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ABSTRACT 

In a study by Martha et al. [1], the use of a combination of spectral, shape and contextual information for 

Object-based landslide detection was studied. An algorithm was developed for the Himalayas’ 

Madhyamaheshwar sub-catchment with 5.8 m multispectral data from Resourcesat-1 and a 10m DEM 

generated from 2.5m Cartosat-1 data. However, it was not clear whether this algorithm was transferable to 

other data types and in other areas. The aim of this study was to test the transferability of this user-defined 

algorithm to the Haiti area with different data types and to provide an insight into the distribution and the 

main causative factors for the 2010 Haiti earthquake-induced landslides. The transferability test was 

performed on two study sites located along Haiti’s Momanche River with data combinations of Geoeye & 

Aster DEM, Geoeye & Lidar DEM, Google Earth aerial photos & Aster DEM and Google Earth aerial 

photos & Lidar DEM. Google Earth data was deemed interesting to use because it is free, has no 

multispectral information, and contains mosaic and compression artefacts. The distribution and main 

causative factors were determined by Weights of Evidence modelling method. 

The adopted algorithm, without modifications did not work efficiently for the Haiti area with Geoeye & Lidar 

data. It resulted in 7.3% producer and 5.7% consumer accuracies. This was attributed to lack of robustness of 

this algorithm as all thresholds were user-defined rather than data-driven. The results show, however, that the 

methodological set up of the adopted algorithm is transferable to other areas and datasets, provided 

adaptations are made to suit the specific dataset and area. The used slope derivative from lower 30m 

resolution Aster DEM significantly reduced the consumer accuracy of all the outputs recorded with the lowest 

accuracy at 45.39%. With single scale user-defined thresholding, Geoeye & Lidar DEM gave the best balance 

of producer and consumer accuracies of 66.43 and 79.20% for training site and 70.11 and 69.62% for the 

validation site. Google Earth aerial photo & Lidar DEM on the other hand gave 56.30 and 69.95% producer 

and consumer accuracies for the training site. This also highlighted the potential of use of Google Earth aerial 

photos for automated landslide detection. Map outputs from Google Earth aerial photos were characterised 

by a salt and pepper effect and this was attributed to the high spatial resolution and object size used in the 

chessboard segmentation. The entire methodology was observed to be irreproducible, laborious, subjective, 

and time consuming as the selection of object features, parameters and thresholds was based on a trial and 

error basis. A standardised approach proposed by Martha et al. (in review) [3] that involves segment 

optimisation by Plateau Objective Function and data-driven thresholding by K-means cluster analysis was 

adopted for Geoeye & Lidar data. It gave producer and consumer accuracies of 67.63 and 62.99% for training 

site and 69.16 and 67.97% for the validation site. In comparison to this approach, the user-defined approach 

gave relatively better consumer accuracies. Landslides dominated in areas within 1km and mostly South rather 

than North of the Enriquillo Plantain fault, slopes of 30-70⁰ and areas characterised by cracked and porous 

Middle to Upper Eocene limestone. All other factors considered in the analysis showed no significant 

contribution to the pattern of the landslides. The output landslide susceptibility map indicates highest 

susceptibility in the areas surrounding the Enriquillo Plantain fault.  

 

 

Keywords: Earthquake-induced landslides, Frequency-Area analysis, Pattern analysis, Weights of Evidence 

modelling, Object oriented analysis, algorithm transferability 
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1. INTRODUCTION 

This chapter describes the general overview of the study. It consists of the background of the study where a description of the Haiti 

earthquake, earthquake-induced landslides and the adopted algorithm used in this study is given. It further explains the source of 

motivation to do this study, the problem to be addressed and specifies the objectives to be addressed which are further broken down 

into specific research questions. It highlights the relevance of the study and ends with the description of set up of this entire thesis. 

1.1. Background 

Landslides are one of the most wide spread natural hazards and have a number of causes and effects. Crustal 

movements along faults give rise to earthquakes and in turn initiate landslides. Earthquakes are considered one 

of the major causes of landslides in addition to many other static factors [4-7]. Slope failures can also be 

attributed to liquefaction which is due to stronger shaking from earthquake amplification [8]. These may cause 

damage to roads, bridges or houses if they occur rapidly. They can even lead to loss of life. These movements 

are classified into slow and fast types, into creep slides and flows [9-10]. 

The landslides that were induced by the 12th January 2010 earthquake of Haiti were studied in this study. 

According to USGS (2010), the Haiti earthquake occurred at 21:53:10 UTC, 25km WSW of Port-Au-Prince on 

a blind thrust fault associated with the Enriquillo Plantain Garden Fault System. This earthquake had a 

magnitude of Mw 7.0 and a focal depth of 13 km at 18.457°N, 72.533°W. It took place at a plate boundary of 

the North American and the Caribbean plates. This boundary region is characterised by left-lateral strike slip 

motion and compression with the Caribbean plate moving eastward relative to the North American plate at 

approximately 20mm/y slip rate [11].   

Mass Movements (MM) during earthquakes poses a serious threat both to humans and their property in most 

mountainous areas. According to official estimates after the Haiti earthquake, it was estimated that 222,570 

people were killed, 300,000 injured, 1.3 million displaced, 97,294 houses destroyed and 188,383 damaged in 

Port-au-Prince area and in much of southern Haiti [11]. With the focal depth of 13km, this earthquake was 

classified as a shallow earthquake. In a preliminary study, a total number of 1864 landslides were identified [12].  

In the present concept, landslide susceptibility describes how prone an area is to slope failures. A landslide 

susceptibility map thus depicts areas likely to have landslides in the future by correlating some of the principal 

factors that contribute to land sliding with the past distribution of slope failures [13]. An earthquake-induced 

susceptibility map attempts to indicate how an area is susceptible to earthquake-induced landslides. The first 

step of any landslide susceptibility analysis is the creation of a landslide inventory map showing the locations 

and outlines of landslides and in the case of more detailed maps, also the classification of landslides types. The 

second step is the preparation of a landslide susceptibility map [5]. A landslide susceptibility map attempts to 

reproduce landslide susceptibility for a certain event and has no predictive power to any other possible event in 

the near future unless this occurs in the same location with the same characteristics. 

Due to the rugged terrain in many parts of the world, many areas are inaccessible for detailed data collection. 

Satellite imagery offers many options for the examination of mass movements in such environments, especially 

in developing nations in which resources are scarce and levels of environmental information very limited [14]. 

To create landslide inventory maps, digital stereo image interpretation and Object Oriented Analysis (OOA) 

can be used. Stereo image interpretation consists of creation of stereograph images using computer systems 

and specialized software. To be able to view real 3D, specialized glasses are used [15].  

Traditionally, recognition and classification of landslides has been done by fieldwork and manual image 

interpretation. However, in cases of need for quick information for decision making and areas characterized by 
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hilly and mountainous terrain, this tool is limited [1]. Remote sensing technology has proven to be a very handy 

and the best tool for landslide inventory generation. This technology is developing by the day with increasing 

image detail [16-17]. This, coupled with increased computer and programming skills and knowledge, has led to 

the development of new techniques like Object Oriented Analysis (OOA), also known as Object-based Image 

Analysis (OBIA) or Geographic Object-Based Image Analysis (GEOBIA), which enable faster detection of 

landslides. It is a semi-automatic way of image interpretation that identifies landslides by use of expert 

knowledge to develop algorithms based on landslides’ unique spectral, spatial, and morphometric properties [1, 

18]. Object-oriented methods have become more popular compared to traditional pixel-based methods and are 

a source of timely information for post disaster decision making.  

In a study by Martha et al. [1], the application of shape, spectral and contextual information for landslide 

detection was studied. The algorithm was tested with 5.8m multispectral data from Resourcesat-1 and a 10m 

Digital Terrain Model (DTM) generated from 2.5m Cartosat-1 imagery.  Initially, segmentation of a 

multispectral image was done followed by identification of landslide candidates. False positives were then 

distinguished from real landslides by combining spectral information together with shape and morphometric 

characteristics. The features identified as real landslides were then classified based on material type and 

movement as debris slides, debris flows and rock slides, using adjacency and morphometric criteria. Later on, 

they were classified based on failure mechanism using terrain curvature. This method was tested on a separate 

catchment in northern India and is said to have had a total of five landslide types detected by this method with 

76.4% recognition and 69.1% classification accuracies [1]. 

In this study, the transferability of this algorithm has been tested on imagery characterized by multispectral, 

color and higher detailed information. This was to understand the effect of both imagery and Digital Elevation 

Model (DEM) data characteristics like band information, color and spatial resolution. The Resourcesat-1 

multispectral satellite and Cartosat-1 DEM data mentioned were replaced by the Geoeye or Google Earth aerial 

photos and Lidar or Aster DEM respectively. Google Earth data were considered interesting to use because 

they are free, lack multispectral information, are easily accessible with a high spatial resolution and are 

characterized by compression artifacts. It was used to determine its applicability and the effect of presence of 

color for semi-automated landslide detection. 

Creation of efficient and transferable algorithms is often undermined by subjectivity of operators in selection of 

thresholds, scale factors and variations in sizes of both landslides and their false positives. Martha et al. (in 

review) [3] proposed a  new approach to objectively select thresholds by k-means analysis and identification of 

different sized objects by multiple scale parameters derived from the spatial autocorrelation and intrasegment 

variance analysis. This study tested the applicability of this new approach to Haiti for creation of landslide 

inventories.  

Landslide inventories created from stereo image interpretation are often used for validation of the inventories 

from OOA and in bivariate statistical analysis. Bivariate statistical analysis, deals with the correlation of 

occurrence of mass movements and one independent variable (causative factor). Each factor map is combined 

with the landslide distribution map, and weighting values based on landslide densities are calculated for each 

parameter class [19].  

1.2. Problem statement 

Landslides are natural hazards that pose a threat to both human beings and their properties. In search of more 

land for human settlement and agriculture, people have settled in landslide prone areas, exposing themselves 

to landslide hazards. This has continuously led to deaths and loss of valuable property [20-21]. Beyond the 

tragic loss of life, important civil infrastructure such as buildings, dams, and bridges may be destroyed and 

critical lifeline systems such as power grids, water and gas lines interrupted. The Haiti earthquake, for example, 
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affected approximately 15% of the national population and the damage totals were approximately $7.8 billion, 

which is more than 120% of Haiti’s 2009 gross domestic product. In a number of cases, landslides damaged 

the essential facilities. In some cases, buildings collapsed into drainage channels and blocked them. In other 

cases, garbage and debris filled the channels [22]. Due to the immense impact of such events, there is a need 

for knowledge of earthquake and earthquake-induced landslide patterns. Large earthquake events require a 

critical review of current seismic design guidelines and development of new approaches. The study of past 

events and characterizing historical events can greatly contribute towards the development of new earthquake 

resistant design guidelines [6]. As the geological uniformity law states ‘the past is a key to the future’. 

Except for field surveys and expert-based explanations of why the Haiti earthquake-induced landslides took 

place where they did, no extensive statistical analysis of the pattern of the Haiti earthquake-induced landslides 

has been carried out. This information is important for planning, disaster mitigation and reconstruction 

efforts. It should be put into consideration as a basic tool for land-use planning, especially in mountain areas 

[19]. To minimize the loss of lives and damage to property, factors causing unstable slope conditions should 

be understood so that we can determine landslide susceptibility with high accuracy and reliability [23]. 

Although 50% of Haiti is under agriculture, only 10% is the amount of land that is considered suitable for 

agriculture. This means that 40% of agriculture occurs in non-recommended areas and these are mainly steep 

slopes [24]. Cultivation of steep slopes makes the soil more susceptible to landslides because this, in 

combination with occurrence of an earthquake, leads to an unavoidable occurrence of landslides as it makes 

the slopes extremely weak [25-26]. Up on occurrence of landslides in such areas OOA, compared to stereo 

image interpretation, provides a quicker way to map the landslides. 

Manual mapping of event-based landslides is time consuming and often labour intensive, requiring a lot of 

people for quick interpretation. Although collaborative mapping methods such as the ones done for mapping 

building damage after Haiti are good options, faster mapping methods are needed. A comprehensive 

algorithm for landslide detection was developed in a study by Martha et al. [1]. However, it was not clear 

whether this algorithm was easily transferable when different data are used and in a different area. According 

to Martha et al. [1], the re-quantification of different feature characteristics may be necessary if the algorithm is 

to be used in a different area and with different data sets. They welcomed testing of the approach with other 

data types and in other areas. This study adopted the algorithm and tested its transferability by identifying and 

creating landslide inventories from different data and in a different area of Haiti compared to India where it 

was created. It highlighted the possibilities, limitations and issues surrounding the transferability of such an 

algorithm. 

Since 2005, Google Earth has provided freely and easily accessible high resolution image data around the 

globe. The relatively easy accessibility and free cost of Google Earth data usually available after disasters could 

make the OOA process even faster. It was not clear whether use of free Google Earth data with colour but no 

multispectral information affects the OOA process in any way. This is important as currently, high resolution, 

free Google Earth data are usually provided in disaster areas. In Haiti, we also had free Geoeye images. This 

study tested the applicability of Google Earth airborne data for Object-based landslide detection and 

identified some of the cons associated with its use. 

Elevation information is important for Object-based detection of landslides. It is useful to know the effect of 

DEM resolution on the OOA process and results. This study also aimed at testing if the use of a Lidar derived 

DEM would improve OOA based landslide detection compared to Aster DEM. 
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1.3. Objectives 

1.3.1. Overall objective 

To evaluate the transferability of a generic algorithm for object oriented landslide mapping and 

pattern analysis by applying it to the 2010 Haiti earthquake-induced landslides situation.  

1.3.2. Specific objective and research questions 

1. To generate a landslide inventory map by multi temporal stereo image interpretation and 

classification of landslides into scarps and bodies, and into the various landslide types 

2. To test the transferability of a generic algorithm to Haiti area using comparable high resolution 

multispectral image data as applied in development of the algorithm 

� To what extent is the unaltered algorithm applicable to Geoeye data? 

� What modifications are necessary for the algorithm to be applicable to Geoeye & Aster data 

combination? 

� What modifications are necessary for the algorithm to be applicable to Geoeye & Lidar data 

combination? 

� How accurately transferable is the Geoeye & Lidar data algorithm to the validation site? 

� To what extent are the output inventories from the above combinations accurate? 

3. To test the transferability of a generic algorithm to Haiti area using non-multispectral data. 

� What are the modifications necessary for the algorithm to be applicable to Google Earth 

aerial photo and Aster DEM data combination? 

� What are the modifications necessary for the algorithm to be applicable to Google Earth 

aerial photo and Lidar DEM data combination? 

� To what extent are the output inventories accurate? 

� How does the color characteristic affect the results? 

4. To evaluate the effect of higher resolution Lidar DEM on the transferability of existing 

algorithms 

� How accurate is the output inventory when the unaltered Geoeye image & Aster DEM 

algorithm is applied to Geoeye image & Lidar DEM data combination? 

� How accurate is the output inventory when the unaltered Google Earth & Aster DEM 

algorithm is applied to Google Earth & Lidar DEM data combination? 

� Will the higher resolution Lidar DEM improve on the result? 

5. To understand to what extent one can use higher detail of DEM and image, color information 

and Multispectral and information. 

� Of all the inventories from all data combinations made, which one is better in comparison to 

one from visual image interpretation and why? 

� What are the disadvantages and advantages of each data combination? 

6. To test the applicability of the Plateau Objective Function (POF) and data-driven thresholds for 

landslide recognition for Geoeye & Lidar DEM data combination 

� Does the new methodology improve the recognition accuracies compared to those previously 

obtained by a single scale approach? 

7. To analyze the pattern of earthquake-induced landslides using the created landslide inventory 

from stereo image interpretation, seismic and environmental factor maps. 

� How was the landslide distribution immediately after the recent Haiti earthquake? 

� What are the factors responsible for the occurrence of landslides where they did? 

� For this particular event, which areas had low, moderate and high susceptibility to landslides? 
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� Is the information obtained about landslide causative factors, from susceptibility analysis, 

useful for improvement of the OOA process? 

1.4. Relevance of study 

In an event of a disaster, there is often a need for quick supply of information not only for search and rescue 

but also for damage assessment. In an event where landslide inventories are required, OOA could provide a 

faster method to produce such information compared to traditional means involving fieldwork and visual 

image interpretation. A proper understanding of transferability of algorithms is essential as it explores the 

possibility of making the OOA process faster by making algorithms more adoptable against changes in image 

characteristics and geographical settings. Presence of efficiently transferable algorithms would hasten 

information availability for decision making while saving time and resources. It is essential therefore, to 

understand the possibilities and constraints associated with creation of easily transferable algorithms both in 

geographical space and with different imagery possible. 

The use of high resolution multispectral image data is often associated with many limitations, often related to 

low coverage, high cost and limited accessibility due to restrictions by the satellite providers. This study 

investigated the possibility of use of such data for semi-automated landslide detection. This information is 

helpful as it highlights the pros and cons associated with the use of such data. This study highlights the 

potential embedded in the use of Google Earth data that needs to be tapped into. 

These outputs from this study, pattern analysis in particular, can be used for better decision making regarding 

disaster mitigation, reconstruction, and proper land use planning in Haiti. Availability of a susceptibility map 

from this study could enhance the understanding of areas that may be or may not be unstable and thus helpful 

in proper land use planning and disaster prevention.   

1.5. Organization of thesis 

This thesis consists of 5 chapters. Chapter one is the introductory chapter which highlights the background of 

this study, explains why the motivation to do this study, and the current problems to be addressed. It also 

contains the overall objective, specific objectives and research questions to be solved in order to address the 

problem. Lastly but not least, it explains the relevance of this study, the structure of this thesis and who 

benefits from outputs of the study. 

Chapter two reviews literature on the major aspects of this study. Here, literature on evolution of techniques 

for landslide inventory mapping, segmentation and segmentation optimisation for Object-based landslide 

detection and the steps involved in the OOA methodology adopted for this study is reviewed. A discussion is 

also made of earthquake-induced landslides, factors causing landslides, Weights of Evidence modelling and 

landslide susceptibility.  

Chapter three describes the methods and materials used in this study. Therein, the study area, data sets, 

software and methods used for each objective are described. Flow charts are also contained here, which show 

the procedures followed. 

Chapter four is the chapter where the results are presented and discussed. For each research question, results 

were obtained. They are shown and explained in this chapter.  

In chapter five, conclusions and recommendations are made. Also, possible areas for further research and the 

study limitations experienced in this study are pointed out. 
  



EVALUATION OF THE TRANSFERABILITY OF A GENERIC ALGORITHM FOR OBJECT ORIENTED LANDSLIDE MAPPING AND PATTERN ANALYSIS FOR THE 2010 HAITI 

EARTHQUAKE 

 

6 

 

  



EVALUATION OF THE TRANSFERABILITY OF A GENERIC ALGORITHM FOR OBJECT ORIENTED LANDSLIDE MAPPING AND PATTERN ANALYSIS FOR THE 2010 HAITI 

EARTHQUAKE 

 

7 
 

2. LITERATURE REVIEW 

The first step before any landslide hazard assessment is the preparation of a landslide inventory showing the spatial distribution of 

the landsides. This chapter describes the evolution of techniques for landslide inventory mapping, segmentation and segmentation 

optimisation for Object-based landslide detection. It also discusses previous predictions relating to the Haiti earthquake, 

earthquake-induced landslides and their possible causative factors, landslide susceptibility analysis methodologies and takes a 

special emphasis on statistical approach involving Weights of Evidence modelling, a method that was adopted for landslide pattern 

analysis in this study. 

2.1. Landslide inventory mapping 

2.1.1. Visual image interpretation 

The first step in a landslide hazard and risk assessment is the preparation of a landslide inventory map that 

provides the spatial distribution of locations of past landslide occurrences. The most common method for 

preparation of landslide inventories till date is aerial photographic interpretation [27]. This involves visual 

assessment of stereo analogue aerial photos supplemented with detailed field investigation [28-29]. Landslides 

are associated with specific signatures in imagery often recognised by the human eye. Visual image 

interpretation is a cognitive process that involves use of specific landslide characteristics like tone, contrast, 

size, shape and contextual information like location and direction [30]. Key to landslide monitoring also 

involves careful interpretation of imagery for features like cracks, discontinuities, slopes and depressions 

which are typical features associated with slope failures [31]. Monitoring of these is important for predicting 

possible failure zones. 

Even though visual image interpretation is accredited for allowing a higher degree of operator control [32], 

and is considered a more accurate means of landslide feature recognition compared to automated methods it 

has also been associated with a number of drawbacks. It is a relatively complex and empirical technique that 

requires properly defined interpretation criteria, experience, methodology and training [33]. Though attempts 

have been made to standardise the process of visual image interpretation by introducing clearly defined 

guidelines which provide a number of landslide diagnostics [34-35], this methodology is still a very subjective 

method for landslide inventory preparation [32]. This often makes the results controversial [32, 36] as no 

landslide inventories of the same area from two different interpreters are ever the same. The skill of the 

interpreter is of utmost importance in order to obtain a complete and reliable inventory that is free of 

controversy [35, 37]. Experienced interpreters will most likely produce relatively similar inventories. Also, this 

process is often compromised and made tedious due to the fact that landslides occur individually and need to 

be collected/identified one at a time [38]. This is time consuming and in cases where quick and timely 

information is required for decision making, this method is not efficient enough [32]. Lastly but not least, the 

use of aerial photos is often not ideal as these are usually not available soon after a major triggering event has 

happened. In areas where regeneration of vegetation is often fast, evidences of landslides are often masked 

before flights for aerial data collection are planned and implemented. This is made worse due to the fact that 

planning for such surveys is usually expensive and thus takes time at the expense of obtaining aerial photos 

that have landslide signatures that are clear enough for visual assessment [39]. 

The making of a complete inventory both in space and time is essential for obtaining a representative and 

reliable landslide hazard and risk levels for a particular site of interest [40-42].   For an efficient visual based 

image interpretation to identify landslides, availability of high to very high resolution imagery is prerequisite 

and very high resolution imagery like QuickBird, Ikonos, Cartosat-1 and Cartosat-2 have become the best 

available option right now for this purpose [43-45]. This has been facilitated by the increasing number of 

operational sensors with stereo capability and providing high spatial resolution imagery of 3m and even better 
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[46]. Availability of such high resolution sensors with stereoscopic capabilities coupled with advances in digital 

image analysis techniques have led to the evolution of landslide inventory mapping approaches [47]. Visual 

interpretation with satellite imagery has facilitated faster revisits with larger areal coverage and higher detail 

[38]. Whereas detection of landslides from satellite imagery can be done visually, it is not the best and most 

efficient as discussed above. A number of automated and semi-automated techniques for interpretation of this 

data have been developed as discussed below. 

2.1.2. Pixel-based inventory mapping 

More advanced approaches to landslide inventory mapping compared to visual image assessment involve 

pixel-based methods like supervised and unsupervised classification and change detection with image 

differencing, rationing, Artificial Neural Networks (ANN) and image fusion. 

A number of both supervised and unsupervised techniques for change detection have been proposed by 

different researchers [48-51]. In comparison to unsupervised techniques, supervised techniques usually require 

availability of ground-truth information. Thus, because in many cases there is lack of ground-truth 

information, unsupervised classification is always mandatory as the next available option in many applications 

[52]. Important to note however is that all change detection methods, despite their differences in algorithms, 

deal with multi-temporal imagery acquired at different dates and with differences in spatial resolution, view 

and sun angles, coverage and atmospheric conditions at the time of acquisition [53].  

Cheng et al. [53] in their study entitled ‘Locating landslides using multi-temporal satellite images’ demonstrated 

that spectral rationing and multi-temporal image differencing techniques could be used to identify fresh, non-

vegetated landslides. Also, Nichol and Wong [54] demonstrated that with image fusion techniques on SPOT 

XS images the methodology was able to detect approximately 70% of landslides in Lantau Island, Hong Kong, 

including those in forested areas.   

Despite the proven applicability of pixel-based landslide inventory mapping in a number of studies, it is 

associated with a number of shortcomings. Pixel-based classification assigns a class to a pixel depending on 

where it falls in the spectral feature space, not putting into consideration its spatial relation to its neighbours 

[55]. It depends entirely on the spectral signature of landslides. However, this information is typically not 

diagnostic and unique to landslides as other land cover classes, often known as ‘false positives’ exhibit similar 

spectral characteristics as landslides [1]. Also, pixel-based methods often result in small sized objects in 

comparison to those obtained from visual image interpretation [56]. Most products from pixel-based 

approaches are thus often characterised by effect often known as the ‘salt and pepper effect’ which limits the 

usability of such outputs in the field. The outputs are most often hard to validate on ground. However, this 

problem has been reduced by development of Object-based landslide inventory mapping methods as 

discussed below. 

2.1.3. Object-based inventory mapping  

Apart from visual image interpretation, landslide inventory mapping can also be done in a semi-automatic way 

where expert knowledge is incorporated to create sets of rules using characteristic spectral, spatial and 

morphometric properties of landslides and their false positives. This is also known as Object-based 

classification [1]. It can make use of a number of features evident on the landslide areas and their 

surroundings. These may include disruptions of drainage networks, disturbances and anomalies related to 

vegetation distribution and slope changes easily recognisable from DEMs [35]. Until recently, pixel-based 

methods for change detection and classification have been developed and used widely. However, these are 

beginning to be replaced by Object-based methods. Object-based landslide inventory mapping is considered 

inherently better suited, as it can address landslides, as what they are (objects and not pixels – that have 

spectral, spatial and contextual characteristics) [57]. 
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OOA identifies landslides more quickly compared to visual interpretation, and hence has the potential to aid 

timely risk analysis, disaster management and provision of timely information for informed decision making 

processes in the immediate aftermath of a disaster [1].  The identification and classification of landslides 

involves use of expert knowledge developed during the image interpretation process for landslide 

identification. This imitates the cognitive landslide identification during visual image analysis by an expert [1].  

The OOA methodology, which was also adopted for this study, involves 3 steps which are identification of 

landslide candidates, distinguishing real landslides from false positives and lastly identification and 

classification of landslide types present.  

2.1.4. Segmentation and segmentation optimization procedures 

This is the very first step required for landslide identification and classification. Basic processing units in OOA 

are objects or pixel clusters. To analyze images, processing units that group and demarcate the objects are 

formed based on a certain criterion of heterogeneity and homogeneity by segmentation. This step is essential as 

it provides the basic blocks for OOA. Thus one is able to extract the objects of interest in an image [58]. In 

eCognition software, different algorithms are provided like multiresolution, quadtree and chessboard [1]. These 

segmentation algorithms are often combined together to provide accurate and realistic outputs. The quality of 

the segmentation process affects, to a high extent, the quality of landslide recognition and classification.   

The application of OOA is often associated with a number of problems. The actual analysis relies on proper 

image segmentation. However, the subjectivity and trial-and-error nature of the segmentation process has been 

the subject of years of research [57]. Though eCognition software provides different segmentation algorithm 

options to choose from, the choice of one suitable algorithm for a good segmentation is always a challenge due 

to the landslide size variability. Various researchers have proposed a number of approaches through which this 

process could be optimized by reducing over or under estimation of object boundaries as discussed below. 

To efficiently detect landslides using contextual, size, shape, and color and process knowledge has proved to be 

very challenging in the past. This is because landslides have been detected mainly using size and spectral 

characteristics, factors which are not unique to landslides. In a study by Martha et al. (in review) [3], a 

methodology which determines multiscale parameters by a Plateau Objective Function derived from the spatial 

autocorrelation and intra-segment variance analysis was developed. This allows for differently sized features to 

be identified thus solving the challenges associated with scale dependency of landslides and their false positives. 

It also makes easier and quicker, the segmentation process to outline landslides by ensuring an automated 

selection of parameters. Esch et al. [59] on the other hand proposes an optimization process that iteratively 

combines a sequence of multiscale segmentation, feature based classification and classification based object 

refinement by merging or clipping of segments. This procedure was tested and it was concluded that it is an 

adaptive procedure that can facilitate more accurate and robust image segmentation. It was found to improve 

the segmentation process by a percentage between 20 and 40. However, it is said to increase the processing 

time. Also, Dragut et al. [60], developed a procedure for the optimization of scale parameter estimations. The 

tool is called Estimation of Scale Parameter (ESP) and it works by iteratively generating, in a bottom up 

approach, image objects at multiscale levels and then calculates the local variance for each scale. The scale 

levels at which the image can be best segmented are selected, depending on the data and the site specific 

conditions, by evaluating LV plotted against the corresponding scale. According to Lu et al. (In press) [61], 

despite trials of various researchers to use OOA for landslide detection, all of their proposed approaches failed 

to produce accurate event related landslide inventories in situations where pre and post event landslides are co-

existing. A new approach was thus developed to facilitate rapid mapping of new landslides by change detection 

technique. This technique emphasizes semi-automated and rapid landslide analysis with minimum operator 

involvement and manual analysis steps by utilizing a problem specific scale optimization image segmentation 

process with automated spectral and texture parameters. It achieved an area extent producer accuracy of 75.9%. 
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With the above literature on segmentation optimization, it can be concluded that this topic has been and is still 

an area of possible active research. 

In the OOA process, after making the appropriate segmentation, this is followed by classification of the 

different segments to their respective land cover classes, false positives and landslide identification. 

2.1.5. The identification of landslides 

Most landslide marks of bare rock and debris after a landslide are very visible in remote sensing imagery. Fresh 

landslides usually give a bright appearance in the imagery. The changes are usually identified and represented 

with the Normalized Difference Vegetation Index (NDVI) values. Thus NDVI is a criterion used in 

identifying candidates for landslide [1]. The lower the NDVI value, the higher the probability of presence of a 

landslide. A number of previous researchers of pixel-based methods for automatic detection of landslides have 

used spectral characteristics basing on NDVI and digital value [1, 27, 54, 62-64] for the identification of 

landslides. This step results into two classifications of landslide and non-landslide areas. However, the 

landslide areas identified are unrefined as they classify along classes that exhibit the same spectral 

characteristics as landslides, often referred to as ‘false positives’. 

2.1.6. Distinguishing real landslides from false positives 

This is sometimes very difficult. New landslides often exhibit spectral properties, in imagery, that are almost 

identical to those of other naturally occurring bodies in the environment, and they also do not have unique 

shapes. After a landslide has occurred, most of the vegetation may be cleared leaving the landslide with a 

similar reflectance as other non-landslide areas like water, rivers sand, and bare rock. When the NDVI method 

is used, false positives are usually taken for landslides for cover on ground with a low NDVI for example 

water, bare rock, river beds and roads. Depending on the prevailing false positive classes in the study site it is 

thus necessary to develop an algorithm to distinguish these from real landslides [1, 63]. 

2.1.7. Identification and classification of landslide types present 

Morphology characteristics developed by Varnes and local knowledge are usually used in this process for 

classifying landslides according to their failure mechanism. Characteristics such as length/width ratio and 

asymmetry are very useful in the identification and classification of landslides [1, 65]. Table 1 gives an example 

of a logical understanding of landslide types based on the local knowledge and morphology characteristics. It 

is based on such logical understanding that algorithms are developed for landslide classification 

Landslide type Logical criteria 

Shallow translational 

rock slide 

Source area is in rocky land with shallow depth, and relatively narrow and elongated 

shape. 

Translational rock slide Source area is in rocky land with moderate slope and planar terrain curvature. 

Debris slide Source area is in a weathered zone or thickly covered soil, moderate slope and low length. 

Debris flow Source area is in a weathered zone or thickly covered soil and moderate slope, but has a 

long run-out zone. 

Rotational rock slide Source area is in rocky land with steep slopes, and terrain curvature is concave upward. 

Table 1: Logical classification criteria (adopted from Martha et al. [1]) 

In this study, landslide inventories for earthquake-induced landslides were prepared by both stereo image 

interpretation and Object-based landslide mapping method. The inventories made by Object-based methods 

were to test the transferability of the generic algorithm described above. Their accuracies were tested by the 

inventory developed from stereo image interpretation. The inventory from stereo image interpretation was 

also used to analyse the pattern of earthquake-induced landslides triggered by the most recent 2010 Haiti 

earthquake. Discussed below are the key issues pertaining earthquakes and earthquake-induced landslides, 

their causative factors, methodologies for landslide susceptibility and Weights of Evidence modelling. 
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2.2. Earthquakes and earthquake-induced landslides 

Crustal earthquakes, whether moderate or strong, are often accompanied by a distinctive pattern of co-seismic 

geological phenomena. These may range from surface faulting to ground cracks, landslides, 

liquefaction/compaction, which leaves a permanent mark in the landscape [66]. The Haiti earthquake, which 

triggered a number of landslides and lead to several deaths, economic losses and displacement of persons, was 

predicted by a number of studies, two of which are briefly explained below.  

In 2002, analysis of GPS data collected from a 35 site network in the Dominican indicated high seismic hazard 

on a number of faults, Enriquillo fault inclusive. It indicated that the Caribbean Plate is moving east-northeast 

ward at a rate of 15 to 23mm per year towards the North American Plate. This means that there is an oblique 

convergence of the two plates [67]. Also, another study suggested that the Enriquillo fault was capable of 

producing an Mw 7.2 earthquake if the entire elastic strain accumulated since the last major earthquake was 

released in a single event today [68]. 

One of the principle causes of earthquake damage is land sliding triggered mainly by earthquakes on very 

susceptible slopes. Earthquakes with magnitude greater than 6.0 like the Haiti earthquake of 7.0 can generate 

wide spread sliding [69]. Earthquakes ranging from moderate to large earthquakes cause landslides, a large 

number of casualties, and large economic losses. These landslides follow a pattern depending on the prevailing 

environmental factors. They are usually reported around the epicentre area even in distances of tens of 

kilometres [70]. A large number of Haiti landslides were reported in the mountainous area approximately 10-

15km southwest of the epicentre with most of these in cut slopes along the highway [71]. This study 

investigated the controlling factors behind the occurrence of the 2010 Haiti earthquake-induced landslides. 

2.3.  Environmental and seismic factors controlling the occurrence of landslides 

A number of factors have been pointed out in various studies as causes of landslides. These factors include 

lithology, slope, tectonic features, drainage, distance to epicentre, distance to fault rupture, distance to 

highways, and road network, distance to drainage lines, magnitude, focal mechanism, surface rupture, focal 

depth  drainage density, distance to settlement,  soil moisture and land cover slide [70, 72-73]. A few of these 

factors are discussed below. 

2.3.1. Earthquake magnitude and depth  

Slope failures are a common occurrence in tectonically active areas. The magnitude of an earthquake trigger 

has a significant influence on the magnitude of landslide events. Strong triggers result into a large number of 

landslides and vice versa [74]. According to Keefer [75], the minimum magnitude for an earthquake to trigger 

a landslide is M=4 and landslide area increases with increase in earthquake magnitude. Despite a lot of 

variability in geological, geophysical (earthquake type and depth) and climatic conditions, Keefer [76] 

established a reasonably good power-law dependence of the total landslide volume on the earthquake’s 

moment magnitude.  

2.3.2.  Lithology 

Landslide phenomena are highly related to the lithology and weathering properties of the materials present in 

an area. In a study by Yalcin [19], the degree of weathering of  the rocks was determined by using the 

classification of weathering method suggested by ISRM [77] and the weathering map was produced according 

to the data obtained. As a result of the analysis performed according to the lithology-weathering degree of 

different units, it was verified that approximately 95% of the landslides occurred in high degrees and among 

the completely weathered rocks [19]. The structural geology of an area has a significant influence on 

occurrence of landslides. Structures such as non-tectonic folds and multiple ridges, formed by mass rock 

creeps, degrade mountain slopes making them susceptible to failures [78]. 
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2.3.3. Distance from fault lines, hanging wall effect and fault type 

Crustal/tectonic movements along faults give rise to earthquakes. These earthquakes in turn initiate landslides. 

In fact, in addition to various static factors causing landslides, earthquakes are one of the major triggers of 

landslides [7]. According to Gallousi & Koukouvelas [4], who quantified the geographic evolution of 

earthquake-induced landslides and their relation to active normal results, large landslides due to earthquakes 

are strongly related to active faults. They are known to dominate in the hanging walls compared to the 

footwalls of co-seismic faults [79]. Also, depending on the type of fault present, landslides are known to 

dominate in thrust region areas with high co-seismic slip rate compared to strike-slip regions [80-81]. The 

presence of a fault acts both as a conditioning and triggering mechanism for landslides. Long-term dip-slips 

cumulate displacement along active faults, acts as a conditioning geomorphic process through the creation of 

steep slopes which are more susceptible to landslides. However, during an earthquake event, landslides are 

triggered on unstable slopes whether or not they are conditioned. Tectonic deformation induces pervasive 

fracturing of the rocks, which are prone to fail along such slopes. Fault planes may also act as preferential 

sliding surfaces for landslides by constraining their geometry and promoting the gravitational failure [82]. 

There is thus an expected trend of number of landslides decreasing away from the fault. This is due to 

reduction of the conditioning and triggering effects of the faults away from them. 

2.3.4. Land cover/Land use 

The amount of vegetation cover present in an area strongly influences the occurrence of landslides. Studies 

have shown that areas with dense, woody-strongly rooted vegetation are less susceptible to landslides as these 

help in improving the stability of slopes [83]. Land cover and Land use maps depict the spatial distribution of 

vegetative and non-vegetative cover, and types of land use practices respectively. Vegetation provides both 

hydrological and mechanical effects that generally are beneficial to the stability of slopes. In contrast, barren 

areas and fallow lands destabilize the slopes [84-85]. However, there are many conflicting evidences 

concerning the effects of vegetation on slope stability. Based on the examination of natural terrain in Lantau 

Island in Hong Kong, Franks [86] reported that sparsely vegetated slopes are most susceptible to failure [86]. 

According to Neaupane & Piantanakulchai [87], Nilaweera & Nutalaya [88], put forward the most convincing 

explanation on the effects of vegetation on landslide susceptibility and stated four factors to be accounted for. 

The hydrological factors (soil moisture depletion as a result of transpiration) and mechanical factors (root 

reinforcement) increase the stability of a slope. Surcharge from weight of trees may or may not do so 

depending upon the steepness of slope and potential failure mode. 

NDVI is often used as an indicator of the amount of vegetation cover. The NDVI value of an area denotes 

the amount of vegetation present. The NDVI value is calculated by the formula NDVI = (IR − R)/ (IR + R). 

A high NDVI value in an image usually implies presence of dense vegetation. Presence of high amounts of 

chlorophyll results in a low reflectance in the red band. Bare areas, on the other hand, usually have fewer 

amounts of chlorophyll and thus a low NDVI in the resultant imagery [89]. 

2.3.5. Distance from road network 

One of the controlling factors of slope stability is the distance from road network. Landslides usually occur 

along roads and foot trails mainly due to inappropriately cut slopes and drainage from the roads and trails [85, 

90].  Roads may act as barriers, net sources, net sinks or corridors for water flow. Depending on their location, 

they usually serve as origins of landslides [89]. Analyses involving such relationships often calculate 

susceptibility up to a given distance away from the feature of interest as the features are not expected to have 

any impact beyond the specified distance. Generally, the number of landslides is expected to reduce as we 

move farther away from the road network. This is due to the reduced impact of the road farther away from it 

up to a distance when the road no longer affects the landslide pattern. 
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2.3.6. Slope angle and aspect  

The relation between landslides and slope gradient is affected by the interaction of geology with geographic 

process shaping the terrain. While steeper slopes provide greater potential energy to induce failure, they are 

also indicative of higher strength of materials. This trade-off between increased driving force and increased 

soil strength appears to reduce the importance of slope angle/steepness [91]. The slope aspect or slope 

direction, on the other hand, has the potential to influence its physical properties and its susceptibility to 

failure. The process that may be operating include exposure to sunlight, drying winds and rainfall [87].  

2.3.7.  Drainage and Drainage density  

The closeness of the slope to drainage lines is another important factor in terms of stability. Streams may 

adversely affect stability by eroding the slopes or by saturating the lower part of material until resulting in 

water level increases [92]. In a study by Yalcin [19], it was discovered that landslides were closely located 

within the first 150 m buffer zones from streams.  

Drainage density is the ratio of the total length of the stream to the area of the drainage basin. The higher the 

drainage density, the lower the infiltration and the faster the movement of the surface flow. Most infiltration 

takes place next to the streams on slopes that have a high permeability such as alluvium. The higher the 

drainage density, the higher the susceptibility to landslides [19]. 

2.4. Landslide susceptibility analysis 

A landslide susceptibility map shows the likelihood that a landslide will occur in an area on the basis of the 

local terrain conditions [93]. It is a necessary tool for proper planning and selection of sites for agriculture, 

infrastructure and other human developments [94]. The evaluation of landslide susceptibility can be 

accomplished using three major techniques: deterministic models, heuristic approach and statistical methods 

[58, 95]. Deterministic approach often involves large-scale geomechanical computation and is based on 

stability models. They can be useful for mapping hazard at large scales, for instance for construction purposes. 

However, deterministic models are disadvantageous in that they are data intensive as they require the 

availability of detailed geotechnical and groundwater data, and they may lead to oversimplification if such data 

are only partially available [95]. They are advantageous in that they are white-box models as they depend on 

stability models [96]. A heuristic method also known as the expert-driven approach, on the other hand, is 

where an expert in geomorphology or an earth scientist decides on the type and degree of hazard for each 

area, using either a direct mapping approach where the degree of hazard is mapped directly in the field or 

indirectly after the fieldwork on the basis of a detailed geomorphological map using site specific knowledge 

obtained from visual image interpretation or field surveys. For landslide susceptibility analysis, two major 

inputs are essential, a detailed landslide map and environmental factor maps, where the expert defines the 

weights of each of the factors [95, 97]. The advantage of this method is that each individual features of 

interest outlined on the map can be analyzed and evaluated separately, based on its unique set of site specific 

conditions. It is, however, a more time-consuming method that depends also to a large degree on the expertise 

of the geomorphologist or earth scientist. Another approach involves bivariate or multivariate statistical 

analysis by Weights of Evidence where the combination of factors that could have led to landslides in the past 

are determined statistically and quantitative predictions are made for areas currently free of landslides. The 

bivariate statistical analysis is based on the comparison between the landslides inventory map as a dependent 

variable and all the separate input parametric maps. This approach allows calculation of the weight for each 

input variable [84, 95, 97]. This study involved a bivariate statistical approach to study the spatial relationship 

between landslides and their causative factors. The resulting model identifies three different levels of 

susceptibility: low, low to moderate, and moderate to high [98]. 
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2.5. Weights of Evidence modeling

Evidence of past landslides is considered an important and the most direct method for lan

analysis. This is based on the premise that an area with past landslides is landslide prone and has a high 

probability of new landslides. Two inputs are esse

modelling and these are the landslide inventories and a factor map 

of the WoE modelling method as is usually set up in a GIS environment

Figure 1: Schematic representation of the WoE modelling method

The Weight of Evidence method is

multiclass maps are used and depending on these weights, the relevant factor maps 

earthquake-induced susceptibility map. Success rates 

[101]. This can also be called bivariate statistics. WoE modelling is considered advantageous because it is 

simple and less time consuming [21]

drawbacks these are; 

� Simplification: The tendency to simplify the factors that condition landslides, by taking only those 

that can be relatively easily mapped in an area, such as slope angle or Lithology;

� Generalization: It assumes that landslides happen under the same combination of factors throughout 

the study area.  

� Individual causal factors: The third problem is related to each landslide type having its own set of 

causal factors, which should be analyzed individually. 

� Expert knowledge: There is lack of expert opinion on different landslide types and processes, which

common if these methods are applied by GIS

2.6. Chapter summary 

This chapter has reviewed the evolution of methods of 

traditional visual image interpretation, pixel

shortcomings. It has also discussed earthquakes as triggers to landslides and given an account of some of the 

major landslide causative factors. It further discussed the various methods available for landslide susceptibility 

analysis with special emphasis on WoE modelling
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Evidence of past landslides is considered an important and the most direct method for lan

This is based on the premise that an area with past landslides is landslide prone and has a high 

probability of new landslides. Two inputs are essential inputs when carrying out Weights of E

modelling and these are the landslide inventories and a factor map [99]. Figure 1 is a schematic representation 

of the WoE modelling method as is usually set up in a GIS environment. 

 
: Schematic representation of the WoE modelling method (Adopted from Castellanos et al. 

is used to generate statistically derived weights for all classes 

and depending on these weights, the relevant factor maps are

induced susceptibility map. Success rates are usually used to decide on the relevance of the factors 

. This can also be called bivariate statistics. WoE modelling is considered advantageous because it is 

[21]. However, the use of indirect methods such as 

Simplification: The tendency to simplify the factors that condition landslides, by taking only those 

ively easily mapped in an area, such as slope angle or Lithology; 

Generalization: It assumes that landslides happen under the same combination of factors throughout 

Individual causal factors: The third problem is related to each landslide type having its own set of 

causal factors, which should be analyzed individually.  

Expert knowledge: There is lack of expert opinion on different landslide types and processes, which

common if these methods are applied by GIS-experts, and not by earth scientists 

This chapter has reviewed the evolution of methods of preparation of landslide inventor

image interpretation, pixel-based to Object-based methods with an account of some of their 

. It has also discussed earthquakes as triggers to landslides and given an account of some of the 

landslide causative factors. It further discussed the various methods available for landslide susceptibility 

WoE modelling method, an approach used in this research.
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Generalization: It assumes that landslides happen under the same combination of factors throughout 

Individual causal factors: The third problem is related to each landslide type having its own set of 

Expert knowledge: There is lack of expert opinion on different landslide types and processes, which is 

experts, and not by earth scientists [21, 102]. 

landslide inventories from the 

with an account of some of their 

. It has also discussed earthquakes as triggers to landslides and given an account of some of the 

landslide causative factors. It further discussed the various methods available for landslide susceptibility 

method, an approach used in this research.  
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3. MATERIALS AND METHODS 

In this chapter, the study areas for this study are briefly described and reasons for choice of the specific sites given. It also highlights 

the software and major methodologies utilised amongst which are stereo image interpretation, Object-based landslide mapping, 

accuracy assessment, Weights of Evidence modelling, and frequency-area analysis. The section also contains demonstrations in form 

of flow charts of how the input datasets were prepared and a work flow for the essential steps in this study. 

3.1. Study area 

3.1.1. Location map: 

Haiti is located on the western third part of the island of Hispaniola. This island is located between the 

Atlantic Ocean and Caribbean Sea, which it shares with the Dominican Republic. Haiti has an area of 27,750 

square kilometres. Its capital and largest city, Port-au-Prince, is in a bay on the country's south western coast. 

The specific study area for this study is located in the southern part of Haiti. It is located along the Enriquillo 

fault and down to the south. It cross- cuts the departmental cities of Port au Prince, Jacmel and Leogane. The 

choice of the study areas was based on a number of considerations amongst which were nearness to the 12th 

January earthquake epicentre, Enriquillo Plantain Garden Fault System and presence of pre and post disaster 

imagery. Specifically, for the OOA study, areas with both small and large landslides and coverage of Lidar data 

along the Enriquillo Plantain Garden Fault System were chosen for both the training and validation sites. The 

validation study site for OOA had to be with area coverage larger than that of the first OOA training study 

site. 

 
Figure 2: Location map of the study area with a 3D perspective 
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3.1.2. Economy 

According to recent reports, the gross domestic Product for the year 2008 was US 

sustaining 2.3% growth from 2007. 80

poorest country in the northern Hemisphere with wide spread corruption. 2/3rds of the Haiti population 

depends on subsistence agriculture [103]

resources amongst which are bauxite, copper, 

tin, lignite, limestone, manganese, iron, tungsten, salt, clay, and various building stones 

3.1.3. Topography and Geology 

Haiti is characterized by rugged topography in the west and central Hispaniola. It is endowed with five 

mountain ranges which divide the country into three r

northern peninsula; central region; and the southern region, which includes the southern peninsula. The 

backbone of the island of Hispaniola is made up of four major mountain ranges that extend from west t

The mountains are characterized by limestone although some with volcanic formations mainly within the 

Massif du Nord. Present, in many parts of Haiti are karstic features like limestone caves, grottoes, and 

subterranean rivers to mention but a few 

separates basaltic rocks to the south of the fault and sedimentary rocks which consist of sandstone and 

limestone to the north [71]. 

3.1.4. Fault system/ Tectonic setting 

The Haiti is located in the eastern side of Gonâve microplate. It is bounded by both the North American and 

Caribbean plates.  It is has two strike slips, the Septentrional Fault (SFZ) to the north and The Enriquillo 

Fault that ends abruptly in south centr

fault. It is the east-west striking fault that follows the so

which is located in the Dominican Republic

Figure 3.  

Figure 3: Location of the two major strikes slips faults that go through Haiti

The  dots are locations of earthquakes within and around the Gonâve microplate 
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According to recent reports, the gross domestic Product for the year 2008 was US 

sustaining 2.3% growth from 2007. 80% of Haitians are said to be living below the poverty level. Haiti is the 

poorest country in the northern Hemisphere with wide spread corruption. 2/3rds of the Haiti population 

[103]. However, it is also a country endowed with a number of natural 

resources amongst which are bauxite, copper, calcium carbonate, gold, marble, hydropower, silver, antimony, 

tin, lignite, limestone, manganese, iron, tungsten, salt, clay, and various building stones [104]

Haiti is characterized by rugged topography in the west and central Hispaniola. It is endowed with five 

mountain ranges which divide the country into three regions. These are the northern, which includes the 

northern peninsula; central region; and the southern region, which includes the southern peninsula. The 

backbone of the island of Hispaniola is made up of four major mountain ranges that extend from west t

The mountains are characterized by limestone although some with volcanic formations mainly within the 

Massif du Nord. Present, in many parts of Haiti are karstic features like limestone caves, grottoes, and 

subterranean rivers to mention but a few [104]. The Enriquillo Fault system, where the earthquake occurred, 

basaltic rocks to the south of the fault and sedimentary rocks which consist of sandstone and 

 

The Haiti is located in the eastern side of Gonâve microplate. It is bounded by both the North American and 

Caribbean plates.  It is has two strike slips, the Septentrional Fault (SFZ) to the north and The Enriquillo 

Fault that ends abruptly in south central Hispaniola [103]. The main fault studied in this 

west striking fault that follows the southern peninsula of Haiti into the Enriquillo valley 

which is located in the Dominican Republic. This fault is estimated to be approximately 250 km long.

: Location of the two major strikes slips faults that go through Haiti

The  dots are locations of earthquakes within and around the Gonâve microplate ( From Impact Forecasting LLC
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According to recent reports, the gross domestic Product for the year 2008 was US $11.59 billion after 

ving below the poverty level. Haiti is the 

poorest country in the northern Hemisphere with wide spread corruption. 2/3rds of the Haiti population 

endowed with a number of natural 

hydropower, silver, antimony, 

[104]. 

Haiti is characterized by rugged topography in the west and central Hispaniola. It is endowed with five 

egions. These are the northern, which includes the 

northern peninsula; central region; and the southern region, which includes the southern peninsula. The 

backbone of the island of Hispaniola is made up of four major mountain ranges that extend from west to east. 

The mountains are characterized by limestone although some with volcanic formations mainly within the 

Massif du Nord. Present, in many parts of Haiti are karstic features like limestone caves, grottoes, and 

The Enriquillo Fault system, where the earthquake occurred, 

basaltic rocks to the south of the fault and sedimentary rocks which consist of sandstone and 

The Haiti is located in the eastern side of Gonâve microplate. It is bounded by both the North American and 

Caribbean plates.  It is has two strike slips, the Septentrional Fault (SFZ) to the north and The Enriquillo 

. The main fault studied in this study is the Enriquillo 

uthern peninsula of Haiti into the Enriquillo valley 

. This fault is estimated to be approximately 250 km long. See 

 
: Location of the two major strikes slips faults that go through Haiti  

Impact Forecasting LLC [103]) 
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3.2. Materials 

3.2.1. Data used:  

The adopted algorithm was developed with 5.8 m multispectral data from Resourcesat-1 and a 10 m DEM generated from 2.5 m Cartosat-1 image. However, 

this data is not widely available in areas outside India. This study tested the application of the algorithm to different image data of Geoeye and Google Earth 

aerial photos in combination with different DEM data of Aster and Lidar. Table 2 is a tabulated summary of attributes of these data and additional data used in 

susceptibility analysis. 

Data 

 

Data source Format Information/attributes contained No. of 

bands 

Resolution

(m) 

Google Earth aerial photos Google Earth  

 

 

 

 

Raster 

 

Colour information (RGB) 3 1 

Geoeye image Geoeye Multispectral information (RGB & NIR) 4 2, 0.5 

Aster DEM Earth Remote Sensing Data Analysis Centre  Elevation information  

 

 

 

Not 

applicable 

30 

Lidar DEM World bank Elevation information 1 

NDVI  

 

User made  

NDVI information 2 

Flow direction Flow direction information  

1, 30 Slope Slope information 

Aspect Aspect information 

Hillshade Hillshade information 

Rivers/Drainage USGS/Minustah  

 

 

Vector 

Drainage codes, Hydrology(cycle e.g. annual, 

intermittent fluctuating, non-perennial) and length 

 

 

 

Not 

applicable 

Fault USGS/Minustah Fault name, description, layer 

Roads USGS/Minustah Road name (type, code, length) 

Lithology (1:250,000) Adapted from Ellen et al. [2]  Lithology classes 

Landslide inventories User made Activity, part, type, sub-type, area 

Administrative 

boundaries(Admin2) 

USGS/Minustah ID admin 1, Admin1, ID admin 2, Admin 2, length, 

shape area 

Table 2: List of data used 
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3.2.2. Comment on importance of DEM resolution and accuracy for this study 

In this study, Aster and Lidar DEMs were used to obtain derivatives like slope, flow direction, aspect and 

hillshade for both landslide susceptibility analysis and Object-based landslide detection. For representative 

outputs from these analyses on a localised basis using these DEM derivatives, DEM resolution and accuracy 

are of utmost importance.  

An Aster DEM is a very large product that covers very vast expanses of global land. The global Aster DEM is 

often associated with a number of disadvantages. Though it meets the estimated vertical accuracy of 20m at 

95% confidence at a global level, the aster DEM contains a number of artefacts and residual anomalies that 

affect its overall accuracy. Also, with no inland water mask applied, there is no proper representation of 

elevation in large inland water bodies. Though with elevation postings about 30m, the detail of topographic 

expression resolvable for the Aster GDEM is between 100m and 120m [105]. Aster absolute DEMs have an 

accuracy ranging between ±7 and ±50m whereas the relative DEMs have ±10-30m [106-108]. 

On the other hand, Fugro EarthData is a company that owns and operates two Lidar systems that capture 

Lidar data with vertical accuracy of +/-9cm to 40cm and horizontal accuracy of 15-60cm [109]. Lidar DEM 

data is obtained by aircraft-mounted lasers. The airborne aircraft releases high frequency laser beam towards 

the earth’s surface. The Lidar sensor then records the time lapse between release and return of the beam thus 

obtaining Lidar data [110]. Lidar data error sources include position errors, range errors and orientation errors. 

The position errors are due to GPS uncertainty, range errors due to atmospheric distortion whereas 

orientation errors related to positioning of the aircraft-mounted laser [111]. In a study by Evansa et al. [112], 

Cartosat-1 absolute DEMs were shown to have vertical accuracies that are virtually similar as those derived 

from SRTM 30-meter data and are somewhat more accurate than ASTER DEMs. This study tested the effect 

Lidar and Aster DEMs on Object-based landslide detection. 

3.2.3. Software used               

A number of software were utilised in this study. Table 3 is a list and brief description of what each of the 

software was used for. 

Software used Purpose 

Ilwis This was used mainly for stereo image interpretation, pattern and susceptibility analysis. It was 

also used to create the scripts that were used 

Erdas Erdas was mainly used in image mosaicing, image enhancement and sub setting imagery. It was 

also used for NDVI indice calculation for the Geoeye image 

ArcGIS Also used for image interpretation; OOA data preparation , visualization of OOA outputs, 

accuracy assessment, pattern analysis input data preparation and computation of Moran’s I index 

eCognition For all work involving OOA, eCognition software was used for data analysis to obtain landslide 

inventories 

Microsoft Excel This was mainly used to analyze and properly represent pattern analysis results in graphics. It was 

also used for calculations involving accuracy assessment and Frequency-Area analysis 

It was also used for computations involving the plateau objective function 

Microsoft Word Used mainly for report preparation and graphical representation preparation. 

Microsoft Visual This was used for preparation of work flow charts and thesis structure graphics. 

Endnote This was used to prepare the list of references used in this study 

MATLAB This was used, in combination with Microsoft excel, for Frequency-Area analysis 

CurveExpert 1.4 This was used for plotting some of the Frequency-Area curves 

SPSS This was used for K-means cluster analysis for OOA 

Table 3:  List of software used 
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3.3. Methodology 

3.3.1. Work Flow Chart 

Data analysis was carried out following a number of steps. These are illustrated in the flow chart in Figure 4. 

Extract of slope, 
Flow direction, 

curvature and hill 
shade

Import of one image, one DEM, and 
NDVI, Slope, Flow direction, and hill 
shade data into definiens at a time  for 
OOA(Geoeye&aster, Geoeye&Lidar, 

Google&Lidar & Google&aster)

Multiresolution 
segmentation

Apply 
Geoeye&Lidar 
algorithm on 
validation site

Extract 
NDVI

Adapt  algorithm 
for false positives 

classification

Google Earth 

aerial photo data
Aster&Lidar 

DEM

Accuracy 

statistics

Geoeye 

multisepectral 

image

Export inventories to 
ArcGIS

Accuracy 
assessment

Landslide 

Inventory
Causative 

factor maps
Apply unaltered 

algorithm

Create stereo 
image 

Stereo image 
interpretation

Landslide causative factors and 
factor attributes

Bivariate 
statistics

Success rating
Understand onsite 
land cover types

Landslide 

susceptibility 

map

Inventory & algorithm 
outputs:

Aster&Geoeye, Aster&Google 
earth, Lidar&Google, 

Lidar&Geoeye

Aster&Geoeye, Aster&Google 

algorithms applied on 
Lidar&Geoeye, Lidar&Google

Success 

rating

Prepare factor 
maps

Output map 
classification

Landslide 

inventory maps

Magnitude-

Frequency 

curve

Geoeye 
image&Lidar 

DEM

Segmentation 
at scales 5-50

Export area 
&brightness 

values

Intrasegment  
variance

Moran’s I

POF 
computation Accuracy 

statistics

K-means 
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Classification 
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Comparison

Inventory+

algorithm
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Figure 4: Study Work Flow 
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Described below is an elaboration of some of the major steps and methodologies highlighted in this flow 

chart 

3.3.2. Stereo visual image interpretation 

A landslide inventory shows the spatial distribution of landslides in an area of interest. Depending on the 

intended use of the inventory, it may be points or polygons. Also, they may be prepared using different 

methods ranging from historical surveys, field surveys and visual image interpretation to automated or semi- 

automated methods [37, 39, 96]. The inventory used in this study for susceptibility analysis and validation of 

OOA outputs was prepared by stereo visual image interpretation.  

A Google Earth image was first downloaded with the aid of “gripper.py” tool written in Python software. It 

downloads, mosaics all tiles and automatically georefences them. With the Google Earth image and the pre-

disaster Aster DEM available online, stereo images were created for both anaglyph and stereoscope 

visualization. Using a screen scope, stereo image interpretation was carried out. Landslide boundaries were 

then digitized. Also, the elevation exaggeration feature in Google Earth was useful in viewing 3D. 3D 

visualisation was carried out for identification of landslides, their parts, activity and types.  

Landslides can be identified visually from imagery by using a number of morphometric properties and high 

surface reflectivity [113]. In this study, a number of landslide diagnostics like vegetation clearance, concave-

convex and semicircular niches, step-like morphology, hummocky relief, steepening of slopes and interruption 

of drainage lines were used to identify these landslides. The method used by van Westen et al. [114] was 

adopted for landslide identification and assignment of attributes. See Table 4 and Table 23 for the checklist 

and the image characteristics of the various mass movement types used to assign attributes. 

 

Type Subtype Activity Vegetation Part 

Slide 

Lateral spread 

Debris Flow 

Debris 

avalanche 

Rotational 

Translational 

Complex 

Unknown 

Stable             

 Relict 

Reactivated    

Dormant 

Abandoned   

Dormant 

Bare 

Low 

High/Dense 

Scarp         

 Body 

Transport 

Unknown 

Table 4: Checklist used for characterisation of slope failures 

Adapted from van Westen et al. [114] and Soeters and Westen [35] 

After digitizing and assigning attributes, the result was a landslide inventory showing landslide extent and 

attributes landslide ID, type, subtype, activity and landslide parts. This inventory was used in the pattern 

analysis stage in combination with the factor maps. It was also used for accuracy assessment of OOA 

products as it is considered an inventory of better quality compared to those obtained (semi) automatically. It 

was used as the ground-truth data. For a visual impression of how the inventory looks like, see Figure 9. 

3.3.3. Brief description of the adopted OOA algorithm 

The adopted algorithm for landslide detection was developed in a study within the Indian Himalayas [1]. The 

entire methodology was divided into 3 steps (See Figure 46). These were steps are described below. 

3.3.3.1. Identification of landslide candidates:  

This step was aimed at identifying and separating landslide candidates from other areas such as forest land, 

orchards and crop land. This was achieved by use of the NDVI criterion. Non-landslide areas are usually 

characterised by relatively high NDVI values compared to possible landslide areas. 
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3.2.2.2. Separation of landslides from false positives:  

With the NDVI cut-off criterion used, objects with similar or lower NDVI values, such as rock outcrops, 

roads, water bodies and river beds, were misclassified as landslide candidates. This step involved a step by step 

elimination of these false positives by incorporation of their spectral, morphometric and contextual 

information (See Figure 5). 

 
Figure 5: Illustration of the thresholding used by Martha et al. [1] 

3.2.2.3. Identification of landslide types 

This step involved the use of adjacency condition for source area to classify landslides based on material and 

types of movement, local field knowledge for the classification of landslides according to their failure 

mechanism and the length/width ratio and asymmetry for classification of shallow landslides (See Appendix 

G).  

However, it was not clear whether this algorithm is easily transferable when different data are used and in a 

different area. The unaltered adopted algorithm was first applied to the training site without modifications. Its 

transferability was later tested for different data combinations. Discussed below are the steps followed to test 

the transferability of this algorithm in the Haiti area with the different data combinations. 

3.3.4. Understanding of the false positive classes in the training site 

The first step to creation of an algorithm is to understand the study area. This involved visual image 

interpretation carried out on Google Earth aerial photos and mapping of the possible false positive classes 

present in the study site. This was to obtain a general overview and an understanding of the study site and the 

possible false positives existent in the area for the formulation of the site specific algorithms for the Haiti 

study site. Outputs from this section are shown under section 4.3. 
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3.3.5. Input data preparation 

All data preparation procedures for OOA analysis were carried out in ArcGIS and ERDAS imagine software.  

The NDVI map used was created from an orthorectified 2m resolution Geoeye image, acquired on 14th 

January 2010, in Erdas software. On the other hand, the Aster and Lidar DEMs and their derivatives like 

hillshade, flow direction, slope curvature, and slope maps were extracted in ArcGIS software using the basic 

tools available therein. These were imported into eCognition software as image (.img) files and assigned their 

respective layer aliases. Attempts were made to derive an automatic drainage network for the study areas, 

however, this was not utilised in the analysis due to limitations as discussed under section 4.5.3.2. Thus, a 

drainage network was created manually by visual interpretation and imported into eCognition software as a 

shape file. This was also assigned a layer alias named drainage in eCognition software.  

3.3.6. Application of the unchanged algorithm to Haiti training site 

The algorithm developed by Martha et al. [1] was first applied on the Haiti training site area data without 

modifications. It was applied on data combinations of Geoeye image & Aster DEM and Geoeye image & 

Lidar DEM with one combination at a time. This was to understand to what extent the algorithm developed 

for a totally different area of the Himalayas could be helpful in identifying landslides in another area, Haiti in 

this case, and with different data sets. The map results obtained from the unaltered algorithm were used to 

calculate both producer and consumer accuracies for correct detection of landslide extent by comparison to 

the landslide inventory from stereo image interpretation for the training site. The results from this section are 

given and discussed under section 4.4 of this thesis. 

3.3.7. Adaptations of the original data set with different data combinations 

To understand the adaptability of the adopted algorithm, a number of tests were incorporated for different 

data combinations. In Table 5 is a summary of the data combinations employed. Important to note is that for 

each of the data combinations, two data inputs were a pre-requisite, that is, a DEM and an image whether 

multispectral or non-multispectral. In the adaptation process, efforts were made to maximise the potential of 

each data combination by exploring all possible options for creating of an accurate and transferable algorithm 

 

 Himalaya’s study Haiti Data combinations 

 

Resourcesat-1& 

Cartosat-1 

Geoeye& Aster  Google 

Earth& Aster 

Google Earth & 

Lidar  

Geoeye & 

Lidar  

Image used Resourcesat-1 Geoeye Google Earth 

Aerial photo 

Google Earth 

Aerial photo 

Geoeye  

DEM used Cartosat-1 Aster Aster Lidar Lidar 

DEM 

derivatives  

Hillshade 

Flow direction 

Slope 

curvature 

hillshade 

Flow direction 

slope  

hillshade 

Flow direction 

slope  

hillshade 

Flow direction 

slope  

hillshade 

Flow direction 

slope  

Additional 

data 

Drainage 

NDVI 

Drainage 

NDVI 

Susceptibility map 

Drainage Drainage Drainage 

NDVI 

Abbreviations 

used 

RI&CD GI&AD GE&AD GE&LD GI&LD 

Table 5: Summary of data combination pairs analysed and their respective data inputs 
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Adaptation of the original data

finding the most appropriate object features, parameters and thresholds for each of the false positives existing 

in the training site. This process resulted in one landslide inventory per combination, whose quality was tested 

against the inventory from stereo visual image interpretation by calculations of producer and consumer 

accuracies for correct detection of landslide extent.

3.3.7.1. Application of unaltered GI

respectively 

This step involved application

mainly for comparison purposes

higher resolution DEM. These results

combination also highlighted the effect of 

section 1.1 

3.3.7.2. Application of the algorithm

This step involved the application of the unaltered 

DEM for the training site on the validation site. 

creation of landslide inventories. It also highlighted 

the Haiti area. The comparison of results from 

the implications of use of different data on both 

3.3.8. Set up of the methodology in 

For each of the data combinations discussed

the project was set up as illustrated in 

process tree is discussed under section 

Figure 6: OOA methodology setup in 
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Adaptation of the original data set with different data combinations summarised in 

finding the most appropriate object features, parameters and thresholds for each of the false positives existing 

This process resulted in one landslide inventory per combination, whose quality was tested 

ventory from stereo visual image interpretation by calculations of producer and consumer 

accuracies for correct detection of landslide extent. 

Application of unaltered GI&AD and GE&AD algorithm on GI&LD and GE&LD 

involved application of the algorithms developed for Aster DEM on Lidar DEM data

mainly for comparison purposes, to test whether this unchanged algorithm works conveniently 

These results in comparison with those from Geoeye image

the effect of DEM resolution. The results from this analysis are discussed under 

algorithm developed for the training site using GI&LD data 

This step involved the application of the unaltered algorithm developed from Geoeye imagery and Lidar 

ing site on the validation site. This was to test the performance of the created algorithm for 

creation of landslide inventories. It also highlighted possibility of having an easily transferable 

comparison of results from the different data combinations gave a broad understanding of 

the implications of use of different data on both algorithm transferability and accuracy of outputs.

Set up of the methodology in eCognition software 

For each of the data combinations discussed above, an eCognition project was set up. The general structure of 

the project was set up as illustrated in Figure 6. The data specific parameterisation for each of the levels in the 

process tree is discussed under section 4.5 

: OOA methodology setup in eCognition software (adapted from 
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summarised in Table 5 was achieved by 

finding the most appropriate object features, parameters and thresholds for each of the false positives existing 

This process resulted in one landslide inventory per combination, whose quality was tested 

ventory from stereo visual image interpretation by calculations of producer and consumer 

GI&LD and GE&LD data combination 

of the algorithms developed for Aster DEM on Lidar DEM data. This was 

works conveniently well with a 

in comparison with those from Geoeye image & Aster DEM 

The results from this analysis are discussed under 

data on the validation site 

developed from Geoeye imagery and Lidar 

performance of the created algorithm for 

possibility of having an easily transferable algorithm for 

the different data combinations gave a broad understanding of 

transferability and accuracy of outputs.  

project was set up. The general structure of 

on for each of the levels in the 

 
(adapted from Martha et al. [1]) 
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3.3.9. The adopted Plateau Objective Function and data-driven thresholding 

Due to the subjective, trial and error nature of the selection of parameters coupled with the scale dependency 

nature of landslides and their false positives, the process of creation of easily transferable algorithms that 

properly delineate landslide boundaries has certain limitations. This methodology, also known as the Plateau 

Objective Function (POF), is geared towards ensuring objectivity in the selection of parameters and 

identification of different sized objects by multiple scale parameters derived from the spatial autocorrelation 

and intrasegment variance analysis [3]. Optimization of segments was carried out by implementation of the 

Espindola et al.’s [115] objective function,  which is a combination of intra-segment variance ( v ) and Moran’s 

I index ( I ),  for scale factors 5-50,  at an increment value of 1, while maintaining constant shape and 

compactness values for the Geoeye image data. Equations used in the computation are Eq.1 to Eq. 4. Intra-

segment variance computations were executed in Microsoft excel whereas Moran’s I index was computed in 

ArcGIS. POF was calculated by combining these two variables after normalisation. 

� = ∑ ����					��	

∑ ����	


																																																																																																																																															(�
. 1)			                                                                         

� = �
�� ×

∑ ∑ ��,�������������
∑ �������

																																																																																																																						(�
. 2) 

These two were then normalized using Normalization function in Eq.3 

 (!) = !"#$ − !
!"#$ − !"��

																																																																																																																																	(�
. 3) 

A summation of the two normalized values of intra-segment variance (v) and Moran’s I index gave the 

Objective function 

 (�, �) =  (�) +  (�)																																																																																																																															(�
. 4) 
)�	 Area of segment i 

�� intra-segment variance of segment i 

�� 
Aggregate of all spatial weights 

��,� the spatial weight between object i and j, which is 1 for adjacent regions or 0 

n 
total number of objects 

�� is the deviation of the brightness value of object i from its mean (!� − !̅), 

Table 6: Symbols explained 

This step was followed by extraction of landslide candidates by use of the NDVI parameter together with the 

scale factor corresponding to the first peak of the plateau. A step by step approach was also followed for the 

classification of false positives. Because sizes of false positives also vary in size/ areal extent, multiple scales 

were used, these were chosen by visual assessment of the segments created at different scales. To obtain data-
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driven thresholds for each of them, cluster analysis was carried out in SPSS software. A two-step clustering 

algorithm was first used to determine the number of existing classes in an objective manner and this was 

followed by cluster analysis by k-means cluster analysis. The step by step approach and the results obtained 

from this methodology are discussed under section 4.14. 

3.3.10. Accuracy assessment by correct detection of landslide extent 

To decide on the usability of a map obtained manually or automatically from remote sensing data for a 

particular purpose, an accuracy assessment is required [116].  In this study, the landslide inventories from 

OOA were analyzed for both producer and consumer accuracies in percentage. Without field investigations, 

the landslide inventory from stereo visual image interpretation was used as the ground-truth data set to 

validate the OOA outputs. They were based on Eq. 5 & Eq.6. 

 
Given that; A= Areal coverage of OOA output & B= Areal coverage of Visual inventory 

Producer accuracy is defined as the probability of a reference pixel being rightly classified in a category divided 

by the total number of pixels in that category from the reference data [116]. This was translated to:  

Areal coverage of correctly identified OOA landslides/ Areal coverage of Visual inventory *100 

Therefore; 

+,-./01,	200/,203 = 4 ∩ 6
6 !100																																																																																																									(�
. 5)									 

The consumer accuracy, on the other hand is the total number of correct pixels in the category divided by the 

total number of pixels classified in that category [116]. This was translated to:  

Areal coverage of correctly identified of OOA landslides / Areal coverage of OOA output *100 

Therefore; 

9-��/:1,	200/,203 = 4 ∩ 6
4 × 100																																																																																																					(�
. 6)			 

The accuracy values obtained were used to make a number of deductions concerning the best data sets 

combinations, parameters and the transferability of the algorithms. For results obtained from this 

methodology, see under section 4.6.2 

3.3.11. Frequency-Area analysis 

To understand the landslide distribution of the landslides identified in the study area after the Haiti 

Earthquake, a Frequency-Area analysis based on the three-parameter inverse-gamma distribution [33] was 

carried out. Landslide inventories often give total landslide areas that include both the failure and run-out 

areas. Though it is most preferable to use landslide volumes and failure areas, these are usually difficult to 

determine [33].  For each of the landslides identified during stereo image interpretation, the landslide parts 

originally identified were merged into one to avoid frequency and area misrepresentations. Though areas 

corrected for topographic gradient would be considered ideal, this is rarely done and the areas used in 

landslide statistical analysis are usually planar areas [33]. The planar areas of these individual landslides were 

computed in ArcGIS and their attribute tables accessed in Microsoft Excel. Calculations of frequency, 

frequency density and probability density were made. The excel results were then used as inputs into Matlab 

software for computation of the best fit of the three-parameter inverse-gamma distribution to the  landslide 

inventory of the study area.  The probability density (pdf) and the inverse-gamma functions used for the 

analysis are Eq.7 & Eq.8.  
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Variable Description 

J(KL) Probability density: the frequency density, f(Al), divided by the total number of landslides in a 

substantially complete landslide inventory, NLT 

M(N) Gamma function, D(O) = P yξR� exp(−y) dy, ξ > 0.∞

X  

YLZ Total number of landslides in an inventory 

KL Area of landslide 

[YL
[KL  @>=Is the number of landslides with areas between AL and AL + @AL 

\ Parameter primarily controlling power-law decay for medium and large values in three-parameter 

inverse-gamma probability distribution. 

M(\) Is the gamma function of C 

] Parameter primarily controlling location of maximum probability in three-parameter inverse-

gamma probability distribution 

s Parameter primarily controlling exponential rollover for small values in three-parameter inverse-

gamma probability distribution 

Table 7: Variables used in equations (Adapted from Malamud et al. [33]) 

PhD researcher Xuanmei Fan (ESA department) made a script for this methodology. It is this script that was 

used to implement Eq. 7 and Eq. 8 in Matlab software. See section 4.2 for the resultant best fit of the inverse-

gamma distribution. 

3.3.12. Preparation of landslide causative factor maps for pattern analysis  

To determine the causative factors for the Haiti earthquake triggered landslides, a number of factors were 

studied. These are; lithology, flow direction, distances to roads, slope, aspect, distance to rivers/drainage lines, 

distance from Enriquillo Plantain fault and elevation. These were individually prepared in ILWIS software into 

readily usable maps for crossing with the visual image interpretation landslide inventory and further analysis. 

The factor maps used for analysis are shown in (Appendix B). Figure 7 illustrates the work flow followed to 

prepare each of these factor maps for analysis. 
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Figure 7: Work flow followed for the preparation of landslide causative factor map for analysis 

 

 

3.3.13. Landslide pattern and susceptibility analysis 

Pattern analysis was carried out by Weights of Evidence modelling (WoE) adopted from Bonham-Carter 

[117]. Multi-class maps of possible causative factors for landslides were identified, prepared and crossed with 

the inventory to obtain cross table statistics [114]. Only the scarps of active or reactivated landslides from 

stereo visual image interpretation were used in the analysis. This is because locations of scarps represent the 

true location of factors responsible for causing landslides. Use of landslide bodies or run-out parts may not 

give a true representation of these factors as landslide material, once loose, can move over long distances and 

thus across factor classes. The output cross table statistics were used to further calculate different calculations 

among which were; the presence (W+) and  absence (W-) weights, the contrast factor and final weights for 

each class in the multi-class maps multi-class maps.  These weights and factors are calculated as shown in the 

equations Eq. 9, Eq. 10, Eq. 11 and Eq. 12. 

�̂H = _-`a +{6i|e}
+{6i|e̅}																																																																																																																																		(	�
. 9) 

�̂R = _-`a +{6ih |e}
+{6ih |e̅}																																																																																																																																	(�
. 10) 
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^iinal = ^plus +^mintotal −^min																																																																																																																																																																							(�
. 11) 

9W = ^plus −^min																																																																																																																																																																																																														(�
. 12) 

Where; 

6i = Presence of potential landslide conditioning factor 

6ih= Absence of a potential landslide conditioning factor 

S =Presence of a landslide 

e̅= Absence of a landslide 

Cw= Contrast  

�̂
H is used to indicate the importance of the presence of the factor for the occurrence of landslides. It is 

positive in the presence of factor for the occurrence of landslides and negative if not favourable. 

�̂
R is used to indicate the importance of the absence of the factor for the occurrence of landslides. It is 

positive if the absence of the factor is favourable for the occurrence of landslides and negative when it is not. 

The contrast factor, on the other hand, quantifies the spatial association between a map class and the 

occurrence of landslides. It is 0 when the landslide map class pattern and landslide pattern overlap only by 

chance, positive when there is a positive association and negative when there is a negative association between 

the two patterns. 

Success rating was done both manually by typing appropriate expressions and by use of a script. Scripts were 

made and used to run most of these statistical calculations described above for the individual factor maps (see 

Appendix C). The results were relations of each factor class within the multi-class maps with landslides. The 

resultant final weight per factor class depends on the landslide density [96]. They were used to determine the 

factors, and which classes of factors were determining the pattern thus causing the landslides. Calculations 

were made for percentages of maps and percentages of landslides. These calculations were used to generate 

success rate curves for sensitivity analysis of individual causative factors (see Figure 33). Success rate curves 

were used to determine the main causative factors for landslides.  

The susceptibility map was calculated by summing up the causative factors’ weight maps to obtain one 

unclassified weight map. Success rating was performed for this map and the results are illustrated in Figure 34. 

Depending on the success rate curve, class boundaries were determined and this unclassified weight map was 

then sliced into 3 classes, Low, Low to Moderate and moderate to High. For the output susceptibility map of 

the study area see Figure 35. 

3.4. Chapter summary 

This chapter has described the study area by its location, economy, topography and tectonic setting. It has 

explained the reasons why the specific study sites were selected which were attributed to data availability and 

locational preferences. It has given an account of the data and software used and highlighted the importance 

of DEM accuracy for this study. The chapter has further described the methodology by first presenting the 

entire methodology with a work flow chart, illustrating the major steps followed. The flow chart is then 

explained in detail by description of how stereo visual image interpretation was done and the guidelines that 

were followed. It gives the structure of how Object-based inventory mapping was done, the data 

combinations that were tested and how accuracy assessment was carried out for the outputs. It also highlights 

the process followed for segmentation optimization; data-driven thresholding and frequency-area analysis for 

the landslide inventories. The chapter ends by giving an illustration of the steps followed for creation of input 

factor data for WoE modelling and the WoE modelling process.   
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4. RESULTS AND DISCUSSION 

Using the methods and materials discussed in chapter 3, analysis was carried out and results were obtained to address the research 

questions under section 1.3.2. These results are presented and discussed in this chapter. The chapter begins with a statistical 

summary of the inventories from stereo image interpretation; it is followed by a discussion of the false positives identified in the 

OOA study sites. It gives an account of application of the adopted algorithm and its adaptation to study site, accuracy assessment 

of the outputs. It also discusses the effect of DEM resolution and colour, comments on usability of Google Earth aerial photo 

data, transferability of the generic algorithm and pros and cons observed with the use of the different data combinations. It ends 

with the results and discussion of the POF methodology and parameterisation by K-means cluster analysis.  

4.1. Visual Landslide Inventory map output 

With most of the landslides in the epicentre area already mapped by Dr. Cees van Westen and Mr. Tolga 

Gorum (ESA Department, ITC), further interpretation was done of co-seismic landslides farther away to 

cover the whole study area for this study. Attributes like landslide ID, type and part were identified. There 

were significantly visible large numbers of landslides along the Enriquillo–Plantain Garden fault compared to 

other parts of the study area. Illustrated in Figure 8, Figure 9 and Figure 10 are the visual landslide inventories 

and a summary of results on the landslide statistics in the study areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outlines of landslides in the visual inventories for the training and validation sites were mainly used for 

accuracy assessment of the outputs from the different data combinations whereas scarps for the inventory of 

the entire study area was used in landslide pattern analysis. 

Figure 8: Illustration of the visual inventory used for pattern analysis 
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Table 8: Statistical results from the visual landslide 

inventories 

 Statistics 

Entire 

study area 

OOA 

training 

site  

OOA 

validatio

n site 

Total number of 

landslides 

identified 2281 

 

 

43 

 

 

195 

Total landslide 

area (m2) 4600000 

 

90000 

 

310000 

Total mapped area 

(m2) 585080000 

 

1900000 

 

5660000 

Maximum 

landslide size (m2) 80000 

  
 

30000 

 

 

20000 

Landslide density 

(landslides/m2) 3.90E-06 

 

2.26E-05 

 

3.45E-05 

% of area affected 

by landslides (%) 

 

0.79 
 

4.76 

 

5.44 

 

4.2. Frequency-Area distribution for the landslide inventory 

Landslide frequency-area distribution quantifies the number of landslides that occur at different landslide sizes 

[33]. With the landslide inventory obtained from stereo visual image interpretation for the entire study area, 

Figure 11 is the Frequency-Area distribution obtained. The best fit of the inverse-Gamma distribution was 

obtained by taking C  =0.8839, a =4.51E-04, s =-5.85E-05. It gave an r2 =0.8316. From Figure 11, the 

frequency of smaller sized landslides increases as the area size increases until a particular maximum value 

Figure 10: Illustration of visual inventory for the validation site 

Figure 9: Illustration of Visual inventory map for the 
training site 
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where landslides are most frequent. After this maximum point, as the landslide area increases, there is a steady 

reduction in the landslide frequency. 

  
Figure 11: Magnitude-Frequency distribution of the inventory from stereo image interpretation 

This trend supports the increasing evidence that asserts that despite the variations in landslide characteristics 

in terms of types, distributions, patterns and triggers, the frequency of small landslides increases with increases 

in frequency whereas that of medium to large landslides varies as an inverse power of the landslide area [113, 

118-124] 

4.3. Understanding the OOA training site 

To gain an understanding of the false positive classes that are present in the training study site, a visual image 

interpretation was carried out on the Google Earth aerial photo for the study site. Figure 12 is the map created 

for the OOA training site showing the distribution of the identified possible false positive classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Himalayas’ Madhyamaheshwar sub-catchment which was used as a training site for the adopted algorithm 

consisted of a number of false positive classes. These were shadow, water body, river sand, built-up area, 

Figure 12: Map showing distribution of the identified possible false positives 
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agricultural land, barren land and roads. The Haiti training site, on the other hand comprised of false positive 

classes of water of the Momanche River, fluvial deposits along this river, agricultural areas and agriculture 

mixed with trees.  Also, a number of areas were characterised by existence in shadow areas (see Figure 12). 

The agricultural fields, mostly to the north of the study site, were characterised by well developed terraces. 

4.4. Application of unaltered algorithm on Haiti training site 

To test the transferability of the previously described algorithm (see section 3.3.3 ) to another area and data 

set, it was first applied without modification on the Haiti training site using Geoeye-Lidar and Geoeye-Aster 

data. Figure 13 is the map output (for the un-resampled Geoeye-Lidar data) and accuracies obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data combinations 
Resampled Geoeye & 
Lidar data 

Un-resampled 
Geoeye & Lidar data  

Un-resampled  
Geoeye & Aster data 

Landslide area, visually 
mapped  (m2) 88349.1 88349.1 88349.1 

Landslide area, OOA based 
(m2) 107531.2 113051.8 55296.7 

Total OOA area correctly 
identified (m2) 6022 6477.52 1132.9 

Producer accuracy (%) 6.8 7.3 1.3 

Consumer accuracy (%) 5.6 5.7 2.1 

Table 9: Accuracy assessment for inventories from adopted algorithm for different data combinations 

From Table 9, resampled means that the data used was resampled to the resolutions used by Martha et al. [1] 

whereas un-resampled means: the original resolutions of the input data were retained. 

From the results in Table 9, the algorithm, without any modifications, can be said to have not worked at all 

for mapping landslides in the Haiti test area with the Geoeye & Lidar data. All the accuracies obtained are 

extremely low. Lower than 76.4% recognition accuracy for the extent of landslides which was obtained when 

the same algorithm was tested on a separate catchment in northern India. This can be attributed to the terrain 

Figure 13: Classified inventory from unmodified algorithm 
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differences between the study areas and the fact that the adopted algorithm was developed by a single scale 

approach with user-defined thresholds. While such an algorithm is advantageous as it ensures flexibility and 

quasi-cognitive decision making, it is also data and site specific and is not robust enough to accommodate 

significant variations in site and data properties [3] thus the low accuracies obtained. For example, the absolute 

hillshade and brightness thresholds used in the algorithm are not directly applicable to the Haiti area and the 

Geoeye & Lidar data due to differences in data properties like azimuth parameters during data collection, 

resolution and spectral differences.  

To create more accurate landslide inventories for the Haiti area with different data combinations, the originally 

adopted algorithm had to be adapted.  

4.5. Adaptation of algorithms for the different data combinations 

To apply the algorithm for Haiti for better landslide detection, the adopted algorithm was altered by changing 

the object features, parameters and thresholds used though the general structure involving identification of 

landslides and later sequential elimination of false positives was maintained. Discussed below are the object 

features, parameters and their thresholds used, explanations why the adaptations were made from the 

previously used where the algorithm was adopted and the results obtained after the adaptations to the 

algorithm are applied for the Haiti study areas.  

4.5.1. Segmentation 

This step involved the demarcation of boundaries of features of interest. The multiresolution segmentation 

algorithm which requires one to set the shape, compactness, scale parameter and image layer weights was used 

for this initial segmentation. Selection of an appropriate scale parameter is essential for proper image 

segmentation and the subsequent classification in Object-based approaches. The accuracy of segmentation 

decreases with increase in segmentation scales and the negative effects of under-segmentation are usually more 

pronounced at larger scale parameters [125]. To select the most appropriate scale factor, trials were made 

using 10, 20, 30 and 50 scale factors for both the Geoeye image and Google Earth aerial photo data. By visual 

assessment of the delineations, the scale parameter of 10 was selected as it was giving a better demarcation of 

feature boundaries of both small and larger landslides for both images (compare Figure 14a-d for the Geoeye 

image).  Other parameters set were shape (0.1), compactness (0.5) and image layer weights, assigning a weight 

of 1 for the RGB layers. A low weight of 0.1 was assigned to shape because landslides exhibit a lot of 

variability in shape and size. For segmentation, emphasis was thus given to colour.  

 

   ] 

Figure 14: Visual inventory, b) Scale factor 10, c) Scale factor 20 and d) Scale factor 30 

a b c d 
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4.5.2. Identification of landslide candidates 

This step involved the setting of thresholds separating the background from the landslides and their false 

positives. The parameters used and accompanying thresholds are shown in the Table 10 and explanations 

below the table. 

 Himalaya’s area Haiti area 

 Resourcesat_1 & 

Cartosat_1 

Geoeye & Aster Google & 

Aster 

Google & 

Lidar 

Geoeye & 

Lidar 

Background  

Mean layer 3 = 0 

Mean 

NDVI≥0.49 
 

Max.diff≥2.5 

 

Max.diff≥2.5 

Mean 

NDVI≥0.49 

Landslides and 

false positives 

 

Mean NDVI ≤0.18 

Mean 

NDVI≤0.49 

 

Max.diff≤2.5 

 

Max.diff≤2.5 

Mean 

NDVI≤0.49 

Table 10: Parameters used for identification of landslide candidates 

NDVI is a parameter that is sensitive to differences in levels of vegetation cover. This is the main reason why 

it is usually considered a good and reliable parameter for landslide identification [1]. This was found true in 

this study too. This parameter was used because for data combinations where the Geoeye image was used to 

derive NDVI values, areas without vegetation and thus with low NDVI values were coinciding with areas with 

landslides. This parameter was thus found useful to separate the background from landslides and their false 

positives. However, for the Google Earth aerial photo & Aster DEM data combination where no NDVI data 

was available, the maximum difference (max.diff) parameter calculated in eCognition was found useful.  

Maximum difference is calculated by subtracting the minimum mean value of a segment in the bands available 

from the maximum value, divided by the brightness of the segment. Landslides and their false positives are 

characterized by significantly high brightness, low NIR and high red values compared to vegetated areas which 

usually have low brightness, high NIR and low red values. All these dynamics put into consideration leave a 

trend where the background areas have a higher maximum difference compared to those of landslides and 

their false positives. This parameter was thus found useful for Google Earth aerial photo & Aster DEM and 

Google Earth aerial photo & Lidar DEM data combinations where NDVI data was not available for use. The 

thresholds used for Haiti and those used in the Himalaya’s differ greatly. This can be attributed to differences 

in background and false positive classes present and the differences in data properties. 

4.5.3. Separation of landslides from false positives 

Another classification was performed for parts that were neither classified as background and are not real 

landslides. This step involved the separation of false positives like fluvial deposits, shadow, river water and 

agricultural land from true landslide candidates one at a time. Using class specific thresholds, each of the false 

positive class was isolated. The remaining parts of landslides and false positives were then merged using the 

merge region algorithm. These can be referred to as the un-cleaned up true landslides candidates (un-cleaned 

up because the classification of parts that were neither classified as false positives and are neither landslide was 

not sufficient to remove all the impurities). Thus another operation was performed at a later stage. The 

merged un-cleaned up true landslides candidates were renamed to landslides by using the classification 

algorithm. The next step was mainly aimed at refining the landslide candidates. The landslides were renamed 

to shallow translational slides after a chessboard segmentation and setting of restraining parameters for 

refining the shallow translational slides further. The cleaned up landslide inventory was exported to ArcGIS 

and an accuracy assessment was carried out. Discussed below are the criteria used for the separation of 

landslides from each of their false positives. 

Even though the NDVI and maximum difference parameters were successful in the classification of the 

background, a mixed up class of landslides and their false positives was retained. The next step was, thus, 
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aimed at the separation of real landslides from false positives. The false positives in the study area comprised 

of water, fluvial deposits, agricultural areas, agricultural areas with trees and shadowed areas and these are 

areas that exhibited similar NDVI and maximum difference range values as for true landslides. The object 

features, parameters and their thresholds used to classify these false positives are discussed below. 

4.5.3.1. Distinguishing of shadow  

Table 11 shows the criteria used to classify shadowed areas for the different data combinations tested. 

Himalaya’s area Haiti area 

Resourcesat_1 & 

Cartosat_1 

Geoeye  &  Aster Google & Aster Google & Lidar Geoeye & Lidar 

Mean hillshade < 92 

Brightness < 45 

Mean brightness≤130 Mean 

brightness≤90 
Mean hillshade≤55 Mean hillshade≤55 

Table 11: Criteria used to distinguish and classify shadow 

In the study by Martha et al. [1] from which the algorithm was adopted, mean hillshade and brightness 

parameters were found most suitable to identify and classify shadows. For data combinations where an Aster 

DEM was used, the hillshade parameter was not found useful because of the coarse nature of the DEM from 

which the hillshade was created. Mean brightness parameter was thus a better alternative. The hillshade image, 

usually generated from a DEM, depicts the surface illumination for a given position of sun by calculating the 

illumination values for each cell of the DEM. In this study, when adaptations were made, parameters like 

mean layer 4, mean layer 3, mean brightness and mean NDVI were found to be useful for shadow delineation. 

However, as shown in Table 11, only mean brightness was used. This is because the other parameters 

especially mean layer 4 and NDVI took along water which also exhibits low values thus resulting in 

misclassification of not only water, but the fluvial deposits false positive class as its parameters depends on the 

distance from the river water. The mean brightness of water, though also usually low compared to that for real 

landslides, was found to be lower for shadowed areas thus allowing use of this parameter for shadow 

classification. Shadowed areas compared to water class, had lower brightness values. For data combinations 

where the Lidar DEM was used, the mean hillshade parameter was found useful, taking advantage of the high 

spatial resolution of the Lidar DEM. The differences in hillshade threshold values for Haiti and Himalaya’s 

can be attributed to differences in DEM elevation and image data properties. The hillshade values were 

computed using the DEMs and azimuth and altitude parameters of their respective image data for the 

different combinations.  

4.5.3.2. Distinguishing of river water  

Table 12 shows the criteria used for classification of river water for the different data combinations 

Himalaya’s area Haiti area 

Resourcesat_1&Cartosat_1 Geoeye & Aster Google & Aster Google & Lidar Geoeye & Lidar 

Stream order > 5 ID drainage=5 
Table 12: Criteria used to distinguish and classify water 

Logically thinking, river water can easily be classified by use of low NIR values and asymmetry parameters. 

However, the use of NIR values to classify water was not useful. This was due to presence of shadow, which 

too, has low NIR values. Manual setting of a threshold to separate these two classes led to some 

misclassifications. An additional parameter of asymmetry was also found handy for the most parts of the river 

network; however, some parts of the network were left out. The failure of these two parameters to 

successfully identify the entire river water can be attributed to ambiguous spectral information present due to 
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the sedimentation process within the river and the surroundings

leads to partial absorption of the Electromagnetic 

boulders in the water [1]. It was therefore decided that a thematic layer 

used for this purpose. 

Figure 15: Google Earth Illustration for the sedimentation processes

In the study from which the algorithm

using the Stahler method was used. However, in 

DEM, the automatically derived and ordered river network was not a good representation of the reality, 

mainly, in form of estimation of position and extent of the river (

drainage network was thus made. It was assigned an ID=5 for the perennial Momanche river network and 

used in the analysis (see Table 12). 

When the 1m Lidar DEM was used to automatically derive and order the stream, a better representation of 

the river water network was obtained.

different stream orders, some with orders similar to those of tributaries and there was no sufficient 

information to verify actual presence of these streams (see 

river water network be used. This was tested with different thresholds of 100, 150, 200 and 250, all of which 

gave stream orders that included tributaries. However, with a detailed local knowledge of the presence of 

these drainage network distributions of the area, the automatically derived stream network could 

sufficiently useful for the analysis. 

4.5.3.3. Distinguishing of fluvial deposits

Table 13 shows the criteria used to classify fluvial deposits

Himalaya’s area 

Resourcesat_1& 

Cartosat_1 

Geoeye & Aster

Brightness>65 

Mean slope<20⁰ 
Relief<30m 

Existence within 100m 

distance from water 

Mean slopet

 

Existence within 

100m distance 

from water 

Table 13: Criteria used to distinguish and classify fluvial deposits
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ess within the river and the surroundings (See Figure 15). The sedimentation process 

Electromagnetic radiation (EMR) due to presence of both sediments and big 

. It was therefore decided that a thematic layer of the perennial Momanche river 

: Google Earth Illustration for the sedimentation processes 

algorithm was adopted, an automatically derived stream network and ordered 

using the Stahler method was used. However, in this study, due to the use of a low resolution 30m Aster 

DEM, the automatically derived and ordered river network was not a good representation of the reality, 

mainly, in form of estimation of position and extent of the river (see Figure 19), a manually created river 

drainage network was thus made. It was assigned an ID=5 for the perennial Momanche river network and 

When the 1m Lidar DEM was used to automatically derive and order the stream, a better representation of 

the river water network was obtained. However, because different segments of the same stream were assigned 

different stream orders, some with orders similar to those of tributaries and there was no sufficient 

information to verify actual presence of these streams (see Figure 20), it was decided that the manually created 

river water network be used. This was tested with different thresholds of 100, 150, 200 and 250, all of which 

orders that included tributaries. However, with a detailed local knowledge of the presence of 

these drainage network distributions of the area, the automatically derived stream network could 

fluvial deposits 

shows the criteria used to classify fluvial deposits. 

Haiti area 

Geoeye & Aster Google & Aster Google & Lidar 

t6⁰ 

Existence within 

100m distance 

 

Mean slopet6⁰ 

 

Existence within 

100m distance from 

water 

Mean slopet12⁰ 

 

Existence within  

120m distance from 

water 

: Criteria used to distinguish and classify fluvial deposits 
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. The sedimentation process 

due to presence of both sediments and big 

of the perennial Momanche river be 

 

was adopted, an automatically derived stream network and ordered 

this study, due to the use of a low resolution 30m Aster 

DEM, the automatically derived and ordered river network was not a good representation of the reality, 

), a manually created river 

drainage network was thus made. It was assigned an ID=5 for the perennial Momanche river network and 

When the 1m Lidar DEM was used to automatically derive and order the stream, a better representation of 

owever, because different segments of the same stream were assigned 

different stream orders, some with orders similar to those of tributaries and there was no sufficient 

), it was decided that the manually created 

river water network be used. This was tested with different thresholds of 100, 150, 200 and 250, all of which 

orders that included tributaries. However, with a detailed local knowledge of the presence of 

these drainage network distributions of the area, the automatically derived stream network could have been 

Geoeye & Lidar 

120m distance from 

Mean slopet12⁰ 

 

Existence within 

120m distance 

from water 
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In this study, two factors were useful for the 

mean slope and existence within a particular distance from water/river water class

Figure 

Fluvial deposits are usually located in low lying areas with low slope values. In the study areas, they also exist 

in areas nearest to the river water. The differences in threshold values of the three data combinations can be 

attributed to three possible reasons namely; differences in topography of study sites (the steeper sloped 

Himalayas compared to Haiti), differences in DEM resolutions and the

pre-disaster DEM whereas the Lidar DEM was a post disaster DEM. Generally, where the Aster DEM was 

used, the thresholds are lower. This is because increase in threshold values with the Aster DEM lead to over 

exceedance of the fluvial deposit boundaries because of the already coarse DEM. However, with the Lidar 

DEM, the values are more precise and thus, though higher, do not overly exceed the class boundaries. This 

reason also explains the differences in distance values fr

4.5.3.4. Distinguishing of agricultural areas

The Grey Level Co-occurrence M

of combination of grey values 

[126]. The GLCM Mean of red band: 60

Martha et al. [1] because the study area was characterised by terraces distinctively parallel to contours and 

largely uniform in width pattern

 

Himalaya’s area 

Resourcesat_1 &  

Cartosat_1 

Geoeye & Aster

GLCM Mean of red band: 

60-90⁰ 
Mean slope t30⁰ 

 

NDVIs0.094 

GLCM Homogeneity  (quick 

8/11) pan (all dir) 

Mean

Mean of green

Mean of red
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In this study, two factors were useful for the identification and classification of fluvial deposits. These were 

mean slope and existence within a particular distance from water/river water class

Figure 16: Google Earth illustration of location of fluvial deposits

Fluvial deposits are usually located in low lying areas with low slope values. In the study areas, they also exist 

water. The differences in threshold values of the three data combinations can be 

attributed to three possible reasons namely; differences in topography of study sites (the steeper sloped 

Himalayas compared to Haiti), differences in DEM resolutions and the fact that the used Aster DEM was a 

disaster DEM whereas the Lidar DEM was a post disaster DEM. Generally, where the Aster DEM was 

used, the thresholds are lower. This is because increase in threshold values with the Aster DEM lead to over 

f the fluvial deposit boundaries because of the already coarse DEM. However, with the Lidar 

DEM, the values are more precise and thus, though higher, do not overly exceed the class boundaries. This 

reason also explains the differences in distance values from water. 

Distinguishing of agricultural areas 

occurrence Matrix (GLCM) parameter is a texture measure that calculates the frequency 

of combination of grey values [1]. In eCognition, these values were calculated using the 

GLCM Mean of red band: 60-90⁰ texture parameter was found distinctively useful in the study by 

because the study area was characterised by terraces distinctively parallel to contours and 

iform in width pattern. 

Haiti area 

Geoeye & Aster Google & 

Aster 

Google & 

Lidar 

GLCM Homogeneity  (quick 

8/11) pan (all dir) s 0.24 

Mean of bluet260 

Mean of greent165 

Mean of redt190 

max.diffs2.9 max.diff

Table 14: Criteria used to distinguish agricultural areas 
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identification and classification of fluvial deposits. These were 

mean slope and existence within a particular distance from water/river water class (see Table 13).  

 
: Google Earth illustration of location of fluvial deposits 

Fluvial deposits are usually located in low lying areas with low slope values. In the study areas, they also exist 

water. The differences in threshold values of the three data combinations can be 

attributed to three possible reasons namely; differences in topography of study sites (the steeper sloped 

fact that the used Aster DEM was a 

disaster DEM whereas the Lidar DEM was a post disaster DEM. Generally, where the Aster DEM was 

used, the thresholds are lower. This is because increase in threshold values with the Aster DEM lead to over 

f the fluvial deposit boundaries because of the already coarse DEM. However, with the Lidar 

DEM, the values are more precise and thus, though higher, do not overly exceed the class boundaries. This 

atrix (GLCM) parameter is a texture measure that calculates the frequency 

, these values were calculated using the Haralick's method 

texture parameter was found distinctively useful in the study by 

because the study area was characterised by terraces distinctively parallel to contours and 

Google & 

 

Geoeye & Lidar 

max.diffs2.9 Mean of bluet260 

 

Mean of redt190 
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The GLCM homogeneity texture parameter for the Geoeye panchromatic band was useful for classification of 

agricultural areas for the Haiti study

created by agricultural terraces present in the study area. 

part of the study area is characterised by 

developed in the Caribbean and Hispaniola in particular 

combinations where panchromatic data was not available, the maximum difference parameter was found 

useful. Non-landslide areas have higher maximum difference values than landslide areas thus the observed 

thresholds. 

 

Figure 17: Google Earth illustration of well

Compared to landslide areas, agricultural

layer values and thresholds in the Geoeye image data. This could account for the usability of mean layer values 

for the data combination where Geoeye images were used.

For Google Earth aerial photo data and Aster DEM combination, the max

useful. This is because agricultural areas

values and significantly lower minimum and maximum layer values.

high maximum difference values compared to landslide areas.

4.5.3.5. Distinguishing of agricultur

This false positive class was mainly comprised of agricultural fields which at the same time were characterised 

by presence of scattered trees. This class was classified usin

Himalaya’s area 

Resourcesat_1&Cartosat_1 Geoeye & Aster

GLCM Mean of red band: 60-90⁰ 
Mean slope t30⁰ 

NDVIs0.094 

Max.diff

 

Mean NDVI

Table 15: Criteria used to distinguish agricultural areas with trees

For the Haiti study area, two parameters were used to classify areas characterised by agriculture with trees. 

These are NDVI and maximum differenc
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The GLCM homogeneity texture parameter for the Geoeye panchromatic band was useful for classification of 

Haiti study area (See Table 14). This can be attributed to the distinctive pattern 

agricultural terraces present in the study area. From stereo visual image interpretation, the northern 

characterised by well developed terraces (see Figure 18). Terraces are features, well 

developed in the Caribbean and Hispaniola in particular [127]. For the Google Earth aerial photo data 

combinations where panchromatic data was not available, the maximum difference parameter was found 

landslide areas have higher maximum difference values than landslide areas thus the observed 

 

: Google Earth illustration of well-developed terraces to the north of the study area

agricultural areas should be easily distinguishable by their characteristic 

thresholds in the Geoeye image data. This could account for the usability of mean layer values 

for the data combination where Geoeye images were used. 

data and Aster DEM combination, the maximum diff

agricultural areas, compared to landslide areas, have characteristic 

values and significantly lower minimum and maximum layer values. In imagery such areas will usually have 

lues compared to landslide areas. 

Distinguishing of agricultural areas with trees 

This false positive class was mainly comprised of agricultural fields which at the same time were characterised 

by presence of scattered trees. This class was classified using the criteria shown in Table 

Haiti area 

Geoeye & Aster Google & 

Aster 

Google & 

Lidar 

Max.diffs2.3 

Mean NDVIs0.39 

Max.diffs3.4 Max.diffs3.3 

: Criteria used to distinguish agricultural areas with trees 

For the Haiti study area, two parameters were used to classify areas characterised by agriculture with trees. 

maximum difference. NDVI was found useful because such areas are characterised by 

TTERN ANALYSIS FOR THE 2010 HAITI 

The GLCM homogeneity texture parameter for the Geoeye panchromatic band was useful for classification of 

. This can be attributed to the distinctive pattern 

From stereo visual image interpretation, the northern 

Terraces are features, well 

For the Google Earth aerial photo data 

combinations where panchromatic data was not available, the maximum difference parameter was found 

landslide areas have higher maximum difference values than landslide areas thus the observed 

developed terraces to the north of the study area 

their characteristic lower 

thresholds in the Geoeye image data. This could account for the usability of mean layer values 

difference parameter was 

characteristic lower brightness 

In imagery such areas will usually have 

This false positive class was mainly comprised of agricultural fields which at the same time were characterised 

Table 15. 

Geoeye & Lidar 

Max.diffs2.3 

 

Mean NDVIs0.475 

For the Haiti study area, two parameters were used to classify areas characterised by agriculture with trees. 

. NDVI was found useful because such areas are characterised by 
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high levels of vegetation, compared to landslide areas, thus high NDVI values. The maximum difference 

parameter was found to be most appropriate to use for all the data combinations. This is because areas 

characterised by agriculture with trees are characterised by low brightness values thus making them have a 

distinctively high maximum difference value. Also, as pointed out earlier, landslide areas are characterised by 

low NDVI values thus the possibility to use NDVI values higher than certain thresholds to classify areas that 

are agricultural with trees. 

4.5.4. Clean up of landslide impurities 

After the classification of the most obvious landslides, false positives and landslide impurities, shallow 

translational slides were retained. However, these landslides still had some impurities (non-landslide areas 

classified as landslides). These were removed in a two stage process. The removal was done before and after 

performing chessboard segmentation. The impurities that could not be removed by the criteria used before 

the segmentation were removed after the chessboard segmentation. A chessboard segmentation was done to 

obtain tiny single objects that could be reclassified more accurately and thus remove impurities (non-landslide 

areas).  
 Himalaya’s  Haiti area 

 

Resourcesat_

1&Cartosat_1 

Geoeye & 

Aster 

Google & Aster Google & Lidar Geoeye & Lidar 

Before 

chessboard 

segmentation 

 

Mean NDVI≥
	0.18 

Mean of 

red≤190 

 

Area≥70 

(contained) 

Mean  

brightness≤101 

Area≤20 

Mean  slope≥7⁰ 
(contained) 

Mean 

brightness≤101 

Area≤20 

Mean  slope≥7⁰ 
(contained) 

Mean brightness≤139 

GLCM Homogeneity 

(quick 8\11) (all dir.) 

>= 0.45 

Area≥60 (contained) 

Relief≥35 (contained) 

After 

chessboard 

segmentation 

Mean of 

blue≤270 

Mean of 

green≤174 

Mean blue≤125 

 

Mean of 

green≤124  

 

Mean blue≤125 

Mean  green≤124  

Mean slope≤5⁰ 

Mean of slope≤7⁰  
 

Max. diff. ≥ 2 

 

Table 16: Criteria for landslide impurities removal 

Contained means: These were discriminatory criteria specifically for the shallow translational landslides 

 

It is at this stage that other parameters like mean slope, relief and area came into play to clean up impurities 

(See Table 16). Landslides are commonly found in high relief and slope areas. The area parameter was also 

found useful in removal of small isolated non-landslide pixels. This was particularly handy for the Google 

Earth aerial photo data where the outputs are associated with occurrence of many tiny isolated pixels (could 

be referred to as salt and pepper effect)  

The final landslide inventory output maps were then exported as shape files to ArcGIS where an accuracy 

assessment, based on correct detection of landslide extent, was carried out as will be presented later.
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4.7. Effect of DEM resolution 

For this study, both the pre-disaster 30m Aster and a post-disaster 1m Lidar DEM were used for analysis 

mainly for the classification of fluvial deposits and clean up processes using their slope derivative (See section 

4.5.3). The effect of use of different DEM data on algorithm transferability was tested by application of the 

algorithm developed for Geoeye & Aster and Google Earth aerial photos & Aster data combinations on 

Geoeye & Lidar and Google aerial photos & Lidar data combinations respectively without any modifications. 

From visual comparison of Figure 18a against Figure 18b and Figure 18c against Figure 18d and their 

respective producer and consumer accuracies in Table 17, there was a reduction in producer accuracies for 

both combinations after algorithm transfer. However, there was also a significant improvement in consumer 

accuracies for both combinations after algorithm transfer. A similar trend of improvement in consumer 

accuracy is also observed when results from Geoeye image & Aster DEM and Google Earth & Aster DEM 

are compared to those from Geoeye imagery & Lidar DEM and Google Earth & Lidar DEM data 

combinations respectively. Generally, there was lower consumer accuracies observed where Aster DEM was 

used than where Lidar DEM data was used. This is because the slope parameter derived from the Aster DEM 

was less efficient in accurately classifying the fluvial deposit false positive class compared to that from the 

Lidar DEM. This led to misclassification of parts of fluvial deposits as landslide areas. 

In the study by Martha et al. [1], a drainage network derived by Stahler methodology from the 10m Cartosat_1 

DEM was used in the algorithm to classify water. In an attempt to adopt the methodology, stream networks 

were created from both 30m Aster and the 1m Lidar DEM. As can be observed from the Figure 19 and 

Figure 20, the Aster DEM gave a stream network that had more locational variations than observed whereas 

the Lidar DEM, though gave a better locational estimation, also gave more details in terms of number of 

streams identified compared to those visually identifiable from the imagery.       

                                    

 

As pointed out earlier under section 3.2.2, an Aster DEM is a very large product covering very vast expanses 

of global land that is characterised by lots of artefacts and residual anomalies that affect its overall accuracy 

[105]. This limits its application for much localized applications, as in this case, that requires very detailed 

 
Figure 19: Aster DEM derived drainage network 

Figure 20: Lidar DEM derived drainage network 
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elevation data. Its low accuracy negatively affected the accuracy results obtained from OOA as there is a lot of 

elevation averaging, as has been illustrated. 

With detailed information on actual presence of the additional streams identified from the Lidar DEM, this 

stream network is useful for more accurate OOA classification. The Lidar data used in this study, being of a 

much higher resolution of 1m, can be considered better data, better suited for the representation of the terrain 

and elevation values of the study area than the global Aster DEM. It was more efficient in classification of 

fluvial deposits. This also explains its higher consumer accuracy values as observed in Table 17 in data 

combinations where the Lidar DEM was utilised. 

4.8. The effect of colour in Google Earth data  

Google Earth aerial photo data has no multispectral data. Instead, it has colour information. This was the 

information used in the OOA process. Though Google Earth aerial photos data was of a higher spatial 

resolution compared to Geoeye data, it exhibited a number of short comings which are also evident in the 

output landslide inventories. 

Elimination of false positives and false negatives was more difficult with the Google Earth data and this lead 

to consistently lower consumer accuracy for the data combinations where it was utilised. The outputs were 

also characterised of very small isolated pixels (See Figure 18c, d and e). This is often called the salt and 

pepper effect. Such outputs make validation on ground difficult and may sometimes be impossible.  

The salt and pepper effect became more evident after a chessboard segmentation which was aimed at making 

small square objects that could be more accurately classified. This aroused a number of questions as to 

whether the salt and pepper effect was due to the effect of colour distribution associated with a small object 

size (1) used in the chessboard segmentation or the high detail of the Google Earth aerial photo data. 

Discussed below are the attempts made to establish and explain whether the salt and pepper effect was due to 

either or a combination of these possible reasons mentioned above. 

To establish whether the salt and pepper effect was due to the high detail due to the spatial resolution, the 

previously 1m Google Earth aerial photo data was resampled to the resolution of Geoeye image (2m). A visual 

comparison of Figure 21b, c and d reveals a clear reduction in the salt and pepper effect after resampling of 

the data. Thus the high spatial resolution contributed significantly to the presence of the salt and pepper 

effect. With an increase in spatial resolution, images become more rich in information content and the internal 

variability within homogeneous classes is made more prominent [128-129]. This enhances the local variance 

making values of adjacent pixels differ significantly [130]. A class that would have otherwise had a relatively 

uniform appearance appears heterogeneous, incorporating very small changes in reflectance. This increase in 

variability reduces the statistical separability of otherwise similar classes [130] and results in a salt and pepper 

effect as observed with inventories from the Google Earth aerial photo data. A visual comparison of Figure 

22 and Figure 23 reveals the heterogeneous nature of the Google Earth aerial photo data used in this study. 

The Geoeye image is more homogeneous with less internal heterogeneity thus its reduced salt and pepper 

effect and more effective elimination of false positives. 

However, an important question that came to light was whether the spatial resolution was entirely responsible 

for the salt and pepper effect in the Google Earth data. This was because, even with a lower resolution of 2m 

(see Figure 21c), the salt and pepper effect is still present though in smaller amounts. This is not present in the 

results from the 2m multispectral Geoeye image (see Figure 21b) though the same general methodology was 

used for both data combinations. Thus, a test was set up to ascertain whether the object size of 1 which was 

used for Google Earth data could have contributed to the salt and pepper effect. While maintaining a 

common methodology in the process tree, the object size was adjusted to 2. A visual comparison of Figure 

21d with Figure 21e and Figure 21c and Figure 21f indicates a reduction in the salt and pepper effect when a 

higher object size is used. Thus smaller object sizes increase the salt and pepper effect.  
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The chessboard segmentation and the small object size used turned an otherwise Object-based approach into 

a more or less pixel-based approach. However, the object size to choose highly depends on the image 

resolution present and care must be taken to find the optimal object size otherwise big object sizes will in turn 

lead to overgeneralization which may adversely affect the accuracy of landslide identification.  

Therefore, the salt and pepper effect has been attributed to the high spatial resolution of the Google Earth 

aerial photo data which affects the colour distribution in the data and the object size used during the 

chessboard segmentation. 

4.9. Usability of Google Earth data Vs. Geoeye multispectral information for OOA 

Since June 2005, Google Earth has been providing remote sensing data round the world. These data are 

endowed with a number of advantages amongst which are ability to visualise 3D and it allows users to adjust 

both the tilt of the line of sight and the location of the observer. These advantages coupled together give users 

an impression of a flight of exploration [131].  

This study investigated the usability of Google Earth aerial photo data of 1m spatial resolution for Object-

based landslide detection. The landslide inventories obtained from its use were compared to those from a 2m 

Geoeye data set. This was tested by comparing landslide inventories obtained from its use to those from a 2m 

Geoeye data set where similar DEM data were used. From comparison of Figure 18a with Figure 18c, Figure 

18f with Figure 18e and general comparison of their producer and consumer accuracies in Table 17, it can be 

observed that Geoeye data, though of a lower spatial resolution compared to Google Earth aerial photo data 

recorded better accuracies for both producer and consumer accuracies. Possible reasons for this are discussed 

and explained under section 4.8.  

Though not as good as results obtained where Geoeye data was used, the relatively high and not significantly 

deviant producer accuracy for the Google Earth aerial photo & Aster DEM and Google Earth aerial photo & 

Lidar DEM data combinations from those obtained by Geoeye suggests that non-spectral Google Earth aerial 

photo data could potentially be used in lieu of high resolution multispectral data for OOA work. The usability 

of Google Earth aerial photo data comes in handy especially in developing countries, facilitating substantial 

savings in terms of both cost and time.  

Figure 22: More homogeneous nature of Geoeye 
image 

Figure 23: More heterogeneous nature of Google Earth 
aerial photo 
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4.10. Transferability of the developed algorithm to the validation site 

Availability of timely information during the immediate aftermath of disasters both for search, rescue and 

timely planning requires methodologies that hasten the data analysis process. OOA provides this option. 

However, it can also be time consuming with manual selection of object features, parameters and thresholds. 

This could be reduced by having an easily transferable OOA methodology for landslide identification. The 

possibility of having an easily transferable algorithm for the Haiti area was tested by applying the algorithm 

developed for a training site on the validation site without modifications. 

As observed from Table 17, when the Geoeye & Lidar DEM algorithm developed for the training site was 

used for landslide detection on the validation site, it gave producer and consumer percentage accuracies of 

70.11 and 69.62 compared to 66.43 and 79.20 obtained in the training site. The percentages obtained on the 

validation site, though with lower consumer accuracy than those recorded in the training site, highlight a high 

potential for creation of a fully transferable algorithm for the Haiti area with better accuracies. With a better 

methodology to efficiently eliminate the false positives and false negatives, there exists a high potential for an 

accurately transferable algorithm for the Haiti region. 

One major challenge observed in this study, is striking a balance between creating an algorithm that was both 

accurate and robust enough to accommodate variability between the study and validation sites. There is always 

a conflict between ensuring a robust and at the same time accurate algorithm. The optimal balance between 

the two has to always be established for an efficient and transferable algorithm. Establishing such a balance is 

always laborious as it is a trial and error approach with this methodology. 

4.11. Accuracy of outputs and choice of the best data combinations 

One of the other challenges experienced in this study was finding an optimal balance of the producer and 

consumer accuracies. Both poor consumer and producer accuracies of the landslide inventory have adverse 

effects on all the subsequent processes the output is used for. Low producer accuracy may lead to under 

estimation of risk to landslide hazard as this means that some landslide areas are left out whereas low 

consumer accuracy may lead to over estimation of the risk to landslide hazard due to inclusion of non 

landslide areas. However, from a personal and risk reduction perspective, over estimation of the risk can be 

better accommodated than an under estimation [132-133] thus better a low consumer accuracy than producer 

accuracy. However this is subjective and different researchers may have different takes/views on this matter. 

Depending on the intended use of the outputs, efforts can be made to maximise the accuracies with 

preference to one more than the other. However, in this study, efforts were made to balance the best 

combination of the two accuracy measures by different trials and selection of one algorithm with more 

balanced accuracies. 

For all algorithms and data combinations, there was a systematic non recognition of the thin shaped 

landslides, probably due to inappropriate delineation during segmentation as a result of their thin shape and 

occurrence in spectrally similar classes [1]. Also, there was systematic recognition of bare agricultural fields as 

landslides which exhibited spectral signatures that are more or less similar to those for landslides (see Figure 

25). 

From a comparison of producer and consumer accuracies in Table 17, the algorithm developed for the 

training site using Geoeye image & Lidar DEM data gave the best result with the best balance of producer 

accuracies compared to the other data combinations. This can be attributed to the high level of detail (spatial 

resolutions) of both the multispectral data and DEM. It can also be attributed to the presence of multispectral 

information that facilitated more accurate elimination of false positives compared to Google Earth data that 

had a salt and pepper effect.  
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4.13. Frequency-Area distribution for the OOA landslide inventories 

Figure 26 are the Frequency-area distribution curves obtained for the landslide inventories obtained from 

visual image interpretation, Google-Aster and Geoeye-Lidar data combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Google Earth aerial photo & Aster DEM data combination gave the highest probability density for small sized 

landslides. Also, its trend is significantly deviant from that of the visual inventory in comparison to the trend 

obtained from Geoeye & Lidar data combination. This can be attributed to the salt and pepper effect with this 

data combination which leads to outputs that are less representative of the reality. 

   

  
Figure 25: Ambiguities in spectral signatures 

Landslide 

Agricultural 

field 

Agricultural 

field 

Figure 24: Stripped Google earth aerial photo 

Figure 26: Frequency-Area distribution for the OOA landslide inventories 
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4.14. The Plateau objective function analysis for Geoeye & Lidar data combination. 

4.14.1. Scale factor optimisation 

As noted in earlier parts of this discussion, the previous methodology used to determine the scale factor and 

thresholds to use was based on a trial and error approach in combination with visual assessment which was 

identified as laborious, irreproducible and may not lead to robust algorithms. It was based on use of only one 

scale factor for classification of all the false positives and landslide sizes, a criterion not reasonable due to 

existence of a lot of variability in sizes of landslides and their false positives in the real world. Also, the 

thresholds used are not dynamic as they are user-defined and not data-driven. This second methodology was 

aimed at testing the feasibility of use of non user-defined optimal multi-scales and dynamic and data-driven 

thresholds for landslide classification. Objective function values were computed at different scales from 5-50 

(in increments of 1) using mean brightness values for the Geoeye image. The POF value was computed and 

obtained at 1.13. The optimal segmentation scales obtained are 27, 29 and 31 as indicated in the Figure 27. 

Initial segmentation was carried out at scale 27. According to Martha et al. (in review) [3], the scale factor 

corresponding to the first peak has the highest capability to properly delineate small landslides compared to 

the other peaks. This was true for this study too as the other two scale factors were already too coarse (high) 

to accurately delineate the small landslides.  This is the reason why the scale factor at the first peak was 

chosen.  

 

 
Figure 27: Objective functions illustrating the peaks used in OOA segmentation 

The optimal scale values identified by the POF are significantly higher than the 10 scale factor previously 

identified by visual assessment as optimal. Important question that came to mind is whether use of these 

optimal scales in combination with dynamic thresholds from k-means cluster analysis would improve the 

landslide detection process. This question is answered under section 4.14.4. 

4.14.2. Separation of landslide candidates from background 

At scale factor 27, the NDVI criterion was used to obtain class centres by k-means clustering. One essential 

input into k-means cluster analysis is the number of clusters. To determine this objectively, a two-step cluster 

analysis was first carried out to obtain the most optimal number of clusters. This was then used as input into 

k-means cluster analysis. The cluster centres obtained are as shown in Table 19. The background was 

separated from landslide candidates by use of the NDVI criterion. Areas with NDVI value >= 0.412 were 
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classified as background (This was also comprised of the agricultural areas with trees). This is because we do 

not expect landslides in highly vegetated areas so better to eliminate them from any further analysis.  

 Clusters identified 

cluster 1 cluster 2 cluster 3 cluster 4 

Mean NDVI cluster 

centres 

-0.171 0.063 0.248 0.412 

Class thresholds created 

from cluster centres 

Mean NDVI≤-

0.171 

Mean 

NDVI≤0.063 

Mean NDVI≤0.248 Mean NDVI≤0.412 

Mean NDVI≥0.412 

False positive class 

identified in cluster by 

visual assessment 

Shadow+ 

agriculture 

River water Mixed class of all false 

positives and landslides 

though dominantly 

Fluvial deposits 

Mixed class of all false 

positives and landslides 

though dominantly 

agricultural 
Table 19: Cluster centres from NDVI criterion at scale factor 27 

The classes created from the thresholds were therefore used as a basis for further classification of false 

positives.  

4.14.3. Classification of false positives and clean up 

Table 20 gives the criteria used for classification of false positives and clean up processes 

Separation of landslides from false positives 

False positive Scale 

Factor 

Classes used as basis for 

segmentation and classification 

Criteria Method to 

obtain threshold  

River water 27 cluster 2 -0.121>Mean NDVI≤ 0.063 Two-step and K-

means cluster 

analysis  Shadow 31 cluster 1, 3 & 4 Mean hillshade≤ 72.147 

Fluvial deposits 31 cluster 3 & 4 Mean slope≤ 6.355 

Existence within 100m 

distance from water 

Contextual 

information 

Agricultural area 29 cluster 1, 2, 3 &4 Mean slope≥11.488 

GLCM StdDEV (quick 8/11) 

pan (all dir.) <=3.4 

 

Two-step and K-

means cluster 

analysis  

 

Agricultural with 

trees 

29 cluster 1, 2, 3 &4 (Same as 

background class) 

Mean NDVI ≥0.412 

Clean up processes 

 
Table 20: Criteria for classification of false positives and cleanup process 
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River water was fully identified by cluster 2 using the NDVI criterion. Shadow was identified using the 

hillshade information. Areas covered by shadow usually characterised by low hillshade values thus the 

obtained threshold. Fluvial deposits were identified and classified using a slope and distance from water 

criteria. Fluvial deposits usually occur in low lying areas, this is the reason why the slope criterion was efficient. 

They also occur in areas nearest to Momanche River. Agricultural areas with trees are characterised by high 

NDVI values and were classified by a similar threshold for the background class. Pure agricultural areas were 

the hardest class to classify with no clear cut spectral signature. However, criteria of slope and GLCM texture 

measure for the panchromatic band were found useful for the classification. The clean up processes were 

performed at a scale factor of 27. The criteria used to eliminate false positives include brightness, mean slope, 

maximum difference, area and mean standard deviation of the Geoeye panchromatic band as seen in Table 20. 

Indicated in the next section are the inventories and accuracies obtained..  

4.14.4. Output landslide inventories and accuracy assessment 

Figure 29 and Figure 30 show the landslide inventory outputs  

  

 
Figure 30: Classified inventory from validation site 

  

Figure 29: Classified landslide inventory from training site Figure 28: Segmentation at scale factor 27 
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Training site Validation site 

Total area of visual inventory ( m2) 

88349.12 

 

307832.71 

 
Total area of OOA inventory (m2) 94858.00 313220.00 

 
Total correctly identified area (m2) 59752.72 

 

212907.65 

 
Producer accuracy (%) 67.63 69.16 

 
Consumer accuracy (%) 62.99 67.97 

Table 21: Accuracy assessment by correct detection of landslide extent  

A comparison of producer and consumer accuracies for Geoeye & Lidar data combination obtained with 

user-defined parameters and thresholds and when segment optimization is carried out in combination with 

data-driven thresholding by k-means cluster analysis indicate no significant improvement in the accuracies. No 

significant differences were recorded amongst the accuracies though better consumer accuracy was observed 

with user-defined single scale factor and thresholding. This can be attributed to better user control in 

elimination of false positives with this approach than with data-driven methodology. Also, the differences in 

scale factors used could have been the other reason. Visual assessment of delineations made at scale factors 

27, 29 and 31, which were identified and used as the optimal scale factor for data-driven analysis, shows 

imperfections in delineation of small and narrow shaped landslides (see Figure 28). So, the multi-scale 

segmentation approach and data-driven thresholds did not significantly improve the accuracies previously 

obtained from the single scale, user-defined thresholding approach (67.63% vs. 66.43% producer accuracies 

for the training site). When the algorithm was tested on the validation site, it gave producer and consumer 

accuracies of 69.16 and 67.97% compared to 67.63 and 62.99% at the training site. These relatively balanced 

(not significantly different) accuracies could be an indicator that this algorithm is relatively robust though it 

did not necessarily give better accuracies. 

4.15. Environmental factors affecting presence of landslides 

To understand the environmental factors affecting the presence of landslides, the WoE modeling method was 

used in combination with the contrast factor. Contrast factor is a measure of the correlation between points 

and patterns [135]. It quantifies the spatial association between a map class and the occurrence of landslides. A 

number of possible landslide causative factors were used to determine the pattern of the Haiti landslides and 

to explain why the landslides took place where they did. These included lithology, flow direction, distance to 

roads, slope, aspect, distance to rivers/drainage lines, Distance from Enriquillo Plantain fault and elevation. 

Presented in Figure 31 and Figure 32 are the factor susceptibility maps and contrast factors obtained from the 

analysis and thereafter, explanations on possible reasons for the trends obtained for landslide distributions. 
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Figure 31: Weight maps of a) Lithology, b) Flow direction, c) Distance from major roads, d) Slope, e) Aspect, 

f) Distance to rivers, g) Distance from the Enriquillo fault and h) Elevation 

 

 See legend under appendix E 
 

 

 

 

g h

a b 

c d 
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Figure 32: Variation of contrast factor with; a) Lithology, b) Flow direction, c) Distance from major roads, d) Slope, e) 
Aspect, f) Distance to rivers, g) Distance from the Enriquillo fault and h) Elevation 

4.15.1. Lithology 

The study area is characterized of sedimentary and volcanic rocks. From Figure 32a, landslides dominated in 

the Middle to Upper Eocene limestone geologic unit characterized by pelagic biomicrites due to significantly 

highly positive contrast factor of 1.67. Other geologic units that also had positive contrasts are those 

characterized by tertiary sedimentary Upper Palaeocene to Lower to Middle Eocene and sedimentary- tertiary 

Upper Miocene limestone rocks. However, all the other geologic units had negative contrast implying a 

negative association between their occurrence and the presence of landslides. The highly negative contrast was 

exhibited by the geological unit characterized by tertiary Senonian pelagic limestone. 

4.15.2. Flow direction and aspect 

The landslides occurred mainly in the East and Northern directions of flow with contrast factors of 0.60 and 

0.31 respectively. All other directions, except for South which had an almost zero positive contrast and North 

West and West which had an almost zero negative contrasts, had negative weights and negative contrast 

factors as illustrated in Figure 32b.The South Western direction greatly inhibited the occurrence of landslides. 

The presence of an almost zero contrast for the North West, South and West implies that these directions had 

no significant effect on occurrence of landslides as they occur there only by chance. 

e f 

g h 
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The aspect of a slope determines slope exposure to sunlight, drying winds and rainfall [92, 136-137]. These in 

turn affect both moisture retention and presence/absence of vegetation, which in turn may affect the strength 

of the soil thus the susceptibility to landslides [138]. From Figure 32e, it can be concluded the landslides 

dominated in the Southern facing slopes which have the highest positive contrast of 0.59. Also, we had 

positive association between aspect and landslide density in the South-East, East, and North-East. The 

landslides were highly inhibited in the North-West facing slopes where the contrast factor was -0.77. The 

North, North2, South West and North West facing slopes too had a negative association between the slope 

and landslide density.  

Though these factors are considered to be related and should give relatively similar trends, they exhibited 

variations in trends. This can be attributed to the approach in computation of directions because whereas flow 

direction is computed for every central pixel of input blocks of 3 by 3 pixels, each time comparing the value of 

the central pixel with the value of its 8 neighbours, the computation of aspect depends on the slicing angles 

used as boundary values and ILWIS software provides 9 possible aspect classes. However, important to note 

for both factors is that a trend was observed where there was a negative association with all directions to the 

West and a positive association with directions associated with the East.  

4.15.3. Distance from major roads 

From the weighted factor map in Figure 31c and the ranges of contrast statistics displayed in Figure 32c on 

distance from major roads, it can be concluded that the distance from major roads played no significant role in 

the occurrence of landslides. According to the statistics, the landslides that occurred did within 10m from the 

roads with a low contrast value of 0.1778 and in distances greater than 200m meters. All other distances 

between 10 and 200m inhibited the occurrence of landslides. However, important to note is the steadily 

decreasing trend of contrast factors up to a distance of about 100m. The unexpected increase in the contrast 

after the distance of 200m may be attributed other factors that come into play to determine the pattern as it is 

unreasonable for roads to affect occurrence of landslides at such long distances. Thus, from this study, 

distance from major roads is not a factor that significantly determined the pattern of the landslides.  

4.15.4. Slope 

From Figure 32d, it can be concluded that most of the landslides occurred in the slope range of 30-75⁰ with 

the most number within 60-75⁰ slope range. These slope ranges, even in reality, are considered favourable for 

the occurrence of landslides. However, the negative contrasts in slope ranges 0-30 imply a negative association 

between the slope and landslide density. The presences of slopes of 0-30⁰ inhibit the occurrence of landslides, 

according to this analysis. Also, after in the slope range of 75-90⁰, no landslides were reported there. This can 

be attributed to very steep slopes that most often than not, do not favour the occurrence of landslides thus 

the observed trend. This trend fits what we would expect in reality. The resultant susceptibility map from 

these dynamics can be viewed in Figure 31d. 

4.15.5. Distance from Rivers/drainage lines 

As the distance from drainage lines increases, the probability of occurrence of landslides should/ is expected 

to decrease. From Figure 32f, there is no reasonable trend of association within a distance of 200m from the 

drainage lines. There are negative contrast factors within a distance of 50m from the drainage lines contrary to 

what is expected. However, after 200m, there is a clear reduction to highly negative contrast. This is what is 

expected in the real world due to less influence of the water seepage at longer distances away from the river. 

For the landslide susceptibility map from these dynamics, see Figure 31f. 
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4.15.6. Distance from Enriquillo Plantain fault 

Closest to the active fault lines, the probability of occurrence of landslides is expected to be higher than areas 

far away. From Figure 32g, generally, the contrast factor values were high and exhibited a decreasing trend 

until at a distance of approximately 1250m where the pattern fades out and becomes relatively uneven though 

still significantly low compared to those near the fault. Recent evidence indicates the lack of surface rupture, 

coupled with other seismologic, geologic and geodetic observations, suggests that little, if any, accumulated 

strain was released on the Enriquillo–Plantain Garden strike-slip fault in the earthquake [139-140]. This stress 

can be concluded to have caused the occurrence of landslides nearest to the fault. The reducing trend is due to 

the reduction of stress away from the fault until the point where it doesn’t significantly affect and other factors 

come into play. There is highest landslide susceptibility along the fault too (See Figure 31g).  

According to Figure 32g, landslides dominated more on the Southern than the Northern part of the fault. 

Emerging evidence indicates that Haiti earthquake ruptured on a previously unmapped blind thrust fault now 

called the the Léogâne fault which lies subparallel to but is different from the Enriquillo–Plantain Garden 

fault. It is said to have resulted into elevated topography to the South of the Enriquillo–Plantain Garden fault 

[141]. This could explain the dominance of landslides to the South of the Enriquillo fault. 

4.15.7. Elevation 

High elevations are usually characterized by mountain summits that usually consist of weathered rocks with 

higher shear strength. At intermediate elevations are thin colluviums that are usually more susceptible to 

landslides. However, at very low elevations, the occurrence of landslides is limited because the terrain itself is 

gentle and covered by thick colluvial material. A high water table will be required to initiate landslides in such 

areas [138]. According to the susceptibility map in Figure 31h and Figure 32h no significant or well defined 

trend was observed for the influence of elevation in most ranges of elevation. Except for elevation ranges of 

1200-1400m, where there is a contrast factor of 0.51 and in areas with elevation ranges of 1600-1800m, where 

have negative 3.6 for the contrast factor and there were no landslides above 1800 meters there were no 

significant trends. The lack of landslides and a highly negative contrast at very high elevations can be 

attributed to high shear strength of the rocks. The positive contrast factor for elevation 1200-1400m can be 

due to presence of relatively favourable conditions for the occurrence of landslides at these elevations.  

4.15.8. Success rating to select the best factors 

For each of the factor maps included in the analysis, a weight map was obtained. Success rating was 

performed for the weight maps. Success rating is a good method for accuracy assessment of landslide 

susceptibility maps. It indicates how much percentage of all landslides occur in the classes with the highest 

value of susceptibility map [142]. It indicates how well the created model performs for the landslide evidence 

from which it was made. To determine which factors significantly affected the pattern of landslides, a 

sensitivity analysis was carried out for all the factors. The results from this analysis are shown in Figure 33. 
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Figure 33: Sensitivity analysis for individual factors 

 

From Figure 33, it can be concluded that there were three main factors that determined the pattern of 

landslides in Haiti. These were; lithology, slope, and the distance from the Enriquillo fault. This step was 

important for understanding the extent to which each of the factors determines the pattern of landslides.  

4.15.9. Susceptibility map for the study area 

The susceptibility map was obtaining by summing up the weight maps of the causative factors and success 

rating was performed for the output map. The results obtained were used in the classification of the map into 

susceptibility classes low, low to moderate and moderate to high. The most reasonable map output was 

obtained at 20.07 and 60% of map pixels (See Figure 34). The weights at these percentages were obtained 

from the cross table statistics and used as thresholds for slicing the susceptibility map. 

From Figure 35, low susceptibility means the areas where there is less likely to be any landslides. Such areas 

are usually considered safe for development, including human settlement. Low to moderate susceptibility 

means that the areas are averagely safe and can be developed with a number of protection measures in place. 

Moderate to high susceptibility, on the other hand implies that the areas are highly unstable and are not 

suitable for development especially human settlement. 

From the susceptibility map in Figure 35, it can be concluded that the highest landslide susceptibility within 

this study area is located in the areas surrounding the Enriquillo Plantain fault. From the success rating of the 

landslide susceptibility map, it can be concluded that the output susceptibility map is a fairly good predictor 

for the landslides because for example, to predict 80% of the total landslides, we need 30% of the 

susceptibility map. 
Important to note is that with more and better thematic data for the study area, this susceptibility map can be 

improved on. Also, depending on the boundary values selected for slicing of the susceptibility, this map may 

appear different. However, reasonable thresholds should be selected to obtain meaningful results. 
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Figure 34: Success rate curve for landslide susceptibility 
map 

 

Figure 35: Classified Landslide susceptibility map 

4.16. Application of results from susceptibility analysis for improvement of OOA output 

The total susceptibility map from susceptibility analysis was used in improvement of the OOA process for the 

Geoeye-Aster data combination. It was found useful in the elimination of some of the false positives. This was 

achieved by adding an extra condition susceptibility ≤ 2.2 to the clean up processes. Areas with total 

susceptibility equal to or less than 2.2 were considered as non-landslide zones. The individual weighted factor 

maps like geology were not very useful for application in the OOA process. This was due to the low detail of 

both the thematic and DEM data used in the susceptibility analysis so the individual weighted factors were not 

good for such a much localised application. The resultant classified landslide inventory is as shown in Figure 

36. 

 
Figure 36: Classified landslide inventory obtained from Geoeye-Aster after incorporation of susceptibility weight map 

Low  Moderate High 
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Data combinations Geoeye & Aster 

Total area of visual inventory ( m2) 88349.12 

Total area of OOA inventory (m2) 98196.00 

Total correctly identified area (m2) 58221.57 

Producer accuracy (%) 65.90 

Consumer accuracy (%) 59.29 

Table 22: Accuracy assessment for the output landslide inventory after incorporation of susceptibility 

 

An accuracy assessment based on correct detection of landslide extent was carried out (see Table 22). The 

producer and consumer accuracies obtained are 65.90 and 59.29% respectively. An improvement in consumer 

accuracy was registered from the previously obtained 48.08 to 59.29% after incorporation of the total 

susceptibility weight map. This highlights the possibility of use of information from susceptibility for 

improvement of OOA outputs. With better/more detailed thematic and DEM data, information from 

susceptibility analysis could be very useful for OOA as well. A large number of false positives were still 

existent in the output due to the presence of bare agricultural fields which were hard to eliminate and the 

coarse nature of the Aster DEM (thus slope derivative) which led to inefficiency in classification of fluvial 

deposits. 

4.17. Chapter summary 

This chapter contained the results and discussion. It began with a presentation of the initial statistical 

characteristics of the landslide inventories obtained from stereo visual image interpretation for study areas of 

pattern analysis, training site and validation site for OOA. It presented and described the Frequency-Area 

distribution trend of the entire inventory from stereo image interpretation in relation to previously established 

trends available in literature of previous studies. It further described the training study site in terms of its false 

positive classes. The low accuracies obtained from the application of the unchanged adopted algorithm on the 

training site for this study are explained. This chapter also described, in detail, the step by step 

parameterisation done when the adopted algorithm was being adapted to the training site with an explanation 

of why specific parameters, object features and thresholds were selected for the specific false positives. 

Discussions were also made on for the accuracies obtained for the OOA outputs and the observed effect of 

DEM resolution, use of colour for OOA, usability of Google Earth data and the transferability of expert 

based algorithm created for the training site to the validation site. It further presents results from the choice of 

the best data combination and the pros and cons associated with the use of the different data combinations. 

Also, the implementation of POF methodology for Geoeye & Lidar data combination, outputs and accuracies 

are presented and discussed. The chapter further goes on to present and explain the landslide causal factors 

for the study area with an in-depth look into the trends and explanations for the observed trends in relation to 

already existing knowledge of how the trends should vary with the different factors. The chapter ends with a 

presentation of the landslide susceptibility map obtained for the study area, the success rating of the 

susceptibility map and its application for the improvement of OOA work.  
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5. CONCLUSIONS, RECOMMENDATIONS AND LIMITATIONS 

5.1. Conclusions 

The purpose of this study was to evaluate the extent to which a generic algorithm that was developed for a 

study site in the Himalayas is transferable when applied to a geographically different area and with different 

data sets and to understand the landslide distribution pattern of the 2010 Haiti earthquake-induced landslides. 

Based on the results obtained in chapter 4, the following conclusions were made. 

� The algorithm that was developed by Martha et al. [1], without modifications on the parameters and 

thresholds, did not work efficiently for the Haiti area with Geoeye & Lidar data. It resulted in 7.3% 

producer and 5.7% consumer accuracies. This was attributed to lack of robustness of this single-

scaled algorithm as all thresholds were user-defined rather than data-driven and the terrain difference 

between the two areas. With adjustment of the parameters and their thresh holds to suit the data, land 

cover classes and false positives present in the Haiti training site, this algorithm worked better with 

improvement in accuracy for the Geoeye-Lidar data combination to 66.43 and 79.20% producer and 

consumer accuracies respectively. However, it was observed that it consists of many steps of 

individual manual parameterisation and selection of thresholds. It is based on a lot of personal 

judgement and no standards exist. The subjectivity and trial and error nature for selection of object 

features, parameters and thresholds, makes the process irreproducible, laborious and time consuming 

to obtain the most appropriate object features, parameters and thresholds. This was even worse when 

dealing with different data combinations that differ in many aspects like spatial and spectral properties 

as was experienced in this test study. 

� With 70.11 and 69.62% producer and consumer accuracies obtained for user-defined thresholding 

methodology and 69.16 and 67.97% respectively for data-driven thresholding methodology, both 

obtained for the validation site, this study has highlighted that there is a high potential for creating a 

fully transferable algorithm for the Haiti region. However, for an algorithm developed for a specific 

site by user-defined thresholds to be effectively transferable to another site without modifications, 

there is need for the two sites to be geomorphologically comparable otherwise; the algorithms are 

rendered less effective. As has been illustrated in this study, the adopted algorithm that was originally 

developed for Himalayas study site didn’t work efficiently in Haiti when applied without 

modifications. If the two sites are not comparable, the algorithm should be robust enough to 

accommodate a lot of variability. Site specific parameters and thresholds which may differ from one 

site to another should be avoided in the algorithms. In this study, there was a conflict of interest in 

ensuring an optimal balance between making the algorithm robust and ensuring good consumer and 

producer accuracies. In an effort to make a robust algorithm that could efficiently detect landslides 

both on the training site and the validation site there was often, a reduction in their effectiveness to 

accurately detect landslides extents. Though not always clear, an optimal balance of the two always 

needs to be found for an efficient and transferable algorithm. 

� The algorithm from Geoeye-Aster data combination applied without modification on Geoeye-Lidar 

gave 65.75 and 61.22% producer and consumer accuracies whereas that from Google Earth aerial 

photo-Aster applied on Google Earth aerial photo-Lidar gave 58.31 and 60.26% producer and 

consumer accuracies respectively. This illustrated a possibility for an algorithm that is transferable 

across different DEM data sets. However, with user-defined thresholds, this is significantly limited by 

the individual data properties. The setting of specific thresholds is data dependent and different data 

have different thresholds. The use of a specific data set introduces all the pros and cons associated 

with the use of that specific data set which may enhance or reduce the performance of the algorithm. 

Also, there is a limit to which data sets a specific algorithm can be transferable to, as some data may 
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be incomparable in some aspects for example multispectral vs. colour information as was in the 

Geoeye image and Google Earth data. A lot of such limitations to algorithm transferability still exist 

and can only be better understood and solved through further research. 

� The more standardised methodology for selection of scale factors using the Plateau Objective 

function and thresholding by k-means cluster analysis, did not necessarily record improvements in the 

accuracy of landslide detection or transferability of the algorithm. In fact, user-defined thresholding 

and scale factor selection recorded better consumer accuracies of 79.20 and 69.62% for the training 

and validation sites respectively compared to the data-driven approach which gave 62.99 and 67.97% 

for the training and validation sites respectively. This was probably due to better operator control 

with user-defined thresholding. However, it was observed to be more objective requiring fewer hard 

coded rules and was robust. 

� For Geoeye data, use of Aster DEM gave 45.39% consumer accuracy compared to 79.20% with the 

Lidar DEM. This study has illustrated that with higher resolution Lidar DEM data; there is a 

significant improvement in consumer accuracies. It makes the process of elimination of false positives 

more accurate and precise. It has also been concluded that the use of such higher detailed 

information, though is usually more expensive, greatly enhances the quality of the outputs and so is 

worth the investment. Important to keep in mind, however, is that use of high resolution DEM data 

to create transferable algorithms will often limit the geographical extent to which these algorithms can 

be applied as this data often has a low areal coverage compared to low resolution data. 

� From this study, it has been observed that though not as good as multi-spectral data, the use of 

Google Earth aerial photo data for OOA is a promising venture with a lot of potential. This is very 

handy for developing countries where resources to access high detailed multispectral data are limited. 

It gave producer and consumer accuracies of 56.30% and 69.95% compared to Geoeye’s 66.43% and 

79.20% respectively when used in combination with Lidar data. However, it was associated with a 

number of short comings like the salt and pepper effect, it was more hard to eliminate false positives 

and its mosaic nature which introduced errors in the process. The salt and pepper effect was 

attributed to the object size used in the chessboard segmentation and its very high spatial resolution.  

� The Haiti earthquake triggered a large number of landslides highly concentrated along the Enriquillo 

Plantain fault. From the statistical analysis, combined with the sensitivity analysis, it was established 

that these landslides were caused by three main factors. These were lithology, slope, and the distance 

from the Enriquillo Plantain fault. Landslides dominated in areas within 1km from Enriquillo fault, 

slopes of 30-70⁰ and areas characterised by cracked and porous Middle to Upper Eocene limestone. 

They dominated more to the South than North of the Enriquillo fault. All the other factors 

incorporated in this study like distance to roads, rivers, the flow direction, elevation and aspect did 

not show a significant contribution to the overall pattern of the landslides. The highest landslide 

susceptibility is concentrated along the Enriquillo Plantain fault. 

� Outputs from susceptibility analysis provide valuable information that is useable for improvement of 

OOA. In this study, the produced susceptibility map was very useful in elimination of false positives 

and improvement of consumer accuracy of the Geoeye-Aster data combination from 48.08 to 

59.29%. 

5.2. Research contributions 

� This study has illustrated the possibility of having a fully transferable algorithm for landslide inventory 

creation for the Haiti area and across different data sets. Such algorithms are essential during initial 

disaster response phases where timely information is required. 
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� This study could be the pioneer of the kind of detailed analysis of the pattern of the earthquake-

induced landslides for the Haiti earthquake and algorithm transferability test for the Haiti area. Thus, 

could be a basis for future landslide susceptibility; hazard and algorithm transferability analyses. 

� This study has illustrated the possibility of use of readily available and cheap non-multispectral data 

for relatively quick Object-based landslide inventory production. Thus is very handy especially in least 

developed countries where availability of good quality imagery is limited due to lack of funds.  

� It has highlighted the pros and cons associated with the use of different data for OOA and their 

implications on algorithm transferability. These are issues, important to understand for creation of an 

effectively transferable algorithm. 

� This study has attempted to explain and provide insight into why the Haiti earthquake-induced 

landslides occurred where they did. As a result, it has made available susceptibility maps for the study 

area that could be useful with improvements, where deemed necessary, for both educational and 

incorporation in the planning activities and disaster risk management programmes. 

5.3. Recommendations and further research prospects 

� Subject to availability of large areal coverage of data, prospect for further research includes the 

application of the obtained algorithms to the entire Haiti area and use of the OOA output landslide 

inventory for susceptibility analysis to ascertain its accuracy in comparison to the outputs obtained 

when a visual landslide inventory is utilized . 

� Important to note at this point is that in this study, though effort was made to maximize and balance 

the producer accuracy, was more aimed at efficiently illustrating the pros and cons associated with the 

use of different data on algorithm transferability. Thus there exists a possibility of improving these 

results for a specific application. 

� The subjective nature of manual selection of object features, parameters and thresholds makes the 

whole process laborious, subjective and irreproducible. This also leads to considerable variations in 

both consumer and producer accuracies thus making decision making regarding the better products 

to use dicey. Further studies need to be done on issues concerning the optimal balancing between 

consumer and producer accuracies 

� For all data combinations used, there was a systematic non-recognition of small and narrow shaped 

landslides and recognition of bare agricultural fields as landslides thus limiting the accuracy of 

outputs. More research could be performed to find a methodology to eliminate such false negatives 

and false positives. This would go a long way to improve the applicability of OOA for landslide 

detection and susceptibility analysis in this area. 

� The use of Google Earth aerial photo data seems a promising venture for OOA related work. More 

research on how to make this data more useful by reducing its cons, identified in this study, is highly 

recommended. Pressing issues to address are mainly those related to reduction of the salt and pepper 

effect, and making of algorithms made for multispectral data transferable to Google Earth aerial 

photo data.  

� Outputs from susceptibility analysis provide valuable information on the hazard situation of the study 

area. Incorporation of such outputs in the land use planning system with improvements, where 

deemed necessary, could be handy. Also, such outputs are an important tool for improvement of the 

OOA process. 

� Subject to availability of more and better thematic and topographic data, incorporation of more 

factors in the susceptibility analysis for improvements is still possible.  

� Detailed mapping to obtain detailed, accurate and standardized thematic and topographic data for the 

Haiti area would help to greatly improve analysis work related to landslide susceptibility assessment. 
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Such contextual data and outputs from susceptibility analysis, since they would be more accurate, 

could be a valuable input into the Object-based landslide detection. 

5.4. Research limitations 

5.4.1.  Data limitations 

� Most of the data obtained online from different sources lacked detailed and easily accessible metadata 

making it also difficult to access its quality and thus its suitability for use. This was mainly for the 

thematic data used. 

� This study involved multi-temporal image interpretation of imagery. However, there was lack of pre-

disaster imagery for some parts of the study area making the interpretation less accurate especially in 

assignment of attributes like landslide activity that required pre-disaster imagery.  

� There was limited good quality, readily usable thematic data for Haiti especially with data like drainage 

lines, lithology, rivers and land use most in appropriate formats. This made the data preparation 

process more laborious and time consuming than expected. 

� This study depended a lot on data available online from various sources. No field investigations were 

carried out. Lack of field knowledge was a major limitation experienced in this study. A number of 

deductions were made based on knowledge obtained from image interpretation which may not be 

necessarily accurate on ground. 

5.4.2.  Language barrier 

� Important publications and maps like the geological map were in French, being the official language 

of Haiti. This made the utilization of such products inefficient as it was time consuming to translate. 

Also, there were possibilities of direct and mistranslations that undermine the correct understanding 

and usability of such data/information. 

5.4.3. Limitations associated with creation of Landslide inventories 

� Due to the trial and error nature of threshold determination coupled with data inaccuracies, the 

resultant landslide inventories from the OOA process could not have been a replica of what is on 

ground. Thus with use of the already inaccurate inventory from visual image interpretation to assess 

the accuracy of an already inaccurate inventory from OOA could have resulted in accumulation of 

errors in the results. 

� The landslide inventory for pattern analysis was prepared by stereo image interpretation. Though 

efforts were made to ensure identification of all possible landslides, possible omissions and inclusions 

of non-landslides couldn’t have been avoided totally. This can be due to a number of reasons like 

erosion, human interference and vegetation cover that may have obscured the landslide signatures in 

the imagery used. 

� Also, during digitizing, errors are usually introduced due to lack of very accurate delineations of the 

spatial extent of landslides, making this a limitation. This could have even been made worse by both 

subjectivity of the image interpretation in deciding landslide and non-landslide areas and the lack of 

field validation to confirm the actual presence of these landslides.  

5.5. Chapter summary 

This chapter has highlighted some of the major observations and conclusions made from the understanding 

of the results obtained on of transferability of the studied algorithm and pattern analysis. It has highlighted the 

major contributions made by this study to the science body. A number of recommendations and research 

prospects have been pointed out. This chapter has also highlighted the major limitations experienced that 

could have had a significant impact on the progress of the study and the accuracy of the results obtained. 
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APPENDICES 

APPENDIX A: Image characteristics of mass movement types and subtypes 

Morphological, vegetational and drainage diagnostics used 

 Morphology Vegetation Drainage 

Translational 

slides 

Joint controlled crown in rockslides, 

smooth planar surface, relatively 

shallow, run-out hummocky rather 

than chaotic relief with block size 

decreasing with larger distance 

Source and transport path 

denudated often with 

lineations in transport 

direction, differential 

vegetation in body 

Absence of ponding below 

the crown, disordered or 

absence of surface drainage 

on the body, Deflected or 

blocked by frontal lobe 

Rotational 

slides 

Abrupt changes in slope morphology, 

concave niches and concave run-out 

lobe forms, back tilting slope facets, 

scarps and hummocky morphology on 

depositional parts 

Clear vegetation contrast 

with surroundings, absence 

of landuses indicative of 

activity, differential 

vegetation according to 

drainage 

Bad surface drainage or 

ponding in back tilting 

slopes niches, seepage in 

frontal part of run-out lobe 

Debris 

avalanches 

Relatively small, shallow niches on 

steep slopes(>35⁰) with clear linear 

path, body frequently absent  

Niche and path are 

denudated or covered by 

secondary vegetation. 

Shallow linear gully can 

originate on the path of the 

debris avalanche 

 

Lateral spread Irregular arrangement of large blocks 

which are tilting in various directions, 

large cracks and linear depressions are 

separating the blocks, movement cant 

originate on gentle slopes(<10⁰) 

Differential vegetation is 

enhancing the separation of 

blocks. Considerable 

contrast with unaffected 

areas 

Disrupted surface drainage, 

front part of movement is 

closing off a valley, causing 

obstruction and 

asymmetrical valley profile 

Debris Flow Complete destruction along path, 

depositional levees, fattish desolated 

plain, exhibiting vague flow structures, 

large amount of small concavities 

 

Absence of vegetation 

everywhere 

Deranged on body while 

original streams are blocked 

or deflected by the body 

 

Table 23: Image characteristics of mass movement types and subtypes 

Adapted from van Westen et al. [114] 
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APPENDIX B: Original Factor parameter maps  

 
Figure 37: Lithology Map Figure 38: Flow direction map 

The codes used in Figure 37 are explained in Table 27 

 
Figure 39: Aspect Map 

 
 Figure 40: Slope map 
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Figure 41: Roads Map Figure 42: Rivers Map 

 
Figure 43: Enriquillo-Plantain Fault Map 

 

 
Figure 44: Elevation Map 



E
V
A
L
U
A
T
IO

N
 O

F
 T
H
E
 T
R
A
N
S
F
E
R
A
B
IL
IT
Y
 O

F
 A
 G

E
N
E
R
IC

 A
LG

O
R
IT
H
M
 F
O
R
 O

B
JE

C
T
 O

R
IE
N
T
E
D
 L
A
N
D
S
L
ID
E
 M

A
P
P
IN
G
 A
N
D
 P
A
T
T
E
R
N
 A
N
A
LY

S
IS
 F
O
R
 T
H
E
 2
0
10

 H
A
IT
I E

A
R
T
H
Q
U
A
K
E
 

 

7
6 

 A
P
P
E
N
D
IX
 C
: 
S
cr
ip
ts
 f
o
r 
su
sc
ep
ti
b
ili
ty
 a
n
al
ys
is
 

/
/

 S
cr

ip
t 

fo
r 

w
ei

gh
ts

 
/

/
 m

ak
e 

cr
o

ss
 t

ab
le

 
d

el
 %

1_
ac

ti
ve

*.
* 

 -
fo

rc
e 

D
el

 W
%

1*
.*

 -
fo

rc
e 

D
el

 %
1.

tb
t 

-f
o

rc
e 

cr
tb

l 
%

1 
%

1 
%

1_
ac

ti
ve

.t
b

t 
=

 T
ab

le
C

ro
ss

(%
1,

ac
ti

ve
,I

gn
o

re
U

n
d

ef
s)

 
ca

lc
 %

1_
ac

ti
ve

.t
b

t 
/

/
ca

lc
u
la

ti
o

n
 in

 c
ro

ss
 t

ab
le

 
T

ab
ca

lc
  
%

1_
ac

ti
ve

.t
b

t 
n

p
ix

ac
t:

=
if

f(
ac

ti
ve

=
1,

n
p

ix
,0

) 
ta

b
ca

lc
 %

1 
n

cl
as

s 
=

 C
o

lu
m

n
Jo

in
S
u
m

(%
1_

ac
ti

ve
.t

b
t,

N
P

ix
,%

1,
1)

 
ta

b
ca

lc
 %

1 
n

sl
cl

as
s 

:=
 C

o
lu

m
n

Jo
in

S
u
m

(%
1_

ac
ti

ve
.t

b
t,

n
p

ix
ac

t,
 %

1,
1)

 
ta

b
ca

lc
 %

1 
n

m
ap

 :=
 C

o
lu

m
n

Jo
in

S
u
m

(%
1_

ac
ti

ve
.t

b
t,

N
P

ix
,,1

) 
ta

b
ca

lc
 %

1 
n

sl
id

e 
:=

 C
o

lu
m

n
Jo

in
S
u
m

(%
1_

ac
ti

ve
.t

b
t,

n
p

ix
ac

t,
,1

) 
/

/
ca

lc
u
la

te
 N

p
ix

1 
to

 N
p

ix
 4

 
T

ab
ca

lc
 %

1 
N

p
ix

1 
=

 if
f(

n
sl

cl
as

s=
0,

1,
n

sl
cl

as
s)

 
T

ab
ca

lc
 %

1 
 N

p
ix

2 
=

 if
f(

(n
sl

id
e 

- 
n

sl
cl

as
s)

=
0,

1,
n

sl
id

e-
n

sl
cl

as
s)

 
T

ab
ca

lc
 %

1 
 N

p
ix

3 
=

 n
cl

as
s 

- 
n

sl
cl

as
s 

T
ab

ca
lc

 %
1 

 N
p

ix
4 

=
 n

m
ap

 -
 n

sl
id

e 
- 

n
cl

as
s 

+
 n

sl
cl

as
s 

/
/

 c
al

cu
la

te
 w

ei
gh

ts
 

T
ab

ca
lc

 %
1 

W
p

lu
s=

ln
((

n
p

ix
1*

(n
p

ix
3+

n
p

ix
4)

)/
((

n
p

ix
1+

n
p

ix
2)

*n
p

ix
3)

) 
T

ab
ca

lc
 %

1 
W

m
in

=
ln

((
n

p
ix

2*
(n

p
ix

3+
n

p
ix

4)
)/

((
n

p
ix

1+
n

p
ix

2)
*n

p
ix

4)
) 

T
ab

ca
lc

 %
1 

w
m

in
to

ta
l =

 C
o
lu

m
n
A

gg
re

ga
te

S
u
m

(W
m

in
,,1

) 
T

ab
ca

lc
 %

1 
 W

fi
n

al
:=

W
p

lu
s+

W
m

in
to

ta
l-

W
m

in
 

/
/

cr
ea

te
 t

h
e 

at
tr

ib
u
te

 m
ap

 
W

1%
1.

m
p

r 
:=

 M
ap

A
tt

ri
b

u
te

(%
1,

%
1.

tb
t.

W
fi

n
al

) 
W

%
1.

m
p

r 
:=

 if
f(

is
u
n
d

ef
(o

u
tl

in
e)

,?
,W

1%
1.

m
p

r)
 

d
el

 W
1%

1*
.*

 -
fo

rc
e 

S
h

o
w

 W
%

1.
m

p
r 

/
/

 C
ro

ss
 W

ei
gh

t 
M

ap
 w

it
h

 M
ap

: 
ac

ti
ve

 
/

/
%

1 
is

 w
ei

gh
te

d
 f

ac
to

r 
m

ap
s 

d
el

 s
u
cc

es
s*

.*
 -

fo
rc

e 
cr

tb
l 
%

1 
%

1 
%

1_
ac

ti
ve

.t
b

t 
=

 T
ab

le
C

ro
ss

(%
1,

ac
ti

ve
,I

gn
o

re
U

n
d

ef
s)

 
ca

lc
 %

1_
ac

ti
ve

.t
b

t 
/

/
In

 t
h

e 
cr

o
ss

 t
ab

le
, 
ca

lc
u
la

te
 

ta
b

ca
lc

 %
1_

ac
ti

ve
 n

p
ix

ac
t:

=
if

f(
ac

ti
ve

=
1,

n
p

ix
,0

) 
ta

b
ca

lc
 %

1_
ac

ti
ve

 N
p

cu
m

ac
ti

ve
 =

 C
o

lu
m

n
C

u
m

u
la

ti
ve

(n
p

ix
ac

t)
 

/
/

d
et

er
m

in
e 

th
e 

m
ax

im
u
m

 v
al

u
e 

w
it

h
 l
an

d
sl

id
e 

p
ix

el
s.

  
ta

b
ca

lc
 %

1_
ac

ti
ve

 M
ax

la
n

d
sl

id
e 

=
 

C
o

lu
m

n
A

gg
re

ga
te

M
ax

(N
p

cu
m

ac
ti

ve
,,1

) 
ca

lc
u
la

te
 p

er
ce

n
ta

ge
 o

f 
la

n
d
sl

id
es

 
ta

b
ca

lc
 %

1_
ac

ti
ve

 p
er

ce
n

ta
ge

:=
10

0*
(N

p
cu

m
ac

ti
ve

 /
m

ax
la

n
d
sl

id
e)

 
ta

b
ca

lc
 %

1_
ac

ti
ve

 P
er

ce
n

tl
an

d
sl

id
e:

=
10

0-
p

er
ce

n
ta

ge
 

ta
b

ca
lc

 %
1_

ac
ti

ve
 N

p
ix

cu
m

:=
C

o
lu

m
n

C
um

u
la

ti
ve

(N
P

ix
) 

ta
b

ca
lc

 %
1_

ac
ti

ve
 N

p
ix

C
u
m

M
ax

 :=
 C

o
lu

m
n

A
gg

re
ga

te
M

ax
(N

p
ix

cu
m

,,1
) 

ta
b

ca
lc

 %
1_

ac
ti

ve
 r

ev
er

se
 :=

 N
p

ix
C

u
m

M
ax

-n
p

ix
cu

m
 

ta
b

ca
lc

 %
1_

ac
ti

ve
 p

er
ce

n
tm

ap
 :=

 1
00

*(
re

ve
rs

e/
N

p
ix

C
u
m

M
ax

) 
/

/
ca

lc
 %

1_
ac

ti
ve

.t
b

t 
o

p
en

 %
1_

ac
ti

ve
.t

b
t 

/
/

gr
ap

h
 

o
p

en
 %

1_
ac

ti
ve

.g
rh

 

 

S
cr
ip
t 
fo
r 
w
ei
g
h
ti
n
g
 o
f 
th
e 
fa
ct
o
r 
m
a
p
s 

S
cr
ip
t 
fo
r 
su
cc
es
s 
ra
ti
n
g
. 

T
ab

le
 2

4:
 S

cr
ip

ts
 f

o
r 

w
ei

gh
ti

n
g 

an
d
 s

u
cc

es
s 

ra
ti

n
g 

o
f 

fa
ct

o
r 

m
ap

s



 

77 
 

APPENDIX D: Statistics derived from WoE modeling for each factor class 
Factor Factor 

classes 
Final 
weights 

Contrast  Factor Factor classes Final 
weights 

Contrast 

Lithology PI -3.12 -2.74  

 

 

 

 

 

 

 

 

 

 

South of  

Enriquillo 

Plantain 

Fault 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>6750-7000 -3.62 -3.58 

QA -1.61 -1.23 >7000-7250 -3.51 -3.47 

CB -2.90 -2.52 >7250-7500 -3.31 -3.28 

EMS 1.29 1.67 >7500-7750 -3.19 -3.16 

MI -1.05 -0.67 >7750-8000 -1.77 -1.73 

MS -0.22 0.16 >8000-8250 -2.42 -2.39 

O -2.97 -2.59 >8250-8500 -3.06 -3.02 

EP 0.24 0.62 >8500-8750 -3.08 -3.05 

P -1.66 -1.27 >8750-9000 -3.01 -2.98 

CS -4.32 -3.94 >9000-9250 -2.96 -2.93 

Flow 
direction 

E 0.59 0.60 >9250-9500 -2.55 -2.52 

N 0.30 0.31 >9500-9750 -2.16 -2.13 

NE -0.23 -0.22 >9750-10000 -2.14 -2.10 

NW -0.05 -0.05 >10000-10250 -2.14 -2.10 

S 0.04 0.05 >10250-10500 -2.14 -2.11 

SE -0.30 -0.29 >10500-10750 -2.14 -2.11 

SW -0.71 -0.71 >10750-11000 -2.16 -2.13 

W -0.11 -0.10 >11000-11500 -2.82 -2.79 

Distance 
from roads 

0-10 -0.12 0.18 >11500-12000 -2.82 -2.78 

>10-20          - - >12000-12500 -2.83 -2.79 

>20-30 -0.37 -0.07 >12500-13000 -0.75 -0.72 

>30-50 -0.70 -0.41 >13000-13500 -2.84 -2.80 

>50-100 -0.75 -0.46 >13500-14000 -2.83 -2.79 

>100-200 -0.72 -0.43 >14000-14500 -2.80 -2.77 

>200-11000 0.04 0.33 >14500-15000 -1.51 -1.48 

Slope 0-15 -1.18 -1.26 >15000-15500 -3.00 -2.96 

>15-30 -0.26 -0.34 >15500-16000 -2.37 -2.34 

>30-45 1.56 1.48 >16000-16500 -1.53 -1.49 

>45-60 2.54 2.46 >16500-17000 0.59 0.63 

>60-75 2.55 2.47 >17000-17500 0.25 0.28 

>75-90           - - >17500-18000 -0.77 -0.73 

Aspect N -0.09 -0.08 >18000-18500 -2.01 -1.98 

NE 0.12 0.13 >18500-19000 -1.35 -1.32 

E 0.24 0.25 >19000-20000 -0.90 -0.87 

SE 0.03 0.04 >20000-21000 -2.05 -2.02 

S 0.58 0.59 >21000-22000 -4.11 -4.07 

SW -0.12 -0.11 >22000-23000 -2.83 -2.80 

W -0.06 -0.06 >23000-24000 -2.30 -2.26 

NW -0.78 -0.77 >24000-25000 -3.03 -2.99 

N2 -0.42 -0.41 >25000-26000 -2.49 -2.45 

Distance 
from 
drainage 

0-10 
0.41 -0.12 >26000-26515 -0.16 -0.13 

>10-20            - -   0-250 1.12 1.16 
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lines/rivers >20-30 0.50 -0.02 North of 

Enriquillo 

Plantain 

Fault 

>250-500 1.73 1.77 

>30-50 0.37 -0.16 >500-750 1.82 1.85 

>50-100 1.02 0.50 >750-1000 1.27 1.31 

>100-200 1.42 0.90 >1000-1250 0.47 0.51 

>200 -0.11 -0.63 >1250-1500 1.26 1.30 

Elevation 0-200 -0.19 -0.18 >1500-1750 0.89 0.92 

>200-400 0.34 0.36 >1750-2000 1.13 1.16 

>400-600 -0.25 -0.24 >2000-2500 0.65 0.68 

>600-800 0.11 0.12 >2500-3000 1.10 1.14 

>800-1000 -0.17 -0.16 >3000-3250 -1.07 -1.03 

>1000-1200 -0.51 -0.49 >3250-3500 -3.30 -3.26 

>1200-1400 0.50 0.51 >3500-3750 0.15 0.20 

>11400-600 0.00 0.02 >3750-4000 0.28 0.33 

>1600-1800 -3.03 -3.02 >4000-4250 -0.97 -0.92 

>1800-2000   - - >4250-4500 0.96 1.01 

South of  

Enriquillo 

Plantain 

Fault 

 

0-250 1.12 1.16 >4500-4750 0.50 0.55 

>250-500 1.73 1.77 >4750-5000 -1.50 -1.45 

>500-750 1.82 1.85 >5000-5250 -0.42 -0.37 

>750-1000 1.27 1.31 >5250-5500 -2.33 -2.28 

>1000-1250 0.47 0.51 >5500-5750 0.13 0.18 

>1250-1500 1.26 1.30 >5750-6000 0.02 0.06 

>1500-1750 0.89 0.92 >6000-6250 -2.74 -2.70 

>1750-2000 1.13 1.16 >6250-6500 -2.39 -2.34 

>2000-2500 0.65 0.68 >6500-6750 -1.64 -1.60 

>2500-3000 1.10 1.14 >6750-7000 -0.37 -0.32 

>3000-3250 0.03 0.07     

>3250-3500 0.28 0.31    

>3500-3750 -0.29 -0.26    

>3750-4000 0.15 0.19    

>4000-4250 -0.38 -0.34    

>4250-4500 0.34 0.38    

>4500-4750 -0.54 -0.51    

>4750-5000 -2.76 -2.73    

>5000-5250 0.48 0.52    

>5250-5500 -0.37 -0.33    

>5500-5750 -2.49 -2.46    

>5750-6000 -3.77 -3.74    

>6000-6250 -3.77 -3.74    

>6250-6500 -3.67 -3.63    

>6500-6750 -3.63 -3.60    

Table 25: Statistics derived from WoE modelling for each factor class 
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Abbreviation  English Interpretation of the descriptions Lithology identified 

Sedimentary rocks  
QA Quaternary Alluvial cones of Spraying fluviates, scree, mangroves Quaternary alluviums 
P  

 
 
 
 
 
 
 
Tertiary 

Pliocene: Marls and sands, old cones of spreading: marls and sands of the central 
plateau and the big hill. 

Pliocene weakly cemented clastic deposits 
in fans and low hills 

MS Upper Miocene: marls orbulines: marls and sands of the Central Plateau and 
Basin “Gros Morne” 

Upper Miocene age limestone, marls and 
sandstone 

EMS Middle to Upper Eocene: Biomicrites pelagic of the peninsula South Island and 
southern slopes of the Massif du Nord also limestone platform of the Massif du 
Nord 

Middle to Upper Eocene limestone: 
(cracked and porous carbonate aquifers 
highly permeable) 

O Oligocene: Chalk and marly limestone of the peninsula South Island and the 
“Chaine des Matheux”, clays and sandstones Basin Gros Morne, coarse limestone 
and conglomerates 

Oligocene chalk and marly 
limestone(cracked and uneven carbonate 
aquifers partition) 

EP Upper Paleocene - Lower to Middle Eocene: conglomerates and sandstones 
of volcanic massif de la Selle, marl, sandstone and calcareous marl of the Black 
Mountains, elsewhere platform lime stones and calcareous pelagic 

Upper Paleocene - Lower to Middle 
Eocene volcaniclastic rocks 

MI Lower Miocene: Sandstone-pelitic flysch Central Plateau (fm. Ms. Joy) 
calcareous sandstone Basin ”Gros Morne” (fm. La Crete) lime stones of the 
platform chainon Paincroix of the peninsula and South Island 

Lower Miocene flysch lime stones (marly 
limestone aquifers) 

CS Senonian: pelagic lime stones of the peninsula South Island (fm. Macaya) and the 
Massif de Terre Neuve (fm. Miguinda), and other lime stones of the same age 

Senonian pelagic limestone 

PI Cretaceous 
and Tertiary 

Marls and marly limestone massif of the saddle (fm.Beloc) clays and detrital 
volcano of the Massif de la Hotte (fm. Riviere Glace) also pelagic limestone of the 
southern peninsula 

Maastrichtian Pelagic limestone 

Magmatic rocks 

CB Cretaceous Tholeiitic and sedimentary complex: Tholeiitic and sedimentary complex of 
the South Island peninsula (fm. Demisseau) and other massive flows, with or 
without interbedded sedimentary 

Cretaceous metamorphosed basalt, 
ultramafic rocks(igneous & basaltic) 
volcano-sedimentary metamorphic rocks 

Table 27: Lithological map translation and interpretation to usable Lithology map units
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APPENDIX F: Methodological set up used by Martha et al. [1] 

 
Figure 46: Methodological set up used by Martha et al. [1] 

 

 



 

82 

APPENDIX G: Quantitative classification criteria for landslide types. 

 
Figure 47: Quantitative classification criteria for landslide types. 

Adopted from Martha et al [1] 




