that both of the classification results by pixel-based and object-based 
approaches have a clustered pattern in spatial distribution, which accords with our assumption of the 
spatial distribution pattern of animals in visual interpretation. 
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4.5. Advantages of high resolution satellite imagery for mapping wildlife 
There are significant advantages for using very high resolution satellite imagery for mapping wildlife in 
open savannahs. Specially, it has practical significance for biodiversity study and wildlife conservation. 
Comparing to traditional way of wildlife survey, using the new approach in this study for mapping wildlife 
is less time consuming, less manpower demanding and a more economical solution. Besides, it could be 
conducted without disturbing animals, which is very helpful for the protection of the natural reserves. All 
the advantages make it possible for this new approach to become a supplement and an alternative to the 
future animal population censuses. 

4.6. Limitations of high resolution satellite imagery for mapping wildlife 
There are lots of limitations for putting the new approach into practice. First of all, due to the limitation of 
resolution, currently we can only recognize animals without distinguishing species and for the animals 
gathering together we cannot specify the individuals. This would have an impact on the accuracy of 
population estimation for the animals, although this kind of cases only takes very small proportion of all 
the animals. Second, the limitation of resolution of the satellite imagery makes the result of visual 
interpretation would be less reliable compared with traditional aerial photograph. Third, the study area is 
limited to in open savannahs; thereby we cannot recognize the animals under cover of trees or shrubs, etc. 
Besides, due to the limited number of bands, for the pixels on the edge of animals, there might be spectral 
overlap between the animals and the confounding factors. 
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5. CONCLUSIONS AND RECOMMENDATIONS  

5.1. Conclusions 
This study evaluates the capability of high resolution GeoEye-1 satellite imagery for mapping medium to 
large-sized wildlife in the study area located in the Masai Mara National Reserve by using two different 
image classification approaches: pixel-based approach and object-based approach. This is the very first 
attempt for mapping wildlife on the open savannahs in East Africa with relatively complex surrounding 
landscapes. The producer’s accuracy ranged from 84.2% to 88.2% and the user’s accuracy ranged from 
85.0% to 92.5% by using pixel-based approach and object-based approach respectively. Efforts on three 
aspects have been made corresponding to the research objectives: a) detecting the presence of animals on 
the imagery; b) recognizing individual animals and estimating the population size of animals; c) assess the 
accuracy produced by pixel-based approach and object-based approach and compare their capabilities for 
mapping wildlife. The specific conclusions are drawn from this study and they are summarized as follows: 
 

 The fact that we successfully accomplished mapping wildlife with satisfactory accuracy and 
estimating the population size in the pilot study area shows that it is suitable for using high 
resolution GeoEye-1 satellite imagery for mapping medium to large-sized wildlife as well as 
population estimation in open savannahs. 

 
 We managed to detect animals on the satellite imagery. However, we cannot ensure that all 

objects of animals being recognized are individuals of animals. There are clustering animals which 
cannot be separated individually. This leads to the uncertainty on population estimation to some 
degree. Therefore we conclude that it is not ready for using high resolution GeoEye-1 satellite 
imagery to count absolute number of animals. 

 
 Statistical analysis indicates that both of pixel-based and object-based approaches having a stable 

performance in both of the area with large herd of animals and the area with small herd of 
animals, and there is no significant difference between the performance of pixel-based and object-
based approaches in user’s accuracy and population estimation. However, the pixel-based 
approach was proved having better producer’s accuracy than object-based. 

 
Based on the points discussed above, we may safely reach the conclusion that high resolution GeoEye-1 
satellite imagery is suitable for mapping medium to large-sized wildlife as well as population estimation in 
open savannahs, but not ready for counting absolute number of animals.  

5.2. Recommendations 
We have concluded that it is suitable for mapping wildlife in open savannahs using high resolution 
GeoEye-1 satellite imagery. Specially, the two different image classification approaches for mapping 
wildlife applied in this study would be highly suitable for detecting the presence of wildlife instead of 
absolute number counting. Therefore, this new approach can be applied on the areas of wildlife 
conservation on large scale, especially for monitoring wildlife in the study regarding the great migration of 
the migratory ungulates. It is also highly suitable for the study about the relationship between wildlife and 
the habitats on landscape level, such as forest, shrubs, and water bodies. 
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There is constant improvement of spatial resolution with a new generation of high resolution satellite 
imagery, for example, GeoEye-2, scheduled to launch in 2013, will have a spatial resolution of 0.25m 
("GeoEye Begins Phased Procurement of GeoEye-2 | GPS World," 2011). This could possibly enhance 
the potential to distinguish between species. It might also allow distinguishing clusters of animals which 
show up as one dot instead of multiple dots into separate entities. Agglutination of nearby image objects 
into one object tends to bias population estimates downwards. The higher spatial resolution might also 
offer possibility to reduce such bias in population size estimates. With more available bands of a new 
generation of high resolution satellite imagery, there would be less spectral overlap between the animals 
and the confounding factors, and hence the final accuracy might be further improved.  Moreover, with 
enough spatial and spectral resolution, it is becoming possible for us to identify animals and specify the 
species at the same time by its unique geometric features in spatial and spectral signature (Rodriguez-
Fernandez et al., 2011).  
 
To sum up, we have confidence in the prospect of the approach that applies very high resolution satellite 
imagery for mapping wildlife in open savannahs, and with the development of very high resolution 
satellite imagery, this approach could potentially be an alternative for traditional surveying methods 
currently being used. 
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