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Abstract 

Wildfire can exacerbate forest degradation and accelerate land cover change. In 
developing countries such as Nepal, few resources are available to address these 
problems. This study aimed to develop a method that incorporates fuzzy logic on 
both spatial and temporal dimensions to identify regions of Chitwan District most at 
risk to wildfire occurrence. Fire risk factors were identified and grouped into five 
sub-models consisting of biophysical risk, ignition risk, weather risk, detection and 
response. Fuzzy membership functions were used to standardise factors based on the 
spatial patterns of a burn scar sub-set. The dynamic weather risk sub-model was 
standardised by applying fuzzy membership functions to monthly outputs of a 
drought index and average temperature. Convex (weighted) combination was used to 
combine variables within each sub-model, and to combine sub-models to produce 
monthly outputs. A second sub-set of burn scars was used to validate the model, 
before a sensitivity analysis was performed. Spatially, risk was highest in areas 
characterised by agriculture and grassland, while areas of lowest risk were located in 
remote, high altitude forests. The dynamic aspect of the model showed that April 
and September were the highest and lowest risk months respectively. The relative 
operating characteristic was used to validate these outputs, and AUC ranged between 
0.7 and 0.78. This dynamic aspect of the model was successful because it identified 
the highest risk month as April, which is traditionally the month of greatest fire 
activity, while September was identified as the lowest risk month, which is typically 
towards the end of the monsoon season. However, the range in risk values between 
the highest and lowest risk months was not as great as expected. The overall aim of 
developing a spatial, dynamic, fuzzy fire risk model for Chitwan District, Nepal, was 
achieved, but the methods used here are not without their limitations. 
 
 
 
 
 
 
 
 
 
 
 
Keywords: fire risk, fuzzy logic, multi-criteria evaluation, pairwise comparison,  
relative operating characteristic, Nepal.  
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1. INTRODUCTION 

1.1. Background 

1.1.1. Fire and wildfire 

Throughout history, fire has been an essential part of human life. In his book The 
Descent of Man, Charles Darwin describes the discovery of fire as "probably the 
greatest ever made by man, excepting language" (Darwin, 1882, 49). Fire enabled 
humans to become more successful by generating heat and light, enriching diets 
through cooking, and warding off predators (Wrangham and Carmody 2010). 
Control of fire also allowed man to influence the surrounding landscape. For 
example, hunter-gatherers have used and continue to use fire successfully in the 
control of wildlife and to clear land for habitation (Bowman et al. 2009). 
 
Of course, fire was present in the landscape long before man learned to master it. 
Wildfire, for example, remains an essential aspect of many ecosystems from the 
savannas of Africa to the tropical rainforests of Latin America. In recent history, 
however, humankind's increasing dominance over the environment has led to the 
expansion of agricultural and urban land into previously undisturbed environments 
prone to wildfire (Bowman et al. 2009). Despite efforts to control wildfire, 
management strategies are imperfect. Wildfire therefore remains a significant issue, 
posing a variety of problems to those concerned, from government officials and fire 
managers, to those that live within the fire affected areas. 
 

1.1.2. Problems caused by wildfires 

Whether natural or human caused, wildfire can be a catastrophic phenomenon 
responsible for burning millions of hectares globally every year, and causing billions 
of dollars of damage (Cochrane 2002). It is a problem that receives considerable 
attention in developed countries, such as the US, Canada, Europe and Australia 
where much research has been done into the issues that surround wildfire. However, 
wildfire is also an issue affecting developing countries such as Nepal, which has 
recently been dubbed a "white spot" by the IPCC as so few studies have been 
conducted (Khadka 2009). 
 
Fire is a significant cause of environmental degradation (Stickler et al. 2009). 
Forests become fragmented as trees are damaged or destroyed, not only leading to a 
loss of biodiversity as habitats are degraded, but exposing the underlying soil to 
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processes of erosion. The combination of these aspects gives rise to land cover 
change, whereby previously undisturbed forests are converted to grassland or scrub 
ecosystems (Matricardi et al. 2010; Eva and Lambin 2000).  
 
Despite disturbed landscapes being at an increased risk of further fire events, land 
cover change can also contribute to the wider issue of climate change. For example, 
at a regional scale, Mölders and Kramm (2007) observed that the loss of vegetation 
cover can alter surface roughness and albedo, affecting the energy flux between the 
surface and atmosphere. They then go on to suggest this can alter local weather 
patterns, affecting cloud formation and precipitation. Amiro et al. (1999) also 
observed that burned area remained warmer than undisturbed forest for up to 15 
years after a fire event, indicating that fire can impact climate at a local scale. 
 
Globally, biomass burning has been a significant source of carbon dioxide and other 
greenhouse gases. Of 8,700 Tg of biomass burned annually, including forest cover, 
3,500 Tg of carbon is released as carbon dioxide (Palacios-Orueta et al. 2005). 
Change in this forest cover accounts for approximately 20 - 25% of the total amount 
of carbon released from human activities every year (Dowmoh et al. 2009). This 
emission contributes to climate change both directly, through release of greenhouse 
gas from combustion, and indirectly, through loss of vegetation which would have 
otherwise sequestered carbon. Flannigan et al. (2000) suggest that potential therefore 
exists for a feedback mechanism whereby release of greenhouse gas forces a change 
in climate, which facilitates conditions that promote an increase in fire frequency. 
 

1.1.3. Fire hazard and risk 

Within the fire literature there are numerous definitions of the terms fire hazard and 
fire risk, and it is important to distinguish among them. The term hazard, in its most 
basic sense was defined by Burton and Kates (1964, 413) as "those elements in the 
physical environment which are harmful to man and caused by forces extraneous to 
him". Based on this definition, the wildfire itself would be the hazard. However, 
Bachmann and Allgöwer (2001) discuss how using the term 'fire hazard' shifts the 
focus away from the wildfire process, and onto specific elements of the fire 
environment that could potentially contribute to fire behaviour or severity. For 
example, the US National Wildfire Coordinating Group (NWCG), focuses solely on 
fuel complexes as a hazard, "defined by volume, type, condition, arrangement, and 
location that determines the degree of ease of ignition and the resistance to control" 
(NWCG 2003). 
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Fire risk differs from fire hazard in that it includes the components of probability 
and potential damage. In Hall (1992, 131), risk is defined as "a), a type and degree 
of danger or peril or loss; and b), the relative likelihood that that type and degree of 
danger will occur". A similar definition of wildfire risk is proposed by Bachmann 
and Allgöwer (2001, 28): "The probability of a wildland fire occurring at a specified 
location and under certain circumstances, together with its expected outcome as 
defined by its impacts on the object it affects". The above definitions of fire risk do, 
however, emphasize the destructive and sometimes negative impacts of wildfire. 
This may not be an accurate definition if coming from the standpoint of individuals 
who use fire to manage ecosystems. In this situation, Hardy (2000, 81) argues that 
the "emotional and value-driven" terms used to describe damage, such as 
'catastrophic', be excluded from the fire management vernacular. 
 

1.1.4. Role of remote sensing within fire research 

Since the launch of the first Landsat satellite in 1972, remote sensing has proven to 
be a major benefit to many disciplines, from land cover mapping to water resource 
management. Application of remotely sensed data to fire related issues is no 
exception, and has provided many benefits. Satellites are capable of sampling a large 
spatial extent on a regional or even global scale that would simply not be possible on 
the ground. Furthermore, this data generally is obtained at relatively low cost when 
compared to their ground-based equivalents. Another major advantage of remotely 
sensed data is that it can be used to develop fuel maps, provide topographical 
information and estimate weather aspects that together affect fire (Chuvieco 2000). 
 
Remote sensing also fulfils a significant role in the near real-time monitoring of 
current fire events, including both detection of active fires, and post-fire assessment 
of burned area. A number of satellites have been used in the detection of active fires. 
The GOES satellite, for example, has a revisit time of approximately 15 minutes, 
meaning that fire activity can be tracked in detail (Prins and Menzel 1992). 
However, a major drawback is GOES's coarse resolution of 4 km, as only the largest 
of fires can be detected. In contrast to the GOES satellite, Landsat's high resolution 
of 30 m has provided the opportunity to identify individual fires, but is limited by a 
revisit time of 16 days (Chuvieco and Congalton 1989). AVHRR provides a trade-
off between the spatial and temporal resolution. Fires greater than a 1 km2 are 
revisited every 24 hours, and was used extensively within the research community in 
the 1990s (Kaufman et al. 1998). Within the last decade, MODIS has replaced 
AVHRR in the detection of active fire. Its fire detection algorithm is, however, 
based on that used within AVHRR. This algorithm functions largely around the mid-
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infrared channels (3.75 μm), which are highly sensitive to the elevated radiance that 
is emitted by active fire. A fire is detected when radiance within a pixel is greatly 
elevated above the radiance of the surrounding (background) pixels (Justice 2002). 
 
Satellite remote sensing also provides "one of the only means of monitoring burned 
vegetation on a regional or global scale" (Roy 2005, 138), and much data has been 
used in the development of methods to identify and quantify this burned area. Some 
of these methods rely simply on a visual interpretation of a satellite image. For 
example, satellites such as Landsat, SPOT and ASTER provide high resolution 
imagery from which burn scars can be digitised. Band combinations from satellite 
sensors also exist which aim to maximise the ability of the analyst to distinguish 
between burned and unburned areas. Burned areas typically have a low reflectance 
against the relatively high reflectance of the surrounding vegetation. SPOT and 
Landsat data have also been used to develop indices that identify burned area. The 
Normalised Burn Ratio (NBR), for example, exploits the near-infrared (NIR) and 
mid-infrared (MIR) regions of the spectrum. When a fire occurs, reflection in the 
NIR decreases as vegetation is lost, but reflection in the MIR increases because soil 
moisture content is burned and hence absorbs less radiation (Key and Benson 2006). 
NDVI is also commonly used in the detection of burned area. The differenced NDVI 
(dNDVI) method involves calculating the NDVI of the fire affected area both before 
and after the fire event. The post-fire NDVI is then subtracted from the pre-fire 
NDVI, which enables not only the burned area to be located, but also an assessment 
of the degree of damage caused by the fire (Fox et al. 2008). 
 

1.1.5. Importance of forests in Nepal 

As mentioned in section 1.1.3, wildfire is an issue that affects the developed and 
developing world, including countries like Nepal. This section highlights the 
importance of forests in this country and also describes how forest is managed today. 
The following section discusses the threats these forests face from wildfire.  
 
Forest covers approximately 30% of Nepal's land area. This is important in a country 
characterised by steep slopes, where an absence of forests would encourage slope 
instability and erosion of top soils. Acharya and Dangi (2009) estimated that in 
regions of high altitude, maintaining 1 ha of paddy land required 50 ha of forest and 
grazing land. Fuel wood is still a major source of energy in Nepal. In 2002, 76% of 
energy consumed was provided by fuel wood (Pokharel 2007). 
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Forests also have significance for rural communities. Prior to the 1970s, forests were 
managed solely by government forestry agencies. However, in the 1970s, there was 
a drive to include also public participation within forest management (Timsina 
2003). This meant that the rights of access, use, exclusion and management were 
passed over to local communities (Thom 2008). These are known as community 
forest user groups (CFUGs), and are important for supporting livelihoods, as well as 
conserving the forests and tackling deforestation. 
 

1.1.6. Wildfire in Nepal 

Nepal's forests have faced and continue to face threats from deforestation and 
degradation. One species in particular, Sal (Shorea robusta), is an economically 
important deciduous species common to the sub-tropical south of the country, also 
known as the Terai region. On the one hand, Sal has been subjected to widespread 
logging due to its desirable hardwood properties, while on the other, wildfire has 
promoted degradation of it and other forest species. This has accelerated the rate of 
land cover change. For example, from the 1970s through to the 1990s, degradation 
of forestland into shrubland was occurring at a rate of 5.5% per year (Acharya and 
Dangi 2009), with deforestation for agriculture progressing at 1.3% per year 
(Rautiainen and Suoheimo 1997).  
 
As mentioned, wildfire predominantly occurs within this Terai region, with districts 
such as Chitwan, Nawalparasi and Palpa particularly badly affected (ICIMOD 
2010). Fire frequency is greatest throughout the period March, April and May. The 
weather during this time is characterised by low precipitation, high temperatures and 
strong winds. In March 2009, powerful fires flared, and 1,583 active fires were 
detected throughout the Terai belt. Thousands of hectares of forest and croplands 
were destroyed (ICIMOD 2010). 
 
Fires have consequences for the communities around which they burn. The majority 
are of anthropogenic origin, used for land clearance purposes. However, these fires 
can frequently become difficult to control, particularly in periods of drought. Not 
only do these fires burn into adjacent fields, but also into surrounding grassland, 
forest and settlements (Acharya and Dangi 2009). 
 
Attacking wildfires once they have started is essential in protecting the most 
vulnerable resources. However, Nepal is characterised by steep, often inaccessible 
terrain, limiting the capability of authorities to tackle fire. Road access is especially 
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limited. Attacking fire from the air is an effective way of controlling fires, but Nepal 
has few aircraft that can adequately achieve this.  
 
Other methods that enable the wildfire issue to be tackled without the need for the 
expensive human intervention described above, and that are suitable to the Nepali 
context, should therefore be explored. The next section justifies a fire risk model 
approach that would enable authorities to manage the landscape to reduce the 
likelihood of a fire igniting and propagating in the highest risk areas. 

1.2. Justification for fire risk model 

In order to reduce the number of fires, or to ensure their effective control, it is 
necessary to have an understanding of which areas are most prone to fire damage 
(Chen et al. 2001). Fire risk modelling is one such approach that can achieve this. 
However, authorities in Nepal have limited access to relevant fire risk models and 
are therefore unable to effectively allocate resources because identification of the 
most vulnerable areas remains a challenge. The Intergovernmental Panel on Climate 
Change (IPCC) also recently dubbed the Nepal region as a "white spot", as so few 
studies have been conducted, and little data is available (Khadka 2009). Authorities 
therefore have few opportunities to develop and apply models specific to their 
region, again hampering efforts to develop effective fire risk models. 
 
A further justification for a fire risk model is linked to the Reduced Emissions from 
Deforestation and Degradation in developing countries (REDD). Approximately 
20% of global greenhouse gas (GHG) emissions are released through deforestation 
and degradation (Ohja et al. 2008). A fire risk model would enable forestry 
authorities to implement management strategies that reduce the quantity of fuel 
within a high risk area. This would contribute to the REDD programme as reducing 
fire risk could potentially reduce fire frequency, and hence the volume of emissions 
emitted by deforestation and degradation. It could also benefit rural communities 
because the more carbon that is stored within CFUGs, the greater the payment they 
receive from the REDD programme. 

1.3. The fire environment 

In order to understand the factors contributing to fire risk, it is necessary to examine 
the fire environment. Countryman (1972, p12) defines the fire environment as the 
"surrounding conditions, influences, and modifying forces" that determine the 
behaviour of a fire. Topography, fuel and weather are three major aspects of this, 
and form the three sides of the 'fire environment triangle'. The fire environment can 
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also be affected to a significant extent by human activity, such as the reduction of 
fuel quantity. It is important to consider also that, although the fire environment 
affects fire behaviour, in some situations large fires can interact with the 
environment itself, especially with respect to fuel.   

1.3.1. Topography 

Topography forms a significant aspect of the fire environment, with both direct and 
indirect effects on the potential fire behaviour. In a general sense, 'topography' - or 
features of the landscape - can not only promote extreme fire behaviour through the 
existence of 'chutes' or 'chimneys', but also present barriers to fire propagation with 
presence of lakes, bare soil or rocks. More specifically, fire behaviour is controlled 
by slope, elevation and aspect. 
 
Slope is defined as the rate of change in elevation. Typically measured in degrees or 
percent, slope can directly affect fire behaviour due to its influence on a fire's rate of 
spread and flame length (Finney 1998). Fire burns rapidly uphill as radiant heat from 
the approaching flames reduces moisture content of adjacent fuel, raising it to 
ignition temperature (Rothermel 1972). Thermal energy released by the fire also 
creates a convection column of rising air, which aids fire movement in the up-slope 
direction. The convection column can also increase the risk of 'spotting', a process 
whereby release of firebrands into the atmosphere may result in ignition in other 
locations 
 
Elevation above sea-level affects general climate characteristics. Lower elevations 
are typically characterised by higher temperature, and lower relative humidity. At 
high elevation, the effect of orographic rainfall is more pronounced to the extent that 
relative humidity and fuel moisture are greater, restricting the ability of fire to ignite 
or propagate (Romme and Knight 1981). In some locations, a thermal belt can exist 
in the mid-slope region, where the inversion layer contacts the mountain slopes 
(Pyne et al. 1996). Highest average temperatures are located here, and this explains 
why fires may burn on the mid-slope region, and not above or below this. Elevation 
also influences periods of seasonal snow melt, as snow packs at high elevation will 
be present for long periods, and when melting occurs fuel moisture content will be 
significant.  
 
Aspect is the direction that a slope faces, and is measured in degrees from 0° 
(north), through to 180° (south) back to 360° (north). Flat surfaces are given the 
value of -1°. Southern facing slopes (in the northern hemisphere) are exposed to the 
greatest quantities of solar radiation. Furthermore, in the northern hemisphere south 
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and south-west facing slopes are exposed to the prevailing winds. The combination 
of these two results in higher temperatures, lower relative humidity and higher fuel 
quantities on southern facing slopes (Heyerdahl et al. 2001; Pyne et al. 1996). The 
opposite is true for north facing slopes. 

1.3.2. Weather 

Weather is the most dynamic element within the fire environment, and is the 
dominant factor that determines the degree of fire risk on a given day. It is important 
to distinguish between weather, which is the day to day variation in atmospheric 
conditions, and the climate, which is responsible for long-term weather patterns. The 
atmospheric conditions that influence fire are temperature, precipitation, wind and 
humidity, with the interaction of these promoting fire weather. 
 
Surface temperature can directly affect fire risk because it controls the temperature 
of fuel. High temperatures mean the fuel is closer to its point of ignition, such that an 
approaching fire does not have to supply significant amounts of heat energy to start 
combustion (Schroeder and Buck 1970). A fire's rate of spread will therefore be 
greater in an environment characterised by high temperature. 
 
Precipitation events can reduce the risk of ignition or suppress fires that are already 
burning. Water falling on the vegetation and on the soil increases a fuel's moisture 
content (FMC). Fuels characterised by high FMC require significant quantities of 
heat to accelerate evapotranspiration and ignite a fuel. Long periods of drought-like 
conditions can therefore give rise to intense fire seasons in which the frequency of 
fire, and the area burned by fire, are considerable. 
 

1.3.3. Vegetation 

Vegetation provides the fuel which fire burns, and is an important aspect of both the 
fire triangle and the fire environment triangle. Although vegetation in tropical and 
sub-tropical regions does not exhibit significant temporal variation, it does vary 
spatially. Vegetation cover types have different properties that in turn affect fire 
behaviour. These aspects include the fuel quantity and fuel size.  
 
Fuel quantity is the amount of fuel available to burn. When a fuel is burned, it is the 
carbon that is combusted. Fuel quantity associated with a particular vegetation type 
can therefore be expressed as the amount of carbon per hectare (MgC/ha). Fire can 
burn with greater intensity, and release more heat, if there is more fuel to burn 
(Albini 1976).  
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Fuel size and shape determines the surface area to volume ratio of fuels. This varies 
significantly from forest stands and logs, to grasses and brush. Grasses and brush 
have high surface areas to volume ratios, meaning less heat is required to reduce 
moisture content and achieve the ignition temperature. Combustion in grasses and 
brush is further aided by a  low fuel density. Conversely, dense fuels such as timber 
(forest) typically have low surface areas to volume ratios. This inhibits convective 
and radiant heat transfer, meaning that the time lag until ignition is achieved will be 
considerable. Combustion efficiency will also be limited within dense fuels as less 
oxygen is contained in fewer void/pore spaces. 
  

1.3.4. Human influence 

The human population can present both a risk to fire ignition, and are responsible for 
strict management strategies that controls fire behaviour and limits its frequency.  
 
Ignition risk. Fire frequency has been found to be greater in close proximity to 
settlements, roads and agricultural land (Martinez et al. 2009). Roads can provide  
access to vulnerable fuels, which could be exploited by arsonists. Agricultural land 
poses a fire risk because fire is sometimes used by communities to clear fields. 
Grassland can also be a fire risk, as fire can occur here both naturally and as a form 
of management.  
 
Topography influences the ability to detect and respond to fire. Finding the 
location of a fire can be difficult in terrain characterised by high relief that blocks 
the line of sight. Terrain also complicates the ability of communities to tackle fire. 
For example, on roads, travel time is relatively short compared to off-road 
movement through forest or on steep slopes. 
 
The review of the fire environment above has highlighted numerous factors that 
could be incorporated into a fire risk model. These factors also fall into specific 
themes, from topography to weather to human influences. The following sections 
discuss how the influence of these factors can be incorporated into a model, with 
two different methods being critically compared. 
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1.4. Fire risk modelling approach 

1.4.1. Limitations of existing methods 

Over the past two to three decades, GIS has developed to become a major platform 
on which spatial decision making is performed, handling data at multiple spatial and 
temporal scales (Jiang and Eastman 2000). Multi-criteria evaluation (MCE) or multi-
criteria decision analysis (MCDA) has been a central part of this development, 
enabling users to incorporate numerous (and often unrelated) aspects that affect a 
system or issue. By considering a wide variety of factors, decisions concerning 
suitability or vulnerability can be evaluated, producing reliable results that can be 
accepted by opposing interest groups.  

1.4.2. Comparison of Boolean and fuzzy set standardisation 

MCE has been used extensively within the fire research community, particularly 
studies concerning fire risk modelling and management (Vadrevu et al. 2010; 
Rathaur 2006; Orozco et al. 2009 ; Mohammed et al. 2009). As with the majority of 
MCE studies, factors that are deemed to contribute to or mitigate fire risk are 
identified. The factors (e.g. slope or aspect) can then be classified or standardised 
into a fire risk index.  Areas that are considered 'vulnerable' are assigned a high 
index value (e.g. 10), while areas of decreasing vulnerability receive 
correspondingly lower values (e.g. 1). Standardising factors in this way is essential if 
factors are to be aggregated to produce an overall risk map.  
 
This type of standardisation is Boolean in nature, in that discrete boundaries exist 
between index values. However, it is this Boolean-type standardisation that is a 
limitation of this method (Iliadis 2005). The equations below will be used to explain 
this limitation, and are based on the studies of Zadeh (1965), Burrough (1989) and 
Schubert (2004).  
 
                 Equation 1
  
Equation 1 means that all observations  within universe or population  with the 
property  are a member of class . Applying this equation to a Boolean 
classification means that   either belongs to or does not belong to class . Sharp 
crisp boundaries  and  therefore exist between occurrence (= 1) and non-
occurrence (= 0) and could also be represented as shown in Equation 2 below. 
Boolean or classical set theory therefore satisfies two laws put forward by 
philosophers who devised the theory of logic, or 'Laws of Thought' (McBratney and 
Odeh 1997). The law of excluded middle states that every proposition is either true 
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or false (1 or 0), prohibiting any third possibility or membership (Robinson 2003). 
The law of extended contradiction states that a proposition cannot be both true and 
not true (e.g. a single location cannot exhibit characteristics of both categories). 
 

 x                        Equation 2 

 
Rarely in reality do such crisp boundaries exist between neighbouring index values. 
Uncertainty, imprecision and ambiguity are inevitable or inherent parts of natural 
systems (McBratney and Odeh 1997), and Boolean-based analyses can fail to 
capture this. This can introduce a degree of error into the model. To demonstrate 
this, Table 1 and Figure 1 below give an example of how slope could be classified 
into a risk index, with a greater fire risk value assigned to higher slope values. It is 
unrealistic, however, that a slope value of 29.9° has received a lower fire risk value 
than a slope value of 30°. This shows that even if an individual knows a significant 
amount about fire risk, it remains difficult to draw (or they are limited by) the 
boundaries that must be established between risk classes.  
 
Table 1: Example of slope classification into  
fire risk. Table adapted from Orozco et al. (2009) 
Slope angle (°) Fire index value 
0 - 2.9 1 
3 - 14.9 2 
15 - 29.9 3 
30 - 90 4 
 
Fuzzy systems are an alternative to the classical set theory described above (Zadeh 
1965). Fuzzy modelling is designed to deal with phenomena where these boundaries 
are often vague, or where there is a gradual transition between fire risk classes 
(Robinson 2003). Fuzziness is therefore capable of incorporating the uncertainty that 
exists within the Boolean-type classification by introducing imprecision, and 
removing the need for sharply defined boundaries. However, by adopting a fuzzy 
approach, both the law of excluded middle and law of extended contradiction are 
violated because it allows a proposition to be true, false, or a partial membership of 
both. Figure 2 demonstrates how fuzzy set theory could be applied to the example of 
slope by applying a sigmoidal or S-shaped membership function to model the degree 
of risk. A membership function is in the form of an equation that is capable of 
mapping elements of a universe of discourse (e.g. raster cells in a slope layer) to 
their corresponding membership values (Yen 1999). Slope values below α are given 

 
Figure 1: Sketch of Boolean 
method of slope classification. 
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a minimal risk (0), while all slope values above γ are assumed to be at greatest risk 
(1). Between the two, a gradual change in membership is represented as a real 
number between 0 and 1. The sigmoidal membership function in figure 2 can be 
represented using Equation 3 from Robinson (2003): 
 

 
Figure 2: A sigmoidal membership function that could be used to model fire risk. 
Adapted from Robinson (2003).  

1.4.3. Boolean and fuzzy set operations 

When the standardisation process discussed above has been completed, several 
overlapping layers exist, each with a degree of risk that varies both in magnitude, in 
space, and - in some cases - time. To produce a final vulnerability output capable of 
expressing this information, the layers must be aggregated or composited. Several 
operators exist which are capable of combining this information, including the AND, 
OR and NOT operators (Burrough 1989). The AND- and OR- operators for both 
Boolean and fuzzy sets will be critically discussed below.    
 
Boolean AND-operator                 Equation 4 
 
The AND-operator considers only the intersection of 2 (or more) sets A and B. 
Equation 4 means that this intersection equals all objects  within the universe of 

objects  that are a member of sets A and B. The  symbol signifies the use of 

intersection, and   denotes the use of the AND-operator. 
 
Boolean OR-operator                  Equation 5 
 
The union of sets A and B is performed by the OR-operator. Equation 5 above 
means that this union is equal to all objects  within the universe of objects  that are 

members to either A or B. The  symbol signifies the use of union, and  denotes the 
use of the OR-operator. 

 Equation 3 
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The problem that arises from aggregating layers that have been classified using 
Boolean logic lies not in the operators themselves, but in the arbitrary values 
assigned to each factor, and the discrete boundaries between these values (e.g. 
Figure 1). Any uncertainty or error that exists within each individual factor can be 
propagated and amplified when the operator is applied to it (Chen et al. 2010). 
 
Fuzzy min-operator                  Equation 6 

The fuzzy min-operator is equivalent to the Boolean AND-operator, and was 
originally proposed by Zadeh (1965). The min-operator has also been referred to as a 
't-norm' by Jiang and Eastman (2000). Equation 6 does essentially the same as 
Equation 4. However, the symbol is used to show that the intersection is made 
on all objects  within the universe of objects , and the / symbol represents 'with 
respect to'. Instead of denoting the use of the AND-operator,  represents the 
minimum of sets A and B. 
 
Fuzzy max-operator                       Equation 7 

 
The fuzzy max-operator is equivalent to the Boolean OR-operator, and was again 
proposed by Zadeh (1965). Jiang and Eastman (2000) refer to this operation as a 'co-
norm'. Equation 7 is broadly similar to equation 5. The  symbol represents the 
maximum of sets A and B. 
 
The laws of excluded middle and extended contradiction are violated not only in the 
standardisation process, but also when the fuzzy min- max-operators are used. The 
excluded middle is violated because the final membership value that results from the 
operation is unlikely to be 'true or false'  unless the inputs are themselves 1 or 0. The 
second law is broken because the operator integrates characteristics of two or more 
sets into one final value. For example, if the membership value of  in A( ) = 0.5, 
then Ā ( ) = 0.5. The intersection (or fuzzy-min) of A and Ā will therefore equal 0.5 
(A(x)  Ā ( ) = 0.5) (Robinson 2003). The law of extended contradiction states that 
a proposition cannot be both true and not true, meaning the law is violated as the 
result is midway between 0 and 1. 
 
Although the above operators have been used extensively within decision making 
science, the min- and max-operators do not allow the analyst to assert much control 
over how factors are combined. The min-operator will return only the lowest 
(minimum) value of the intersection whereas the max-operator returns the highest 
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(maximum) value of the union. These operators therefore reflect the worst and best 
case scenarios respectively (Robinson 2003). Jiang and Eastman (2000) refer to the 
min-operator as one that should be used within risk aversion, while the max-operator 
does the opposite, being optimistic by returning the highest value. 
 
Convex combination was a method first employed by Charnpratheep et al. (1997). It 
is similar to the weighted combination technique applied in Boolean MCE, only that 
it is applied to fuzzy sets. The advantage of convex combination over the min- max-
operators discussed above is that it gives the analyst control over how the fuzzy sets 
are aggregated. Weights can be applied to each individual fuzzy set to reflect its 
importance within the decision making process. For example, if slope was deemed to 
be of greater importance than aspect in its contribution to fire risk, a greater weight 
could be assigned to slope relative to aspect. The output between these two factors 
would therefore reflect the greater importance given to slope. The process of 
assigning weights to factors and summing is shown in Equation 8. In this equation 

 is the membership value of the th grid cell in a raster layer , and  is the 

weight value assigned to layer  where  and . 

 
 Convex combination                         Equation 8 

 
The discussion of some frequently used operators has highlighted their main 
characteristics. The Boolean AND- and Boolean OR-operators provided the basis for 
the fuzzy MIN- and MAX-operators, which are used on fuzzy sets. However, these 
operators are limited in that the highest or lowest values are returned by the union or 
intersection of sets respectively. Convex combination, however, enables the analyst 
to prioritise, assigning weights to factors to represent their importance. This review 
will be used to formulate objectives in  section 1.5. 
 

1.4.4. Research problem 

� MCE has been used extensively to assess suitability, vulnerability and risk. 
� Factors important to the evaluation must first be standardised, then aggregated 

to produce final risk maps. 
� Boolean method of standardisation creates discrete and unrealistic boundaries 
� Fuzzy approach enables a gradual transition from high to low risk to be 

modelled, removing the need to introduce unrealistic boundaries. 
� Standardised factors must then be aggregated using the fuzzy MIN- or fuzzy 

MAX-operators, or convex combination. 
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� Fuzzy MIN-operator returns the minimum of inputs, while fuzzy MAX returns 
the maximum of inputs.  

� Convex combination enables the importance between factors be expressed by 
assigning weights. 
 

1.5. Research objectives 

Sections 1.3 and 1.4 focussed on two main areas, namely factors that influence fire 
risk, and a discussion of why a fuzzy approach to MCE has advantages over its 
Boolean counterpart. To visualise how these components can be brought together, a 
conceptual diagram was formed (Figure 3), and objectives to guide the study were 
developed. These objectives and research questions, stated below, also appear within 
the diagram to demonstrate how they will be achieved. 
 
1. To locate burn scars within the study area. 
� Can these burn scars be located on an ASTER image of the region? 
� What other data sets exist from which burn scar information can be obtained? 
� How are the burn scars distributed with respect to the selected fire risk factors? 

 
2. To develop a spatial, dynamic fire risk model based on fuzzy logic. 
� Which values can be found on which to base fuzzy membership functions? 
� Which fuzzy membership functions are most suitable to fit to which 

parameters? 
 

3. To validate the fire risk model based on fire scars within the study area. 
� To what extent do the regions of high fire risk correspond with the burn scars? 

 
4. To perform a sensitivity analysis on each sub-model weight 
� How does the distribution and value of risk change as each sub-model's weight 

is varied?  

These objectives will be applied to a study area in southern Nepal. The next chapter 
introduces this study area, describing details such as location, topography, climate 
and population. 
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Figure 3: Conceptual diagram linking elements of a system that will form the basis of a 
fire risk model. 
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2. STUDY AREA 

2.1. Location 

The limits of the study area are based on an ASTER image from February 2008, 
with the exact corner coordinates of: 84.35°, 27.99° NW; 84.95°, 27.90° NE; 84.81°, 
27.36° SE; 84.21°, 27.45° SW. The study area is centred around the district of 
Chitwan, located in south-central Nepal, with the districts of Nawalparasi, Tanahu, 
Gorkha, Dhading, Makwanpur and Parsa partially included (Figure 4). An area of 
3754 km2 is bounded by these coordinates. 
 
This ASTER scene was chosen because a) it covers an area with a history of the fire 
issue and was also obtained during the fire season, b) the scene is also characterised 
by varying terrain, and c) the scene is characterised by a low degree of cloud cover. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Study area 

Churia Hills 

Terai Plain 

Chitwan 
National Park 
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2.2. Topography 

The study area is characterised by different landscapes that vary along a north-south 
direction. The Churia Hills are steep mountains (>45°) found in the north of the 
study area, with elevation reaching over 2,000 m. These mountains are not as high as 
the ranges further north, but this means fire occurrence is still experienced. The 
mountains give way to a largely flat plain (Terai plain) located in the centre of the 
image, with elevation here typically 170 m. The southern portion of the image is 
occupied by Chitwan National Park and Parsa Wildlife Reserve. Established in 
1973, the park encompasses a long, continuous ridge running in the east-west 
direction, with elevation reaching over 700 m. The area is highly biodiverse with 
700 species of wildlife. Of this number, 540 are birds, such as kingfishers, storks and 
eagles. There are also several species of reptile including the king cobra, the Indian 
starred tortoise, monitor lizards, and mugger crocodiles. However, Chitwan National 
Park is perhaps most famous for its mammalian wildlife such as the Bengal tiger, 
Indian rhino and Asian elephant. Continuing further south from the park, one would 
cross the border into India. However, this is not included in the ASTER image. 
  

2.3. Climate 

A sub-tropical climate characterises this study area, even within the hilly region in 
the north of the study area. Dry and wet seasons therefore dominate, with monsoon 
rains falling between June and mid-September every year, while the driest months 
are those of March, April and May which is traditionally the fire season (Figure 5). 
Temperatures are highest prior to the onset of the monsoon season, approaching 
40° C. Lowest temperatures are experienced in December/January, but begin to 
increase from February.  
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2.4. Land cover and Land use 

2.4.1.  Forest cover 

A significant proportion of the study area is covered by sub-tropical deciduous 
forest. Sal (Shorea robusta) is the most common tree species, for example 
comprising up to 70% of tree species within Chitwan National Park. Other species 
include Asna, Chilaune, Kyamun and Valayo. The soil on which these species grow 
is predominantly alluvial with a high clay content, and found throughout the Terai 
region and Churia Hills. The nutrient content is described by the FAO as fair to 
medium, although the oldest soils are poor (FAO 1998). When mature, sal trees can 
rise up to 40 m in height, with diameter at breast height exceeding 120 cm. These 
hardwood species are fire resistant, and can withstand the majority of wildfires. 
However, other tree species, or those not mature, have lower resistance to fire, and 
therefore can be destroyed. 
 
Depending on the proximity of the forest to human settlements/activities, the forest 
also exhibits different densities. Low density forest is typically located closest to 
settlements, while forest at higher elevation, and at greater distances are less 
disturbed. Compared to low density forest, dense forests are characterised by a 
greater number of trees that are generally more mature. Dense forest also has a high 
quantity of shrubs and small trees that can reach up to two to three metres in height. 
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Figure 5: Average max/min temperature and total precipitation for Bharatpur airport, 
Chitwan, 2008. 
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2.4.2.  Agricultural land 

Most agricultural land is situated on the plain in the centre of the study area. This 
region is important for Nepal in that favourable growing conditions, combined with 
the flat land ensures that a significant amount of food can be grown to support 
communities in the foothills and mountains to the north, where suitable ground is 
limited. The major crop grown is rice, although pulses and other vegetables are also 
grown. Rice is harvested in October/November. In March, fields are deliberately 
burned to clear the land, and to promote the growth of the next crop. In the 
mountains, subsistence agriculture supports the communities situated here. Rice is 
again the most important crop, and is grown on terraces on the steep hill sides. There 
are few farms devoted specifically to livestock as most households have their own 
animals such as chickens, goats and cattle. 

2.4.3.  Grassland 

Grasslands are located along the northern edge of Chitwan National Park, where 
elevation is  low and the land flat. Height of these grasslands approaches 4 m, and is 
an important habitat for deer. Fires within these grasslands are frequent. Some of the 
fires are natural, but some fires are prescribed for management purposes. For 
example, some deer species rely on the shoots that germinate from the burned 
grassland. 

2.5. Population 

Chitwan is the largest district situated within the study area, and has a population of 
approximately 470,000, the majority of which are either Hindu or Buddhist. Of this 
number, 225,000 inhabitants live within Narayangadh/Bharatpur, the largest city 
within the province. This city is also a major commercial hub within southern Nepal, 
and one of the country's fastest growing urban centres. In the past, agriculture was 
the city's main source of income. More recently, however, there has been a shift 
towards other industries, with large multinationals such as Coca-Cola and San 
Miguel arriving. Other industries include the poultry industry, which supplies 
domestic markets and exports to India. 
 
The majority of the remaining inhabitants live within agricultural communities on 
the Terai Plain. The Churia Hills to the north are occupied by an ethnic minority 
group called the Chepang. This tribal group used to be nomadic, but more recently 
have settled into isolated and inaccessible communities that rely on subsistence 
farming. The Chepang language is one of the few to use a duodecimal (12 base) 
counting system. 



21 

3. METHOD 

A review of fire related literature in chapter 1 was an important step in the selection 
of fire risk factors to be used in the development of a fire risk model. These factors 
were assigned to groups sharing similar characteristics, and related to the research 
objectives shown in the conceptual framework (Figure 3). It was then possible to 
start acquiring the data which would eventually form model components. 

3.1. Data acquisition 

3.1.1. Pre-fieldwork 

A 30 m DEM obtained from the ASTER14DEM product, was used to derive aspect 
and slope maps. Two of the most recent ASTER scenes for the study area were 
downloaded from USGS via the GLOVIS viewer. These were imported into ERDAS 
IMAGINE and georeferenced using the attached metadata file. The dates of the two 
ASTER scenes were 21/02/2008, and 24/03/2008. For more discussion concerning 
these layers, including information on the sources, limitations and justification of 
use, see Appendix 1. An unsupervised classification of the study area was also 
performed for use in fieldwork. 

3.1.2. Fieldwork 

Time was spent at the International Centre for Integrated Mountain Development 
(ICIMOD) headquarters in Kathmandu to gain more information about the study 
area, possible sources of data, and receive advice. A major source of data acquired 
was an ALOS AVNIR-2 burned area dataset from March 2010. ICIMOD also 
recommended the use of TRMM and MODIS/Terra data for rainfall and temperature 
as the study area was limited by few climate stations. For more information on these 
datasets, see table 18 in the appendix. Unfortunately, no (relevant) wind data was 
available from the climate stations in the area - data ceased to be recorded from 
1998. A search was performed to find alternative sources of wind data, such as 
satellite estimated data, but nothing suitable was found. It was therefore not possible 
to include wind data within this study. 
 
Fieldwork was conducted in the study area between the 24th September and 13th 
October 2010. The most important task within this period was to locate burn scars. 
This involved navigating to MODIS detected ignition points using an IPAQ and, 
where possible, digitising the scar boundaries. The IPAQ was also used to navigate 
to the burned area locations within the AVNIR-2 dataset. To provide an assessment 
of accuracy of this dataset, GPS measurements were recorded, stating whether scar 
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evidence existed or not at that location. Burn scars were also digitised from an 
ASTER scene of March 2008, using the 231 band composite that has been proven to 
be effective in identification of burn scars (Orozco et al. 2009). These scars were 
only digitised in the northern 40% of the study area because the ALOS AVNIR-2 
dataset did not extend to this region. It was not possible to provide an accuracy 
assessment of the ASTER burn scars because they dated to 2008, and so would have 
been re-colonised by vegetation. Furthermore, access to the northern part of the 
study area was limited due to difficult terrain found here, so it was not possible to 
navigate to ignition points. This justified the digitising of burn scars from 2008. 
 
Approximately 190 ground truth points were collected for assistance in classifying a 
land cover map. Points were collected randomly in the Terai Plain, in grassland 
along the northern boundary of Chitwan national park, and in the Kayar Khola 
watershed. However, in the northern part of the study area in which the Churia Hills 
dominate, points were not collected randomly due to a high degree of inaccessibility. 
In such situations, points were taken close to roads. The categories recorded 
consisted of: Agricultural land, urban, grassland, low density (or degraded) forest, 
and high density forest. 
 
The road network within the study area was digitised using an IPAQ. Roads that 
were not visited during fieldwork were digitised from the ASTER image. The 
ASTER image was used because the roads were sufficiently visible, and was more 
up to date than the road maps (2008 vs. 1990s).  
 

3.2. Data preparation and pre-modelling phase 

3.2.1. Image classification and accuracy assessment 

190 GCPs were collected during fieldwork. These were used to perform a supervised 
maximum likelihood classification on agriculture, grassland, low density forest and 
high density forest. Urban areas and the rivers were digitised because a) the two 
were not well classified in early attempts, and b) these land cover types had distinct 
enough boundaries that were easily digitised. 50% of the GCPs were (randomly 
selected) for training, while the remaining 50% were used for validation. The overall 
accuracy of the land cover classification (for four classes) was 82%, with a kappa 
coefficient of 0.75. An accuracy assessment was also performed on the AVNIR-2 
burned area dataset of the study area. The overall accuracy was 89%, with a kappa 
coefficient of 0.73. For full results, see Appendix 2, 3, 4 and 5. 
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3.2.2. Random partition of burn scars 

790 burn scars were identified within the study area. In order to develop the fire risk 
model and perform the validation exercise (research objectives 2 and 3), it was 
necessary to develop a method to randomly select burn scars within the study area. 
Random, non repeating integers between 1 and 790 were generated, and these were 
then matched to the unique IDs of the burn scars. The selected burn scars were then 
checked to ensure an even distribution across the study area, and to ensure that the 
total area between calibration and validation scars was similar. This resulted in 395 
burn scars to calibrate the model with, and 395 to perform a validation. 
  

3.2.3. Overlaying calibration burn scars with factor maps 

Exploring the spatial patterns of the burn scars is essential because it provides 
information about where significant numbers of fires have (and have not) occurred, 
and whether there is any pattern at all. To explore these patterns, overlays were 
performed with a number of the factor maps (see Figure 6). The value extracted 
from a single burn scar represented the mean value of all cells that are enclosed by 
the boundary of that scar. The data was exported to a spreadsheet, and histograms 
were created.  
 
A subjective element that arises when using histograms is that their shape can 
change depending on the number and size of bins. To mitigate this effect, a 
sensitivity analysis was performed on each risk factor's histogram. This process 
involved systematically increasing the number of bins, starting with a few bins to 
many bins. To view the results of this sensitivity analysis, see the Appendix 6. 
 
Another important factor to consider when using histograms is to account for the 
area of land contained within each bin range, as this is unlikely to be equal between 
bins. This in turn affects the reliability of the histogram. For example, if a bin has a 
low number of fire scars, it may simply be because the total area of land occupied by 
that bin is also small. To overcome this problem, the number of scars located within 
a bin was divided by the total area occupied by that bin to derive scars per ha.  
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3.3. Modelling phase 

3.3.1.   Overall model structure 

The development of a fire risk model will be based on those developed by Rathaur 
(2006) and Orozco et al. (2009). This approach identifies individual fire risk factors, 
and groups them into sub-models which share similar characteristics. Five sub-
models have been included which aim to encompass the range of aspects that give 
rise to 'fire risk' (Figure 7). These are the biophysical risk, weather risk, ignition risk, 
fire detection and fire response sub-models. A final fire risk output is produced by 
combining these sub-models by use of a weighted combination as used in Rathaur 
(2006). It is also possible to add a dynamic aspect to the fire risk model by providing 
updated climate parameters over time, as performed by Orozco et al. (2009). 
    
 
 
 
 
 
 
 
 
 
 

3.3.2. Biophysical sub-model 

The biophysical sub-model consists of elevation, aspect, slope and land cover. As 
discussed in chapter 1, these topographical and vegetation factors interact to 

 
Figure 7: Fire risk model structure 

 
Figure 6: Flow diagram summarising steps taken to extract information about the 
spatial patterns of burn scars. 
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influence the location at which a fire is likely to occur. Figure 8 below indicates the 
steps taken to integrate these factors and develop the first sub-model. 
 
 
 
 
 
 
 
 
The histograms developed by overlaying the calibration burn scars with the factor 
maps provided information on their spatial patterns. The histograms were then used 
as a base onto which fuzzy risk membership functions were applied. Single 
equations were used to model the degree of risk. Generally, the histogram category 
which had the greatest number of scars per ha was assumed to have the greatest fire 
risk. All cells contained within the highest risk bin were assigned a value of 1.0 by 
use of the equation, with decreasing values representing lower degrees of risk. 
Equations were chosen based on how well they approximated the shape of a 
histogram. 
 
Application of fuzzy membership functions to biophysical risk sub-model 
 
Elevation  
 

 
 
 
 
 
 
 
 
 
 
 

A decreasing exponential function (generalised bell function) was applied to the 
elevation histogram (figure 9) using equation 9b above, adapted from Robinson 
(2003). ß is the value at which risk membership is greatest (1), while δ controls the 

 
          Equation 9b 

 
      Equation 9a 

 
Figure 8: Biophysical sub-model 
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Figure 9: Elevation histogram and membership function. 
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rate at which μ( ) approaches 1 (Schubert 2004). All values of elevation less than 
200 m were assigned a value of 1. 
 
Aspect 
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Figure 10: Aspect histogram and membership function. 

 
A Gaussian function was applied to the aspect layer as the shape approximated by 
the histogram (figure 10) was a normal distribution. Equation 10b above was 
applied, where c denotes the 'central concept' where risk is greatest, and α represents 
the rate at which μ( ) approaches 1 (Schubert 2004).  
 
Slope 
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Figure 11: Slope histogram and membership function. 
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Similar to elevation, a decreasing exponential function (generalised bell function) 
was applied to the slope histogram (figure 11) using equation 11b above, adapted 
from Robinson (2003). All slope values less than 5° were assigned a value of 1. 
 
 
Land cover 
Land cover is a significant element of the fire risk model because it provides 
information on the fuel characteristics of the study area. If no fuel is present, no 
ignition can occur, even if the area in question is high risk with respect to elevation, 
slope and aspect. 
 
The calibration burn scars were overlaid with the classified land cover map to 
extract information regarding fire occurrence. The initial risk values assigned to the 
land cover types was based on the scars per ha (Figures 12). The land cover type 
with the greatest number of scars per ha was assigned the highest risk. These initial 
risk values are Boolean, in that the risk assigned was uniform across each land cover 
type (Table 2). 
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Figure 12: Land cover histogram using burned area per ha 

 
'Fuzzification' of land cover boundaries and application to risk membership 
 
Although the land cover map used in this study was classified with 82% overall 
accuracy (kappa = 0.75), the map shows that sharp boundaries exist between land 
cover types. In reality, these boundaries can be vague, with a gradual continuum 
from one land cover type into another (Lu and Weng 2007). Methods employed to 

Table 2: Initial Boolean 
risk membership values. 
Land cover Risk  
Grassland 1.0 
Low density forest 0.8 
Agriculture 0.6 
Dense forest 0.4 
River 0 
Urban 0 
 



28 

overcome this problem include the use of soft classifiers, such as fuzzy c-means, 
whereby each pixel to be classified is assigned a membership to a particular land 
cover type. However, a limitation of soft classifiers such as fuzzy c-means is that it 
can introduce accuracy assessment issues (Silván-Cárdenas and Wang 2008). 
 
Within the soil science discipline, the use of soil maps has created issues similar to 
those within land cover mapping in that discrete boundaries exist between soil units. 
However, Lagacherie et al. (1996) proposed the use of transition zones that lie 
across these soil boundaries, accounting for the gradual continuum between soil 
units. Within a transition zone, a fuzzy membership function is used to assign a pixel 
a degree of membership to the soil unit it is located within. Regions of a soil unit 
that are not located within the transition zone are assumed to have full membership 
to that soil unit, so this method assumes that the fuzziness only lies within the 
transition zone, and not outside it. 
 
This same approach was applied to deal with the discrete boundaries between land 
cover types (Figure 13). A subjective element of this method is choosing the width 
of the transition zone around the boundary. During fieldwork, it was noticed that in 
several locations, a transition zone of approximately 500 m existed between cover 
types, especially in the region adjacent to Chitwan National Park. To model this 
transition zone within a GIS environment, a Euclidean distance function with a 
maximum extent of 250 m was performed on the boundaries between land cover 
types (250 m each side of the boundary). Linear membership functions (Equation 
12) were then applied to each land cover type to model the degree of membership.  
 
An intersect function was then used on each land cover type to isolate other land 
cover transition zones which overlapped onto it (e.g. for the transition zone of 
agriculture, intersect was used to isolate overlapping zones of grassland, low density 
forest and dense forest etc.).  The overlapping regions for each land cover type were 
then combined using equal weights. However, the magnitude of each weight differed 
depending on how many land cover transition zones were overlapping at a given 
location (e.g. in some areas, only two land cover types overlapped, such as 
agriculture and grassland, but in other cases, three or four land cover types were 
overlapping). 
 
The fuzzy land cover boundaries were then used to adjust the risk values associated 
with each land cover type assigned in Table 2. This was achieved by multiplying the 
fuzzy land cover boundaries with the risk map. This had the effect of reducing the 
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level of risk associated with land cover types at the boundaries, as the confidence 
with which a pixel belonged to a land cover type was also less.  
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Figure 13: Example of fuzzy transition zone 

  

3.3.3. Ignition risk sub-model 

Euclidean distance functions were performed on the road network, agricultural and 
grassland layers to derive proximity surfaces. The calibration burn scars were then 
overlaid onto these surfaces to provide the data on which the histograms below are 
based. It is important to note that the distance function does not include scars 
situated within the land cover type (i.e. 0 km), but does include all scars that are 
located 0.1 km or more from that cover type. Figure 14 indicates the steps taken to 
develop the second sub-model. 
 
 
 
 
 
 
 
 
 

 
Figure 14: Ignition risk sub-model 

 
Equation 12 

500 m transition zone 
Distance (m) 

Land cover boundary 

Agriculture Grassland 
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Application of fuzzy membership functions to ignition risk sub-model 
 
Distance from roads 
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Figure 15: Distance from roads histogram and membership function 

 
A decreasing exponential function was applied to the distance from roads layer 
(Figure 15), using equation 13b above (Robinson 2003). A value of 1 was assigned 
to all distance values between 0.1 and 1 km from roads. 
 
Distance from grassland 
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Figure 16: Distance from grassland histogram and membership function 

 
A decreasing left trapezoidal function was applied to the grassland histogram 
(Figure 16), using equation 14b adapted from Robinson (2003). ß is the value at 

 
          Equation 13b 

 
         Equation 13a 

 
         Equation 14a 

 
        Equation 14b 
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which risk membership becomes 0, while α is the value for maximum risk. Values 
less than 1.5 km from grassland were assigned a value of 1. 
 
Distance from agriculture 
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Figure 17: Distance from agriculture histogram and membership function 

 
A skewed Gaussian function was applied to the distance from agriculture (Figure 
17), with a central concept of 1.5 km (Equation 15b). A limitation of this function, 
however, is that it overestimates the risk land between 0.1 and 0.5 km from 
agriculture.  
 

3.3.4. Weather sub-model 

Prior to fieldwork, the intention was to incorporate wind and relative humidity data 
into the fire risk model. However, this was not possible due to a lack of data. 
Precipitation and temperature data alone are therefore relied on to assess fire risk 
with regard to the weather sub-model. Generally, low precipitation and high 
temperatures promote fire risk. Figure 18 depicts how precipitation and temperature 
were used to develop the weather sub-model.  
 
 
 
 
 
 
 

 
Figure 18: Weather sub-model 

 
        Equation 15a 

         Equation 15b 
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Precipitation 
Precipitation directly affects a fuel's moisture content, and therefore the likelihood of 
a fire igniting and propagating (Chuvieco et al. 2004). However, the risk of this 
occurring is not only affected by current rainfall conditions, but also by the 
conditions that characterise the previous months. It is therefore important to consider 
not only the magnitude of rain received, but also when that rain was received. 
Drought indices are capable of expressing these two different dimensions. To 
account for this, we look for an index capable of expressing these two different 
dimensions. The China Z-Index (CZI) is one such suitable index. 
  
China Z-index  
The CZI is a drought index used by the National Climate Centre of China (NCC), 
and was first introduced in the 1990s. The CZI produces similar results to the 
Standardised Precipitation Index (SPI), a commonly used drought index developed 
in the US by McKee et al. (1993). The two both express the degree of dryness or 
wetness as a z-score between approximately -3.0 (extreme drought) to +3.0 (extreme 
wetness). The CZI has been found to follow the SPI closely, producing similar index 
values, although in severe droughts the CZI can overestimate the dryness (Wu et al. 
2001; Morid et al. 2006). An advantage of the CZI and SPI is that only monthly 
precipitation data is required to assess the degree of drought, and both can be 
adapted to 1-, 3-, 6-, 9-, and 12-month time scales depending on the aim of the 
research. For example, a 3-month timescale can be useful for monitoring agricultural 
drought, while hydrologists may use a long-term, 12-month timescale. The CZI is 
used in this study, however, because it is relatively simple to calculate compared to 
the SPI. Furthermore, some authors (e.g. McKee et al. 1993) recommend a 
minimum of 30 years data to achieve reliable results for the SPI, while only 13 years 
of data is available in this study. 
 

The CZI assumes that the precipitation data obeys the Pearson Type III distribution 
(Guttman 1999). The equations below show how the CZI is calculated and are from 
Wu et al. (2001): 
 

               Equation 16 

 
Where  is the CZI,  is the timescale of interest (1-, 3-, 6-months etc.), and  is the 

current month (equation 16),
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                    Equation 17 

 
where  is the coefficient of skewness and  is the total number of months in the 
record (equation 17), 
 

                      Equation 18 

 
where  is the standardised variate (Z-score),  is the precipitation of month  for 

period ,  is the mean for period , and  is the standard deviation of period  
(equation 18). For this study, CZI values were calculated for the 3-month timescale. 
As mentioned above, a 3-month timescale is useful when studying agricultural 
drought because this is an approximate timescale over which soil moisture responds 
to (a lack of) precipitation (McKee et al. 1993). In this study, it will be assumed that 
low soil moisture corresponds to low vegetation moisture, which should be reflected 
by negative CZI values. Negative CZI values are therefore associated with greater 
fire risk. 
 
Calculation of CZI using TRMM data 
Figure 19 below depicts the steps taken to calculate the CZI using TRMM monthly 
total precipitation data, and how this CZI was visualised within a GIS environment. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19: Calculation of CZI 
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Application of fuzzy membership function to CZI 
 
The average CZI value was calculated for each month in the 1998-2010 period. As 
this model was run for only 12 months, the CZI values between September 2009 and 
August 2010 were plotted in Figure 20 below. Equation 19b was used to model the 
degree of risk. A CZI value of 2.024 was chosen as the central concept on which this 
equation was based. This value was the highest CZI value calculated throughout the 
1998-2010 period, and was chosen so that all calculated risk values would compare 
to this. This means the same equation could also be applied to the monthly CZI for 
any time period between 1998 - 2010. 
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Figure 20: Average monthly CZI values and corresponding risk membership 

  
 
Temperature 
High temperatures can increase fire risk due to the effect on evapo-transpiration, and 
the reduction of fuel moisture content (Chuvieco et al. 2004). Months characterised 
by greater temperatures are therefore associated with increased fire risk as the litter 
layer and deadwood are dried, and live vegetation is stressed. 
 
Rather than using raw temperature (°C) data alone to model the degree of risk,  Z-
scores were calculated for each month for which data was available (January 2000 to 
August 2010), and it was assumed the data was normally distributed. To calculate 

 
        Equation 19a 

 
         Equation 19b 
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the Z-scores and visualise them within a GIS environment, a similar method was 
followed as depicted in Figure 14. The calculation of Z-scores for this period is 
useful because it presents the temperature of a month as its standard deviation from 
the mean, providing an insight into how warm or cold it is compared to other 
months. 
 
 
Application of fuzzy membership function to temperature 
 
Similar to the CZI values, the average Z-scores were calculated for each month 
between the 2000 - 2010 period. The Z-scores for the 12 months in which the model 
was run are presented in Figure 21. Equation 20b was used to model the risk 
associated with each month. The value chosen as the central concept c was 2.44, the 
highest Z-score value for the 2000 - 2010 period. This was chosen so that all 
calculated risk values would compare to this. 
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Figure 21: Average monthly Z-score values and corresponding risk membership 
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3.3.5. Detection sub-model 

Fires must be detected before measures can be taken to limit the damage caused, 
promoting the importance of a detection sub-model (Figure 22). A viewshed analysis 
is capable of modelling this detection aspect, identifying all cells in a raster input 
(usually a DEM or digital terrain model (DTM)) that are visible from designated 
observation points or view lines (ArcGIS 10 Help 2010). The viewshed function 
scans in the azimuthal (horizontal) and vertical plains, identifying regions of a raster 
input which breaks or limits the scan. The user is also able to specify a radius, 
beyond which nothing is visible. 
 
 
 
 
 
 
 
As the road network for this study area passes through all major settlements, as well 
as rural communities, it was decided that a viewshed analysis conducted only from 
the road network was adequate to provide comprehensive coverage. The Geospatial 
Modelling Environment was used to create points every 2 km along the road 
network. These locations were used as observation points for the viewshed. A DTM 
was created by adding the approximate height of the land cover types on to the 
DEM. Viewer height was set at 1.8 m to approximate the height of a person. 
 
It is not possible to apply fuzzy membership functions to the viewshed analysis, as 
areas can only be simply visible or not visible. In this situation, a Boolean type 
approach must be adopted to reflect the degree of fire risk. Regions which have been 
identified as not visible from a road network are a greater fire risk because it will 
take longer to discover if a fire has ignited, while the opposite is true for areas that 
are visible. Table 3 below presents the risk values to be assigned to the visible/not 
visible categories, and is based on values assigned by Orozco et al. (2009). 
 
Table 3: Detection risk sub-model 
Detection category Fire risk value  
Visible 0.9 
Not visible 0.2 

 
Figure 22: Detection sub-model 
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3.3.6. Response sub-model 

When a sufficiently large fire has been detected, actions should be taken to limit the 
damage it can cause. The length of time between detecting the fire and bringing it 
under control is known as the response time. However, this response time is affected 
by the terrain through which foresters and concerned communities must travel to 
reach the fire, and includes factors such as slope, elevation and land cover. Travel 
along roads is also significantly shorter than travel off road.  
 

 
 
 
 
 
 
 
Friction surfaces were created by reclassifying factor maps into values that reflect 
the difficulty individuals would face in moving through terrain (Figure 23). The 
values that have been assigned to these factor maps are presented in tables 4 to 6 
below, and are based on the values used by Orozco et al. (2009). A cost-distance 
function was then applied to these factor map based on the assumption that response 
to fire would originate from any location along the road network. This is because the 
road network passes through both major urban areas, as well as the rural 
communities, and therefore reflects the local population's ability to respond to fire in 
their area. The results from the cost-distance calculations were summed together, to 
create an overall friction surface. Finally, the friction surface was standardised by 
applying a simple linear membership function (Equation 21). The highest value in 
the friction surface was assigned a value of 1, linearly decreasing to 0, which was 
associated with the lowest friction values. 
  
Table 4: Elevation friction values 

  
 
 
 
 
 
 
 

Elevation (m) Reclassified value 
63 - 300 1 
300 - 600 2 
600 - 900 3 
900 - 1200 4 
1200 - 1500 5 
1500 - 1800 6 
1800 - 2113 7 

Figure 23: Response sub-model 

Table 5: Land cover friction values 
Land cover category Reclassified value 
Urban 1 
Agriculture 3 
Grassland 5 
Low density forest 7 
High density forest 10 
River 15 
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3.3.7. Formation of sub-models 

 
The formation of each sub-model involves aggregating or combining the values in 
each raster layer to produce a single, final output. Operators such as fuzzy min and 
fuzzy max do not allow the analyst to account for the relative importance of different 
factors (section 1.3.3). For this reason, convex combination was used to assign 
weights to the factors of each sub-model (where applicable) to reflect their 
importance. However, a potentially subjective element of convex combination is that 
the assigned weights can be difficult to justify. To overcome this issue, a pairwise 
comparison was conducted, based on the analytical hierarchy process (AHP) of 
Saaty (1980). This method is advantageous because factors are both rated and 
compared against each other, before weights are derived. The rating system, which 
indicates how much more or less important a factor is with respect to another factor 
was based on findings from fire-related literature. 
 
The pairwise comparison is performed in a matrix (Castellanos Abella and Westen 
2007, Table 7). Criteria are placed on the vertical (A1 to An) and horizontal axes (C1 
to Cn). Values that reflect the importance between factors are then assigned to each 
cell (e.g. cell a12 expresses the importance of factor A1 against C2). A value of 1/9 
means that factor  A1 is much less important than C2, while 9 is significantly more 
important (Saaty and Vargas 1991, Table 8).  
 
The ratings in Table 7 are then normalised by dividing the value in a cell (e.g. a11) 
by its column total (a11 by am1). This generates a new matrix in which each cell is 
assigned an Eigenvalue. The weights for each factor are derived by averaging the 
Eigenvalues in each row (a11 to a1n). A consistency ratio (CR) is then calculated to 

Table 6: Slope friction values 
Slope (°) Reclassified value 
0 - 5 1 
5 - 10 2 
10 - 15 3 
15 - 20 4 
20 - 25 5 
25 - 30 6 
30 - 35 7 
35 - 40 8 
40 - 45 9 
45 - 73 15 

 
Equation 21 
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determine the success of the evaluation. The CR value should be less than 0.1 if 
consistency is good (Saaty 1980). If the CR is greater than 0.1 then the pairwise 
comparison should be re-evaluated. The equations used to calculate the CR can be 
found in Vadrevu et al. (2010). 
 
Table 7: Matrix used in pairwise comparison 
 C1 C2 ... Cn 
A1 a11 a12 ... a1n 
A2 a21 a22 . a2n 
. . . . . 
Am am1 am2 ... amn 
 
 
 
 
 
 
 
 
 
 
 

Formation of biophysical sub-model 

The most important factor contributing to fire occurrence in a number of studies is 
land cover type. For example, Prasad et al. (2008) found that biomass density of 
land cover had the highest significance, among other factors, when a logistic 
regression was performed on a variety of factors (including elevation, aspect and 
slope). This is further supported by Lee et al. (2008, 197), where "fire severity was 
affected more by vegetation conditions rather than by topographic conditions". Land 
cover was also a "dominating influence on fire occurrence" in a study by Brosofske 
et al. (2007, 73). In Orozco et al. (2009), land cover was also given the greatest 
weight over elevation, slope and aspect. 
 
Hammill and Bradstock (2006) found that aspect did not greatly influence fire 
behaviour, a result supported by Prasad et al. (2008) in their study of factors 
affecting fire occurrence. Elevation and slope are important in explaining fire 
occurrence, but it is not clear in the literature which has greater importance over the 

Table 8: Scale for pairwise comparison 
Value Linguistic variable 
1 Equally important 
3 Moderate prevalence 
5 Strong prevalence 
7 Very strong prevalence 
9 Extremely high prevalence 
2, 4, 6, 8 Intermediate values 
Reciprocals For inverse comparison 
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other, although the two factors were found to be more significant than aspect 
(Rathaur 2006). 
 
The above discussion of the relative importance of these factors was used to assign 
ratings to the different factors (Table 9). Weights were derived as shown in Table 9. 
 
Table 9: Pairwise comparison for biophysical risk sub-model. CM: consistency measure; 
CI: consistency index; RI: random index; CR: consistency ratio 

Rating Land cover Elevation Slope Aspect 

Land cover 1.00 2.00 2.00 3.00 

Elevation 0.50 1.00 1.00 2.00 

Slope 0.50 1.00 1.00 2.00 

Aspect 0.33 0.50 0.50 1.00 

SUM 2.33 4.50 4.50 8.00 

Weighting Land cover Elevation Slope Aspect Average 

Land cover 0.43 0.44 0.44 0.38 0.42 

Elevation 0.21 0.22 0.22 0.25 0.23 

Slope 0.21 0.22 0.22 0.25 0.23 

Aspect 0.14 0.11 0.11 0.13 0.12 

Factor Weight CM 

Land cover 0.42 4.02 

Elevation  0.23 4.01 CI 0.003455 

Slope 0.23 4.01 RI 0.9 

Aspect 0.12 4.01 CR 0.003839 
 
 
Formation of ignition risk sub-model 
Equal ratings were assigned to factors in the ignition risk sub-model. This is because 
articles studying the human factors affecting fire occurrence found distance from 
roads, and distance from land use types such as agriculture to be significant 
(Vasilakos et al. 2007; Vasconcelos et al. 2001). It is also important to note that 
prescribed fire is used both on agricultural land and grassland within this study area, 
meaning the likelihood of fire occurring in close proximity to these land cover types 
is greater. Equal ratings were used reflect the equal weight of each factor (Table 10). 
 



41 

 
 
Table 10: Pairwise comparison for ignition risk sub-model. CM: consistency measure; 
CI: consistency index; RI: random index; CR: consistency ratio 

Rating D. Agri D. Grass D. Roads 

D. Agri 1.00 1.00 1.00 

D. Grass 1.00 1.00 1.00 

D. Roads 1.00 1.00 1.00 

SUM 3.00 3.00 3.00 

Weighting D. Agri D. Grass D. Roads Average CM 

D. Agri 0.33 0.33 0.33 0.33 3.00 

D. Grass 0.33 0.33 0.33 0.33 3.00 

D. Roads 0.33 0.33 0.33 0.33 3.00 

Factors Weights 

D. Agri 0.33 CI 0.00 

D. Grass 0.33 RI 0.58 

D. Roads 0.33 CR 0.00 
 
 
Formation of the weather sub-model 
The CZI and temperature Z-scores must also be combined to produce 12 (monthly) 
outputs. The CZI was given greater rating because precipitation can have a more 
direct influence on fuel moisture content than temperature. When precipitation 
occurs, fuel is immediately dampened. Therefore months characterised by high 
precipitation (or high CZI value) are likely to have high fuel moisture, and a fire is 
unlikely to start even if the temperature is high. The rating and weighting of 
precipitation and temperature are shown in Table 11. 
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Table 11: Pairwise comparison for weather risk sub-model. CM: consistency measure; 
CI: consistency index; RI: random index; CR: consistency ratio 

Rating Precipitation Temperature 

Precipitation 1 2 

Temperature 0.50 1 

SUM 1.50 3 

Weighting Precipitation Temperature Average CM 

Precipitation 0.67 0.67 0.67 2.0 

Temperature 0.33 0.33 0.33 2.0 

Factor Weight CI 0.00 

Precipitation 0.67 RI 0.00 

Temperature 0.33 CR 0 
 
 
Formation of the detection and response sub-models 
The detection sub-model consisted of only one risk factor in the form of a viewshed 
analysis. Similarly, the response sub-model has one risk factor which was formed 
from the cost distance analysis. For both these sub-models it was therefore 
unnecessary to perform the pairwise comparison because there was nothing else in 
the sub-models to compare against.  
 

3.3.8. Formation of final model outputs 

The final outputs of the model were generated by performing a weighted 
combination of the sub-models. Twelve outputs were created, one for each month. 
The greatest rating was given to the weather sub-model, as weather exerts the most 
significant influence on fire occurrence. Hot and dry conditions between March and 
May gives rise to the area's fire season, while the monsoon between June and 
September reduces this occurrence. Prasad et al. (2008) also found that weather 
conditions, such as average temperature and precipitation, were significant in 
explaining fire occurrence. The biophysical sub-model was assigned the next highest 
rating, as land cover in particular affects where fire will burn. The ignition sub-
model was assigned the third greatest weighting. Response and detection had the 
lowest ratings (Table 12). 
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Table 12: Pairwise comparison for combining risk sub-models. CM: consistency 
measure; CI: consistency index; RI: random index; CR: consistency ratio 

Rating Weather Biophysical Ignition Response Detection   

Weather 1.00 2.00 3.00 4.00 5.00 

Biophysical 0.50 1.00 1.00 2.00 3.00 

Ignition 0.33 1.00 1.00 1.50 2.00 

Response 0.25 0.50 0.67 1.00 2.00 

Detection 0.20 0.33 0.50 0.50 1.00 

SUM 2.28 4.83 6.17 9.00 13.00 

  

Weighting Weather Biophysical Ignition Response Detection Average 

Weather 0.44 0.41 0.49 0.44 0.38 0.43 

Biophysical 0.22 0.21 0.16 0.22 0.23 0.21 

Ignition 0.15 0.21 0.16 0.17 0.15 0.17 

Response 0.11 0.10 0.11 0.11 0.15 0.12 

Detection 0.09 0.07 0.08 0.06 0.08 0.07 

  

Sub-model Weight CM 

Weather 0.43 5.05 

Biophysical 0.21 5.04 

Ignition 0.17 5.05 CI 0.00964 

Response 0.12 5.03 RI 1.12 

Detection 0.07 5.03     CR 0.0086 
 
 

3.3.9. Validation phase 

Validation is an important process to undertake when any model is created. The 
model's results must be compared with the real world to determine the level of 
accuracy of its predictions (McKinion and Baker (1982) in Mayer and Butler 
(1993)). The validation burn scars were overlaid onto the final fire risk output and 
compared for April (highest risk month), September (lowest risk month), and 
February and November (approximately between the highest and lowest risk). The 
validation scars were also overlaid onto the static risk sub-models to assess 
performance. 
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The relative operating characteristic (ROC) was also used to provide an additional 
measure of model performance. Use of the ROC is advantageous when needing to 
express the quality of a model in terms other than percent. It assesses "the validity of 
a model that predicts the location of the occurrence of a class by comparing a 
suitability image depicting the likelihood of that class occurring [i.e. fire risk output] 
and a Boolean image showing where that class actually exists [i.e. validation burn 
scars]" (Eastman 2006). 
 
 

3.3.10. Sensitivity analysis 

The criteria weights used in the final weighted combination can still be a source of 
controversy or uncertainty. Sensitivity analysis (SA) "examines the extent of output 
variation of a model when input parameters are systematically varied" (Delgado and 
Sendra 2004, 1173).  SA is therefore useful because it can be used to assess the 
robustness of results, and which parameters are most sensitive to change (Ravalico 
et al. 2010). In this study the SA method adopted by Chen et al. (2010) was used, 
whereby each sub-model's weight is varied one-at-a-time, whilst the other sub-model 
weights are held constant. The weight for each sub-model was adjusted in 2% 
increments between -20% and +20% (a total of 20 runs per sub-model). For each 
run, the total area occupied between risk categories (e.g. 0.5 - 0.6 etc.) was reported 
and presented in a graph. 
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4. RESULTS 

The previous chapter described the methods used in this study. This chapter presents 
the results, and is structured in a way that relates these results to the order of the 
research objectives. The burn scar map is therefore presented first, followed by the 
results for each sub-model and their corresponding accuracies. The dynamic aspect 
of the model is then presented together with a measure of its performance. The 
results of the sensitivity analysis are last to be presented. 

4.1. Burn scar map 

790 burn scars were identified (Figure 24). Of these, a significant proportion was 
located in the national park area in the south and the central Terai plain. Fewer burn 
scars were located in to the north in the Churia Hills. Two different datasets were 
used to locate burn scars, namely an ASTER image, and a ALOS AVNIR-2 dataset. 
The overall classification accuracy of the ALOS AVNIR-2 dataset was  89% (Kappa 
= 0.7). It was not possible to obtain an accuracy assessment of the ASTER burn 
scars because they dated to 2008, and so would have been re-colonised by 
vegetation.  
 

                  
        Figure 24: Burn scars located within the study area 
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4.2.  Biophysical sub-model 

In the case of the biophysical sub-model, the majority of the highest risk cells are 
located in parts of the study area covered by grassland (Figure 25), with the degree 
of risk approaching 1. Agricultural areas in the Terai plain are also at high risk, with 
values around 0.75. Lowest risk areas are found within the Churia Hills in the north 
of the study area, as well as in more inaccessible regions of Chitwan National Park. 
The effect of the fuzzy land cover boundaries is highly visible in regions of high 
risk, particularly land adjacent to agriculture and grassland (Figure 26). The effects 
of these fuzzy boundaries are less pronounced within the Churia Hills where the 
appearance of risk is more uniform. More than 70% of the burn scars are located in 
the 0.6 risk category and above, while few burn scars are located in risk areas of 0.4 
or less (20%) (Table 13). 
 

                   
                          Figure 25: Biophysical sub-model fire risk map 
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Figure 26: Effect of fuzzy land cover boundaries on risk of biophysical sub-model 

 
 
Table 13: Performance of biophysical  
risk sub-model 

Biophysical sub-model 

Risk 
No. of 
scars 

% of total 
scars 

Cumulative 
% 

1 7 1.78 1.78 

0.9 26 6.60 8.38 

0.8 137 34.77 43.15 

0.7 73 18.53 61.68 

0.6 46 11.68 73.35 

0.5 39 9.90 83.25 

0.4 41 10.41 93.65 

0.3 25 6.35 100.00 

0.2 0 0 100.00 

0.1 0 0 100.00 
 

Table 14: Performance of the ignition risk sub-
model 

Ignition sub-model 

Risk 
No. of 
scars 

% of total 
scars 

Cumulative 
% 

1 172 43.32 43.32 

0.9 48 12.09 55.42 

0.8 45 11.34 66.75 

0.7 42 10.58 77.33 

0.6 51 12.85 90.18 

0.5 21 5.29 95.47 

0.4 13 3.27 98.74 

0.3 5 1.26 100.00 

0.2 0 0.00 100.00 

0.1 0 0.00 100.00 
 

500 m transition zone 
Agriculture Grassland 

Fuzzy land cover boundary 



48 

4.3. Ignition risk sub-model 

In the case of the ignition risk sub-model, highest risk areas are situated within the 
Terai plain, with agricultural areas approaching the maximum level of risk (Figure 
27). A corridor of high risk also exists in the northern part of the study area. Regions 
of the lowest risk occur in Chitwan National Park area in the south east, as well as 
parts of the Churia Hills. 43% of the burn scars are located within the highest risk 
category (Table 14), with more than 90% of the scars in the 0.6 category and above. 
Few scars are situated within the lower risk categories, with none occupying regions 
of 0.2 risk or less. 
 

               
                                  Figure 27: Ignition risk sub-model map 
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4.4. Weather risk sub-model 

In the case of the dynamic weather risk sub-model, the highest and lowest risk 
months have been used to demonstrate the change in weather risk. In April, the risk 
values are highest, occupying a small range between 0.81 and 0.85, with the 
southern part of the study area occupied by these highest values (Figure 28). 
Conversely, September has the lowest risk values between 0.15 and 0.29 - a larger 
range compared to April.    

   
Figure 28: Two weather sub-model outputs depicting the risk in April and September, 
with DEM underneath. 

4.5. Response sub-model 

Areas at most risk to fire due to their inaccessibility include parts of Chitwan 
National Park, and eastern and western limits of the Churia Hills (Figure 29). Risk 
decreases as the proximity to roads increases, such that the imprint of the roads 
network is visible in the Terai plain, as well as a corridor running through the 
northern part of the study area. Interestingly, the majority of scars are located on 
regions of low risk. For example, nearly 60% of the burn scars are within the lowest 
risk category of 0 - 0.1, compared to approximately 2%  of scars for the highest risk 
category (0.9 - 1.0) (Table15). 
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  Figure 29: Response sub-model risk map 

Table 15: Performance of the response 
 sub-model 

Response sub-model 

Risk 
No. of 
scars 

% of total 
scars 

Cumulative 
% 

1 9 2.31 2.31 

0.9 11 2.82 5.13 

0.8 8 2.05 7.18 

0.7 12 3.08 10.26 

0.6 8 2.05 12.31 

0.5 21 5.38 17.69 

0.4 19 4.87 22.56 

0.3 27 6.92 29.49 

0.2 46 11.79 41.28 

0.1 229 58.72 100.00 

Table 16: Performance of the detection 
sub-model 

Detection sub-model 

Risk 
No. of 
scars 

% of total 
scars 

Cumulative 
% 

0.9 252 63.96 63.96 

0.2 142 36.04 100.00 
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4.6. Detection sub-model 

Visible areas are clustered around the existing road network (Figure 30). Large 
regions of the Terai plain are therefore at low risk (36% in total - Table 16). Beyond 
the 5 km visibility cut off land is invisible and hence high risk. 64% of the study area 
is categorised as high risk (Table 16). 
 
 

                  
  Figure 30: Detection sub-model risk map 
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Final monthly risk outputs 
 
In the case of the final monthly risk outputs, 12 monthly scenarios were created 
using the outputs from the weather risk sub-model. Four of the outputs are presented 
in Figure 31 below. These correspond to the maximum risk for April, intermediate 
risk for February and November and minimum risk for September.  
 
In each output, the degree of risk is always greatest in the Terai plain, approaching 
0.83 in the month of April, and dropping to 0.57 in September. For February and 
November, risk is approximately midway between April and September at 0.75. 
Regions of lowest risk include parts of Chitwan National Park and a large proportion 
of the Churia Hills. See Appendix 7 to see risk outputs for each individual month. In 
the months characterised by low fire risk, sharp 'lines' can be seen in the images 
which appear to show abrupt changes in risk. This is caused by the coarse resolution 
of the climate data. 
 
The change in risk from one month to the next can be seen in Table 17. In April, 
97% of the burn scars are located in the 0.7 and 0.8 risk categories, indicating that 
this is the highest fire risk month. In February and November, the percentage of burn 
scars occupying the 0.8 risk category is less compared to that in April, shifting down 
to lower risk categories of 0.6 and 0.7. September is the lowest risk month with 
almost 90% of scars occupying the lower risk categories of 0.4 and 0.5. However, 
Table 17 also shows that within each month, the distribution of burn scars is narrow, 
occupying only 3 or 4 risk categories out of 10. 
 
ROC curves in Figure 32 provide another measure of model performance, with each 
scenario being tested against a random model. Curves that are above the 'random 
model' line indicate a degree of success because the locations of the burn scars 
generally coincide with the areas of highest risk. Unsuccessful models would have a 
curve below the 'random model' line and an area under the curve (AUC) of <0.5 - in 
other words, the burn scars would be located in lower risk areas. Each month in 
Figure 31 is a reasonably good model, with April and February having the greatest 
AUC. September, the month at least risk to fire, had the lowest AUC of 0.7. 
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 Figure 31: Risk maps for February, April, September and November 
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Table 17: Performance of four fire risk outputs 

  Percentage of total no. of scars 
Risk February April September November 

1.0 0.00 0.00 0.00 0.00 
0.9 0.00 0.00 0.00 0.00 
0.8 9.14 53.30 0.00 1.52 
0.7 67.77 44.16 0.00 62.94 
0.6 23.10 2.54 10.66 35.03 
0.5 0.00 0.00 58.38 0.51 
0.4 0.00 0.00 30.96 0.00 
0.3 0.00 0.00 0.00 0.00 
0.2 0.00 0.00 0.00 0.00 
0.1 0.00 0.00 0.00 0.00 

 
 

 
Figure 32: Relative operating characteristic (ROC) for four fire risk outputs  

 
 
 
 
 



55 

4.7. Sensitivity analysis 

The results of the sensitivity analysis are summarised below. The graph for each 
sub-model is presented in Appendix 8. Each graph shows how the area contained 
within each risk category changes as the sub-model's weight is changed. The 
sensitivity analysis was performed on the month of April, chosen because this is the 
highest fire risk month. 
 
� The most sensitive sub-model is the weather sub-model. As the weight is 

increased across the -20 to +20% range, the two categories that experience the 
most change are the 0.5 - 0.6 category, decreasing from 100,000 ha to near 0 ha, 
and the 0.7 - 0.8 category, increasing from 50,000 to 150,000 ha. The area 
within the 0.6 - 0.7 category appears to decrease both when the weight is 
increased and decreased. 

� The second most sensitive sub-model is the response sub-model. The areas 
between the 0.5 - 0.6 and 0.7 - 0.8 categories converge as the weight is 
increased. As the weight is decreased from the original sub-model weight, the 
area contained within the 0.6 - 0.7 category decreases slightly, but is stable as 
the weight increases. 

� For the biophysical sub-model, most change in area occurs between the 0.5 - 
0.6 and 0.6 - 0.7 categories, which begin to converge as the weight increases. 

� A slight increase in area from 75,000 to 100,000 ha is seen for the 0.7 - 0.8 
category in the ignition sub-model. A gentle decrease occurs in the 0.6 - 0.7 
category. 

� The least sensitive sub-model is the detection sub-model, with minimal 
changes between the risk categories. 
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5. DISCUSSION 

5.1. Burn scar map 

Two major sources of data were used to locate burn scars within the study area, 
namely an ASTER image from which burn scars were manually digitised, and a 
burned area dataset from the ALOS AVNIR-2 sensor in which burned area had been 
detected automatically. Both methods have their advantages and disadvantages. 
Manual delineation of burn scars (a method used by Orozco et al. 2009  and Liew et 
al. 1998) is effective because the analyst is able to distinguish between burned area 
and land cover of a similar reflectance. However, in complex terrain such as the 
Churia hills located in the northern part of the study area, the presence of shadows 
can introduce a degree of uncertainty into burn scar identification. 
 
The AVNIR-2 dataset is advantageous because the automatic detection of burned 
area can remove the subjective element associated with manual delineation, and data 
can be collected and used in near real-time (Roy et al. 2005). Burned area may also 
be identified in areas not visible to the human eye, but, again, it is important to note 
that land cover types of low/similar reflectance may still be classified as a burn scar 
(Sunuprapto 2000). The ground truth points collected in the field to assess the 
reliability of this dataset was, however, acceptably accurate, with 89% overall 
accuracy (Kappa = 0.7). 
 
The use of these two data sources to provide a burn scar map does, however, 
introduce a degree of uncertainty into the calibration and validation phases. As 
mentioned in sections 3.1.2 and 4.1, no accuracy assessment for the ASTER image 
was available, whereas the AVNIR-2 dataset had an acceptable accuracy. This 
means that there is the potential for the calibration and validation of the fire risk 
model to be more or less accurate depending on whether the ASTER or AVNIR-2 
data being used. This effect is therefore location specific because Chitwan National 
Park and the Terai plain are covered by the AVNIR-2 dataset, whereas a large 
proportion of the Churia hills are covered by the ASTER dataset. However, the 
magnitude of this effect was not possible to calculate because of the fact that the 
accuracy of the ASTER burn scars was not known. 
 
A further issue arising from the use of these two datasets is that they were collected 
at two separate time periods (ASTER: March 2008, AVNIR-2: March 2010), and are 
therefore not subject to the same weather conditions. However, it was deemed 
important to use both these datasets because it made it possible to obtain burn scar 
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data that covered the whole study area, and these were also the most up to date 
datasets available. 
 

5.2. Development of fire risk model 

5.2.1.  Biophysical sub-model 

 
The majority of the highest risk cells are located in parts of the study area covered 
by grassland. This is an expected outcome due to the importance assigned to the land 
cover risk map (providing the fuel which fire burns), and because the greatest risk 
value (1.0) was originally assigned to grassland areas. In a similar risk study by 
Rathaur (2006) in northern India, the grassland cover type was also associated with 
the greatest fire risk, and may due to the similar climate and sub-tropical 
environment which these two study areas experience. However, the grassland is 
generally located in areas that are characterised by high risk in terms of slope (i.e. 
gentle slope) and elevation (i.e. low elevation). These results differ from the findings 
of Ercanoglu et al. (2006) because in this study, areas characterised by steep slopes 
were classified as higher risk. This is possibly due to the enhanced ability of fire to 
move upslope, as discussed in section 1.3.1. The result also differs from Hernandez-
Leal et al. (2006) because in their study in Tenerife, regions of higher elevation were 
assigned greater risk values. This discrepancy could result from the different 
conditions that form wildfire regimes between study areas in very different 
locations.  
 
The combination of slope and elevation is also important for explaining why 
agricultural land in the Terai Plain generally has high risk values, compensating for 
the 0.6 risk value originally assigned to the agricultural land cover category. The risk 
within agricultural areas is also affected by the aspect risk layer because the 
direction of the slope is continuously shifting across the Terai plain, which accounts 
for the 'speckled' appearance. The combination of low risk values for land cover, 
slope, elevation and in some cases aspect, accounts for the low risk areas of the 
Churia Hills region. 
 
It is also important to discuss the impact of the fuzzy land cover boundaries on the 
biophysical sub-model, as their effect is highly apparent  in regions characterised by 
high fire risk. Generally, the degree of risk in areas that fall within the fuzzy 
boundary zone is less than the risk value of pixels located outside these zones. 
Specifically, Figure 26 shows that the degree of risk gradually decreases as pixels 
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approach the crisp boundary as defined by the classified land cover map, accounting 
for the possibility that a pixel belongs to the adjacent land cover type. However, the 
fuzzy land cover boundary is limited because the risk suddenly decreases as the crisp 
boundary line is crossed from the grassland to agriculture side. Ideally, the risk 
values would continue to gradually decrease from the grassland to the agricultural 
land. 
 
A further limitation of the method adapted from Lagacherie et al. (1996) to create 
fuzzy land cover boundaries also arises from when two or more land cover 
boundaries lie adjacent to each other. This is because the membership value of a 
pixel belonging to a land cover type decreases when there are possibilities that it 
belongs to other land cover types. If the membership value of the pixel to a land 
cover type is low, the resulting degree of risk also becomes lower when the two are 
multiplied. This has the effect of creating a much sharper decrease in risk values 
when comparing pixels within and outside the transition zone, giving it a less fuzzy 
appearance. Situations in which this occurs are generally located within the Churia 
Hills region, where the degree of risk is already low with respect to both slope and 
elevation. 
 
The original positions of the crisp land cover boundaries, as well as the locations of 
some land cover polygons may also be affected by the supervised classification 
performed using the available GCPs. As mentioned in section 3.1.2., GCPs in the 
Churia Hills  region were not collected randomly because of inaccessibility. The 
land cover map (and hence the boundary positions and location of the land cover 
polygons) would be different had it been possible to collect these GCPs randomly. 
Furthermore, the overall reliability of the land cover map, and accuracy of the fire 
risk model, would have improved had more GCPs per land cover type been 
collected. This is because the training stage of classification would have better 
represented the spectral signature associated with each land cover type, and the 
accuracy assessment would have been more thorough.  
 
Sub-model performance was reasonable (Table 13), because 70% of the scars were 
located in the 0.6 risk category and above, while few were located in risk areas of 
0.4 or less (20%). However, the biophysical sub-model developed by Orozco et al. 
(2009) appears to have performed better because the burn scars were not only 
located in areas that were classified as high risk, but were located in fewer risk 
categories. A reason for this may result from the differences in the Boolean and 
fuzzy approaches to standardisation and aggregation. In the Boolean approach 
adopted by Orozco et al. (2009) and Hernandez-Leal et al. (2006), risk values are 
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assigned to specific categories within a risk factor. For example, in Hernandez-Leal 
et al. (2006), a risk index value of 20 was assigned to all cells within 10 m of roads, 
15 between 10 m and 50 m and so on. This creates distinct categories of risk similar 
to those discussed in section 1.4. If several risk factors are standardised in this way,  
it is likely that sharp boundaries between risk values will also be present in the final 
risk outputs. However, in the fuzzy approach, the gradual change from high to low 
risk limits these sharp changes in risk giving a much smoother appearance. When the 
two outputs are validated by seeing how the locations of the burn scars correspond to 
the risk maps, it is more likely that the scars will fit into a more compact number of 
categories when the Boolean approach is used. In the fuzzy approach, however, the 
location of the scar could be over a wider range of values. 
 
A further possible reason why the biophysical sub-model did not perform as well as 
the biophysical sub-model in Orozco et al. (2009)  could result from the application 
of the fuzzy membership functions in the standardisation process. Figure 9 in the 
methods chapter shows how a membership function was applied to the elevation 
histogram. The equation used is a single or 'global' function, designed to provide a 
best fit to the whole histogram. Although the use of one equation per risk factor is 
advantageous because it is simpler than breaking risk down into several smaller 
equations, the best fit aspect also means that there can be a degree of over- or 
underestimation of risk. Figure 9 shows a good example of overestimation of risk in 
the 1000 m bin category where there is a lower number of scars per ha relative to the 
1200 m bin category, but has been assigned a greater degree of risk. The over- and 
underestimation is visible in the aspect histogram too (Figure 10), and also in some 
of the histograms in the ignition risk sub-model. This over- and underestimation of 
risk can propagate to the final sub-model output, adversely affecting its overall 
accuracy. 
 

5.2.2. Ignition risk sub-model 

 
The extensive road network located in the centre of the study area, and the area of 
grassland located on the northern border of Chitwan National Park explains the area 
of high risk in the Terai plain (Figure 27). The effect of the road is also visible in the 
northern part of the study area, creating the corridor of high risk. Regions of lowest 
risk are explained by significant distances from roads, grassland and agriculture. 
 
The ignition sub-model performed better than the biophysical. 90% of the burn scars 
were located in the 0.6 category and above for the ignition sub-model (Table 14), 
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compared to 60% for the biophysical. This could indicate that the burn scars are in 
some way explained by human activities. Many fires ignite as a result of farmers 
deliberately setting fire to their fields in February and March to encourage growth of 
the next crop. In countries such as the US, Greece and Australia, arson can also be a 
significant issue. Although in Nepal there is no evidence to suggest arson is a 
problem, it remains possible that some fires may have started in this area because the 
road network provided easy access to particularly vulnerable areas. This is supported 
also by Romero-Calcerrada et al. (2008), who produced fire risk maps showing that, 
out of several human-caused wildfire ignition factors, the greatest danger was 
associated with proximity to roads. Finally, as mentioned in section 3.4.3, prescribed 
fire is sometimes used in grassland areas to support deer species which rely on 
young plants germinating from the burned area.  
 

5.2.3. Response sub-model 

When compared to the biophysical and ignition risk sub-models, the response sub-
model produces near opposite results, with areas such as the Churia Hills and 
Chitwan National Park occupying regions of greatest risk. A high percentage of 
scars are located in low risk areas, meaning that authorities or communities 
concerned could respond relatively quickly to fire occurrence. The response risk 
map could also indicate the influence of the human population in igniting fires 
within close proximity to where they live. 
 

5.2.4. Weather risk sub-model 

The weather sub-model outputs produced for each month are successful because the 
values of risk vary throughout the year, reflecting the changing weather conditions. 
It produces results that would be expected: April is the highest risk month, which is 
traditionally in the middle of the fire season. August/September are the lowest risk 
months, which come towards the end of the monsoon season (Figure 28). 
 
However, despite the weather risk sub-model producing reasonable results, it is still 
simplistic. Ideally, an index designed specifically to estimate the degree of fire risk 
would have been used rather than the use of a drought index which is based only on 
precipitation. One such index is the Keetch-Byram index for example, which is 
frequently used in parts of the US (Dolling et al. 2005). The degree of risk (between 
0 and 800) is calculated using  maximum temperature and precipitation totals. 
Unfortunately, this index could not be used in this study because daily weather data 
was not available, and there is also the issue of whether a fire index developed for 
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the US can applied to the Nepali context. The weather sub-model is also simplistic 
in the sense that only temperature and precipitation are relied on to estimate fire risk. 
In reality, wildfire occurrence is also affected by relative humidity, which controls 
fuel moisture content, and wind speed, which influences fire behaviour. If data to 
determine these variables were available in the study area, more complex, and 
realistic, fire risk indicators could be used. An example of such an index which uses 
all four of these weather components is the fire weather index (FWI) used by the 
Canadian Forest Service (Girardin and Wotton 2009). 
 

5.2.5. Final monthly risk outputs 

The final monthly risk outputs formed by the aggregation of the sub-models 
provides an insight into the spatial and temporal aspects of fire risk. The temporal 
change in risk is caused directly by the weather sub-model. However, the weather 
sub-model also has a degree of influence on the spatial distribution of risk, 
particularly in the lowest risk months. As can be seen in the September output of 
Figure 31, there are sharp changes in risk visible over the Churia Hills. This is 
caused by the spatial resolution of the weather data, which is coarse (10 km), 
meaning that any differences in risk between cells is easily visible. Furthermore, the 
differences in risk between cells in the monsoon season are much greater than the 
differences between cells in the fire season (e.g. Figure 28). This explains why such 
abrupt changes are only visible in the monsoon months.  
 
Although the fire model is successful in showing the annual variation in risk (Table 
17), the distribution or range of risk values between the extremes of April and 
September is not as great as expected. Ideally, lower risk values would have resulted 
for months such as August and September when the risk of fire probably approaches 
zero, rather than the 0.4 category shown for September in Table 17. Lower values in 
September would also have resulted in greater annual variation to the extent that 
changes in risk between months would have been more pronounced. The low range 
in risk values may be caused by different aspects of the multi-criteria evaluation 
approach adopted in this study. For example, many different factors, or risk sub-
models, are being combined to produce one final output. This process of 
combination results in trade-offs between the different factors, as high risk areas in 
one factor can be partially compensated for by low risk elements of another. To an 
extent, this compensation between the risk sub-models is also affected by the 
weighting system, whereby weights were assigned to a) each factor map in the 
formation of each sub-model, and b) as weights used to combine the sub-models into 
the final risk outputs (Tables 9 to 12). At both stages, the weights are used to control 
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the degree of  trade-off between factor maps. Increasing the weight of the weather 
sub-model, for example, would likely increase the range of values, particularly for 
months such as September when the risk would decrease further. 
 
Despite this low range in values between April and September, use of the ROC 
demonstrated that model outputs are successful with AUC values ranging between 
0.7 and 0.78. This does not mean that wildfires are likely to occur in the lowest risk 
months such as September just because it has a reasonable AUC value, but it does 
mean that throughout the year, the model is capable of distinguishing between areas 
of low and high risk. It also means that the land on which these validation burn scars 
occur remains consistently at high risk throughout the year relative to surrounding 
cells. In the study by Orozco et al. (2009), the ROC was also used to validate the fire 
risk model, achieving an AUC of 0.8. Although this value was obtained by 
validating a different aspect of the model (the static element of the model without 
the influence of weather), it does at least show some similarities and a degree of 
success common to both these studies. 
 

5.2.6. Sensitivity analysis 

The weights issue discussed above was also examined in a sensitivity analysis using 
the risk map for April. This month was chosen because it was the highest risk month 
of this study, and is traditionally in the middle of the fire season. 
 
As summarised in the results chapter, the weather sub-model is the most sensitive to 
weight change as it exhibited the greatest changes in the distribution of risk. This is 
partly because the weather sub-model has the greatest weight over other sub-models 
and therefore has the greatest influence on the final risk values. It is also because of 
the coarse resolution of the weather sub-model (10 km), meaning that any change in 
its weight will result in broad and sudden changes in the risk values. Despite having 
the second lowest weight value, the response sub-model is the second most sensitive. 
This is explained by the location of the highest risk cells, which are situated over 
parts of the Churia hills and Chitwan National Park. This is in direct contrast to the 
location of highest risk cells in the biophysical, ignition risk and weather risk (April) 
sub-models. As the weight of the response sub-model is increased, it has a greater 
influence over these three sub-models, decreasing the values of the highest risk 
areas, and increasing the lowest. The detection sub-model was the least sensitive of 
the sub-models because it has the lowest weight.   
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The results of the sensitivity analysis indicate that, with the exception of the 
response sub-model, the sensitivity generally is greater with greater original weights. 
Chen et al. (2010) had broadly similar findings in an analysis of the weights used in 
an irrigated cropland suitability study. The sensitivity analysis also demonstrates the 
importance of the initial weights derived from the rating system in the pairwise 
comparison (section 3.4.3.), as the distribution and values of risk would differ if the 
rating values were changed. In the absence of expert opinion in deciding the initial 
weights, the sensitivity analysis is advantageous in that it can at least express how 
the result may have changed had the author chosen slightly different weights.  
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

A spatial and dynamic wildfire risk model based on fuzzy logic was developed for a 
region of southern Nepal. The general aim of the study was to identify regions most 
vulnerable to wildfire occurrence, and to ensure that the risk was realistic with 
respect to the temporal aspects of wildfire. Achieving this general aim was made 
possible by dividing it into four main objectives.  
 
The initial objective, locating burn scars within the study area, was achieved by 
incorporating data from two different sources. The majority of this burn scar data 
was provided by an AVNIR-2 dataset from March 2010, while the remaining data 
was digitised using an ASTER image from March 2008. Although it is not ideal that 
these datasets were captured at different times using different approaches, it does 
provide data that covers the whole study area, as well as data on which to assess the 
spatial patterns of burn scars.  
 
The histograms created by overlaying 50% of the burn scars with the factor maps 
enabled an assessment of their spatial patterns. This was an essential step in the 
achievement of the second objective, the development of the fire risk model itself. 
The histograms provided not only the values on which to base the fuzzy membership 
functions for risk, but the shape of the histograms provided guidance in the selection 
of a function's shape. Using these membership functions, the selected factors were 
successfully standardised to model the degree of risk.  
 
Pairwise comparison was used in the formation of each sub-model that represented a 
particular theme of fire risk, and in the creation of the monthly fire risk outputs when 
the sub-models were combined. Ideally, expert opinion would have been used to 
decide the rating scores between the risk factors, but as this was not available, 
published literature was relied on. This introduces a degree of subjectivity with 
regard to the weights.   
 
To address the third objective, the remaining 50% of the burn scars were used to 
assess the performance of each sub-model and each monthly risk output. The 
biophysical sub-model performance was reasonable in that 70% of the burn scars 
were located in the 0.6 risk category and above, but this is not as successful as a 
similar sub-model developed by Orozco et al. (2009). The ignition risk sub-model 



65 

was more successful in that 90% of scars were located in the 0.6 risk category and 
above.  
 
The dynamic aspect of the model performed as expected. Fire risk was greatest for 
the month of April, which is also traditionally in the middle of the fire season, and 
was lowest in August and September, which experience high rainfall quantities as 
part of the monsoon season. However, the range of values between the maximum 
and minimum risk months are not as great as expected. Ideally, even lower values of 
risk values were expected for August and September. The reason risk is not lower is 
in part caused by the multi-criteria approach used in this study. Combining the sub-
models can result in trade-offs, which acts to compensate against very high or very 
low risk values exhibited by a particular sub-model. The further method of 
validation using the ROC did, however, show that the final monthly outputs 
performed well, with an AUC above 0.7 to 0.78 for the months investigated. 
 
A sensitivity analysis was performed by varying the weight of each sub-model in 2% 
increments between +20% and -20% of its original weight. Generally, greater 
original weights were associated with greater sensitivity - the weather sub-model 
was most sensitive, and the detection sub-model was the least. However, the 
response sub-model was also sensitive because the location of highest risk was in 
contrast to the other sub-models, demonstrating the importance of the trade-off 
influence between the sub-models. The sensitivity analysis also provided a degree of 
reliability against the subjective nature associated with the initial weights of each 
sub-model. 
 
Finally, this study has shown the important contributions remote sensing and GIS 
can make to the spatial analysis and modelling of an environmental issue. In their 
absence, studies in regions of the world where little data is available would be a 
significant challenge, and the "white spot" remark which the IPCC made in relation 
to Nepal due to a lack of research done in this region, would persist (Khadka 2009). 
Instead, such techniques provide a powerful means of developing management 
strategies that can mitigate the negative impacts posed by such environmental issues. 
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6.2. Recommendations 

Based on the results, discussion and conclusion in this study, the following 
recommendations are made. 
 
� To improve the dynamic element of the fire risk model, select a study area in 

which several climate stations are located. This would provide not only ground 
measured data (i.e. not from a satellite estimate), but would also enable the 
possibility of incorporating the wind and relative humidity components into the 
model. 

 
� In this study, monthly weather data between 2000 and 2010 were used, but only 

2009 and 2010 was presented. It would therefore be possible to study the 
dynamic aspect of fire risk on a range of different time scales. For example, is 
there a particularly high risk period, and does this correspond to increased fire 
activity recorded in other datasets? Furthermore, the latest temperature and 
precipitation data could also be used to provide a recent assessment of risk.  

 
� Increase the temporal resolution of the dynamic weather sub-model. Weekly 

and daily estimates may be more useful to fire managers/forestry officials, and 
would be relatively simple to achieve if climate stations were present in the 
area. 
 

� The climate data could also be used to develop a fire index (e.g. similar to the 
Keetch-Byram index) rather than use of a drought index. 

 
� More work needs to be done on the fuzzy land cover boundaries to make them 

more realistic. Alternatively, it might be interesting to incorporate a soft-
classified image to provide a more fuzzy land cover layer, even if this does pose 
problems for accuracy assessment. 

 
� Use of expert opinion would provide a robust and less subjective method for 

selection of fire risk factors and in deciding the weights used in combining these 
factors. 
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Appendix 2: Classified land cover map for study area                                                            
         
                              

 
 
Appendix 3: Land cover accuracy assessment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ground truth (%) 
Class D. forest Grassland L.D. forest Agriculture Total 
D. forest 92.3 0.0 30.0 6.1 33.7 
Grassland 0.0 75.0 5.0 3.0 14.7 
L.D. forest 7.7 12.5 65.0 3.0 19.0 
Agriculture 0.0 12.5 0.0 87.9 32.6 
Total 100.0 100.0 100.0 100.0 100.0 

Class Comm. (%) Omiss. (%) Prod. Acc. (%) User Acc. (%) 
D. forest 25.0 7.7 92.3 75.0 
Grassland 14.3 25.0 75.0 85.7 
L.D. forest 27.8 35.0 65.0 72.2 
Agriculture 6.5 12.1 87.9 93.6 

Overall accuracy: 82% 
Kappa coefficient: 0.75 
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Appendix 4: Examples of land cover types 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 5: AVNIR-2 burned area dataset accuracy assessment 
 

  Ground truth (%) 
Class No burn scar Burn scar Total 
No burn scar 100.0 33.3 78.3 
Burn scar 0.0 66.7 21.7 
Total 100.0 100.0 100.0 

 
 

Class Comm. (%) Omiss. (%) Prod. Acc. (%) User Acc. (%) 
No burn scar 13.9 0.0 100.0 86.1 
Burn scar 0.0 33.3 66.7 100.0 

 
Agriculture 

 
Grassland 

 
High density forest 

 
Low density forest 
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