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Abstract 

Green beach is a dynamic phenomenon of vegetation succession on a sandy beach. It 
contains a mosaic of vegetation from different habitats (dune, dune slack and salt 
marsh) that form a distribution gradient along changes in elevation. Elevation (a 
proxy for inundation frequency and duration), ground water quality (saline/fresh), 
soil clay content are the main abiotic factors influencing vegetation distribution.  
The objectives of this research are: 1) modelling the relation between plant 
distribution on the green beach and the abiotic factors influencing it, 2) assessing the 
impact of the increase in raster resolution of the predictors on the performance of 
statistical modelling. 
A set of indirect predictors are derived from a LiDAR DEM: elevation, cost-distance 
to the sea, distance to sea water inlet, distance to fresh water seepage and slope. The 
elevation values of the original DEM are used to interpolate DEMs of increased 
resolution. Three cell sizes are used: 5 m, 2 m and 20 cm. All the predictor variables 
are created using these resolutions.  
The predictors of different resolution are used together with plants presence/absence 
data to estimate the empirical relation using logistic regression model. The model 
performance is assessed for each plant and cell size. The impact of the resolution 
change is assessed. Plant models that yield significant results are used to produce 
plant distribution maps. 
The predictor variables show significant correlations with the plant distributions. 
Logistic regression yielded significant models for 7 out of 24 plants. The increase in 
resolution of the predictors shows an effect on all species modelled. However, a 
general pattern is not observed. The impact is different for different plants showing 
increase or decrease in model performance at some of the cell sizes. 
The poor performance of the statistical model is mainly caused by lack of true 
absence data and limitations of the method. 
The effects of the increased raster resolution of the predictors are thought to be 
connected to the ecology, scale of the plants distribution patterns, and to the effect 
on resolution increase on the predictors’ accuracy.

Keywords: Green beach, Cell size impact, Logistic regression, Species distribution 
modelling, Presence/absence data 
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1. Introduction 

1.1. Research background and justification 

1.1.1. Green beach 

About 30% of the Dutch area is below sea level. Major cities such as Amsterdam, 
Rotterdam and the Hague, accommodating approximately 50% of the country’s 
population, are located within this area. Mreover, important industrial and economic 
centres are also located within these areas providing for 50% of the Dutch GDP 
(CBS, 2011). 
The majority of the coast of the Netherlands consista of coastal sand dunes or dikes 
built for protection from the sea. Big effort is put to manage the coastal areas 
(Schoeman, 2006). 
Sea level rise and intensive management of the coastal areas do limit space for 
natural processes on the coastaline. Natural growth and development in these areas 
is a rarity. Therefore, the formation and development of a green beach along the 
Dutch coast represents an interesting subject for study. 
Green beach is the phenomenon of vegetation succession on a sandy beach, where in 
the relative shelter of embryonic dunes a rare mosaic of dune, dune slack and salt-
marsh vegetation develops. Species with radically different requirements are 
growing side by side forming a unique landscape (Edmondson et al., 2001). Another 
distinctive feature of the green beaches is their dynamic development. Without the 
impact of severe storms vegetation can develop very rapidly, leading to drastic 
vegetation changes in only a few years time. On the other hand one big storm can 
wash away or bury the green beach with sand.  
Some studies refer to green beaches as a transitional phase of succession that passes 
into salt marsh or a dune slack community (Edmondson et al., 2001, Koppenaal, 
2007). 
The green beach community has not been discussed much in the literature, even 
though the phenomenon has been documented in the past (Allen, 1932). Several 
researches were dedicated to the issue in the recent past: green beach on the Sefton 
coast, UK (Edmondson et al., 2001, Smith, 2006), green beaches on the Frisian 
Islands, Netherlands (Koppenaal, 2007), green beaches of German East Frisian 
Islands (Petersen and Pott, 2005); however, more attention is needed for a better 
understanding of the dynamics and the driving forces of green beaches.  
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Studying this phenomenon may bring interesting findings. Even though the majority 
of species reported growing on green beaches may not be unique (note that several 
Red List (Tamis et al., 2004) species do occur) it is the dynamics and the patternt of 
vegetation growth that draws attention.  
Jansen (2010, personal communication) reported nesting and breeding of migratory 
birds such as Vanellus vanellus on the beach, which was never observed before. 
Some birds have a preference for green beach situations for nesting (Emberiza 
schoeniclus, Anthus pratensis) and wintering (Lymnocryptes minimus, Carduelis 
flavirostris) and due to its uniqueness green beaches have a contribution to 
biodiversity in coastal environments.  
Another aspect to consider is the possible impact of vegetation growth on sand 
accretion, important in the coastal area. The presence of vegetation may to some 
extent stabilise active erosion processes (Edmondson et al., 2001). However, taking 
into accout the dynamics of the green beach phenomemon it may have a very small 
impact. 
A challenge for management arises when a balance between beach diversity 
protection and recreational activities needs to be met. Consequently, a better 
understanding of the dynamics and driving forces of a green beach is required. 

1.1.2. Green beach formation 

Some specific factors are required for a green beach formation to initiate. Important 
is the width of the shore providing more stable conditions, with some protection 
from embryonic dunes or beach ridges. Absence of disturbances such as driving 
vehicles (Birkdale beach, Edmondson et al., 2001), or no severe storms for a long 
enough period of time (Koppenaal, 2007) can trigger or accelerate the vegetation 
development. Initially, the microorganisms set in followed by pioneer species such 
as Puccinellia maritima (Edmondson et al., 2001, Koppenaal, 2007). This leads to 
enhancement of sand accretion and further vegetation succession.  
A green beach can change drastically within a few years time. 
Figure 1.1 below shows a simplified representation of green beach components.  
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Figure 1.1 Schematic representation of a
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big dune areas, which contain fresh water lens underneath. Clay content in the soil 
and nutrient fixing microorganisms had some relation with the vegetation 
distribution. However, these factors were rarely found.  
The pattern of species distribution along the elevation gradient is discussed in the 
study; the green beach is therefore divided into three types. First type consists of 
salt-marsh species hosted by areas with low elevation and high salinity. Second type 
contains some dune slack species that are distributed in areas with higher elevation 
and lower grown water salinity (occasionally, some fresh ground water). Finally, a 
transitional phase, hosting species of salt-marsh and dune slack vegetation is 
attributed to the third type.  
Some correlations between conductivity measurements, elevation and vegetation 
distribution were detected, however the explanatory value of those was found weak. 
Researchers suggest that depending on the conditions, a green beach can develop 
into salt marsh, dune slack, and dune or disappear again. 

1.2. Research overview 

Green beach is a very dynamic environment. It is difficult to predict how a green 
beach will develop in time. It can evolve into a dune slack, a salt marsh, or even a 
dune area, but it can also disappear in the course of one winter season with heavy 
storms.  
According to a previous study (Koppenaal, 2007) briefly described above the 
following parameters are essential in vegetation succession: 

• Inundation duration and frequency 
• Water quality (saline/fresh) depending on seepage or position in the terrain 
• Clay content 

In this study elevation will be used as a proxy for the combined effect of inundation 
duration and frequency. To account for more abiotic influences mentioned (ground 
water salinity/fresh water seepage and other) some additional indirect factors will be 
derived from a digital elevation model (DEM) and tested. These are cost-distance to 
the sea, distance to the sea inlet, distance to fresh water seepage and slope in 
elevation (further referred to as DEM-derived variables). For more detailed 
explanation of these DEM-derived variables see chapter 3.3. 
From the methodological part – the application of high resolution DEM derived 
from Light Detection And Ranging (LiDAR) data representing the topography of the 
study area will be used for obtaining all the variables in this study and for further 
statistical modelling. Can a detailed LiDAR DEM be used for modelling? Is its 
resolution fine enough for explaining the small scale variation in the green beach 
vegetation? 
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Some attention will be focused on the impact of raster cell resolution on the 
modelling results. It will be tested whether the increase of cell size improves the 
model performance or whether there is no significant effect. 
Using DEM derived variables to describe variation in the vegetation is not new in 
predictive modelling, however, at this fine scale (centimetre elevation scale) this 
kind of modelling hasn’t been tried out. 
And finally it will be tested whether retrospective modelling can be performed. The 
relations between dependant and explanatory variables derived for 2010 data will be 
applied for the data of 2006, the output will be assessed. 

1.3. Research objectives 

Overall objective: 
To model the relation between elevation, other DEM-derived factors and plant 
distribution on a green beach.  
Specific objectives: 

• Application of LiDAR derived elevation data for extracting the predictor 
variables, they are elevation and several distance functions (see further 
chapters). 

• Testing which variables derived have the prevailing influence on vegetation 
composition of a green beach and defining the empirical relation between 
plant species distribution and the DEM –derived factors. 

• Testing the influence of the cell size on the outcome of modelling 
• Testing the model using historical data of 2006 

Research questions 
1) Can LiDAR DEM-derived variables be used for modelling plant distribution on 
the green beach? 
2) What relation is there between the DEM predictors and vegetation distribution, 
are these enough to explain variation in vegetation? 
3) What is the influence of changing the cell size of the DEM-derived factor maps 
on the modelling output? 
4) Does the relation remain the same over time; can the same empirical equations be 
used for both present and retrospective modelling? 

1.4. Hypotheses 

During the research the following hypotheses will be tested: 
Hypothesis 1 
H0: There is no significant relationship between the plants distribution and the DEM-
derived predictor variables. 
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H1: There is significant relationship between the plants distribution and the DEM-
derived predictor variables. 
Hypothesis 2 
H0: The decrease in raster cell size of the predictors does not impact the accuracy of 
the output. 
H1: The decrease in raster cell size of the predictors has significant influence on the 
accuracy of the output. 
Hypothesis 3 
H0: The empirical relation between topography and vegetation composition does not 
remain constant within the period from 2006 and 2010. 
H1: The empirical relation between topography and vegetation composition remains 
constant within the period from 2006 and 2010. 

1.5. Species distribution models 

1.5.1. Short classification 

The number of models for spatial prediction of species distribution is increasing 
rapidly (Hegel et al., 2010). Most of these models have quantification of species-
environment relationship as their underlying principle and are static and probabilistic 
(Guisan and Thuiller, 2005). Although the number of statistical tools increases it is 
quite important not to forget the underlying ecological knowledge while applying 
sophisticated statistical techniques (Austin, 2002).  
Austin (2002) identifies three components in a statistical modelling framework: 
ecological model, data model and statistical model. They combine the ecological 
theory or knowledge as a base for the study; provide guidelines on which way and 
what data needs to be collected, which statistical method, error function and 
significance tests need to be used. 
Nature is too complex and modelling it uses specific assumptions to simplify it. 
These assumptions can impact the output of spatial modelling and need to be 
mentioned here. Guisan et al. (2000) have reviewed and classified the predictive 
habitat models according to a few of these assumptions. Some considerations are 
given below. 
1) Generality, reality and precision of the model. Theoretically a given model may 

only incorporate two of these factors leaving the third one out. According to this 
the models are divided into: a) analytical, designed to give precise and general 
prediction; b) process models, revealing causal relationships; and c) empirical 
models, that use statistical relations to make predictions rather than ecological 
theory or cause-effect relationships of the variables. In species distribution 
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modelling mostly empirical statistical models are used due to relative simplicity 
of use. 

2) Models that use different predictor types or types of ecological gradient: a) 
resource gradient – relates directly to organism’s consumption of energy or 
matter; b) direct gradients having direct physiological importance apart from 
consumption; and c) indirect gradients – being connected to the species 
indirectly (Austin, 2002). Resource or direct gradients are effecting on a large 
scale, whereas indirect on smaller scales. 

3) Assumptions about environmental niche: fundamental versus realised niche. 
Describing the species occupying all theoretically suitable habitats, or else only 
part of it due to interactions with other species (Guisan and Thuiller, 2005). 
Statistical models are often simplified and only quantify realised niche based on 
field observations (Austin, 2002, Guisan and Zimmermann, 2000, Hegel et al., 
2010). 

4) Equilibrium/non-equilibrium assumption. Models are divided in two groups. 
Those that represent reality in a static pseudo-equilibrium way (assuming none 
or slow change in time in the system); and those that represent the dynamics of 
the system. However, the statistic models used presently do not incorporate 
dynamic elements, which is against the understanding of ecology. 

Some considerations are also raised about whether to use individual species or 
communities for modelling. Individualistic approach is believed to be closer to 
reality as compared to arbitrary classifications (Guisan and Zimmermann, 2000). 
Reality is always too complex to be modelled, hence some simplifications are made. 
For example, most species distribution models assume either equilibrium between 
species and predictors or represent the realised niche. These assumptions are not 
completely true to reality; rather, they are dictated by the statistical approach. 
In this study field observations will be used to derive the relationship between the 
predictors and vegetation distribution. This implies that an empirical model is used 
to quantify the realised environmental niche. 
The scale of the study is quite small, which implies that using indirect predictors is 
more appropriate. This is the case with DEM-derived predictors; they do not 
influence the vegetation distribution directly, but are used as proxies for other 
environmental factors. A static model is used, assuming no big changes in the 
relationship between the predictors and the plant distribution. 

1.5.2. Statistical models 

Statistical models are mostly variable-specific. The choice of a statistical approach 
depends on the probability distribution of the response variables (Guisan and 
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Zimmermann, 2000). This distribution needs to be known prior to selection of a 
particular model. 
Nowadays there is a rich variety of techniques for statistical modelling. These may 
be regression models, classification trees, environmental envelopes, neutral 
networks and other. In this work a type of generalised linear model (GLM) will be 
used. GLMs have been used widely, they are simple to implement, and are good to 
use when the probability distribution of the response variable is from the exponential 
family, but not necessarily normal (Campbel, 1989). In our case the response 
variable data has binomial distribution, having two possible values – presence and 
absence. 

1.5.3. Generalised linear models 

GML consists of three components: 1) random component representing the response 
variable in the equation (Y), 2) systematic component representing the predictors (Xi) 
and 3) the link function linking the first two components together (Campbel, 1989, 
Guisan et al., 2002): 

���� � �� 	 �
�
 	 ���� 	�                                (1) 

Where ���� is the link function, �� - coefficients to be estimated. 
Binary response variables (eg. dead/alive, present/absent) are quite common. For 
this kind of distribution logistic regression model (Hosmer and Lemeshow, 2004) is 

commonly used where a logit link function is used ���� � ��� � �

���. 

The logistic model is: 

���� �  �
���������


 ����������     (2) 

where ���� is the probability that the response variable equals to 1 for given 
predictors, �� - coefficients to be estimated. 
The adequacy of the logistic regression model is checked by estimating goodness-of-
fit statistics by comparing predicted against observed values - Hosmer-Lemeshow 
statistics (Campbel, 1989, Hosmer and Lemeshow, 2004).  

1.6. General approach 

Figure 1.3 illustrates a simplified workflow of this study. 
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Figure 1.2 Simplified workflow of the study.  

P/a stands for presence/absence  
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2. Study area 

2.1. General information 

Figure 2.1 Schiermonnikoog Island; location of the green beach and the area of study 
are indicated (adapted from Frisian Province map, 2007). 

Schiermonnikoog (Figure 2.1) is one of the barrier islands on the border between the 
Wadden Sea and the North Sea (figure 2). The area of the island is about 40 km2, 
being about 16 km long and up to 4 km wide. The island hosts one village with a 
permanent population of 941 inhabitants (CBS, 2009).  
Schiermonnikoog is the site of the Netherlands’ first national park. Every year this 
place attracts up to 300 000 tourists, many of them staying for one day only (up to 
4000 per day in July and August) (Wikipedia, 2010).
Tidal and wind interactions, as well as sea currents cause the island to slowly sift to 
the south-east. In 1250 it lay about 2 km to the north of its present position, and had 
a very different shape (National park Schiermonnikoog, 2011). 
Although small in area, Schiermonnikoog has a variety of landscapes. Thanks to 
this, the island has an abundant population of animals and plants (National park 
Schiermonnikoog, 2011). 
The island consists mainly of dune and salt-marsh areas, with elevation of up to 20 
m and 1-2 m respectively (Beukeboom, 1976). The dune area is built-up with dunes 
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oriented in south-east direction caused by prevailing westerly winds and sand supply 
from north-west. The southern and eastern area of the island is a salt-marsh – a flat 
area flooded regularly with tides and heavy storms. The southern part is a polder – 
land transformed from salt-marsh into agricultural area. 

Figure 2.2 View of Schiermonnikoog from the air (Photo: Samuel Bekx) 

In this research a part of the green beach area of Schiermonnikoog is studied. The 
study area is situated on the northern beach of the island, at the North Sea side 
(indicated in figure 2.1).  

The coastline of the Netherlands has a reference system with beach poles placed at 
every 1 km (Hiller and Roelse, 1995). These beach poles were used by 
Rijkswaterstaat (Dutch government agency responsible for road and water 
infrastructure and protection against flooding) for coastal monitoring, and precise 
coordinates of the pole locations are known, although these poles are no longer in 
used and not maintained. The beach poles were used in this study as a reference for 
geodetic surveying. Figure 3.3 shows the locations of the beach poles used in this 
study. 

2.2. Climate and Hydrology 

The Wadden Islands have a humid, temperate, maritime climate. Mean annual 
precipitation is 500-1000 mm. There is no real dry period, but the months with most 
precipitation are September through December (see figure 2.3). The mean 
temperature varies from 2 °C in winter to 17 °C in summer. The peak in 
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evaporation occurs in the summer months
and winter leading to some surplus in preci

Hydrology is an important feature on 
distribution including the vegetation in the 
All Wadden Islands have similar hydrolog
dune area and sometimes a salt marsh or po
(Beukeboom, 1976). Salt water has highe
surplus infiltrated in the soil brings fresh g
pushing salt water down. This way a fre
system (Figure 2.4). 

Figure 2.4 An asymmetrical freshwater lens, 
This is the case on Schiermonnikoog island (A

At the break of slope at the edge of the 
freshwater table approaches the ground s
seepage at the beach. 
During autumn and winter time there is p
table rises. At these periods some areas a

2

s and the precipitation peak is in autumn 
ipitation in these seasons.

the island influencing the vegetation 
green beach. 

gy. Generally a Wadden island consist of a 
older – land reclaimed from the salt marsh 
er density than fresh water. Precipitation 
groundwater table up and creates pressure 
esh water lens is formed under the dune 

occurring under a dune area and polder. 
Adapted from Beukeboom, 1976). 

dune system from the seashore side the 
surface. This results in some fresh water 

precipitation surplus and the ground water 
at the beach and in between the dunes are 

Figure 2.3 Mean monthly precipitation
and temperature 1971-2000 for the
Schiermonnikoog weather station
(Adapted from KNMI, 2010).
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below the water table level resulting in some standing fresh water throughout the 
season. 

2.3. Shore erosion and sedimentation 

Marine and Aeolian erosion and sedimentation are connected to the nature of the 
Wadden Islands making them slowly shift, as was briefly mentioned before. Without 
these processes they would not exist. 
According to a case study of erosion on the Dutch Frisian Islands (Schoeman, 2006) 
the physical processes in the Wadden Sea area are influenced by the tide and waves. 
The alongshore sediment transport is induced by waves, whereas cross-shore 
transport happens through tidal inlets and is induced by tide. The island shores have 
erosion and accretion in different places: erosion of the western part of the island 
and sedimentation in the eastern area; this causes the islands shift eastwards. 
Some causes of accelerated erosion and sedimentation are sea level rise, land 
subsidence due to gas mining, storms relocating sand, and sand waves - the sand 
volumes that are moved along the shore. 
In this study the vegetation distribution is assumed to be indirectly related to 
topographic forms of the green beach area (elevation, distance to the sea, distance to 
fresh water seepage location and other). This relation is also assumed to be relatively 
constant throughout the period from 2006 to 2010. Consequently, change in 
vegetation cover, if any, would be caused by a change in the topography of the 
beach. Some initial insight is needed on the processes of erosion and accretion of the 
shore of Schiermonnikoog, more specifically the area of study. 
Schoeman (2006) states that the erosion on Schiermonnikoog is not significant and 
the island is relatively stable, however some changes do occur. 
To illustrate the change in the terrain a simple deduction of DEMs was made: DEM 
2010 minus DEM 2006. The result shows the change in the elevation of the study 
area (Figure 2.5). Simply observing the digital elevation models from the two years 
it’s possible to notice changes in the shoreline: the sand bank on the west has moved 
slightly to the east, the beach has become less wide at one part and slightly increased 
on the eastern part. Overall, the embryonic dunes in the study area are more 
developed in 2010.  
The area further away from the sea has gained some elevation, as a contrast to up to 
2.5 m loss of elevation at the shore line. The area on the western part of the beach 
has suffered some loss of sand, but generally there has been an increase of elevation 
from about 25 to 50 cm along the dunes. The embryonic dunes in the centre of the 
study area have grown for 1-1.5 m. This increase presumably leads to the area 
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behind these dunes being more protected from tidal inundation, which does not seem 
to occur there anymore, and the storms. 

Figure 2.5 DEMs of the study area from a) 2006, b) 2010. Map c) shows the 
increase/decrease in elevation between 2006 and 2010. The red colour represents loss in 
elevation, yellow to green represent gain. The dots mark endpoints of sampling 
transects. Note big loss of elevation at the shore line and some increase of embryonic 
dunes and areas along the dune system, the sand being shifted inwards the island. 

a) 

b) 

c) 
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3. Materials and Methods 

3.1. Field work 

The field work aimed at sampling vegetation species occurring in the study area. The 
line-point intercept method was used with a systematic sampling design: the 
vegetation was sampled along transect lines with a constant interval. 
The field work was implemented in three stages: reconnaissance, surveying, 
vegetation sampling. 

3.1.1. Reconnaissance 

During reconnaissance the potential study area was observed. Some broad general 
patterns of vegetation growth were visually detected in the field. The widths of these 
patterns were approximately measured by steps and a conclusion was made about 
the possible interval between sampling transects. The extent of the study area was 
finally determined visually: the green beach between beach poles 3 and 8. The area 
eastwards of beach pole 8 was considered to be out of the scope of the study since it 
primarily hosted dune vegetation. As for area to the south-west of pole 3, the 
vegetation cover there was similar to the area between poles 3 and 4. For efficiency 
reasons and time constrains sampling the area south of beach pole 3 was excluded. 
The area between poles 3 and 4 and around pole 5 is regularly inundated with high 
tide. The vegetation observed there is very similar to salt marsh vegetation with 
increase of brackish and fresh water species close to the foot of the foredunes. The 
area around beach pole 5 is higher in elevation hosting smaller number of halophytic 
plants (e.g. plants like Salicornia europaea are not found here).  
Around pole number 6 the green beach area is situated on even higher plain 
protected by some high (about 1,5 m) embryonic dunes to the north, sheltering the 
green beach from direct influence of the sea; this area does not seem to get 
inundated by tides too often. Some plants requiring fresh water are regularly found 
(Mentha aquatica).  
The area in between poles 7 and 8 hosts an interesting situation (see figure 3.1). 
There is a sea inlet between the embryonic dune ridge and the main dune ridge; this 
gets inundated with high tides, saline standing water was found there during the field 
work period. The vegetation gradient in this area runs perpendicular to the inlet 
(mainly with north-south and east-west orientation), with saline vegetation passing 
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into brackish further away and into some rare fresh water plants growing near the 
dune ridge or on small dunes in the area.  

Figure 3.1 Sketch of the landscape features between poles 7 and 8. ‘Bp’ stands for beach 
pole.

The gradient occurring along the length of the island was observed in the field and 
estimated to be close to 250 m, the sampling transects were placed using this 
interval, although, the transects near areas of big human influence were taken out. 

3.1.2. Geodetic surveying 

The systematic sampling design was chosen partially because it enables to achieve 
higher positioning accuracy compared to random sampling. The positioning 
accuracy is quite important due to small scale of variation and small patch size of the 
vegetation cover in a green beach. The surveying of the positions of sampling 
transects took place after the reconnaissance. The transect end points were fixed 
temporarily in the field and GPS readings were taken to make sure the points are 
easy to be found in future during sampling. The transect lines were surveyed using 
an optical theodolite Wild Heerbrugg T5. Figure 3.2 shows an example surveying 
traverse. Each starting point of a transect was used as surveying point and the angles 
and distances were measured to parallel transects and the endpoint of each transect. 
As a coordinate reference the beach poles (marked Hp on figure) with known 
coordinates were included in the surveying network. The outcomes of the surveying 
– angle and distance measurements together with reference coordinates were used to 
calculate the coordinates of end points of each transect.  
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3.2. Data 

3.2.1. Point coordinates calculation 

The outcome of the geodetic surveying was derivation of distance and angle 
measurements between transect points. These were used for coordinate calculations. 
A series of geodetic techniques were used. The calculations were done using a 
geodetic calculator (Gribok, 2007). 
After the transect endpoints’ coordinates were derived (see section 3.1.2) the 
coordinates of the sample points were calculated using the distance from starting 
point and the direction angle of the transect. 
This way the coordinates of the points were derived with higher precision than 
available GPS receiver. The estimates of the positioning accuracy for calculated 
coordinates varied from 50 cm to just over 1 m as compared to above 2 m GPS 
receiver accuracy. 

3.2.2. Sampled data 

The sample points with the species hits data were the main outcome of the field 
work. As in the field only the hits of plants were recorded, later the data was 
transformed into a matrix containing all species as header and point coordinates in 
each row; the present species were marked as 1, absent as 0. 
The total number of sample points in 14 transects is 7387. The number of species 
recorded is 54; the list of species is given in appendix A. For modelling the plants 
having a low presence (less than 20) and the plants that were questionable (some 
species were difficult to distinguish without flowers and could have been recorded 
erroneously) were omitted. 
The dataset was divided into a training and a validation set for further modelling of 
the species distribution. The division rate was 60/40 respectively, the data were split 
randomly. 
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Figure 3.3 Locations of beach poles, sampling transects for 2010 and validation data for 
2006. 

3.2.3. LiDAR DEM 

Laser altimetry (method used by LiDAR) became a well accepted approach for 
terrain data collection in the recent past (Flood, 2001). This system works similarly 
to radar: it uses laser scanning to derive a cloud of points with known elevations and 
known coordinates with relatively high accuracy. Among applications in various 
areas the terrain data collection and DEM generation is becoming most frequent 
(Liu, 2008). As the sensor measures the distance to the closest surfaces, the points 
generated not always represent ground surface (vegetation canopy, objects etc.), a 
DEM needs to be derived from the digital surface model. Filter algorithms are used 
to derive true elevation data. The height value of a pixel is calculated from the 
surrounding laser points of the filtered base file. This technique is called a weighted 
average interpolation (Rijkswaterstaat, 2010b). 
In this study DEMs for the years 2006 and 2010 are used. 
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The original cell size of the DEMs used in this study is 5x5m. The value of a 5x5 
meter grid cell is calculated from multiple laser points (the number depends on the 
point density of the base file). This reduces the influence of measurement noise and 
outliers, however, there is a slight degree of flattening (Rijkswaterstaat, 2010b). 
The accuracy (standard deviation) of the height value is less than 5 cm, the 
horizontal accuracy is up to 50 cm (Rijkswaterstaat, 2010b). 

3.2.4. Historical validation data 

Validation dataset for 2006 was kindly provided by Elske Koppenaal who collected 
field data in 2006 on the green beach of Schiermonnikoog (Koppenaal, 2007). In the 
2006 field work sampling was done using 2x2 m plots where the full floristic 
composition was recorded and the cover of each species visually estimated. The 
2x2m plots were placed 10 m apart along the sampling transects that followed the 
beach pole locations. See figure 3.3 for locations of the sampling transects. 
The sampling technique and scale of the 2006 and 2010 datasets do not match. 
To solve this problem the vegetation cover data were transformed into 
presence/absence. The cell size was assumed to be 2x2 m and all the species 
recorded per plot were marked as 1 (present), the rest of the species – 0. 

3.2.5. Raster cell size 

As reported before (Guisan et al., 2007) the choice of cell size of the environmental 
layers that are used in modelling may impact the predicted output. Guisan et al. have 
used 10 times coarsening of the data to investigate the change in predictions. The 
result showed no severe changes, however, there was an unequal effect across 
regions and species types. 
In this study it is proposed to use interpolation techniques for increasing the spatial 
resolution of the DEM. 
As mentioned, the original cell size of the DEMs is 5x5m. As the scale of vegetation 
pattern on the green beach may be quite small, a lot of change might occur within 5 
square meters. Thus the raster resolution was considered too coarse. To deal with 
this issue and test whether any improvement of the predictions occurs it was decided 
to increase the raster resolution. Three cell sizes were chosen to be tested for the two 
periods: 5 m – the original cell size, 2 m – the cell size correspondent to the 
validation data of 2006, and 20 cm – cell size to be used for modelling 2010 
situation only. The 20 cm cell size was chosen to match the sampling distance used 
during the field work. These resolutions were used for extraction of the training data 
and for mapping the output. 
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3.3. Methods 

Figure 3.4 Methodology overview. (P/a – presence absence) 

Figure 3.4 above shows overview of the methodology adopted in this study. 

3.3.1. Explanatory variables 

For modelling the plant distributions with logistic regression explanatory variables 
need to be chosen carefully. In case of this study where the scale of the phenomenon 
looked at is quite small, the general broader scale factors like light, temperature, 
precipitation, altitude remain constant across the whole area. Factors varying on a 
more local scale are defining the vegetation patterns, for example micro-topography 
of the area. One of the objectives of this study is the use of a detailed digital 
elevation model for deriving the factors influencing the vegetation pattern. Thus the 
variables chosen here were merely obtained from the DEM with some prior studies 
of the literature. 
In a coastal environment one of the prevailing impacts is of course from the sea, 
coming in several forms: tidal inflow of saline water or presence of salt spray, saline 
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groundwater, destructive power of storms and exposure to strong winds and sand 
drifts. Presence of fresh groundwater is also very influential. The following factors 
were considered important in the study area: inundation frequency/duration, 
availability of fresh water (as described by Koppenaal, 2007) and exposure to the sea 
influences; these factors were also chosen since they can be modelled using a DEM.  
Below each variable is described in more detail; the overview of the production of 
the variables can be seen in figure 3.6. 
Elevation 
Elevation in this study is used as a proxy variable for inundation frequency/duration, 
exposure of the vegetation to inflow of saline water. Elevation has been reported key 
in vegetation distribution on a green beach (Koppenaal, 2007). 
Cost distance to the sea 
This variable was used as a proxy for exposure to the sea, e.g. storms. Cost distance 
function is used to account for coastal relief (embryonic dunes, sand banks), that has 
some protective effect. The source location is taken to be the open sea area 
determined from the DEM. 
Distance to sea water inlets 
This variable is somewhat correlated to elevation, and perhaps to tidal inundation. 
The factors that it describes are connected to closeness of the sea water, salinity of 
ground water and salt spray. 
This variable was derived by defining the elevation level that gets inundated with 
high tide and calculating a distance function to the areas below the elevation 
threshold. The threshold was set at 150 cm + NAP (Dutch ordnance level, 
Rijkswaterstaat) taken from tidal data available (Rijkswaterstaat, 2010a), 
corresponding to the high tide level on the 10th of September 2010. 
Distance to fresh water seepage 
To create this surface it was necessary to derive the location of the fresh water lens 
under the island and to define the break in the slope at the verge of the dune area and 
the beach, since that is where the seepage occurs (see figure 2.3). 
The ground water table elevation was derived from the literature (Beukeboom, 
1976). As can be seen in figure 3.5 the freshwater lens only extends under the dune 
system of the island and the polder, the salt marsh area has saline ground water. 
The isolines of the water table elevation above the sea level were digitised and 
interpolated into a surface.  
Slope was calculated for the study area and a line shape was derived at the break of 
the slope. It was selected where a rapid change in the slope occurred (approx. from 
30° to 70°). The freshwater lens surface and the break in the slope were overlaid to 
define where the water seepage may occur (given the presence of fresh ground water 
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at the location of the slope break). The potential seepage locations were derived and 
a distance function to these location was calculated. 

Figure 3.5 Contour lines of the capillary surface (Beukeboom, 1976). The figure shows 
the location of the fresh water lens in 1974 when a survey was conducted in the area. It is 
used in the present study because the features of the lens nowadays remain similar, 
except for the impact of water pumping in the well 

Note that an attempt for more elaborated model of water seepage was made. The 
depth of fresh ground water was derived from the DEM and fresh water elevation, 
and the distance function was weighed by the closeness of the water to the surface. 
However, this variable yielded lower correlation with the presence/absence data as 
compared to the simpler model described above. 
Slope 
Slope was assumed as another proxy for topographic features of the study area. The 
slope itself does not influence the vegetation distribution; however, it indicates the 
areas of curvature (like small dunes or hummocks). Slope values would show small 
variations of the surface topography that result in different vegetation cover. After 
being tested for correlation with the presence/absence data, slope parameter yielded 
significant correlation, thus it was included in the further modelling. 
Distance function values 
It’s important to mention one feature of the distance functions. The distance is 
calculated towards the target (e.g. fresh water seepage location), this means that as 
the target feature gets closer the values tend to be low or even zero, whereas moving 
away from the target increases the raster value. 
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3.3.1.1. Multicolinearity 

Multicolinearity of explanatory variables means that the variables are correlated. In 
logistic regression this may result in the equation coefficients being estimated with 
an error (Moore, 2006). Thus, firstly it is important to test the derived variables to 
see if they are correlated. The variable values were derived from 5 m DEM using 
sample point locations and a correlation table was calculated. 

Table 3.1 Correlation table for predictors 

Elevation 
Cost-

distance to 
sea 

Distance 
to sea 
inlet 

Distance to 
fresh water 

Slope 

Elevation 1 ,365 ,762 -,343 ,113 

Cost-distance to sea ,365 1 ,425 ,338 ,092 

Distance to sea inlet ,762 ,425 1 -,371 -,005 

Distance to fresh water -,343 ,338 -,371 1 ,000 

Slope ,113 ,092 -,005 ,000 1 

Here we can see that most variables are correlated. More attention needs to be paid 
to the ‘Distance to sea inlet’ variable because it has a high correlation with 
‘Elevation’. Normally correlations above 0,5 might mean multicolinearity in the 
data. A way to test for it is to calculate variance inflation factors (VIF). These are 
calculated by performing regression analyses for the variables one by one on the 
remaining variables. Next, R2 values are obtained and VIF is calculated by the 
following formula: 

!"# �  


�$%    (3) 

For the explanatory variables here: 

Table 3.2 VIF values for predictors 

Elevation Cost-distance 
to sea

Distance to 
sea inlet

Distance to 
fresh water

Slope

VIF 2,54 1,94 3,03 1,84 1,05 

Generally VIF > 10 is an indicator of multicolinearity which is equivalent of 
correlation of 95% (Chatterjee and Hadi, 2006). In our case the values are well 
below this threshold, so should imply that colinearity problem is not too serious. 
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3.3.2. Raster interpolation 

The raster cell size was decreased from th
First, the original raster was converted in
point containing the cell value. This make
the value corresponding to cell centre (LU
were used for interpolating of elevatio
interpolation procedure used was kriging in
variogram and geostatistics. Kriging cons
variation between known data points wh
(Edward H. Isaaks, 1989). 
The increase of cell resolution is believed 
sampling had 20 cm interval, gives us 25 
scale of variation in the field is finer than
by predictors of this cell size. Figure 3.7 il
scale of the variation in question is not kno

Figure 3.7 Schematic representation of profi
each ‘step’ representing elevation of one cell
sampling points. 

3.3.3. Analysis of predictor variables 

The correlation between all plants pres
predictors was tested using two non-para
and Spearman rank order test (Spearma
because they are suitable for testing co
presence/absence data here. The correlat
correlations higher than 10% with the pre
for further analysis. 

3.3.4. Modelling plant distributions wi

The species that were selected after examin
using forward stepwise logistic regression

6

he original 5x5m to 2x2m and 20x20cm. 
nto a point feature class, with the centre 
es sense since the cell value of a raster is 

U GIS-Centre, 2008). The extracted points 
on models of a finer resolution. The 
nterpolation – a technique that is based on 
iders both the distance and the degree of
hen estimating values in unknown areas

to improve the accuracy of output. As the 
sampling points per 5 m cell. And if the 

n 5 m, this variation may not be explained 
lustrates this problem. However, the exact 

own.

ile views of DEMs of various resolution with 
: a) 5 m, b) 2 m, 3) 20 cm; the dots represent 

sences and absences and environmental 
ametric tests: Kendall’s � (Kendall, 1938) 
an, 1987). These approaches were used 
orrelations of binary data, such as the 
tions were investigated. The plants with 
edictors and Red list plants were selected 

ith logistic regression

ning their correlations were then modelled 
n. This approach was chosen in order to 
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select the most suitable and significant explanatory variables for each plant, as it 
permits to compare the model performance as the predictors are added step by step. 
The coefficients for the equation 2 were derived (see section 1.5.3 for the equation).  
The best model was selected from the stepwise procedure, the goodness of fit 
parameter of the model that compares predicted values against observed (Hosmer-
Lemeshow test) and explained variance parameter (Cox & Snell R2, Nagelkerke R2). 
The statistical modelling was implemented in SPSS. 
As the impact of the cell size was to be tested, modelling procedure was performed 
for each of selected species for 3 raster resolutions. The 3 sets of predictor rasters 
were used to extract the explanatory data. The training data was aggregated with 
increase in cell size.  

3.3.5. Cell size impact assessment 

After the modelling process was completed the change in the significance of 
goodness of fit parameter was assessed. This was done to assess effect of the 
changes of cell size for each selected plant. 
To be able to compare changes in significance for the goodness of fit parameter 
between different plants, the parameters were standardised using equation 4 below: 

�� �  &'()*+,  - .//01 �2,,                                         (4) 

Where g – is the standardised value, i – is the cell size, GoF – is the original 
goodness of fit significance value, sum – the sum of the parameters for 3 cell sizes.  
The value of standardised parameter for 5 m resolution was subtracted from each 
standardised value to set the initial value to zero. 
The values were then plotted and their behaviour assessed. 

3.3.6. Mapping the predicted distributions. 

The mapping of the probability distributions was implemented in ArcGIS Raster 
calculator using logistic regression equation (equation 2) and the coefficients derived 
from the statistical modelling. 
As an outcome probability maps were derived. To transform these into 
presence/absence maps a threshold value was chosen. This cut value was used to 
determine at which probability it is assumed that the plant is occurring or is absent. 
Normally a cut value of 0,5 is used for modelling. However, logistic regression 
appears to be sensitive to a chosen threshold (Manel et al., 1999), especially in the 
case of this study, where some plants are rare and the probability of their occurrence 
in a given place is generally low.  
For choosing suitable thresholds for each species a classification plot showing the 
actual and predicted values of the dichotomous dependent variable were used. An 
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example of the classification plot is shown in figure 3.8. Here we can see how the 
actual probabilities are grouped by the model. If they are clustered separately on the 
plot, this implies that the model performance is good (SPSS, 2010). 

Figure 3.8 Example of a classification plot for a Salix repens model used for estimating 
probability cut-off; 0s represent cases of absence, and 1s represent cases of presence. 
Arrow indicates the possible probability threshold to be used. 

The threshold of predicted probability is chosen at the point of change in the actual 
probabilities in the plot. 
The overall procedure is repeated for 2010 (5m, 2m and 20 cm cell size) and 2006 
(5m and 2m) using the same empirical equations and threshold values within years 
(not within changing resolutions). 

3.3.7. Map assessment 

The accuracy of the maps obtained was assessed using the validation dataset 
containing presences and absences recorded in the field. Error matrices were 
calculated and the accuracy values and Kappa statistics were derived (Cohen, 1960): 

3 �45�6��45���
�45���                                                   (5) 

Where K – Kappa statistics, Pr(a) is observed probability and Pr(e) the probability 
expected by chance . 
Error matrix (confusion matrix) is a table displaying counts of classified 
presences/absences and is used for assessing the mapping accuracy when predicted 
values are compared with ‘ground truth’ (Fielding and Bell, 1997). The mapped 
points are presented in columns and ground truth in rows. Diagonal values represent 
correctly classified value, other – misclassified. The false positive classification 
errors are referred to as type I and false positive type II (Morrison et al., 1992). 
The Kappa value shows if the map quality in above or below (or equal to) random 
agreement. Kappa value of 1 this means perfect correspondence with the ground 
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truth, whereas -1 means that there is no agreement with ground truth and predicted 
data; Kappa equal to 0 means that the map is no better than random. 
Overall accuracy was used for simple assessment of the prediction map; prevalence 
of positive cases statistic was also derived (Fielding and Bell, 1997). 

789:;<<;==>:;=? � @'AA�BCDEBD6**�F��GB6*�*HDDB6*�*                      (6) 

I:98;<9J=9 � K'*�L�L�DEB6**�F��GB6*�*HDDB6*�*                              (7) 

Overall accuracy may indicate good map predictions, even if in fact it is not true; for 
example, if prevalence is low a misclassified map would yield good overall 
accuracy. That is why prevalence value is used to be compared to overall accuracy. 
For 2006 the same methodology was implemented using 2006 validation set. 
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4. Results 

4.1. Explanatory variables 

The variables showing to be significant for various species presence/absences are 
elevation, cost-distance to the sea, distance to sea inlet, distance to fresh water 
seepage and slope. The maps of the parameters can be seen in appendix B. All these 
variables were obtained from LiDAR DEM in three resolutions (5m, 2m and 20 cm) 
for 2010 and two resolutions (5m and 2m) for 2006. 

4.2. Correlations of predictors and plant presence/absence data 

The Kendall’s � and Spearman’s � correlation tests showed significant correlations 
of some plant presence/absence data and the predictor variables. The correlation 
coefficients for all plant species tested are shown in appendix C. As explained above 
the distance functions increase when further away from the target. This has some 
specific effect on the sign of the correlation coefficients. For example, fresh water 
seepage has impact on fresh water plants, the correlation coefficient is negative, 
showing that the increase in the distance influences the presence values negatively 
(the closer the better). Similarly, positive sign of the coefficient means that increase 
of the distance function influences the presences of a species positively (the further 
the better). 
The highest correlations appeared to be between Puccinellia maritima and ‘Distance 
to sea inlet’ variable (-40,3%) and with ‘Elevation’(-37,9%); Leontodon autumnalis
also shows high correlation to distance to sea inlet (36,6%).  
In general highest correlations don’t go higher than ±25-30%. Depending on species 
different predictors have prevalence. Slope appears to have the lowest correlation 
coefficients (not significant or low correlation coefficients with majority of the 
species).  
Elevation is significantly correlated with the majority of species. In fact only four 
out of 43 tested plants do not appear to have significant correlation with the 
elevation variable (Parnassia palustris, Sonchus maritimus, Samolus valeriandi, 
Centaurium pulchellum). However, other predictors like Distance to sea inlet and 
Cost-distance to the sea show higher coefficients. Distance to fresh water seepage 
does not show significant correlations to a number of species, others show 
correlations of ±10-20% which is relatively high. 
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To reduce the number of modelled species based on the value of the correlation 
coefficients (above 10%), a number of plants were selected for further analysis (can 
be seen in table 4.1). The Red List species were also selected for further analysis 
regardless of the correlation they yielded. 

Table 4.1 Table of correlations of species selected for further analysis and predictors. 
The values shown are correlation coefficients between predictors (in the header) and 
plants. The correlation tests use different ranking approaches and result in slightly 
different values. The Red List species are written in bold. 

Plant name Correlation test Elevatio
n 

Cost-
distance 
to sea 

Distance 
to inlet 

Distance 
to fresh 
water 

seepage

Slope 

Agrostis 
stolonifera 

Kendall's tau ,248** ,065** ,288** -,243** -,077**

Spearman's rho ,302** ,080** ,344** -,297** -,093**

Aster tripolium Kendall's tau -,112** -,006 -,130** ,035** -,024 
Spearman's rho -,136** -,008 -,155** ,043** -,029 

Carex extensa Kendall's tau ,096** ,153** ,182** -,082** -,010 
Spearman's rho ,117** ,187** ,217** -,100** -,013 

Elymus 
pycnanthus 

Kendall's tau -,030* -,096** -,088** -,134** ,001 
Spearman's rho -,036* -,117** -,105** -,163** ,001 

Festuca rubra Kendall's tau ,064** ,162** ,074** -,086** ,099**

Spearman's rho ,077** ,198** ,089** -,104** ,121**

Glaux maritima Kendall's tau -,117** -,090** -,146** ,124** ,006 
Spearman's rho -,142** -,109** -,175** ,151** ,007 

Juncus 
alpinoarticulatis 

Kendall's tau ,051** ,076** ,102** -,006 ,051**

Spearman's rho ,062** ,093** ,122** -,008 ,062**

Juncus gerardii Kendall's tau ,077** ,083** ,042** ,051** -,050**

Spearman's rho ,094** ,101** ,050** ,062** -,061**

Juncus 
maritimus 

Kendall's tau ,124** ,007 ,127** -,019 -,097**

Spearman's rho ,150** ,008 ,152** -,023 -,119**

Leontondon 
autumnalis 

Kendall's tau ,167** ,295** ,306** -,045** ,070**

Spearman's rho ,203** ,361** ,366** -,055** ,086**

Linum 
catharticum 

Kendall's tau ,120** ,110** ,139** -,074** ,017 
Spearman's rho ,146** ,134** ,166** -,091** ,020 

Lythrum 
salicaria 

Kendall's tau ,105** ,079** ,156** -,125** -,032**

Spearman's rho ,128** ,096** ,186** -,153** -,039**

Mentha aquatica Kendall's tau ,131** ,068** ,141** -,137** -,078**

Spearman's rho ,159** ,084** ,169** -,167** -,095**

Odontitis vernus Kendall's tau ,087** ,089** ,137** -,055** ,007 
Spearman's rho ,106** ,108** ,164** -,067** ,009 

Parnassia 
palustris 

Kendall's tau ,010 ,040** ,028* -,049** ,042**

Spearman's rho ,012 ,049** ,034* -,060** ,051**
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Plant name Correlation test Elevatio
n 

Cost-
distance 
to sea 

Distance 
to inlet 

Distance 
to fresh 
water 

seepage

Slope 

Plantago 
maritima 

Kendall's tau -,132** ,113** -,128** ,177** -,032**

Spearman's rho -,161** ,138** -,153** ,215** -,039**

Puccinellia 
maritima 

Kendall's tau -,312** -,219** -,337** ,158** ,016 
Spearman's rho -,379** -,267** -,403** ,193** ,020 

Phragmites 
australis 

Kendall's tau ,186** ,005 ,110** ,024 -,012 
Spearman's rho ,225** ,007 ,132** ,029 -,014 

Sagina nodosa Kendall's tau ,056** ,073** ,033** -,019 ,104**

Spearman's rho ,067** ,090** ,040** -,023 ,127**

Salicornia 
europaea 

Kendall's tau -,212** -,047** -,214** ,211** -,024*

Spearman's rho -,257** -,057** -,256** ,257** -,030*

Salix repens Kendall's tau ,208** ,147** ,236** -,098** ,002 
Spearman's rho ,252** ,180** ,282** -,120** ,003 

Schoenus 
nigricans 

Kendall's tau ,162** ,076** ,136** -,129** -,034**

Spearman's rho ,196** ,092** ,162** -,157** -,041**

Scirpus 
maritimus 

Kendall's tau -,159** -,291** -,229** -,224** -,046**

Spearman's rho -,193** -,355** -,274** -,273** -,056**

Spartina anglica Kendall's tau -,123** -,114** -,114** ,017 -,005 
Spearman's rho -,149** -,139** -,137** ,021 -,006 

Triglochin 
maritima 

Kendall's tau -,064** ,021 -,066** ,046** -,008 
Spearman's rho -,078** ,026 -,079** ,057** -,010 

**. Correlation is significant at the 0.01 level. 
*. Correlation is significant at the 0.05 level. 

4.3. Logistic regression modelling 

For species that were selected after correlation analysis (total of 25 species, see table 
4.1) a logistic regression model was run. The output of the modelling consists of 
equation parameters estimated (�i in the equation 2, section 1.5.3) and characteristics 
of each model performance. The equation parameters obtained, the variables in each 
equation and the model performance summaries (R2 and Hosmer-Lemeshow 
statistics) are given in appendix D. 
Observations 
Overall, including the intercept (constant) in the model was lowering the values of 
the R2 (relative variation explained parameters). The intercept coefficient in the 
model gives the probability that the response variable is equal to 1 when all the 
predictor variables are equal to zero. By excluding the constant this probability 
becomes equal to 0,5. In equation 2 this would result in the following: 
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Excluding the constant might result in an erroneous model, if this assumption is not 
true. Therefore, this was not done. 
In some cases, however, the constant in the model was not significant and was 
removed (for example for Parnassia palustris). 

4.3.1. Modelling assessment 

After modelling was finished for all the selected species the performance of the 
models was assessed and plant models with significant goodness of fit parameters 
were chosen for further mapping. Out of 25 species models only 7 presented 
significant goodness of fit. However, the R2 parameters for these were not always 
high.  
Table 4.2 Modelling performance assessment of selected plants. Here and further Elev – 
elevation variable, Sea dist – cost-distance to the sea, Inl dist – distance to sea inlet, Fr 
wat dist – distance to fresh water seepage, C&S R2 – Cox & Snell R2, Nagelk. R2 - 
Nagelkerke R2. 

4.3.2. Modelling performance and different species 

It appears much easier to obtain a significant model for plant species with a narrow 
range of distribution, since these plants’ variation can be explained by local factors. 
As opposed to generalist plants that had not resulted in good models. A comparison 
of model predictions may be seen in figures 4.1 – 4.2. The classification plots (see 
section 3.3.6 for more detailed explanation) show how the model groups the 
observed presences and absences. It is clear that the model for Agrostis stolonifera
fails to correctly classify the presences and absences of the plant, as compared to the 
Mentha aquatica model, which groups the observed presences and absences well.  
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Figure 4.1 SPSS classification plot of predicted and observed probabilities of Agrostis 
stolonifera. 1 represents observed presence, 0 – observed absence. Note how the cases of 
presences and absences are not clustered separately, the observed presences are grouped 
together with absences. This indicates that the predictive performance of the model in 
not good enough for this species. 

Figure 4.2 SPSS classification plot of predicted and observed probabilities of Mentha 
aquatica. Indicated on the graph the grouping of the observed presences and absences, 
the two groups are located separately, which means that the model differentiates them 
well.  

Clearly, the species with wider range of distribution, like Agrostis stolonifera,
require a different approach in modelling and possibly a different set of predictor 
variables. 

Absences 

Presences 
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4.4. Mapping species distributions 

The maps produced showed the location of predicted species habitats at specified 
probability threshold. The example of prediction maps is shown in appendix C. 

4.4.1. Mapping assessment 

The maps were produced using the parameters obtained from modelling for both 
2010 and 2006. The threshold used for both years was the same for same plants. The 
map assessment outputs can be seen in table 4.3. 
Table 4.3 Mapping assessment of selected plants for 2001 and 2010.  
Kappa values for 2006 for Salicornia europaea and Linum catharticum are equal to 0. 
This is because these plants were not detected in the sampling areas during the field 
work of that year. 
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4.5. Cell size impact 

4.6. Model performance 

As modelling was performed for the selected plants using 3 raster resolutions (5m, 
2m, 20cm) the model outputs of different resolutions for each plant varied. The 
resulting changes were as follows: a) changes in modelling performance (goodness 
of fit and approximate variance explained) and b) changes in predictors included in 
the model. The changes in the equation predictors also affect the modelling 
performance additionally to the effect of the cell size. The species with changes in 
the model variables were not included in the assessment of the cell size impact. 
Table 4.4 contains lists of plants grouped according to whether or not the model 
variables were changed. 

Table 4.4 Plant lists according to the change in model predictors. The left column 
contains plants that were used for further assessment of the cell size impact 

No change in the model 
predictors

Change in the 
predictors included in 

the model
Agrostis stolonifera Elymus pycnantus 
Aster tripolium Juncus gerardii 
Carex extensa Leontodon autumnalis 
Festuca rubra Lythrum salicaria 
Glaux maritima Odontites vernus 
Juncus alpinoarticulatus Parnassia palustris 
Juncus maritimus Puccinellia maritima 
Linum catharticum Sagina nodosa 
Mentha aquatica Spartina anglica 
Phragmites australis Schoenus nigricans 
Plantago maritima ��
Puccinellia maritima ��
Salix repens ��
Salicornia europaea ��
Scirpus maritimus ��
Triglochin maritima ��
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The assessment of the model performance with resolution change for selected plants 
is shown in table 4.5. The model assessment parameters for the plant models that 
have changes in their predictors can be seen in the appendix D. 
Table 4.5 Model assessment with change in resolution. C&S R2 – Cox & Snell R2, 
Nagelk. R2 - Nagelkerke R2

Changes in the significance of Hosmer-Lemeshow goodness of fit statistics were 
investigated for the selected species. Equation 4 in section 3.3.5 was used to 
standardise the values to make them comparable. The value can be seen in table 4.6. 
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Table 4.6 The percentage of change in the model assessment parameters with increase in 
predictor cell size for each plant 

Cell 
size 

Agrostis 
stolonifera 

Festuca 
rubra 

Glaux 
maritima 

Juncus 
alpino-

articulatus 

Plantago 
maritima 

Salix 
repens 

5m 0 0 0 0 0 0 
2m 7,31 -43,28 34,88 -23,47 84,78 -11,72 
0,2m 92,64 4,48 56,92 24,47 8,70 23,59 

Linum 
catharticum 

Triglochin 
maritima 

Mentha 
aquatica 

Aster 
tripolium 

Phragmites 
australis 

Puccinellia 
maritima 

5m 0 0 0 0 0 0 
2m -55,24 41,43 -13,91 77,79 99,04 -100,00 
0,2m -55,46 58,40 12,01 1,89 -0,08 -100,00 

Salicornia 
europaea 

Juncus 
maritimus 

Scirpus 
maritimus 

Schoenus 
nigricans 

Aster 
tripolium 

Carex 
extensa 

5m 0 0 0 0 0 0 
2m 3,49 -0,02 -100,00 0,45 77,79 -50,03 
0,2m 3,91 99,90 -100,00 99,55 1,89 -74,15 

Some patterns can be observed in the changes: decrease in goodness of fit with 
decrease in cell size; decrease at 2 m and increase at 20 cm; gradual increase of 
goodness of fit with decrease in cell size; a spike at 2 m resolution, slight increase at 
2 m and a strong increase at 20 cm (see figures below). Figures 4.3 – 4.7 show the 
behaviour of the significance of the Hosmer-Lemeshow goodness of fit parameter 
with change in the raster resolution of the model predictors.  

Figure 4.3 Resolution effect: gradual increase in goodness of fit 
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Figure 4.4 Resolution effect: strong increase in goodness of fit at 20 cm cell size 

Figure 4.5 Resolution effect: peak in goodness of fit at 2 m cell size 

Figure 4.6 Resolution effect: decrease in goodness of fit at 2 m cell size 
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Figure 4.7 Resolution effect: general decrease in goodness of fit with increased resolution 

4.6.1. Mapping accuracy 

The increase in raster resolution also has some impact on the assessment of the 
accuracy of the mapped predictions. Some slight increase can be observed. 
However, these changes are quite small in general. Table 4.3 shows the values of the 
assessment parameters. 
Below a graph of the change in Kappa statistics throughout the different resolutions 
is shown (figure 4.8). 
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Figure 4.8 Kappa statistics for maps with increased resolutions (left 2010, b 2006 
situation) 

The graphs show some general slight increase in the accuracy, despite several plants 
having decrease in the accuracy. 
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5. Discussions 

5.1. Positioning accuracy and DEM 

As previously mentioned, quite high positioning accuracy is required for this kind of 
study to be successful since the variations in vegetation distribution depend on small 
scale variations in the topography and other factors. If this small scale variation is 
not reproduced by the elevation model or if the positioning is quite off, it may result 
in the wrong parameters being associated with presence/absence data. Consequently, 
an erroneous model may be a result, which does not represent the state of plant 
distribution in the study area. 
In the case of this study the horizontal (x,y) accuracy of the original LiDAR DEM is 
approximately 50 cm. The accuracy of geodetic surveying which was used to 
calculate the x,y coordinates of the sample points ranges from 50 cm to 1 m. This 
means that the actual sample points may be more than one meter away from the 
points where the predictor variables were extracted from. Given the spatial scale of 
the vegetation patterns, that represents an obvious drawback.  
The patterns observed in the field varied greatly in spatial extent. In the east-west 
direction the change in vegetation was quite gradual, with similar patterns expanding 
to up to hundreds of meters. On the other hand rapid changes in the plant distribution 
were also observed. For example, where the small hillocks in the terrain occurred the 
vegetation patterns were as small as 20-40 cm. This depended greatly on the degree 
of change in the elevation. 
The spatial accuracy of the explanatory data is surely good enough for explaining 
plant variation of larger scale. However, this might not be the case with small 
rapidly changing patterns. 

5.2. DEM interpolation 

Next issue is the interpolation of the DEM to decrease the resolution. It is clear that 
the 5 m cell resolution of the DEM seems too coarse to be used for modelling a 
small scale phenomenon such as the one studied here. Hence an increase in the 
spatial resolution was needed.  
The kriging algorithm seems to be a good choice, since it does not assume a linear 
relation between the neighbouring points but rather takes into account a specified 
radius and uses all the points giving them weight according to distance to the 
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species, not fundamental (see section 1.5 for explanation). It is not only the abiotic 
factors that influence the growth of plants but also the interaction/competition 
between species that forms the true plant distribution. In this research only abiotic 
factors were incorporated in modelling. 
Rare species with little presences as compared to a big number of absences would 
yield a low probability of presence even at locations where they are truly present (as 
the probability is calculated from the number of presences and absences). In logistic 
regression this results in very low threshold for mapping the predictions, as seen in 
this study. For instance, the probability threshold used for mapping the distribution 
of Mentha aquatica and Slicornia europaea was 0,1; for other plants it was even 
lower. 
Possible ways to improve the problem with the absence data is to group the species 
that always occur together into species groups combining the presence data. This can 
be done by clustering the species with similar spatial behaviour. Although only 
visual interpretation of the data is required, this is quite time-consuming. 
It’s also possible to choose some dominant representative species for different 
vegetation types to be used for modelling. However, a strong justification has to be 
done for selecting dominant indicator species, some more extensive field work and 
great knowledge of the plant ecology is required 
With these changes the study would yield habitat predictions for vegetation groups 
having broader borders than per plant species but also being more realistic. 
One other thing for improving the modelling would be incorporating the interactions 
between the plants, possibly using presences of some competitive species as an 
explanatory variable. However, this requires knowledge in the species interactions 
and more time than given for present study. 

5.3.2. Validation data for 2006 

The data obtained from another source is always under question. How the data was 
collected and with which amount of accuracy is not known exactly. In this case 
some amount of consideration should be addressed towards the positioning 
accuracy. The data are said to be located within the same line as the beach poles on 
the shore. However, the ‘true’ coordinates were only retained for two transects (out 
of 5), thus leaving the other transects under question. This brings the question 
whether these data can still be used, taking the positional error into consideration. 
Surely, the 2006 data can be used to assess the general situation of that year. For 
example, it shows that Saliconia europaea and Linum catharticum were not found in 
the study area, to the contrary of the model predictions. Positioning accuracy in this 
case does not play a big role. Since the absence was reported in all transects, 
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whereas modelled presence did occur in the range around two transects. See figure 
5.2 below. 

Figure 5.2 Predicted distribution of Salicornia europaea and 2006 field data showing the 
absence of the species. a) and b) show the areas where the model predicts presences, and 
the validation data states absences only. 

This is not the case with other plants, since the validation data points would not 
necessarily correspond to the right locations on the prediction map resulting in an 
erroneous assessment of the prediction map. 
Another issue is adjusting the data to fit the logistic regression model output. As 
mentioned earlier, the data was obtained as cover estimate for 2 m2 plots. The cover 
was simply transformed into presence data. This means that across a 2x2 m cell each 
plant was detected as present, regardless of the percentage cover. Clearly, this kind 
of validation data does not match the validation data set derived for 2010, and may 
cause some inconsistencies in comparison of the map accuracies. 

5.3.3. Logistic regression 

Some other consideration should be given to the nature of the statistic model used in 
this study. Having its advantages like simplicity, ease of implementation and 
comprehensiveness, it also has apparent disadvantages, as seen here. 
Logistic regression is threshold sensitive. It has been reported before by Manel et al. 
(1999) and also seen in this study. The accuracy of predicting presences strongly 
depended on choosing the more suitable threshold. However, lowering the threshold 
means introducing type II error when classifying the less suitable (or even 

a) b) 
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unsuitable) areas for species distribution as suitable. If the probability threshold is 
set too high, the presences in their turn would be classified as absences (type I error). 
In this case a trade off between the two needs to be set. 
Mantel et al. (1999) also state that logistic regression model predictions are affected 
by species prevalence (frequency of occurrence). As prevalence of species increases 
the effectiveness of the prediction of presences by the model also increases, and the 
opposite, with decrease of prevalence, the predictions of absences is more effective. 
(Manel et al., 2001). Since in our case in the majority of species sampled the 
absences prevail, this is the case where logistic regression model outputs may be 
affected.  
The issues of threshold and prevalence are linked together. Species prevalence 
causes presences/absences to be overestimated and requires changing the probability 
threshold from standard 0,5 to a more suitable value. 
Another drawback of using logistic regression model reported by Hegel et al. (Hegel 
et al., 2010) is the “true absence” of species. The use of logistic regression assumes 
that the p/a data are true. In practice this is often not the case due to errors/bias in 
sampling etc.  
This brings us back to a previous discussion on the presence/absence data. The 
sampled absence data are not exactly true absences, which may also affect the 
logistic regression modelling. In this case grouping the species would have made an 
improvement, since the number of presences would increase, decreasing the number 
of absences. 
Also, the habitat may be suitable for specific plant as far as abiotic factors are 
concerned, however, the biotic interactions may result is a species being absent in 
the sampling area. In this case abiotic explanatory variables may not result in good 
predictions. 
Suggestions for alternative statistical approaches 
Logistic regression uses a logit function for linear transformation of the relationship 
between the predictors and the probability of occurrence (Hegel et al., 2010). The 
assumption is somewhat restrictive, since a linear relation cannot be always 
expected. Other statistical approaches exist, that allow a more complex relationship. 
Moreover, approaches that would be more appropriate given the nature of the data at 
hand also exist. Hegel et al. (2010) suggest alternative statistical models. 
Generalised additive models (GAMs), for instance, allow for more complex 
relationship to be modelled, they estimate a non-parametric smooth function for the 
predictors in a model. The smoothness of the relationship is to be decided by the 
analyst, and it’s important not to overfit the data with a too smooth a model. 
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Some possible approaches to be used to account for the problem of ‘true absences’ 
are models using presence only data. These can be Ecological niche factor analysis 
(ENFA) or Entropy maximisation.  
ENFA (Hirzel et al., 2002) compares the predictor variables where the species is 
present with these variable across the study area to estimate habitat suitability. 
Maximum entropy model (Phillips et al., 2006) is an algorithm based approach that 
identifies the probability distribution which is least biased according to the 
information contained in the random variable. 
The models mentioned above would be suitable in case of this study, since they are 
used with binary or presence-only data, which can be derived from the field data at 
hand. 

5.4. Predictors and correlations 

The method greatly depends on choosing the suitable variables.  
In this study only a small number of DEM derived variables were chosen. There 
may be more possible variables derived like, for example, slope curvature. Curvature 
indicates the concavity/convexity of the topography and can be used as another 
indirect variable.  
Additionally, it makes sense that there are direct variables effecting plant 
distribution, which are not accounted for by indirect DEM-derived predictors. Some 
more possible factors influencing vegetation distribution on the green beach may 
connected to soil properties like clay content in soil, soil fertility etc. These were not 
considered in current study.  
It is also possible that the variables chosen were not good proxies for the 
environmental factors (inundation frequency/duration, ground water salinity etc.), 
since the processes in nature are more complex than our attempt to represent them. 
For example, Bockelmann et al. (2002) have described that using elevation as a 
proxy for inundation frequency/duration may not yield good correlation with 
vegetation distribution. Tidal inundation depends on additional factors like winds, 
currents, sea bottom relief, and not only elevation. 

5.4.1. Inter-correlations between variables 

Looking at the correlation table of the predictors, a quite high correlation between 
the elevation and distance to the sea inlet variable can be observed. This may be due 
to the following. When calculating distance towards the sea inlet areas the function 
increases with distance from the target area. As the sea inlet is a lower area in the 
landscape, when moving away from it the elevation increases. In this way the 
distance function is correlated to elevation, they repeat a similar pattern. The 
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distance to inlet function increases linearly, whereas elevation is a more complex 
parameter. 
Generally, since all the parameters are derived from the same digital elevation model 
they show correlations with elevation and each other as well. To assess the 
multicolinearity of the data the VIF parameter was estimated for all the predictors 
(see section 3.3.1.1). The VIF values (see table 3.2) did not indicate problems with 
multicolinearity, and it was concluded that the predictors are suitable for modelling. 

5.4.2. Plant presence/absence data and predictors 

The correlations between the dependant data and the independent variables are not 
always high. Some plants do not have correlations more than 3-5% with any of the 
predictors. This might indicate that the predictors are not suitable to explain 
variation in distribution of certain plants, and that other factors have higher influence 
on these distributions. Moreover, some plants may have occurred at a scale that was 
not captured by the raster resolution. Even though the resolution is increased, some 
small scale features present in the field, might not be captured by the interpolation. 
This may also be connected to comparatively low correlations between elevation and 
plant distribution, as these correlations are never higher than correlation of the plant 
with other predictors. Clearly, it was expected that correlations with the elevation 
were higher, as elevation is key to inundation frequency and duration, one of the 
main ecological factors in the green beach (Hickey and Bruce, 2010).  
In some way elevation being important factor in plant distribution is confirmed. 
Only four plants did not show significant correlation with elevation.  
Distance to the sea inlet or cost-distance to the sea show higher correlations with 
plant distributions. This may mean that these variables explain the variation better 
and are better approximation (then elevation) of the natural factors like inundation. 
Distance to fresh water seepage shows significant correlations to some plants 
requiring fresh water. However, it also shows strong positive correlations with saline 
plants. As mentioned before the distance functions have positive correlation with 
plants that are further away from the target areas.
Slope parameter does not seem to have high correlations to majority of species, even 
though the lower correlations are often flagged as significant. Here slope of the 
terrain indicates the areas with quick changes in elevation, such as small bumps and 
hillocks in the relatively flat area of the green beach. 
The plants showing highest positive correlations with the slope parameter are 
Hipophae rhamnoides, Plantago coronopus, Sagina nodosa (see appendix C) which 
are species occurring in the dune environment. In fact, Hipophae rhamnoides shows 
highest correlation with the slope among all predictors. Festuca rubra also is highly 
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correlated with slope, in the field it appeared to be growing extensively on small 
bumps in the landscape as well. 
One other thing to be addressed here is the lack of consistency between correlation 
coefficients of variables and modelling of the plant distributions. It seems that the 
plants having high correlations with the predictor variables would also result in a 
significant model, however, this is not the case.  
The plant showing the highest correlation coefficients with the predictors is 
Puccinellia maritima. However, the model for this plant does not do yield a 
significant goodness of fit. And on the contrary, plants showing low correlations 
(e.g. Parnassia palustris) result in significant model performance. 
It may be possible, that the false absence causes the inconsistencies between 
correlations and modelling performance to happen. These coupled with some 
limitation of the statistical tool may be considered as the reason. The limitations of 
the logistic regression model have already been discussed above. 

5.5. Model performance 

The modelling of 25 species has resulted in 7 significantly fitted models. This, of 
course, may be due to the drawbacks of the statistical approach discussed before. 
Additionally, the predictors may not be best for predicting the species variation, 
which was also discussed earlier. 
It should be noted though, that the plants that did result in significantly fitted models 
had a very narrow distributions at the edge of the study area, being it Spartina 
anglica located along the seashore or Mentha aquatica along the coastal foredune. 
This indicates that the models of plants with narrower niches were more successful 
than the ones for more spread distributions. A narrow niche is said to facilitate more 
accurate models, since it may be more concise and more predictable (McPherson et 
al., 2006). 

5.6. Mapping predictions 

5.6.1. Mapping overview 

The models mapped seemed to capture variation in the study area relatively well. 
However, outside the study area (where sampling was not performed, but the values 
were used for mapping) the model overestimated the probabilities of plant presence 
greatly. For example, areas of the seashore were shown to contain Spartina anglica
and Salicornia europaea, or the embryonic dune areas (were there as not observed 
big vegetation cover) as well as sea shore area were shown to contain Juncus 
alpinoarticulatus. 
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Since the locations where the distribution was overestimated are outside if the study 
area, the sampling was not performed there, and plant absences were not sampled. 
This means that some species have no upper or lower limit in elevation, and the 
model assumes presence. 

5.6.2. Assessment 

Mapping the selected plants hasn’t yielded accurate prediction maps, despite that the 
models were fit and with relatively high R2. This depends to a large extent on the 
species prevalence. The assessment was done using an error matrix to derive Kappa 
statistic and overall accuracy. Generally overall accuracy values are high varying 
from 95% to about 50%. Kappa values, however, are quite low (the highest value is 
0,39 for 2010). Kappa, of course, is threshold sensitive, but an optimal threshold was 
chosen for each plant species. Probably different thresholds would have yielded 
different values.  
Another criticism of Kappa statistics is that it does not account for expected 
frequency of a given class (presence or absence) or distinguish between various 
sources of disagreement (Hegel et al., 2010). This way a map having a big number 
of absences would result in high accuracy even if created by chance. As Kappa is 
calculated the comparison between the probability of a random agreement and 
observed agreement does not result in significant difference, producing a low Kappa 
values. 
Weighted Kappa (Cohen, 1968) is another option. Unlike Kappa, it does not treat all 
disagreements equally but introduces ratio-scale degrees for disagreements. This 
could be used as an option, however, first, a justifiable set of weights need to be 
developed for correct assessment. 

5.6.3. Retrospective mapping 

The retrospective mapping has not shown good results as the kappa statistics are 
very low. This can have various explanations.  
The questionable positioning accuracy of the validation data is a problem. 
Additionally, one cannot expect a better performance of the model on secondary 
2006 data, than on the original 2010 training/validation data set. Better results 
compared to the original year would be misleading. The only thing that might work 
better for assessment of the map is the smaller quantity of the sample points (2 m2

cells at 10 m distance). This produces fewer absences as compared to the 2010 data. 
Finally, another conclusion that can be made is that the plant distribution does not 
have constant relation to selected environmental predictors. For instance Salicornia 
europaea and Linum catharticum were not present in the 2006 validation data; 
however, the 2010 model predicted some areas suitable for these plants. 
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Note that even though the plants’ presences were misclassified, the overall accuracy 
of the maps is quite high (up to 81,2%). This represents a good example of a 
drawback of the overall accuracy in the statistic parameter. 
Since the green beach is dynamic, the changes occurring in its environment may be 
quicker than the response of the plants. The difference in plant distributions may 
mean that some species of the green beach have not had enough time in 2006 to 
take/invade into their optimal niches. 
The processes happening in the study area are dynamic and complex and involve 
other factors, than the simplified static model can account for. 

5.7. Cell size impact 

The influence of the cell size on species distribution modelling is an interesting 
topic. Changes in resolution of the distribution mapping has been studied before on 
various scales and for various reasons (Araujo et al., 2005, Johnson et al., 2002, 
McPherson et al., 2006, Thomas et al., 2002, Tobalske, 2002). One common 
investigation of this issue is connected to the need of deriving a finer resolution 
habitat models from existing coarse resolution data (Araujo et al., 2005, McPherson 
et al., 2006), so called downscaling, and assessing their accuracy. The data may be 
derived from, for instance, existing atlas data containing values of some 50x50 km 
resolution. In this case statistical approaches are used to increase the resolution of 
the data and some suitable ground data is used for assessment. In cases like this the 
downscaling still results at km wide cell resolutions. 
More studies are looking at the effect of coarsening the predictor data on the output 
distribution models (Guisan et al., 2007, Tobalske, 2002). Here the original fine 
scale predictor data is being coarsened and used for detecting the effect on the model 
performance, predictions of various species. 
In the case of this study, on the contrary, the data resolution is being increased; 
additionally the scale used is very fine – 5 m, 2 m and 20 cm resolutions. Looking at 
the change in cell size and its effects at this scale is somewhat new. 
One other comment is that the training and validation data was of the same sampling 
scale as the fines resolution used for modelling, in the contrary to the studies that 
only had coarse resolution data to be downscaled (Araujo et al., 2005). 

5.7.1. Changes in the model variables  

During the modelling ten species have shown change in the model variables as the 
raster resolution was changed (see appendix C.2).  
These changes may be due to an error of model selection, it is possible that an error 
occurred during the stepwise model selection.  
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Another option is that the change in cell size has resulted in the predictor values to 
be changed causing them to be removed or included in the model. The dominance of 
the environmental predictors controlling the distribution shifts with spatial scale 
(McPherson et al., 2006). 
The first reason seems to be the case with Elymus pycnantus, Puccinellia maritima, 
Odontites vernus, Parnassia pallustris, Lythrum salicaria, since the changes do not 
imply improvement in the model in these cases, and also involve changes in the 
other parameter values.  
Changes in the models for Juncus gerardii or Sagina nodosa (the distance to fresh 
water seepage parameter is removed in both cases) do slightly improve the 
assessment parameters. These changes also do not influence the values of the other 
predictor coefficients. This might indicate that at the level of 20 cm resolution this 
predictor does not influence the distribution as much as within the other resolutions. 
Generally, it’s hard to say if the changes of the model assessment parameters are 
caused by the change in the model variables directly or the cell size. 

5.7.2. Changes in goodness of fit 

An important outcome of this study is connected to this result.  
The significance of goodness of fit of the modelling changed due to changes in the 
resolution of the predictors. These changes did not have the same pattern but rather 
depended on the species, since the location, the sampling, and the statistical 
approach remained the same. Guisan et al. (2007) having conducted a study of 
resolution effect on various factors conclude that three effects can be observed when 
coarsening cell size – improvement, no change and degradation. Generally they have 
not discovered a substantial effect of resolution change on the plant distribution 
models. In our case the outcome is similar, however, there has not been a no change 
effect observed. Possibly the higher impact of the cell size here is due to a finer 
resolution of the data. 
Guisan et al. also mention that the effect on presence/absence data had shown a 
more significant result as compared to presence-only data. This may be the case 
here. 
Looking specifically at the behaviour of different plants it can be inferred that 
increase in the model performance happens when the cell size matches the scale of 
the distribution pattern of the species. For instance, some dramatic change occurs in 
the model performance of Agrostis stolnoifera (the goodness of fit increases more 
than 90%) at 20 cm. This may be explained by the crisp boundary of the plant 
distribution in the field that occurs at slight increase in elevation at small dunes. This 
boundary may be not inferred from the data of the coarser resolution, but at 20 cm 
becomes much easier to be modelled causing change in model performance. 
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Some more plants indicate increase in the goodness of fit – a more gradual increase 
with increased resolution, as well as a peak of model performance at 2 m resolutions. 
This might indicate that the optimal cell size for given plants together with the 
predictors used for modelling. 
One other important feature is degradation of model performance. This is not 
something that could be expected prior to the study. This could suggest that one or 
several key predictors used for these species do not represent the reality well at 
certain scales and increasing the cell size only causes bigger error in the modelling. 

5.7.3. Changes in map accuracy 

The mapping was performed using a) different empirical equations (with slightly 
different coefficients) derived for each resolution and b) different cell size. A slight 
increase in the output map accuracies may be resulted by both parameters. Figure 
5.3 shows how maps of Mentha aquatica distribution in the same area look with 
increased resolution. It’s clear that the 20 cm map gives a more smooth impression, 
although 2 m map also looks smooth enough. 5 m resolution map looks rather coarse 
for mapping a small scale distribution. However, this kind of conclusion should be 
made accordingly to the requirements for mapping. 
As the resolution increases the map accuracies increase somewhat as well. This may 
be due to the ability of the smaller cell size have higher variation frequency to match 
the variation of the input or validation data, that has quite fine sampling scale. 
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Figure 5.3 Maps of Mentha aquatica w
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change with resolution providing a more appropriate explanation for the plant 
variation or else greater inconsistencies putting the model performance down. 

5.9. Possible improvements 

To sum up some improvements proposed above.  
Grouping the species would improve the presence/absence issue by increasing the 
number of presences, and also decreasing the prevalence of absences, that is greatly 
influencing the statistical model. 
Grouping the species or selecting some representative ones to use for modelling 
would also yield some broader habitat borders. 
Including biotic interactions within plants would help represent the realised 
environmental niche with higher accuracy.  
Using a more appropriate statistical approach might yield a more accurate output. As 
for the DEM data, acknowledging the limitations is one of the few things to be done, 
apart from possibly finding some more suitable explanatory variables. 
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6. Conclusions and Recommendations 

6.1. Conclusions 

• The following indirect predictor variables were derived from LiDAR DEM: 
elevation, cost-distance to the sea, distance to sea water inlet, distance to 
fresh water seepage and slope. These variables were used as proxies for 
environmental factors influencing vegetation distribution of a green beach. 

• The correlation between the predictors and the dependant data (plant 
presence/absence data) varied between species, according to the plants 
environmental preferences. 

• Logistic regression modelling was used to derive the empirical relation 
between predictors and plant distribution. Only 7 out of 25 species models 
yielded significant results. This depended on the range of the original 
species distribution. Some characteristics of the data also had negatively 
influenced the modelling output. 

• In general, given some improvements are made, modelling green beach 
species distribution with DEM-derived predictors could yield more 
acceptable results. 

• Changing the predictor cell size has some effect on the modelling 
performance. The changes vary between species. Some species models 
show gradual or abrupt increase in the performance, some have decline in 
the performance, and some peak at specific cell size. These effects are 
thought to be connected to the ecology and scale of the plants distribution 
patterns, and to the effect on resolution increase on the predictors’ 
accuracy.  

• The assessment of the prediction maps for species distribution has produced 
poor results. 

• The retrospective mapping of 2006 plant distribution performed with the 
predictors of that time and empirical relation derived from the present data 
has not shown high accuracy. This is to some extent due to errors in the 
positioning accuracy of the validation data. However, the assumption that 
the empirical relationship between vegetation distribution on the green 
beach and indirect predictors derived from elevation is questionable. 

The following hypotheses were proved in this study:
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• There is significant relationship between the plants distribution and the 
DEM-derived predictor variables. 

• The decrease in raster cell size of the predictors has significant influence on 
the accuracy of the output. 

• The empirical relation between topography and vegetation composition 
does not remain constant within the period from 2006 and 2010. 

6.2. Recommendations 

• It would be useful to find ways of improving or deriving new explanatory 
variables that would yield higher correlations with the plant distributions. 

• To improve the general performance of the statistical model the problem 
with absences in the dataset needs to be accounted for. This can be done by 
grouping the plants occurring in similar conditions to increase the total 
number of true presences. 

• Another option is to use a statistical model that requires presence-only data. 
• Trying out the same approach with several statistical tools would also give 

some insight on the cell size impact on the species distribution model 
performance. 

• The time limitation did not let more sampled species to be modelled. 
Modelling more plants’ distribution and assessing the cell size impact 
would be good for examining the consistency of present results. 

• Reassessing the models with the changes set of predictors would bring 
more light to why they are changed with the cell size decrease. 
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List of abbreviations 

DEM – digial elevation model 
GDP – gross national product 
GPS – global positioning systems 
GAM – generalised additive model 
GLM – generalised linear model 
e.g. – (exempli gratia, Lat.) for example 
etc. – (et cetera, Lat.) and other things 
ENFA - ecological niche factor analysis 
LiDAR – light detection and ranging 
NAP – Dutch ordnance level, Rijkswaterstaat 
SDM – species distribution model 
SPSS – ‘Statistical Package for the Social Sciences’, name of statistical software 
p/a – presence/absence 
VIF – variance inflation factor 



59 

References 

Allen, M. J. 1932. Recent changes in the sea-beach flora at Ainsdale, 
Lancashire. Northwestern Naturalist, 24. 

Araujo, M. B., Thuiller, W., Williams, P. H. & Reginster, I. 2005. 
Downscaling European species atlas distributions to a finer 
resolution: implications for conservation planning. Global Ecology 
and Biogeography, 14, 17-30. 

Austin, M. P. 2002. Spatial prediction of species distribution: an interface 
between ecological theory and statistical modelling. Ecological 
Modelling, 157, 101-118. 

Beukeboom, T. J. 1976. Hydrology of the Frisian Islands. Rodopi. 
Bockelmann, A. C., Bakker, J. P., Neuhaus, R. & Lage, J. 2002. The relation 

between vegetation zonation, elevation and inundation frequency in 
a Wadden Sea salt marsh. Aquatic Botany, 73, 211-221. 

Campbel, R. C. 1989. Statistics for biologists, Cambridge, Cambridge 
University Press. 

CBS 2009. StatLine Database. Central Bureau for Statistics. 
CBS. 2011. Central Bureau for Statistics [Online]. Available: 

http://www.cbs.nl [Accessed 17.02 2011]. 
Chatterjee, S. & Hadi, A. S. 2006. Regression Analysis by Example. 
Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational 

and Psychological Measurement, 20, 37-46. 
Cohen, J. 1968. Weighted kappa: Nominal scale agreement provision for 

scaled disagreement or partial credit. Psychological Bulletin, 70,
213-220. 

Edmondson, S. E., Traynor, H. & McKinnell, S. 2001. The development of a 
green beach on the Sefton coast, Merseyside, UK. In: Houston, J. A., 
Edmondson, S. E. & P.J., R. (eds.) Coastal Dune Management. 
Shared experience of European Conservation Practice. Liverpool: 
Liverpool University Press. 

Edward H. Isaaks, R. M. S. 1989. Applied Geostatistics, New York, Oxford 
University Press. 

Fielding, A. H. & Bell, J. F. 1997. A review of methods for the assessment 
of prediction errors in conservation presence/absence models. 
Environmental Conservation, 24, 38-49. 

Flood, M. 2001. Laser altimetry: From science to commercial lidar mapping. 
Photogrammetric Engineering and Remote Sensing, 67, 1209-+. 



60 

GIS-Centre 2008. Geograpical Information Science - An Introduction, Lund, 
Lund University. 

Gribok, D. 2007. GCALC, GeodeticCalculator. 
Guisan, A., Edwards, T. C. & Hastie, T. 2002. Generalized linear and 

generalized additive models in studies of species distributions: 
setting the scene. Ecological Modelling, 157, 89-100. 

Guisan, A., Graham, C. H., Elith, J., Huettmann, F. & Distri, N. S. 2007. 
Sensitivity of predictive species distribution models to change in 
grain size. Diversity and Distributions, 13, 332-340. 

Guisan, A. & Thuiller, W. 2005. Predicting species distribution: offering 
more than simple habitat models. Ecology Letters, 8, 993-1009. 

Guisan, A. & Zimmermann, N. E. 2000. Predictive habitat distribution 
models in ecology. Ecological Modelling, 135, 147-186. 

Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. 2010. Current 
State of the Art for Statistical Modelling of Species Distributions. 
In: Cushman, S. A. & Huettmann, F. (eds.) Spatial Complexity, 
Informatics, and Wildlife Conservation. Springer Japan. 

Herrick, J., Van Zee, J., Havstad, K., Burkett, L. & Whitford, W. 2005 
Monitoring Manual for Grassland, Shrubland, and Savanna 
Ecosystems.  Volume II: Design, Supplementary Methods, and 
Interpretation., Tucson, Arizona, University of Arizona Press. 

Hickey, D. & Bruce, E. 2010. Examining Tidal Inundation and Salt Marsh 
Vegetation Distribution Patterns using Spatial Analysis (Botany 
Bay, Australia). Journal of Coastal Research, 26, 94-102. 

Hiller, R. & Roelse, P. 1995. Dynamic preservation of the coastline in the 
Netherlands. Journal of Coastal Conservation, 12. 

Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. 2002. Ecological-niche 
factor analysis: how to compute habitat-suitability maps without 
absence data? Ecology, 83, 2027-2036. 

Hosmer, D. W. & Lemeshow, S. 2004. Applied logistic regression, 
Interscience. 

Jansen, E. 2010. RE: Birdlife on Schiermonnikoog green beach. 
Johnson, C. M., Johnson, L. B., Richards, C. & Beasley, V. 2002. Predicting 

the occurrence of amphibians: An assessment of multiple-scale 
models, Washington, Island Press. 

Kendall, M. G. 1938. A new measure of rank correlation. Biometrika, 30,
81-93. 

Koppenaal, E. C. 2007. Green Beaches; vegetation and abiotic conditions.
Master, University of Groningen. 

Liu, X. 2008. Airborne LiDAR for DEM generation: some critical issues. 
Progress in Physical Geography, 32, 31-49. 



61 

Manel, S., Dias, J.-M. & Ormerod, S. J. 1999. Comparing discriminant 
analysis, neural networks and logistic regression for predicting 
species distributions: a case study with a Himalayan river bird. 
Ecological Modelling, 120, 337-347. 

Manel, S., Williams, H. C. & Ormerod, S. J. 2001. Evaluating presence–
absence models in ecology: the need to account for prevalence. 
Journal of Applied Ecology, 38, 921-931. 

McPherson, J. M., Jetz, W. & Rogers, D. J. 2006. Using coarse-grained 
occurrence data to predict species distributions at finer spatial 
resolutions-possibilities and limitations. Ecological Modelling, 192,
499-522. 

Meijden, R. V. D. 2005. Heukels’ flora van Nederland, Groningen, Wolters-
Noordhoff. 

Moore, D. S. 2006. Introduction to the practice of statistics, New York, 
Freeman. 

Morrison, M. L., Marcot, B. G. & Mannan, R. W. 1992. Wildlife Habitat 
Relationships. Concepts and Applications., Madison, WI, USA, 
University Wisconsin Press. 

Petersen, J. & Pott, R. 2005. East Frisian islands, changing landscape and 
vegetation (in German). Hannover, Schlütersche verlagsgesellschaft 
mbH & Co.KG  

Phillips, S. J., Anderson, R. P. & Schapire, R. E. 2006. Maximum entropy 
modeling of species geographic distributions. Ecological Modelling,
190, 231-259. 

Rijkswaterstaat 2010a. Getijdentabel. 
Rijkswaterstaat 2010b. Metadata information for DEM data. 
Scherfose, V. 1987. Salz-Zeigerwerte von Gefässpflanzen der Salzmarschen, 

Tideröhrichte und Salzwasser Tümpel an der Deutchen Nord- und 
Ostseeküste. Jahresberichte Forschungsstelle Küste  

Schiermonnikoog, N. 2011. Nature and scenery of Schiermonnikoog 
[Online]. Available: http://www.nationaalpark.nl/schiermonnikoog/
[Accessed 10.02 2011]. 

Schoeman, P. K. 2006. EUROSION. Case Study - Wadden Sea Islands (The 
Netherlands). In: MINISTRY OF TRANSPORT, P. W. A. W. M. 
(ed.). The Hague. 

Smith, P. H. 2001. Vascular plants and vegetation of the Birkdale Green 
Beach. Sefton Coast Partnership. 

Smith, P. H. 2006. The Ecology of Birkdale Green Beach. British wildlife,
19, 11-16. 

Spearman, C. 1987. The Proof and Measurement of Association between 
Two Things. The American Journal of Psychology, 100, 441-471. 

SPSS 2010. PASW Statistics user tutorial. IBM Corporation. 



62 

Tamis, W. L. M., R. van der Meijden, J. Runhaar, R.M. Bekker, W.A. 
Ozinga & B. Odé, I. H. 2004. Standaardlijst van de Nederlandse 
flora. Gorteria, 101-195. 

Thomas, K., Keeler-Wolf, T. & Franklin, J. 2002. A comparison of fine- and 
coarse-resolution environmental variables toward predicting 
vegetation distribution in the Mojave Desert, Washington, Island 
Press. 

Tobalske, C. 2002. Effects of spatial scale on the predictive ability of habitat 
models for the green woodpecker in Switzerland, Washington, Island 
Press. 

Wikipedia. 2010. Schiermonnikoog [Online]. Available: 
http://en.wikipedia.org/wiki/Schiermonnikoog [Accessed 10.02 
2011]. 

  



63 

Appendix A. List of species found during field work

The list is given with the number of records and salinity values for plants (after 
Koppenaal, 2007, Scherfose, 1987) and indicating Red list species (Tamis et al., 
2004). 
Two names are stated, when there is possibility of error in species recognition. 

No Name Number of 
records 

Salt value Red list 

1 Agrostis stolonifera 3956 Brackish  
2 Ammophila arenaria 40 Fresh  
3 Aster tripolium 144 Saline  
4 Artemisia maritima 86 Saline  
5 Atriplex littoralis/prostrata 6 Saline  
6 Calamagrostis epigejos 23 Fresh
7 Carex arenaria 21 Fresh  
8 Carex distans 238 Brackish  
9 Carex extensa 1569 Brackish  
10 Carex nigra 16 Fresh  
11 Carex oederi 98 Brackish
12 Carex panicea 1 Fresh  
13 Centaurium pulchellum 123 Brackish  
14 Eleocharis uniglumis 493 Brackish  
15 Epipactis palustris 4 Fresh x 
16 Elymus pycnanthus 859 Brackish  
17 Festuca rubra 1660 Saline  
18 Glaux maritima 1191 Saline
19 Hippophae rhamnoides 115 Fresh  
20 Holcus lanatus 29 Fresh  
21 Hydrocotyle vulgaris 23 Fresh  
22 Juncus alpinoarticulatis 132 Brackish  
23 Juncus articulatus 57 Brackish
24 Juncus cf. bulbosus 26 Brackish  
25 Juncus gerardii 595 Saline  
26 Juncus maritimus 678 Saline  
27 Leontondon autumnalis 1036 Brackish  
28 Linum catharticum 225 Fresh x 
29 Limonium vulgare 38 Saline  
30 Lythrum salicaria 229 Fresh
31 Lotus corniculatus 37 Brackish  
32 Mentha aquatica 126 Brackish  
33 Odontites vernus 367 Brackish x 
34 Parnassia palustris 89 Fresh x 
35 Plantago coronopus 281 Brackish
36 Plantago maritima 359 Saline x
37 Potentilla anserina 676 Brackish  
38 Puccinellia maritima 678 Saline  
39 Phragmites australis 606 Brackish  



64 

No Name Number of 
records 

Salt value Red list 

40 Sagina nodosa 198 Fresh x
41 Salicornia europaea 250 Saline
42 Salix repens 476 Fresh  
43 Samolus valeriandi 145 Brackish  
44 Schoenus nigricans 223 Fresh  
45 Scirpus maritimus 1210 Brackish  
46 Scirpus lacustris subsp. tabernaemontani 89 Brackish
47 Sedum acre 17 Fresh  
48 Sonchus maritimus 74 Brackish
49 Spartina anglica 84 Saline  
50 Spergularia maritima 50 Saline  
51 Suaeda maritima 2 Saline  
52 Trifolium arvense 3 Fresh  
53 Trifolium repens/dubium 52 Fresh
54 Triglochin maritima 112 Saline  
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Appendix B.1. Explanatory var

The units are Elevation, Dist. to sea inlet, Dist. 

5

riables, 2010

to fresh water seepage – m, Slope – degrees. 
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Appendix B.2. Explanatory var

The units are Elevation, Dist. to sea inlet, Dist. 

6

riables, 2006

to fresh water seepage – m, Slope – degrees. 
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Appendix C. Correlation coefficients  

Correlation coefficients between predictors and dependant variables 
Red list plants are marked in bold. 

Plant name Correlation test Elevatio
n 

Cost-
distance 
to sea 

Distance 
to inlet 

Distance 
to fresh 
water 

seepage 

Slope 

Agrostis 
stolonifera 

Kendall's tau ,248** ,065** ,288** -,243** -,077**

Spearman's rho ,302** ,080** ,344** -,297** -,093**

Aster 
trifolium 

Kendall's tau -,112** -,006 -,130** ,035** -,024 
Spearman's rho -,136** -,008 -,155** ,043** -,029 

Atemisia 
maritima 

Kendall's tau -,088** -,130** -,099** ,062** ,017 
Spearman's rho -,107** -,159** -,119** ,075** ,020 

Carex 
distans 

Kendall's tau ,090** ,075** ,093** -,101** -,013 
Spearman's rho ,110** ,092** ,111** -,123** -,016 

Carex 
extensa 

Kendall's tau ,096** ,153** ,182** -,082** -,010 
Spearman's rho ,117** ,187** ,217** -,100** -,013 

Carex oederi Kendall's tau -,069** ,095** -,080** ,115** -,006 
Spearman's rho -,084** ,116** -,095** ,140** -,007 

Centaurium 
pulch/lit 

Kendall's tau ,007 ,074** ,017 ,034** ,065**

Spearman's rho ,008 ,090** ,020 ,042** ,079**

Eleocharis 
uniglumis 

Kendall's tau ,091** ,066** ,144** -,098** -,045**

Spearman's rho ,110** ,081** ,172** -,120** -,055**

Elymus 
pycnanthus 

Kendall's tau -,030* -,096** -,088** -,134** ,001 
Spearman's rho -,036* -,117** -,105** -,163** ,001 

Festuca 
rubra 

Kendall's tau ,064** ,162** ,074** -,086** ,099**

Spearman's rho ,077** ,198** ,089** -,104** ,121**

Glaux 
maritima 

Kendall's tau -,117** -,090** -,146** ,124** ,006 
Spearman's rho -,142** -,109** -,175** ,151** ,007 

Hipophae 
rhamnoides 

Kendall's tau ,074** ,082** ,069** -,006 ,130**

Spearman's rho ,090** ,100** ,082** -,007 ,158**

Juncus 
alpinoarticu

latis

Kendall's tau ,051** ,076** ,102** -,006 ,051**

Spearman's rho ,062** ,093** ,122** -,008 ,062**

Juncus 
articulatus 

Kendall's tau ,039** ,004 ,035** -,042** -,002 
Spearman's rho ,047** ,005 ,042** -,052** -,002 

Juncus cf. 
bulbosus 

Kendall's tau -,034** -,045** -,041** -,056** -,013 
Spearman's rho -,041** -,056** -,049** -,068** -,015 

Juncus 
gerardii 

Kendall's tau ,077** ,083** ,042** ,051** -,050**

Spearman's rho ,094** ,101** ,050** ,062** -,061**

Juncus 
maritimus 

Kendall's tau ,124** ,007 ,127** -,019 -,097**

Spearman's rho ,150** ,008 ,152** -,023 -,119**
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Plant name Correlation test Elevatio
n 

Cost-
distance 
to sea 

Distance 
to inlet 

Distance 
to fresh 
water 

seepage 

Slope 

Leontondon 
autumnalis 

Kendall's tau ,167** ,295** ,306** -,045** ,070**

Spearman's rho ,203** ,361** ,366** -,055** ,086**

Linum 
catharticum 

Kendall's tau ,120** ,110** ,139** -,074** ,017 
Spearman's rho ,146** ,134** ,166** -,091** ,020 

Limonium 
vulgare 

Kendall's tau -,044** ,041** -,057** ,074** -,018 
Spearman's rho -,054** ,051** -,068** ,090** -,022 

Lythrum 
salicaria 

Kendall's tau ,105** ,079** ,156** -,125** -,032**

Spearman's rho ,128** ,096** ,186** -,153** -,039**

Lotus 
corniculatus 

Kendall's tau ,071** ,013 ,046** -,004 ,015 
Spearman's rho ,087** ,016 ,055** -,005 ,018 

Mentha 
aquatica 

Kendall's tau ,131** ,068** ,141** -,137** -,078**

Spearman's rho ,159** ,084** ,169** -,167** -,095**

Odontitis 
vernus 

Kendall's tau ,087** ,089** ,137** -,055** ,007 
Spearman's rho ,106** ,108** ,164** -,067** ,009 

Parnassia 
palustris 

Kendall's tau ,010 ,040** ,028* -,049** ,042**

Spearman's rho ,012 ,049** ,034* -,060** ,051**

Plantago 
coronopus 

Kendall's tau ,035** ,130** ,080** ,051** ,092**

Spearman's rho ,043** ,159** ,096** ,062** ,113**

Plantago 
maritima 

Kendall's tau -,132** ,113** -,128** ,177** -,032**

Spearman's rho -,161** ,138** -,153** ,215** -,039**

Potentilla 
anserina 

Kendall's tau ,160** ,061** ,197** -,113** -,077**

Spearman's rho ,195** ,074** ,236** -,138** -,094**

Puccinellia 
maritima 

Kendall's tau -,312** -,219** -,337** ,158** ,016 
Spearman's rho -,379** -,267** -,403** ,193** ,020 

Phragmitis 
australis 

Kendall's tau ,186** ,005 ,110** ,024 -,012 
Spearman's rho ,225** ,007 ,132** ,029 -,014 

Sagina 
nodosa 

Kendall's tau ,056** ,073** ,033** -,019 ,104**

Spearman's rho ,067** ,090** ,040** -,023 ,127**

Salicornia 
europea 

Kendall's tau -,212** -,047** -,214** ,211** -,024*

Spearman's rho -,257** -,057** -,256** ,257** -,030*

Salix repens Kendall's tau ,208** ,147** ,236** -,098** ,002 
Spearman's rho ,252** ,180** ,282** -,120** ,003 

Samolus 
valeriandi 

Kendall's tau -,001 -,051** ,017 -,095** -,066**

Spearman's rho -,001 -,062** ,020 -,116** -,081**

Schoenus 
nigricans 

Kendall's tau ,162** ,076** ,136** -,129** -,034**

Spearman's rho ,196** ,092** ,162** -,157** -,041**

Scirpus 
maritimus 

Kendall's tau -,159** -,291** -,229** -,224** -,046**

Spearman's rho -,193** -,355** -,274** -,273** -,056**

Scirpus 
tabernaemo

ntani 

Kendall's tau -,061** -,088** -,051** -,026* -,033**

Spearman's rho -,075** -,107** -,061** -,032* -,040**

Sonchus Kendall's tau ,008 -,026* -,009 -,054** -,021 
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Plant name Correlation test Elevatio
n 

Cost-
distance 
to sea 

Distance 
to inlet 

Distance 
to fresh 
water 

seepage 

Slope 

maritimus Spearman's rho ,009 -,032* -,011 -,065** -,026 
Spatina 
anglica 

Kendall's tau -,123** -,114** -,114** ,017 -,005 
Spearman's rho -,149** -,139** -,137** ,021 -,006 

Spergularia 
maritima 

Kendall's tau -,071** -,057** -,078** ,062** ,012 
Spearman's rho -,086** -,070** -,093** ,076** ,015 

Trifolium 
repens/dubiu

m 

Kendall's tau ,047** ,073** ,079** -,054** ,027*

Spearman's rho ,057** ,090** ,094** -,065** ,033*

Triglochen 
maritima 

Kendall's tau -,064** ,021 -,066** ,046** -,008 

Spearman's rho -,078** ,026 -,079** ,057** -,010 
**. Correlation is significant at the 0.01 level. 
*. Correlation is significant at the 0.05 level. 
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Appendix D.1. Parameters and assessment values for models 
with unchanged predictors 

Elev – elevation variable, Sea dist – cost-distance to the sea, Inl dist – distance to sea 
inlet, Fr wat dist – distance to fresh water seepage, C&S R2 – Cox & Snell R2, Nagelk. R2

- Nagelkerke R2
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Appendix D.2. Parameters and assessment values for models 
with changed predictors 

The highlighted cells indicate change in the model parameters. Elev – elevation 
variable, Sea dist – cost-distance to the sea, Inl dist – distance to sea inlet, Fr wat dist 
– distance to fresh water seepage, C&S R2 – Cox & Snell R2, Nagelk. R2 - 
Nagelkerke R2
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Appendix E. Example of prediction maps for selected plants 


