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Abstract 

Information about above ground biomass (AGB) carbon is required at various 
spatial scales with high precision and accuracy for carbon trading, improvement of 
national carbon accounting and effective forests management. However, due to 
much uncertainty embedded on the conventional methods of spatial forest carbon 
estimation, robust and efficient methods which minimize estimation errors are 
sought. In this regard making use of high spatial resolution images believed to meet 
this demand. 
The study employed Quick-bird images of both panchromatic and multispectral 
bands acquired in 2006 and sample field measurements of DBH in Haagse Bos and 
Snippert forest, the Netherlands. Tree crown delineation, aiming at deriving the 
CPA of trees, was performed on the panchromatic image using eCognition and ITC 
softwares. The CPAs obtained from a combination of algorithms which gave the best 
accuracy undergone to object oriented classification into coniferous and broadleaf 
trees. Hence, the carbon stocks as obtained from the sample DBH measurements, 
and CPAs of each forest tree types were modelled using regression equation. This 
was followed by a validation step to assess the developed model.  
The best tree crown delineation was obtained by combining Valley following and 
marker free watershed transformation. These algorithms resulted in a reasonable 
accuracy, which is about 80 and 66% accuracy in terms of ‘goodness of fit’ and 76 
and 58% 1:1 correspondence for coniferous and broadleaf trees, respectively.  The 
developed model for coniferous and broadleaf trees explained about 60 and 55% of 
the variances in carbon stock, respectively. This indicated that CPA derived through 
semi automated tree crown delineation can be used to model AGB carbon. The 
model estimated the total forest carbon stock to be about of 26822 Mg C. This is 
equivalent to 80 Mg C / Ha. The AGB carbon estimation of the model for coniferous 
and broadleaf trees laid ± 0.17 and ± 0.38 Mg C/ tree with 95% confidence, 
respectively. This indicated the presence of some uncertainties in the model. These 
uncertainties mainly arise from random and systematic errors introduced through 
field DBH measurement, allometric equations and tree crown delineations. Despite 
this, the method showed its potential in estimating AGB carbon stock at individual 
tree level.  
Generally, this research proved that AGB carbon estimation can be made from CPA 
of trees obtained from high spatial resolution images through object based analysis 
of images but further researches are required to improve the accuracy of estimation.  
This can be partly achieved by improving the accuracy of tree crown delineation. 
Key words: AGB carbon, DBH, CPA, Valley following approach, Watershed 
transformation, Tree crown delineation 
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1. Introduction 

1.1. Background of the study 

Human induced greenhouse gas emissions and the consequent global warming is one 
of the biggest threats facing our globe today. After emissions from combustion of 
fossil fuels, the forest sector accounts the second largest sources of CO2 emission. 
As the fourth assessment report of the Intergovernmental Panel on Climate Change 
(IPCC) indicates, one fifth of today’s carbon emission is attributable to land use 
change (FAO 2009 ). Forests play an important role in global carbon balance as both 
sources and sinks. As a result they form an important component in combating 
global climate change (Watson 2010). Forests account for 80-90 % of the terrestrial 
plant carbon and about 30-40 % soil carbon (Sivrikaya et al 2006). They represent 
more than 50% of the global green house gas mitigation potential (Watson 2010). 
However, deforestation and forest degradation alone release 1.6 billion tons of 
carbon to the atmosphere each year (Denman et al. 2007). 

Forest biomass is the organic materials both in above and below ground. In a forest 
there are five carbon storages. These include; above ground and below ground 
biomass, dead wood, litter and soil organic matter. The reduction of forest 
degradation and deforestation aims to maintain the carbon stock in the above ground 
biomass (IPCC: 2003). Despite this, conserving above ground biomass (AGB) 
favours higher below ground biomass and soil organic carbon. Trees often represent 
the greatest fraction of total biomass of a forested area. Others like the understory 
are estimated to be equivalent to 3%, dead wood 5-40% and fine litter only 5% of 
the AGB. Below ground biomass (BGB) is more variable ranging between 4-230 %. 
AGB of trees respond more rapidly and significantly as a result of land use change 
than other carbon pools. Hence, quantifying AGB carbon is of great interest to 
researchers (Watson 2010). 

There are two policy related issues that necessitates forest carbon accounting; i) 
commitments under United Nations Framework Convention on Climate Change 
(UNFCCC) and ii) the potential implementation of carbon trading as established in 
the Kyoto protocol. Under the UNFCCC commitment, 150 countries are expected to 
update, publish and report their national inventories by sources and sinks of 
emissions of carbon to the conference of parties (COP) (Watson 2010). As a major 
part of the national inventories, the land use and the forestry sectors are the areas 
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that the inventories must be done (Brown 2001). Countries ratifying the Kyoto 
protocol are also given an option to reduce the CO2 emissions by 5% below the level 
that was apparent in 1990 through conservation and enhancement of the carbon 
stored in the forest ecosystem (Genevieve et al. 2005). Reduction of deforestation 
and forest degradation (REDD) is an important initiative set by the conference of 
parties (COP) as an emergent strategy for combating CO2 emissions. If properly 
implemented, REDD will have multiple benefits for reducing climate change, 
conserving biodiversity and realizing sustainable development (Angelsen 
2008).Hence global efforts are under way to reduce emissions through conserving 
forest resources. In the face of these efforts, information about global carbon budget 
and fluxes are required at various spatial and temporal scales (Gibbs et al. 2007). 
Moreover, each country needs to have a baseline against which carbon increase or 
decrease can be measured. 

The Dutch government has pledge to UNFCCC commitments of reducing green 
house gas emissions. As part of its commitment the country needs to undertake 
inventories of the sources of carbon sinks and emissions. In order to quantify the 
emissions and removals caused by changes in forest biomass stocks due to forest 
management, harvesting, plantation establishment, abandonment of lands that re-
grow to forests and forest conversion to non forest use , the carbon stock assessment 
is crucially important (Brown 2001). Biomass carbon accounting in the Netherlands 
follows a stand stock approach which is based on the total yearly increase of woody 
biomass corrected for yearly extraction of wood. This may not be entirely accurate, 
while a full ground survey would be too expensive.  Hence, methods should be 
developed and may consist of a combination of forest inventory and remote sensed 
data (Nabuurs et al. 2000).  

There are a range of techniques of AGB estimation and they can be generalised as 1) 
Field measurement based (Brown et al. 1989), 2) GIS based (Brown and Gaston 
1995) and 3) Remote sensing based (Zheng et al. 2004, Lu 2005) approaches. The 
field measurement techniques are the most accurate ways of AGB estimation but 
they are often time consuming, labour intensive and difficult to implement especially 
in remote areas as they cannot provide spatial biomass distribution estimation of 
larger areas. GIS techniques are not widely applicable for AGB estimation due to the 
difficulty of obtaining good quality ancillary data, indirect relationships between 
AGB and ancillary data, and the comprehensive impacts of environmental 
conditions on AGB accumulation (Lu 2005). 

Remote sensing has opened an effective way to estimate forest biomass and it is 
becoming the major source of AGB estimation. The repetitive data acquisition, 
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synoptic view, availability of data in a digital format that allows fast processing of 
large quantities of data, and the high correlations between spectral bands and 
vegetation parameters, make it the primary source for large area AGB estimation 
(Lu 2005). 

In combination with ground measurements, information acquired from Synthetic 
Aperture Radar (SAR), Light Detection and Ranging (lidar), Optical and Multi-
sensor Synergy measurements are commonly used for carbon stock mapping (Goetz 
et al. 2009). In general, AGB can be directly or indirectly estimated using remotely 
sensed data. The direct approaches are based on multiple regression analysis, K 
nearest-neighbour, and neural network (Roy and Ravan 1996, Nelson et al. 2000, 
Steininger 2000, Foody et al. 2003, Zheng et al. 2004), and indirectly estimated from 
canopy parameters, such as crown diameter, which are first derived from remotely 
sensed data using multiple regression analysis or different canopy reflectance 
models (Wu and Strahler, 1994). 

In conjunction with the advent of high spatial resolution images and developments in 
image analysis software, approaches of AGB estimation are changing. With this 
transformation, automation of individual tree crowns are made possible (Gougeon 
and Leckie 2006). Automated tree crowns represent the crown projection area (CPA) 
of trees. Studies indicated that CPA and tree diameter at breast height (DBH) forms 
strong relationship (Shimano 1997). DBH often used to estimate tree AGB with the 
help of allometric equations (Muukkonen 2007). Hence, attempts to model AGB 
from CPAs automated from high spatial resolution images and sample field 
measurements of tree DBH are on progress. This tree level analysis of AGB believed 
to improve the accuracy of estimation. Moreover, the estimation made from high 
spatial resolution images can be used for calibration and validation of biomass 
carbon models developed from medium and low resolution images (Lu, 2005). This 
study is envisaged with the aim of quantifying spatial AGB carbon from the 
relationships of CPA automated from high spatial resolution satellite images and 
AGB carbon from species specific allometric equations.  

1.2. Problem Statement 

Various methods of remote sensing based AGB carbon estimation have been 
developed. However, most of the existing methods have considerable uncertainties 
and thus reliable methods are required (Kohl et al. 2009). In this regard, utilizing 
high spatial resolution satellite images in spatial AGB carbon modelling believed to 
improve the accuracy of estimation (Zhenga et al. 2004). Moreover, greater 
uncertainties over the role of Dutch forests, forest soils, wood products and 
management and land use options on carbon sequestration are prevalent calling for 
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the need of methods that combine remote sensing technique and field measurements 
(Naburus et al 2000). As compared to AGB carbon estimation which is exclusively 
based on field measurement data, developing such a method costs less time, less 
efforts and less finance. Thus, this research developed a relatively new and robust 
method to assess carbon stock using CPA derived from high spatial resolution 
satellite images through object based image analysis, and field DBH measurements. 

1.3. Objectives of the study 

The main objective of the study is to assess the carbon stocks in coniferous and 
broadleaf tree types. The specific objectives include, 

1) To develop a method of estimating AGB carbon stock using CPA derived 
from high resolution satellite images 

2) To assess the level of accuracy of tree crown segmentation in eCognition 
and ITC software. 

3) To assess the accuracy of object oriented classification of CPAs of different 
tree types. 

4) To estimate and validate AGB carbon stock using regression equation for 
the coniferous and broadleaf trees. 

5) To map spatial AGB carbon stock of the study area. 

1.4. Research questions 

The research addresses the following research questions. 
1) How accurately can tree crowns delineated by eCognition and ITC 

softwares? Which method yields the best accuracy for coniferous and 
broadleaf trees?  

2) How accurately can the CPA of coniferous and broadleaf trees be 
classified? 

3) How accurately can the AGB carbon of the study area be estimated using 
regression equation? 

4) How forest biomass and carbon stock can be mapped using Quick-bird 
satellite image? 

1.5. Conceptual framework 

Forest biomass is the organic matter accumulated through the process of 
photosynthesis as primary production minus consumption through respiration and 
harvest (Watson 2010). Remote sensing has opened an effective way of spatial 
biomass estimation for larger area. Images acquired from both space and airborne 
sensors are often used for biomass estimation. The approach of estimation may vary 
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depending on the spatial and spectral detail of the image, the extent of the area under 
consideration and the accuracy required. High spatial resolution images in 
combination with sample field measurements of tree biophysical characteristics such 
as tree diameter at breast height (DBH) and  height, facilitates forest biomass 
estimation with higher accuracy (Brown 2001).  Based on field measurements of 
DBH and height, the dry biomass of trees can be computed using species specific 
allometric equations (Brown 2003; Goetz et al.2009). The equation often reported to 
yield high correlation coefficient. For example, in pine and beech forests in the 
USA, the equation yielded very high correlation coefficient (r2=0.98). Moreover, the 
carbon stock of the forest can be calculated directly from the above ground dry 
biomass as  about 50% of the dry biomass is carbon (Solicha 2007). More recently, 
the advent of high spatial resolution commercial satellite images and developments 
in image segmentation software and algorithms have opened opportunities of tree 
crown delineation (Gougeon and Leckie 2006). Therefore, through image 
segmentation, the crown projected area (CPA) of trees can be extracted. Moreover, 
using object oriented classification; automated CPAs can be classified into different 
tree species. Hence, the relationship between CPAs and biomass carbon as obtained 
from the allometric biomass equation can be investigated through regression 
equation. Therefore based on the relationship established between sample CPAs and 
biomass carbon, the carbon stock of the whole study area can be estimated using 
regression modelling.  
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Figure 1 : Conceptual diagram 
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2. REMOTESENSING APPROACHES OF AGB ESTIMATION AND 
TREE CROWN DELINEATION ACCURACY ASSESSEMENT 
TECNIQUES 

2.1. Space Born Optical Remote Sensing Approaches of AGB Estimation   

Remote sensing has become a primary source of biomass estimation. Many factors, 
such as economic conditions, limitation of remotely sensed data in spectral, spatial, 
and radiometric resolutions, complex forest stand structure, quality and quantity of 
sample plots, selection of suitable variables, and the modeling algorithms, often 
interplay and affect the success of AGB estimation. Either optical sensor data or 
radar data are more suitable for forest sites with relatively simple forest stand 
structure than the sites with complex biophysical environments. However, a 
combination of spectral responses and image textures improves biomass estimation 
performance (Lu 2005).  

In general, the AGB can be directly estimated using remotely sensed data with 
different approaches, such as multiple regression analysis, K nearest-neighbour, and 
neural network (Foody et al. 2003, Zheng et al. 2004), and indirectly estimated from 
canopy parameters, such as crown diameter, which are first derived from remotely 
sensed data using multiple regression analysis or different canopy reflectance 
models(Wu and Strahler 1994) 1994).  

Spatial AGB estimation can be made at various spatial scales. The algorithm, the 
satellite data required and the level of accuracy however varies with the variation of 
the spatial extent and the level of accuracy required. Generally speaking, the better 
the spatial detail, the lower the uncertainty will be (Gibbs et al. 2007).  

2.1.1. High spatial resolution images 

Satellite images with a spatial resolution of 10 m or less are usually classified as 
high spatial resolution. Since the past two decades, several countries have launched 
satellites that can acquire images with this resolution range. The availability of 
commercial satellites of high spatial resolution such as IKONOS, Quick Bird, 
OrbView-3 in the past few years enabled the acquisition of detailed forest 
information at individual tree scale level (Culvenor 2003). More recently, 
commercial satellite images such as GeoEye and World view 1 and 2 images are 
also emerged giving more detailed forest survey capabilities. This in turn has created 
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a better opportunity for estimating forest parameters at tree species level such as 
AGB with much precision.  

Using high resolution images tree quantification, tree crown delineation, species 
identification, crown density estimation, and forest stand polygon delineation is 
made possible (Gougeon  and Leckie 2006). The advent of these high resolution 
images can facilitate efficient, consistent, and reliable tree scale inventories over 
larger areas (Culvenor 2003). A number of image segmentation algorithms are 
developed to derive these tree biophysical parameters such as tree crowns. The idea 
behind identification of the tree crowns is that the tree crowns on a remotely sensed 
image can be identified as discreet objects based on their colour, texture, shape and 
context. However, the successes of this processes depends on forest stand structures 
and environmental conditions. In broad leaf forest the trees often have overlapping 
tree crowns making delineation between them difficult unlike the coniferous trees 
(Gougeon  and Leckie 2006).  

2.1.2. Medium resolution images 

The medium spatial-resolution ranges from 10 to 100 m. The most frequently used 
medium spatial-resolution data may be the time-series Land-sat data, which have 
become the primary source in many applications, including AGB estimation at local 
and regional scales (Foody et al. 2003, Zheng et al. 2004). Different success of AGB 
estimation was obtained using Land-sat images using neural networks, k- nearest 
neighbors, linear and multiple regression techniques. In some cases however 
saturation of canopy reflectance over time was found to be a problem of estimating 
AGB using land-sat images (Lu 2006).  

Spectral signatures or vegetation indices are often used for AGB estimation. Many 
vegetation indices have been developed and applied to biophysical parameter 
studies. Vegetation indices have been recommended to remove variability caused by 
canopy geometry, soil background, sun view angles, and atmospheric conditions 
when measuring biophysical properties (Elvidge and Chen 1995). However, not all 
vegetation indices are significantly correlated with AGB. In general, vegetation 
indices can partially reduce the impacts of reflectance caused by environmental 
conditions and shadows, thereby improving the correlation between AGB and the 
specific vegetation indices, especially in those sites with complex vegetation stand 
structures. Image texture has also shown its importance in AGB estimation using 
medium resolution images. However, by itself, image texture or spectral information 
is not sufficient for AGB estimation and using both of this information together is 
reported to give a better estimation (Lu 2006). 
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2.1.3. Coarse resolution images 

The coarse spatial resolution is often greater than 100 m. Common coarse spatial 
resolution data include NOAA Advanced Very High Resolution Radiometer 
(AVHRR), SPOT VEGETATION, and Moderate Resolution Imaging Spectro 
radiometer (MODIS). They are often used at national, continental, and global scales 
(Lu et al. 2006).  
Table 1: Summary of coarse resolution data sets and techniques of AGB estimation 
(After Lu, 2006) 
Datasets Study area Techniques  References 
AVHRR NDVI Canada, Finland, 

Norway, Russia, 
USA and Sweden 

Regression models Dong et al. 
(2003) 

SPOT 
VEGETATION 

Canada Multiple regression 
and 
artificial neural 
network 

Fraser and Li 
(2002) 

Landsat TM and 
IRS-1C WiFS 

Finland and 
Sweden 

K nearest-
neighbour 
method and 
nonlinear 
regression 

Tomppo et al. 
(2002) 

Landsat TM and 
AVHRR 

Finland Linear regression 
analysis 

Hame et al. 
(1997) 

MODIS, 
precipitation, 
temperature, and 
elevation 

California, USA Statistical models 
(generalized 
additive 
models, tree-based 
models,cross-
validation analysis) 

Baccini et al. 
(2004) 

 

The AVHRR data have long been the primary source in large-area surveys because 
they offer a good trade-off between spatial resolution, image coverage, and 
frequency in data acquisition. It is likely that AVHRR data are the most extensively 
used datasets for studies of vegetation dynamics on a continental scale. The close 
relationship between middle infrared (MIR) reflectance and AGB implies that MIR 
reflectance may be more sensitive to change in forest properties than the reflectance 
in visible and near-infrared wavelengths (Boyd et al.1999). 
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Overall, the AGB estimation using coarse spatial-resolution data is still very limited 
because of the common occurrence of mixed pixels and the huge difference between 
the size of field-measurement data and pixel size in the image, resulting in difficulty 
in the integration of sample data and remote sensing-derived variables (Lu 2006). 

2.1.4. Vegetation Canopy Models 

Multiple regression analysis has been frequently used for AGB estimation in 
previous researchs. However, identifying suitable variables for developing a 
multiple regression model is often difficult and time consuming because many 
potential variables may be used. Also, AGB is a comprehensive parameter that is 
related to many factors such as canopy structure, tree density, and tree species 
composition. Change in AGB is not directly shown in change of reflectance. The 
optical sensors mainly capture canopy information, thus the optical sensor data may 
be more suitable for estimation of canopy parameters such as crown density than 
AGB (Lu, 2006). 

At least 32 models of vegetation canopy reflectance were reviewed by Goel (1988). 
They can be grouped into four main categories: geometrical models, turbid medium 
models, hybrid models, and computer simulation models (Goel 1988). Qin and Goel 
(1995) found that almost all of these models were suitable for canopies with smaller 
leaves, high leaf area index (LAI), and high zenith angles. Because canopy 
parameters can be better estimated than AGB from remotely sensed data ( Nelson et 
al. 2000), the AGB may be indirectly inferred from the relationships between canopy 
structure and biomass. Scientists have strived to model the vegetation canopies to 
predict the characteristics of specific types of structure within the canopy, such as 
tree height, density, and LAI through remotely sensed data. However, it remains a 
challenge to establish such models because of the complexity of canopy 
characteristics, atmospheric conditions, sun angle and viewing geometry, and terrain 
slope and aspect (Lu  2006). 

2.1.5. Image segmentation and accuracy assessment techniques  

Segmentation is the grouping of neighbouring pixels into regions (or segments) 
based on similarity criteria (digital number, texture). Image segmentation is 
becoming a common images analysis in the field of remote sensing particularly with 
increasing spatial resolution. There are a number of image segmentation software 
and algorithms having different characteristics. Meinel and Neubert (2002) have 
identified and make use of 7 software of image segmentation, these software include 
eCognition, data dissection tools, CASEAR, Info PACK, Image segmentation of 
Eardas imagine, Minimum Entropy Approach to Adaptive Image Polygonization and 
SPRING. According to their accuracy assessment best results were found from 
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eCognition and info pack with the exception of info pack giving over segmentation 
of objects. In coniferous forests the Individual Tree crown Delineation (ITC) 
software suit also found to yield good segmentation of tree crowns (Gougeon  and 
Leckie 2006).Wang (2007) also implemented tree crown delineation  in Matlab. 
Each of the softwares constitutes various segmentation algorithms which can 
significantly affect the accuracy of segmentation. Some of the commonly used 
algorithms include watershed segmentation  (Wang et al .2004; Ke 2008), region 
growing (Ke 2008), valley following approaches (Gougeon  and Leckie 2006; Ke 
2008) and Fractal Net Evolution Approach (FNEA) which is a multi-resolution 
segmentation algorithm (Yu et al. 2006). Most of the segmentation algorithms 
respond very quickly to minor variation in input parameters. Despite this, the user is 
confronted with a high degree of freedom, which should be minimised. For instance, 
when selecting parameters by the trial-and-error method the results are highly 
influenced by subjectivity. The integration of instruments for evaluation of 
segmentation quality appears desirable (Meinel and Neubert 2002). 

The success of algorithms varies considerably depending on the specific local 
condition, the image used and the techniques of accuracy assessment (Ke 2008). 
Image segmentation requires accuracy assessment at various stages of the 
segmentation processes. Segmentation accuracy assessments are broadly made based 
on visual and geometrical techniques. The visual assessment which is subjective is 
based on visual judgement of the degree of fit of segmented objects with that of 
known objects while the geometrical assessment is made with a comparison of 
segmented objects with training / reference objects in terms of various indices.  

Clinton et al., (2008) has developed a geometrical segmentation accuracy assessment 
of segmentation outputs with reference to clearly defined training sites. The quality 
of segmentation outputs are defined in terms of under and over segmentation as well 
as goodness of fit (D). The goodness of fit (D) is the function of the degree of under 
and over segmentation. 

      Equation 1 

   Equation 2 

Where Xi = training objects, assumed polygons, relative to which the segmentation 
is to be judged and Yj = the set of all segments in the segmentation. Let Yj be a 
subset of Yi and, Yi = {Yj: area (Xi ∩ Yj) ≠0}. For each training object Xi, the 
following subsets of Yi exist, 
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              Ya = {all Yj where the centroid of Xi is in Yj}         
              Yb = {all Yj where the centroid of Yj is in Xi}         
              Yc = {all Yj where area (Xi ∩ Yj) / area (Yi) > 0.5} 
              Yd = {all Yj where area (Xi ∩ Yj) / area (Xi) > 0.5}  
 

 

Yi= Ya U Yb U Yc U Yd, therefore the over and under-segmentation formula above 
are defined for the segments in Yi. The over and under segmentation forms 
‘distance’ index (D) which indicates the quality of segmentation. As the value of D 
increases, the deviation of segmented objects and their respective reference object 
increases showing high level of mismatch between objects (Equation 3).  

      Equation 3 

As the goodness of fit increases the degree of mismatch between the segmented and 
reference objects increases indicating minimum accuracy. Tree crown delineations 
are also assessed in terms of 1:1 correspondence between the segmented and 
reference objects. The higher the percentage of 1:1 correspondence indicates higher 
accuracy. Whereas over segmentation yields commission errors as one tree is 
segmented to more than one object for one reference tree exist. If no tree is 
identified for one reference tree exist, omission errors are made (Ke 2008).  Meinel 
and Neubert (2002) also used area, perimeter, shape index (Shape index= (perimeter/ 
(4√area)), number of segments, and visual accuracy assessments. In this case, the 
best output will be the one with the minimum deviation from their respective 
training or reference object. 
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3. MATERIALS AND METHODS 

3.1. Materials 

3.1.1. Satellite Data 

The major input satellite image data used in this study is the Quick-bird image 
acquired on September 2006. However, Google earth image and aerial photograph 
acquired in 2006 are also used to support the data collection and analysis. 

3.1.2. Other Ancillary data 

Forest management plan of the private forest owners was also used to support the 
identification of plant species types in different  plantation sites. 

3.1.3. Instruments  

Various instruments were used during the data collection process (Table 2). 
Table 2: Details of instruments used in collection of field data 
No Instruments purpose 
1 Ipaq GPS Geospatial location of sample 

plots 
2 Clinometer Haga Measuring tree height 
3 Calliper 100 cm Measuring DBH 
4 Clinometer Suunto Aspect and  slope 

measurement  
5 Densiometer spherical Measuring percent crown 

density 
6 Compass Suunto Measuring  bearing/direction 
7 Measuring tape 50 meter Measuring radius of  sample 

plots 
8 Digital camera Taking pictures of trees and 

other observations 

3.1.4. Software  

The following softwares are used for data base creation, processing and analysis. 
� ArcGIS 10 for database creation and geospatial analysis. 
� ENVI for image filtering and classification. 
� eCognition 8.0 for image segmentation and accuracy assessment 
� ITC for image segmentation 
� JTS and Geo-tools for segmentation accuracy assessment (in Java 

environment) 



14 

� Microsoft Excel for field data analysis. Microsoft- Word 2007 and MS- 
Power Points for report preparation and presentations. 

� JMP 9 statistical software. 

3.2. Method 

3.2.1. Research Approach  

There are various methods of remote sensing technique of biomass carbon 
estimation and the accuracy of estimation quite varies depending on the approach 
used (Gibbs et al 2007). These approaches have been reviewed thoroughly and the 
CPA approach of biomass carbon estimation is chosen along with the availability of 
high spatial resolution satellite images. The research process can be divided into 
three phases the pre-field work, field work and post field work .The pre-fieldwork 
phase includes preparation of data required for the data collection campaign which 
includes image pre-processing, pixel based classification and locating of sample 
plots on a justifiable sampling technique. The field work is accompanied by 
biophysical characteristics inventory of trees with in sample plots. The post field 
work activities range from data entry and regression analysis of biophysical 
measurements of sample trees to image segmentation analysis and biomass carbon 
modelling. The method followed in this research is summarised in Figure 2 
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Figure 2 : Methodology flow chart 
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3.2.2. Pre-fieldwork 

3.2.2.1. Image pre-processing 

The Quick-bird image was geo-referenced and registered with UTM 32 N 
projection, WGS 84 spheroid and WGS 84 datum. The panchromatic image (spatial 
resolution 0.61m) was pan sharpened using the Quick-bird MSS image (2.4 m) to 
obtain a multispectral image with 0.61 meter spatial resolution.  

3.2.2.2. Pixel based image classification  

It is clear that, besides the number of sample sizes the variability of the population 
can affect the representativeness of the sample. Hence, to address this variability, the 
forest was classified as coniferous and broadleaf trees. The classification was done 
in a supervised technique using maximum likelihood classifier. The classified image 
was then smoothed by moving 7x7 low pass filter window.  The boundary of the 
study area (Haagse Bos and Snipert) was also digitized and the image area of interest 
(AOI) was extracted out by clipping. 

3.2.2.3. Sampling strategy  

In forest inventory stratified sampling reported to yield a better precision than simple 
random sampling. This will be achieved if the established strata have greater 
homogeneity (Betram et al. 2003). Therefore subdivision of the forest types was 
done as mentioned above to obtain homogeneous strata. Taking the available time 
duration of the research, the size of the study area and the shortage of labour force 
into consideration, a total of 60 samples plot centres were distributed in a stratified 
random sample technique. However, due to various reasons sample measurements 
were done in 52 plots. From the sample plot centres 12.62 m radius buffer was 
created to establish the sample plots having an area of 500 m2. The shape file of the 
sample plots was overlaid on the pan sharpen Quick-bird image and a print out of 
the image of the sample plots were prepared for the annotation and measurements of 
biophysical characteristics of the sample trees in the field. Moreover, the Quick-bird 
image (TIFF. format) was converted into Enhanced Compression Wavelet (ECW. 
format) and saved in the Ipaq GPS with the sample plot shape file for facilitating 
navigation to sample plots. Figure 3 shows forest types (pixel based classification) 
and sample plot centres. 
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Figure 3 : Forest types (pixel based classification) and sample plot centres 

3.2.3. Fieldwork  

3.2.3.1. Navigation to sample plots 

During the field work, navigation to sample plots was made with the help of the Ipac 
GPS and the printed image of the respective plots. However, the strength of GPS 
signals was highly variable depending on the density of the tree crown cover and the 
weather conditions. Thus, the error was also variable making the GPS location 
undependable in some cases. Hence, accurately locating the exact plot centres was 
challenging and time consuming task. In order to overcome these problems, the 
relative position of distinct tree species, open spaces, pedestrian roads has been used 
as a reference location to accurately identify trees with in sample plots. In addition 
to the GPS signal problem, the temporal variation of the image used in the study has 
increased the dimension of complexity in identifying the trees particularly in the 
private forest part as there were harvesting of trees since 2006 (after the image was 
acquired).   
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3.2.3.2. Biophysical characteristics measurement of sample trees 

A circular plot with a radius of 12.62 m (500 m2) was chosen as unit of sampling. 
All the trees within the plot having DBH ≥ 10 cm were measured for the biophysical 
characteristics such as DBH, crown diameter and crown density. The forest 
constitutes different tree species both coniferous and broadleaf types such as 
Norway spruce (Picea abies), Scote pine (Pinus sylvestris), Douglas fir 
(Pseudotsuga menziesii), Larch (Western hemlock) (Tsuga Canadensis), European 
Beech (Fagus sylvatica), Oak (Quercus robur), European white Birch (Betula 
pendula), and Chestnut (Castanea dentata). To identify the tree species in the field, 
a picture index of the species was prepared during the pre field work phase (See 
appendix 2). In addition to this, information about the location and species types of 
trees in the private forest part was obtained from the management plan of the private 
forest owners. The sampled trees were annotated by giving a number to each one of 
them on the printed image and their respective biophysical characteristics 
measurement are recorded on the data collection sheet (Appendix1).  

3.2.4. Post Fieldwork  

3.2.4.1. Organization of field data 

The biophysical measurements of trees in the sample plots were organized in 
Microsoft excel and the crown of sample trees were digitized by overlying the 
sample plots shape file on the quick bird image in ArcGIS 10. This was done for a 
number of reasons: 1). An ease information exchange between the automated CPAs’ 
and field measurement data during regression modelling can be made, 2). They are 
also serving as training data for image classification and accuracy assessment and 3).  
The accuracy of segmentation is evaluated with reference to these manually digitised 
CPAs. 

3.2.4.2. Tree crown delineation in eCognition and ITC software 

A). eCognition 
In eCognition, tree crown delineation was done by image segmentation. 
Segmentation is any operation that creates new image objects or alters the 
morphology of existing image objects according to specific criteria. This means a 
segmentation can be a subdividing, a merging, or a reshaping operation. There are 
two basic segmentation principles; 1) Cutting something big into smaller pieces, 
which is a top-down strategy and includes Chessboard, Quadtree-based, Contrast 
Filter and Contrast Split segmentations and  2) Merging small pieces to get 
something bigger based on homogeneity criteria, which is a bottom-up strategy. An 
example of this is the Multiresolution Segmentation (Definiens 2009). In this 
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analysis both bottom up and top down algorithms were employed at different stage 
of image segmentation. The general process of segmentation in eCognition can be 
generally classified as the pre-processing and the tree crown delineation phase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        
Figure 4: Tree crown delineation approach in eCognition 
i). Smoothing filter  
Filter operations are image enhancement technique used for noise reduction or 
sharpening image. It transforms the image and produces a new image whose pixel 
values are dependent on the former neighbours (Bakker et al., 2004). The 
panchromatic images undergone to low pass convolution and morphological filter 
mainly to smooth the image by removing the high frequency component of the 
image. This was made with the aim of reducing over segmentation of individual 
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objects as well as having a better visualisation of the image. The image was filtered 
by moving different size kernel window and 5x5 window size was found to give a 
better enhancement of the image. 
ii). Edge Detection and Shadow Masking 

Understory, bare soils, shadow and open lands constitute considerable portion of the 
image. The separation of tree crowns from the background facilitates the tree crown 
delineation (Wang et al. 2004). An edge in an image corresponds to an intensity 
discontinuity of the underlying scene. This intensity discontinuity may arise from a 
depth discontinuity, a surface normal discontinuity, a reflectance discontinuity, or an 
illumination discontinuity (Marr and Hildreth 1980). The Laplacian of the Gaussian 
operator (LOG) detects rapid variation of intensity at the interface of image objects 
(Wang et al. 2004). As figure 5 indicates, in a continuous surface, sharp declines or 
rises of intensity are detected by the LOG operator. This allows masking out non-
tree areas and retaining tree-crown objects for further segmentation and analysis. 
Hence, edge-detection method was used to derive the initial boundary of the tree 
crowns. 

The LOG method can be divided into two steps. At the first step, a Gaussian 
smoothing (convolution) was applied to the image to remove noise as well as 
intensity variation due to the trees internal structure as stated in section i. A second 
step is to find the zero of the second derivative of the smoothed image (Wang et.al. 
2004). To implement the second step the smallest areal unit should be defined. 
Hence the image was segmented using chessboard segmentation with a scale of 1 
pixel so that each pixel was identified as an object. Then the Log operator was 
performed to identify the edge of the objects and created sharp gradients between 
image objects whenever there was discontinuity in intensity. After this operation, 
pixels which lays on the tree-crowns were given a value of zero where as shadows 
and none treed areas were assigned positive values as a result easy separation of tree 
crowns and none treed areas was possible. Figure 5 shows the 2-d Lapalcian of 
Gaussian (LoG) function.  
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Figure 5: The 2-d Lapalcian of Gaussian (LoG) function. The x and y axes are 
marked in standard deviation HIPR2 (2000). 
The LOG detector is written as (Marr, 1980). 

] exp ( )    Equation 4 
The smoothing scale δ in pixels determines the minimum width of the edge that can 
be captured. Although it may be useful to implement the LOG operator at a series of 
scales, it is very difficult to integrate the outputs from multiple scales (Lu and Jain 
1989). Therefore a single smoothing scale of 4 pixel (δ=4), which represents the 
smallest tree crown diameter (2.4 m) in the image and lee sigma was used as the 
LOG operator (HIPR2 2000). However, the Laplacian of the Gaussian operator 
identify pseudo edges whenever there is a discontinuity in intensity with in dark 
objects themselves (see figure 6c). For example, the intensity of the shadow in 
between tree crowns my change from dark black to light dark as a result due to 
occurrences of discontinuity in intensity; an edge is detected within dark objects. 
Therefore, in addition to the LOG operator, a threshold in gray scale image (DN 
values ≤48) was set to be shadows. 
 
 
 
 

 
 
 



22 

Figure 6: Panchromatic image (a), Edge detection (lee sigma, δ=4) (b), shadow 
masking (c) and Pseudo edge masking (d) 
iii). Multi resolution segmentation 

To date, image segmentations are performed using a number of software and 
algorithms. Procedures for image segmentation are main research focus in the area 
of image analysis for years. Many different approaches have been tested. However, 
few of them lead to qualitatively convincing results which are robust and under 
operational settings applicable (Baatz and Schape 2000). Factors such as the scale 
and the heterogeneity of the objects of interest, the spatial and spectral detail of the 
image and type of algorithms appears to be the key determinant factors affecting the 
success of segmentation.  

Among the different segmentation algorithms that can be applied in eCognition 
environment, multi-resolution segmentation was used as a primary technique of tree 
crown delineation. This is mainly because of the difficulties of applying other tree 
crown delineation algorithms. Multi-resolution segmentation is the process of 
delineating individual objects in the scene based on homogeneity criteria such as 

a b 

c d 
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colour, shape, texture etc. The success of the multi-resolution segmentation depends 
on selecting the appropriate parameter combinations. In order to select the best 
parameter combinations, the panchromatic image was segmented 63 times iteratively 
using different parameter combinations of scale, shape and compactness (Scale, 10, 
15, 20, 25, 30, 35, and 40, Shape 0.3, 0.5, 0.7 and compactness 0.5, 0.7, and 0.9). 
Using the shape file of each segmentation output and the manually digitized 
reference tree crowns, the accuracy was assessed in the java environment using JTS 
and Geo-tools. A total of 70 and 33 coniferous and broadleaf trees respectively 
which were clearly seen were manually digitised as a reference for evaluating the 
segmentation crown outlines. The reference trees were distributed at different part of 
the forest and represented different species types. The measure of accuracy was 
made in terms of the degree of over segmentation, under segmentation and the 
goodness of fit (D) (Clinton et al. 2008) (Equations 1,2, and 3). Since the forest in 
the study area constitutes different tree species which considerably varies in terms of 
size and biophysical characteristics, the accuracy was assessed for coniferous and 
broadleaf trees separately. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 : Approaches of accuracy assessment 
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forest types (see Appendix 3).  Despite the multi-resolution segmentation, the degree 
of under-segmentation was high indicating the requirement of further processing of 
the image objects. Hence, under-segmented trees were treated by transforming the 
objects into marker free watershed segmentation. 

Iv). Marker free watershed segmentation 

This tree crown delineation technique was used as a supplement of the Multi-
resolution segmentation algorithm. This was made with the aim of solving the 
problem of under segmentation by the Multi-resolution segmentation described 
above. Watershed transformation considers the image to be processed as topographic 
surface. It includes three basic notions: local maxima, catchment basins and 
watershed lines (Chen et al. 2004). If a gray scale mage is inverted, the local maxima 
become the local minima and holes are punched at the local minima. In between the 
local maxima and minima are the catchment basins which correspond to the tree 
crowns. The watershed lines are the local maxima of an inverted image. Therefore, 
these watershed lines forms dams which prevent water entering from the adjacent 
basins in case of marker controlled watershed transformation (Ke 2008).Whereas 
dams are built at the local minima’s of  un-inverted image in case of the marker free 
watershed transformation. Hence, in the marker free watershed transformations 
holes are punched at the local minima unlike the  marker controlled whose holes are 
punched at the prescribed marker (Zhao and Popescu 2007). Figure 8 shows the 
principles in watershed transformations.     

 

 

  

 

 

 

 

Figure 8: Illustration of the watershed segmentation principles 

In this study the marker free watershed transformation version was implemented due 
to difficulties in identifying an appropriate marker of each tree. Hence, in the 
immersion paradigm from Vincent and Soille (1991), the topographic surface is 
flooded from its minima, thus generating different growing Catchment basins. Dams 
are built to avoid merging of water from two different Catchment basins. The 
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segmentation result is defined by the locations of the dams (i.e., the watershed lines) 
when the whole image has been flooded (Derivaux et.al. 2010).  

However, marker frees watershed segmentations results over segmentation of the 
image which creates more objects than the actual objects present in the image. 
However, image smoothing is often used to overcome this problem (Derivaux et.al. 
2010). Hence, since the image was well smoothed, the image objects obtained after 
multi-resolution segmentation was transformed into a marker free watershed 
transformation. As a result the problem of under-segmentation of the Multi-
resolution segmentation was overcome.  

B). Individual tree crown delineation (ITC) software 

For the purpose of comparing the accuracy of tree crown delineation obtained from 
eCognition, ITC software was also used for delineating the tree crowns. The tree 
crown delineation in ITC is made in two major steps as the valley following and rule 
based tree crown delineations. However, image smoothing and none vegetation 
masking was made as part of the image pre-processing. 

i). None-vegetation masking 

For tree crown delineation in ITC software, the same panchromatic image but 
filtered by moving a 3x3 smoothing window was used. The selection of the filter 
window size was made by visual comparison of the tree crown outlines obtained 
after crown delineations using a different smoothing window size. This was 
followed by non-vegetation masking. Simple thresholds or multispectral rules such 
as “detect pixels having a near infrared radiance smaller than its mean visible band 
radiance” can sometimes be used to create effective none vegetation masks 
(Gougeon and Leckie 2006). However, the vegetation masking options in the 
software do not give an effective none vegetated mask for the study area due to over 
masking of vegetated areas. Hence, the non-vegetated areas were manually digitised 
and masked out. 

 ii). Valley following and tree crown delineation 

 In the valley-following process, a threshold is first used to eliminate small areas of 
shade, areas typically devoid of significant trees in which following valleys of 
deeper shade would make little sense. Then, local minima are found in what are 
essentially the “pure” forested areas of the smoothed illumination image. They 
correspond with points of deepest shade, typically between four tree crowns. From 
these initial local minima, all possible valleys of shade in the image are followed 
pixel by pixel, resulting in a fairly good, yet often incomplete, separation of tree 
crowns. A valley pixel is defined as a pixel continuing the valley (8-connected) that 
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has a radiance value lower than the pixels on its right and on its left when going in 
the valley direction (Gougeon and Leckie 2006). 

 

 

 

 

 

 

 
Figure 9: Processes of tree crown delineation in ITC software suit: panchromatic 
image (a), bit map of valley following approach (b) and rule based tree crown 
delineation (c) 

The valley-following process was succeeded by a rule-based crown delineation 
process that attempts to finish the separation of tree crowns and produces tree crown 
outlines. It results in a bit map of objects that are referred to as Isols (isolations) and 
typically represent individual tree crowns or, under certain circumstances and/or 
poorer spatial resolution, can be tree clusters (Gougeon and Leckie 2006). Gougeon 
(1998) describe the rules employed for deriving the final tree crown outlines as 
follows. 

‘More specifically, after having read the bitmap of "shaded material" (SM) and "non-forested" areas 
produced by the "valley following" isolation process, the delineation process starts by scanning the image 
(right and down) for a first minimal block (2x2 pixels) of "vegetation material" (VM - defined here as the 
converse of the bitmap just read in). Starting on the left side of this block, it tries to follow the SM up, or 
up and right, moving by one pixel. It will continue to move one pixel of SM at a time, favoring a move in 
its on-going direction or preferably, one pixel to the right of its on-going direction (level 1 rule). 
Sometimes the only possible move will be to the front-left of its on-going direction, for example, if a tree 
branch is protruding from the crown. This move will be acceptable under level 2 rules, assuming that 
level 1 rule have been checked previously. On other occasions the only path available while following the 
SM is 90 degrees counterclockwise to the on-going direction (e.g., larger branch sticking out). Such a 
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move may be acceptable (level 3 rules), but only after having checked that a more favorable move cannot 
be executed by bridging a one-pixel-wide gap to some SM on the right or in front. Similarly, level 4 rules 
make possible turns that are 135 degrees counterclockwise, but only after substantial checking in the 
front-right direction for better moves that could be done by bridging gaps up to one meter wide. Finally, 
level 5 rules deal with possible moves implying a complete direction reversal from the on-going direction. 
Such situations typically represent a serious inlet into a crown (e.g., due to self-shading) or a serious 
indication that two or more crowns are present and should be separated. Again, a check is performed for 
SM up to a meter away from the end of the inlet to estimate whether a gap should be bridged. If it 
succeeds and the gap is bridged, it is possibly separating two distinct tree crowns. If this fails, the 
situation is considered as an irrelevant inlet within a single crown, and the inlet is actually erased before 
continuing the crown delineation’. 

iii). Partial marker free watershed transformation (eCognition) of the tree 
crowns delineated through ITC software 

The success of tree crown delineation in ITC software depends on the existence of 
shades in between tree crowns. Giving the spatial resolution of the image used and 
the existence of broadleaf trees of overlapping crowns, the Isol delineation gave rise 
to considerable amount of clustered tree crowns. Hence, these trees were further 
processed to separate them from the neighbouring tree crowns. As a result, clustered 
trees were selected based on a threshold of CPA (CPA> 100 pixels) and a marker 
free watershed transformation was applied to these clustered trees.  

3.2.4.3. Accuracy assessment of tree crown delineation  

The accuracy of the segmentation by the two software was assessed in terms of over 
segmentation, under segmentation and goodness of fit (D) using the technique 
described in section 2.1.5 on page 10-12. Hence, the output from the software which 
gave a better goodness of fit for the majority of the forest type was used for further 
analysis. Despite this, both of the softwares were involved to get the final tree crown 
outlines.  

3.2.4.4. Object based Isol classifications and accuracy assessment 

Object based classification is the categorization of objects created through image 
segmentation into similar categories based on spectral, textural, shape and contextual 
properties of image objects (Mathieu and Aryal 2005). The Isols obtained from 
image segmentation are overlaid on the pan-sharpened Quick-bird image and 
subjected to nearest neighbour classification. The field collected samples were split 
into two groups as training and classification accuracy assessment data. The training 
data were used to train the nearest neighbour classifier. After the training samples 
were selected, feature space optimization was done. This is to select variables related 
to spectral, textural and geometrical characteristics which can give better separation 
between classes. Hence, variables such as the mean NIR and red band, maximum, 
minimum, and standard deviation values of NIR band, area of the objects, etc were 
used to classify the Isols into coniferous and broadleaf trees.  

The accuracy of classification was assessed using half of the field data as a ground 
truth. A confusion matrix was prepared by cross tabulating the ground truth and the 
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classification data. Hence, the users, producers, overall accuracy and kappa 
coefficient of agreement were computed in ArcGis.  

3.2.4.5. Allometric regression equations of tree species in the study area 

Allometric equations are used to estimate AGB from volumetric and structural 
dimension of the trees. DBH and height of the trees are usually used to compute the 
biomass of the trees (IPCC 2003). However, when tree height data is scarce, only 
DBH can be used to compute biomass (Muukkonen 2007). Species specific 
allometric equation is available for some of the Dutch forest species. However, since 
the biomass carbon estimations are made at broader scale for coniferous and 
broadleaf trees, general allometric equations developed for the Canadian hardwood 
and softwood forests were used. In addition to the scarcity of generalised allometric 
equations applicable to the Dutch forests, most of the tree species in the private 
forest part are exotic and are commonly found in the Canadian forest. The allometric 
biomass equation takes the form of power function as follows (Lambert et al. 2005).  

 Softwood  

Stem wood dry biomass (kg) = 0.0648 * (DBH^2.3923) +0.0107 Equation 5 
Branch   dry biomass (kg) = 0.0156 * (DBH^2.2916) + 0.0005  Equation 6 

Foliage dry biomass (kg) = 0.0861 * (DBH^1.6261) + 0.0006  Equation 7 
Bark dry biomass (kg) = 0.0162 *   (DBH^2.1959) +0001  Equation 8 

Hardwood       

Stem wood dry biomass (kg) = 0.0871* (DBH^2.3702) + 0.0493 Equation 9 

 Branch dry biomass (kg) = 0.0167* (DBH^2.4803) + 0.0002  Equation 10 

 Foliage dry biomass (kg) = 0.0340* (DBH^1.622) +   0.0056  Equation 11 

 Bark     dry biomass (kg) = 0.0241* (DBH^2.1969) + 0.0030  Equation 12 

All the dry biomass of these tree components were then added together to give the 
AGB = [Stem wood biomass + branch biomass+ Foliage biomass + Bark biomass]           

A). Biomass carbon regression modelling 

The regression modelling is used to quantify the relationship between dependant and 
independent variables. Regression equations are common statistical techniques used 
in the process of AGB estimation (Lu 2005). The relationship between segmented 
CPA and carbon stock as obtained from the allometric biomass equations and carbon 
conversion factor are investigated through regression equations. To develop the 
model, the sample field data (168 coniferous and 90 broadleaf trees) were split 
systematically into two after putting the whole sample data, which are eligible for 
model development, in ascending order based on the sample plot number. Eligible 
samples CPAs are those which are neither over-segmented, nor under-segmented 
and not misclassified. Therefore, the first half was used as training data for 
developing the regression model.  
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B). Model Validation 

Model validation purpose is to systematically establish a level of confidence of 
models (Buranathiti et al. 2006). The validity of the model developed was assessed 
using half of the sample data set. There are different techniques of model validation. 
However, in this study r2 and root mean square errors (RMSE) are computed as an 
indicator of model validity.   

3.2.4.6. Forest AGB carbon mapping  

The spatial AGB carbon was mapped using the regression model developed for 
coniferous and broadleaf forests. Generally, 50% conversion factor of the dry 
biomass to carbon was used for both of the forest types (Solicha 2007). 
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4. DESCRIPTION OF THE STUDY AREA  

4.1. Forest Management in the Netherlands  

By the end of the 18th century the natural forest of the country was almost 
completely exhausted due to expansion of towns and population increases. In the 
19th c some attempts of planting trees was apparent in response to wind erosions. 
The industrial revolution in the 20th c had changed the very nature of society. As the 
pace of life increased, the demand for forestry products grew and these had to be 
marketed more quickly. Quick growing pine trees were planted for pit props and 
later for the paper industry. Poplars were planted for the manufacture of clogs and 
matches. Afforestation in the 1920s and 30s was primarily aimed at production and 
at curbing unemployment. After WW2 timber had to be produced more rationally 
and at lower cost. This had an impact on what the current woodlands of the country 
look like today. The entire forested areas have now been made part of the National 
Ecological Network. In 1990 about 3% of the country was woodland and the figure 
estimated to be more than 10% in 2000. The country has a total woodland area of 
339 000 ha which means about 2000 m3 woodland per person or twenty trees per 
head. Virtually all the woodland existing today has been planted by man, only 7% 
resulting from spontaneous regeneration (Stiching Prosbos 2000). 

Forest management in the Netherlands is to a large extent (25%) concerned with 
developing the country side to make woodland more attractive for wildlife and for 
human beings. Timber production and recreational facilities are also important 
woodland activities. More than half of the countries’ woodland consists of 
coniferous (57%), mostly Scot pine, Douglas fire larch and Norway spruce. The 
remaining woodland is deciduous with oak, beech, birch and popular the most 
common species. Dutch woodlands are rarely made up of only one species of tree. 
About a third of the total forested area in the Netherlands is mixed woodland 
(Stiching Prosbos 2000). 

The ratio of coniferous and broad leaf trees are changing .The number of young 
conifers (diameter 5-20 cm) has decreased much more over the past 15 years than 
the number of young broadleaves. Scots pine, larch and spruce have declined more 
compared to the total number of trees; while the number of native deciduous trees is 
increasing .The amount of mixed woodland has grown from 81000 ha in 1985 to 
91000 ha in the period 1993-1997. Most new mixed deciduous (+5000 ha) or mixed 
coniferous /deciduous (+7100 ha) (Stiching Prosbos 2000).  
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The country is pledged to UNFCC commitments and planted more than 10, 000 ha 
of forest since 1990 as emission reduction measure (Stiching Prosbos 2000). Though 
forests in the Netherlands are well monitored there is great uncertainty over the role 
of Dutch forests, forest soils, wood products and management and land use options 
on carbon sequestration. Biomass carbon accounting in the Netherlands follows a 
stand stock approach which is based on the total yearly increase of woody biomass 
corrected for yearly extraction of wood. Hence, methods should be developed and 
may consist of a combination of forest inventory and remote sensing data (Naburus 
et al. 2000). However, it is estimated that a growing tree absorbs about 0.7 tonnes of 
carbon per m3 of wood. The faster a forest grows, and the longer it maintains this 
rate of growth, the more carbon it can extract from CO2 in the air. In 1994 a total of 
some 234 million tonnes of carbon from CO2 was absorbed by Dutch woodland. 
Because of the annual net increment, this quantity has now grown by about 0.6 
million tonnes. Per ha, the net sink is 2.2 tonnes of CO2 per year (Stiching Prosbos 
2000). 

4.2. Haagse Bos and Snippert Forest 

The study area is found about 7 km away from Enschede in the North Easter 
direction in Haagse Bos. The forest lies between 5791566.81m N to 5794200 m N 
and 359268.03m E to 361909.61m E (Figure 10). It is partly private and partly 
natural monument. Previously it was coniferous forest managed for timber 
production. Now it is managed for nature conservation and recreation and has 
gradually been converted into mixed forest. It has a total area of 334 ha. 

 
Figure 10: Location of the study area. 
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As the interview made with the private forest manager indicated, the privately 
owned forest in Haagse Bos was established in the 1890’s as a production forest. It 
is an example of a process of land use /land cover change that took place in the 19th 
century when textile factory owners established forest and agricultural land on 
“waste” heath land areas. The second generation of the forest dates back in the 
1950’s and 60’s. It constitutes both broadleaf and coniferous tress of both exotic and 
native species. The broad leaf trees are mainly planted in the pedestrian and road 
sides as aesthetic values. The forest in general selectively harvested once in six 
years. The harvesting is made in proportion to 50 -70% of the annual increment 
which indicates a sustainable forest harvest as the re-growth compensates the 
harvest. The forest is also serving as tourism and recreational areas as it is opened 
for public access. Due to this service the forest owners get little subsidies from the 
government. Despite this, government’s support for reducing degradation and 
deforestation and other ecological services such as maintaining biodiversity are 
absent.  

Haagse Bos forest is managed by a private company on behalf of the owner. The 
forest manager prepares a management plan in every 10 years. As part of the 
management activity, thinning is made once for trees greater than 10 cm in diameter. 
Regular thinning for all trees however is limited due to shortage of manpower and 
money. Despite this, thinning is naturally take place since the branches in the lower 
part of the stem die out due to shortage of sunlight and competitions from the nearby 
trees. However the nature monument part managed naturally without human 
intervention.  

In General, the forest is a multipurpose forest for timber production, recreation, 
tourism, hunting and ecological conservation. It constituted mixed tree species such 
as, Scots pine (Pinus sylvestris), Norway spruce (Picea abies), Douglas fir 
(Pseudotsuga menziesii), European larch, Eastern hemlock (Tsuga Canadensis), oak 
(Quercus robur.), European beech (Fagus sylvatica) etc.  
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5. RESULTS 

5.1. Image segmentation in eCognition 

5.1.1. Edge detection and shadow masking  

The implementation of the Laplacian of the Gaussian operator on a convolution 
smoothed panchromatic image gave rise to the delineation of the initial closed 
objects. As indicated in Figures 11, the tree crowns are identified and separated from 
the shadows. Moreover, for some sparsely grown trees, the edge detection and 
shadow masking operation delineated their respective CPA. However, adjacent or 
close by grown trees and trees with overlapping crowns remains clustered. 
Generally, trees having CPA greater than 4 pixels (> 2.4 m2) are identified. 

Figure 11: Quick-bird panchromatic image in north part of the private forest (left) 
and the resultant image after Edge detection (δ=4) and shadow masking (right). 

Despite the edge detection and shadow masking, large portion of the tree crowns 
remains clustered. Since there are shadows in between most coniferous trees, better 
separations of objects are apparent after the edge detection and shadow masking 
operation unlike broadleaf trees which have overlapping tree crown. 
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5.1.2. Multi-resolution segmentation and marker free watershed 
transformation  

The intermediate objects obtained after edge detection and shadow masking have 
undergone to multi-resolution segmentation. However, since there was considerable 
variation of tree crowns in terms of size for broadleaf and coniferous trees, a 
separate segmentation parameter combinations were applied. The best multi-
resolution segmentation parameter combinations (scale, shape and compactness) for 
each forest type are obtained after an iterative segmentation of the image and 
subsequent accuracy assessments. The best segmentation scales for the coniferous 
and broadleaf forests were 15 and 30, respectively. Whereas the goodness of fit (D) 
remains poor for both forest types though a relatively better accuracy was found for 
broad leaf trees.  
Table 3: Best multi-resolution segmentation parameter combinations 

Tree 
types 

Best 
scale 

Best 
shape 

Best 
Comp. 

Over 
Seg. 

Under 
Seg. 

Goodness 
of fit(D) 

Coniferous 15 0.5 0.9 0.25 0.52 0.41(59%) 
Broadleaf 30 0.5 0.9 0.22 0.50 0.39 (61%) 

Among all the segmentation parameters of scale, shape and compactness, a slight 
change in scale results a considerable change in the level of under segmentation and 
over segmentation. Generally, as the segmentation scale increases, the level of over 
segmentation increases resulting higher number of image objects than the actual 
number of objects and the vice versa. Figure 12 shows the variability of the 
goodness of fit (D) of the broadleaf and coniferous trees with change in 
scale, shape and compactness. 

 

 

 

 

 

 

 

 

Figure 12: Variability of the goodness of fit (D) in broadleaf forests (left) and 
coniferous forest (right) with change in scale, shape and compactness. 
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To further improve the segmentation result, the tree crowns obtained from multi-
resolution segmentation were transformed into marker free watershed segmentation. 
As a result, the overall goodness of fit improved from 0.41 and 0.39 to 0.27 and 0.33 
for coniferous and broadleaf trees, respectively (Table 4). This improvement is 
resulted due to the improvement in the level of under segmentation. Nevertheless, 
over segmentation has increased for both coniferous and broadleaf trees. 

Table 4: Accuracy of segmentation after watershed transformation of the multi-
resolution segmentation 
Tree types Over 

segmentation 
Under 
segmentation 

Goodness of fit 
‘D’ 

Coniferous 0.31 0.25 0.27(73%) 
Broad leaf 0.40 0.26 0.33(67%) 

The watershed transformation has resulted dramatic change in over-segmentation for 
the broadleaf trees being the change from 0.22 to 0.40 whereas the over-
segmentation of the coniferous trees has changed from 0.25 to 0.31. However, the 
watershed transformation performs well for the coniferous trees as the goodness of 
fit is considerably improved for this type of trees (Figure 13). 

Figure 13: Multi-resolution segmentation image in north part of the private 
forest (left) and the same image after Watershed transformation of the multi-
resolution segmentation (right). 



36 

Despite the slight improvement in the goodness of fit for the broadleaf trees, a 
dramatic improvement in the level of under-segmentation was compensated by an 
increase in the level of over-segmentation. For more information on the effects of 
marker free watershed transformation on broadleaf trees see Appendix 4. 

5.2. Image segmentation in Individual Tree Delineation (ITC) software 

5.2.1. Non-vegetation masking 

For the succeeding operation to work out in ITC software, non-vegetated areas need 
to be masked out. There are different techniques of non vegetation masking. 
However, for this purpose, none-vegetation areas are digitised manually and masked 
out (Figure 14). As a result, the succeeding tree crown delineation was made only on 
the vegetated areas. 

 
 
Figure 14: Panchromatic image (left) non-vegetation masking (right) 

5.2.2. Valley following and Isol delineation  

In the valley-following process, small areas of shade, areas devoid of significant 
vegetation and local minima’s are followed pixel by pixel and gives valleys of 
shade. As a result good but often incomplete separations between tree crowns were 
obtained (Figure 15b). The valley-following process was succeeded by a rule-based 
crown delineation process that attempts to finish the separation of tree crowns and 
produces tree crown outlines (Gougeon and Leckie 2006). Figure 15c indicates a bit 
map of the rule based Isol delineation and the subsequent derivation of tree CPA of 
individual tree crowns. The resultant tree crown outlines (vector data format) as 
overlaid on the panchromatic image are presented in Appendix 5. 
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Figure 15: Panchromatic image (a) bit maps of Valley following (b) and rule based 
Isol delineation (c). 

The accuracy from ITC software was slightly better than eCognition for the 
coniferous trees, the goodness of fit being 0.25. However, the level of under-
segmentation was higher for both coniferous and broadleaf trees (Table5).  

Table 5:  Accuracy assessment of ITC software crown delineation 

Tree types Over 

segmentation 

Under 
segmentation  

Goodness of fit 
(D) 

Coniferous 0. 17 0.33 0.25 (75%) 

Broadleaf  0.26 0.42 0.35 (65%) 

*the values in parenthesis are the percent tree crown delineation accuracy. 

 

 

a b 

c 
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5.2.3. Partial marker free watershed transformation of Isols delineated by 
ITC in the eCognition environment  

Clustered Isols obtained from ITC software crowns delineation were processed in 
the eCognition environment. As a result, under segmented tree crowns were further 
segmented in such a way that they represent the CPA of individual trees (Figure 16). 

Figure 16: Clustered crowns from ITC software (left) and partial marker free 
watershed transformation in eCognition (right) 

Under-segmented tree crowns were selected based on a threshold of CPAs. Hence, 
all CPAs > 100 m2 were subjected to watershed transformation. As indicated in 
figure 21, the watershed transformation has given to a more realistic crown outlines 
of clamped trees by further segmenting them. Generally, the overall goodness of fit 
for coniferous and broadleaf trees improved to 0.20 and 0.34, respectively (Table 6). 

Table 6: Accuracy assessment after partial marker free watershed transformation 

*the values in parenthesis are the percent tree crown delineation accuracy 

Tree types Over 
segmentation 

Under 
segmentation  

Goodness of fit 
(D) 

coniferous 0.19 0.22 0.20(80%) 

Broadleaf  0.40 0.27 0.34(66%) 
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A total of 117589 and 119159 trees were identified from ITC and eCognition 
software, respectively (Table 7). This amount of tree is excluding very small trees 
that have CPA less than 2.4 m2. In both softwares higher numbers of trees were 
identified in the private forest part.  
Table 7: Total number of trees identified 

Software Total number of tree Total number of 
trees Private forest Nature Monument  

eCognition 70636 48903 119159 

ITC 68973 48616 117589 

5.3. Object based classification and accuracy assessment 

Since the accuracy of the Isols obtained from ITC was better for the coniferous trees, 
which are the majority of the forest tree type in the study area, the CPAs obtained 
from this software were classified into two classes as coniferous and broadleaf tress. 
Table 8: CPA classification results 

 
A total of 68973 and 48616 trees were identified in the private and nature monument 
part, among which 79.07% and 64.64 % are coniferous trees, respectively (Table 8). 

Tree types Total number of tree Total number of trees 

Private forest Nature Monument  
coniferous  54514 31428 85942 
Broadleaf  14459 17188 31647 
Total 68973 48616 117589 
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Figure 17 : Forest types from object based classification 
The overall classification accuracy was about 74%. Generally, the accuracy of 
coniferous trees classification was better than broadleaved trees.  
Table 9: Classification accuracy assessment 

5.4. Descriptive analysis of field measurement data 

A total of 9 species are identified in the whole study area. Among which 5 are 
coniferous trees and Norway spruce was the dominant tree species. However, 
European beech was dominant tree species constituting about 46 % of the broadleaf 
trees. 

References                       Classification  
coniferous broadleaf total 

Coniferous 143 19 162 
Broadleaf 59 75 134 
total 202 94 296 
 Accuracy measures Percentage (%) 
 Overall accuracy 74 
 Users accuracy (coniferous ) 88 
 Users accuracy (broadleaf) 55 
 producers accuracy (coniferous) 71 
 producers accuracy  (broadleaf) 

Overall kappa coefficient of agreement 
80 
45 
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Figure 18: Tree species composition in the study area 
Coniferous trees have mean DBH of 36.23 cm. However, the mean DBH of 
coniferous trees in the nature monument part is higher than the private forest.  
Generally, Scottish pine has higher mean DBH in both the nature monument and 
private forest part (Figure 19).  

Figure 19 : DBH variability for the coniferous trees in the private forest (left) and 
the nature monument part of the forest (right). 
The broadleaf trees have mean DBH value of about 41 cm. As compared with the 
coniferous trees, broadleaf trees have higher mean DBH values (Figure 20). 
Moreover, the mean DBH in Nature monument was higher than the private forest 
part. Among all broadleaf forests, European beech trees have highest mean DBH 
values in both parts of the forest. 
 

 
 
 
 
 
 
 

Figure 20: DBH variability for the broadleaf trees in the private forest (left) and the 
nature monument part of the forest (right). 
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The average crown diameters for coniferous and broadleaf trees were 6.09 and 8.76 
m, respectively being higher mean crown diameter in the nature monument part. 
Generally, European beech and Norway spruce have higher mean crown diameters. 

Table 10: crown diameter variability of the coniferous trees 

Table 11: crown diameter variability of the broadleaf trees 

5.5. Biomass carbon regression modelling  

Linear regression model was developed from the CPAs obtained from the tree crown 
delineation and their respective carbon stocks obtained from the general allometric 
biomass equations. R2 for coniferous and broadleaf forests was 0.58 and 0.54, 
respectively. This indicates that the predictor explains about 58 and 55% of the 
variance in the dependent variable. Moreover, the relationship between AGB carbon 
and CPA is significant at α = 0.01 for both of the forest types.  

 

 

 

 

 

 

 

 
Figure 21 : Regression statistics of the coniferous trees 

Forest Owner 
ship 

Overall 
Mean 

Overall 
Std Dev 

Minimum. Maximum. Total 
Observations 

Private forest  5.99 1.78 2.4 12.2 193 

Nature 
Monument 

6.54 1.47 4 11 48 

Forest 
Owner 
ship 

Overall 
Mean 

Overall 
Std Dev 

Minimum Maximum Total 
Observations 

Private 
forest  

8.69 3.4 3.4 14.8 42 

Nature 
Monument 

8. 83 4.62 5.2 19.3 49 
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The model for the broadleaf and coniferous trees has RMSE of 187.06 and 83.87 kg 
of carbon per tree, respectively. Moreover, the confidence interval for the intercept 
and the slope of the model for coniferous trees is between -62.49 to 30.60 and 12.65 
to 18.44 with 95 % confidence, respectively.  Whereas for the broadleaf trees the 
confidence interval of the intercepts and slopes lays between 80.58 – 279.72 and 
6.05 – 11.0, respectively.  

 

 

 

      
 
 
 

Figure 22 : Regression statistics of the broadleaf trees 

5.6. Model validation  

The validity of the model was assessed using half of the sample data. Hence, R2 and 
RMSE error are computed as an indicator. The result indicates higher R2 and lower 
RMSE error for the coniferous trees (Table 10). 
Table 12: Model validation statistics 
Tree types R2 MSE RMSE nRMSE (%) Sample size 

Coniferous 0.50 8984.93 94.84 42.28 84 

Broadleaf 0.49 44910.16 211.92 45.13 41 

5.7. AGB carbon mapping  

The AGB carbon is modelled using the regression equation developed for coniferous 
and broadleaf trees. 
Carbon stock for coniferous trees = -15.95 + 15.55 * segmented CPA  Equation 13 
Carbon stock for broadleaf trees = 180.16 + 8.53 * segmented CPA Equation 14 
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These regression models and the CPAs classified into coniferous and broadleaf trees 
through object oriented classification were used to map carbon stock for each 
broadleaf and coniferous tree types. The carbon stock estimate for broadleaf and 
coniferous trees in both private and nature monument part of the forest is presented 
in Table 13.  

The forest in the whole study area has about 26822.29 Mg C stock. In both the 
nature monument and private forest part, higher mean carbon stock is found in 
broadleaf trees. The broadleaf trees generally have two times higher mean carbon 
stock than coniferous trees. The nature monument constitutes 43.29% of the total 
carbon stock. As compared with the broadleaf trees, the coniferous trees constituted 
the highest portion which is about 53% of the total carbon stock. In general the 
carbon density reaches about 80.31 Mg C/ha. 

Table 13: Summary of carbon stock 

 
* Values in parenthesis are mean carbon stock (Mg C /tree)  
Trees which have higher CPA have higher carbon stocks. In most cases broadleaf 
tree have the highest CPA as compared with their counterparts. However, higher 
CPA is rarely resulted due to errors in tree crown delineation particularly due to 
under-segmentation. Despite this some big coniferous trees also have higher carbon 
stock. The biggest CPA trees have carbon stock with a range of 2000- 2542 kg but 
most of the trees have carbon stocks between 17- 1200 kg. Figure 23 shows carbon 
stock in individual trees at different parts of the study area. 
  

Tree types Carbon stock (Mg) 

Private Nature Monument Total  

Broad leaf 5810.11 (0.40) 6707.90 (0.39) 12518.02 (0.39) 

Coniferous 9399.73 (0.17) 4904.55 (0.16) 14304.27 (0.17) 

Total 15209.85 (0.22) 11612.44 (0.23) 26822.29 (0.23) 
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Figure 23 : Carbon stock in individual trees in part of the study area 
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6.   DISCUSSION  

6.1. Accuracy of tree crown delineation algorithms in 
eCognition and ITC software 

eCognition provides various approaches of tree crown delineations including the 
most commonly used algorithms such as watershed, multi-resolution segmentation 
and region growing. Among the segmentation approaches, watershed transformation 
is the most popular and widely applicable technique of crown delineation (Ke 
2008).Watershed segmentation can be carried out with marker free or marker 
controlled (Zhao and Popescu 2007). Both marker free and marker controlled 
watershed segmentations were tested for the study area however the application of 
marker controlled watershed transformation was constrained by difficulties in 
identifying the appropriate markers. Markers are points of the highest brightness 
values in the tree crowns and often found at the center of the tree crowns (Wang 
2007). Points of high brightness values also serve as a seed in region growing tree 
crown delineation algorithms (Ke 2008; Li et al. 2008; Culvenor 2002).Unless 
appropriate markers are selected for each individual tree, accurately delineating tree 
crown are difficult (Ke 2007). Therefore region growing and marker controlled 
segmentation was not found to be appropriate for this study due to presence of 
multiple markers for broadleaf trees (see appendix 7). As a result, tree crown 
delineation in eCognition is carried out using a combination of multi-resolution 
segmentation and marker free watershed transformation. 

As the accuracy assessment in Table 3 indicates, the multi-resolution segmentation 
performs better for the broadleaf trees. Despite this, higher under segmentation was 
observed for both coniferous and broadleaf trees. This partly indicates higher 
proportion of clumped trees. In multi-resolution segmentation the size of resultant 
image objects depends largely on the scale of segmentation (Baatz and Schape 
2000). Thus controlling the size of the resultant objects can be possible by changing 
the scale of segmentation. However an attempt to improve the degree of under-
segmentation by decreasing the scale of segmentation was not successful due to 
severe over-segmentation. Despite this, colour and shape of the segmentation also 
plays a role in the accuracy level of the Multi-resolution segmentation. In most cases 
the appropriate scale, shape and colour of trees varies depending on the type of tree 
species and the size of tree crowns as a result accurate tree crown delineation of a 
mixed tree species appears less successful using multi-resolution segmentation.  
However, to overcome the problem of under-segmentation of the multi-resolution 
segmentation, marker free watershed transformation was applied. In this algorithm 
watershed lines are created following the local minimas’ but sometimes local 
minima’s may arise within the catchment basin due to noises arising within trees 
crowns. As a result one tree crown might be segmented to more than one tree unless 
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the image is well smoothed using an appropriate filter window size. Therefore, the 
5x5 filter window size used in this process has greater contribution for controlling 
the degree of over segmentation. Hence, the tree crowns obtained from multi-
resolution segmentation was transformed into marker free watershed segmentation. 
As a result clumped trees were segmented further to represent the individual tree 
crown outlines. Consequently, the overall accuracy of tree crown delineations was 
improved further. 

The success of tree crown delineation in ITC software suite is largely dependent on 
the presence of shadows in between tree crowns (Gougeon  and Leckie 2006). As 
indicated in Figure 16, ITC resulted considerable number of clumped trees whenever 
shadow was absent in between tree crowns. The initial accuracy assessment of the 
tree crown delineation indicates relatively better accuracy for coniferous than 
broadleaved trees (Table 5). The problem associated with delineating broadleaf tree 
crown is due to image noises and overlapping crowns which prevent the presence of 
shadows in-between crowns. A similar result was obtained from valley approach as 
applied to broadleaf and coniferous forests  (Ke 2008). Since the CPAs were 
required with higher accuracy for the subsequent analysis, further refinement of the 
CPAs obtained from the valley following approach was essential. Hence, clumped 
tree crowns were selected and segmented by watershed transformation as a result 
more realistic tree crown outlines were derived.  

6.2. Accuracies of combined tree crown delineation algorithms  

Each image segmentation algorithms and software has its own limitations and 
advantages. For example marker controlled segmentation depends on the proper 
selection of markers, while region growing depends on the proper seed selection and 
criteria to limit the extent of region growing, and the valley following on the 
presence of sheds in between tree crowns (Ke 2008). The success of multi-resolution 
segmentation also largely depends on the selection of appropriate parameter 
combinations. As observed in this study area, the accuracy of the tree crown 
delineation from each one of the algorithm was not sufficient enough for the 
subsequent CPA based AGB carbon modelling. Not only in terms of the accuracy 
but unrealistic clumped tree crowns were apparent in large portion of the forest. Due 
to the variability of the success of each of the tree crown delineation algorithms as 
applied to different forest conditions, Ke (2008) indicated that developing a more 
robust algorithm with broad applicability would require taking advantage of the 
characteristics of multiple algorithms. Hence, in this study combining the algorithms 
was found to give improved tree crown delineation accuracies for both coniferous 
and broadleaf trees. 

Combining algorithms was important in reducing the level of under segmentation. 
As compared to the broadleaf trees, the accuracy of coniferous trees was 
considerably improved as a result of combining algorithms together in eCognition 



48 

(see Table 4). The broadleaf trees had slightly higher error due to high degree of 
over-segmentation which can be attributed to the over segmentation of the marker 
free watershed transformation. Delineating broadleaf tree crowns was problematic 
due to various reasons. Though 5x5 filter window was used, still there have been 
noises emerged at some part of the tree crowns. Hence object edges which facilitated 
the over segmentation of tree crowns was detected. Smoothing filter window often 
used to avoid noises in an image (Ke 2008, Gougeon and Leckie 2006). Filtering is 
important because on one hand, we had to use a very high resolution data of 61 cm a 
pixel so we can recognize every individual tree crown, but on the other the details in 
the image of each crown were too much in such a way that we had to use smoothing 
filter to reduce the variability in many pixels representing one crown. Therefore, it 
plays a key role in controlling the degree of over and under segmentation.. As the 
filter window size increases, the tree crown delineation tends to under segment the 
image objects (Li et al. 2008). Further increment in the filter window size however 
was not appropriate as it increased under segmentation of the image. Different size 
tree crowns requires different smoothing filter window (Wang 2007, Ke 2008, Li et 
al. 2008). However, applying an appropriate smoothing filter window size is a 
problem whenever there is mixed coniferous and broadleaf trees with variable crown 
sizes. Moreover, a separate parameter combination of scale, shape and compactness 
was applied to the plot where the majority of the tree types were coniferous and 
broadleaf. However, in reality the forest in the study area has no pure coniferous and 
broadleaf stands. Therefore, some broadleaf trees which were found in the 
coniferous forest stand were segmented with the parameter combination which was 
appropriate for coniferous trees leading to their over-segmentation.  

The implementation of the valley following and watershed transformation together 
in the ITC and eCognition environment, respectively was also found to be effective 
than using a single algorithm. As the accuracy assessment after the watershed 
transformation of the clustered Isols obtained from the valley following approach, 
indicated in Table 6, the accuracy for both coniferous and broadleaf trees have 
improved considerably. This is because unlike the valley following approaches, the 
watershed transformation does not need the presence of shades between tree crowns 
to segment the clustered trees. The brightness values of tree crowns often decreases 
from the centre to the edge of the tree crown. So as long as there are local minima’s 
which was often the case in clustered trees, boundaries which separate adjacent trees 
of the clustered trees was created. Therefore, watershed transformations overcome 
the limitation of the valley following approach associated with the absence of 
shades. Hence, the improvement in the accuracy of CPAs is due to the improvement 
in the level of under segmentation. Despite this, the partial watershed transformation 
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was highly beneficial for improving the accuracy of coniferous trees relatively better 
than broadleaf trees. This happened due to the structural variation of the tree crowns 
of both forest types. The coniferous trees have compact crowns with less noise 
unlike the broadleaf trees (Ke 2008).  

The accuracy of tree crown delineation can also be assessed in terms of 
correspondence between delineated and reference tree crowns (Ke 2008). Hence, the 
combination of multi-resolution and marker free watershed transformation, and, 
valley following  approach and marker free watershed transformation were 
compared to each other in terms of degree of correspondence to reference objects. 
As indicated in Table 14 and 15, higher percentage of 1:1 correspondence (78%) 
was apparent in between automated CPAs obtained from a combination of valley 
following and marker free watershed transformation, and manually digitised 
reference CPAs for both forest types. In contrast, broadleaf trees have less 
percentage of 1:1 correspondence in both algorithm combinations and results 
obtained from a combination of multi-resolution segmentation and marker free 
watershed transformation gave high commission errors (Table 14) indicating the 
over segmentation of one or more objects. Since, previously done researches used a 
single algorithms (Gougeon  and Leckie 2006; Ke 2008), comparing the result 
directly was not possible. Despite this, Ke (2008) compared the accuracy of three 
algorithms: valley following, region growing and watershed transformation. 
According to his accuracy assessment, which is based on degree of correspondence 
between delineated and reference trees, region growing was better followed by 
watershed transformation. Valley following was giving clustered trees particularly in 
the forest region where no thinning was performed. However, all the three 
algorithms performed well in delineating coniferous trees, whereas sever over-
segmentation was a problem in delineating broadleaf trees. Gougeon and Leckie 
(2006) also got better tree crown delineation accuracy for coniferous trees than 
broadleaved using valley following approach of tree crown delineation.   

Table 14: Correspondence of delineated and reference tree crowns in ITC and 
eCognition 

*the values in parenthesis are percentages 

Tree types                  Reference CPA : Delineated  CPA 
1:0 1:1 1:2 1:3 1:4 >1:4 Total 

Coniferous 2 
(2.86) 

53 
(75.71) 

11 
(15.71) 

3 
(4.29) 

0 0 70 

Broadleaf 0 19 
(57.57) 

5 
(15.1) 

3 
(9.09) 

2 
(6.0) 

4 
(12.12) 

33 
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Table 15: Correspondence of delineated and reference tree crowns in eCognition 

*the values in parenthesis are percentages 
Generally, in a forest where there are mixtures of different forest types, single 
algorithm might not give the required accuracy level and combing algorithms help to 
tap the advantages offered by each algorithm for a better accuracy and realistic tree 
crown delineation.   

6.3. Object based classification and accuracy assessment 

Object based classification is the processes of assigning homogeneous objects 
created through image segmentation into the same class based on spectral and 
textural characteristics of objects. The driver of this type of classification is to 
overcome the within object variation and it is extensively applied to image objects 
derived through segmentation from high spatial resolution images (Aplin and Smith 
2008). Object based classification of the CPAs is intended to apply a separate 
regression model which suites the coniferous and broadleaf forest tree types. 

 The CPAs delineated through image segmentation are classified into coniferous and 
broadleaf forests by taking a signature from 9 species. As shown in Table 9, the 
user’s accuracy of the coniferous trees was considerably higher than broadleaf trees. 
This reflects the coniferous trees are more reliably classified than broadleaved trees; 
hence the likelihood for the user to find the same coniferous tree on the ground is 
higher. Whereas, the producer’s accuracy is slightly higher for broadleaf trees which 
indicates that the broadleaf trees on the map represent most of the broadleaf trees 
with minimal omission error. Most of the broadleaf trees in the study area are bigger 
in size and the influence of shades to affect the classification accuracy is minimal. 
Hence, easier classification of the broadleaf trees is partly due to the size of trees. 
Better producer accuracy was also found for broadleaf trees than the coniferous as 
applied to IKONOS image of a plantation forest (Gougeon  and Leckie 2006). Both 
producer and user accuracies are expressed in the overall accuracies and hence 74% 
of the CPAs were correctly classified. The classification errors are generally arising 
due to the spectral similarity of species, shadows and the accuracy of tree crown 

Tree type                   Reference CPA : Delineated  CPA 
1:0 1:1 1:2 1:3 1:4 >1:4 Total 

Coniferous 3 
(4.27) 

50 
(71.41) 

12 
(17.14) 

4 
(5.71) 

1 
(1.42) 

0 70 

Broadleaf 0 18 
(54.54) 

5  
(15.24) 

3 
(9.09) 

2 
(6.06) 

5 
(15.15) 

33 
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delineations. As the visual assessment of the false colour composite image indicated, 
spectral similarity exists in different species particularly in between big Norway 
spruce and most broadleaf trees. Spectral differentiation in uneven aged trees 
composed of different species is often difficult (Gougeon  and Leckie 2006). Big 
trees can affect the spectral characteristics of the nearby tree crowns by casting a 
shadow on it. Since the current forest under investigation is composed of different 
size trees in terms of height and tree crown size, their influence on the CPA 
classification was apparent. In addition to the spectral characteristics, the geometry 
of the tree crown such as the CPA was one of the most important variables involved 
in the feature space optimization to distinguish between broadleaf and coniferous 
trees. Hence, whenever big crown sizes are over-segmented, they tend to be similar 
in size with the coniferous trees facilitating misclassification.  Despite this the kappa 
coefficient of agreement is less than 50%. This indicates the correctly assigned 
pixels might have been partly assigned by chance and not based on the classification 
decision rule (www.nrcan.gc.ca, 2011). 

6.4. Estimation  and mapping of AGBC  

The AGB carbon estimation was made by using linear regression model as the best 
fit curve was linear. This indicates that the carbon stock continues to increase 
linearly with the increase of the CPA. However, Shimano (1997) found the best fit 
curve between DBH and CPA relationships to be power sigmoid. The power 
sigmoid curve assumes that the rate of CPA increment decreases overtime due to the 
competition of nearby trees for sunlight, nutrients and space. However, some studies 
found linear relationship between DBH and crown diameter. Particularly strong 
linear relationship exists for trees with a DBH range of 20- 50 cm and slight 
reduction in the rate of CPA growth appears due to the effect of senility for DBH 
exceeding 50 cm (Hemery et al. 2005). Moreover, the basal density appears to have 
its influence on the CPA-DBH relationship because in less dense forests the CPA 
can continue to grow without the effect of competition from the nearby trees. 
Therefore, the linear relationship obtained in this research can partly indicate that the 
effect of competition on the CPA of trees is insignificant. As described in section 4, 
this can be due to the fact that the forest is a plantation forest and thinning and 
selective harvesting are common management practices which make distances 
between trees and the relationship be linear. Generally, as the result in Figure 21 and 
22 indicates, the residual variance from linear regression equation is lower for 
coniferous trees than broadleaved. However, still considerable amount of the 
variance remains unexplained by the model and as a result the model needs further 
improvement.  This can be achieved by improving the accuracy of tree crown 
delineation (Hirta et al. 2009). Moreover, the allometric equation and the AGB 
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carbon model do not fit to each other very well because the allometric equation used 
takes the form of power function (see Equations 5-12 on page 28) and the AGB 
carbon is linear model. Therefore, locally developed allometric biomass equations 
seem more appropriate.  

The AGB carbon is mapped using the linear regression equation developed for the 
coniferous and broadleaf tress. The broadleaf trees in general have two times higher 
mean carbon stock than the coniferous trees. This is because the broadleaf trees in 
the study area are bigger in size than their counterpart. Among the total carbon stock 
in the forest, the highest proportion is found in the coniferous trees as the forest is 
dominated by coniferous trees. Moreover, the private forest part which constituted 
the highest number of trees (59%) constituted about 57% of the total carbon stock. 
Generally, the carbon stock density is about 80 Mg C/ ha. The biomass carbon 
estimation varies depending on the method of assessment employed, and comparing 
estimates made by different approaches might not give a good picture of the 
accuracy of estimation. Despite this as compared to the general estimates made for 
the Netherlands which is made based on standing stock approach (Annual increment 
–harvest) (Nabuurs 2000), this estimate has about 26% difference being the general 
estimate for the Netherlands be about 59 Mg C/ ha (Nabuurs and Mohren 1993). 
Moreover, remote sensing technique based estimation of the carbon stock in woody 
biomass are in the ranges of 25 - 60 Mg C/ha for different countries, the average 
being 42.91 Mg C/ha (Figure 24). However, remote sensing estimates which are 
often made from very coarse satellites have larger uncertainties particularly due to 
occurrence of mixed pixels and a huge difference between the size of field-
measurement data and pixel size (Lu 2006).  

 
 
 
 
 
 
 
 
 
 

 
Figure 24: Remote sensing estimates of carbon pool (1995–1999) and sink in total 
woody biomass of temperate and boreal forests in North America and Eurasia 
(USDA 2003). 
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6.5. Uncertainities and sources of errors in tree crown delination and AGB 
carbon modelling 

Tree crown delineation using high spatial resolution enabled us to estimate the AGB 
carbon at individual tree level. However, it has some uncertainties and sources of 
errors where further research and improvements are required. Most studies express 
the errors in regression modelling in terms of the root mean square error (RMSE) of 
the model (USDA 2003, Harrell et al., 1997). The RMSE error in this model is in the 
order of 0.084 and 0.19 Mg C / tree for coniferous and broadleaf trees, respectively. 
Moreover, as the confidence interval of estimation in Figure 25 indicated, coniferous 
trees are estimated with less uncertainty. For example, a tree with 20 m2 CPA of 
coniferous and broadleaf trees will have an estimated carbon stock of 0.29 and 
0.35Mg C, respectively. These are estimated by the models to be between 0.12 to 
0.46 Mg C and -0.03 to 0.73 Mg C with 95% confidence interval for coniferous and 
broadleaf trees, respectively. Generally, the carbon estimation for coniferous and 
broadleaf trees laid between ± 0.17 and ± 0.38 Mg C with 95% confidence interval, 
respectively. This indicates the presence of much uncertainty in both models. 
However, comparing the results with previously done researches was not possible 
due to the scarcity of similar studies. 

 

 
Figure 25: Confidence intervals of the model AGB carbon estimation for coniferous 
(left) and broadleaf (right) trees. 

The sources of error may ranges from the data collection in the field to tree crown 
delineation phases. Sample tree location and DBH measurement in the field is 
mainly supported by Ipaq GPS and the printed image. The GPS signal can however 
be degraded by various factors such as by the satellite position, noise in the radio 
signal, atmospheric conditions and natural barriers to the signal. Noise can create an 
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error between 1 to 10 meters and results from static or interference from something 
near the receiver or something on the same frequency. Barriers between the satellite 
and the receiver can produce error, sometimes up to 30 meters (www.maps-gps-
info.com 2011). The most accurate determination of position occurs when the 
satellite and receiver have a clear view of each other and no other objects interfere. 
However, some degrees of uncertainties were prevalent as the GPS signal was 
degraded by forest canopies and clouds particularly in plots where there was 
overlapping crowns. Hence, if an error in tree DBH measurement is made the error 
in the AGB carbon will be inevitable. Therefore, some degrees of uncertainties 
which can be a source of error for the AGB carbon modelling are embedded on the 
difficulties of accurately identifying the sample trees. Moreover, field DBH 
measurements have systematic errors which can affect the quality of the regression 
model (Zhang et al.  2010).  

The allometric biomass equation has also its own influence on the AGB carbon 
estimate of the model. Each tree species has specific allometric pattern and mostly 
species specific allometric equations are recommended. However, due to difficulties 
of classifying CPA for each tree species, all the CPA were classified into broadleaf 
and coniferous classes and general allometric equations were used. The general 
allometric equation however is developed from quite high number of coniferous and 
broadleaf tree species (Lambert et al. 2005), as result errors seems inevitable. As the 
comparison between the species specific and general allometric equation estimates 
of biomass carbon for coniferous and broadleaf trees indicated, there exist nRMSE 
of 22% and 42%, respectively. Both of the general allometric equations have 
underestimated the biomass carbon stock of coniferous and broadleaf trees (See 
Figure 26). 
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Figure 26: Comparison of the General and species specific allometric equation 
biomass carbon estimation 

Accurate tree crown delineation is a key factor for estimating other variables based 
on CPAs derived from image segmentation (Ke 2008).  A slight change in over 
segmentation and under segmentation can affect the relationship between AGB 
carbon and CPA. As indicated in Table 6, the goodness of fit reveals about 20 and 
34% in the degree of mismatch between delineated and reference crowns due to over 
and under-segmentation for coniferous and broadleaf trees, respectively. This 
indicates the existence of random error in the model. However, the ordinary least 
square (OLS) regression used in this model assumes no error in both the response 
and the regressor variables (Zhang et al. 2010). Therefore, errors in the model can be 
attributed to the errors in the CPA delineations.  

The form of relationship between CPA and carbon stock varies with different forest 
species. As indicated in Table 16, for most of the species there exists good 
relationship between CPA and carbon stock. However, for Scot Pine the CPA and 
carbon stock relationship is poor because the CPA does not increase with increasing 
DBH. As a result developing a model combining all the coniferous and broadleaf 
tree species influences the accuracy of the model.  
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Table 16: Relationship between CPA and carbon stock of different coniferous and 
broadleaf tree species 

Forest tree types Species R2 

Broadleaf 

 

Oak 61 

European beach  54 

Coniferous  Scot pine 40 

Norway spruce 65 

Douglas fir 57 

Omission and commission errors arising from misclassification of CPA are the other 
sources of errors. As the classification accuracy indicated in Table 9, there is 26 % 
total classification errors of CPAs which arises either due to omission and 
commission error for both types of forests. Thus, there exist some broadleaf trees 
whose carbon stock was estimated by the model developed for the coniferous forest 
and vice versa.   

Generally, the errors associated with field sample DBH measurement and tree crown 
delineation error propagates to affect the accuracy of AGB carbon estimation. Figure 
27 shows the summary of the error propagations.  

 
                                                 Measurement quality                 Error propagation 
                                                          Location error 
 
                                                        DBH measurement error 
 
                                                     Allometric equation quality 
 
 
                                                           AGB carbon error 
 
                                                  Tree crown delineation quality 
                                                               CPA error 
 
 
                                                          Model estimate error 
 
Figure 27: Error propagation.  
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7. CONCLUSION AND RECOMMNDATION  

The general objective of this research was to assess the AGB carbon stock in 
coniferous and broadleaf forests using high spatial resolution images. To achieve 
this objective a new and robust method which enables carbon estimation at 
individual tree level is developed. The method overcomes the drawbacks of most of 
the conventional carbon estimation techniques. In times as today when forest carbon 
estimation is needed at higher accuracy, this method showed its potential in meeting 
this demand though the model needs further researches for improvement. 

The study employed object based analysis on Quick-bird image with 0. 61 m spatial 
resolution and field measured DBH data. The CPA of trees was derived through tree 
crown delineation using ITC and eCognition software. This was followed by 
accuracy assessment, selecting the best tree crown delineation and object based 
classification, respectively. Eventually, the relationship between AGB carbon and 
CPA was investigated using a regression model. This model was then used to 
estimate the AGB carbon of individual trees in the study area. Hence the research 
questions defined in section 1.4 were properly answered. 

1) How accurately can tree crowns be delineated by eCognition and ITC 
software? Which method yields the best accuracy for coniferous and 
broadleaf trees?  

The accuracy and applicability of tree crown delineation varies depending on the 
forest type, the tree crown delineation algorithm, the image type used and the image 
pre-processing. Among different approaches of tree crown delineations in 
eCognition, multi-resolution segmentation algorithm was found to be appropriate. 
Using this approach 59 and 61% accuracy was obtained for coniferous and broadleaf 
trees, respectively. Whereas in ITC valley following approach is the only tree crown 
delineation approach. Hence, from this approach 75 and 65% accuracy was obtained 
for the coniferous and broadleaf trees, respectively. As compared with the multi-
resolution segmentation in eCognition, the valley following approach gave better 
accuracy for both tree types. Despite this, the two software and algorithm yielded 
higher level of under segmentation for both forest types. The level of under 
segmentation however was overcome by applying the marker free watershed 
transformation to the CPAs obtained from multi-resolution and valley following 
approaches. As a result from multi-resolution segmentation and marker free 
watershed transformation the overall accuracy was improved from 59% to73% for 
coniferous trees and from 61 to 67% for broadleaf trees. Moreover in terms of 
correspondence 71 and 55% of the coniferous and broadleaf trees, respectively have 
1:1 correspondence with reference tree crowns. Whereas the valley following 
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approach in ITC software followed by partial marker free watershed transformation 
in eCognition have improved the accuracy from 75 to 80% for coniferous trees and 
from 65 to 66% for broadleaf trees. This algorithm combination however resulted 76 
and 58% 1:1 correspondence for coniferous and broadleaf trees, respectively.  

2) How accurately can the CPA of coniferous and broadleaf forests be 
classified? 

The CPAs are classified with 74% overall accuracy. The coniferous trees are 
classified with 88% user and 71% producer accuracy. Whereas the broadleaf trees 
were classified with 55% user and 80% producer accuracies but the kappa 
coefficient of agreement of classes was only 45%.   

3) How accurately can the AGB carbon of the study area be estimated using 
regression equation? 

The linear regression models have explained about 58 and 55% of the variance in 
carbon stock for coniferous and broadleaf trees, respectively. Moreover, the models 
for the coniferous and broadleaf trees have RMSE of 0.084 and 0.19 Mg C/tree, 
respectively. The AGB carbon estimation in generally varies ± 0.17 and ± 0.38 Mg 
C with 95% confidence interval for coniferous and broadleaf trees, respectively. 

4) How forest biomass and carbon stock can be mapped using Quick-bird 
satellite image? 

The regression model developed for the coniferous and broadleaf trees is used to 
estimate the AGB carbon of each individual tree in the study area. As a result, the 
AGB carbon stock of each individual tree is estimated. The forest in general has 
about 26822 Mg C stock among which about 53% is found in coniferous trees. This 
is equivalent to 80 Mg C/ha. The private forest constitutes about 57% of the total 
carbon stock. The broadleaf trees generally have more than two times higher mean 
carbon stock than their counter part.  

In general, High spatial resolution satellite images like Quick-bird are endowed with 
immense capabilities in providing information at individual tree level. These 
capabilities can however be tap whenever field measured data and object made 
analysis are made with caution by minimizing errors. So, In addition to GPS 
locations, field DBH measurements should be supported by existing documentary 
maps of the location and species of plantation. The sampling technique also should 
consider the density of the forest and the trees species types. This can help to 
accurately characterise the relationship between CPA and DBH. Moreover, locally 
adaptive allometric equations would be more appropriate than using general 
equations. Tree crown delineation should be done with much higher accuracy. This 



59 

can be partly achieved by using appropriate filter window size, the appropriate tree 
crown delineation algorithm and accuracy assessment techniques.   
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APPENDIX 2:  Tree species picture index used for species identification during 
the field data collection. 
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APPENDIX 3:  Broadleaf and coniferous tree plots where a separate parameter 
combination of Multi-resolution segmentation was applied.  

Appendix4: Multi-resolution segmentation image in west part of the nature 
monument forest (left) and the same image after watershed transformation. 
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APPENDIX 5:  Tree crown outlines obtained after tree crown delineation in 
ITC software for part of the study area.  
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APPENDIX 6:  Carbon stock estimate for different parts of the study area.  
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APPENDIX 7:  MARKERS IDENTIFIED BY LOCAL MACIMA FILTER (RED 
COLOUR PIXELS) FOR SOME PORTION OF THE STUDY AREA.   


