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Abstract

The images acquired by the Observatoire pour la Mineralogie, l’Eau, les Glaces
et l’Activité (OMEGA) hyperspectral spectrometer on Mars Express of the surface
of Mars are affected by noise and large pixel sizes. The stability of the spectra
used to identify mineralogy with OMEGA has not been studied in detail across
different scenes and spatial resolutions. A modified image processing method and
an analysis of correlation between spectra is proposed to evaluate how selected
image spectra of key rock-forming minerals relate across different OMEGA image
resolutions and to laboratory measurements of mineralogical spectra.

The Nili Fossae region at the western edge of the Isidis impact basin on Mars
was the area chosen to be studied due to the diverse mineralogy that has been as-
sociated with it. Here, spectra were extracted from regions identified with spectral
parameters or summary products where groups of rock-forming minerals occurred.
Image-extracted spectra were used as endmembers to produce a spectral library
with which the statistical method of spectral angle mapping was applied to map
the mineralogical distribution in OMEGA images of different resolutions. The ex-
tracted spectra were also compared to laboratory spectra via their spectral angles.

Results showed low angles and high correlation between the extracted spectra
in different resolutions, and relatively low correlation between the extracted spectra
and the laboratory spectra. Spectral angle mapping of the images revealed that
some spatial coherence of the mapped mineralogy existed, but spectra from the
maps were highly correlated for all endmembers. A cross-validation between pro-
cessed images from OMEGA and the higher resolution Compact Reconnaissance
Imaging Spectrometer for Mars (CRISM) on NASA’s Mars Reconnaissance Orbiter
showed relatively low correlation between their corresponding mineral spectra. Vi-
sual identification of mineralogical spectra was more precise at identifying mineral
species than summary products were.

Extracted spectra were stable across different resolutions but were not identify-
ing precise minerals based on their spectral properties because the chosen summary
products are not effective at identifying precise mineralogical spectra.

These summary products should therefore be used with care in future min-
eralogical analysis of Mars’ surface with remote sensing. Spectra behaves stably
enough across different resolutions, but with OMEGA, it would be best to use spec-
tral angles to map with a library of minerals confirmed to be present by rovers, the
direct sensors on the surface.
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Chapter 1

Introduction

The European Space Agency (ESA)’s visible and infrared hyperspectral spectrom-
eter Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activité (OMEGA) on
the Mars Express (MEx) satellite has captured the spectral signatures of most of
Mars’ surface in varying spatial resolutions since it began orbiting Mars towards
the end of 2003 [4].

Hyperspectral imagery from OMEGA has aided in mineralogical mapping of the
Martian surface [23], [32] but due to its relatively low spatial resolution, resulting
maps are often open to interpretation and a subject of discussion. To complicate
matters, several other issues affect the OMEGA datasets, including noise and less
than optimal calibration [3].

Aside from the problems arising due to the spectrometer, there are also lim-
itations in the current models of Mars’ atmosphere and solar illumination condi-
tions [3] which have an impact on the interpretation and correction of OMEGA
images, though these simplified models will not be altered in this project.

This MSc thesis aims to devise a method to extract useful spectral information
from the images captured by OMEGA, investigate its usefulness for the correct
identification (with respect to laboratory measurements) and mapping of surface
mineralogy, and to understand the stability of spectra extracted OMEGA images
across different resolutions and scenes. This information may then be used for
geological interpretation.

The area studied is Mars’ Nili Fossae region, which is of particular interest due
to the diverse mineralogy confirmed to be present in it [21], [16].

1.1 Background

At the present moment, ESA’s Mars Express (MEx) and NASA’s Mars Odyssey
and Mars Reconnaissance Orbiter (MRO) are the only working satellites orbiting
Mars [7] and acquiring atmospheric and surficial information. All three are age-
ing satellites which have surpassed their intended lifetime, and neither ESA nor
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Figure 1.1: Elevation image of
the Nili Fossae region (delim-
ited by a 10◦ × 10◦ box) ac-
quired Mars Orbiter Laser Al-
timeter on NASA’s Mars Global
Surveyor satellite.

NASA have planned orbiters to replace them in their entirety the near future. The
joint NASA/ESA Mars Trace Gas Orbiter (TGO) is the only intended orbiter for
Mars within the coming decade [7] and will gather detailed information on atmo-
spheric composition, but will not carry a hyperspectral instrument for measuring
the spectral properties of the surface.

Despite this, the wealth of hyperspectral data gathered by MEx/OMEGA as
well as NASA’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
on MRO does not fall short, having imaged all the Martian surface1. The data
gathered by both spectrometers served to discover and confirm the presence of
hydrated minerals and clays [16] which were suspected to be present, as well as
carbonates [19] and widespread mafic minerals [20]. Numerous articles [4], [22], [24]
claim encountering the spectral signatures of very specific minerals (see sections
1.1.1 and 1.1.2) across the OMEGA hyperspectral datasets in spite of the abundant
problems the latter faces, such as noise (see section 2.1.1).

1.1.1 Geology of Nili Fossae

The Nili Fossae region was chosen as the area of study interest for this thesis.
Current knowledge of the geology of Nili Fossae stems from studies that have

confirmed Nili Fossae as a region of interest with spectral signatures indicating
diverse mineralogy with OMEGA [4], [21], [16]. This diverse mineralogy was the
main reason for choosing the Nili Fossae area as the area of study interest (approx-
imately bound between 17◦ and 27◦ latitude and 71◦ and 81◦ longitude) (figure
1.1) However, the specific interpretations of the spectral signatures for mineralog-
ical mapping with OMEGA remains a complex task and an issue of debate due to
intrinsic difficulties in the nature of the data, the necessary corrections and pre-
processing of the images prior to interpretation and the errors (discussed in section

1Raw data available at ESA’s Planetary Science Archive for OMEGA
(http://www.rssd.esa.int/index.php?project=PSA&page=mexIndex) and NASA’s
Planetary Data System (http://pds-geosciences.wustl.edu/missions/mro/crism.htm)
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1.1.2) associated with the spectrometer. A workaround making use of spectral
unmixing has recently taken some form to reduce the effect of the low spatial reso-
lution [9], and to be able to identify the mineralogical diversity, which ranges from
rare unweathered carbonates [10] to mafic silicates [4], clays and minerals resulting
from aqueous alteration [16].

The prevalent interpretation of the interpretation of the Nili Fossae region
based on superposition and relationship between geological units [21] describes
units bearing the mineral olivine as contemporaneous to the Isidis impact (late
Noachian age, approximately 3.96 Gyr ago) to the East of Nili Fossae. The olivine
bearing rocks are found due to crustal melt and exposure from the impact, and the
impact itself reveals subsurface crustal mineralogy [21] . However, phyllosilicates
and hydrated minerals found to be present in the region are due to the presence
of water, weathering and alteration of the bedrock associated with it prior to the
impact event [16], and possibly due to fluvial and lacustrial sedimentary processes
taking place in impact craters [13]. Conditions for weathering and production
of hydrated minerals have not occurred since [16], when the Syrtis Major shield
volcano in the vicinity of the Nili Fossae region was active and ejected lava flows
containing dark, mafic minerals [20] (in the Hesperian period around 3.7–3 Gyr
ago according to crater counts) [6].

1.1.2 Overview of the OMEGA spectrometer and a review
of methods

The OMEGA imaging spectrometer on MEx forms part of a current and ongoing
European initiative which has exceeded its expectations in relation to the sheer
amount of data collected and science derived MEx reflected a trend at ESA to
quickly construct effective space-bound instruments based on previous and ongoing
missions and to reduce costs. OMEGA derives from a spare OMEGA spectrometer
for Russia’s Mars 96 mission [5] (the direct predecessor to Mars Express which failed
during launch) and the electronics for power and control were based on the ÇIVA
slash ROLIS instrument [5] (a CCD camera/spectrometer for Rosetta’s lander set to
arrive comet 67P/Churyumov-Gerasimenko in 2014) [11]. The scientific return has
been nothing short of remarkable, and reflecting that, ESA’s Science Programme
Committee has extended the MEx mission four times so it will remain operational
till at least December 2012, if it remains in stable orbit for as long.

OMEGA has been gathering hyperspectral images in 352 contiguous channels
in wavelengths between 0.38 and 5.1 μm since January 2004. OMEGA is actually
composed of two separate spectrographs: Visible to Near Infrared (VNIR) and
Short Wave Infrared (SWIR). The latter in turn is formed by two spectrometers
(SWIR1 and SWIR2) with a spectral overlap between them [12] (see table 1.1).
Spatial resolution is varied between 0.3 and 4 km/pixel, depending on the area
surveyed and the orbital characteristics of MEx. Images of all of Mars’ surface were
acquired fairly quickly at lower resolutions, providing spectral images on a global
scale for the first time [4]. However, the fairly large pixel size is both an advantage
and a disadvantage. On one hand it is easier to understand large scale implications
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Table 1.1: OMEGA’s sensors and spectral ranges.

Sensor Range (μm)

vnir 0.38–1.05
swir1 0.93–2.73
swir2 2.55–5.1

of the underlying geology and to see large spatial patterns and distributions should
they exist, but on the other hand specific mineralogical detail and compositions as
well as diagnostic structures and formations may be missed.

Yet another cause for concern related to the large pixel size is the actual inter-
pretation of the spectral images: diverse mineralogy falling within the area covered
by a pixel is grouped and results in a mixed pixel with a single spectral value.
Recent studies [8], [33] have borrowed from image processing techniques used to
unmix pixels on Earth-pointing spectrometers to obtain apparently reliable pro-
portions of mineralogical compositions, but have been restricted to moderately
effective methods such as linear spectral unmixing models, with all its limitations,
e.g. assuming the surface imaged has no intimate mineral mixes but areal mixtures
(linear combinations of minerals). The difficulties with this latter method include
the need to define representative rock-forming minerals (and water ice) as endmem-
bers expected to be found on Mars and identifying their spectral signatures, which
is a difficult task given the need to extrapolate the known spectral signatures of
minerals measured in controlled laboratory conditions to the spectral signature for
the same mineral on Mars. This is a serious impediment to the technique due to the
fact that a different instrument in different conditions has been used to carry out
the task of identifying spectra which will be used as a spectral database or library
to compare with OMEGA’s obtained data. So far, these studies ( [9], [15], [33])
have been able to identify the presence of mineralogies with some confidence but
not their exact proportions, nor, as far as I have observed, have they evaluated
the changes in spectra across scenes and the effect of the different resolutions of
OMEGA.

Other approaches in tackling the problem of ambiguity in the information given
by pixels and sub-optimal calibration provide good insights into what can be ac-
complished and integrated to form a more reliable processing model using image
spectra. These include object-based segmentation [32], in which contiguous pixels
with low variance between their characteristic absorption features are grouped; use
of ancillary Thermal Emission Spectrometer data on NASA’s Mars Global Surveyor
satellite [18] to compare the suitability of specific spectral ranges to detect certain
mineralogies; and similarly, the use of MRO’s CRISM [22], which in contrast to
OMEGA, has a very high spatial resolution (from approximately 20 to 200 me-
ters/pixel, depending on the mode of operation and orbit) and convenient spectral
summary products that can quickly parametrise a number of mineralogies, gasses
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and ice compositions [22].
This thesis relates to the mentioned sources by drawing from them (and espe-

cially [4], [22] and [3]) to follow a method to understand the spectral characteristics
of OMEGA imagery and the relationship the image spectra has with mineralogy. It
should be noted that two general groups of methods for characterisation of OMEGA
spectra have been described for mapping mineralogy:

• Using a spectral library/database of a priori mineral spectral measurements
and fitting this spectra to the image’s spectra.

And:

• Extracting spectra from the images themselves to build a spectral library,
where relating to known mineralogical information is secondary, thus obtain-
ing a higher relation between maps and spectra.

The mentioned unmixing techniques and cases in which there was use of ancil-
lary data have introduced variations to the methods in order to improve them.
This thesis follows the second method, since relating OMEGA’s image spectra to
mineralogical spectra might not be ideal due to the differences in conditions and
instruments used for measuring in both cases.

1.2 Justification of research

Learning about Mars’ geology will not only aid our comprehension of Mars’ origin
but also advance further understanding of our own planet, and indeed, any ter-
restrial planet through comparative studies. Mineralogical mapping of the surface
of Mars will aid it’s exploration and is useful for characterising landing sites and
sites of interest for ESA’s and NASA’s planned joint rover and probe missions in
the near future in view of attempting to study Mars’ present and past, and to find
traces of present or past life should it have existed.

On a more utilitarian and current view, the research will bring further un-
derstanding of how to identify mineralogy through hyperspectral remote sensing,
and aims to comprehend how spectra are related to mineralogy. Concretely, the
study will determine the response of OMEGA hyperspectral data in different scenes
across the Nili Fossae region, known for being a diverse site of scientific interest
and as a potential landing site.

1.3 Research questions and objectives

In a broad sense, this project aims to aid in the understanding of the geology of
Mars. In order to do so, the issues with the tools used for the study the geology of
Mars need to be addressed.

Previous studies have used spectral signatures of minerals in laboratory con-
ditions as spectral libraries or databases to determine the nature of the spectral
signatures in OMEGA images. However, due to the unreliability of using in-situ
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validation (or ground truth) and instrumental and conditional differences, direct
comparison of OMEGA image spectra to laboratory spectra is uncertain. The fol-
lowing thesis begins with the hypothesis that spectra extraction from the OMEGA
images directly (post-processing) without relying on external spectral library spec-
tra is more veritable and therefore more useful to determine mineralogy. This
does not mean that it is not useful to examine and contrast the spectra acquired
from images with mineral spectra in laboratory conditions, but that spectra from
both are not initially comparable, so it is erroneous to assume that spectra for
the same minerals will have the same aspect in both cases. This fact, together
with the comparison of the effects image resolution has on spectra and the cross-
validation using CRISM, is what sets this research apart from previous attempts
to understand spectral variation of OMEGA images.

The work carried out in this thesis intends to answer the following research
questions:

• How can we adapt the OMEGA image preprocessing model to extract useful
spectra from OMEGA hyperspectral imagery itself?

• Which specific mineral spectra (endmembers) should be chosen for mapping
purposes?

• What is the stability of OMEGA hyperspectral spectra to identify specific
minerals like?

• Are the spectra affected by the different image resolutions of OMEGA?

• Can a mapping method be used to map the mineral distribution and evaluate
the spectral extraction method?

And finally:

• How useful are the spectra for identifying minerals, compared to laboratory
measurements of minerals?

The basic objectives followed to provide verifiable answers to these questions
were:

• To review the current OMEGA image processing model in order to extract
useful spectra; and build a spectral library of spectral endmembers from and
for each of the images being studied.

• To statistically compare (validate and study the variation of) OMEGA spec-
tra to identify minerals across different scenes and spatial resolutions using
spectral angles (method discussed in detail in chapter 2.3).

• To statistically evaluate the spectra to identify minerals on OMEGA images
with respect to laboratory measurements (again, calculating their spectral
angles).

• To map the mineralogical endmembers extracted from the images through a
statistical method (spectral angle mapping) and visually evaluate the spatial

6



coherence of the mapped regions, also by draping the maps over an elevation
model.

• To check whether the particular conditions that occur in OMEGA images
are exclusive to the OMEGA sensor or whether they occur on CRISM (an
instrumental cross-validation).

7



Chapter 2

Methods

The following methods aim to answer the questions presented in chapter 1.

2.1 Methods to assess the OMEGA preprocessing
and calibration model

To be able to assess the current preprocessing model for OMEGA hyperspectral
images and find its limitations and points where it might be improved, a review
of the model was carried out. In the proposed method, three test OMEGA im-
ages of the Nili Fossae region in different spatial resolutions were preprocessed,
and the resulting reflectance spectra for selected minerals (Table 2.1) were visually
compared to library spectra of the same minerals measured in laboratory condi-
tions (United States Geological Survey (USGS) spectral library [8]). Mineralogical
spectral libraries have often been used in visual comparative studies of observed
OMEGA image spectra as a form of validation (e.g. [4], [21], [23]). Carrying out
his method will help answer the question of whether improvements can be made
to the preprocessing and calibration in order to obtain mineralogical spectra, and
if so, which, and how can they be integrated in the current model.

The materials needed to follow the method were:

• OMEGA image datasets ORB3047 5 (high resolution), ORB2272 4 (medium
resolution) and ORB0422 4 (low resolution). These were obtained from
ESA’s Planetary Science Archive (PSA) via FTP access and PSA’s Java
platform map-based searcher for Mars datasets.

• SOFT05, the OMEGA science team’s software in IDL for calibrating OMEGA
images [17]. SOFT05 was also obtained from the PSA.

• Alpha, a graphical user interface (GUI) for SOFT05 by van der Werff [31].

• IDL Workbench 7.1, to use SOFT05 and Alpha.

8



Figure 2.1: Workflow of the method to review the image processing model.

• PyENVI a software program developed in Python language for the purpose
of viewing and processing images, which also implements a number of pre-
processing corrections designed for OMEGA images [2].

• USGS splib06a digital spectral library.

• ENVI 4.7 software for processing and visualising images.

The workflow of the method is schematised in Figure 2.1.

2.1.1 The OMEGA preprocessing model

Following is a description of the current preprocessing strategy used for OMEGA
hyperspectral images that were followed in order to review adjust it.

Due to the noisy nature and problems of OMEGA’s raw data (discussed fur-
ther in this section), image preprocessing is a necessary step prior to extracting
spectra from them. The data must undergo a series of corrections for the spectra
extracted to be useful for identifying signatures specific to selected minerals, so a
processing standard is needed to handle the correction of data. These preprocess-
ing corrections are equivalent to those used for hyperspectral remote sensing and
characterisation of surface mineralogy on Earth, with the difference, however, that
they are particular to the Martian conditions and more specifically the OMEGA
instrument.

The basis of the preprocessing used in this project was devised by Bakker et
al. [3]. Figure 2.2 summarises the preprocessing in a flowchart (up to obtaining
useable images for preprocessing in order to gain mineralogical information.
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Figure 2.2: Flowchart summarising the preprocessing chain, adapted from
the processing chain by Bakker et al. [3].

Raw data and calibration

ESA provides OMEGA’s raw data for each dataset in the form of two files: one
containing spectral information gathered by the OMEGA sensors (“datacubes” in
.QUB files) and the other containing the geometric information about the geo-
graphic positioning of the images (in .NAV files). Using the SOFT05 calibration
software developed by ESA for OMEGA’s data in IDL, a 3 dimensional (in X and
Y space degrees, and the spectral dimension in W/m2/steradian/μm) radiance
image of the dataset is obtained [17]. An inspection of the data shows that the
spectral dimension is not given in irradiance units as claimed by the SOFT05 doc-
umentation, but is in fact a measure of spectral intensity. Other data files are
obtained from the calibration software for each dataset, including a geocube file
with geographic information, and the solar spectrum at the distance of Mars at the
time of the acquisition of the image.

Noise reduction

Noise is apparent throughout raw OMEGA radiance images. The nature of the
noise is varied, consisting of banding and stripes; dead (i.e. with no values), hot or
defective (i.e. with constantly high values) pixels; bad channels; and degradation of
the signal in later datasets. The possible origins of the noise are not covered in the
scope of this project, but are largely due to calibration issues, instrumental failure
in OMEGA, problems in data transfer to Earth, orbital decay of MEx and exposure
to cosmic radiation in time, among other possible reasons [17]. Displaying uncor-
rected radiance images shows that out of the three, OMEGA’s VNIR and SWIR2
spectrometers are the sensors most affected by noise throughout. Additionally, the
SWIR2 sensor’s spectral signal is affected by thermal effects as it approaches longer
wavelengths, especially beyond 3.5 μm.

Calibration carried out by SOFT05 accounts for the known unreliable hot and
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dead pixels [17], but most noise in the radiance images was corrected after the
separation of the sensors’ spectral ranges of the individual datasets by masking
the wavelength bands most affected by it [3]. Masking these bands has the ef-
fect of removing the noisy bands from further analysis and corrections where they
would affect neighbouring useful bands. Masking spectral bands is carried out in
PyENVI and is a general method of determining useful (“good”) bands which will
be suitable for further processing and useless (“bad”) bands which will be rejected
from processing and analysis and are considered to not bear information. Masking
applies the signal to noise ratio to determine an acceptable output by adjusting
a threshold. The downsides to this procedure are the increased time consump-
tion and possible reduction of information, however, the benefits far outweigh the
disadvantages, as it outputs reduced but cleaner data.

Preprocessing corrections

The remaining preprocessing corrections were carried out in PyENVI.
The datasets are geocorrected individually employing the geocube extracted

by SOFT05 from the raw OMEGA files. The resulting images undergo a standard
solar illumination effects correction with the solar spectrum derived also from the
calibration of the raw data with SOFT05.

Following the preprocessing chain (figure 2.2), an atmospheric correction was
carried out on the individual datasets. The atmospheric correction is a standard
and general function applied to all bands under 3.5μm of the atmospheric trans-
mission derived from the difference between the spectrum measured at the summit
of the Olympus Mons volcano (the highest point on the surface of Mars) and the
base of it, assuming a power law variation of the transmission with altitude [20].
The result of these corrections are images consisting of absolute reflectance values.

The resulting absolute reflectance image is not exempt from all noise and other
effects, but these are largely corrected through normalisation with log residuals
with a geometric mean of the image, assuming the scene is heterogeneous [2]. As a
consequence of this last correction, the spectral signature is converted to pseudo-
reflectance. Subsequently, a hyperspectral median filter is applied to the images to
further smooth them. Again, this is achieved in PyENVI, where each pixel in the
image is computed as the median of its value and the pixel values directly adjacent
to it (figure 2.3). This achieves the effect of preserving edges and spectral features
while reducing the overall noise [2].

Mineral abundance and distribution

In order to obtain information on the abundance of specific minerals MRO/CRISM
spectral parameter summary products based on band depth ratios [22] are adjusted
to OMEGA’s bands and used to identify a selected mineralogy. Table 2.1 contains
a list of the minerals and the criteria used to identify them.

To apply the summary products on the pseudo-reflectance images obtained
after the preprocessing corrections, the convex hull of each pixel is removed via the
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Figure 2.3: Median filter pixel
window, 7 pixels in all, i.e. the
central pixel and those in the X,
Y and spectral (Z) dimensions.

continuum removal program in PyENVI for normalising spectra to 1 to apply the
summary products of the hydrated minerals (D2300 and D2400) [2].

2.2 Method to select and extract spectra from
endmembers

The results of the following method to choose and extract spectra from endmembers
are entirely dependant on the results of the previous process to find and implement
improvements in the OMEGA image preprocessing and processing model. The
preprocessing model is necessary to obtain reflectance images of the surface from
which spectral information of the mineralogy may be derived, so any changes affect-
ing the model affect the spectra. However, the methodology to select and extract
spectra itself is independent of the image preprocessing model.

To choose regions on the OMEGA images from which to extract representative
endmember spectra, spatially overlapping scenes in differing spatial resolutions
were used. As such, it was necessary to identify groups of datasets where a low
resolution image contained or overlapped with a medium resolution image which
in turn contained or overlapped with a high resolution one. This provided a form
to confirm the validity of the spectral measurements at the same point.

The points within the overlapping images which corresponded to selected end-
members (and from which the spectra were extracted) were themselves found by
identifying the highest values of each summary product (Table 2.1) and building
regions of interest (ROIs) of these. Candidate areas for extracting spectra had to
therefore have overlapping ROIs with high values in all three spatial resolutions.

It was considered that “high” values for each endmember were the highest 2%
of values in each image. This percentage was chosen as a compromise for obtaining
representative endmember spectra, yet safe from any outlier pixels that may affect
the average extracted spectra. The percentage also offered certainty in some spatial
cohesion of the high value pixels, and though a small portion of the image, ROIs

12



T
ab

le
2.
1
:
T
h
e
su
m
m
a
ry

p
ro
d
u
ct
s
to

id
en
ti
fy

se
le
ct
ed

g
ro
u
p
s
o
f
m
in
er
a
ls

(a
d
a
p
te
d
fr
o
m

[2
2
])

u
se
d
in

th
is

th
es
is

to
b
u
il
d
a
sp
ec
tr
a
l
li
b
ra
ry

fr
o
m

im
a
g
e
sp
ec
tr
a
.
R

is
th
e
re
fl
ec
ta
n
ce

a
n
d
C
R

is
co
n
ti
n
u
u
m

re
m
ov
ed

re
fl
ec
ta
n
ce

a
t

sp
ec
ifi
ed

w
av
el
en

g
th
s
in

n
a
n
o
m
et
re
s
(n
m
).

M
in
er
a
l

N
a
m
e

C
a
lc
u
la
ti
o
n

O
li
v
in
e

o
l
in
d
e
x

R
1
6
9
5

0
.1
×R

1
0
5
0
+
0
.1
×R

1
2
1
0
×0

.4
×R

1
3
3
0
+
0
.4
×R

1
4
7
0
−

1

H
ig
h
ca
lc
iu
m

p
y
ro
x
en

e
h
c
p
in
d
e
x

R
1
4
7
0
−R

1
0
5
0

R
1
4
7
0
+
R
1
0
5
0
×

R
1
4
7
0
−R

2
0
6
7

R
1
4
7
0
+
R
2
0
6
7

L
ow

ca
lc
iu
m

p
y
ro
x
en

e
l
c
p
in
d
e
x

R
1
3
3
0
−R

1
0
5
0

R
1
3
3
0
−R

1
0
5
0
×

R
1
3
3
0
−R

1
8
1
5

R
1
3
3
0
+
R
1
8
1
5

C
a
rb
o
n
a
te
s

c
in
d
e
x

R
37

50
+

R
3
7
5
0
−R

3
6
3
0

3
7
5
0
−3

6
3
0

×
3
9
5
0
−3

7
5
0

R
3
9
5
0

−
1

P
h
y
ll
o
si
li
ca
te
s

d
2
3
0
0

1
−

C
R
2
2
9
0
+
C
R
2
3
2
0
+
C
R
2
3
3
0

C
R
2
1
4
0
+
C
R
2
1
7
0
+
C
R
2
2
1
0

S
u
lp
h
a
te
s

d
2
4
0
0

1
−

C
R
2
3
9
0
+
C
R
2
4
3
0

C
R
2
2
9
0
+
C
R
2
3
2
0

13



Figure 2.4: Workflow for selecting and extracting endmember spectra. The
selection of OMEGA images and the adequacy of the processed images
depends on whether the images spatially overlap, are of the Nili Fossae
region and have differing resolutions.

formed from 2% of the highest value pixels are sufficient to visually identify ROIs
overlapping with those of other images.

Materials used for selecting and extracting endmember spectra were:

• Java map-based Mars dataset searcher on the PSA.

• SOFT05 software.

• Alpha software.

• IDL 4.7 software

• PyENVI software.

• Google Earth software to visualise and choose overlapping images.

• ENVI 4.7 software for computing file statistics, creating ROIs and extracting
spectra.

Figure 2.4 summarises the workflow of the method to select and extract end-
member spectra.
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2.3 Method to cross-validate endmember spectra
across scenes

This method aims to answer how reliable spectra extracted from the processed
OMEGA images are across different OMEGA observations. In this way, it is pos-
sible to determine whether the spectra is stable, or whether other unaccounted for
factors intervene in the spectral observations. The method to compare endmember
spectra in different scenes relies on the resulting spectra obtained in the previous
method. The spectra extracted from each image across the Nili Fossae for each
endmember was compared statistically. Normalised cross-correlation, or “spectral
angle” (2.1), as it is referred to in remote sensing applications, was used as a mea-
sure to assess how well an endmember spectrum from one image fit with another
spectrum of the same endmember, extracted from another image (overlapping or
not). The spectral angle is ’a metric to measure “angular distances”’ [1], [27] in
feature space, and can be used as a measure of correlation between multidimen-
sional vectors (spectra, represented by v1 and v2). The larger the angle, the more
uncorrelated and dissimilar the shape of the compared spectra are. It is especially
useful for OMEGA hyperspectral images since it is mostly insensitive to magnitude
(pixel brightness), but highly sensitive to spectral shape, patterns and features [29].

Spectral angle θ = arccos

(
vT1 v2

‖v1‖‖v2‖
)

Where vT is the transpose vector and ‖v‖ is the magnitude of the vector (2.1)

Spectral angles can be converted to correlation (cos θ) since the angle at which
two compared spectra are completely unrelated is π/2 rad or 90 ◦, and the angle at
which they are correlated is close to 0 rad (correlation = 1). The spectral angle was
calculated between each of the selected endmembers and for a group of datasets in
varying spatial resolutions (Table 2.2). Comparing the correlation between spectra
extracted for different endmembers afforded a measure of how well the method for
identification and extraction of endmember spectra performed. The selection of
these datasets was purposive in the sense that they were representative of the Nili
Fossae area. The group of images was composed of images of different resolutions
which overlapped each other on some of their extents.

Table 2.2: Selected OMEGA datasets for spectral extraction and validation.

High res. Medium res. Low res.

Name ORB3047 5 ORB0232 2 ORB0444 4
Spatial res. 0.0075o lat ≈ 445m 0.017o lat ≈ 1Km 0.0601o lat ≈ 3.56Km
Geo. Extent Lat 17.911 – 45.901 14.213 – 30.991 22.062 – 35.825
(Dec. degrees) Lon 73.240 – 74.185 72.533 – 74.916 62.586 – 75.268
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2.4 Method to cross-validate endmember spectra
between instruments: OMEGA and CRISM

One CRISM reflectance image was selected from which endmember spectra was
extracted following the same method as the OMEGA images (i.e. post-correction,
using the CRISM summary products 2.1 and thresholding the highest 2% of va-
lues). Spectral angle was again used to compare between the extracted endmember
spectra between images.

The CRISM image selected for comparison (HRL000095A2 07 IF183S TRR2)
was purposely chosen because it partially overlapped a high resolution OMEGA
image (ORB3047 5) and the possibility that similarities might exist between them
was observed. Despite this, their resolutions are very different (Table 2.3).

Table 2.3: Comparsion of OMEGA and CRISM datasets used.

CRISM OMEGA

Name HRL000095A2 07 IF183S TRR2 3047 5
Spatial res. 18.6 m 0.0075o ≈ 445m
Bands 430 (post-masking) 221 (post-masking)
Spectral range 1.02μm – 3.92μm 0.52μm – 5.09μm

To calculate the spectral angle, the number of bands and wavelengths com-
pared must be the same, so the CRISM (of higher spectral resolution, but shorter
range) was resampled to the OMEGA image (of lower spectral resolution, but
longer range). This resampling order was important to avoid the extrapolation
of OMEGA’s lower resolution to higher resolutions. Only the converging spectral
range between OMEGA and CRISM was used.

2.5 Method to compare spectra to laboratory mea-
surements

To understand how useful the endmember spectra extracted from OMEGA images
are to identify minerals, it was necessary to compare it to experimental observations
of mineral spectra in controlled conditions. Adhering to standard, the USGS spec-
tral library [8] was used as a visual comparison (as by [4], [21], [23]) with the image
endmember spectra. Each extracted endmember spectrum was compared with its
corresponding mineral spectrum statistically with their spectral angle. The angle
between each extracted spectrum and the other candidate endmember spectra from
the spectral library were compared to see whether similarities existed and whether
errors in identification of ROIs and spectra in the images occurred.

The spectral library spectra (of higher resolution, shorter range) was resampled
for each OMEGA image (lower spectral resolution, longer range), and only their
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common spectral range was used.

2.6 Method for mineralogical mapping and visual
assessment of mineralogical distribution

The method for mapping is dependant on the endmember spectra extracted from
the images (see 2.2) as it uses the spectra precisely as endmembers from which
all surface mineralogy is formed or is a combination of. The chosen method for
mapping was spectral angle mapping (SAM). The exact endmember spectra used
for mapping each image were extracted from their respective images. Completed
maps were draped onto Google Earth/Mars to be visually inspected for spatial
coherence of the mapped mineralogy and to see whether relationships exist between
topography and mineralogy.

2.7 Additional method to visibly compare spec-
tral features

Due to obtaining some unexpected results (section 3.3 for the results and section
4.5 for discussion) after the application of the previously mentioned methods, it
was necessary to understand whether the methodology suffered from a design flaw
(specifically, the use of summary products) and to reevaluate a core component of
the methods. In essence, the following hypothesis was tested: visual identification
and comparison of the depth and position of spectral features in extracted spectra
against random laboratory measured mineral spectra on a trial and error basis can
provide comparable or better results than the summary products in relating to real
mineral spectra. The test of the hypothesis consisted of the following:

1. Since the carbonate index summary product (CINDEX) identified a some-
what different spectral signature from the signature the other summary prod-
ucts identified (see sections 4.1 and table 3.2), its extracted spectrum for each
of the resolutions was plotted.

2. The spectra extracted with the low pyroxene index formed part of the group
of spectra that was generally indistinguishable from each other with spectral
angle mapping. As a representative of this group, its spectra were also
plotted in a separate plot as a group.

3. Each of the USGS spectral library spectra (481 in total) were plotted together
with the CINDEX plots and LCPINDEX plots.

4. The continua of the spectra were removed to enable visual comparison of
any spectral features.

5. Mineral spectra from the library were discarded based on how well their
features compared visually to the extracted CINDEX and LCPINDEX spec-
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tra, till only three candidate minerals remained, regardless of their plausible
existence on the surface of Mars.

6. The spectral angle between the candidate minerals from the spectral library
and the CINDEX and LCPINDEX spectra were calculated and compared to
the spectral angles between the summary product spectra and library spectra
in section 3.3.

Should the hypothesis prove to be true, then the summary products are no
more effective at identifying spectral variations related to mineralogy than visual
comparison of the spectral features. If the hypothesis is false, then the summary
products are better at identifying mineralogical spectral variations.
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Chapter 3

Results

3.1 Observations of the OMEGA image pre-
processing chain

The results from the extraction of spectra using the unmodified image processing
model revealed that mineralogical identification is not clear-cut. The process of
selecting ROIs from where to extract mineral spectra showed that the pixels in the
ROIs were spatially coherent and not randomly distributed (Figure 3.1), however,
the spectra extracted from the ROIs tended to look similar within a dataset (despite
being extracted from ROIs supposedly identifying different minerals) and different
between datasets (despite supposedly identifying the same mineral) (confirmed
in Section 3.3). In general, spectra from all scenes did not present noticeable
absorption features which could be used to identify them easily by comparing them
to mineralogical spectra (see results of the comparison between endmember and
mineral spectra, Section 3.3). Stretching the spectra and observing only the SWIR1
range permitted the observation of a weak H2O absorption feature at close to 1.9
μm, and no other distinguishable features with confidence.

Noise was present between the VNIR and SWIR1 bands in all datasets, but
was especially noticeable in the medium resolution ORB2272 4 image because of
the large jump in pseudo-reflectance between the VNIR and SWIR1 bands. The
noise is an effect of ordering the bands according to their wavelength (since there is
a spectral overlap between the sensors’ bands) and very different readings between
sensors. The reason for such different readings between sensors is unknown and is
likely due to instrumental and/or calibration failure of OMEGA.

In particular, image spectra to identify olivine was only somewhat visually
similar to the olivine library spectrum (Figure 3.2). The peak in the visible range
is visible in the medium resolution image (ORB2272 4) but is absent in the other
images. This peak may indeed be related to olivine spectra, but it is probably
due to a calibration artefact in the mid-resolution image, since it is present in the
extracted spectra of the other endmembers. The concave absorbing curve in the
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(a)
ORB3047 5

(b) ORB2272 4 (c) ORB0422 2

Figure 3.1: ROIs draped over the studied reflectance images. Green: OLINDEX,
cyan: LCPINDEX, blue: HCPINDEX, yellow: CINDEX, brown: D2300, magenta:
D2400. ROIs were selected as described in Section 2.2.
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Figure 3.2: Pseudo-reflectance spectra from the olivine ROIs of the different
resolutions compared to olivine spectra from the USGS spectral library.

NIR is also almost wholly absent in all datasets. All datasets conform to the library
spectra from 1.7μm to 2.5μm as a featureless straight line.

Spectra from the ROIs were unsuccessful in their identification of low calcium
pyroxene (Figure 3.3). Though having wide, featureless curves, the spectra did not
harmonise with the curves of orthopyroxene (known as hypersthene in the spectral
library) or any other low calcium pyroxene.

In the case of high calcium pyroxene, the ROI spectra were much more suc-
cessful in following the spectral curve of diopside and especially, pigeonite (Figure
3.4). Although the pseudo-reflectance values of the extracted spectra and the re-
flectance values of the library spectra differed, the shape of the curve is similar and
the values can simply be linearly rescaled to observe better fitting.

Though lacking the strong, characteristic absorption features at 1.4μm and
2.3μm of serpentine, the phyllosilicate ROI spectra performed moderately well in
concurring with the general curved shape of some phyllosilicate library spectra,
especially from the serpentine group (Figure 3.5). Serpentine’s shallow, wide ab-
sorption close to 2μm was captured by the high resolution image (ORB3047 5),
but the curve was better represented in the other two resolutions.

Regarding sulphates, the medium (ORB2272 4) and low (ORB0422 2) ROI
spectra performed moderately well past 1.5μm in following the slight downward
trend of the sulphate jarosite towards higher wavelengths (Figure 3.6). However,
it is hard to see much similarity between the extracted spectra and the library
spectra on wavelengths lower than 1.5μm.

Finally, for identifying carbonates, the ROI spectra only approximated the
spectra of calcite between 1μm and 1.7μm. They did not present any of the char-
acteristic absorption features of carbonates and remained mostly flat in SWIR1,
though presented a peak in VNIR, inconsistent with carbonates (Figure 3.7). The
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Figure 3.3: Pseudo-reflectance spectra from the LCP ROIs of the differ-
ent resolutions compared to orthopyroxene spectra from the USGS spectral
library.

Figure 3.4: Spectra from the high calcium pyroxene ROIs
Pseudo-reflectance spectra from the HCP ROIs of the different resolutions

compared to diopside and pigeonite spectra from the USGS spectral
library.
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Figure 3.5: Spectra from the phyllosilicate ROIs
Pseudo-reflectance spectra from the phyllosilicate ROIs of the different
resolutions compared to serpentine spectra from the USGS spectral

library.

Figure 3.6: Spectra from the sulphate ROIs
Pseudo-reflectance spectra from the sulphate ROIs of the different

resolutions compared to jarosite spectra from the USGS spectral library.
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Figure 3.7: Spectra from the carbonate ROIs
Pseudo-reflectance spectra from the carbonate ROIs of the different

resolutions compared to calcite spectra from the USGS spectral library.

CINDEX summary product for identifying carbonates could not be applied on the
high resolution dataset (ORB3047 5) because the bands necessary for the product
were considered “bad” and had been masked due to a low signal to noise ratio.

3.1.1 Concluding remarks on the preprocessing technique

Images obtained as a result of applying the processing chain were affected by the
following issues:

• A general reduction of potentially useful bands as a result of applying the
same signal to noise ratio threshold across all the sensors when masking
noisy bands, especially at the beginning and the end of the sensor ranges.
This meant that some summary products could not be applied always (e.g.
CINDEX on dataset ORB3047 5).

• Modification of the real reflectance values due to applying log residuals on the
image and normalising the signal across all the sensors. (As a consequence,
image spectra were not easily and directly comparable to mineral spectra
from spectral libraries, though they were visibly cleaner.)

• A spatial misregistration between the sensors is apparent, denoting that the
geographic coordinates of every pixel differ between sensors.

Unknown factors independent of the preprocessing model also have an effect
on the spectra obtained and complicate the identification of minerals. Other issues
beyond the scope of the thesis such as the simplified atmospheric transmittance
model and solar spectrum were not modified. But alterations to the original pro-
cessing model were made in response to the mentioned list of known issues. Figure
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Figure 3.8: Flowchart summarising the pre-processing chain. Spectral me-
dian filtering is a process applied in specific circumstances, as described in
Sections 3.2.4 and 3.2.5.

3.8 summarises the corrected preprocessing model in a flowchart, and Section 3.2.6
exemplifies the corrected processing method step by step with a dataset from the
study area.

3.2 Improving the preprocessing methodology

3.2.1 Minimising spatial shifts

A noticeable problem occurring in OMEGA’s spectral images (and left uncorrected
till the analysis in this thesis) is the spatial shift existing between the different
spectrometers’ domains (Figure 3.9). This causes the geocorrection of primary
images (which contain the complete spectral range of OMEGA) to be a source of
error, as it produces alterations of the spectral signature throughout the image.
To correct for this, all datasets were separately processed according to the sensors’
spectral ranges (VNIR, SWIR1 and SWIR2). This is a decisive step away from
previous processing methods for OMEGA’s datasets, which had either focused on
the SWIR1 range or at the most from 0.3μm to 2.5μm (e.g. [20], [23], [18]) and
then attempted to extract useful information.

The separation was achieved by creating data subsets through the masking
of the unrequired sensors’ bands for each correction. The reflectance images of
the separate ranges were joined after applying the preprocessing corrections into
one image using an image to image registration process across the three images,
by finding easily identifiable reflectance features (e.g. craters and distinguishable
geomorphological features) i.e. pixels as tie points, across the images in different
wavelengths. This post-correction joining process took advantage of the spectral
overlap between the sensors (between VNIR and SWIR1, and between SWIR1
and SWIR2). The standard procedure followed was to start with the SWIR1 sub-
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(a) Spatial shift (b) Close-up of the shift

Figure 3.9: Detail of the spatial shift between VNIR (blue), SWIR1 (green)
and SWIR2 (red) in dataset 2272 4. Note the duplication of features (ma-
genta and cyan) in the enlarged image on the right.

dataset as the base image (due to it being the least affected by noise) and warp
the VNIR dataset to fit SWIR1’s features and extent. The warped VNIR and the
SWIR1 were stacked and used as the base image to warp SWIR2. SWIR2 was then
stacked under the joint VNIR and SWIR1 image to form one single stacked image
per scene with OMEGA’s full corrected spectral range. The number of tie points
chosen varied from scene to scene, dictated by their extent and spatial resolution,
but the root mean square error (RMSE) associated with the selection of tie points
was consistently maintained under 1, i.e. below the value of the cell size.

3.2.2 Further noise reduction

Noise was decreased by masking bad bands in the separate images in a process
equivalent to the original preprocessing method (see 2.1.1), but as the raw image
data is now divided according to the sensor that captured it (forming three separate
images per dataset), the signal to noise ratio is different for each sub-dataset which
is applied on a case by case basis for every sensor’s range in a dataset to form a
list of bad bands used for a mask.

Despite increasing the time needed to process images, it is advantageous be-
cause noise does not appear recurrently and equally among the three sensors.

3.2.3 Refined preprocessing corrections

The geographic correction module of PyENVI was carried out on the individual
subset images (i.e. post-separation and prior to joining), the output of which was
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treated with the solar illumination correction and subsequently the atmospheric
correction. This is analogous to the original preprocessing chain, with the difference
that the corrections are applied on the images corresponding to the wavelengths
of the individual sensors. In turn, this signifies that there is no mixing of data
between the sensors. The resulting images consist of absolute reflectance values.

After applying the aforementioned corrections, the separate sensor images were
joined as described in Section 3.2.1.

3.2.4 Post-joining preprocessing corrections

The joined image consists of absolute reflectance values and may be used for spec-
tral analysis techniques and for extraction of spectra, however, as in the original
preprocessing method, hyperspectral median filtering is applied as it is favourable
in removing outliers in values while preserving edges in the images, and so reducing
the overall noise.

Contrary to the initial preprocessing method, log residuals were not applied
on the image to remove systematic errors because doing so resulted in altered re-
flectance values (pseudo-reflectance) not corresponding to spectra useful for mag-
nitudinal comparison with actual mineral spectra.

3.2.5 Endmember spectra selection and extraction

After the preprocessing steps in the previous section have been carried out, the
images’ spectral signatures are useful for obtaining information about the minera-
logy. A selected number of CRISM’s mineral parameter summary products (Table
2.1), as described by Pelkey et al. [22] were applied on the preprocessed OMEGA
scenes. To correctly apply the summary products, it was necessary to calculate
log residuals after the atmospheric correction (instead of applying the median filter
after the atmospheric correction) and then apply the median filter. This was done
because each summary product identifies regions of the image for the presence of a
mineral by quantifying each pixel, based on the summary product equations (Table
2.1), which are independent of the reflectance magnitude.

The continuum was then removed from each pixel. This was done in order
to visualise and delimit the distribution of chosen minerals by using band ratios
and spectral features specifically designed to detect the presence of these minerals
(i.e. the summary products), and not for the extraction of spectra itself (for which
having absolute reflectance was a better option in order to have absolute measures
and statistical comparison). The choice of these minerals was decided on the im-
portance of these as possible rock-forming minerals on the Martian surface and the
combination of which could be mapped (endmembers, chosen with the summary
products). The minerals in particular were well known groups of mafic minerals
(olivine and pyroxenes) as well as carbonates, hydrated silicates and sulphates,
with well known spectral characteristics as well as forming part of the mineralogy
of many rocks on Earth.
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Following the application of summary products on an image, regions of interest
(ROIs) are created from the pixels with the highest 2% of values found by each
of the summary products and are taken as acceptable spectral signatures to be
included as endmembers in a spectral library unique to each image. The spectral
library consists of all the mineral endmember spectra extracted from the images of
the study area and functions as a database to which spectra from any processed
OMEGA image may be matched against using a mapping technique (see Section
2.6).

Spectra for endmembers were collected from the ROIs in images of the Nili
Fossae area at different spatial resolutions to acquire a representative sample for
the spectral library. To evaluate the effect of the different spatial resolutions on
the spectral signatures of the images, datasets with the three different spatial reso-
lutions OMEGA is capable of (high, medium and low; depending on MEx’s orbit)
and spatially overlapping were grouped. ROIs of the highest 2% of values for the
summary products were created for each dataset and compared to datasets within
the same group to observe overlapping ROIs. Spectra from overlapping ROIs was in
turn compared. As such, the effect of the different spatial resolution on OMEGA’s
images could be seen on endmember spectra extracted from the same location.

3.2.6 Procedure for preparing datasets and extracting spec-
tra from overlapping datasets at different spatial reso-
lutions

The following section describes the steps taken to obtain spectra derived from the
OLINDEX summary product (the procedure is analogous in the case of the other
summary products) for the mineral olivine in the 0444 4 (low resolution) dataset.
The 0232 2 (medium resolution) and 3047 5 (high resolution) overlapping datasets
underwent the same process. All three datasets were overlapped in the end to
determine the best region to extract spectra from.

Images of the effects the preprocessing has on the data are shown alongside
spectra of a chosen pixel within a crater. The images shown are from the 1.8002μm
channel of SWIR1, so chosen because it displays distinguishable spectral variation,
although all corrections take place on all wavelengths simultaneously.

Obtaining absolute reflectance images

1. The geographic (.NAV) and spectral (.QUB) data files from dataset 0444 4
were calibrated with SOFT05 to obtain images and information of the ra-
diance, geographic information (geocube), the solar spectrum and elevation
of the full scene. As mentioned in Section 2.1.1, the software Alpha was used
as an interface to SOFT05.

2. The radiance image file (.jdat extension) was inspected for the default bad
bands resulting from the calibration with SOFT05.

• VNIR’s 96 bands were all good.
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• SWIR1 had 124 good bands (from 128).

• SWIR2 had 126 good bands (from 128).

3. The radiance image file was split into three different image sub-datasets,
each consisting of one of the different sensors’ ranges (VNIR, SWIR1 and
SWIR2) by using a bad band list to mask the unnecessary bands belonging
to the other sensors.

4. Noisy bands from each of the split radiance image files were further masked
using the ’Mask Noisy Bands’ module in PyENVI, which makes use of a user
defined threshold in the signal to noise ratio to mask bands below the thresh-
old. The threshold was chosen according to how noisy the bands appeared
to be when displayed.

• VNIR’s good bands were reduced to 67 with a masking threshold of 60.

• SWIR1 had 121 good bands with a threshold of 25.

• SWIR2 had 73 good bands with a threshold of 25.

5. Each radiance file underwent geocorrection in PyENVI using the geocube
file generated by SOFT05 (Figure 3.10a).

6. The geocorrected files underwent a solar illumination correction in PyENVI
with the solar spectrum file generated by SOFT05 (Figure 3.10c).

7. Subsequently, the files were atmospherically corrected in PyENVI, effectively
converting the image to reflectance values (Figure 3.11a).

8. The atmospherically corrected images were stacked using tie-points. Easily
identifiable reflectance features across the spectrum were used as tie-points
(Figure 3.12). First VNIR and SWIR1 were stacked (15 tie-points between
the 0.9222μm channel in VNIR (Figure 3.12a and the 0.9406μm channel in
SWIR1 (Figure 3.12b), RMSE ≈ 0.3287), and then VNIR + SWIR1 were
stacked with SWIR2 (20 tie-points between the 2.6310μm channel in SWIR1
(Figure 3.12c) and the 2.6328μm channel in SWIR2 (Figure 3.12d), RMSE
≈ 0.432).

9. The single stacked image was smoothed with a hyperspectral median filter
in PyENVI. The filter chosen makes use of the values of the pixels directly
in contact with each pixel being averaged, i.e. to the front and back of the
pixel (Y dimension), to the left and right (X dimension), and the pixel values
directly above and below in the spectral dimension. The result of applying
this filter is a reflectance image with edges preserved while noise is smoothed
out (Figure 3.11c).

Using summary products

10. Separately, the stacked atmospherically corrected image (prior to median
filtering) was used for the application of PyENVI’s ’Summary Products’
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(a) Geocorrected image. (b) Geocorrected spectrum.

(c) Solar corrected image. (d) Solar corrected spectrum.

Figure 3.10: The effects of the preprocessing stages on the SWIR1 data
subset. The image shown is from the 1.8002μm channel.
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(a) Atmospherically cor-
rected image.

(b) Atmospherically corrected spectrum.

(c) Median filtered image. (d) Median filtered spectrum, post-stacking.

Figure 3.11: The effects of the preprocessing stages on the SWIR1 data
subset. The image shown is from the 1.8002μm channel.
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(a) Tie-points in VNIR for
warping to SWIR1.

(b) Tie-points in SWIR1
for VNIR to warp to.

(c) Tie-points in SWIR1
for SWIR2 to warp to.

(d) Tie-points in SWIR2
for warping to VNIR +
SWIR1.

Figure 3.12: Tie-points used for the warping and stacking of ORB0444 4.
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program. In preparation for this, a normalisation of the image using log
residuals was applied (Figure 3.13a). A sharp ascent in the spectrum is
apparent between the VNIR and SWIR1 which could be due to the small
error from correcting the spatial shift between the sensors, or most probably,
due to the persisting calibration problems.

11. Hyperspectral median filtering was applied to the stacked, corrected and
normalised image (Figure 3.13c).

12. After the median filtering, the continuum was removed from the spectra of
the images, a step necessary for the hydrated minerals summary products
(Figure 3.14a). However, noise still persists between SWIR1 and SWIR2
due to the overlapping spectral range (Figure 3.13a). This noise was later
removed from the spectra manually by omitting the affected wavelengths.

13. The summary products program was used (Figure 3.14c).

Determining olivine regions of interest

14. Statistics from the OLINDEX scene were studied to find the values of the
highest (brightest) 2% of values. These were found to be values between
0.013324 (97.9426%) to 0.048034 (100%).

15. Pixels between the aforementioned values were grouped in as regions of in-
terest (ROIs).

16. The ROIs were draped over the absolute reflectance image of the same scene
(Figure 3.15a).

Extracting olivine spectra

Datasets 0232 2 and 3047 5 underwent the same process described for 0444 4
and also have the highest 2% of OLINDEX values in their respective scenes
delimited by ROIs (Figures 3.15b and 3.15c).

17. Finally, spectra were extracted from the ROIs (Figure 3.16) that were over-
lapping in all three scenes and presented spatial coherence (i.e. grouped
pixels), indicating spectral stability between them and a possible relation-
ship between the reflectance, mineralogy and geomorphology (Figure 3.17).

3.3 Results of the cross-validation of extracted end-
member spectra with spectral angles

The spectral angle was calculated between the extracted spectra from the ROIs
in each image resolution against those from the other resolutions. The results can
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(a) Log residuals applied
to stacked dataset

(b) Stacked dataset spectrum after log residuals

(c) Image after log residu-
als and median filtering

(d) Spectrum after log residuals and median filtering

Figure 3.13: The effects of the preprocessing stages on the SWIR1 data
subset. The image shown is from the 1.8002μm channel.
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(a) Continuum removed
image in preparation for
hydrated minerals sum-
mary products

(b) Continuum removed spectrum

(c) Image of the OLIN-
DEX summary product
applied to the scene

Figure 3.14: The effects of the preprocessing stages on the SWIR1 data
subset. The image shown is from the 1.8002μm channel. In Figure 3.14c,
white represents high values and black represents low values in a red to blue
“rainbow” contrast stretch.
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(a) ORB0444 4 (b) ORB0232 2 (c)
ORB3047 5

Figure 3.15: Reflectance images with regions of interest (ROIs, in green) of
the highest 2% of OLINDEX values.
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Figure 3.16: Example of olivine spectra extracted from the overlapping
ROIs. Plot has been focused on the spectral range where olivine is best
identified from.

be found in table 3.1. Spectral angle is a measure of correlation as detailed in
Section 2.3. The spectral angle was also calculated between the spectra extracted
for different endmembers from the same image they were extracted from to compare
how similar or different the spectra are for what should be different mineralogical
spectral signatures. The results of this can be found in table 3.2.

3.4 Results from cross-validation between
OMEGA and CRISM

The spectral angle between each extracted OMEGA endmember spectrum and the
spectrum extracted for the same endmember in CRISM was calculated (Table 3.3).
To understand how distinguishable extracted endmember spectra in CRISM were
from each other, the spectral angles and similarity percentages were calculated
between extracted spectra between different endmembers (Table 3.4). CINDEX
could not be calculated for CRISM because of a calibration error occurring in the
wavelength range needed to calculate the parameter (around 3.95μm), and causing
the reflectance in these wavelengths to be too high. This range was omitted when
comparing the OMEGA and CRISM spectra.
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(a) ORB0444 4 (b) ORB0232 2

(c) ORB3047 5

Figure 3.17: Overlapping regions where olivine spectra were extracted from.
Green pixels are high olivine ROIs; red pixels are the overlapping regions.
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Table 3.1: Comparison of spectral angles (θ, in radians) between extracted
endmember spectra in each resolution and the spectra extracted for the
same endmember in different resolutions.

orb3047 5 orb0232 2 orb0444 4

olindex

orb3047 5 0 0.1133 0.2411
orb0232 2 0 0.1655
orb0444 4 0

lcpindex

orb3047 5 0 0.0476 0.1237
orb0232 2 0 0.1689
orb0444 4 0

hcpindex

orb3047 5 0 0.0495 0.2042
orb0232 2 0 0.2138
orb0444 4 0

cindex

orb3047 5 0 0.0992 0.0971
orb0232 2 0 0.0960
orb0444 4 0

d2300

orb3047 5 0 0.0558 0.0895
orb0232 2 0 0.1088
orb0444 4 0

d2400

orb3047 5 0 0.06119 0.1096
orb0232 2 0 0.2327
orb0444 4 0
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Table 3.2: Comparison of spectral angles (θ, in radians) between extracted
endmember spectra in each resolution and spectra extracted for different
endmembers in the same resolution.

olindex lcpindex hcpindex cindex d2300 d2400

orb3047 5

olindex 0 0.12 0.05 0.49 0.14 0.04
lcpindex 0 0.07 0.37 0.03 0.09
hcpindex 0 0.44 0.09 0.02
cindex 0 0.35 0.46
d2300 0 0.11
d2400 0

orb0232 2

olindex 0 0.06 0.02 0.46 0.08 0.03
lcpindex 0 0.06 0.43 0.05 0.07
hcpindex 0 0.48 0.10 0.02
cindex 0 0.39 0.48
d2300 0 0.10
d2400 0

orb0444 4

olindex 0 0.07 0.09 0.26 0.07 0.06
lcpindex 0 0.04 0.22 0.06 0.04
hcpindex 0 0.21 0.09 0.04
cindex 0 0.23 0.21
d2300 0 0.06
d2400 0
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Table 3.3: Spectral angles (radians) between the extracted OMEGA and
CRISM spectra.

CRISM

olindex lcpindex hcpindex d2300 d2400

O
M
E
G
A olindex 0.10

lcpindex 0.07
hcpindex 0.11
d2300 0.08
d2400 0.11

Table 3.4: Spectral angles (radians) between the extracted spectra from
CRISM.

olindex lcpindex hcpindex d2300 d2400

olindex 0.00 0.08 0.03 0.10 0.03
lcpindex 0.00 0.06 0.03 0.07
hcpindex 0.00 0.07 0.07
d2300 0.00 0.08
d2400 0.00
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3.5 Results from the comparison of OMEGA and
library spectra

Spectral angles were calculated between the extracted spectra in each OMEGA
image and a host of selected mineral spectra from the USGS spectral library mea-
sured under laboratory conditions corresponding to the mineralogical signatures
the spectral identification and extraction method targeted. The selected minerals
are detailed in Table 3.5. Table 3.6 contains the results of comparison between
library spectra and extracted spectra in image ORB3047 5. Likewise, Tables 3.7
and 3.8 contain the same for images ORB0232 2 and ORB0444 4, respectively.

Table 3.5: Summary products and their related minerals.

Name Abbreviation1 Mineral group Summary product

Olivine Ol Olivine group; Fe and/or Mg
nesosilicate

olindex

Hypersthene/
Orthopyroxene

Opx Pyroxene group; Fe and Mg
inosilicate

lcpindex

Diopside Di (Clino)Pyroxene group; Mg
and Ca inosilicate

hcpindex

Pigeonite Pgt (Clino)Pyroxene group; Fe,
Mg, and Ca inosilicate

hcpindex

Calcite Cal Carbonate; Ca rich cindex

Serpentine
(Lizardite)

Srp Serpentine group; Fe, Mg
phyllosilicate

d2300

Jarosite Jar Sulphate; K, Fe rich d2400

1 Abbreviations as suggested by [26], excepting jarosite.

3.6 Results of spectral angle mapping

A spectral library was built for each image with the spectra extracted from their
respective images as endmembers. Spectral angle mapping was successful in auto-
matically mapping large regions of the OMEGA images with the given endmembers
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Table 3.6: Spectral angles (radians) between high resolution ORB3047 5
endmember spectra and laboratory mineral spectra.

ORB3047 5 Ol Opx Di Pgt Cal Srp Jar

olindex 0.34 0.18 0.15 0.11 0.12 0.17 0.14
lcpindex 0.36 0.18 0.18 0.12 0.13 0.19 0.16
hcpindex 0.35 0.19 0.17 0.12 0.11 0.17 0.15
cindex 0.34 0.16 0.20 0.15 0.20 0.25 0.10
d2300 0.36 0.18 0.18 0.13 0.13 0.19 0.14
d2400 0.37 0.21 0.18 0.13 0.10 0.16 0.19

Table 3.7: Spectral angles (radians) between medium resolution ORB0232 2
endmember spectra and laboratory mineral spectra.

ORB0232 2 Ol Opx Di Pgt Cal Srp Jar

olindex 0.35 0.22 0.18 0.14 0.14 0.20 0.19
lcpindex 0.34 0.16 0.18 0.13 0.17 0.23 0.12
hcpindex 0.34 0.20 0.17 0.13 0.14 0.20 0.17
cindex 0.34 0.17 0.20 0.16 0.21 0.27 0.10
d2300 0.34 0.18 0.18 0.13 0.16 0.22 0.13
d2400 0.34 0.19 0.17 0.13 0.14 0.20 0.15

Table 3.8: Spectral angles (radians) between low resolution ORB0444 4
endmember spectra and laboratory mineral spectra.

ORB0444 4 Ol Opx Di Pgt Cal Srp Jar

olindex 0.38 0.26 0.22 0.20 0.21 0.27 0.21
lcpindex 0.35 0.21 0.21 0.17 0.21 0.28 0.17
hcpindex 0.35 0.22 0.21 0.18 0.22 0.29 0.16
cindex 0.36 0.21 0.26 0.24 0.31 0.37 0.10
d2300 0.37 0.21 0.20 0.17 0.19 0.26 0.18
d2400 0.36 0.23 0.21 0.18 0.21 0.28 0.18
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3.18a, though only about half the CRISM image was mapped 3.18b The CRISM
spectral library did not, however, contain spectra extracted with the CINDEX sum-
mary product (see Section 3.3). Some areas of the images did not belong to any
of the endmember classes according to the mapping technique (the spectral angle
between the image and the endmember spectra was over 0.1), and were therefore
unmapped.

The common characteristic to all the images was the mapping of the CINDEX
endmember spectra versus the remaining endmembers. In all image resolutions,
the areas classified as CINDEX were coherent between images (coherence exists
when geographical locations where the same endmember is prevalent regardless
of the resolution) whereas the areas classified as the other endmembers were not.
This gave rise to a North-South divide of classified patches across an East-West line
centred around 25o N, where regions in the North were mostly CINDEX whereas
the classified areas in the south were varied endmembers, not always spatially
consistent between resolutions (Figure 3.19a). Continuous classified regions also
tended to follow geomorphological features (e.g. crater rims, mountains and valleys,
Figure 3.19b)

3.6.1 Results of the visual interpretation of the reflectance
spectra

The candidate minerals selected from the USGS spectral library visually according
to the position and depth of their features were barite (a barium sulphate, for both
CINDEX and LCPINDEX spectra) a hematite (2%) and quartz (98%) intimate mix
(an iron oxide and silica, for both CINDEX and LCPINDEX), pyrrhotite (an iron
sulphide, for CINDEX) and pigeonite (a high calcium pyroxene, for LCPINDEX).
As such, visual comparison of all the USGS library spectra with the extracted
CINDEX and LCPINDEX spectra showed that the minerals which best matched
the extracted spectra were not what the summary products were meant to identify
(Figures 3.20 and 3.21). Calculation of the spectral angles between the candidate
minerals and the extracted spectra were smaller in all cases (Table 3.9, meaning
that the summary products do not serve their intended purpose in this case and that
they cannot substitute visual interpretation and identification of spectral features.
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(a) Image of the whole extent mapped

(b) The mapped portion of the CRISM (centre) partially overlap-
ping on ORB3047 5 (right) and fully contained by ORB0232 2 (left).

Figure 3.18: OMEGA and CRISM spectral angle maps overlayed on Google
Earth/Mars. Green: OLINDEX, cyan: LCPINDEX, blue: HCPINDEX,
yellow: CINDEX, brown: D2300, magenta: D2400.
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(a) N-S divide of CINDEX versus other endmembers

(b) CINDEX on mountains and other endmembers in valleys

Figure 3.19: Details of the spectral angle maps overlayed on Google Earth/Mars.
In 3.19a, patches of CINDEX in the North are coherent across resolutions and
patches of LCPINDEX in the South are sometimes coherent (occurring in the same
geographical areas) between 3047 5 and 0232 2. Overlayed images have black bor-
ders to highlight the overlapping resolutions. CINDEX and the other endmembers
occupy distinct geomorphological units in the 3047 5 overlay in 3.19b. Vertical
exaggeration ×3.
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(a) Continuum removed and stacked spectra.

(b) Absolute reflectance

Figure 3.20: Visual comparison of the position and depth of features from extracted
CINDEX spectra and similar USGS library spectra.
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(a) Continuum removed and stacked spectra.

(b) Absolute reflectance

Figure 3.21: Visual comparison of the position and depth of features from extracted
LCPINDEX spectra and similar USGS library spectra. Dashed vertical lines indicate the
centre position of features used to visually compare library spectra and extracted spectra.
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Table 3.9: Spectral angles (in radians) between the spectra extracted with
summary products and visually selected spectra from the USGS spectral
library.

3047 5 0232 2 0444 4

cindex
Barite 0.07 0.07 0.08
Hematite + Qtz 0.06 0.09 0.04
Pyrrhotite 0.09 0.11 0.10

lcpindex
Barite 0.14 0.10 0.14
Hematite + Qtz 0.14 0.12 0.18
Pigeonite 0.12 0.13 0.17
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Chapter 4

Discussion

The following chapter presents the discussions based on the obtained results in
a structured way, following the order of the results presented in Chapter 3. The
discussion on the preprocessing and processing stages was presented together in
Chapter 3, as the method consisted of an iterative process in which the results
(images, regions of interest and spectra) were fed back into the system to obtain
the desired final result (an improved OMEGA image processing chain, Section 2.1.
The discussions about the remaining results are discussed here.

4.1 Discussion on the results of endmember cross-
validation

The spectra extracted using the olivine index differed less between the high reso-
lution image and the medium resolution image (spectral angle θ ≈ 0.1133) than
between either of the former and the low resolution image (θ ≥ 0.1655). Similarity
was lowest between the lowest resolution and the highest resolution spectra. How-
ever, this was not the case with the other endmember spectra. In the rest of the
cases, endmember spectra were slightly more correlated between the low and high
resolution images (with the exception of the carbonate index spectra, which were
on par, close to 0.09).

On the whole, correlation between the extracted spectra at different resolutions
was never below θ ≈ 0.05. Reasons for this may be the resolution itself, as miner-
alogical variability may occur on smaller scales in the sampled regions, accounting
for more mixed pixels the lower the resolution. (If this is the case, we would expect
higher correlation between high resolution spectra and library spectra (discussed
in Sections 3.3 and 4.3).) This does not explain, however, the higher correlation
between the high and low resolutions.

A more surprising result was the similarity between different endmember spec-
tra within the same scenes they were extracted from. With the exception of the
CINDEX spectra, different endmember spectra within images were highly corre-
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lated to each other. This fact could argue that the measured spectral variability
is less related to variations within images than the effect different resolutions have
on the spectral signature, but the results in table 3.1 indicate that it may not be a
causal relationship since correlation between resolutions was generally on the same
order as within resolutions.

CINDEX spectra were the only spectra to be distinguishable from the rest,
though the spectral angle between the CINDEX spectrum and the rest of the
endmember spectra decreased by an average of 0.204 rad in the low resolution.

4.2 Discussion on the results of cross-validation
between OMEGA and CRISM

Spectral angle and similarity measured between the CRISM and the OMEGA image
revealed that the extracted endmember spectra between them are certainly related
(Table 3.3). However, a comparison of endmember spectra within the CRISM
image also reveals a low angle and high correlation between their spectra (Table
3.4), even between what should be signatures for very different mineralogies (e.g.
D2400/sulphates and OLINDEX/olivine). It may be possible, however, that the
high correlation between CRISM endmember spectra may be enhanced by the
higher number of channels in CRISM.

A possible reason for this high correlation between spectra may be that suffi-
cient mineralogical diversity does not occur in the small spatial extent of the image
and that the method used for selecting and extracting spectra from OMEGA image
ROIs cannot be applied with the same weight (i.e. instead of using the highest 2%
of values summary product values, the highest 1% may be sufficient) on a CRISM
image. This would mean that the selection method actually finds areas with slight
spectral variations but which are essentially similar mineralogically.

4.3 Discussion on the results of the comparison of
OMEGA and library spectra

It was surprising to see that never did the extracted spectra relate more to the
mineral it was supposed to identify than other minerals (with the sole exception of
D2400 identifying the sulphate jarosite in the low resolution image).

On the whole, the extracted spectra compared poorly to the library spectra,
relative to the correlation found between the extracted spectra of different end-
members themselves (Sections 3.3 and 4.1).

The OLINDEX performed especially poorly in identifying olivine compared
to the other indices identifying their respective minerals. In general, the library
olivine spectra was as correlated to the spectra extracted for other endmembers as
it was for the OLINDEX spectra.

None of the image resolutions had a particular effect on the correlation between
each extracted endmember spectrum and its corresponding library spectrum, but
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the extracted spectra from the high resolution image showed higher similarity to all
the library spectra than the spectra from the medium resolution image did, which
in turn showed higher correlation with library spectra than the low resolution
image did. This might be the result of extracting less clear spectra (more mixed
spectra pixels containing higher mineralogical variability) in lower resolutions than
in higher ones.

4.4 Discussion on the results of spectral angle map-
ping

The interpretation of the maps and spatial patterns was seriously restricted due
to the high correlation between different endmember spectra shown in previous
results. So although the images show seemingly coherent areas that would present
common spectral characteristics, the spectra in these areas offer no confidence in
identifying the mineralogy by using SAM.

The fact that coherent (i.e. the same endmember is found in the same geograph-
ical location across resolutions) classes followed geomorphological features, further
indicated that the spectral information relates to mineralogy, though it is still not
possible to distinguish specific mineralogical species without e.g. field observations
at these geomorphological features to recalibrate OMEGA’s orbital observations, a
fact which may not occur in the near future. In other words, ancillary information
for validation would be decisive.

The effect of shadows artificially creating spectrally cohesive areas cannot be
completely overruled, though it was observed that spectrally cohesive areas were
found on all faces of mountains, for example.

4.5 Comprehensive discussion of the results

The results shown in this chapter showcased some useful but also some puzzling
aspects about the spectral signatures extracted from OMEGA images. To sum-
marise, here follows a list of what was discovered from the results.

1. The modifications (specific noise reduction for each sensor range, minimis-
ing the spatial shift between sensors, identifying endmembers with pseudo-
reflectance but collecting spectra as absolute reflectance - see section 3.2) to
the preprocessing method were a logical step to obtain images and therefore
spectra of better quality.

2. The mineralogical spectral signature identification method for OMEGA im-
ages based on summary products found spatially coherent areas or patterns
in OMEGA images, likely meaning that similar mineral species exist within
the areas.

3. These areas were different for each mineral that was attempted to be iden-
tified with summary products.
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4. However, when compared via their spectral angle, the spectra from these
regions appeared very similar (correlated).

5. Could this similarity have been an effect of the spatial resolution? No, there
is no strong causal relationship because spectra compared across different
resolutions were also very similar.

6. Could this be an uncontrollable calibration problem that affects OMEGA? It
is possible; however, a comparison with the newer, higher resolution CRISM
instrument shows similar effects.

7. Does the spectral identification method identify the minerals it is supposed
to be identifying? A comparison between the extracted spectra and ‘pure’
laboratory measured spectra shows that this is not the case. Mineralogical
mixtures and a surficial dust cover most definitely have an effect, but the
spectra sampled from the images formed only a small fraction (2%) of the
whole images, consisting of the highest values according to the summary
products.

8. The better identification of jarosite by the sulphate index in the low resolu-
tion image, relative to the other endmembers is likely not significant because
it does not occur in the same geographical position in other resolutions.

From the start, the combined methodology of using summary products to iden-
tify candidate regions for spectral sampling plus spectral angle to characterise the
spectra against library spectra made logical sense as both summary products and
spectral angles identify the trends and curves (the shape) of spectral signatures and
place little importance on the actual reflectance magnitude. Summary products
did identify spatially distinct regions, though what mineralogical information can
be derived from these regions now appears to be an open question. What is clear
is that the combined method of applying summary products and spectral angle is
not successful at identifying mineralogy.

It could be speculated that the reason for this incompatibility of methods for
OMEGA imagery may be because the summary products used to identify spectral
signatures place importance on the position and depth of spectral features specific
to the minerals being identified via spectral signatures in an image, whereas spectral
angle measurements place an equal amount of importance to all points of the
spectral curve1. Therefore calculation of the spectral angle (and by extension,
spectral curve correlation) does not identify minerals because it does not specifically
target the characteristic spectral features. Indeed, two very different spectral curves
with narrow, precise features in identical positions might form a large spectral
angle between them. On the other hand, two otherwise identical spectral curves
containing a small number of features in completely different positions might form
a low spectral angle between them and score relatively high in correlation.

This hypothesis was briefly tested visually and statistically with OMEGA im-
agery in a trial and error method (Section 2.7).

1Dr. F. van Ruitenbeek, personal communication 8th February, 2011.
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4.6 Discussion on the results of the visual inter-
pretation of reflectance spectra

The results clearly show that the visual identification of feature depth and position
can serve as a method to discriminate between spectra. This was proven when
statistics showed that the visually chosen library spectra correlated more with the
extracted image spectra, meaning that it was more effective than using summary
products.

A information search also reveals that the visually selected minerals from the
library spectra have been detected on Mars by a number of different probes and
sensors. Pigeonite was detected in a Martian meteorite2 and the iron oxide hematite
is well-known to be present on the Martian surface in the form of dust, but also
nodular concretions [28]. Pyrrhotite was also found by the NASA’s Viking landers3.

Previous finds of the minerals also lend some credibility to the fact that the
OMEGA images do contain sufficient spectral information to discriminate between
some minerals, but that the method of extracting spectra from the image was
wrong. A discussion on new methodological considerations follows in Chapter 5.

2http://www.mindat.org/loc-106227.html, last accessed 15th February, 2011.
3http://www.mindat.org/min-4029.html, last accessed 15th February, 2011.
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Chapter 5

Conclusions

This final chapter summarises the main findings of the research undertaken in this
thesis and recommends on how to proceed with research on mineral characterisation
of the surface of Mars via remote sensing.

Research was undertaken to study the stability of reflectance spectra acquired
by the hyperspectral OMEGA spectrometer on ESA’s Mars Express satellite and
to identify the mineralogy of the surface of Mars using this data. The method
consisted of an initial preprocessing stage to obtain clean reflectance images as
free as possible from noise and interferences. The method to identify the surface
mineralogy involved the use of summary products, indices based on the spectral
characteristics of general mineral groups that are meant to locate regions where
such minerals are to be found. Subsequently, spectra extracted from regions pin-
pointed by the summary products served as endmembers in a spectral library for
each image studied, containing spectra of six important rock-forming groups of
minerals found on the surface of Mars, according to the literature.

The spectral libraries were used for spectral angle mapping, where the spec-
tra in the library corresponding to different mineral groups (according to spectra
extracted from the images with the summary products) were statistically matched
against the spectra in the images being mapped. Some spatial coherence of the
distribution of minerals was observed in the maps.

Unfortunately, statistical matching (via the spectral angle) of the extracted
spectra with summary products against mineral spectra observed in laboratory
conditions (the USGS spectral library) showed that the method failed to relate the
spectra. Moreover, the spectral angles between different endmembers as well as
between different spatial resolutions were low, proving a high correlation existed
between spectra extracted for different summary products as well as between dif-
ferent images. The exception to this was the identification of the sulphate jarosite
by the sulphate index (D2400) in the low resolution image. This does not indi-
cate that jarosite was present but a higher probability of its presence because of
a higher correlation between extracted and library spectra. Considering that the
higher correlation was not found across resolutions, the confidence for its detection
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remains low.

To see whether the high correlation between spectra of different endmembers
was exclusive to OMEGA, a cross-validating test was carried out by comparing
the spectra extracted from OMEGA imagery with summary products to spectra
extracted with summary products from images acquired by the CRISM hyperspec-
tral spectrometer on NASA’s Mars Reconnaissance Orbiter. Tests showed that the
high correlation between extracted spectra persisted in CRISM images, and that
they did not correlate well with laboratory measurements either.

The method failed to map precise mineralogical species because the summary
products did not identify the spectral characteristics of the minerals they claim
to identify. To test whether this was the cause of the failure, a trial and error
or “brute-force” approach, in which all the laboratory-sampled mineral spectra
available in the USGS spectral library were visually compared to the spectra ex-
tracted from the OMEGA images with summary products. The spectral angles
were calculated between the image extracted spectra and the spectra of minerals
selected from the spectral library which visually matched the position and depth of
the image extracted spectra. In all cases, these angles were lower than the angles
calculated between the spectra extracted with summary products and the minerals
they were supposed to identify. The minerals that formed lower spectral angles
with the spectra extracted with summary products did not belong to the miner-
alogical groups the summary products were meant to identify (e.g. the carbonate
index (CINDEX) summary product was more akin to a mix of hematite (an iron
oxide) and quartz than to calcite (calcium carbonate), Figure 3.20 and Table 3.9.).

In conclusion, the chosen spectral summary products are not able to identify
mineralogy with confidence.

5.1 Recommendations

Future studies in mineralogical characterisation of the Martian surface with hyper-
spectral information should draw from the lessons learnt in this research, namely
that the current mineralogical parameters or summary products do not pass the
statistical test and should therefore be used with care and definitive prior knowl-
edge of the probable mineralogical distribution and species in the images.

It is tempting to blame the instruments and their calibration for the bad data
received and suggest that orbiting spectrometers in future missions incorporate
some form of recalibration that could be carried out periodically or when necessary
while in orbit, in order to minimise the effects of the trip to Mars on the signal
and the deterioration due to cosmic radiation in time. However, as mentioned
previously, there are no plans in the near future to insert orbiters containing hy-
perspectral spectrometers into Martian orbit, so there is no option but to make the
best out of the otherwise abundant data available.

In order to minimise the effect of the large pixel size on the spectra, it would
be practical to use CRISM for mineralogical characterisation instead of OMEGA.
Authors (see section 1.1.2) have worked on unmixing models for OMEGA, but
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these should be adapted for CRISM. The idea of extracting spectra to build a
spectral library of endmembers used to map the images is in itself a flawed method
in this case, since by using spectral angles, the spectra extracted cannot correlate
to the mineralogical spectra that we do have a knowledge of (gathered, for exam-
ple, in spectral libraries of laboratory measured mineral spectra). Maps classified
using only image spectra here are ‘artificial’ in the sense that some subtle spectral
variation can be identified, but precise mineralogical species cannot.

But the question of which minerals should form the spectral library of possible
minerals found remains. We cannot blindly use a large amount of mineralogical
spectra, even though the trial and error “brute-force” approach (using all the min-
eral spectra in the spectral library) carried out in this thesis (sections 2.7) demon-
strated that it was more effective at finding minerals than the summary products.
The scientific merit of a trial and error approach in this case is somewhat debatable:
a large number of mineral spectra in the library is useful because there is a higher
chance that a high correlation between image spectra and some mineral spectra;
however without prior evaluation of the mineralogy possibly present in the region
being mapped, a similar correlation method might identify distributions of minerals
in space which do not make geologic sense after interpretation (typifying the adage
‘Garbage in, garbage out’), e.g. high grade metamorphic minerals and unaltered
carbonates side by side, barring tectonic activity bringing them close together. This
possibility exists, though how probable it is is a matter of debate. The chances
of this situation occurring rise when the number of minerals (equally weighted in
their probability of occurrence, e.g. determined by the minimum spectral angle)
included in the library rises.

A solution to the choice of minerals for the spectral library might lie in very
promising research being undertaken by NASA’s Mars Exploration Rovers (MERs)
since 20041. These are the only existing sources of ‘ground truth’, and the minerals
they have detected are likely perfect candidates for a cautious yet scientific and
proof-based spectral library for the analysis of CRISM images.

The mineralogical diversity discovered by the rovers with the Mini Mössbauer
Spectrometer (MIMOS II), Mini-Thermal Emission Spectrometer (Mini-TES) and
Athena’s Alpha-Particle-X-Ray Spectrometer (APXS) has been exciting; notably,
their landing sites had been mineralogically mapped and characterised using OMEGA
and CRISM, but the findings of the rovers completely contradicted the interpre-
tations made by using the orbiting spectrometers [28]. What was thought to be
materials of sedimentary phyllosilicate origin (Gusev crater) were in fact igneous/
volcanic mafics in nature, as seen by Spirit rover [25], whereas materials thought
to be igneous mafics (Victoria crater) proved to be sedimentary in origin by the
Opportunity rover [28].

The future of science missions to Mars relies heavily on landers and rovers,
with NASA’s Mars Science Laboratory (MSL, “Curiosity”) set to be launched in
2011 [14], and the joint ESA/NASA ExoMars missions to be launched in 2016 and
2018 [30], with the not-so-distant final objective of returning samples to Earth.

1http://marsrovers.nasa.gov/overview/ last accessed: 15th February, 2011.
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Though the main science objective of the rovers is to find traces of past and/or
present life, mineralogy is crucial in determining where these traces of life may
be. (Current consensus is that the rovers must target sites with phyllosilicates as
well as sites where hydrothermal activity occurred.) Landers must deploy their
rovers relatively close to these sites as the autonomy of the rovers is an important
limitation [28].

So mapping the mineralogical distribution from orbit would greatly aid in se-
lecting landing sites for rovers, directly influencing where the search for traces of
life occurs. But the MER experience showed that the interpretation of orbital data
was wrong [28].

In short, learning from my mistakes as well as from the planetary science com-
munity’s, I suggest the following for future mineralogical mapping of the surface of
Mars from the data of the current instruments:

1. Favour CRISM imagery rather than OMEGA images. Even if it is regarded
that OMEGA is useful for mapping large areas, mineralogical mixes, dust,
noise and interferences are likely worse in OMEGA and can be avoided to
some extent with CRISM. Mosaics can be built for extended regional maps
should they be necessary.

2. Be certain that images are corrected: striping persists in CRISM images.
This means the pre-processing method designed and modified here for OMEGA
might have to be reviewed for CRISM, which is a feasible task given the ex-
perience gathered from this project.

3. Build a spectral library of minerals identified by the rovers’ instruments
(meaning there is no “garbage in”). This might not be initially intuitive
since there must be a resampling of the bands. However, the discovered
minerals are documented together with their locations.

4. Use the spectral library as endmembers for mapping (e.g. via spectral angle,
a flexible (because magnitude is not important) yet rigorous (because spectral
shape is important) correlation method on CRISM images corresponding to
where the minerals were identified by the rovers, creating a link between
CRISM and the MER instruments. Further mapping can be done on areas
unexplored by the rovers after this stage.
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M. Bouyé, M. Combes, P. Puget, A. Semery, et al. OMEGA: Observatoire
pour la Minéralogie, l’Eau, les Glaces et l’Activité. In Mars Express: The
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