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Abstract 
 
The relative contribution of microphytobenthic (MPB) primary productivity to the total primary 
productivity of intertidal ecosystems is largely unknown. The possibility to estimate MPB primary 
productivity would be a significant contribution to a better understanding of the role of intertidal mudflats 
for ecosystem functioning. Estimation of MPB primary productivity from the exposed intertidal mudflats 
in the Dutch Wadden Sea, Netherlands was done following a two-step procedure. Firstly, supervised and 
image based classification methods were used to map classes of sediment types since sediment properties 
are important for MPB primary productivity. The two sediment classification methods were based on the 
Spectral Angle Mapper (SAM) algorithm using field collected and image extracted endmembers. Secondly, 
MPB primary productivity in the Dutch Wadden Sea was estimated following the model by Platt and 
Jassby (1976) for the top sediment layer (2 mm depth) using NDVI as a proxy for MPB biomass. 
Sensitivity analysis was also done using sediment euphotic depth of 2 mm, 5 mm and 7 mm; diffuse 
attenuation coefficient (Kd) of 1.61 and 2.60 mm-1 and photosynthetic efficiency (αB) of 0.026 and 0.037 
to assess their effect on intertidal mudflat MPB primary productivity. The results demonstrate that 
different sediment types have different spectral signatures produced by the presence of MPB organisms 
which have chl-a that absorbs at approximately 673 nm. In addition, the findings indicate that different 
sediment types can be characterised from remote sensing data using SAM algorithm, based on their 
spectral characteristics. The results further illustrate that derived clay and sand sediment classes from 
intertidal mudflats vary spatially and temporally. Again, derived chl-a+ phaeopigments concentration 
[mgm-2] varied spatially and temporally and the distribution resembles that of clay and sand sediment 
classes characterized. High chl-a+ phaeopigments concentration [mgm-2] were observed on areas with clay 
sediments and low in areas with sand. A significant linear relationship was found between maximum rate 
of photosynthesis at saturating irradiance (PBmax) and land surface temperature with a coefficient of 
determination (R2) of 0.71. The results also indicate that MPB primary productivity from intertidal 
mudflats sediments can be mapped using remote sensing methods. Estimated MPB primary productivity 
varied spatially and the distribution is similarly comparable to that of derived clay and sand sediment 
classes, with high MPB primary productivity found in clay sediments and limited amounts on sand. 
Sensitivity analysis results have shown that MPB primary productivity in mudflats is largely controlled by 
αB, euphotic depth and Kd.  
                                                                                                                                                                         
 
Keywords: Chl-a+ phaeopigments, Intertidal mudflats, Aqua, Microphytobenthic, Remote sensing, 
Primary productivity. 
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1. Introduction 

1.1. Background 
Intertidal mudflats are coastal wetlands that result from prolonged and consistent deposition of nutrient- 
rich estuarine silts, clays, or sand particles, and marine animal detritus by sea tides and rivers in shallow 
areas or within the intertidal zone (Adam et al., 2009; Reise et al., 2010; Stal, 2010). In this thesis, the 
intertidal zone refers to an area directly above water at low tide and below water at high tide. In the 
Wadden Sea a tidal cycle of inundation and exposure takes approximately 6 hours. Intertidal sediments are 
a habitat to pelagic and benthic microorganisms. These microorganisms are the major primary producers 
in intertidal mudflats and their presence enhances sediment stability through secretion of extracellular 
polymeric substances (Stal, 2010). Currently, the existence of intertidal mudflats is threatened by sea level 
rise, fragmentation, physical human development, dredging due to regular shipping activities, and changes 
in sedimentation patterns (CPSL, 2005; Reise. et al., 2010).  
 
Primary productivity refers to the chemical synthesis of organic compounds by autotrophs from inorganic 
carbon and nutrients (Abercrombie et al., 1973). Intertidal mudflats primary productivity is generally high 
although spatially and temporally variable. This variability can be explained by the presence of different 
sediment morphological structures or characteristics and other related environmental variables. The 
variables include, diurnal temperature changes, seasonal patterns, nutrient availability, amount of incident 
light and concentration of diatoms within sediments (Brotas et al., 1995; van der Wal. et al., 2010). So far 
research has shown that intertidal mudflats primary productivity is largely dominated by pelagic and 
benthic micro algae and benthic micro fauna (Reise, et al., 2010). Kromkamp et al., (2006) has further 
stated that mudflats are currently classified as the most productive ecosystems in the world because of 
benthic algae primary productivity. These microorganisms form the basis of the food web that ultimately 
provides food and enrich aquatic nursery (Reise, et al., 2010). However, despite their ecological 
significance, the knowledge of primary productivity of benthic micro fauna and benthic microalgae in 
intertidal mudflats is limited. Understanding microphytobenthic primary productivity in intertidal mudflats 
is necessary for ecosystem modelling, prediction and management. In this regard, it is important to find 
ways of estimating the spatial and temporal variations of microphytobenthic primary productivity in 
intertidal mudflats. 
 
Microphytobenthic (MPB) organisms are a composition of benthic single-celled phototrophic 
microorganisms or microalgae forming biofilms on intertidal sediment surfaces (Paterson et al., 2001). The 
existence of MPB in intertidal environments is bio-physically and ecologically crucial. This can be seen 
through their different roles in determining the functioning of the intertidal ecosystem (fig. 1-2). They 
stabilize estuarine sediments from re-suspension during high tidal periods, through the excretion of 
extracellular polymeric substances that glue sediment grains together (Adam, et al., 2009; Blanchard, 2000; 
Kromkamp et al., 2006). MPB are the most important phototrophic microorganisms in intertidal mudflats 
ecosystem, constituting the bulk of estuarine total primary productivity (Barranguet. et al., 2000; Blanchard, 
2000; Underwood et al., 1999). The distribution of these organisms in intertidal mudflats is heterogeneous, 
as they vary spatially with the observed variation in the nature of sediment types within the Wadden Sea 
area as a function of an inter-play of different prevailing environmental factors. Thus, to better understand 
primary productivity in these areas; deriving information on different sediment classes is one of the critical 
steps. It is argued that over sandy silts and sands the concentrations of MPB biomass is very low as 
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compared with areas of fine cohesive clay sediments (Sundback et al., 1991). Sands tend to be both lower 
in nutrients and frequently resuspended than cohesive sediments, and these characteristics probably 
contribute towards lower MPB biomass (fig 1-2). In addition, the estimation of areas of active MPB 
primary productivity as well as understanding the role of MPB in estuarine environments is important as 
this can assists in managing estuarine critical environment. The patterns of MPB primary productivity in 
intertidal mudflats are heterogeneous both spatially and temporally but to the best of our knowledge this 
variability is poorly understood. Areas of active primary productivity in intertidal mudflats in the Wadden 
Sea are not known. This limitation has been attributed to the very patchy nature of their occurrence. 
Again, this problem is further explained by the short term dynamic nature of MPB biomass availability in 
the euphotic zone within the sediment profile, caused by the vertical migration of epipelic diatoms from 
time to time (Barranguet., et al., 2000; Kromkamp, et al., 2006).  

Figure 1-1: Intertidal mudflat areas where benthic microorganisms result in MPB primary productivity  

Traditionally, intertidal mudflat primary productivity has been derived through sediment coring techniques 
followed by laboratory MPB biomass analysis. However, this method is cumbersome and requires intense 
and prolonged field measurements which is time consuming, challenging and costly. In addition, a close 
analysis of the findings from these traditional methods indicates that they are limited to micro-scales 
whereas remote sensing techniques provide an opportunity to a wide spatial coverage at a given time. The 
advent of high resolution remote sensing data offers a better alternative means of obtaining essential 
information to study intertidal mudflats (Adam, et al., 2009; DerondeKempeneers et al., 2006; Murphy et 
al., 2008; van der Wal et al., 2004). Satellite remote sensing data has the capability of providing a consistent 
and full spatio-temporal coverage of intertidal mudflat areas. The technique also provides non-intrusive 
measurements of areas considered to be inaccessible and highly sensitive to any physical disturbances such 
as trampling (Adam, et al., 2009). Remote sensing and GIS techniques enhances spatio-temporal 
investigations of ecological and physical environments by providing synoptic images of intertidal areas at 
minimal costs (van der Wal., et al., 2010). In this regard this study explores the possibility of using remote 
sensing techniques and ground based measurements in estimating and mapping microphytobenthic 
primary productivity in intertidal mudflat sediments of the Wadden Sea.
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1.2.  Research Problem 
Despite MPB primary productivity in intertidal sediment surfaces having an undisputable ecological role, 
methods of its quantification have proven to be difficult (Jesus et al., 2006) and cumbersome hence posing 
problems in monitoring and coming up with possible management strategies. Currently, the knowledge on 
MPB primary productivity in intertidal mudflats of the Dutch Wadden Sea is rudimentary. This limitation 
is attributed to factors such as: (i) the sparse nature of in-situ data in both time and space over the area as 
a result of area inaccessibility (Jesus, et al., 2006) and the patchy nature of their occurrence that is 
determined by variations in the texture and relief of the sediments surface (Adam, et al., 2009; Jesus, et al., 
2006; Kromkamp, et al., 2006; Smith et al., 2004). (ii) Quantification of chl-a concentrations, which is a 
proxy of benthic biomass, on intertidal mudflats using traditional sampling techniques is more challenging 
(Kromkamp, et al., 2006), tedious, expensive, labour-intensive, ecological destructive and does not fully 
capture the spatial heterogeneity since measurements are done on a point basis Adam, De Backer et al. 
(2011). (iii) Chl-a content in mudflats is normally limited in amount. (iv) MPB primary productivity rates 
change rapidly within a short period of time (Barranguet., et al., 2000). These factors have resulted in 
limited understanding of MPB biomass and productivity. Consequently, methods that will capture the 
spatial and temporal variations of MPB such remote sensing provide a platform for understanding MPB 
primary productivity. The inherent intertidal mudflats sediment characteristics and chl-a optical properties 
allow remote sensing of MPB primary productivity in these delicate areas  (Jesus, et al., 2006).Thus this 
research attempts to bridge this gap by coupling in-situ and with remote sensing data to estimate MPB 
primary productivity and map its variability in intertidal sediment surfaces. (Jesus, et al., 2006). 

1.3. General Objective 
To estimate microphytobenthic primary productivity from the exposed intertidal mudflats using remote 
sensing in the Dutch Wadden Sea, The Netherlands 

1.4. Specific Objectives  
1. To derive information on the characteristics of the top sediment layer of mudflats in the 

Dutch Wadden Sea using field  and remote data, 
2. To estimate chl-a content from intertidal mudflats using NDVI as a proxy for biomass, 
3. To derive maps of MPB primary productivity from intertidal mudflats in the Wadden Sea.  

1.5. Tasks 
 To determine different sediment spectral characteristics,  
 To map the spatial variation of MPB using Spectral Angular Mapper algorithm, 
 To derive land surface temperature from remote sensing data, 
 To determine intertidal areas rich in microphytobenthic biomass and active primary producers, 

and 
 To produce maps of MPB primary productivity of intertidal mudflats of the Wadden Sea. 

1.6. Research Questions 
1. How does spectral reflectance vary with sediment type? 
2. Does chl-a content or NDVI vary significantly with spatially variations in sediment 

properties?  
3. What is the MPB primary productivity of the Wadden Sea? 
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1.7. Research Findings 
 To produce intertidal sediment ecotopy maps, 
 Derive chl-a+ phaeo pigments spatial distribution maps over the Wadden Sea area, 
 Map land surface temperature maps from ASTER and Landsat (TM and ETM+) thermal bands, 
 Compute a linear relationship between PBmax and temperature, 
 Intertidal mudflat primary productivity maps of the Dutch Wadden Sea, 
 Sensitivity analysis results of MPB primary productivity on intertidal mudflats. 

1.8. Thesis Structure 
For simplicity, each objective in this study has been treated as a separate chapter, with each method 
accompanied by the respective results and discussions. The whole thesis document consists of nine 
chapters. Chapter 1 comprises of the introduction which gives a comprehensive overview of the research 
including problem statement, objectives, research questions, research outputs, and innovativeness of the 
study.  Chapter 2 outlines the general description of the study area. Chapter 3 consists of data and 
materials used in this study. Chapter 4 is a detailed outline of data pre-processing steps: calibration and 
atmospheric of remote sensing data. Chapter 5 entails the detailed approach adopted to derive information 
intertidal sediment types and the results are discussed in chapter 6. Chapter 7 is about methods used to 
estimate MPB primary productivity from the Wadden, whereas chapter 8 outlines an in depth results and 
discussion from chapter 7. Conclusions and recommendations are summarised in chapter 9. Figure 1-3 
outlines the general thesis conceptual matrix. 
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Figure 1-3: Thesis matrix 
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2. Description of the Study Area 

2.1. Geographic Location of the Wadden Sea 
The Wadden Sea is by nature a shallow open intertidal region with estuarine character (CPSL, 2005). It 
covers a wide land area with an aerial coverage of approximately 10 000km2 in total and about 500 km in 
length (Hogan, 2011; Hommersoms, 2010). The area is located in the SE part of the North Sea on latitude 
52°52'N to 53°33'N and Longitude 04°45'E to 07°13'E (UNEP, 2009). It stretches from Den Helder 
Netherlands where it is flanked from Ijsselmeer by the Afsluitdijk in the south west, through the great 
river estuaries of Germany to its northern frontier at Skallingen north of Esbjerg in Denmark (Hogan, 
2011; Hommersoms, 2010; Otto et al., 2001). The area is internationally recognized as one of the World’s 
largest natural landscape that remains in Europe, with a high ecological, economic and societal significance 
(Otto, et al., 2001). Most of the natural processes in this area continue to function undisturbed. In June 
2009 the Wadden Sea was included to the World Heritage list by UNESCO (Hommersoms, 2010; UNEP, 
2009). Its ecological significance is mostly centred on biological diversity that is based on coastal habitats 
such as mudflats, sea grass beds, salt marshes, mussel beds, and estuaries (Reise, et al., 2010).  
 
According to Otto and Zuidbroek, (2001), the area is well-known for its biological diversity and high 
productivity sustaining large populations of shorebirds, ducks, and geese. Some of the bird species use the 
area as a flying stop zone (Karsten et al., 2009). The major habitats and land cover types are salt marshes; 
covered with halophilous vegetation with sand dunes and tidal flats that provide a home to micro and macro 
algae (Reise., et al., 2010). Eutrophication supplies the Wadden Sea with an overabundance of algae 
(Hommersoms, 2010; Reise., et al., 2010; UNEP, 2009). Together with suspended matter, the algae make 
the water too turbid for seaweed to develop well. In addition, the gradual encroachment by embankment 
of the adjoining salt-marshes and coastal embayment is causing the Wadden Sea to shrinks in size (Reise, et 
al., 2010). Research and monitoring is necessary to increase our understanding of the system to be able to 
reduce further environmental degradation. 
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Figure 2-1: False- colour composite map of the Wadden Sea with special reference to the Dutch part 
(Source: Aster 2007) and adapted from Hommersoms (2010). 

2.2. Climate 
The Wadden Sea experiences temperate climatic conditions. Its climatic conditions are defined by the 
convergence of two different air masses. These include the humid maritime air mass coming from the 
west and the dry continental air mass originating from the east. These air masses results in mild winters 
and cooler summers over the Wadden Sea (UNEP, 2009). Even though the prevailing climatic conditions 
of the area are characterised by cooler periods, generally there are often more sun hours per annum in 
these coastal regions. 
 
Table 2-1: Mean temperatures over the Wadden Sea  

 
Temperatures of the area are as indicated in table 2.1. For the past six decades (1950 to 2010) the extreme 
water temperatures were ±2.3°C in the tidal region (UNEP, 2009). Although the sea is the source of 
humid air, precipitation in the Wadden Sea area is moderate, ranging from 700 to 800 mm yr-1 or 
approximately 2 mm d-1 (UNEP, 2009).  

2.3. Topography 
The Wadden Sea landscape is made up of flat coastal plains and the lowly-elevated offshore barrier islands 
with an altitude of approximately ± 50m above sea level. Coastal sand dunes, beach ridges and dykes 
constitute the main topographic types in the area (UNEP, 2009). These physical features have a significant 

Mean temperatures Temperatures [0C] 
Mean annual air temperature 8.5 
Mean annual water temperature 9 
Summer mean 15 
Winter mean 4 
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role in protecting low-lying freshwater marshes and agricultural fields from the rage of environmental 
disasters like flooding.  

2.4. Biodiversity and Conservation 
Wadden Sea is characterised by endemic species. The endemic species make the Wadden Sea a unique 
biotype when compared to other global biomes (Reise, et al., 2010). A report by UNEP, (2009) has 
indicated that approximately 2 300 flora species and 4 200 fauna species survive from the rich spectrum of 
distinct microhabitats are found in this area. So far, the terrestrial vegetation of the Wadden Sea is 
predominantly characterized by the highest species diversity that  is linked to salt marshes (UNEP, 2009). 
According to Reise, et al., (2010) the area is home to about 6 million birds yearly. So far, the natural 
intertidal environments make the area to be recognised as a highly productive ecosystem in the world. For 
example, research has shown that, the area provides home to an estimate of 10,000 species of unicellular 
organisms, plants, fungi and animals(UNEP, 2009). 
 
2.5. Economic Function 
Economically, the Wadden Sea ecosystem acts as the hub for commercial fisheries in the North Sea due to 
the fact that it ecological functions as a staging area for fish migrating between rivers for spawning and the 
oceans for feeding (Reise, et al., 2010). According to Hofstede et al., (2005) statistics indicate that around 
10 million tourists and 30-40 million daily visitors come to the Wadden Sea area every year, raising 
approximately 1.5 billion Euro to the total tourism earnings annually (IRWC, 2000a). 
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3. Data and Materials  

This chapter presents a brief description of the instruments, field measurements methods and remote 
sensing datasets used in the study.  

3.1. Pre-fieldwork 
Pre-fieldwork was characterized by acquisition of radiometric instruments such as TriOs- RAMSES 
irradiance and radiance sensors (fig 3-1). These instruments were calibrated and tested to see whether they 
were functional before leaving for fieldwork. Selected instruments and materials are listed in section 3.1.1 
below. 

3.1.1. Fieldwork materials and Instruments 

 
Figure 3-1: TriOs RAMSES Irradiance and Radiance sensors1 

The following fieldwork equipments and materials were supplied by ITC.    
 Garmin etrex Global Position System (GPS) 
 Navigation compass and 1 m tripod, 
 Aluminium trunk for storing fieldwork materials 
 TriOs RAMSES irradiance and radiance sensors 
 Water proofed gumboots  
 Notebook (laptop) 

3.2. Field Radiometric Measurements 

3.2.1. Field Endmember Spectra Collection 
In-situ field radiometric measurements were conducted as part and under the IN PLACE activities on 
exposed intertidal mudflat sediment surfaces between the 26th and 28th of September 2011 in the Wadden 
Sea, the Netherlands (fig 3-3). The field surveys were conducted based on predicted tidal cycle (fig 3-2). 
The first two days were covered by clouds whereas the last day was clear and sunny. The measurements 
were conducted following the IN PLACE measurement protocol as briefed hereafter (Personal 
communication with Salama 2011). The TriOs RAMSES with the ACC-VIS irradiance sensor and 
radiance sensor were used to measure upwelling radiance (Wm-2 sr-1 nm-1) and downwelling irradiance 
(Wm-2 nm-1). These measurements were specifically done on undisturbed sediments surfaces so as to 
capture an undistorted distribution of microphytobenthic diatoms in mudflats. Downwelling irradiance Ed 

(0+, λ) was measured at an angle of 1350 while on the other hand, upwelling radiance Lu (0+, λ) with a field 
of view of 70 and an angle of 400. All these measurements were done simultaneously from a fixed height of 

                                                      
1 
http://www.trios.de/index.php?option=com_content&view=category&layout=trios&id=47&Itemid=76&lang=en
#item196_top 
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110 cm above the intertidal surface sediments so as to increase the radiometric footprint. Spectral 
signature values were assessed for consistence through plotting spectral graphs against wavelength in the 
field after taking some measurements. Assessment was conducted with the help of an expert (Salama). 
When unsatisfied with the results, adjustments were made until satisfactory measurements were attained. 
 
Since in the Wadden Sea a tidal cycle of inundation and exposure takes approximately 6 hours per day, 
radiometric measurements were done following the predicted tidal tables from 12:40 to 17:00pm (UTC). 
During this low-tide period, the intertidal mudflats were exposed enabling sampling (fig 3-2). Three sites 
were chosen for radiometric measurements. From each site, radiometric measurements were taken on 
different days (table 3-1). The coordinates of the sampling sites were recorded using a Garmin etrex global 
position system (GPS). A total of 37 locations were measured from three sites. Three different sites were 
chosen for radiometric measurements because microphytobenthic presence on Wadden Sea intertidal 
mudflats varied from one place to another as a function of the existing different sediment types.  
 

 
Figure 3-2: Schematic illustration of the predicted tidal cycle for the 28th day of September 2011 that was 
used to undertake radiometric measurements in intertidal mudflats.  
 

 
Figure 3-3: Field instrument measurement setup and field sampled sites 
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Table 3-1: Coordinates of the intertidal mudflat sites sampled at low- tide  
Date Station Lat N Long E Location Vessel Sample Points 
26.09.2011 Site 1 5302.460 04058.426 Lutjeswaard Zeevonk 6 
27.09.2011 Site 2 5304.193 04053.181 Vlakte van Kerken Zeevonk 13 
28.09.2011 Site 3 52057.225 04050.213 Balgzand Zeevonk 18 
29.09.2011 Reserved for bad weather  
 

3.3. Earth Observation Data Acquisition 
 

3.3.1. Landsat (ETM and TM), Aster and Meris Images 
Three Landsat images, two Aster and one Meris day time images were used. Landsat images were acquired 
from the ready available online Landsat archive. The archive was accessed via the US Geological Survey 
Global Visualization Viewer (GloVis) through http://glovis.usgs.gov/ web-link. Aster level 1B images 
were acquired via the ITC RSG lab, whereas Meris images were acquired from ESA. During the 
acquisition process, images were selected based on the following criteria: (i) they should be acquired 
during a period of low tidal (ii) they must be free of cloud cover. Based on these criteria, only a few images 
were found to be suitable for deriving information on sediment types (table 3-3). To confirm whether the 
images were collected during a period of low tide we retrieved information on tidal water height from an 
online tidal database2. Den Helder which is in the Western part of Wadden Sea was used as the reference. 
The water heights were presented in centimeters (cm) based on normal Amsterdam surface level (fig 3-4). 
The spatial and temporal resolution of the selected remote sensing datasets is summarised in table 3-2 
below.  
 
Table 3-2: Descriptive information of acquired earth observation data  
Satellites Characteristics 

Spectral 
Resolution 

Spatial Resolution Orbital 

 
Meris 

VIS-NIR (15bands) 
Across range 
390nm-1040nm 

Ocean 1040m*1200m 
(Reduced Resolution). 
Coastal 260m*300m 
Full Resolution. 

Polar orbital. Sun synchronous. FOV 
68.5deg. Swath width 1150km. 3 day 
overpass time 

Landsat 
(TM and 
ETM) 

0.45μm - 12.5μm.  
(7 bands) 
(VIS,NIR,MIR) 

30m*30m :- (VIS, NIR, 
MIR). 
60m*60m:-thermal. 

Near polar orbital. Sun synchronous, 
Inclination 8.2deg. 16 days (233 orbits). 
Altitude 705km 
 

Aster 14 bands,  
VIS-NIR(1-3), 
SWIR     (4-9),  
TIR        (10-14) 

VIS_NIR      15m 
SWIR            30m 
TIR               90m 

Near polar orbital. Sun synchronous, 
Orbital inclination 98.3o from equator. 
Altitude 705km. 16 day repeat cycle 

 
 
 
 
 
 
                                                      
2 http://live.waterbase.nl/waterbase_wns.cfm?taal=nl 
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Table 3-3: Landsat scene data acquisition information 
Data Description Date Acquired Lat Lon Path Row Spatial Resolution Max Cloud 

Landsat ETM+ 2000/05/13 53.1 5.7 198 23 30 m 0.0 % 
Landsat TM 5 2009/07/01 53.1 5.7 198 23 30 m 18  % 
Landsat TM 5 2010/09/06 53.1 5.7 198 23 30 m 0.0 % 
Aster 2003/10/05 53.1 5.7 198 23 15 m - 
Aster 2007/05/07 53.1 5.7 198 23 15 m - 
Meris 2011/09/28 53.1 5.7 - - 300m - 
(Source: http://glovis.usgs.gov/) 

3.4. Wadden Sea tidal Water Heights 
The figure below illustrates six different tidal cycles corresponding to specific dates in which above 
mentioned remote sensing images were acquired. From all the images it is observed that on each day there 
is more than four hours of intertidal exposure from sea tides. 
 

 
 
Figure 3-4: Predicted tidal water heights in centimetres (cm) for the Wadden Sea in relation to selected 
dates in which images where acquired for analysis. 
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4. Data Preprocessing 

4.1. Field Data 
Downwelling irradiance and upwelling radiance derived from the TriOs RAMSES sensors were used to 
derive the remote sensing reflectance for different sediment types. Remote sensing reflectance was 
determined directly by computing the ratio of upwelling radiance and downwelling irradiance as shown in 
equation 4.1 below. 
 

,
),0(
),0(

d

u

E
LRrs  ][ 1sr                      (4. 1) 

 
Where 
Rrs    = remote sensing reflectance [sr-1],  
Lu (0+, λ) = upwelling radiance [Wm-2 sr-1 nm-1], 
Ed (0+, λ) = downwelling irradiance [Wm-2 nm-1]. 
 
 However, to derive information on sediment types from remote sensing data, remote sensing reflectance 
was converted to spectral reflectance by multiplying the resultant output by pi (π). Based on this method, 
three spectral endmember classes were determined from remote sensing data for ecotopy mapping (fig 4-
1). These consist of sea weed (vegetation), clay and sand. In this study, a spectral endmember is defined as 
a specific pure spectral feature acquired through in-situ radiometric measurements or laboratory analysis 
of reflectance spectra; principally focusing on a single surface (Hommersoms, 2010; Schwengerdt, 1997; 
Yuhas et al., 1992). According to De Carvalho et al., (2000) this method is predominantly grounded on 
expert know-how of the landscape investigated.  
 

 
Figure 4-1: Spectral signature of different sediment types in intertidal mudflats, the Wadden Sea 

4.2. Calibration of Earth Observation Data 

4.2.1. Landsat (TM and ETM) Calibration 
All Landsat images were acquired in Digital Number (DN) format. However, for these images to be used 
in deriving information on mudflats sediment types, they had to be first calibrated into spectral radiance 
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units [Wm-2sr-1μm-1] following the calibration method by Chander et al., (2009). The calibration 
coefficients were provided together with the respective Landsat images as tabulated in table 4-1. The 
conversion from DN to spectral radiance was done band by band; through implementing the following 
mathematical formulation by Chander et al., (2009) indicated below in equation 4.2: 
 

LMINQQ
QQ
LMINLMAXL calcal

calcal
min

minmax          (4. 2) 
 
Where 
Lλ = spectral radiance at the sensor’s aperture [Wm-2sr-1 μm-1], 
Qcal    = Quantized calibrated pixel value [DN], 
Qcalmin = Minimum quantized calibrated pixel value corresponding to LMINλ [DN], 
Qcalmax = Minimum quantized calibrated pixel value corresponding to LMAXλ [DN], 
LMINλ = Spectral radiance that that is scaled to Qcalmin [Wm-2sr-1 μm-1], 
LMAXλ = Spectral radiance that that is scaled to Qcalmax [Wm-2sr-1 μm-1], 
 
Table 4-1: Landsat TM and ETM+ calibration coefficients 

 

4.2.2. Aster Calibration 
Aster level 1B contains radiometrically calibrated and geometrically co-registered data (YCEO, 2011) with 
6 SWIR, 3 VNIR and 5 TIR bands having different resolution (table 3.2) and a single band pointing 
backwards to generate a parallax information on elevation. This band was not included in classification. 
The satellite provides geo-spatial information on land surface temperature, digital elevation and surface 
reflectance. The Aster scene has nearly 60 km by 60 km aerial coverage.  The sensor concurrently acquires 
geo-spatial data in three distinct spectral resolutions (http://asterweb.jpl.nasa.gov/).  
 

4.2.3. Meris Calibration 
Meris level 1B were used in this study and these images are readily geometrically calibrated so as to be 
matched with the Top-Of-Atmosphere (TOA) radiance3.   

4.3. Atmospheric Correction of the Visible and Thermal Channels 
By nature satellite remote sensing data are affected by atmospheric effects such as atmospheric aerosol 
scattering as well as non-target effects from the earth’s surface due to adjacent effects. This is attributed to 
the fact that the incoming solar radiation has to pass through the atmosphere before it is measured by 

                                                      
3 http://envisat.esa.int/handbooks/meris/CNTR2.htm 
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remote sensing instruments as illustrated in figure 4-2 (Azab, 2012; Trishchenko et al., 2002). Therefore, 
for improved quantitative analysis of surface reflectance, there is need to critically perform atmospheric 
correction to get rid of non-target effects, thus, enhancing surface reflectivity properties (Azab, 2012; 
Fallah-Adl et al., 1995; Trishchenko, et al., 2002).  
 

 
Figure 4-2: Schematic illustration of remote sensing technique.  

4.3.1. Visible Bands Atmospheric Correction 
The visible bands for Landsat (TM and ETM+)and Aster images were atmospherically corrected using the 
FLAASH model (eq 4.3) (Felde et al., 2003; Kaufmann et al., 1997). The FLAASH model is only applicable 
to 0.35 μm- 2.5 μm visible region of the electromagnetic wavelength. It is one of the best atmospheric 
correction methods for retrieving reflectance from multispectral radiance images (Kaufmann, et al., 1997; 
Trishchenko, et al., 2002). On the other hand, Meris was corrected for atmospheric effects using SMAC 
which is a semi- empirical approximation of the radiative transfer in the atmosphere (Rahman et al., 1994). 
Both models incorporates the MODTRAN4 radiation transfer code (Berk, 2000). The MODTRAN-4 
code involves the application of a correlated-k algorithm which significantly enables precise computation 
of various scattering4. Actually, more accurate computations of transmittance and radiance enable an 
improved anaylsis of multispectral data. More so, the MODTRAN code also provides a set of Bi-
directional Radiance and Distribution Functions (BRDFs) which permit ground scattering to be computed 
instead of being Lambertian. BRDFs and correlated-k algorithms are crucial in enhancing the scattering 
accuracy, since it includes the azimuthal asymmetries5. Spectral radiances were computed as illustrated in 
equation 4.3: 
 

a
e

e

e

L
S

B
S

AL
11                                                                                                       (4. 3) 

   
 
 
 
Where:  

                                                      
4 4 http://www.kirtland.af.mil/library/factsheets/factsheet.asp?id=7915 
5 http://www.kirtland.af.mil/library/factsheets/factsheet.asp?id=7915 
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 = the pixel surface reflectance, 
e = the average surface reflectance for the pixel and the surrounding area, 

S  = the spherical albedo, 
aL = the radiance back scattered by the atmosphere [Wm-2 sr-1 nm-1]. 

A and B are the transmittance coefficients that depend on atmospheric and geometric conditions but not 
on the surface. 
 
All the above stated parameters depend on the spectral channel. L in equation 4.3 is equal to radiance 
reflected from the surface, directly detected by the sensor while the 2nd component corresponds to 
radiance from the ground which is scattered by the atmosphere into the sensor. The difference between r 
and re accounts for the adjacent influence instigated by the atmospheric scattering (Kaufmann, et al., 
1997). Following this method, correction of adjacent effect is neglected by assuming re=r. 
 
The difference between  and e  account for adjacent effect. A, B, S and La are directly derived from 

MOTRAN4 computations based on satellite viewing angle, solar angles and the average surface elevation  
(Kaufmann, et al., 1997). A, B, S and La values are largely dependent on the water vapour column amount 
and which is normally unknown. Therefore, to account for this drawback, the MODTRAN4 
computations are integrated over a sequence of various column amounts, and then selected image bands 
are investigated to derive an estimated amount for each pixel (Azab, 2012; Kaufmann, et al., 1997). 
Radiance averages are derived for two set channels: an absorption set centred at the water band and a 
reference set of bands taken out of the channel. Following this step, a look-up table is generated for 
retrieving water vapour from the above generated radiances. When water vapour is retrieved, equation 4.3 
is calculated for the pixel ground reflectances in all input image channels (Azab, 2012). The resultant 
method includes calculating a spatially averaged radiance image Le, while from the spatially averaged 
reflectance re is estimated using the formula below: 
 

a
e

e
e L

S
BAL

1
,          (4.4) 

 

4.3.2. Thermal Atmospheric Correction  
Landsat (TM and ETM+) thermal bands were calibrated based on the same method by Chander et al., 
(2009) as illustrated in equation 4.2. In order to retrieve accurate land surface temperature, these bands 
were atmospherically corrected for atmospheric effects (fig 4-2). According to Barsi, (2007), atmospheric 
correction is actually a pre-requisite for thermal imagery because upwelling emitted ground signal is usually 
attenuated and/or enhanced by the atmosphere. Then, brightness temperature was derived by following 
the approximation method of Goetz (1995) below:  
 

        
                                  (4.5) 
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Where  

Tb     = brightness temperature, 
k1 and k2  = pre-launch calibration constants (607.76 Wm-2sr-1μm-1 for L5, 666.09 Wm-2sr-1μm-1 for  
L7 and k2 =1260.56 Wm-2sr-1μm-1 for L5, 1282.71 Wm-2sr-1μm-1 for L7), 

 B6(T6)    = at-sensor registered radiance (Wm-2sr-1μm-1). 
 
B6(T6)  can be derived as following based on Planck’s radiation formula: 
   

,                                 (4.6) 
 

 
 
Where 
c1 =1.9104*1010 (μWcm-2sr-1μm-1)-μm5  
c2= 14387.7 μm-K are radiation constants  
T = surface temperature. (Spectral radiance unit: μWcm-2sr-1μm-1=0.01 μWcm-2sr-1μm-1) 
 
Considering the altitude from which Landsat TM/ETM+ is located; at –sensor registered radiance is not 
explicitly direct from the target because upwelling emitted ground signal leaving the target is attenuated 
and enhanced by the atmosphere (Qin, 2001). Due to these atmospheric effects or path radiance, at-sensor 
received radiance can be expressed as following: 
 

66666666 )1()()( IITBTB s        (4.7) 
 
Where  

sT   = land surface Temperature [K], 

6T  = brightness temperature at band 6 [Wm-2 sr-1nm-1], 

6   = atmospheric transmittance at band 6 [-], 

6   = surface emissivity [-], 
)( 66 TB  = at-sensor registered radiance [Wm-2 sr-1nm-1], 

6I  = down welling irradiance [Wm-2 nm-1], 

6I  = upwelling radiance [Wm-2 sr-1nm-1]. 
 
According to Qin et al., (2001), upwelling radiance and downwelling atmospheric radiance can be obtained 
by following the method by Franca et al., (1994) or by using the mean value theorem approach by Prata 
(1993) and Coll (1994). However, for this study all atmospheric parameters i.e., atmospheric transmittance, 
upwelling radiance and downwelling radiance were calculated from a Web-based Atmospheric Tool (ACT) 
(http://atmcorr.gsfc.nasa.gov/) which has been solely developed for Landsat (TM and ETM+) single-
thermal bands (Barsi, 2007; Coll. et al., 2010). This tool has been freely available online from 2000 to the 
present. For it to compute atmospheric correction parameters, the tool requires information on date, time 
and the location at which the image was acquired. According to Coll (2010), the tool incorporates 
atmospheric profiles as inputs of the MODTRAN-4 radiative transfer code from National Centers for 
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Environmental Predictions (NCEP) (Berk, 2000; Kalnay, 1996) to compute transmittance, upwelling 
radiance and downwelling radiance. On the other hand, surface emissivity value of 0.96 was used and the 
value was obtained from related work by Guarini et al., (2010). 
 
Aster thermal bands were atmospherically corrected using In- Scene Atmospheric Compensation 
algorithm (ISAC) implemented in ENVI (equation 4.6). The algorithm was adapted from the work of 
Johnson and Young (1998). The algorithm models the radiance at sensor from ground surface at each 
individual pixel. This was done by first searching for the TIR band with the highest brightness 
temperature from the TIR bands list. Then the band with the highest brightness temperature was used as 
reference. Following this method, TIR bands and the reference blackbody radiance values were plotted 
against the measured radiances (Johnson, et al., 1998) and a line of fit was fitted on the highest points 
within the scatter (Young et al., 2002). Upwelling atmospheric radiance and atmospheric transmission were 
derived through obtaining an estimate of surface temperature from each pixel within the dataset and 
constructing a scatterplot of radiance against brightness temperature.  

4.3.3. Image Processing Tools 
Environmental for Visualising Images (ENVI) and BEAM softwares were adopted for image processing 
and analysis. ENVI software is of significant importance as it allows visualisation, analysis of remote 
sensing data. The software has almost all the entire basic image processing functions as well as different 
interactive image analysis capabilities. Similarly, BEAM is an open source toolbox and development 
platform for visualising, analysing and processing of satellite remote sensing raster datasets specifically 
developed for Envisat’s optical instruments (ESA, 2012).  

4.3.4. Image Spatial Subsetting 
All images were spatially sub-setted using image resizing tools in ENVI environment to limit their extent 
only to the region of interest before analysis. This process improved the processing time and enhanced the 
visibility of inherent features within the region of interest.  

4.3.5. Nearest Neighbour Resampling Method 
In order to implement the MPB primary productivity model; all the required variables were supposed to 
have the same spatial resolution. However, Photosynthetically Active Radiation (PAR) data from Modis 
Aqua had a spatial resolution of 1 km and 1.1 km from Sea WiFS. Contrastingly, the maximum rate of 
photosynthesis (PBmax) determined based on temperature derived from Landsat (TM and ETM +) and 
Aster had a spatial resolution of 60 m and 90 m respectively, whereas chl-a+ phaeopigments 
concentrations from Landsat (TM and ETM+) had a 30 m spatial resolution and 15 m from Aster. Thus 
PAR and PBmax datasets were resampled to 30 m and 15m spatial resolutions of chl-a derived from Landsat 
(TM and ETM+) and Aster, respectively using the nearest neighbour method. The nearest neighbour 
resampling method was used because it retains the actual pixel values from the original dataset. Finally, the 
resampled datasets was re-projected to the same map projections, which are UTM and a WGS-84 datum. 
As mentioned before, this was done as a pre-processing step towards implementing the MPB primary 
productivity model by Platt and Jassby (1976). 
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5. Classification of Intertidal Mudflat Sediment Types  
from Remote Sensing Data 

This chapter presents methods which were implemented in determining different sediment types from 
intertidal mudflats and the results attained respectively. Figure 5-1 below illustrates the schematic 
methodological workflow that was adopted in this study to classify mudflats sediments on the basis of 
sediment properties. 

5.1. Schematic Illustration of the Image Classification  
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Figure 5-1: Research methods showing processing steps 
 
Stal, (2010) defined intertidal mudflats as coastal zones that are frequently immersed and exposed 
according to the tidal cycle. These areas are normally characterised by different sediment types ranging 
from coarse sand with grain size stretching from 63 μm to 2 mm (Adam, et al., 2009), to silt and fine clay 
or mud with particles less than 62.5 μm (Stal, 2010). For this study only two sediment types were 
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considered, these being sand and clay. These sediments vary from place to place and time to time. 
Information on sediment types is crucial in understanding intertidal mudflat ecosystems functioning. The 
knowledge on sediment characteristics helps to understand the spatial and temporal variability in chl-a 
content and primary productivity within the area. Thus, in this study two methods were used to retrieve 
information on sediment particle size. The methods include (i) supervised classification and (ii) image 
based classification. The two methods were implemented based on Spectral Angle Mapper (SAM) 
algorithm; as illustrated figure 5-2. Only atmospherically corrected earth observation datasets were used in 
this study.  

5.2. Supervised and Image Based Classification using Remote Sensing Data 
 Supervised classification is a method for grouping image pixels in a dataset into classes corresponding to 
the user-defined training classes based on field collected endmembers. On the other hand, the physical 
based image classification method, classifies the image by grouping pixels in a dataset using only image 
extracted endmembers determined through Pure Pixel Index (PPI). In this study, physical image based 
classification will also be referred to as unsupervised classification. The two methods were implemented 
using spectral angle mapper (SAM) algorithm (Boardman et al., 1994; Brotas, et al., 1995).  
 
Image based classification was done based on image extracted endmembers. Derivation of endmembers 
from remote sensing data was done using the PPI. However, before this algorithm was implemented, we 
firstly reduced the inherent remote sensing data dimensionality using Minimum Noise Fraction (MNF) 
transformation method (Boardman, et al., 1994). According to Boardman and Kruse, (1994) the MNF 
transformation method defines the inherent data dimensionality through separating and equally 
distributing the noise within data. Following this method, the resultant bands were ordered such that a 
larger amount of variance was within the first few bands. The actually variance declined with an increase in 
the number of bands. The decrease in data variance continued until only noise and none coherent image 
bands remained. According to Green et al., (1988) this method produces better results as compared to field 
determined endmembers as the image spectra accurately accounts for any errors in calibration. In addition, 
the method was significant as it lessened further spectral computational complications on the data to be 
analysed, thereby improving further spectral data analysis results (Green, et al., 1988). 
 
PPI is one of the multi-spectral endmember extraction algorithms that has been developed by Boardman 
et al., (1994). The method was selected because: (i) it derives spectral endmembers based on the inherent 
remote sensing data dimensionality and (ii) derived endmembers were the product of repeated and 
subsequent iterations. This procedure makes endmembers to be suitable and pure (Chaudhry et al., 2006; 
Chein et al., 2004). For this study, a value of 19.5 for the number of PPI, and a PPI threshold value of 8.5 
was used. The smaller number of PPI was selected because it showed only purest pixels as compared to a 
large number. The PPI computation identified and grouped purest pixels in the n-dimensional space. The 
purest pixels are usually associated with bright pixels in the image (Chaudhry, et al., 2006).  

5.2.1. SAM Algorithm 
Selected remote sensing images were classified using SAM algorithm (fig 5.1)(Green, et al., 1988). The 
algorithm classifies images by comparing the unknown image spectra with the known spectra (De 
Carvalho, et al., 2000; Kruse et al., 1992). In this case the known spectra refer to field determined and 
image extracted endmembers. The resultant outputs of SAM, were classified images with the best match at 
each pixel, measured in radians ranging from 0 to π/2 (Kruse et al., 1993). According to Kerle et al., (2004) 
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and Kruse et al., (1993) the approach is rather a qualitative measure for comparing known and unknown 
spectra. However, the quality of image classification is rather a function of endmembers purity.  
 
Like any other classification method SAM algorithm has its own advantages. SAM algorithm is considered 
as simple and quick in mapping the spectral similarity between the unknown (r) and the known spectra (t) 
(fig 5-3) (Yuhas, et al., 1992). The main advantage of SAM is that, it is independent of brightness. This 
method is good at suppressing background or shading effects thereby enhancing reflectance characteristics 
of the intended feature (De Carvalho, et al., 2000). During computation the algorithm takes the arccosine 
of the dot product of the spectra (Kruse, et al., 1993). For this study, a maximum angle of 0.15 was used. A 
small angle was preferred as it demonstrates closer, fewer and better matches to the reference spectra. 
Usually, a large angle results in a more spatially coherent image but largely associated with poor pixel 
matches as compared to a low threshold angle. 
 
Despite the above mentioned advantages, SAM has some drawbacks as well. For example, the technique is 
basically not sensitive to illumination (Kruse, et al., 1993). It only uses the vector direction instead of the 
vector length during computation. When dealing with the problem of image spectral mixing the method is 
having some problems. Under normal circumstances the earth’s surface is heterogeneous and the presence 
of mixed pixels is indisputable. In fact, it assumes that endmembers selected to classify the image are a 
true representation of the pure spectra of the target (De Carvalho, et al., 2000). 
 

 
Figure 5-2: SAM algorithm Concept 
 
The SAM algorithm is expressed as following: 
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Where  
nb  = number of bands 
ti  = unknown spectra 
ri  = known spectra. 
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6. Results and Discussions of Sediment Classification 

As a pre-ample, the following chapter illustrates some of the research findings in this study. The results 
include determined spectral reflectances from different sediment types. Sediment classification results are 
also demonstrated from both image based classification using image extracted endmembers and 
supervised classification based on field collected endmembers. From image based classification statistical 
tables are also illustrated for all the selected images. 

6.1. Ground Determined Spectral Reflectance Curves 
The results in figure 6-1 shows spectral signature of sea weeds, with low reflectance in the green visible 
band and high reflectance in the near infra-red band with a steep red edge between the visible and near 
infra-red bands. Low reflectance in the visible spectral region confirms a strong absorption by chlorophyll 
pigments, whereas a relatively high reflectance in the near-infra-red is as result of the leaf’s internal 
scattering and no absorption. This spectral trend implies that vegetation have high concentrations of 
photosynthetic pigments that absorb light in the visible range at the same time reflecting much in the 
longer wavelength. 
 

 
Figure 6-1: Spectral signature for sea weeds in intertidal mudflats of Wadden Sea 

The result in figure 6-2 displays a steep rise in the reflectance spectum of clay sediments with algae 
betweeen 400-550 nm, with a strong chl-a absorption dip at 673 nm. However at 700 nm, the reflectance 
spectra is somehow smooth without much change meaning the spectra is not affected by MPB presence. 
This spectral dip at 673 nm is expected and largely explained by the presence of microphytobenthic 
diatoms /or organisms in clay sediments which greatly contribute to the mudflat biomass. These results 
are consistent with the work of Adam, et al., (2009) who from field measurements using ASD 
spectrometer, observed similar spectral behaviour of clay sediments, with high absorption around 673 nm. 
Actually, when there is no microphytobenthic biomass content within sediments, the spectral profile will 
be somehow smooth indicating no absorption troughs (fig 6-3). Similar observations were made by 
Kromkamp, et al., (2006) who found that sediments dominated by MPB diatoms have a sharp spectral 
reflectance at around 500 nm with an absorption dip at 675 nm resulting from chl-a absorption at that 
wavelength.  
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Figure 6-2: Spectral signature for clay sediments in intetrtidal mudflats of Wadden Sea  
 
Sand sediments spectral reflectance results displayed in figure 6-3 demonstrate a different spectral 
signature than the one observed in figure 6-2. Unlike in clay sediments, the result from figure 6-3 shows 
an almost smooth spectral reflectance signature of sand sediments. This observation is attributed to less 
microphytobenthic content in sand sediments. This remark is also confirmed by a smooth trend in the 
spectral reflectance profile with less chlorophyll absorption dip at 673 nm throughout the spectral range as 
observed in the figure below. However, there exist minor absorption residuals at around 673 nm that can 
be attributed to the limited presence of MPB diatoms in sandy sediments. In general, a clear cut 
distinction amongst different endmembers from different sediment classes is observed. These differences 
can be attributed to the variability in algal /or MPB content available in different sediment types. 
According to Carrère et al., (2004) the amount of absorption in different sediment spectra is directly a 
function of pigment chl-a concentration detected in different sediment types. 
 

 
Figure 6-3: Spectral signature for sand sediments in intertidal mudflats of Wadden Sea 

6.2. Derived Sediment Classes from Supervised and Image Based Classification 
This section demonstrates sediment classes attained from image based classification and supervised 
classification. Sand and clay sediments from the top layer of intertidal mudflats were largely derived from 
remote sensing data based on their spectral signatures.  
 
Derived information on sediment classes shows that clay and sand sediments vary spatially across the 
entire intertidal mudflats of the Wadden Sea. On the other hand, a close examination of sediment top 
layer classification results shows that clay sediments are less in spatial extent as compared to sand 
sediments which seem to occupy a large area in all the results. It can also be realized that in year 2000 
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there was a more pronounced clay and sand content over the entire Wadden Sea area (fig 6-4). It can also 
be observed that across the entire region sandier and clay sediments were detected in the north eastern 
and south western regions. Limited detections were made in the central region of the Wadden Sea 
probably due to high water levels submerging the mudflats during the satellite overpass period.  
 
In addition, from both image based classification and supervised classification results; it can be as well 
observed that more clay sediments have been derived from the image based classification method than the 
later except from figure 6-9. In figure 6-9 the results from both image based classification and supervised 
classification demonstrates a similar distribution of sand and clay sediments although not giving a one-on-
one match-up. This observation can be attributed to the fact that field collected endmembers may be 
affected by the prevailing environmental factors. For instances, the presence of thin water films /or water 
content, mixed sediment properties, can largely compromise the purity field collected spectral 
endmembers. However, this limitation can be improved either through undertaking laboratory analysis of 
sediment reflectance spectral signatures (Schwengerdt, 1997) /or by using analytical methods like X-ray or 
microprobe analysis (Clark et al., 1993; DerondeKempeneer et al., 2006) because these procedures would 
minimize the influence of environmental factors on reflectance. However, the fact that imaged based 
classification may have overestimated the sediments content within intertidal mudflats may not be ruled 
out.  
 
Derived sediment classification results from the two classification methods, show a similar spatial 
distribution with those of chl-a distribution in figure 8-1. This finding is generally acceptable because clay 
particles are largely associated with high microphytobenthic biomass content than sand sediments. This is 
because clay sediments are characterized with fine cohesive and stable particles generally associated with 
high nutrient content whereas sandy sediments are mostly affected by hydrodynamic processes such as 
tidal currents that cause re-suspension of sediment particles (Delgado et al., 1991; MacIntyre. et al., 1996; 
Sundback, et al., 1991). Thus this uniqueness probably contributes towards high MPB biomass in clay 
(Herman et al., 2001).  
 
A summary of statistics was also computed from all the physical based classification results to assess the 
accuracy of the classification. The maximum NDVI values were also determined for each derived 
sediment class. It can be noted that NDVI values are high on vegetation followed by those on clay 
sediments which is largely expected due to various reasons mentioned before. For all the statistical results 
derived from image based classification, the maximum values were recorded on sand sediments and the 
minimum values on clay sediments.  
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Figure 6-4: Intertidal mudflats sediment classes derived from Landsat 2000 using SAM  
 
Table 6-1: Summary of statistical tables for unsupervised classification from Landsat 2000 
 Min  Max  Mean  Stdev  ndvi 
vegetation 1.00 7.00 5.68 2.49 0.71 
clay 0.01 2.00 1.98 0.21 0.28 
sand 2.00 5.00 5.98 0.03 0.02 

 

 
Figure 6-5: Intertidal mudflats sediment classes derived from Landsat 2003 using SAM 
 
Table 6-2: Summary of statistical tables for unsupervised classification from Aster 2003 
 Min  Max  Mean  Stdev  ndvi 
vegetation 0.00 9.00 2.54 2.87 0.69 
clay 0.00 6.00 1.17 0.88 0.25 
sand 2.00 10.0 9.99 0.25 0.018 
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Figure 6-6: Intertidal mudflats sediment classes derived from Aster 2007 using SAM 

Table 6-3: Statistical table summary for image based classification from Aster 2007 
 Min  Max  Mean  Stdev  ndvi 
vegetation 0.00 8.00 7.98 0.41 0.65 
clay 0.00 2.00 1.68 0.67 0.23 
sand 1.00 7.00 7.00 0.08 0.016 
 

 
Figure 6-7: Intertidal mudflats sediment classes derived from Landsat TM 2009 using SAM. 

Table 6-4: Summary of statistical tables for unsupervised classification from Landsat 2009 
 
 
 
 
 
 

 Min  Max  Mean  Stdev  ndvi 
vegetation 0.00 5.00 4.34   1.79 0.50 
Clay 0.00 3.00 2.16   0.37 0.25 
Sand 2.00 6.00 5.87 0.611 0.01 
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Figure 6-8: Intertidal mudflats sediment classes derived from Landsat TM 2010 using SAM  
 
Table 6-5: Statistical table summary for image based classification from Landsat TM 2010 

 Min Max Mean Stdev ndvi 
vegetation 0.00 4.00 0.92 1.75 0.40 
Clay 0.01 7.00 2.47 1.51 0.21 
Sand 0.00 9.00 8.74 1.53 0.02 

 

 
Figure 6-9: Intertidal mudflats sediment classes derived from Meris 2011 using SAM  
 
Table 6-6: Statistical table summary for image based classification from Meris 2011 

 Min Max Mean Stdev ndvi 
vegetation 0.10 12.0 9.30 2.41 0.37 
Clay 0.60 7.97 2.47 0.35 0.13 
Sand 1.00 10.0 7.49 2.53 0.03 

 
According to MacIntyre et al., (1996), deriving information on different sediment types is very crucial in 
understanding the horizontal spatially distribution of chl-a and the primary productivity of 
microphytobenthic diatoms in in intertidal mudflats. This assertion holds as we can observe a comparable 
distribution from derived chl-a and primary productivity maps illustrated in figure 8-1 and figure 8-4 
respectively with the results shown above. The derived sediment classes play a significant role in 
explaining the observed distribution of chl-a and primary productivity based on the knowledge we have on 
sediment morphological characteristics like available nutrient content. 
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7. Deriving Microphytobenthic Primary Productivity 
from Intertidal Mudflats  

Microphytobenthic (MPB) organisms are a composition of benthic unicellular microscopic organisms 
forming biofilms on intertidal sediment areas (Paterson, et al., 2001). So far, microphytobenthic diatoms 
are one of the most organisms determining intertidal mudflat primary productivity, as such they contribute 
significantly to estuarine food web. In fact, they are one of the main food producers for higher trophic 
levels in intertidal food chains.  

7.1. Microphytobenthic Primary Productivity 
In this study, MPB primary productivity was estimated from Landsat (TM and ETM+) and Aster remote 
sensing datasets with Meris being excluded. Normally, MPB primary productivity estimation can be done 
by using different models and each model has its own drawbacks. However, comparing different models is 
out of the scope of this study. Based on inference from previous literature, we found that the model by 
Platt and Jassby (1976) gives a better estimate and understanding of MPB primary productivity of the 
intertidal mudflats (Barranguet 1998). The model has been widely used in understanding MPB primary 
productivity of the delicate intertidal sediment surfaces in different areas (Barranguet., et al., 2000). Thus, 
because of this reason the model by Platt and Jassby (1976) as illustrated in equation 7.1 has been adopted. 
The model computes MPB primary productivity based on a few environmental variables. These include 
chl-a, light intensity, maximum rate of photosynthesis at saturating irradiance (PBmax), and initial slope (αB) 
which is the measure of photosynthetic efficiency. To obtain actual estimates of these variables, various 
methods have been employed as shown below. Figure 7-1 demonstrates a summarized procedure that was 
followed to derive MPB primary productivity from intertidal mudflats of the Wadden Sea area.  
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Figure 7-1: Schematic Procedure for deriving MPB primary productivity in the Wadden Sea 

7.2. Primary Productivity Model 
MPB Primary productivity model by Platt and Jassby,(1976) is expressed as following: 
 

BB PEB ePchlaP max0 /
max 1        (7.1) 

 
The equation describes the rate of photosynthesis as a function of E0 which is the incident light intensity 
(μmol m-2 s-1) where PBmax is the maximum rate of photosynthesis per mg chl-a (mg C mg chl a-1 h-1), chl-a 
is chlorophyll a concentration, and αB is a measure of the photosynthetic efficiency (mg C chl a-1 (μmol m-2 
s-1)-1 h-1).  

7.3. Derivation of Primary Productivity Coefficients  
 
7.3.1. Chlorophyll a Estimation from NDVI 
Chl-a+ phaeo (phaeopigments) was derived from normalized difference vegetation index (NDVI) using 
the regression equation by Kromkamp et al., (2006) established between NDVI and [chl-a+phaeo] (mg.m-
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2) expressed as following: [chl-a]= a*NDVI+b, where a=532 46 and b=48  4.0 (95% confidence 
intervals), p (a,b) < 0.0001, number of points=307, r2=0.67. 
 
NDVI is a numerical indicator often used as a proxy for estimating mudflats chl-a concentration from 
remotely sensed data (Kromkamp, et al., 2006). In analysing remote sensing data; the index uses the visible 
(VIS) red band (0.4-0.7 μm) and near-infrared (NIR) bands (0.75-1.1 μm) of the electromagnetic spectrum 
(Rulinda et al., 2010; Tucker, 1979). The  index  was first applied by Rouse, et al., (1973). Since then, the 
index has been successfully applied in rangeland assessment, crop yield estimation, as well as in drought 
prediction studies (Lei et al., 2010; Minor et al., 1999; Prasad et al., 2006).  
 
The index determines chl-a concentration based on the difference between the NIR and the red 
reflectance (equation 7.2). When the difference is large it means the concentration of chl-a is very high and 
the reverse is true. According to Rulinda et al., (2010) NDVI values ranging from -1 through 0 to 1. In our 
case, the negative values symbolize water, values around zero for bare soil and values around one 
represent high mudflats MPB concentrations. However, in dense biomass concentrations the index tends 
to reach saturation. The index is defined by the following equation:   

  REDNIR

REDNIRNDVI
         (7.2) 

Where  
NIR    = chl-a maximum reflectance in the near-infrared wavelength;  

            RED   = maximum absorption in the red band. 
 
Thus, based on the above equation, NDVI was calculated from the three atmospherically corrected 
remote sensing datasets as following: 
 
Landsat     = (B_840-B_660)/ (B_840+B_660); 
Aster   = (B_807-B_661)/ (B_807+B_661); 
Meris      =    (B_865-B_665)/ (B_705+B_665). 
 

7.3.2. Land Surface Temperature Retrieval from Landsat TIR Bands 
PBmax is a function of temperature, an increase in temperature results in an increase in PBmax. Therefore, 
land surface temperature (LST) was derived from Landsat thermal bands (fig 7-2). To retrieve LST, we 
had to solve for Ts from equation 4.7, but before this step was applied, radiance at the surface was first 
computed following the equation below: 
 

666666666 /])1()([)( IITBTB s        (7. 3) 
 
Following this method, LST was then retrieved by inverting the Planck’s law similarly as stated in 4.5 but 
now using radiance value at the ground (B6(T6)) calculated from equation 7.3  (Coll., et al., 2010; Qin, 
2001). 

7.3.3. Land Surface Temperature Retrieval from Aster TIR Bands 
Temperature was extracted from atmospherically corrected Aster image products using the emissivity 
normalization technique which is implemented in ENVI (fig 7-2) (Hook et al., 1992; Kealy et al., 1993). 
The method computes temperature for every pixel and channel; assuming a surface emissivity value of 
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0.96 (Gillespie, 1985; Hook, et al., 1992; Kealy, et al., 1993). Emissivity values were computed based on the 
Planck’s function (Eq. 4.6) from the highest temperature values for each pixel provided in the TIR dataset. 
The resultant outputs from this algorithm were five emissivity channels and the temperature. 
 

 
Figure 7-2: Schematic illustration of land surface temperature retrieval procedure from Landsat and Aster. 

7.3.4. Light Intensity  
Light intensity is again one of the major components of the primary productivity model. The light 
intensity at depth Z was derived by following the Lambert beer law (eq 7.4).To obtain light intensity, we 
used estimates mean for Kd, z coefficients and these coefficients were varied as explained in section 7.4 
for sensitivity analysis. These coefficients were determined as highlighted in section 7.3.5. 
 

zkeparE0           (7.4) 
Where  

 0E    = light intensity (μmol m-2 s-1) at depth Z (mm); 
              par   = available photosynthetic active radiation (Einstein m-2 h-1) at the mud surface; 
 k   = attenuation coefficient (mm-1); 

z    = depth (mm). 
 
On the other hand, Photosynthetic Active Radiation (PAR) in equation 7.4 is a very significant 
determinant of MPB primary productivity in intertidal mudflats ecosystems. For this study, PAR (400-700 
nm) data was obtained from the ocean colour website; an online readily available global archive that was 
accessed via http://oceancolor.gsfc.nasa.gov/. The archive provides ready products from Modis Aqua 
and Modis Terra, CZCS, OCTS (ADEOS), SeaWiFS, and Meris (Envisat) satellites; with a spatial 
resolution of 1000 m and a swath of 2330 km (NASA, 2002).  
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For this study, only data from Modis Aqua and SeaWiFS was used. The data corresponding to the images 
acquired as outlined in table 3.3 except for Meris image as it was not used in primary productivity 
estimation. The archive provides daily data with each image having 23 bands. The bands include PAR in 
Einstein m-2 d-1, from year 2002 to the present whereas; SeaWiFS data is available from 1997 till present. 
From SeaWiFS only data for 2000/05/13 was downloaded as it was not available from Modis Aqua. 
SeaWiFS has a spatial resolution of 1100 m and swath for 2806 km (Acker, 1997). The data was re-
projected to Geographic (lat/lon) WGS84.  

7.3.5. Maximum Rate of Photosythesis (PBmax)  
Field measured data for αB, Kd and PBmax was obtained through personal communication with Jacco 
Kromkamp (NIOZ-Yerseke). The dataset consisted of 374 samples and was used to derive the 
coefficients for the above mentioned variables so as to run the primary productivity model. From the raw 
dataset we derived a model for estimating PBmax based on temperature and PBmax. To derive this algorithm; 
we had to filtered the data, by establishing a linear function between temperature and PBmax using a 5th 
order polynomial function. From the polynomial function an estimate of PBmax was then computed.  
Relative error (RE) of the 5th polynomial function was computed as following: 
 

,100*
max_

max_max_
B

measured

predicted
B

measured
B

P
PPRE       (7.5) 

 
Outliers or extreme data values that is, values above or below 35 (±35 %) were filtered. This range has 
been selected in accordance to the recommendation of the satellite chl-a products (Bailey et al., 2006). A 
linear relationship between temperature and PBmax was derived based on filtered data. The following 
equation was attained y = 03242x-85.789 with 0.71 R2 value. This equation was used to derive PBmax using 
land surface temperature derived from remote sensing data.  
 
After deriving αB, Kd and PBmax coefficients, MPB primary productivity at first stage was estimated by 
assuming a homogeneous distribution of microphytobenthic biomass at 2 mm depth, using a mean αB 
value of 0.0264 and mean Kd of 1.607. The 2 mm depth was selected because normal that is where the 
maximum concentration of microphytobenthic organisms is attained. According to Jesus et al., (2006) 2 
mm depth is were light penetration is critical for biomass distribution. Most studies have been estimating 
primary productivity using this depth as reference. When compared with literature, the αB value stated 
above is acceptable since it lies between 0.015 and 0.035 mg C chl a-1 (μmol m-2 s-1)-1 h-1 as outlined by 
Barranguet. et al., (2000). 
 

7.4. Model Sensitivity Analysis 
 
According to Saltelli et al., (2008), sensitivity analysis (SA) is actually the assessment of how the model 
output variability can be explained by the variability in model inputs. Thus, for this study, SA was done to 
assess the performance and limitations of the primary productivity model by Platt and Jassby, (1976).  
Varying different variables was a significant step in understanding how these variables affected intertidal 
mudflat MPB Primary Productivity. The following variables were examined: maximum photosynthetic 
efficiency (αB), sediment attenuation effect (Kd) and euphotic depth (Z mm) (table 7-1). For αB and Kd the 
increament was based on the standard deviation computed from the raw data sets. In this thesis, euphotic 
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depth is the depth at which the light intensity within the sediment profile is equal to 1% of the amount 
received at the surface (Scheffer, 2001). Euphotic depth is one of the critical factors controlling MPB 
biomass in intertidal sediment surfaces, such that a change in depth results in an exponentially decrease in 
incident light (Kromkamp, et al., 2006). When sediment depth increases the inherent concentration of 
MPB biomass decreases due increased absorption of or attenuation of light within the vertical sediment 
profiles (fig 7-3). Incident light is the most important factor in MPB primary productivity of the intertidal 
sediments; an increase in incident light results in an increase in MPB primary productivity and vice versa.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-3: Two vertical distributions curves of chl-a within intertidal sediment surfaces with increase in 
sediment depth, adopted from Kromkamp. et al., (2006) where profile KY the authors adopted from the 
works of Kelly et al., (2000) and profile BS was taken from De Brouwer and Stal (2001) 
 
Landsat image of the year 2000 was used for sensitivity analysis. Its selection was due to the fact that 
amongst all the images, the highest MPB primary productivity was detected on that date. Literature shows 
that MPB primary productivity occurs within a specific depth within sediment profile beyond which, its 
detection is difficult (Brotas, et al., 1995). Therefore, we did sensitivity analysis by varying the sediment 
depths (mm). Thus, the vertical sediment profile depths of 2 mm, 5 mm and 7 mm were used. Their 
selection was based on findings from literature. According to Kromkamp, et al., (2006), MPB primary 
productivity determination in the vertical sediment profile varies from 1 mm (Kromkamp. et al., 1995), 2 
mm (Pinckney et al., 1991), 5 mm (Blanchard. et al., 1995) and 10 mm (Brotas, et al., 1995; MacIntyre., et al., 
1996). Therefore, our selection of the three different sediment measurement depths was more or less 
guided by this literature.  
 
Table 7-1: MPB Primary Productivity sensitivity analysis coefficients 

Sensitivity Analysis Coefficients 
Variable Mean value Mean+ Stdev 
Kd [mm-1] 1.61 2.60 
αB [μmol m-2 s-1] 0.026 0.04 
 
Determined values of Kd seem to be within the range when compared to the diffuse attenuation 
coefficients compiled by MacIntyre (table 7.2). The table cited below indicates different Kd values and the 
amount of light attenuated at a given depth. 
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Table 7-2: Derived values of the sediment diffuse attenuation coefficients, Kd cited from MacIntyre, et 
al.,(1996). 

Particle 
size 
[μm] 

 
 
Sensor  

Light [λ 
in nm] 

 
Kd 
[mm-1] 

Depth of 
1% Light 
level [mm] 

 
 
Source  

n.d E.E.L Photoelectric cell white 0.8-0.9 5.1-6.1 Hopkins (1963) 
110 Pryheliometer sunlight 0.7 6.9 Taylor (1963) 
270 Pryheliometer sunlight 0.8 5.9 Taylor & Gebelein (1966) 
330   0.5 8.7  
330   0.4 13.2  
108-519 Selenium Photocell white 0.6-3.9 1.8-7.7 Gomoiu (1967) 
300 Photodiode Blue 1.3 3.5 Fenchel & Straarup (1971) 
  Red 1.0 4.7  
  Infrared 0.9 5.1  
  White 1.1 4.3  
90 Photodiode 400-700 11-15.4 0.3-0.4 Haardt & Neilson (1980) 
105   7.3-9.2 0.5-0.6  
205   2.4-4.3 1.1-2.0  
260   1.5-2.8 1.7-3.0  
n.d Li-Cor-Quantum Sensor white 1.9-32.6 0.1-2.5 Colijn (1982) 
Silt-clay Fiber Optic Microprobe 450 20.3 0.2 Jorgensen & des Marais (1986) 
  600 8.0 0.6  
  670 16.8 0.3  
  1,000 2.3 2.0  
<63 Fiber Optic Microprobe 400-700 3.5 1.3 Kuhl et al. (1994) 
63-125   1.6 2.8  
125-250   1.6 2.8  
250-500   1.0 4.6  
145-165 ISCO Spectroradiometer 400 3.5-4.2 1.1-1.3 MacIntyre & Cullen (1995) 
  700 4.9-5.6 0.8-0.9  
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8. Results and Discussions of MPB Primary 
Productivity of the Intertidal Mudflats of the Wadden 
Sea 

The following section displays the major research findings in this study. The results include the first 
derived primary productivity maps of the Wadden Sea as well as a presentation of chl-a + phaeo 
concentrations [mg.m-2] derived from NDVI calculations following the work of Kromkamp, et al. (2006). 
Again, LST maps over the Wadden Sea retrieved from TIR bands of Aster and Landsat are also presented 
and discussed in this section, including PBmax results determined from LST based on the following 
established mathematical model y=03242x-85.789 (fig 8-3). In addition, the effect of Kd, αB and depth (Z 
mm) on microphytobenthic primary productivity is discussed in this chapter.  

8.1. Chl-a+ Phaeopigments Concentration Derived from Different Sediment Types 
The results from figure 8-1 illustrate derived chl-a+phaeo concentrations (mg.m-2) from intertidal 
mudflats. The spatial and temporal variability of chl-a+ phaeo concentration (mg.m-2) in intertidal 
mudflats are also presented. This variability is denoted by the presence of the patchy chl-a+ phaeo 
distributions across the entire Wadden Sea intertidal area. From the findings in figure 8-1, cool colours 
represent low chl-a+phaeo concentration whereas warm colours represent high concentration. On a 
temporal scale, it can be noted that high chl-a concentrations were recorded in the year 2000 and the 
minimum being in 2011. Brotas et al., (1995) has categorical stated that the spatial variability of MPB 
biomass in intertidal mudflats is largely explained by sediment types. This assertion is further substantiated 
by the work of van der Wal et al., (2010) whose results demonstrated that large scale patterns in MPB 
biomass distribution are a function of the existing geomorphological characteristics, sediment type, 
nutrient availability and tidal exposure time. Again, similar conclusions have also been drawn by Blanchard  
(2000) and Jesus, et al., (2006). Actually, when compared with derived sediment classes in section 6.2 these 
assertions seem to be valid. Actually, this spatial heterogeneity is acceptable and agrees with previous 
literature, where this phenomenon is largely aligned to the prevailing environmental variables like sediment 
type, nutrient availability, and temperature.  
  

Despite a clear spatial variability of MPB biomass in 
horizontal dimension of the top sediment layer 
amongst different sediment types (fig 8-1); a 
comparable distribution is also depicted within 
distinct sediment classes especial in clay sediments as 
can be seen on the picture on right side. Jesus et al., 
(2005) has attributed this intra-sediment algal content 
variability to the vertical migration of MPB organisms 
within the vertical intertidal sediment profile. 
However, another perspective for intra-sediment 
epileptic diatom heterogeneity is basically owed to 
available clay content within the area. For example the 
existence of mixed sediment classes can greatly 

compromise nutrient content which is one of the determinants for microphytobenthic growth (Blanchard. 
et al., 1997; van der Wal., et al., 2010).  



PRIMARY PRODUCTIVITY OF INTERTIDAL MUDFLATS IN THE WADDEN SEA: A REMOTE SENSING METHOD 
 

40 

 
Moreover, the results in figure 8-1 indicate that derived chl-a+ phaeo concentrations ranges fluctuate 
between 0-182 mgm-2 from the Wadden Sea intertidal mudflats over the years. According to Brotas, et al., 
(1995), this distribution in chl-a concentrations in intertidal mudflats is directly a function of two main 
factors that is sediment type and tidal height. The two control factors like temperature, salinity, irradiance, 
effects of tidal current, nutrient availability. Other research studies have also found that chl-a 
concentrations range between 0-520 mgm-2 in some sites and 50-200 mgm-2 along the French coast of the 
eastern English channel (Carrère, et al., 2004) whereas Sundback. et al., (Sundback. et al., 1988) found chl-a 
ranges of 0-87mgm-2 in the Southeastern Kattegat. Whereas Brotas et al., (1995) at the Tagus estuary he 
found chl-a concentrations ranging between 20-300mgm-2. When comparing all these findings we can 
conclude that chl-a concentrations vary spatially, despite the conclusion drawn by Brotas who, based on 
tabulated chl-a data (table 8-1) stated that chl-a in temperate intertidal mudflats does not vary. 
 

 

Figure 8-1: sediment chlorophyll a content (chl-a+phaeo, mg.m-2) derived from the linear equation by 
Kromkamp et al., (2006) for six different days in six different years. 
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Table 8-1: Chl-a spatial distribution in other temperate intertidal mudflats ecosystems adapted from 
Brotas, et al., (1995) 

 

 

From the table above we can observe that pooled chl-a range over different intertidal mudflat sites in 
temperate regions fluctuate spatially between magnitudes of 80mgm-2 to 320mgm-2. Therefore, we can 
safely conclude that the model by Kromkamp was able to derive chl-a from remote sensing data since the 
derived chl-a ranges are within the ranges from other studies.  

8.2. Evaluation of Land Surface Temperature over the Wadden Sea 
Land surface temperature is the skin temperature of the earth’s surface and it is one of the significant 
factors regulating microphytobenthic primary productivity in mudflats (Barranguet. et al., 1998). Figure 8-2 
shows land surface temperature (LST) results in degrees kelvin; retrieved from Landsat and Aster thermal 
bands over a period of five different years. From our investigations the cool colours in figure 8-2 indicate 
low temperatures whereas warm colours are an indication of high LST. It can be observed that warm 
temperatures are in areas with mudflats whereas cool temperatures are a characteristic of immersed areas.  
These temperatures vary spatially and temporally. The research findings also indicate that warmer 
temperatures were recorded on the 5th of October 2003 while cooler temperatures were received on the 
13th of May 2000. In addition, investigations by Barranguet et al., (1998)  revealed an analogous trend of 
seasonal variability in LST over intertidal sediment surfaces.  
 
Land surface temperature variability can as well be explained by the prevalence of seasonal differences, 
which are characterised by different weather conditions. Normally, during winter months we expect to 
have cool temperatures as well as warm temperatures in summer months. Intra-seasonal weather 
conditions are sometimes characterised with some days completely overcast with clouds or cloud free and 
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this phenomenon can either suppress or increase LST. Therefore, this implies that the trend in LST 
derived over the Wadden Sea is expected and can be explained by the existing seasonal, diurnal differences 
in weather patterns.  

 

Figure 8-2: Land surface temperature retrieved from Aster and Landsat TIR bands 

8.2.1. Relationship between PBmax and Temperature 
According Barranguet et al., (1998) PBmax is the maximum photosynthetic capacity at saturating irradiances 
and it is was one of the critical factors regulating microphytobenthic primary productivity. It is largely 
controlled by temperature. MacIntyre et al.,(1996) further stated that temperature has an effect on chl-a 
and PBmax, which are the determinants of MPB primary productivity in mudflat sediments. Figure 8-3 
demonstrates a linear relationship between PBmax and the land surface temperature (K) with 0.71 R2 value. 
It can be observed that PBmax strongly increases with an increase in surface temperature. This trends is 
highly acceptable as surface temperature is one of the major determinants of primary productivity, more 
so this observation is consistent with the findings by Morris et al., (2003). He found that PBmax significantly 
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increases with temperature until a temperature of approximately 300C is reached. However beyond 300C, 
PBmax declines rapidly such that at 400C degrees a sharp decrease in photosynthesis is observed. However, 
Barranguet, (1997) has argued that although temperature has a significant influence on intertidal 
productivity, MPB primary productivity is much linked to light than temperature.  
 

 
Figure 8-3: PBmax versus land surface temperature [K]. 

The results from table 8-2 illustrate a summary of statistics for PBmax derived from Landsat and Aster 
remote sensing datasets. Highest values of PBmax were recorded in year 2000, with the least in 2010. The 
results seem to be within the range when compared to work by previous studies (Barranguet., et al., 1998; 
Kromkamp., et al., 1995). Barranguet., et al., (2000), in his study found that maximum rates of carbon 
fixation (PBmax )  ranged between 2 and 18 mg C mg Chl-a-1h-1 in three different sites on the intertidal flats 
in the Westerschelde and Oosterschelde estuaries. 
 

Table 8-2: Statistical summary of PBmax derived from remote sensing data over five year 

  PBmax  [mg C chl-a-1h-1] 

Image Date acquired Min Max Mean Stdev 

Landsat 2000 4.81 19.22 10.11 1.77 

Aster 2003 7.00 17.04 8.65 1.52 

Aster 2007 3.09 16.22 8.77 1.75 

Landsat 2009 5.93 15.13 9.03 1.18 

Landsat 2010 6.41 13.18 8.63 0.58 

8.3. Microphytobenthic Primary Productivity in the Intertidal Mudflats of the Wadden Sea 
The results in figure 8-4 to figure 8-7 demonstrate microphytobenthic primary productivity maps from 
intertidal mudflats of the Wadden Sea area. From all the maps below, we will assume that cool colours 
depicts low MPB primary productivity whereas warm colours represents high primary productivity 
detected from Wadden Sea intertidal mudflats at a particular time and location. The  model by Platt and 
Jassby, (1976) managed to capture the spatio-temporal distribution of MPB primary productivity in the 
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Wadden Sea. For example the distinction between intertidal mudflats areas of high and low 
microphytobenthic primary productivity has been clearly demonstrated from the findings. This 
distribution pattern varies from year to year and day to day. This observation can be attributed to a 
number of environmental factors such as light intensity, temperature differences, nutrient content 
variability and PAR (Morris et al., 2003). However, for this study, the effect of PAR on spatio-temporal 
variability of MPB primary productivity is probably limited since the area is quite small. Most likely 
additional factors like temperature, light, nutrient content and sediment type can better explain the 
observed distribution. Literature shows that no consensus has been reached pertaining factors controlling 
MPB primary productivity in mudflats. According to Morris et al., (2003) the effect of nutrients on MPB 
primary productivity is somehow limited but light and temperature have much influence on MPB primary 
productivity as they change rapidly on a seasonal, daily and hourly basis. On the other hand, Grant, (1986) 
has linked sediment transport in mudflat areas to the horizontal distribution of microphytobenthic 
diatoms, which considerably affect primary productivity. In actual fact, microphytobenthic primary 
productivity rates are determined by several factors, therefore, no single factor can be used as an 
explanation to the observed variability. Thus, integration of different factors can help understand the 
distribution of MPB primary productivity. 
 

8.3.1. Effect of Kd and αB on MPB Primary Productivity 
The two variables have been used in testing the performance and limitations of the primary productivity 
model by Platt and Jassby, (1976). MacIntyre et al., (1995) found that there is rapid attenuation of light in 
sediment surfaces. In his study he found that the attenuation ranged between 3.5 and 5.6 mm-1. In testing 
the performance of the model, mean Kd and mean αB; we increased initial by their standard deviations (fig 
7.1) and then the effect of MPB primary productivity was assessed. From the results in figure 8-4 to figure 
8-7 we found that when αB; which is the photosynthetic efficiency increases, MPB primary productivity 
increases as well but for Kd it is total different for example, when Kd increase MPB primary productivity 
decrease. Kd is the attenuation of light intensity received by intertidal sediments surfaces. Therefore at 
deeper sediment levels the amount of light becomes limited for photosynthesis to take place as compared 
to the top sediment layer due to high attenuation effect by sediment properties. 
  

 
Figure 8-4: The effect of Kd (mm-1) and αB on MPB primary productivity in intertidal mudflats from 
Landsat ETM+ 2000 
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Figure 8-5: The effect of Kd (mm-1) and αB on MPB primary productivity in intertidal mudflats from Aster 
2003 

 
Figure 8-6: The effect of Kd (mm-1) and αB on MPB primary productivity in intertidal mudflats from Aster 
2007 

 

 
Figure 8-7: The effect of Kd (mm-1) and αB on MPB primary productivity in intertidal mudflats from Landsat TM 
2009 
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Figure 8-8: The effect of Kd (mm-1) and αB on MPB primary productivity in intertidal mudflats from Landsat TM 
2010 
 

8.3.2. The effect of Depth (Z mm) on Microphytobenthic Primary Productivity 
Figure 8-8 demonstrates the effect of variability in depth on MPB primary productivity. It can be observed 
that at a vertical depth with a resolution of 2 mm, microphytobenthic primary productivity is very high 
when compared to vertical resolutions of 5 mm and 7 mm respectively. This observation implies that at 
the upper 0.2-2 mm (MacIntyre., et al., 1996), the concentration of microphytobenthic diatoms is high as 
compared to deeper sediment depths. As a result, MPB primary productivity is bound to be more 
pronounced within the top sediment layer and decrease rapidly with increase in depth due to decreased 
rate photosynthesis. At depth beyond 2 mm light is the limiting factor. MPB primary productivity within 
vertical intertidal sediment profile is principally determined by light intensity. Literature has indicated that 
light varies significantly within the vertical sediment profile (MacIntyre, et al., 1995). More so, the vertical 
distribution of MPB primary productivity depends on sediment characteristics. A study by Jesus et al., 
(2006) has found that MPB biomass content decreased exponential in muddy sediments with a change in 
depth while in sandier sediments a uniform distribution was observed. According to MacIntyre, et al., 
(1996) irradiance penetration in sediments is limited to the top layer approximately 2-3 mm and at this 
depth, photosynthesis occurs due to maximum illumination received. In summary, the results of this study 
have shown that the euphotic depth is one of the critical controlling factors regulating MPB biomass in 
intertidal sediment surfaces (Kromkamp., et al., 2006).  
 

 
Figure 8-9: The effect of depth (mm) on MPB primary productivity in intertidal mudflats from Landsat 
ETM 2000 

2010 
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8.4. Comparison of Derived with Archived MPB Primary Productivity Findings  
Derived MPB primary productivity results were compared with previous primary productivity 
concentrations findings since no validation was undertaken. Comparison of the results has indicated that 
the results of our study are within the normal concentration ranges expected. Figure 8-6 below illustrates 
the results of primary productivity concentrations results derived between 1991 and 2011 for different in 
the Wadden Sea and the ranges are between 0-10 gCm-2d-1. From the results a gradient in MPB primary 
productivity can be observed between 1991 and 2011, with high values recorded in 1991, 1993 and 1996 
and the least in 2006 and 2011. When compared with MPB primary productivity derived from Landsat 
and Aster images it can also be observed that high primary productivity was in year 2000 and lower in year 
2009. Therefore, similar MPB primary productivity rates can be observed between our study and the 
previous findings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-10: MPB primary productivity concentration derived from Wadden Sea, from (personal 
communication with Salama) 

8.5. Possible Limitations 
 Satellite remote sensing data provides only a snapshot of mudflat areas therefore they are greatly 

affected by the tide, making it difficult to derive sediment classes and MPB primary productivity 
over the area. Obtaining images acquired during a period of low tide was one of the major 
problems. 

 MPB primary productivity results were not validated due complications in field measurements, 
but rather compared to other research findings on intertidal mudflats.  

 The strength of field determined endmembers can be compromised by prevailing environmental 
factors like water content, mixed sediment properties and the presence of clouds during 
measurement period 
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9. CONCLUSIONS AND RECOMMENDATIONS 

9.1. Conclusion 
Microphytobenthic primary productivity was estimated from exposed intertidal mudflats using Landsat, 
and Aster images. To achieve this objective, supervised and imaged based classification methods were 
implemented using Spectral Angle Mapper (SAM) algorithm to characterize different sediment types in the 
Wadden Sea intertidal mudflats. The algorithm classified remote sensing data based on field derived 
endmembers and image extracted endmembers. In this thesis, an endmember is defined as a pure pixel 
spectral signatures determined from a single sediment type this being either sand or clay sediments 
Selection of the algorithm was done centered on the following advantages: (i) the algorithm is independent 
of brightness when dealing with remote sensing data, (ii) during classification, the algorithm is good at 
suppressing the adjacent effects concurrently enhancing different sediment spectral signatures (De 
Carvalho, et al., 2000). On the other hand, MPB primary productivity in mudflat sediments was derived 
based on the model by Platt and Jassby, (1976). The model estimates MPB primary productivity using 
chlorophyll-a concentration (mg.m-2), the maximum photosynthetic capacity at saturating irradiances 
(PBmax), photosynthetic efficiency (αB), light intensity (E0), and sediment diffuse attenuation coefficient 
(Kd). Chl-a+ phaeopigments concentrations were derived from NDVI using equation by Kromkamp et 
al., (2006). NDVI is a numerical indicator for biomass used as a proxy for estimating chl-a concentration 
from remotely sensed data. PBmax was obtained from land surface temperature using the following 
mathematical model: y=0.3242x -85.789, with 0.71 R2 value. E0 was derived through following the 
Lambert beer law, whereas αB was derived from field measurements. Finally, sensitivity analysis was done 
to assess the performance and limitations of the model through varying, αB, Kd, and sediment euphotic 
depth. αB, Kd, and sediment euphotic depth were used in assessing the model strength since they were 
considered to be the major determinants of  microphytobenthic primary productivity on intertidal mudflat 
sediments. 
 
Form the results, various spectral signatures were observed from different intertidal mudflat sediment 
types in the Wadden Sea. Spectral reflectances determined on clay sediments indicated the effect of chl-a 
absorption at 673 nm of the electromagnetic spectrum. Chl-a absorption at 673 nm was associated with 
the presence of microphytobenthic diatoms in clay sediments. In contrary, over sand sediments, a smooth 
spectral signature was observed with limited chl-a absorption at 673 nm, caused by the limited 
microphytobenthic content in sand sediments. Different intertidal mudflat sediment types we 
characterized from remote sensing data using SAM. Classified intertidal mudflat sediment classes varied 
spatially over the entire Wadden Sea, with sand sediments having a large aerial coverage than clay 
sediments. Also, based on observed supervised classification and image based classification results in this 
study, we can safely conclude that different intertidal mudflat sediment properties can be possibly derived 
from multispectral remote sensing data using SAM algorithm based on their inherent spectral 
characteristics.  
 
Chl-a+phaeopigment concentration (mg.m-2) were derived from Landsat (TM and ETM+), Meris and 
Aster remote sensing datasets using NDVI as a proxy for biomass. The findings indicate that chl-a + 
phaeopigments concentrations derived on intertidal mudflats ranged between 0 mg.m-2 to 182 mg.m-2, 
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with the maximum attained in year 2000 and a minimum in year 2011. Further analysis of the results 
indicated that chl-a+ phaeopigments concentration distribution are similar to those of derived sediment 
classes (sand and clay), with more concentrations found in areas with clay sediments. This finding implies 
that an increase in sediment grain size, results in a decrease in the concentration of microphytobenthic 
diatoms which are responsible for chl-a+ phaeopigments in intertidal mudflats. This is expected because 
clay sediments are characterized by huge amounts microphytobenthic diatoms while sand sediments have 
limited of them. This observation can also be attributed to the fact that clay sediments are fine in nature 
and because of this they have high nutrient content and are largely cohesive. Therefore, the prevailing 
conditions make clay sediments conducive for colonization by microphytobenthic diatoms. On the other 
hand, sand sediments have a total different morphological structure, for example they are coarse grained, 
non- cohesive and they can easily be destabilized by tidal currents. These environmental conditions are not 
favorable for microphytobenthic inhabitation on sand sediments.  
 
MPB primary productivity maps of the Wadden Sea have been derived from remote sensing data based on 
Platt and Jassby model. The results have indicated that the amount of microphytobenthic biomass within 
the vertical sediment profile largely rely on the incident irradiance, the diffuse attenuation coefficient (Kd) 
and depth (Z mm). It can also be concluded that microphytobenthic primary productivity vary spatial in 
the horizontal dimension on intertidal mudflat sediments. When compared to derived sediment classes, 
the distributions appear to resemble that of clay. In areas associated with sand sediments we again 
observed less primary productivity. Sensitivity analysis results have shown that MPB primary productivity 
on intertidal sediment surfaces was principally determined by αB, Kd, and euphotic depth. When Kd was 
increased primary productivity decreased, whereas when αB increased also did primary productivity.  
However, the effect of depth on primary productivity was clearly observed with high primary productivity 
recorded at 2 mm depth. At depth beyond 2 mm for example 5 mm and 7 mm an exponential decrease in 
primary productivity was observed. This observation is expected because in deeper sediment levels there is 
limited penetration by light. Microphytobenthic primary productivity in the vertical profile seems to be 
largely controlled by light which is an important component for photosynthesis to take place. According 
to MacIntyre, et al., (1995) light intensity is a function of depth and it varies significantly within the vertical 
sediment profile. However, MPB primary productivity results from this study deserve to be handled with 
extra care because validation of the results was not done. The ranges of primary productivity 
concentrations derived from this study were only compared with other results and were found to be 
within the normal expected ranges. 

9.2. Recommendation 
To improve our understanding on the functioning of intertidal mudflat ecosystems there is need to: 

 Develop an operational method that would help in deriving in-situ chl-a and MPB primary 
productivity concentrations which can be used to validate remote sensing estimates.  

 For a better understanding of microphytobenthic primary productivity in the Wadden Sea, there is 
need to link the sediment diffuse attenuation coefficient of light (Kd) to intertidal sediment type 
and chl-a. The assumption is that clay sediments are cohesive for that reason they have higher Kd 
due to limited light penetration than sand sediments which are non-cohesive and largely affected 
by hydrodynamic processes that induce suspension, although the Kd is lower with increase in 
depth. 
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 To enhance the spectral purity of field determined endmembers through laboratory analysis to 
minimize the effect of the prevailing environmental factors (mixed sediment properties, water 
content etc.) and this would go a step further in improving intertidal sediment classification. 
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