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ABSTRACT

Accurate classification of land cover is one the most crucial factors in the planning, management
and monitoring pursuits pertaining to the utilization of earth land surface resources for sustainable
development. Due to its significance in remote sensing image classification, the realm of image
texture analysis has earned considerable attention over the years. With the advent of high
resolution imagery such as Quick Bird, increased amounts of information detail resulting in higher
spectral variability per class is achieved with the improved spatial resolution which does not augur
well for spectral based classification.

Despite the existence of various studies in the Remote Sensing field towards the texture analysis
problem, texture-scale relationship has not yet been fully explored. This limits application of
texture in multispectral resolution data analysis such as super-resolution mapping. Texture is a
product of the objects’ hierarchical organization that characterizes the scales at which spatial
information is obtainable. Recent studies have witnessed an overwhelming influx of image analysts
into the application of Markov Random Field (MRF) approaches to tackle this problem. This
research set out to explore the texture-scale relationship using Gaussian MRF (GMRF) a typical and
popular MRF model distinct for analyzing textures through interdependence neighbouring image
pixels measurement yielding features of a certain texture. The exploration was executed at different
spatial resolutions and lag values determined from estimated variogram of image sample subsets.

Accurate simulation of texture has been performed in which it was demonstrated that more finer
and stable textures are achieved with large image patch sizes although reliable results were obtained
with small patch sizes. With QuickBird imagery the texture-scale behaviour has been explored
using the spectrally similar grass and tree crowns objects land cover classes at different scales from
which it was concluded that, the coarser the spatial resolution the lesser the class separability.
Results of texture features reveal that use of larger lag values for a GMRF model does not produce
different texture features for different spectrally similar cover classes whereas lag one features do
not capture the variability within a class. Grass was clearing separable from tree crowns at lag one
using feature space plots, Fisher criterion and multidimensional Euclidean distance. Similar
conclusions were made with Ikonos imagery from which lag one features demonstrated favourable
class separability. Comparison of texture features for either class in Quickbird multispectral bands
showed that there is generally no marked difference of class spatial distribution in all the bands.
Due to the GMRF model’s powerful discrimination ability of the spectrally similar classes, the
approach was employed in the classification of the same classes. An overall classification accuracy of
77% was achieved with a 32x32 pixel simulated subset image and resulted into a notable
improvement in overall classification accuracy of 92% with a 150x150 pixel image primarily
attributed to a wealth of contextual information. Results of the simulated GMRF texture
classification can be used to guide classification of a real image which requires a different GMRF
model order and energy optimization scheme.

Key words: Gaussian Markov Random Field, Variogram, Exploration, Feature spaces, Fisher Criterion,
Euclidean distance, Energy functions, Energy minimization, Texture-scale behaviour, Spectrally similar
classes, simulation, Lag, Estimated parameters, Class separability/discrimination, Variogram.
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MULTISCALE TEXTURE ANALYSIS OF REMOTELY SENSED DATA WITH MARKOV RANDOM FIELDS

1. INTRODUCTION

1.1. Background

Remotely sensed image data has over the years been used in a variety of domains and is increasingly
and extensively being employed in a diversity of Earth surface, oceanographic and atmospheric
applications such as environmental modelling and monitoring, updating of geographical databases
and land-cover/use mapping. The justification for remote sensing (RS) in land-cover classification is
mainly provision of valuable information that cannot be provided by field methods. Importantly,
RS is by far the only method that can provide a global, repeated and continuum of observations of
processes required for earth system comprehension. Accurate and up-to-date land-cover
information is fundamental to various resource planning, management and monitoring programs
especially in urban areas for supporting administration and application departments. Multispectral
RS information is successfully utilized for forest, agricultural uses and urban sprawl monitoring
cartographic establishments and updating [1]. This important information enhances field data and
aerial photographic conventional interpretation approaches resulting in increased efficiency
through certain processes automation. This offers reduced field data gathering costs and improved
update frequency provided by consistent RS imagery.

1.2.  Motivation and research problem

Texture provides the core elements used to describe the surface of an object and incorporates the
pre-requisite features for image processing, computer vision, pattern recognition [2-4] and
microscopy [5]. Their analysis is central to a variety of domains such as RS in earth resources,
medical diagnosis, automated industrial monitoring for quality control, surface inspection and
document processing [2, 3, 6] and its main fundamental roles are classification, segmentation and
synthesis [2, 3, 6, 7]. In the past decades, there has been an influx of research in the fields of image
processing, computer vision and pattern recognition directed towards the problems associated with
texture analysis. This increased activity has proved texture analysis as an important and interesting
subject of research for many applications. Nevertheless it is still a difficult problem in the realm of
image processing [3], still an open issue [8] and a matter of investigation due to its relevance in
image processing and pattern recognition because of the vast possible applications in these fields [9].

Despite our capability to recognize texture, its usefulness and ubiquity in imagery alongside the
long history of research effort on texture, its precise definition has still eluded its researchers. This
is demonstrated by the multitude of definitions presented by various authors in this field as alluded
to in Bharati et al. [10] and exhibited in Vyas and Rege [11]. In [12], four categories of mathematical
approaches used to characterize texture are statistical, geometrical, model-based and signal
processing procedures [6, 7]. Statistical, structural and spectral procedures are outlined in Wang and
Liu [4] and Zhang and Tan [8] as principal approaches for describing texture. They also assert that
statistical and spectral approaches are preferred due to the irregular form of the commonly dealt
with natural textures. In this work the model based MRF approach which is significant for
describing spatial and contextual relationships of physical objects/natural textures [13] is employed.

Wang and Liu [4] and Zhang and Tan [8] in Daugman [14], state that the human visual
interpretation is characterized by a multiscale way of image processing. The hierarchical
organization of texture makes different textures appear different at different scales. This human
visual multiscale processing emphasizes the motivation for multiscale texture analysis. Hay and
Marceau [15] state that in RS, scale is analogous to spatial resolution. This research is executed at
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different spatial resolutions and the term multiscale is used for convenience. Dungan et al. [16]
defines spatial resolution as “the smallest object that can be reliably detected “ (p. 627) by an
imaging system. It also refers to the size of one image acquired by a sensor, known as the footprint.

Markov Random Fields (MRF) were recommended for more work on texture modelling [2]. These
approaches have earned popularity in texture analysis [4] and increasingly become the common
method to RS image analysis [17]. MRF is a useful tool for describing spatial and contextual

relationships of physical objects or phenomena that belongs to a category of probabilistic theory
[18].

In RS, considering the finest and the next coarser scales of an image, various individual constituent
objects will clearly be discernible at the former scale, thus the size of the distinguished objects being
the noticeable scale whereas at the latter, these objects will not be identifiable. Instead, they will
look homogeneous within the ones whose size is typical of this scale. At much coarser spatial
resolutions, a similar trend is observed. Recently much research has been done towards achieving
accurate classification of RS data. However, this research field still poses major challenges. The
current widely employed methods for image classification - grey level co-occurrence matrices,
fractal models and local grey level statistics utilized for extracting textural information don’t
incorporate spatial relationships of pixels and involve an enormous magnitude of computations
[19]. In addition, despite the existence of various studies in the RS field towards this problem,
texture-scale relationship has not yet been fully explored, understood and exploited. This limits
application of texture in multispectral resolution data analysis such as super-resolution mapping.

1.3. Research identification

Texture analysis algorithms have been implemented at unique scales and even those that are applied
for multiscale analysis do not exploit the full information present in RS imagery. This is because
they have until now not taken into account the texture-scale dependence properties. A gap
therefore exists between the hypothetically obtainable information in RS image data and derived
and utilized information to abet well-informed and guided decisions. It is thus imperative to study
the stated problem to avert the mentioned limitations. To bridge this gap, the following objectives
and questions are defined.

1.3.1. Research objectives

The main of this research is to explore the relationship between texture and scale using a MRF
model on RS image data. The main objective can be achieved through the following sub objectives:

i.  Explore the relationship between scale and texture to facilitate the texture-scale dependence
understanding.

ii.  Perform texture based classification of spectrally similar land cover classes using a selected
MRF model.

1.3.2.  Research questions

The following questions have been developed according to the aforementioned objectives:

i.  How can the texture-scale relationship be explored?
ii.  What is the texture-scale relationship?
iii.  How should the texture of images with different spectral bands be compared?

iv.  How can MRF model associated parameters for different image scales be determined?
v.  Which MRF method is suitable for multiscale texture analysis?

vi.  How should MRF texture classification be implemented?

vii.  How should MREF texture classification results assessment be performed?
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1.3.3.  Innovation

The novelty of this study is to improve the understanding of the relationship between texture and
scale to aid the application of texture in multispectral resolution data analysis such as super-
resolution mapping.

1.3.4. Research approach

The following sequence of activities was adapted to address the state research problem. The study
set-out with literature review on MRF models to understand their characteristics, strengths, and
weaknesses in RS image texture analysis applications. Their application in computer vision and
pattern recognition fields where they have a long history of research will be done. This would
identify their important characteristics to enhance their application in remote sensing particularly
for this work. Many successful MRF methods for RS image analysis exist in literature. Therefore,
finding a suitable MRF method and comprehending its mathematical foundations while focusing on
its application for multiscale texture analysis forms the basis of this research.

In spite of the description of texture-scale relationship being the main focus of this research, the
importance of assessing the quality of a classified image cannot be underscored in this work.
Therefore, an image with the classes under consideration (grass and tree crown objects) will be
classified and the performance evaluated.

Details of this approach are provided in section 4.5 of chapter four.

1.3.5. Structure of this thesis

This thesis is composed of seven chapters. Chapter 1 provides a description of the background,
motivation and problem statement, objectives, questions and innovation of this study. In chapter 2 a
discussion of concepts of texture and its analysis, scale and texture and motivation for multiscale
texture analysis are explained. The importance of texture analysis in urban land cover mapping
alongside a review of texture analysis methods in RS image analysis is also given. Some related
works on GMRF for texture analysis of remotely sensed data, the mathematical theory behind
MREF texture analysis and that related to texture based classification are discussed.

Chapter 3, code named data, describes the data and study area of this research alongside, data
preparation and pre-processing steps. In chapter 4, the order and steps taken to execute each task to
facilitate satisfactory achievement of the objectives of this study are explained.

Results of this research and their discussion are presented in chapter 5 and chapter 6 respectively.
Chapter 7 concludes and gives the recommendations for further research in this field.
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2. LITERATURE REVIEW

The purpose of this chapter is to provide a theoretical background to the content of this research.
Section 2.1 sets out with an introduction to texture analysis, a description of the notion of the
definition of texture and its relation to scale alongside the motivation for multiscale texture
analysis. Texture analysis for land cover mapping is explained in section 2.2 with regard to the
aspirations of this research. A brief review of the different texture analysis methods is contained in
section 2.3. Section 2.4 deals with Gaussian Markov Random Fields (GMRF) for texture analysis
whereas sections 2.5 and 2.6 present the mathematical background of MRF texture analysis and
texture based classification functions respectively.

21. Texture analysis

Texture analysis aims to quantify the intuitive qualities of textures such as smooth, rough or silky
among others as a of function image pixel intensity values’ spatial variation. Yindi et al. [20] points
out that the analysis of texture has gained great attention in image processing for its importance as a
complimentary tool to high-resolution satellite imagery interpretation. Petrou and Sevilla [21]
present three major issues in texture analysis as texture classification or discrimination, texture
description and establishment of boundaries between different textures, as earlier highlighted by
Ehrich and Foith [22] and Wechsler in [2]. Various studies have been carried out in an attempt to
solve these problems.

21.1. What s texture?

Despite the importance of texture in RS image applications such as urban land cover mapping and
its human vision association alongside the long history of research on the subject, there is neither a
definite [23] nor a universal definition [13, 24] of texture in image processing. Haindl [25] explains
that texture expresses the spatial information within features or objects. The major impediments to
a precise definition of texture is its multitude of attributes that people find indispensable [24, 26]
and the varied and contradicting properties of natural textures [23]. In their book “Feature
Extraction and Image processing”, Nixon and Aguado [27] describe texture as derived from the
human intuitive recognition actuated by the faculties of sight and feel.

Haralick [12] defines texture as a scale deterministic property derived from the spatial reciprocal
relationship of tonal primitives often too small to be distinguished as individual objects (such as tree
leaves and leaf shadows) that constitute a region in an image. Haralick further states that, “texture is
qualitatively described as fine or coarse, smooth or rough, mottled, irregular, granular, random,
hummocky or linear” (p. 786), thus providing the visual impression of the image features.
Additionally, other important properties fundamental in describing texture include directionality,
uniformity, direction, phase and frequency identified by Tuceryan and Jain [6] in [28] with some of
these qualities being dependent on each other. According to Marceau et al. [29] in [30], texture is
the relationships between grey values in neighbouring pixels that define the image appearance.
Various definitions of texture exist in literature.

21.2.  Scale and texture
Scale is an important characteristic inherent of natural texture. Texture normally exits at more than
one scale. From a certain textural threshold, detail may be perceptible at all scales to the
confinement of visual performance.
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In the RS domain, a lot of attention has been directed towards development, performance
evaluation and comparison of various texture analysis measures, whereas the scale over which
texture is analyzed [31] could be a more significant contentious subject of concern [32]. Marceau et
al. [29] discovered that 90% of the classification variability in accuracy, in classifications involving
texture is accounted for by the texture window size whereas a particular applied texture analysis
technique only explains 10% of that accuracy is a typical proof to this important argument.

Various important studies have satisfactorily supported the usefulness of scale in texture analysis,
notable among them being the study of Hodgson [33]. For achievement of accurate cognitive
classification, a minimum window size is a pre-requisite and that window size and spatial resolution
should be increased concurrently, proved Hodgson. He further found out that at a certain size of
larger windows, accuracy doesn’t increase even if the window size is increased. Woodcock and
Strahler [34], used graphs of local variance as a function of pixel size (spatial resolution). The same
technique was adapted for obtaining an appropriate spatial resolution for forested area analyzes
[35]. Coburn and Roberts [36] also found out that classification accuracy increased with window
size in their study on forest stand areas with local variance measure.

21.3. Motivation for multi-scale texture analysis

Kung-Hao and Tjahjadi [37] observed that for texture segmentation, it is required to use multiscale
techniques to ensure conditions for estimating texture contents concurrently with region boundary
to achieve high accuracy are fulfilled which may not be satisfied by single scales.

In the study of multiscale approaches for urban environments, Fengrui et al. [38] concludes that a
multiscale analysis performs an investigation on a global view of an image at different spatial
resolutions unveiling undistinguishable features at a single scale which might be part of the
important aspects under investigation. They assert that an urban setting is a complex scenario
whose analysis if executed at a unique scale is bound to be deficient and deceitful. A number of
studies have been carried out at different scales such as the work of Choi and Baranuik [39] which
achieved excellent segmentation outputs.

2.2, Texture analysis in land cover mapping

Texture analysis is important for feature extraction and classification of different land cover types.
It is employed in the mapping, extraction, monitoring and production of update maps among
others in both urban and rural area applications. Different approaches are presented in literature for
these tasks. This section describes related work of MRF based texture analysis for land cover
mapping from remotely sensed images.

Yindi et al. [20] proposed an improved GMRF method for classification of fine spatial resolution
satellite imagery where they designed a procedure to classify texture samples of QuickBird and
Ikonos data. Results of this work proved that with fine spatial resolution imagery, the accuracy of
classifying texture samples is greatly improved when texture and spectral features are combined in
the classification process.

In addition, Clausi and Bing [40] also used a GMRF model for texture analysis of SAR sea ice image
data to demonstrate its discriminative power in comparison to the GLCP methods. Segmentation
of radar images was carried out where it was proved that a larger spatial extent is a pre-requisite for
accurate segmentation results with GMRF models.
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Various studies for land cover mapping been carried especially for urban areas applications. Urban
cover mapping is very crucial to urban management for purposes of urban forest planning, air
quality improvement, control of runoff and extenuation of global climatic change. Digital RS
imagery analysis of the increasingly available very high resolution (VHR) images, offers an efficient
way to obtain urban land cover maps worthwhile [41]. Urban area texture studies are based on the
analysis of spatial distribution of ground radiance level variations that enable distinction of
structures of a RS image for urban morphology characterization. Ober et al. [42] presented a
texture analysis definition in conformity with urban texture in RS as grey level variations spatial
distribution analysis able to identify geometrical structures in an image.

Various important studies have been executed such as the urban area extraction through texture
analysis using Markov Random Fields (MRF) [43]. The study developed a texture parameter
estimation approach for analyzing images from different sensors and with various resolutions.
Another major attempt in the detection of urban areas is the study of Ping and Runsheng [44] using
conditional random fields (CRF), a form of MRFs which was able to detect urban areas with tests
on various images and yielded competitive results over recent studies in this regard.

In 2008, Corbane et al. [45] applied a GMRF model to analyze texture in the study of Rapid Urban
Mapping Using SAR/Optical Imagery Synergy based on its robustness for parameter estimation
resulting in accurate demarcation of urban areas. This work was satisfactory in that it inspired an
investigation into the performance of multi-parameter SAR sensors for delineation of urban areas
using a texture based GMRF model [46] where the capability of the model for delineation of urban
areas over a range of spatial resolutions was proved.

Notable among texture analysis studies for urban areas is the work of Puissant et al. [47]. The study
confirmed the efficacy of texture analysis for the improvement of VHR urban area images’
classification accuracy especially in cases of more heterogeneous spectral images.

23. Review of different methods for texture analysis in remote sensing

There are four main categories of texture quantization techniques [13] grouped into statistical,
geometrical, model based and signal processing methods are defined by Tuceryan and Jain [6] and
Randen [7]. An expounded description of various image texture analysis methods can be found in
Van Gool et al. [48] and Reed and Dubuf [49]. In the following subsections however, a brief
discussion of these approaches is given with emphasis on MRF models, a class of model based
methods.

2.3.1. Model based methods

Early research in the realm of texture analysis was mainly directed to the use of first and second-
order statistics as highlighted by Zhang and Tan [8]. Many model based techniques to model
texture including GMRFs [50], Gibbs Random Fields (GRF) [51] and Wold models [52, 53] have
been developed. In Tuceryan and Jain [6], MRFs and fractals are identified as model based texture
analysis methods. Materka and Strzelecki [54] adds autoregressive (AR) models as a model based
method. These approaches are hinged on generation of an image model able to describe and
synthesize/simulate texture. Image texture is represented as a probability function or as a linear
combination of certain basic functions. Parameters of these models are used to capture and
characterize the important perceived qualities of texture images. The most significant problem in
these methods is how to estimate the model parameters and how to determine the correct model
suitable for a given texture [8].
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AR models envisage the assumption that a local interaction between the pixels in an image is a
weighted sum of the neighbouring pixel in the intensity image. These approaches have been used in
texture segmentation where the problem of determining an AR model order for texture
segmentation was considered [55]. Zhang and Tan [8] highlights that these models have been
employed in texture segmentation, classification and synthesis in many studies notable among them
is the simultaneous AR model for invariant texture analysis of Kashyap and Khotanzad [56].

In MRF techniques, texture is as an attainment of an MRF and the specification of the associated
conditional probabilities provides the representative description of texture. These models have
been employed in various RS and image processing in general such as texture synthesis [24], texture
segmentation [57, 58] and texture classification [17, 50] among others. In recent years, GMRF
models have attracted a lot of attention in texture modelling in many fields and RS in particular as
will be demonstrated by the various studies in the section 2.4.

2.3.2.  Statistical methods

The spatial distribution of grey values being one of the describing characteristics of texture,
literature presents the application of statistical features as one of the early methods employed [6].
Statistical approaches describe texture by analysis of the non-deterministic local spatial distribution
properties of grey values at each point in an image [59] through computation of statistical
parameters such as local mean or standard deviation [13] from the distribution of the local features.
Ojala and Pietikdinen [59] classified statistical methods into first, second and higher order referring
to one, two and three or more pixels respectively depending on the number of pixels defining the
local features. In [12], Haralick identified and provides a detailed description of eight groups of
statistical techniques for image texture measurement and characterization. These include
autocorrelation functions, optical transforms, and digital transforms which measure texture spatial
frequencies. The other five are textural edgeness, structural elements, spatial grey tone co-
occurrence probabilities, grey tone run lengths, and autoregressive models.

2.3.3. Geometrical methods

Geometrical methods of texture analysis describe texture as comprised of patterns or primitive
units referred to as texture elements as explained by Tuceryan and Jain in [6] where the methods are
categorized into voronoi tessellation features and = structural methods. Texture in this regard is
defined as a combination of such primitive units as per different placement rules. Image edges are an
example of the primitive units commonly used in texture analysis [59]. Computation of the
statistical properties from the extracted texture primitives which are used as texture features and
extraction of the placement rules that characterizes the texture are the two main techniques used in
texture analysis.

The voronoi tessellation technique offers the advantage that the required characteristics in
describing the local spatial neighbourhoods and distributions are depicted in the tessellation shapes.
In this approach an image voronoi tessellation properties are used for extraction texture tokens
ranging from simple high gradient points to complex structures like closed boundaries. On the
other hand, structural approaches [12] characterize texture by defined primitives referred to as
micro texture under a hierarchical spatial order of macro texture. In this consideration, one must
define the primitive units to describe texture and thus structural texture analysis includes extraction
of texture primitive and deduction of the primitive placement rules.

2.3.4. Signal processing methods

These are a kind of texture analysis techniques that perform a frequency content analysis of the
image. Spatial domain filters are one class of signal processing methods. These include masks and
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local linear transforms of Laws [60] and Unser and Eden [61] respectively. Roberts and Sobel’s
operators are other masks for edge detection which are the most frequency information capturing
techniques [59]. The Fourier domain filters signal processing approach is the true frequency analysis
that describes the global content image frequency. This method however doesn’t incorporate
localization in the spatial dependency thus producing poor results. Inclusion of the spatial domain
yields the Fourier transform [59]. Other classes of signal processing methods include the wavelet
and Gabor transforms obtained by use of a window function that changes with frequency in an
image [62] and a window function that is Gaussian [63]

The wavelet theory, due to its explicit and remarkable potential to the analysis of spatial scales has
also been under intensive research in image analysis. In the wavelet packet analysis [64], and the
wavelet transform techniques [3], excellent results in the characterization of textures at different
scales were achieved alongside reduced computational time in the solution of texture segmentation
and classification problems. Using the Gabor filters, Dunn et al. [65] presented a mathematical
multiresolution model to texture segmentation to solve the unique scale analysis problem. The
multiscale image analysis of Fengrui et al. [38] combined the wavelet and watershed transforms to
effect multiscale segmentation on multiple scale images. This approach provided headway in
describing the intricacy inherent in urban areas at different scales besides provision of a new
direction to multiple scale image interpretation.

2.4. Previous work of GMRF models in RS image analysis

GMRF models are a special type of MRF models [66] whose accurate compact description of a
variety of textures has been demonstrated [67]. Kashyap and Chellappa [68] give a comprehensive
study of these models.

In earlier studies, the Gaussian Markov Random Field (GMRF) model was employed in texture
analysis for describing a variety textures [18]. Over the years, this approach has yielded successful
RS studies such as the multi-resolution texture segmentation [69] among others. The model has
been proved to be an effective method for texture analysis and classification [20, 50, 70] and
segmentation [57, 71]. In these studies, the method was used for classification of fine resolution
imagery; extraction of texture features and texture image classification by the simple minimum-
distance classifier; and classification of rotated scaled texture images; and texture analysis for
partitioning natural images and efficient segmentation of RS images respectively. In [40], Clausi
and Bing provide a comprehensive description of the application instances of the GMRF model for
texture analysis of Synthetic Aperture radar (SAR) sea ice imagery and segmentation and in [72],
Huawu and Clausi developed a GMRF approach for modelling of directional textures.

In 2001, Dong et al. [73] using SAR images, proved the effectiveness of GMRF models in dealing
with images with high level noise. In this study, the model iteratively merged primitive segments to
attain a refined segmentation procedure. A similar consideration is the segmentation of remotely
sensed imagery with GMRF of Li and Gong [57] whose segmentation principle was to merge
similar segments iteratively based on the noise difference of two neighbouring segments.

One of the earlier applications of GMRF was its incorporation in the split-and-merge algorithm in
the segmentation of textured images as mentioned by Reed and Dubuf [49] in [74] and the method
has since then attracted a lot of attention in this regard.

These models have also been used in the modelling and segmentation of colour images in which
spatial interaction within and between the bands of a colour image was effectively captured [75].

A remarkable application of these models is the study of Chellappa and Chatterjee [50]. They
performed texture classification using a GMRF model and demonstrated the significance of window
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size over which image texture should be analyzed. The issues of window size on the basis of these
models has been extensively dealt with in [40], where a comparison between GMRF and Grey level
Co-occurrence probability (GLCP) methods in unsupervised texture segmentation is done.

In 2007, Yindi et al. [20] executed a study that demonstrated the effectiveness GMRF models for
description of the spatial heterogeneity inherent in land cover and land-use of high resolution
imagery. In this work, the effectiveness of spatial information was exhibited through texture
analysis to improve classification accuracy. In the study for the classification of textures using a
GMRF model on linear wavelets, Ramana et al. [76] demonstrated the usefulness of GMRF models
for precise classification of any textures.

2.5. MRF texture analysis model

Markov random field (MRF) is capable of representing the spatial distribution of the image pixels.
The model explicitly specifies the local dependence of image regions through definition of image
pixels neighbourhood system and probability density function on the spectrum distribution of the
grey pixels. The model thus effectively captures the local spatial texture information with the
assumption that the image intensity depends solely on the neighbouring pixels intensity.

Let d = {di, d> .. dn} define a set of the random variables on the set S of m sites wherein each
random variable di obtains a value from a set L-the label set. The grouping d defines a random field.
In this representation, S, d and L are the image with m pixels, the pixel digital number values and
label sets respectively. Label set L is the user-defined set of information classes such L= {forest,
grass, roads, buildings, or water}.

With reference to a specified random field the configuration for the set S is represented as

w = {dl = wi,d> = W, ..., dn = wn} for w: EL (1< r < m). A neighbourhood system defined for a
random field yields a Markov random field on condition that the following properties as satisfied
by its probability density function.

i Positivity:  Implying that for all possible configuration of w, the probability of
configuration P (w) is greater than zero i.e. P(w) > 0.
ii.  Markovianity: P(w |Ws.r) = P(wr |Wnr)
Where S-r and ws.rdenotes the set difference and the set of labels at the sites in S-r and Nr
represents the neighbours of the site r. This property expresses each pixel’s neighbourhood
dependency in an image.
ii.  Homogeneity: P(w: |wn:) being the same for all sites r. This property defines the
conditional probability for the label at site r which does not depend on the location of the
site 1n S.
When the spectrum distribution of pixels is Gaussian, the described model is referred to as Gaussian
Markov random field (GMRF). A GMRF is a typical MRF models which is currently widely
employed for image texture modelling [77].

2.5.1.  GMRF texture model representation

In this work, a GMRF model is employed [50]. Motivation for adoption of this popular models [58]
is hinged on its well description of natural phenomena textures since it characterizes behaviour
that arises from the superposition of various random effects, under which none dominates.
Descombes et al. [78] in the study of estimating GMRF parameters in a nonstationary framework
in RS image analysis points out that application of this model is inclined to its simplicity,
involvement of relatively few parameters and being computationally efficient. They assert that the

10
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model parameters can efficiently separate several textures especially those typical of urban areas
despite complexity of texture images from optical and SAR imagery.

Let i(s) denote an image grey level in a texture region R of M x N lattice for a pixel S.The GMRF
model for the texture region defining the grey level intensity of the pixels s is defined by the local
Gaussian conditional probability density function represented as:

1

PUGIR) = ——exp{~ 5[]} 21)

Where, e(s) is a zero-mean Gaussian noise sequence with the variance of 6. Since the GMRF
models are defined based on the neighbourhood of pixels s, its spatial interactions are given by the
following equation:

i(9)— =) BOGG+D W +e(s) 2.2)

reN;

Equation (2.2) shows a corresponding interpolative form of a GMRF where u denotes the mean of
variables i(s), B(r) are the model parameters and N is a set of the model neighbourhood system. We
now have r € N; and -r € N, and B(r) = B(-r) since the power spectrum represented by equation (2.2)
must be real and positive [79]. Symmetric neighbourhood sites is the condition for the development
of GMRF models and thus an asymmetric neighbour set N; similarly characterizes N; such that if
r€N; then -r €N, and the relationship between N, and N is N; = {r:ir € N;Ju {~r:r € N;}. The
GMRF model can thus be represented by a modified equation (2.2) as follows:

i(9) = 1= ) B +1) =) + (s = 1) =) + e(s) 2.3)

reN:

Solution of the model yields the parameters B(r)s and conditional variance 6% which describe and
characterize the GMRF models and image textures respectively.

2.5.2. GMRF model selection

A pre-requisite important aspect for achievement of accurate estimates in random field modelling is
application of an appropriate GMRF model. In his report on parameter estimation in GMRF,
Haindl [25] clearly affirms that a too small neighbourhood system is insufficient for securing all
characteristics of the random field. Furthermore, an addition to the computation burden alongside
potential degradation of the model performance as an additional noise source will ensue if
extraneous neighbours are included. These important consideration in GMRF parameter estimation
are further supported by his later co-authored papers [80, 81]. Selection of a neighbourhood size is
thus very crucial in GMRF texture modelling. A detailed discussion of the problem of estimation
and selection of neighbourhood is presented by Kashyap and Chellappa in [68].

A forthright technique for choosing the most favourable neighbourhood using the exhaustive
search approach is computationally exorbitant and there is no motivation for its result being ideal
notes Haindl in [25]. In texture analysis using MRF models hierarchical MRF models are frequently
employed [25, 81]. This hierarchical neighbourhood, which is the symmetric neighbourhood
system, is de-facto mainstream GMRF modelling [25].

If N, denotes a neighbourhood system, then the set of neighbours of site r define the hierarchical
neighbourhood system which is expressed as
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Ne={s:0 < (r1-s1) +(r2- 52)* < d*(k)} (2-4)

Where d?(k) represents the Euclidean distance between the site r and its furthest neighbour. k is the
GMRF model order.

Figure 2.1(a), (b) and (c) are example hierarchical neighbourhood systems relative to site r showing
the first-order, second-order and a higher system up to the twelfth order respectively.

(a) (b) ()
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Figure 2.1: Neighbourhood system of site r in which (a) is 1% order, (b) 2 order and (c) 12" order and (d) is
2" order neighbourhood system showing direction vectors for the beta () parameters

The neighbours of the first and second-orders centered on site r are denoted by the set of shift
vectors of N: ={(0, 1), (0, -1), (-1, 0), (1, 0)} and {(0, 1), (O, -1), (-1, 0), (1,0),(-1, 1),(1,-1),(1,1),(-1,-1)}
respectively. Higher orders are defined in a similar way. In the second-order, asymmetric
neighbour pairs (0, 1), (0, -1) and (-1, 0), (1, 0) yield the horizontal and vertical parameters denoted
by B1 and B2 respectively. Similarly, the diagonal pairs (-1, 1), (1,-1) and (1, 1), (-1,-1) will also give
two parameters 33 and B4 as shown in (Figure 2.1 (d)).

253. GMRF parameter estimation

Various techniques for GMRF model parameter estimation exist, however, Manjunath and
Chellappa [82] and Yindi et al. [20] point out that consistency as well as stability cannot be
guaranteed by any of them in estimating these unknowns. The terms consistency and stability
respectively imply that parameter estimates converge to the true values and the covariance matrix
derived from the joint probability density expression must be positive definite.

Methods for estimation of the GMRF parameters include the coding method, Least Squares (LS)
and Maximum likelihood (ML) estimation methods [83], the computationally demanding Markov
chain Monte Carlo (MCMC) methods [84] and the pseudo-likelihood estimation method [25].
Derin and Elliott [51] states that the coding method is essentially a ML estimation technique whose
parameter estimates maximize the joint conditional distribution of part of the data conditioned by
the whole given data making it inefficient [83]. In spite of the ML estimation method giving more
accurate estimates of texture parameters than those of the LS method [68, 85], the method is time
consuming [84], computationally intensive as it involves evaluation of the estimation integral
function and for image and signal processing application involving large lattices it may not be
practical [83]. This difficulty is also noted by Haindl [25]. The Coding technique like the ML
method involves solution of nonlinear equations which renders them cumbersome and difficult to
be used reliably. In addition, different estimates are yielded from a single computation based on a
certain neighbourhood order which necessitates a technique for combination of these estimates [51]
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, which unfortunately does not exist. The pseudo-likelihood estimation method on the other hand
is computationally simple but not efficient [81].

The most popular methods used in the RS image analysis domain are the ML and LS estimation.
The LS method is often employed based on the motivation of its simplicity-stability trade-off [20,
77, 82]. Chellappa and Chatterjee [50] in their work using GMRF for texture based classification
asserts that the LS estimates are preferred because they are information preserving features as they
construct textures close to the original. In addition to circumvent these “chicken and egg” problems
of inconsistency and instability of the LS method and exploit its advantages, Kashyap and
Chellappa [68] developed a finite lattice image model representation. This is achieved by assuming
special boundary image conditions resulting in a computationally efficient process. The conditions
state that the left and right edges like the top and bottom are regarded as adjacent yielding a toroidal
field. This approach has produced successful results in the analysis of both synthetic [68, 86] and
real image textures [26, 82].

Although measures for attaining reasonably good estimates exist, since they are used for obtaining
certain measures for texture analysis such segmentation its convenient to employ a less demanding
computational scheme even if the estimates’ stability is not guaranteed [82].

In this study, the LS method is employed whose estimates of the GMRF model’s unknown
parameters are

B= [Z a©)q" (s)l [Z a(s) () - u)l @5)

S€ES SeS

Where fis the LS estimate of the model parameters of the vector § for f = COI[G(FN reN], R

denotes the image interior and

q(s) = col[(i(s + 1) — W) + (i(s = 1) — W]r EN;] (2.6)

The estimate of the noise variance 8 is computed by
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Where Mx N is the size of the texture region R. The estimated parameters § and 62 are applied as
GMREF texture features in this research for texture characterization.

2.6. Image texture based classification

Texture based classification is one of the intriguing important aspects of MRF texture analysis
alongside texture segmentation and texture modelling [87]. Classification of texture entails texture
features derivation and construction of a classification scheme. In this procedure, the class texture
features obtained through the least squares GMRF model parameters estimation for tree crowns
objects and grass land cover classes were used. The design of the classification procedure is hinged
on the MRF properties described in section 2.5 and subsequently proceeds with generation of a
spatial neighbourhood system. Neighbour system definition is explained in section 2.5.2 where
Figure 2.1 (a), (b) and (c) show the first, second and twelfth model orders respectively.
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Pixel neighbourhood centred on a given site was assigned weights based on the second-order of

window size 3 to aid generation of a neighbourhood list.

2.6.1.  Energy functions

Referring to the random variable w since MRFs perform classification of pixels based on their local
characteristic in the image, a Gibbs random field (GRF) was considered. The model defines a global
property through a probability density function (p.d.f.) from which the attainment of a specific

pixel label based on all pixels in an image is specified as
(w) = 1ex [—M] (2.8)
p(w) = —exp|—— :

7= Z exp[—@ (2.9)

Where,

In this formulation, the normalization constant Z is known as a partition function denoting the
summation of all the possible configurations of w, constant T and U(w) are the referred to as the
temperature and energy function respectively. Minimization of the energy function yielding
equation (2.10) is the similar to maximization of equation (2.8).

Uw) = Z Vo(w) (2.10)

ceC

Where U(w) from equation (2.10) is the sum of the clique potentials Vc(w) of a collection of all
desirable cliques here denoted by C. The local composition of image subsets expressing all pairs of
the mutual neighbouring sites is termed as a clique, on which the potential function V.(w) depends.
Cliques of the first-order and second- order neighbourhood systems centered on site r shown in
Figure 2.2 as adapted from [51].

Lt ] ]

L L [ I

DD]H REEREEE

(a) (b)
Figure 2.2: Possible cliques of neighbourhood system of site r of (a) a 1 order shown in (c), and (b) a 2*¢ order
shown in (d).

Another important element of the classification process is design of the global energy. This is
important for finding the optimal solution of the pixel labelling process. The global energy is the
total energy derived from the prior energy expressing contextual information and the conditional
probability density function representing the probability of a pixel belonging to a given label. This
is a framework based on Bayesian formulation [13] that;
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P(w:|d;) a P(w.|wne)P(d:|wy) (2.11)

In the equation (2.11) w and d are a certain random variable representing a dataset and class label.
GRF and MRF equivalence results in equation (2.11) is reformulated as

U(wr|dry) = U(wi|wnr) + U(dr|wr) (2.12)

U(wr|wnr) and U(d:|w:) are the prior and conditional energies of N; neighbourhood and U(w:|d.) is
a pixel’s likelihood or posterior energy.

To balance the two energies for achievement of an optimal classification solution, a controlling
parameter known as the smoothing parameter A is introduced transforming equation (2.12) to:

Uwildy) = A Uwelwe) + (1 = ) U(ds|wi) (2.13)

It is observed from equation (2.13) that choosing the value of the smoothing parameter (A) as O, the
contextual information which is the main characteristic of MRF classification is neglected and thus
a value greater than one is used to tune the energy functions.

2.6.2.  Energy minimization

Achievement of the optimal solution of the class labelling process is through minimization of the
energy function. The Simulated Annealing (SA), Iterated Conditional Modes (ICM) and Maximizer
of Posterior Marginal (MPM) iterative techniques are highlighted [13] as important approaches for
the optimization process. The conventional simulated annealing as given by Tso and Mather is
employed in this work [13].
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3. DATA

This chapter provides a description of the dataset used, the selected study area and the data

preparation and pre-processing steps.

341. Dataset and study area

The development of advanced sensor system with finer spatial resolution has in the recent past
attracted a lot attention in the RS field. Currently systems such as electro-optical cameras
incorporated with in-flight features like the ADS40 Airborne Digital Sensors, Airborne High
Resolution Stereo Cameras (HRSC-A), and satellite sensors such QuickBird (QB), Ikonos and
GeoEye exists. Such systems provide high resolution imagery able to clearly reveal detail and vital
object associated information such as texture and structure [88]. In spite of this advancement in
sensor systems which has rendered increased spectral variability as spatial resolution increases, their
products users have been entangled in a fresh confrontation to develop methods for automatic
analysis of these data. This is supported by the inability of the available techniques such the
traditional per-pixel classification and analysis methods’ failure to tackle the heterogeneity and
context of the source information. Such challenges are prominently evident in the analysis of urban
and their peripheral areas which are indispensable for effective planning and management of urban
areas. Full knowledge of an urban area spatial information and distribution is crucial for its
administration and the entire line departments such as disaster estimation and physical planning

[89]. These ventures require effective mapping of trees, roads, and open grass areas among others.

QuickBird and Ikonos data can be used as a source of information for urban applications because
they satisfy some of the main requirements like high geometrical resolution, multi-spectral
capabilities, radiometric sensitivity and good positioning accuracy, among others.

QuickBird data is obtained with an 11 bit dynamic range which enhances visualisation hence
greatly appropriate for application in urban territory studies. Satisfaction of the requirements for
urban applications such high geometric resolution, radiometric sensitivity, an excellent accuracy in
positioning, multi-spectral and revisit potentials and large imagery presents QuickBird as a
dependable source of information in this arena [90]. The sensor incorporates both across and along
track viewing capabilities which fosters its flexibility in data acquisition and frequent revisit time
abilities. These characteristics are also typical of Ikonos satellite imagery. These imaging system
provides an excellent source data relevant for almost all environmental studies such as land-
cover/land-use classification and environmental impact assessment studies [91] among others.
Figure 3.1 provides a scene of QuickBird and Ikonos of part of the study area in panchromatic
band. The QuickBird data used is part of the Enschede area, The Netherlands. The image was
acquired on the 21st September 2009 covering an area with coordinates of 52°12' 00"N,
52° 12" 00"S, 6° 48' 00"W and 6° 48' 00"E. On the other hand the Tkonos image of the same area
was acquired in April 2000.
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[
A

Figure 3.1: Part of a single scene of QuickBird and Ikonos panchromatic band of Enschede, The Netherlands

Figure 3.1 (a), (b) and (c) are part of the Quick Bird, Ikonos and a Google Earth view of portions of
the scene showing the respective grass and tree crowns regions respectively. Details of QuickBird

and Tkonos satellite system are provided in Table 3.1.

Table 3.1: (a) QuickBird and (b) Ikonos imagery details

a) QuickBird (b) Ikonos
Band | Wavelength | Resolution | Swath | Revisit Band | Wavelength | Resolution | Swath | Revisit
(um) (m) width | Time (um) (m) width | Time
(km) | (days) (km) | (days)
Pan 0.45-0.90 0.6 16.5 3.5 Pan 0.45-0.90 1.0 11.3 3.0
Band1 | 0.45-0.52 24 16.5 3.5 Band1 | 0.45-0.52 4.0 11.3 3.0
Band2 | 0.52-0.60 24 16.5 3.5 Band2 | 0.51-0.60 4.0 11.3 3.0
Band3 | 0.63-0.69 24 16.5 3.5 Band3 | 0.63-0.70 4.0 11.3 3.0
band4 | 0.76-0.90 24 16.5 3.5 band4 | 0.76-0.85 4.0 11.3 3.0

3.2.  Data preparation and processing
In this section data selection from QuickBird and Ikonos data of which portions are shown in
Figure 3.1 (a) and (b) alongside data preparation and reference image generation for validation of
classification results are presented.
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3.21.  Selection of land cover classes

To enable this study objectives, image subsets were derived from the QuickBird data and Tkonos
imagery for tree crowns objects and grass, the required land cover classes. The discrimination of
tree crown objects from other land cover classes such grasslands by spectral pixel-based
classification methods is still a major challenge in image processing applications [41] yet this is
crucial for urban area development management.

These reasons led to the choice of these lands cover classes in order to explore the texture-scale
relationship especially when dealing with analysis of multispectral resolution data such as super-
resolution mapping. Six image subsets of either class were selected from the panchromatic and
multispectral bands using ENVI version 4.7 software and converted from raster to ENVI ASCII
format for the required computations in R software. Homogeneous cover of the classes was
selected. In this case the word homogeneous refers to a repeated similar clustered pattern of the
same class. Examples of these subset images are shown in Figure 3.2 and 3.3 of tree crowns objects

and grass classes respectively. These subset images were extracted from the QuickBird and Tkonos

panchromatic bands whose portions of a single scene are shown in Figure 3.1.

o - T S

Figure 3.3: Grass sample subset pairs of 0.6m panchromatic band QuickBird imagery

Use of more than one subsets of either class will aid the incorporation the possible different types
of either class to aid non-deficient analysis.

In the Enschede, The Netherlands, whose QuickBird and Ikonos imagery are used in this study, is
comprised of artificial and natural forests which included closed forests (Figure 3.4) among other
land cover classes. In these forests, trees cover a considerable proportion of the ground such as
broadleaved and coniferous forests. The tree crowns objects sample subsets were extracted from this
land cover in the image data. Similarly, the area is composed of continuous grass layers (Figure 3.4)
such as recreation field grass found in most park areas among other places from where the grass
class sample subsets referred to in this work were obtained in the imagery.
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Figure 3.4: Google Earth view of a closed forest and continuous grass field.

3.2.2. Reference data generation

For accuracy assessment of the results of the applied GMRF method for texture based classification,
reference data is required. The exact class map for the texture subset image to be classified is not
available. Therefore, the reference map for the selected portion of image to be classified was
prepared by manual digitization of the 0.6m QuickBird panchromatic band extracted subset image
to be classified in ArcMap software. The image contains two homogeneous classes which are tree
crowns objects and grass classes. A 200x200 pixel subset image and its generated reference are
shown in Figure 3.5.

(b)
Legend

B Grass

Tree Crowns

Figure 3.5: QuickBird panchromatic (a) original and (b) reference image

As observed from Figure 3.5, the original image is made of two classes grass and tree crowns
objects. However, the image contains a shadow, cast on some parts of the grass class which creating
a mask. This part of the subset image was included in the tree crowns class in this task. This is a

limitation in the classification which should be taken into account in the accuracy assessment.

3.23.  Software
The main software used in the implementation of this research is the R Project for Statistical
Computing version 2.12.1 that is referred to as R software in this work. It is a freely available

statistical and graphics programming language. Other software used included ENVI version 4.7,
ArcGIS and ERDAS IMAGINE 2010.
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4. METHODOLOGY

This chapter describes chronologically each step taken in the execution of this research. Section 4.1
explains GMREF texture simulation by the developed model and its importance for this study. Data
spatial modelling and texture-scale relationship exploration procedure are expounded in sections 4.2
and 4.3 respectively. In section 4.4, the approaches used for class separability quantification are
explained and texture based classification is explained in section 4.5.

41. GMREF texture simulation

The emphasis of this task was to illustrate the appropriateness of the GMRF model for texture
simulation. The textures of grass, tree crown objects, and sand for instance, do not possess easily
identifiable primitives. Stochastic texture can be described by statistical properties and the major
challenges in simulation of such texture include appropriate model selection and model parameters
estimation [92] . This will ensure generation of the adapted model compliant image that compares
with natural textures.

The aim in this development was to achieve as accurate as possible the texture parameter estimates
generated by the model. The GMRF model of Clausi and Bing [40] and Chellappa and Chatterjee
[50] was employed.

Gibbs sampler energy functions were initialized for simulation iterations and sampling from the
field with this algorithm, grey values keep updating till the energy function settles to a constant
minimum. This procedure was implemented in R software. Simulation of GMRF texture was
carried at various patch sizes to assess its effectiveness. Patch sizes used are 8x8, 16x16, 32x32,
64x 64, 96x96, 128x128, 192x192 and 256x256 pixels. Different parameters were used and
assessed for accuracy to ascertain the model suitability for this work.

4.2.  Spatial variation modelling

In this section execution of data normality and spatial variability assessment are explained.

4.21. Data distribution

Approaches for geostatistical analysis are satisfactory when data are normally distributed and
stationary [93]. This implies that there is no significant variation in space of the mean and variance.
To assess data normality and stationarity, a histogram analysis technique was employed and
inspection of data summary statistics using R software. The histograms of some of the sample
subset images (Figure 3.2 and 3.3) were plotted as shown in Figures 4.1 and 4.2. As depicted by the
histograms, data are approximately normally distributed.
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Figure 4.1: Histograms of tree crown sample subset images
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Figure 4.2: Histograms of grass sample subset images

4.2.2. Variogram

The variogram is used to characterize spatial variation in a region of interest. It is a quantitative
descriptive statistic that can be graphically illustrated providing the spatial dependence of each point
on its neighbour. It incorporates the spatial locations of data into the defining computations such as
identification and quantification of texture differences between datasets unlike the common
descriptive statistics and the histogram. In the realm of RS, the variogram has been estimated and
investigated in a range of applications [94-96] and Atkinson and Lewis [97] explain the use of
variogram in classification as a measure of texture.

Image pixel spectral values are spatially auto-correlated and their spatial dependence structure can
be modelled or estimated by variogram. This experiment was carried out to investigate the spatial
dependence of a pixel from its neighbours. It will also depict the textural difference between the six
sample subset images used in this study for grass and tree crowns respectively to aid informed
GMREF texture parameter estimation for class separability. The variogram will characterise the
spatial variability of the image grey levels for purposes of quantifying the difference of the
measured values between the two classes and the subsets of each of the classes themselves as the lag
value of the pixel sampling increases. In this study variogram for the subset images were estimated.

4.3.  GMRF parameter estimation for texture-scale relationship exploration
A second-order neighbourhood GMRF model was adopted. The order also referred to as the eight-
neighbourhood system has eight neighbours for every interior site as shown in Figure 2.1. The
model is an asymmetric neighbourhood system denoted by four pairs of a set of shift vectors
described in section 2.5.2. According to the LS parameter estimation explained in section 2.5.3 as
adopted in this study, the second-order GMRF model parameter solution yields five parameters.
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These are the four parameters from the four pair asymmetric neighbours here referred to as beta (B)
(Figure 2.1(d)) and the conditional variance of the noise source (0?).

To enable explore texture-scale relationship, model parameters were estimated at different spatial
scales or resolutions. Scale factor (SF) in this work is an absolute number used for determining the
spatial scale/resolution at which texture is explored. This value determines the fineness or
coarseness of image texture. QuickBird panchromatic band 0.6m was adopted as image at SF= 1
(fine resolution). Image subsets of this band were then degraded with scale factors (SF) of 2, 4 and 7
to provide an insight of texture. With QuickBird as the fine spatial resolution(SF=1), SF = 2, 4 and
7 will enable analysis at 1.2m, 2.4m and 4.2m spatial scales respectively. The reason for choosing
scale factors of 2, 4 and 7 was to facilitate texture-scale behaviour exploration at the spatial
resolutions approximate to that of the 1m spatial resolution Ikonos panchromatic band, equivalent
to QuickBird multispectral bands and that approximate to SPOT 5 imagery of 5m. Furthermore,
they were selected for exploration of the behaviour of texture at various coarser spatial resolutions.

GMREF parameter estimation was also performed in the multispectral band of QuickBird image of
2.4m spatial resolution. Additionally, texture parameters were estimated for Ikonos panchromatic
and multispectral bandl to provide a comparison of these parameters in different images with
different spatial resolutions. With reference to the spatial variation of the texture subset images as
explained in section 4.2.2, parameter estimation at the mentioned scales was carried out at different
lag values from the interior site of the neighbourhood system. The system was extended to include
more pixel value in order to account for variability inherent in the texture sample images. The lag
values (distance in pixels) considered as informed by the variogram were 1, 3, 5, 7, 10, 15 and 20.
These were visually determined from the variogram plots in the range showing the different spatial
structure of grass and tree crowns objects. A lag in this study refers to a 1 pixel distance of a certain
image of a given spatial resolution. The 2™ order neighbourhood system used in this study that
yields four beta parameters and the conditional noise variance is based on the lag values. The order
remains 2™ despite the lag value. With lag value 5 for instance, the 2™ order neighbourhood system
contains an equivalent of 5 pixels distance.

4.4.  Class separability

In this section, an explanation of the techniques employed to analyze class discrimination between
tree crowns and grass land cover classes modelled by the GMRF model is provided.

Feature spaces are often utilized to demonstrate class separability in image analysis applications.
This procedure was also used in this study. However, these distributions have overlaps which
impinge on classification of such data and hence the concept of separability. Class separability a
classical notion in pattern recognition which is coordinate system independent [98] that expresses
how well two classes can be discriminated [99]. This concept provides an account of the classes’
distribution. Several techniques for determining class separability exist. Jiancheng [99] notes Fisher
criterion as one of the important and widely used separability measure. This measure was adopted
in this study. However, the Fisher linear discriminant performs analysis band by band or considers
each feature independently. Therefore to enhance findings derived for this analysis, the
multidimensional Euclidean distance is employed.

441. GMREF texture feature spaces

A standard image feature space is a graph depicting image data files (digital numbers) of one band
against another as a scatter plot. In this space significant features conform to feature space cluster
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regions whose purpose of analysis is delineation of the clusters. GMRF estimated texture
parameters used as texture features for texture characterization in this research have been combined
to produce features spaces to graphically illustrate the separability between tree crown objects and
grass land cover classes. This has been done at different scales and lag values mention in section 4.3.

4.4.2. Fisher criterion

Fisher criterion also known as Fisher discriminant function identifies a projection that maximizes
the variance of the class means and minimizes the variance of the individual classes. The technique
is a commonly favoured measure of class discrimination using the distance between class clusters
[26]. The approach is employed to assess estimated GMRF model texture features in a one
dimensional space. This linear discriminant ratio can be used as a performance measure [100], as
pattern classifier and for feature extraction [101] and feature selection. Fukunaga, and Stathakis and
Perakis [98, 100] define a two-class Fisher criterion which maximizes the linear projections w as:

|mi—m;|?

J(w) = ——- (4.1)

S12+s,2

Where m represents a mean, s* represents a variance, and the subscripts denote land cover classes 1
and 2. The numerator of this criterion expresses the between-class discrimination while the
denominators each denote the scatter (variance) within that respective class. Maximizing the
criterion, the distance between the means of the classes is maximized whereas the variance within
each class is minimized. The score ], expresses the features’ discrimination or the class separability
factor. The larger the score, the more likely a feature is more discriminative.

The main purpose for using this criterion was to perform a separability analysis of the two land
cover classes as modelled by the GMRF texture model. Since the accuracy of GMRF parameter
estimation was ascertained from the texture simulation experiment that was carried out at different
patch sizes explained in section 4.1, Fisher criterion results for parameters estimated from areal
images was assessed as a function of patch size using the accuracies attained from the simulation.
This was carried out for comprehension of class separability with different image patch sizes that
may be used for a given application. In addition, this analysis was undertaken at different image
scales and lag values mentioned in section 4.3.

44.3. Euclidean distance for class separability

To assess the separability of the classes, the Euclidean distance [102] between the two class centres is
applied as a separability measure. The Euclidean distance has been computed in a multidimensional
space represented by the GMRF texture features. Referring to the parameters of the second-order
GMRF model used in this work, a five multidimensional space Euclidean distance was computed.
Each texture feature mean (Bi, B2, B3, B+ and 02) was calculated to obtain the class centre for that
parameter for each class (tree crowns objects and grass). The square root of the sum of the squared
differences was thus taken to get the Euclidean distance in this space.

4.5. GMREF texture based classification

This section provides the procedure used in the classification of texture subset images using the
GMRF model. Texture classification in this work is significant for assessing classification accuracy
of the adapted texture-scale exploration method. Studying the behaviour of texture at different
scales without ascertaining the accuracy of the employed method in classifying the same texture
classes is depriving the approach of its merit and innovation.
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In this research, since it was confirmed that the simulated texture do reproduce the characteristics
of the initial texture, texture features derived from the GMRF model are used in the classification
process. The procedure used in the texture based classification is hereby provided.

4.51. Classification procedure

Texture image classification was carried out to illustrate the developed methods achieved accuracy.
To execute this task, optimization of the GMREF classification process is a pre-requisite. This phase
was thus based on an iterative optimization algorithm for initial image refinement. This is done
through iterative updating of each pixel in the initial image by a new class label considering the
spatial relationship of class neighbouring pixels. Since the GMRF texture model incorporates the
modality of pixel neighbourhood contextual information and the data distribution, the image
texture is thus modelled as a GMREF. For the classification process to succeed, specification of the
prior and likelihood energy functions ( section 2.6.1) for interaction between neighbouring pixels
and textural information expressing the local evidence of a pixel site respectively were done which
are integrated resulting in the process global energy. Energy functions are significant in this process
for finding the minimum and quantifying the global solution of the classification scheme.

Attainment of an appropriate result is achieved through regularization of the two constraint
energies by a smoothing parameter denoted as lambda (A ). Maximization of the probability of
labelling a pixel to a certain class is the final aspect of the classification process achieved through
energy minimization. The whole energy optimization process is implemented using the simulated
annealing (SA) approach by the randomness optimization control parameter called the temperature
(T) and the updating schedule parameter.

Details of this process are provided in chapter 2 section 2.6.

4.5.2.  Accuracy assessment

To understand and compare the quality and accuracy of the results of the classification scheme, an
assessment of the applied GMRF model performance is a re-requisite. Without this assessment the
degree of performance of the employed approach for objective of this work cannot be ascertained.
The commonly classification results assessment approach used in RS - the confusion matrix is
employed for this purpose. The confusion matrix also known as the classification error matrix or
contingency table depicts the degree of misclassification of the classes in question. The kappa
statistic whose details are given in [103] derived from the confusion matrix was used in this study
for accuracy assessment.
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5. RESULTS

This chapter is divided into seven main sections presenting the experimental results obtained for
achievement of this study objective. Section 5.1 presents results of the texture simulation task for
assessment of the accuracy of the estimated parameters used in the task. In section 5.2, variogram
experimental results are given proving a range within which the considered land cover classes can
be separated. Sections 5.3 and 5.4 describe the experimental results of the GMRF estimated
parameters and their feature space plots respectively. Fisher criterion and inter-class separability
analysis results are respectively provided in sections 5.5 and 5.6. Section 5.7 provides the findings
from the texture based classification experimental results using GMRF.

5.1.  Simulation of GMRF texture
Texture simulation using GMRF aims to duly fit a model to certain specified real life texture and
produce an image conforming to the chosen model. This ensures that the simulated texture from a
set of random variables is perceptually close to the original texture. Therefore the model should
estimate the original texture parameters with minimal errors as possible. True or initial texture
parameters for which results are presented here are -0.25, 0.2, 0.08, -0.03 and 1 for B1, By, Bs, Bs and
0% (conditional variance of the noise source) respectively. Results of the texture simulation
experiment are provided in Figure 5.1.
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Figure 5.1: (2) 96x96 and (b) 128 x 128 simulated textures using a 2*¢ order GMRF model

The accuracy for the estimated parameters from the simulation were assessed as a function of patch
size mentioned in section 4.1. Results of this task are given in Figures 5.2, 5.3 and 5.4.
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Figure 5.2: (a) Estimated and (b) error in estimated GMRF parameters as a function of patch size
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Figure 5.3: Conditional variance (02) and (b) average standard deviation of estimated (Bs) GMRF parameters
as a function of patch size.

Figure 5.2 (a) shows the estimated parameters from the texture simulation task as a function of
patch size whereas Figure 5.2 (b) represents the errors in estimated parameters as a function of
patch size. It’s observed that very small errors which tend to zero as patch size is increased are
obtained for each parameter. In a similar way, the estimated conditional variance of the noise
source and the average standard deviation of the estimated (beta) parameters were plotted against
the various patch sizes used as depicted in Figure 5.3 (a) and (b) respectively

Since the purpose of the texture simulation exercise was to ensure that accurate estimated
parameters of the initial true values are obtained, the individual standard deviations of the estimated
beta parameters like the conditional variance of the noise source(Figure 5.3(a)) were also plotted as a
function of patch size to aid their analysis as provided in Figure 5.4.
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Figure 5.4: (a), (b), (c) and (d) Standard deviation of estimated B1, B2, B3 and B, as a function of patch size

The graphs depict very small error for each of the parameters a trend conforming to the one shown
by the average standard deviation (Figure 5.3 (b)).

5.2.  Variogram for land cover classes spatial variation modelling

One of the most important aspects for application of GMRF models is choice of an appropriate
model which is determined by the neighbourhood system adapted to achieve meaningful results of
the method’s analysis. Haindl [25] pointed out that a small contextual neighbourhood and inclusion
of unnecessary neighbours may not capture the variability inherent in data and can lead to model
degradation as noise source respectively. For these reasons, variogram estimation of the prepared
data whose distribution was analysed as described in section 4.2.1 was carried out. The purpose of
variogram estimation is expounded in section 4.2.2 of chapter four. Variogram of the six texture
image samples from the QuickBird panchromatic band of either land cover class used in this study
(tree crown objects and grass) was produced to aid informed neighbourhood system determination
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for the GMRF model. Variograms of the image subsets whose samples are given in Figures 3.2 and
3.3 are shown in Figure 5.5 characterizing the spatial variability of the image grey level.
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Figure 5.5: Tree crowns and grass variograms (a) before standardization (b) after standardization.

As the data spatial distribution shown in section 4.2.1 of chapter 4 show a uniform distribution, an
Omuni-directional variogram was thus sufficient to represent the data [104] as shown in Figure 5.5.
From Figure 5.5(a) both tree crowns and grass subset images have different sills (different overall
variances) and different ranges (maximum distance of spatial autocorrelation). Either class subset
images have got a very small nugget variance although that of tree crown objects is higher than that
of grass images. This small value implies that there are fewer spatial effects of variation at this
interval pixel distance for either class.

The main objective of representing the sample image subsets in a variogram was to help assess how
the image subsets are correlated for determination of an appropriated lag at which grass can be
discriminated from tree crown objects. From Figure 5.5 (b) of both standardized tree crowns and
grass variograms it is seen that grass and trees show a different spatial structure within the region of
auto-correlation raging from 1 to 20 pixels. By visual inspection of the graph, lag values of 1, 3, 5, 7,
10, 15 and 20 were chosen for GMRF parameter estimation at different scale to help find the most
appropriate lag for class separability to effect texture-scale behaviour exploration.

5.3.  GMRF parameter estimation

GMRF model parameters were estimated using the LS estimation technique described in section
2.5.3 of chapter 2. Using this method, for every patch of size Mx N, q parameters (equation (2.6))
which characterize the smoothness of the texture are determined and then the § (betas) and
conditional variance parameters are estimated which yield the GMRF texture features. In this
work, these estimations were performed for tree crown objects and grass at with different scale
factors (SF) of 1, 2, 4, and 7 of QuickBird panchromatic band (section 4.3 chapter 4) and different
lag values (section 4.3) to facilitate separation of the two classes (grass and tree crown objects).

5.3.1.  Parameter estimation with different scale factors from QuickBird panchromatic band

As mentioned above, the aim of estimating GMRF parameter (texture features) at different lags was
to find out the most appropriate lag at which grass and trees can be discriminated for texture
exploration at different scales. Results of this experiment with SF = 1, 2, 4, and 7 from the 0.6m
spatial resolution QuickBird panchromatic band are provided in Table 5.1.
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Table 5.1: LS estimation of parameters corresponding to a 2™ order model of different lags with SF= 1, 2, 4,
and 7 from QuickBird panchromatic band

Lag value
1 3 5 7 10 15
Parameter | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
B1 0.429 | 0.531 | 0.031 | -0.024 | 0.113 | 0.063 | 0.082 | 0.019 | 0.056 | -0.020 | 0.107 | -0.048
B2 0.442 | 0.536 | 0.099 | 0.109 | 0.151 | 0.215 | 0.135 | 0.172 | 0.155 | 0.143 | 0.134 | 0.121
B3 -0.199 | -0.292 | 0.161 | 0.186 | 0.105 | 0.089 | 0.121 | 0.124 | 0.137 | 0.101 | 0.130 | 0.037
B4 -0.167 | -0.276 | 0.220 | 0.268 | 0.145 | 0.134 | 0.171 | 0.147 | 0.194 | 0.109 | 0.186 | 0.042
0? 0.039 | 0.015 | 0.246 | 0.347 | 0.366 | 0.628 | 0.430 | 0.744 | 0.461 | 0.883 | 0.589 | 0.964
(a) Estimated parameters with SF =1
Lag value
3 5 7 10 15
Parameter | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
B 0.338 | 0.394 | 0.058 | 0.002 | 0.062 | -0.005 | 0.097 | -0.051 | 0.101 | -0.052 | -0.127 | -0.061
B2 0.394 | 0.449 | 0.106 | 0.160 | 0.176 | 0.178 | 0.140 | 0.133 | 0.140 | 0.134 | 0.149 | 0.090
B3 -0.135 | -0.183 | 0.153 | 0.146 | 0.121 | 0.071 | 0.120 | 0.046 | 0.119 | 0.049 | -0.087 | 0.027
Bs -0.090 | -0.146 | 0.203 | 0.197 | 0.207 | 0.084 | 0.220 | 0.059 | 0.121 | 0.014 | -0.013 | -0.014
o2 0.093 | 0.115 | 0.321 | 0.618 | 0.415 | 0.886 | 0.506 | 0.951 | 0.649 | 0.963 | 0.698 | 0.986
(b) Estimated parameters with SF =2
Lag value
3 5 7 10 15
Parameter | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
B1 0.257 | 0.299 | 0.027 | -0.061 | 0.164 | -0.071 | -0.058 | -0.083 | -0.320 | -0.033 | -0.605 | 0.018
B2 0.310 | 0.398 | 0.118 | 0.158 | 0.203 | 0.159 | 0.209 | 0.117 | 0.006 | 0.093 | 0.145 | 0.000
B3 -0.039 | -0.101 | 0.165 | 0.097 | 0.102 | 0.059 | -0.019 | 0.040 | -0.191 | 0.032 | -0.288 | 0.060
B4 -0.006 | -0.070 | 0.274 | 0.127 | 0.044 | 0.014 | -0.008 | -0.003 | -0.129 | -0.040 | 0.985 | 0.013
o2 0.148 | 0.275 | 0.355 | 0.856 | 0.618 | 0.934 | 0.687 | 0.954 | 0.643 | 0.962 | 0.352 | 1.051
(© Estimated parameters with SF =4
Lag value
1 3 5 7
Parameter Grass Trees Grass Trees Grass Trees Grass Trees
B 0.175 0.226 0.081 -0.085 -0.364 -0.069 -0.478 -0.032
B2 0.313 0.390 0.149 0.186 0.091 0.135 -0.126 0.102
Bs -0.027 -0.057 0.169 0.060 -0.222 0.026 -0.118 0.016
Bs 0.093 -0.044 0.188 0.021 -0.083 -0.021 -0.295 -0.064
o? 0.152 0.433 0.520 0.892 0.509 0.929 0.778 1.001

(d) Estimated parameters with SF =7

GMRF parameter estimation was first executed with SF=1 at the resolution of QuickBird
panchromatic band and the estimation carried out at the different lag values. The same procedure
was then repeated with the 0.6m spatial resolution QuickBird panchromatic band degraded which
SF= 2, 4 and 7, and parameters estimated in a similar way in R software. Included in Table 5.1 are
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estimated parameters of one image subset for either tree crowns objects and grass across the
different scales. The estimated texture features with SF= 1 at lag 1 (Table 5.1 (a)) show that the
texture describing features betal and beta2 are positively correlated whereas beta3 and beta4 are
negatively correlated. This trend is also clearly observed from the parameters with SF = 2 and 4
(Table 5.1 (b), (c)). When the image is coarsened further with SF = 7 (Table 5.1(d)) this trend is not
shown by beta4 of the grass class.

At larger lags, texture features of both grass and tree crowns objects do not give a clear pattern.

5.3.2. Parameter estimation from QuickBird imagery multispectral bands

To show the behaviour of the two spectrally similar land-cover classes (grass and tree crowns
objects) parameter estimation was also performed in the multispectral bands of QuickBird.
Different six image subsets of either class were selected from the multispectral bands of QuickBird
2.4m spatial resolution imagery. The patch sizes of subsets are 42x41, 75%99, 60x41, 75%73,
63%x 62, 52x46 and 99x 124, 129x 110, 129x 100 and 149x 140, 79x51, 96x 104 pixels for grass and
tree crown objects respectively. Typical values of the second-order GMRF model for band 1 and 2
are shown in Table 5.2. Values for bands 3 and 4 are not given here because of the volume of tables
and the ones presented are their true representatives as shown in Appendix A.

Table 5.2: LS estimation of parameters corresponding to a 2™ order model at different lags from QuickBird
multispectral band 1 and 2

Lag value
1 3 5 7 10 15
Parameter | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
B1 0.320 | 0.368 | 0.182 | -0.051 | 0.094 | -0.034 | 0.012 | -0.028 | -0.136 | 0.026 | -0.235 | -0.024
B2 0.294 | 0.358 | 0.109 | 0.139 | 0.230 | 0.139 | 0.182 | 0.097 | 0.114 | 0.079 | -0.011 | 0.049
Bs -0.076 | -0.109 | 0.139 | 0.088 | 0.064 | 0.021 | 0.054 | 0.021 | -0.107 | 0.006 | -0.044 | 0.048
Bs -0.043 | -0.095 | 0.074 | 0.153 | 0.110 | 0.068 | 0.143 | 0.045 | 0.083 | 0.061 | 0.027 | 0.069
o? 0.305 | 0.319 | 0.574 | 0.859 | 0.725 | 0.951 | 0.842 | 0.973 | 0.880 | 0.976 | 0.650 | 0.984
(@ Band1l
Lag value
1 3 5 7 10 15
Parameter | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
B 0.362 | 0.466 | 0.179 | -0.075 | 0.125 | -0.063 | -0.033 | -0.050 | -0.183 | 0.008 | -0.286 | -0.035
B2 0.273 | 0.455 | 0.127 | 0.173 | 0.220 | 0.176 | 0.225 | 0.142 | 0.253 | 0.121 | -0.029 | 0.073
Bs -0.071 | -0.218 | 0.081 | 0.092 | 0.119 | 0.046 | 0.107 | 0.029 | -0.125 | -0.018 | -0.165 | 0.024
Bs -0.062 | -0.190 | 0.145 | 0.170 | 0.102 | 0.064 | 0.150 | 0.048 | 0.127 | 0.078 | 0.029 | 0.067
o2 0.167 | 0.152 | 0.348 | 0.805 | 0.518 | 0.928 | 0.609 | 0.957 | 0.697 | 0.970 | 0.423 | 1.001
(b) Band 2

A visual inspection of texture features estimated from QuickBird multispectral bands (Table 5.2 and
Appendix A) reveals the same pattern observed at lag one with SF = 1, 2 and 4 with values
comparable to those of SF = 4. The magnitude of parameters for tree crowns is generally larger
than that of grass in all bands which pattern is lost at lag values greater than 1. In addition, the
estimated parameters of lag 1 increase in magnitude from band 1 to 4; however the increase is not so
marked depicting the same spatial distribution. The pattern observed at lag 1 with SF = 1, 2 and 4
is not reported for parameters from Ikonos panchromatic band where values are mainly positively
correlated (Table 5.3). In this imagery there is no clearly defined pattern shown by the features
across the lag values although relatively large values for either class are reported for lags 1 to 7. In
all this cases it is noticeable that the conditional variance is recovered as the lag is increased.
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5.3.3.  Parameter estimation from lkonos panchromatic band
To gain a deeper insight of the texture-scale relationship, GMRF texture parameters were estimated
from Ikonos panchromatic band. Results of the parameter estimates for the two spectrally similar
classes (grass and tree crowns objects) at lag values of 1, 3, 5, 7, 10 and 15 are given in Table 5.3.

Table 5.3: LS estimation of parameters corresponding to a 2™ order model of different lags from Ikonos
panchromatic band.

Lag value
1 10 15
Parameter | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
B 0.087 | 0.217 | 0.086 | 0.079 | 0.067 | 0.056 | 0.056 | 0.050 | 0.044 | 0.056 | 0.011 | 0.068
B2 0.061 | 0.191 | 0.105 | 0.112 | 0.153 | 0.124 | 0.130 | 0.093 | 0.112 | 0.073 | 0.081 | 0.075
B3 0.121 | 0.080 | 0.106 | 0.135 | 0.068 | 0.041 | 0.052 | 0.031 | 0.026 | 0.032 | -0.014 | 0.049
B 0.124 | 0.044 | 0.117 | 0.170 | 0.091 | 0.120 | 0.095 | 0.125 | 0.068 | 0.111 | 0.051 | 0.045
o2 0.725 | 0.248 | 0.732 | 0.625 | 0.791 | 0.862 | 0.828 | 0.890 | 0.856 | 0.913 | 0.866 | 0.927

This task was carried to facilitate a comparison of texture features from different images with

different spatial resolutions hence comparison on the texture-scale behaviour in a similar way.

Texture features form this band are mainly positive values and have got relatively small values

compared to those of SF= 2 of QuickBird panchromatic band (comparable spatial scale).

5.3.4.

Parameter estimation from lkonos multispectral band1

In a similar way, GMRF texture features were estimated from Ikonos multispectral bands (imagery
of 4m spatial resolution). Results of the five features at different lags for only one sample subset
image of either class are presented in Table 5.4.

Table 5.4: LS estimation of parameters corresponding to a 2™ order model of different lags from Ikonos
multispectral band1

Parameter Lag value
1 10 15

Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees | Grass | Trees
Bi 0.115 | 0.403 | 0.059 | 0.085 | 0.100 | 0.018 | 0.077 | 0.043 | 0.040 | 0.011 | 0.103 | 0.017
B2 0.116 | 0.177 | 0.079 | 0.146 | 0.093 | 0.150 | -0.033 | 0.087 | -0.075 | 0.129 | -0.123 | 0.020
Bs 0.318 | -0.043 | 0.261 | 0.109 | 0.153 | 0.089 | 0.193 | 0.083 | 0.153 | 0.089 | 0.082 | 0.135
B4 -0.047 | -0.032 | 0.082 | 0.059 | 0.088 | 0.057 | 0.101 | 0.056 | 0.067 | 0.018 | -0.104 | 0.015
o2 0.148 | 0.266 | 0.165 | 0.517 | 0.226 | 0.555 | 0.251 | 0.596 | 0.268 | 0.595 | 0.298 | 0.741

This task was only carried out for band 1 to provide a comparison of parameters from a different

imagery at coarser spatial resolution.

5.4.

GMRF parameter feature spaces for class separability
In the previous section, various estimated parameters for different lags at different scales have been
given. Preliminary visual inspection of the parameters at the various scales reveals a reduction of the
parameter values as the spatial resolution is coarsened. In addition, especially looking at parameters

of lag 1, grass estimated texture parameter values are smaller than those of tree crown objects.
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This visual inspection, however, cannot offer a lasting conclusion of the texture-scale relationship.
To provide this comprehension, parameter feature spaces have been employed. This was done to
provide a visual impression of the capability to perform class separability using the GMRF model.
Details and importance of these scatter plots are provided in section 4.4.1 of chapter 4. In this
research GMRF estimated texture features have been used in a similar way to discriminate tree
crowns objects from grass to aid exploration of the texture-scale relationship.

5.4.1.

The texture-scale relation exploration task at different scales was started with SF=1 of QuickBird
panchromatic band considered as the finest resolution (0.6m) at which various texture features can
be distinctly discerned. Results of GMRF features (betal (B1), beta2 (B,) beta (Bs), betad (B,) and
conditional variance (0?)) feature space combinations at lag one are shown in Figure 5.6.

In a similar way to demonstrate class separability of grass from trees with SF =1, feature space plots
were generated for lag values 3, 5, 7, 10, 15 and 20. Graphs at these lag values are provided in
Appendix B. This will help provide a comparison of the separability power of the GMRF model
from the feature spaces at the various lags for identification of the most favourable lag to perform
texture-scale relationship exploration.

Feature spaces from QuickBird panchromatic band with SF =1 and 2

Similarly, to facilitate the study of the texture-scale behaviour at a spatial resolution approximate to
that of Tkonos panchromatic band (1m), the 0.6m spatial resolution QuickBird panchromatic band
degraded with SF =2 GMREF estimated parameters were also plotted in a standard feature space.
Figure 5.7 is hereby provided showing the feature space plots of the texture features at lag 1.
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Figure 5.6: Features spaces from QuickBird panchromatic band (SF =1, Lag =1)
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Figure 5.7: Features spaces from QuickBird panchromatic band (SF =2, Lag =1)
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Graphs showing the feature space plots at lag values of 3, 5, 7, 10, 15 and 20 with SF = 2 are

provided in Appendix C where it is observed that the plotted grass and tree crowns objects features

exhibit more variability being less clustered as observed at lag 1.

5.4.2,

To demonstrated the texture-scale relationship behaviour at spatial resolution equivalent to that of
the QuickBird multispectral band, 0.6m QuickBird panchromatic band was coarsened with SF =4.
This is important to study class separability of the spectrally similar land cover classes under

Feature spaces from QuickBird panchromatic band with SF = 4

investigation (grass and tree crowns objects). Since the same behaviour is demonstrated by the
texture features in space at various lag values as observed in sections 5.4.1 and 5.4.2, with SF=4
only feature space plots at lag 1 are provided in Figure 5.8.
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5.4.3. Feature spaces from QuickBird panchromatic band with SF =7

SF = 7 was used to degrade the 0.6m QuickBird panchromatic band to provide an exploration of
the texture-scale relationship at a more coarsened spatial resolution approximated to that of SPOT5
panchromatic band. It will provide an assessment of the two spectrally similar grass and tree crowns
classes at such a coarse resolution to aid informed decisions for any analyzes involving such classes
with such imagery spatial resolution. From Figure 5.9, only lag 1 features space plots have been
given, other lag values graphs are not provided here since they similarly depict the same trend.
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Figure 5.9: Features spaces from QuickBird panchromatic band (SF =7, Lag =1)

With SF = 4 and 7 (Figure 5.8 and 5.9), class separability between the clusters formed by the
respective texture features is still observed in some feature combinations, however, the classes are
seen to overlap as the scale factor increases. The clusters defined by the texture features in space at
lag 1 lose their compactness and dwindle away to overlapping classes as lag values increases across
all scale factors (Appendix B, and C).

5.4.4. Feature spaces from QuickBird multispectral bands

Six sample images of grass and tree crowns as similarly used from the panchromatic band of
QuickBird were taken from the multispectral bands. Parameters estimation was then carried out
band by band and analysis of class separability done in the same way at different lag values of 1, 3,
5, 7, 10 and 15. In this section, features space parameter combinations in all bands at lag 1 are
presented whereas feature space plots at larger lags will be explained but results are not provided
here since they give the same display. Results of parameter features space plots in band 1 at lag 1 are
give in Figure 5.10.
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Figure 5.10: Features spaces from QuickBird multispectral band 1 at Lag 1
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This experiment was primarily carried out to provide an understanding of the texture-scale
relationship behaviour at such a coarser spatial resolution (2.4m), alongside helping to discover the
data spatial distribution pattern in the different bands. To give the texture pattern with increased
variability inherent in the land cover classes under consideration incorporated in the parameter
estimation scheme, feature spaces from band 1 at lag 3, 5, 7, 10 and 15 are shown in Appendix D.

To study the spatial data distribution and the texture-scale behaviour in the different QuickBird
multispectral bands, feature space plots showing the visual class separability of grass from tree
crowns at lag 1 in band 2 and 3 are give if Figures 5.11 and 5.12 respectively. Graphs of features
estimated at lag 3, 5, 7, 10 and 15 are not given here because of showing the same display.
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Figure 5.11: Features spaces from QuickBird multispectral band 2 at Lag 1
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Figure 5.12: Features spaces from QuickBird multispectral band 3 at Lag 1
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The same pattern is observed from the clusters formed by grass and tree crowns objects features in
Figure 5.11 and 5.12 for band 2 and band 3 respectively. In a similar way, results of the features in a

standard feature space from QuickBird multispectral band 4 are shown in Figure 5.13.

the same trend as recorded from band 1, 2, and 3.
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Figure 5.13: Features spaces from QuickBird multispectral band 4 at Lag 1

5.4.5.

Texture features estimated from the 1m spatial resolution Ikonos panchromatic band were also
plotted in a standard feature space to show the separability of grass from tree crowns objects. These
experimental results are important for providing analysis of the behaviour of texture in a different
image with different spatial resolution. This task was carried out only with scale factor 1 of the
spatial resolution of this imagery but at different lags (1, 3, 5, 7, 10, and 15). Feature space plots of
the texture features at lags 1 are shown in Figure 5.14.

Feature spaces from Ikonos panchromatic band
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Figure 5.14: Features spaces from Ikonos panchromatic band (SF=1, lag value =1)

As observed from Figure 5.13, all feature combinations provide a clear visual separability of the
clusters formed by the texture features of the two classes at this lag value. To investigate the
discrimination of the classes when more variability is included in the features estimation scheme
graphs of feature spaces at lag values of 3, 5, 7, 10, and 15 are provided in Appendix E.

5.4.6. Feature spaces from lkonos multispectral band1

Texture features were similarly estimated in Tkonos multispectral bands and plotted in a standard
feature space plot. This experiment was carried to provide a comparison of the texture
characteristics from the 4m spatial resolution imagery. Only one band out of the four bands of
Ikonos multispectral band is sufficient from which texture features were estimated at lags 1, 3, 5, 7,
10 and 15. Feature space plots for the texture features at lag 1 are given in Figures 5.15.
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Figure 5.15: Features spaces at SF=1 and Lag value =1 from Ikonos multispectral band1

From Figure 5.15, clear visual separability is observed from the all feature combinations.
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5.5. Fisher Criterion

Fisher criterion whose details are provided in section 4.5.2 was applied to provide a deeper insight
of the capability of the GMRF model to discriminated grass from trees. This approach provides an
assessment of class separability for each band (GMRF texture feature) independently. This
procedure in this work provides an efficient separability analysis procedure as it is not necessary for
all feature combinations to show discrimination of the two land cover classes for them to be
separable. This assessment has been carried out taking into account of the measurement error
which depends on the patch size as explained in section 5.1.

5.5.1.  Class separability analysis from QuickBird panchromatic band

In this section, results of Fisher criterion in QuickBird panchromatic band of parameters estimated
with SF=1 are provided. Outputs of this analysis in panchromatic band with SF= 2, and 4, 7 are
give in Appendices F, and G respectively. This is because they are provided in the same display.
Table 5.5 shows Fisher criterion results from panchromatic band with SF= 1 class separability
analysis at lag values of 1,3, 5and 7.

Table 5.5: Fisher criterion of texture features as a function of patch size from QuickBird panchromatic band
SF=1 (lag=1,3,5,& 7)

Patch Patch

size betal | beta2 | beta3 | beta4 | Variance size betal | beta2 | beta3 | beta4 | Variance
8 0.474 0.297 0.470 0.366 | 0.321 8 0.209 | 0.001 | 0.054 | 0.425 | 0.196
16 1.807 1.052 1.848 1.348 | 0.860 16 0.426 | 0.002 | 0.169 | 1.637 | 0.233
32 3.494 1.864 3.727 2.496 | 1.359 32 0.519 | 0.004 | 0.269 | 3.215 | 0.243
64 5.347 2.614 5.985 3.653 | 1.651 64 0.564 | 0.006 | 0.345 | 5.008 | 0.246
96 5.707 2.745 6.450 3.865 | 1.718 96 0.570 | 0.007 | 0.357 | 5.363 | 0.247
128 5.876 2.805 6.671 3964 | 1.729 128 0.572 | 0.007 | 0.362 | 5.531 | 0.247
192 6.049 2.866 6.900 4.064 | 1.745 192 0.575 | 0.007 | 0.368 | 5.703 | 0.247
256 6.101 2.884 6.969 4.094 | 1.754 256 0.576 | 0.007 | 0.369 | 5.755 | 0.247

(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3

Patch Patch

size betal beta2 | beta3 | beta4 | Variance size betal | beta? | beta3 | beta4 | Variance
8 0.160 0.356 | 0.001 | 0.117 | 0.050 8 0.449 | 0.142 | 0.007 0.257 | 0.357
16 0.288 1.473 | 0.002 | 0.459 | 0.058 16 0.841 | 0.580 | 0.018 0.903 | 0.407
32 0.333 3.196 | 0.002 | 0.921 | 0.059 32 0.989 | 1.230 | 0.023 1.593 | 0.420
64 0.354 5.649 | 0.002 | 1.470 | 0.060 64 1.058 | 2.104 | 0.027 2.222 | 0.425
96 0.357 6.216 | 0.003 | 1.582 | 0.060 96 1.067 | 2.298 | 0.027 2.331 | 0.425
128 0.358 6.495 | 0.003 | 1.636 | 0.060 128 1.071 | 2.393 | 0.027 2.382 | 0.425
192 0.359 6.788 | 0.003 | 1.691 | 0.060 192 1.075 | 2.491 | 0.027 2.432 | 0.426
256 0.359 6.879 | 0.003 | 1.707 | 0.060 256 1.076 | 2.522 | 0.027 2.447 | 0.426

(¢ Fisher Criterion at lag 5 (d) Fisher Criterion at lag 7

It is observed that although all features show a considerable class separability power, some of them
are more favourable than others across all lag values as shown in Table 5.5. Results of this criterion
at lag 10 and 15 are given in Table 5.6 to further assess this trend.
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Table 5.6: Fisher criterion of texture features as a function of patch size from QuickBird panchromatic band

SF=1 (lag=10, 15)

Patch betal | beta2 | beta3 | beta4 | Variance Patch

size size betal beta2 beta3 | beta4 | Variance
8 0.600 | 0.033 | 0.052 | 0.129 | 1.010 o 0690 | 0058 10107 | 0,002 | 1.209

16 1.336 | 0.093 | 0.170 | 0.408 | 1.147 6 385 | oasr | 0381 | 0006 | 1381

32 1694 | 0.134 | 0277 | 0.649 | 1.182 1 675 | o030t | o83 | 0.009 | 1425

64 1.880 | 0.161 | 0.361 | 0.830 | 1.193 64 1816 | 0397 | 0.965 | 0.012 | 1.439

%6 1.905 | 0.165 | 0.375 | 0.859 | 1.195 9% 1.835 | 0411 | 1.015 | 0.012 | 1.441
128 1916 | 0.167 | 0.381 | 0.872 | 1.195 128 1843 | 0418 | 1038 | 0.012 | 1.442
192 1.927 1 0.169 | 0.387 | 0.884 | 1.195 192 1850 | 0425 | 1061 | 0.012 | 1.442
256 1.930 | 0.169 | 0.389 | 0.888 | 1.1% 256 1.853 | 0427 | 1.068 | 0.012 | 1.442

(@) Fisher Criterion at lag 10

5.5.2.

(b) Fisher Criterion at lag 15

Class separability analysis from QuickBird multispectral bands

Separability analysis with Fisher criterion was also performed in QuickBird multispectral bands to

assess the discrimination power of the GMRF model using grass and tree crowns land cover classes.

This was performed in each band to aid decisions for which band is more appropriate for selection

in analysis involving spectrally similar land cover classes. Results of this assessment from band 2, 3
and 4 are given in Appendix H, I and J. Table 5.7 shows Fisher linear discriminant results of
GMREF texture features as a function of patch size from QuickBird band 1.

Table 5.7: Fisher criterion as a function of patch size from QuickBird band 1 (lag =1, 3, 5, 7, 10, 15)

Patch Patch betal | beta2 | beta3 | beta4 Variance
size betal | beta2 | beta3 | beta4 | Variance size
g 0001 | 0oss |oo1s | o002 | 00s2 8 0.745 | 0.002 | 0.018 [ 0.062 [ 0.894
16 0.004 10265 | 0082 | o007 | 01138 16 1.903 [ 0.006 | 0.065 | 0219 | 1.035
32 0.007 | 0.686 | 0.209 0.013 | 0.130 32 2.596 | 0.010 | 0.114 | 0.385 1.072
64 0011 | 1.672 | 0495 | 0.021 | 0.135 64 3.001 | 0.012 | 0.159 [ 0.537 [ 1.084
96 0.012 | 2.016 | 0592 |0.022 | 0.136 96 3.058 | 0.013 [ 0.167 [ 0.563 [ 1.086
128 0012 | 2211 | 0.645 | 0.023 | 0.136 128 3.083 | 0.013 [ 0.170 [ 0.575 | 1.086
192 0.012 [ 2.437 ]0.707 | 0.023 | 0.136 192 3.108 | 0.013 | 0.174 | 0.587 | 1.087
256 0013 | 2513 | 0.728 | 0.024 | 0.136 256 3.115 | 0.013 [ 0.175 [ 0591 | 1.087
(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3
Patch betal | beta2 beta3 | beta4 | Variance Patch betal beta2 | beta3 | beta4 | Variance
S1ze S1ze
8 0.763 | 0.010 | 0.062 | 0.000 [ 2.223 8 0.155 | 0.001 | 0.069 | 0.031 | 0.389
16 2332 | 0.032 [ 0.234 | 0.000 | 2.850 16 0.364 | 0.003 | 0.184 | 0.110 | 0.425
32 3609 | 0.052 | 0.445 | 0.001 | 3.036 32 0.474 | 0.004 | 0.258 | 0.199 | 0.433
64 4528 | 0.067 | 0.671 | 0.001 | 3.098 64 0.533 | 0.004 | 0.303 | 0.283 | 0.436
9% 4,670 | 0.069 | 0.714 | 0.001 | 3.110 96 0.541 0.004 | 0.309 | 0.298 | 0.437
128 4733 [ 0.070 | 0734 | 0.001 | 3.111 128 0.545 0.005 | 0.312 | 0.305 | 0.437
192 4796 [ 0071 [ 0755 [ 0.001 | 3.114 192 0.548 | 0.005 | 0.315 | 0.311 | 0.437
256 4.814 [ 0071 [ 0761 | 0.001 [ 3.115 256 0.549 | 0.005 | 0.316 | 0.314 | 0.437
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(c) Fisher Criterion at lag 5 (d) Fisher Criterion at lag 7
Patch betal | beta2 | beta3 | beta4 | Variance Patch betal | beta2 | beta3 | beta4 | Variance
S1ze S1ze
8 0.040 | 0.000 | 0.042 | 0.001 | 0.320 8 0.006 | 0.000 | 0.061 | 0.004 0.468
16 0.068 | 0.000 | 0.085 | 0.005 | 0.349 16 0.009 | 0.000 | 0.134 | 0.011 0.502
32 0.078 | 0.000 | 0.103 | 0.010 | 0.355 32 0.010 | 0.000 | 0.169 | 0.016 0.510
64 0.082 | 0.000 | 0.112 | 0.017 | 0.358 64 0.010 | 0.000 | 0.187 | 0.020 0.513
96 0.083 | 0.000 | 0.114 | 0.018 | 0.358 96 0.010 | 0.000 | 0.189 | 0.020 0.513
128 0.083 | 0.000 | 0.114 | 0.019 | 0.358 128 0.010 | 0.001 | 0.191 | 0.021 0.514
192 0.083 | 0.000 | 0.115 | 0.020 | 0.358 192 0.010 | 0.001 | 0.192 | 0.021 0.514
256 0.083 | 0.000 | 0.115 | 0.020 | 0.358 256 0.010 | 0.001 | 0.192 | 0.021 0.514
(e) Fisher Criterion at lag 10 (D) Fisher Criterion at lag 15

From the multispectral band 1 of QuickBird imagery, no lag value offers separability across all
features. However, at lag 1, 3 and 4 at least one feature offers considerable discrimination of grass
from tree crowns and as lag is increased this power reduces to almost zero values (Table 5.7).

5.5.3. Class separability analysis from lkonos panchromatic band

As similarly assessed in QuickBird imagery, Fisher criterion has also been used to express the
discrimination power of the employed GMRF model for grass and tree crowns land cover classes
from Ikonos panchromatic band. Results of this criterion texture features as a function of patch size
of either class at lag 1 and 3 are given in Table 5.8. Assessment taking into account of the parameter
measurement error per patch size will provided the expected discrimination power at that patch
size. Outputs of the same analysis from this band at lag values of 5, 7, 10 and 15 are give in
Appendix K. Lag 1 Fisher vector values offer reliable class separability.

Table 5.8: Fisher criterion of texture features as a function of patch size from Ikonos panchromatic band (lag
~1,3)

Patch Patch

size betal | beta2 | beta3 | beta4 | Variance
size betal | beta2 | beta3 | beta4 | Variance

8 0.047 | 0.032 0.035 0.064 0.322
8 0.258 0.121 0.148 0.033 1.410

16 0.191 0.142 0.143 0.222 0.386
16 1.018 0.507 0.656 0.151 1.673
32 2060 1117 1.604 0.381 1744 32 0.400 | 0.344 0.308 0.386 0.404
64 3323 2016 3.453 0.878 1.767 64 0.673 0.731 0.543 0.531 0.410
9% 3.585 2230 4.001 1.038 1.771 96 0.733 0.844 0.597 | 0.556 0.411
128 3.709 2.335 4.292 1.127 1.772 128 0.762 | 0.903 0.624 | 0.568 0.411
192 3.838 2.447 | 4.617 1.227 1.773 192 0.792 0.969 0.652 0.579 0.411
256 3.877 2.482 4.721 1.260 1.773 256 0.801 0.990 0.660 0.582 0.411

(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3

5.5.4. Class separability analysis from lkonos multispectral band 1

Tables 5.9 shows the Fisher linear discriminant values for textures features from band 1 of Ikonos
multispectral bands at lag values of 1 and 3. In the same way each texture features is assessed as a
function of patch size to demonstrate the attainable class discrimination power of the GMRF model
for grass and tree crown objects. Results of the analysis from this band at lag = 5, 7, 10 and 15 are
given in Appendix K. lag 1 values offer much separability power in this band.
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Table 5.9: Fisher criterion as a function of patch size from Ikonos panchromatic band (lag =1, 3)

Patch Patch
size betal | beta2 | beta3 | beta4 | Variance size betal | beta2 | beta3 | beta4 | Variance
8 0.355 | 0.188 | 0.395 | 0.182 | 0.114 8 0.013 0.016 0.001 0.013 0.167
16 0.73 0.689 | 0.844 | 0.58 0.231 16 0.026 0.059 0.002 0.035 0.235
32 0.892 | 1.268 | 1.048 | 0.929 | 0.297 32 0.032 0.109 0.003 0.049 0.258
64 0.971 | 1.843 | 1.152 | 1.196 | 0.325 64 0.035 0.159 0.003 0.058 0.266
96 0.982 | 1.948 | 1.166 | 1.238 | 0.331 96 0.036 0.168 0.003 0.059 0.267
128 0.986 | 1.996 | 1.172 | 1.257 | 0.332 128 0.036 0.172 0.003 0.06 0.268
192 0.991 | 2.046 | 1.178 | 1.276 | 0.333 192 0.036 0.177 0.003 0.06 0.268
256 0.992 | 2.06 1.179 | 1.282 | 0.334 256 0.036 0.178 0.003 0.06 0.268
(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3

5.6. Euclidean distance for class separability analysis

This section describes a set of results derived from experiments that were performed to demonstrate
the separability of the two spectrally similar land cover classes (grass and trees) in a
multidimensional space using Euclidean distance. This has been executed to enhance observations
of Fisher criterion which was used to analyze the features one by one. In addition, using the six
samples of either class, the variance of each feature has been computed to illustrate the scatter
within each class represented by a given feature. Results of this analysis in panchromatic band with
SF= 1, 2, 4 and 7 alongside those in multispectral bands are provided in the subsequent subsections.

5.6.1.  Class separability analysis from QuickBird panchromatic and multispectral bands

Tables 5.10 provides the variance of each feature per class and the multidimensional Euclidean
distance of the features from QuickBird panchromatic band with scale factors of 1, 2, 4 and 7 at
different pixel separation distances (lag values).

Similarly, class discrimination analysis of grass and trees was also performed in the QuickBird
imagery multispectral bands. This was carried to enhance observations derived from the feature
space plots and Fisher criterion to ascertain class separability of grass from tree crowns objects.
Experimental results of this task from QuickBird band 1, 2, 3 and 4 are given in Tables 5.11

Table 5.10 shows the Euclidean distance for class discrimination with SF= 1, 2, 4 and 7. It is
observed that that all lag values have got large enough values to facilitate separation of grass from
trees. This is further supported by the fact that the scatter or each feature variance is a very small
value compared to the Euclidean distance at all lags and scales. It is also noted that although lag 1
has a relatively large value of Euclidean distance, this values increases slightly up to lag 10 or 15 and
then starts to drop. This pattern is also recorded from the analysis in QuickBird multispectral

bands(Table5.11).
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MULTISCALE TEXTURE ANALYSIS OF REMOTELY SENSED DATA WITH MARKOV RANDOM FIELDS

5.6.2. Class separability analysis from lkonos panchromatic and multispectral band1

To ascertain class discrimination of trees from grass in a different image with different spatial
resolution, texture features’ variances expressing the scatter of each feature per class and the
multidimensional analysis using the Euclidean distance have been studied from Ikonos
panchromatic band and band 1 of its multispectral bands. Results of this analysis are given in Table
5.12. Analysis in these bands will also aid comparison of class discrimination power with an
equivalent spatial resolution to that of the degraded QuickBird panchromatic band with SF=2 and
4 respectively.

Table 5.12: Feature variances and Euclidean distance from Ikonos panchromatic and multispectral band 1

Lag | Class Feature Variance Euclidean
betal | beta2 | beta3 | beta4 | Variance | Distance
1 Grass | 0.002 | 0.001 | 0.000 | 0.000 0.048
Trees | 0.000 | 0.000 | 0.001 | 0.000 0.001 0.393
3 Grass | 0.001 | 0.000 | 0.000 | 0.002 0.045
Trees | 0.000 | 0.001 | 0.001 | 0.001 0.001 0.155
5 Grass | 0.004 | 0.002 | 0.001 | 0.005 0.047
Trees | 0.005 | 0.001 | 0.002 | 0.001 0.003 0.363
7 Grass | 0.003 | 0.002 | 0.002 | 0.006 0.047
Trees | 0.006 | 0.002 | 0.003 | 0.002 0.003 0.381
10 | Grass | 0.005 | 0.001 | 0.002 | 0.004 0.042
Trees | 0.002 | 0.003 | 0.002 | 0.002 0.004 0.378
15 | Grass | 0.007 | 0.004 | 0.003 | 0.006 0.037
Trees | 0.001 | 0.001 | 0.002 | 0.001 0.002 0.335

(a) Ikonos panchromatic band

Lag | Class Feature Variance Euclidean
Distance

betal | beta2 | beta3 | beta4 | Variance

1 Grass | 0.014 | 0.002 | 0.013 | 0.003 0.004
Trees | 0.001 | 0.000 | 0.001 | 0.001 0.003 0.209

3 Grass | 0.011 | 0.002 | 0.008 | 0.005 0.018
Trees | 0.003 | 0.001 | 0.001 | 0.002 0.003 0.084

> Grass | 0.005 | 0.002 | 0.004 | 0.001 0.025
Trees [ 0.003 | 0.001 | 0.006 | 0.001 0.002 0.127

7| Grass | 0.003 | 0.006 | 0.007 | 0.001 0.041
Trees | 0.001 | 0.005 | 0.005 | 0.001 0.004 0.162

10 | Grass | 0.003 | 0.008 | 0.011 | 0,007 |  0.050
Trees | 0.005 | 0.006 | 0.004 | 0.002 0.008 0.248

15 | Grass | 0.008 | 0.007 | 0.005 | 0.016 0.110
Trees | 0.013 | 0.008 | 0.006 | 0.008 0.018 0.261

(b) Ikonos multispectral band1

From Table 5.12 all lag values have got relatively large values of Euclidean distance compared to the
scatter (feature variance) per feature for either class.
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5.7. Texture based classification results

To perform GMREF texture classification, the texture classes are assumed to be Gaussian and thus
can truly be modelled by a GMRF model. Consequently the LS method texture estimated
parameters which are considered as image texture characteristics retaining features [50] are used in
preparation of the required GMRF modelled class texture for classification. In this consideration,
estimated texture parameters for grass and tree crowns objects at lag 1 were used to model a two
class GMRF texture image of the same classes. In a similar way, a reference image of the same two
classes (grass and trees) was prepared.

5.7.1. Simulated texture based classification

For this task, the generated two class image corresponds to the reference map which has crisp
boundaries from each other providing the possibility for accuracy assessment

To control the classification, MRFs functions and energy optimization parameters explained in
section 3.3 used, were the smoothness parameter (A = 0.9), the initial temperature, To = 0.3 for
controlling the randomness of the optimization algorithm and the pixel updating schedule, Tupd =
0.9. Texture images of 32x32 and 150x150 pixels simulated, classified and results validated with their

respective simulated reference image as shown in Figure 5.16 (a) and (b) respectively.

(b)
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Figure 5.16: Classification of simulated GMRF texture

The classification of a 150x150 pixel image yielded an overall accuracy of 92% with all pixels in class
1 (grass) being correctly classified and 684 pixels of class 2 (tree crowns objects) were wrongly
classified. The 32x32 pixel simulated image gave an overall accuracy of 77% correctly classifying all
grass pixels and 86 pixels of tree crowns were misclassified as per the error matrix.

It is thus observed that large images can be classified more accurately than small ones. This is
attributed to the fact that a larger number of pixels per class incorporate a wealth of contextual
information. Plots of the temperature, the error evolution and energy minimization show that the
temperature lowered till a freezing state, evolution of mean Square error (MSE) lowered
consistently in each iteration as similarly observed for the minimization of energy till they reached
the minimum level just after 60 and 80 iterations for the 150x150 pixel image in Figure 5.16 (b) and
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the 32x32 pixel image in (a) respectively. This is also supported by the texture simulation task
where stable textures are obtained with large image patch size.

5.7.2.  Classification of QuickBird image

To perform this classification, grass and tree crowns samples were taken from the 200x 200 pixel
subset image (Figure 3.4) and their GMREF texture features estimated. These features were used as
training data for the GMRF texture based classification of the subset. Estimated parameters at
different lag values were used.

Similarly, as explained in section 5.7.1, to control the classification process the initial temperature,
To = 0.3, the pixel updating schedule, Tupd = 0.9 and the smoothness parameter, A = 0.9 were
first used yielding an overall classification accuracy of only 38%. This accuracy was achieved with
lag 1 GMREF features. Larger lag values produced much lower overall accuracies. This prompted use
of a trial and error method to search for appropriate parameters especially the smoothness value.
However, no satisfactory result was attained. The task was then carried on by combining both
spectral and texture data of the classes in the classification process. The experiment was first
performed with spectral information alone giving an overall accuracy of 65.3%. Texture data was
then included whose appropriate value was also searched by the trial and error technique. Results of
this experiment are provided in Figure 5.17.

@ (b) ©

Figure 5.17:(a) GMREF texture features, (b) correspondingly classified (c) reference images

The highest overall classification accuracy achieved in this procedure whose results are presented in
Figure 5.17 was 62.7% with only 0.12 texture information included. Addition of more texture
information reduced the classification accuracy. An investigation to find a solution to this problem
was not carried out due to limited time.
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6. DISCUSSION

Results obtained in this study are discussed in this chapter. The suitability of the selected GMRF
model for texture-scale exploration is discussed in detail. The choice of the range over which lag
values are selected for which the model is employed on the chosen data is also explained. An
exploration of the texture-scale behaviour from the model estimated parameters (texture features)
quantitatively, using the standard feature space plots, Fisher linear discriminant analysis and the
multidimensional Euclidean distance are also fully discussed here. Results of texture based
classification of both simulated and real image using the GMREF are discussed in the last part of this
chapter.

The GMRF model, for this study presented interesting results. The approach was able to simulated
texture very close to the original. The simulation scheme which was carried out for a number image
patch sizes yielded estimated parameters close to the initial ones with very small errors tending to
zero as the patch size increased (Figure 5.2 (a), (b) and 5.3(a)). It is observed that the achieved error
increases exponentially with reduction in patch size (Figure 5.3(b) and 5.4). Results of this
experiment conform to the observations made by Clausi and Bing [40] in their study comparing
GLCPs and GMRFs for texture analysis of SAR sea ice imagery. They note that positive and
negative GMRF model parameters exhibit a different behaviour in texture simulation. This element
was not investigated in this work as it aimed at having estimated parameters with very small errors.
In this research, it is observed that even with small patch sizes such 8x8 pixels, errors are
sufficiently small not only for achievement of this study objectives but also the method can reliably
be applied for any analysis at small patch sizes since the errors can be quantified and are small. It is
important point out that larger patch sizes yielded stable GMRF estimated parameters than small
ones. In addition, it was observed that unstable estimated texture features are obtained with very
large initial values an issue that should be considered.

Variogram estimation was vital in this work for providing an insight to the required
neighbourhood system for effective GMRF texture modelling of the land cover classes under
investigation. Sample images variogram plots standardization (Figure 5.5 (b)) provided a feasibility
assessment for the application of the GMRF model for modelling grass and tree crowns objects
texture for achievement of their discrimination. This was significant in the application of this
method for separability analysis of spectrally similar land cover classes. The approach confirmed
that grass and tree crowns objects show a different spatial structure (at a pixel distance separation -
lag values of between 1 and 20 pixels) that enabled the study for their discrimination. However,
two grass samples exhibit a similar spatial structure to that of tree crowns objects. In the texture
exploration task, it is important to select samples such that unrepresentative ones are not included
in the analysis. Therefore, trees should be divided into evergreen and deciduous trees while grass
would include play field grass, farm or agricultural grass among others. These need to be considered
independently to derive intrinsic class separability characteristics. In addition, variogram of the class
samples require modelling instead of being estimated to help logical choice of lag values.

Experimental results of the estimated texture features from QuickBird panchromatic band with SF
= 1, 2, 4, and 7 reveal an interesting trend at lag 1(Table 5.1). At this lag, betal, beta2 and beta3,
beta4 texture features have got positive and negative values respectively a pattern clearly observed
when QuickBird panchromatic band is degraded with SF = 1, 2 and 4 . However, it is not shown
by beta 4 of the grass class when the image is coarsened further with SF =7. This pattern is also
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shown in the results of Chellappa and Chatterjee [50] for grass, calf leather and pigskin in the
classification of textures using GMRFs although it was not explained. In this pattern, tree crowns
have got relatively large positive and negative values compared to those of grass which consistently
reduced as the image is degraded tending to similar values. This is due to the fact that as the image is
coarsened, the texture of the two classes become smoother and identical. There is however no
explainable pattern shown by the texture features when more variability (at larger lags) inherent in
the respective classes is incorporated in the parameter estimation scheme. The positive and negative
trend recorded for the respective betas values at lag 1 could be explained by the fact that the GMRF
model incorporates only the intrinsic properties of grass and tree crowns objects at this lag. At
larger lags, more variability of either class is included in the feature estimation scheme and similarly
at much coarser resolutions watering down this property. This is an important characteristic for
analysis of these two classes which however, requires consideration because in [50] a 4™ order
GMRF model was used and hence incorporation of more variability. In addition, the pattern is not
reported for texture features from Ikonos panchromatic band and is only identified in the tree
crowns class and only beta4 of the grass class in Tkonos multispectral band 1. It could also be
important to use higher model orders to investigate this property which has not been done here.

The trend observed from texture feature estimated from QuickBird panchromatic band with SF
=1, 2 and 4 is also identified in its multispectral bands as explained and shown in Table 5.2. The
magnitude of texture features being generally the same show that same spatial information exists in
all bands and thus for analysis involving texture analysis choice of one band is sufficient. Lack of an
explainable pattern of texture features at larger lag values supports the choice of lag 1 as appropriate
for class discrimination of grass from tree crowns objects. On the contrary, features from Ikonos
panchromatic band are main positively correlated (Table 5.3). Thus, the property for grass and trees
identified from QuickBird data cannot be concluded as their property from any imagery even with
fine spatial resolution. However, the conditional variance of the noise source will be recovered as
lag value increase in all scenarios.

SF=2 degraded QuickBird panchromatic band (1.2m) and Ikonos panchromatic band (1m) have got
a comparable spatial resolution. A comparison of these different images with slightly different
spatial resolution shows that the parameters of the two classes are different for the two images.
QuickBird parameters are bigger and exhibit a positive and negative correlation for betal, beta2 and
beta3, beta4 respectively as opposed to those of Ikonos at lagl. However, parameters estimated a
larger lags will show the same behaviour and are smaller compared to those of lag 1. The same
observation is made with SF=7 degraded QuickBird panchromatic band (4.2m) (Table 5.1(d)) and
Ikonos multispectral bands (4m) (Table 5.4) also have got different parameters in magnitude at lag 1.
This shows that different texture features will be obtained for different images for the same classes
as expected. This analysis was carried out with assumption that the spatial resolutions are
comparable. Consideration may be required for comparing degraded and none degraded images
independently.

Inspection of the feature space plots for texture features from QuickBird panchromatic band reveal
a clear discrimination of grass from tree with SF=1 an 2 at lag 1 (Figure 5.6 and 5.7). Class
separability between the clusters formed by the respective feature combinations of either class is
observed in some combinations with SF = 4 and 7(Figure 5.8 and 5.9) however, the clusters begin
to overlap as scale factor is increased. In the same trend very compact clusters of the texture features
are observed with SF=1 which start to spread with SF=4 and finally the classes show considerable
overlap as the scale factor is increased. When larger lag values are used in the parameter estimation
scheme, thus incorporating the variability inherent in either class, a clear visual separability
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between the two classes is lost. The observation made at lag one makes the GMRF model attractive
in describing the intrinsic properties of either texture class. It also confirms that reliable separability
of spectrally similar class is achieved with spatial information when much variability is not
incorporated in the model feature estimation process. The same trend is also recorded by the
feature space plots from QuickBird multispectral bands (Figures 5.10, 5.11, 5.12 and 5.13), Ikonos
panchromatic band (Figure 5.14) and Ikonos multispectral band 1 (Figure 5.15) and as explained in
section 5.4.4, 5.4.5 and 5.4.6 respectively. Class separability with GMRF texture features does not
require all the five features to show discrimination. One or two feature combinations can reliably
be used and also help to carry out texture-scale exploration.

Visual interpretation of feature space plots cannot guarantee a lasting conclusion of which lag offers
more class discrimination power for texture-scale relationship exploration. Fisher criterion results
are therefore hereby discussed to provide a deeper insight of texture behaviour across different
spatial resolutions and to facilitate the separability of grass from tree crowns objects. Across all scale
factors used for the QuickBird panchromatic band (Table 5.5, 5.6), its multispectral bands (Table
5.7), Ikonos panchromatic (Table 5.8) and multispectral band 1 (Table 5.9), lag 1 Fisher vector
values indicate high discrimination power although some features are more favourable than others.
Fisher criterion was computed taking into account of the measurement error that can be achieved
at a given patch size such 8x8, 32x38 and so on previously obtained in the texture simulation
experiment. It is also evident that the degree of class discrimination power feature by feature
increases with increasing patch size. This is attributed to the fact that GMRF models performance is
embedded in the availability of enough contextual information. Results of this criterion for all
spatial resolutions of images considered reduce in magnitude with increase in lag value. In addition,
the separability power also decreases as the spatial resolution becomes coarser. This is attributed to
degradation of the important characteristics defining each class. In a similar way, for a given scale
factor, lag 1 estimation scheme incorporates only those properties pertaining to a given class
without inclusion of artefacts that water down the main characteristics of a class at larger lags hence
the difficulty in separating the classes at those lags. Fisher criterion provides assessment class
separability feature by feature for accurate selection of feature that provides reliable separability at a
given lag. This however, does not take into account all the defining features of a class.

To fully understand the texture-scale behaviour and arrive at a firm conclusion for the separability
of the two spectrally similar land cover classes (grass and tree crowns objects), it is imperative to
carry out an analysis combining all the texture features. The multidimensional Euclidean distance
was employed to include all the five feature used for describing texture in this work.

From this experiment it is seen that all lag values have got values large enough for reliable class
separability of grass and tree crowns objects with SF= 1, 2, 4, and 7 of QuickBird panchromatic
band (Table 5.10) and QuickBird multispectral bands (Table 5.11) and Ikonos panchromatic band
and its multispectral band 1 (Table 5.12).

At larger lag values, more within class separability is incorporated in the texture features
estimation leading to large scatter of either class texture features clusters in the features spaces. This
accounts for the relatively large values of the multidimensional Euclidean distance at lag values
greater than 1. Nevertheless, the values are so large in comparison to the ones got at lagl across all
scale factors considered where compact clear separable clusters of either class are observed in the
feature space. Thus in conjunction with observations made from feature space, and Fisher criterion,
reliable class discrimination can be achieved at lag 1. Similarly, comparison of Euclidean distance
values for results for Quick band panchromatic band with SF = 1 to SF=7 it is noted that increase
in Euclidean distance is explained by the increased variability in each class at coarser spatial
resolutions which account the less compactness of the clusters of each class features. This led to a
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slight increase in the Euclidean distance but unfavourable class separability. Results from the
multispectral bands of QuickBird reveal no marked difference in spatial information in all bands.

This work has explored the behaviour of texture with scale where the discrimination of spectrally
similar classes reduces at coarser spatial resolutions. However, only two land cover types with only
six samples of either class were used because of limited time. In the description of class separability
it is important to use more samples such that more strong methods for class discrimination such as
the transformed divergence can be employed for its explicit quantification.

In addition, the selected samples from the QuickBird and Ikonos imagery were combined leading to
formation of a “super class” for either grass or trees. It is required to perform, an investigation of
the need to have more than one sample of either class such that samples showing the same spatial
for either class are not included in the analysis to avoid biasing the outcomes. Alongside that,
important elements pattering to the data were assumed constant in this work. Aspects of the point
spread function, radiometric and atmospheric effects among others could have considerable effects
on the results. These are vital issues that would enhance more discoveries of the relationship
between textures and scale which are limitations of this work.

To test the performance of the GMRF model used in the texture exploration tasks, the method was
employed in the classification of the same two spectrally similar land cover classes (grass and tree
crowns objects). Figure 5.16 shows the results of the classification of simulated GMRF texture. The
size of the image size has got an effect on the classification results. It is seen that a 150x 150 pixel
image achieved a considerably high overall accuracy of 92% compared to 77% of the 32x32 pixel
image. Therefore, large images are classified more accurately than small ones by the GMRF model.
This is due to a wealth of contextual information in large images per class. These results were
however attained with the smoothness parameter of 0.9. Smaller values of this parameter gave noisy
outputs and lower accuracy as similarly supported Karimov [105], clearly demonstrating the effect
of this parameter in this scheme.

Classification of the QuickBird image was one of the main challenges in this work. Yindi et al.,
2007 [20] point out that combination of spectral and texture data improves classification accuracy in
their classification of high resolution images using GMRF-based texture features. However, in this
work with spectral data 65% overall accuracy was achieved which reduced to 62.7% on of inclusion
of texture information. As noted by Karimov [105] that optimization of the energy for
classification of RS image is a challenge, failure of this scheme to achieve the desired results is partly
attributed to the need for an appropriates simulated annealing optimization process for spectrally
similar real image classes. Another reason that could have hampered the task is the GMRF model
that was applied. The 2™ order model used in this work may not have been appropriate for
classification of spectrally similar real image classes. The limited time deprived this study of
investigating these important reasons for achievement of this classification.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions

The objective of this research was to explore the texture-scale relationship behaviour using a MRF
model on RS data. To achieve this objective, seven research questions were formulated. With
reference to the achieved results and discusion, the subsequent conclusions are made as per each
research question.

How can the texture-scale relationship be explored?

The relationship between texture and scale was explored at different spatial scales and lag values
while assessing class discrimination of two spectrally similar land cover classes. GMRF model
estimated parameters here used as texture features are useful in describing the behaviour of texture
at different scales most importantly at lag 1. Exploration of the texture-scale behaviour at fine and
various coarser spatial resolutions was performed alongside its consideration in multispectral bands
and in different images with different spatial resolution. This was important in providing an insight
of the behaviour of texture of the same classes from different images with and without the same
spatial resolution. The exploration was effected by quantitative comparison of estimated texture
features, use of feature space plots, Fisher criterion and multidimensional Euclidean distance at
different lag values.

What is the texture-scale relationship?
It has been demonstrated that at a fine spatial resolution spectrally similar land cover classes can be
discriminated whereas as coarser spatial resolutions they become identical.

Standard feature space plots of texture features provided a visual revealing pattern of the
relationship between texture and scale. With a finer scale image at lag 1, a given class texture will
show a compact cluster of the features which lose the trend at coarser scales dwindling into an
overlap with a spectrally similar class hence the difficulty to discriminate them.

Fisher linear discriminant performs a quantification of class separability feature by feature clearly
identifying the most appropriate lag for class discrimination and the most favourable feature for
this purpose. This criterion greatly enhances the observations derived from the feature space
graphs.

Assessment of the texture features in a multidimensional space clearly affirms class separability and
enhances the study of texture and scale. This is useful for providing a combined quantification of
class separability. It is however important to draw conclusions about class discrimination using this
measure assist by other measures as illustrated in this work. This study has shown that spectrally
similar classes will gradually lose their most important inherent texture characteristics at coarser
scales towards attaining similar characteristics.

How should the texture of images with different spectral bands be compared?

Estimation of texture features band by band aided comparison of the texture of image with
different spectral bands. As presented in chapter 6, it was observed that the spectrally similar land
cover classes have got the same spatial distribution in all the multispectral bands of a given imagery.

How can MRF model associated parameters for different image scales be determined?
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The estimated parameters of the GMRF model used in this study were estimated by the LS
estimation technique whose details are given in section 2.5.3 of chapter 2. For each spatial scale
considered, parameters here used as texture features were estimated. The procedure and accuracy of
the estimation was tested through simulation of texture.

Which MRF method is suitable for multi-scale texture analysis?

The study identified GMRF model able to simulate texture with as small errors as possible even
with small image patch sizes. Demonstration of the exponential increase of these errors as patch
size is reduced alongside their quantification is a significant aspect in the application of this
approach.

How should MRF texture classification be implemented?

To execute texture based classification, GMRF texture features of the classes within the subset
image to be classified were estimated, a reference image generated and the respective energy
function and parameters for the optimization process designed. This experimenting was carried out
for both simulated and real image.

How should MRF texture classification results assessment be performed?

Using the conventional error matrix the overall accuracy of the classification was employed. The
method achieved sufficient results in the classification of simulated GMRF texture. However,
because of limited time it was not possible to explore the reasons that hampered good performance
of real image classification by the GMRF model. This task either required a different GMRF model
order or a different simulated annealing scheme or both.

7.2 Recommendations

Based on the findings of this study, the following are the recommendations for further research:

» To carry on with the texture-scale relationship exploration, an investigation of the need to
have more than one sample of either class which form a “super class” should be carried out
to avoid bias of the outcome. This should be supplemented with consideration of the
assumptions about data made in this study as presented in chapter 6.

» The applicability of the model in performing texture based classification has been
demonstrated in this work. However, it was not successful with real image data for which
further study is required.
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