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ABSTRACT 

Accurate classification of land cover is one the most crucial factors in the planning, management 
and monitoring pursuits pertaining to the utilization of earth land surface resources for sustainable 
development. Due to its significance in remote sensing image classification, the realm of image 
texture analysis has earned considerable attention over the years. With the advent of high 
resolution imagery such as Quick Bird, increased amounts of information detail resulting in higher 
spectral variability per class is achieved with the improved spatial resolution which does not augur 
well for spectral based classification.  
 
Despite the existence of various studies in the Remote Sensing field towards the texture analysis 
problem, texture-scale relationship has not yet been fully explored. This limits application of 
texture in multispectral resolution data analysis such as super-resolution mapping. Texture is a 
product of the objects’ hierarchical organization that characterizes the scales at which spatial 
information is obtainable. Recent studies have witnessed an overwhelming influx of image analysts 
into the application of Markov Random Field (MRF) approaches to tackle this problem. This 
research set out to explore the texture-scale relationship using Gaussian MRF (GMRF) a typical and 
popular MRF model distinct for analyzing textures through interdependence neighbouring image 
pixels measurement yielding features of a certain texture. The exploration was executed at different 
spatial resolutions and lag values determined from estimated variogram of image sample subsets. 
 
Accurate simulation of texture has been performed in which it was demonstrated that more finer 
and stable textures are achieved with large image patch sizes although reliable results were obtained 
with small patch sizes. With QuickBird imagery the texture-scale behaviour has been explored 
using the spectrally similar grass and tree crowns objects land cover classes at different scales from 
which it was concluded that, the coarser the spatial resolution the lesser the class separability. 
Results of texture features reveal that use of larger lag values for a GMRF model does not produce 
different texture features for different spectrally similar cover classes whereas lag one features do 
not capture the variability within a class. Grass was clearing separable from tree crowns at lag one 
using feature space plots, Fisher criterion and multidimensional Euclidean distance. Similar 
conclusions were made with Ikonos imagery from which lag one features demonstrated favourable 
class separability. Comparison of texture features for either class in Quickbird multispectral bands 
showed that there is generally no marked difference of class spatial distribution in all the bands. 
Due to the GMRF model’s powerful discrimination ability of the spectrally similar classes, the 
approach was employed in the classification of the same classes. An overall classification accuracy of 
77% was achieved with a 32x32 pixel simulated subset image and resulted into a notable 
improvement in overall classification accuracy of 92% with a 150x150 pixel image primarily 
attributed to a wealth of contextual information. Results of the simulated GMRF texture 
classification can be used to guide classification of a real image which requires a different GMRF 
model order and energy optimization scheme. 
 
Key words: Gaussian Markov Random Field, Variogram, Exploration, Feature spaces, Fisher Criterion, 
Euclidean distance, Energy functions, Energy minimization, Texture-scale behaviour, Spectrally similar 
classes, simulation, Lag, Estimated parameters, Class separability/discrimination, Variogram. 
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1. INTRODUCTION 

1.1. Background 

Remotely sensed image data has over the years been used in a variety of domains and is increasingly 
and extensively being employed in a diversity of Earth surface, oceanographic and atmospheric 
applications such as environmental modelling and monitoring, updating of geographical databases 
and land-cover/use mapping.  The justification for remote sensing (RS) in land-cover classification is 
mainly provision of valuable information that cannot be provided by field methods. Importantly, 
RS is by far the only method that can provide a global, repeated and continuum of observations of 
processes required for earth system comprehension. Accurate and up-to-date land-cover 
information is fundamental to various resource planning, management and monitoring programs 
especially in urban areas for supporting administration and application departments. Multispectral 
RS information is successfully utilized for forest, agricultural uses and urban sprawl monitoring 
cartographic establishments and updating [1].  This important information enhances field data and 
aerial photographic conventional interpretation approaches resulting in increased efficiency 
through certain processes automation. This offers reduced field data gathering costs and improved 
update frequency provided by consistent RS imagery. 

1.2. Motivation and research problem  

Texture provides the core elements used to describe the surface of an object and incorporates the 
pre-requisite features for image processing, computer vision, pattern recognition [2-4] and 
microscopy [5]. Their analysis is central to a variety of domains such as RS in earth resources, 
medical diagnosis, automated industrial monitoring for quality control, surface inspection and 
document processing [2, 3, 6] and its main fundamental roles are classification, segmentation and 
synthesis [2, 3, 6, 7]. In the past decades, there has been an influx of research in the fields of image 
processing, computer vision and pattern recognition directed towards the problems associated with 
texture analysis. This increased activity has proved texture analysis as an important and interesting 
subject of research for many applications. Nevertheless it is still a difficult problem in the realm of 
image processing [3], still an open issue [8] and a matter of investigation due to its relevance in 
image processing and pattern recognition because of the vast possible applications in these fields [9]. 
 
Despite our capability to recognize texture, its usefulness and ubiquity in imagery alongside the 
long history of research effort on texture, its precise definition has still eluded its researchers. This 
is demonstrated by the multitude of definitions presented by various authors in this field as alluded 
to in Bharati et al. [10] and exhibited in Vyas and Rege [11].  In [12], four categories of mathematical 
approaches used to characterize texture are statistical, geometrical, model-based and signal 
processing procedures [6, 7]. Statistical, structural and spectral procedures are outlined in Wang and 
Liu [4] and Zhang and Tan [8] as principal approaches for describing texture. They also assert that 
statistical and spectral approaches are preferred due to the irregular form of the commonly dealt 
with natural textures. In this work the model based MRF approach which is significant for 
describing spatial and contextual relationships of physical objects/natural textures [13] is employed. 
 
Wang and Liu [4] and Zhang and Tan [8] in Daugman [14], state that the human visual 
interpretation is characterized by a multiscale way of image processing. The hierarchical 
organization of texture makes different textures appear different at different scales. This human 
visual multiscale processing emphasizes the motivation for multiscale texture analysis. Hay and 
Marceau [15] state that in RS, scale is analogous to spatial resolution. This research is executed at 
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different spatial resolutions and the term multiscale is used for convenience. Dungan et al. [16] 
defines spatial resolution as “the smallest  object  that can be reliably detected “ (p. 627) by an 
imaging system. It also refers to the size of one image acquired by a sensor, known as the footprint. 
  
Markov Random Fields (MRF) were recommended for more work on texture modelling [2]. These 
approaches have earned popularity in texture analysis [4] and increasingly become the common 
method to RS image analysis [17]. MRF is a useful tool for describing spatial and contextual 
relationships of physical objects or phenomena that belongs to a category of probabilistic theory 
[18].  
 
In RS, considering the finest and the next coarser scales of an image, various individual constituent 
objects will clearly be discernible at the former scale, thus the size of the distinguished objects being 
the noticeable scale whereas at the latter, these objects will not be identifiable. Instead, they will 
look homogeneous within the ones whose size is typical of this scale. At much coarser spatial 
resolutions, a similar trend is observed.  Recently much research has been done towards achieving 
accurate classification of RS data. However, this research field still poses major challenges. The 
current widely employed methods for image classification - grey level co-occurrence matrices, 
fractal models and local grey level statistics utilized for extracting textural information don’t 
incorporate spatial relationships of pixels and involve an enormous magnitude of computations 
[19]. In addition, despite the existence of various studies in the RS field towards this problem, 
texture-scale relationship has not yet been fully explored, understood and exploited. This limits 
application of texture in multispectral resolution data analysis such as super-resolution mapping.  

1.3. Research identification 

Texture analysis algorithms have been implemented at unique scales and even those that are applied 
for multiscale analysis do not exploit the full information present in RS imagery. This is because 
they have until now not taken into account the texture-scale dependence properties. A gap 
therefore exists between the hypothetically obtainable information in RS image data and derived 
and utilized information to abet well-informed and guided decisions. It is thus imperative to study 
the stated problem to avert the mentioned limitations. To bridge this gap, the following objectives 
and questions are defined. 

1.3.1.  Research objectives 

The main of this research is to explore the relationship between texture and scale using a MRF 
model on RS image data. The main objective can be achieved through the following sub objectives: 

i. Explore the relationship between scale and texture to facilitate the texture-scale dependence 
understanding. 

ii. Perform texture based classification of spectrally similar land cover classes using a selected 
MRF model. 

1.3.2. Research questions 

The following questions have been developed according to the aforementioned objectives: 
i. How can the texture-scale relationship be explored? 

ii. What is the texture-scale relationship? 
iii. How should the texture of images with different spectral bands be compared? 
iv. How can MRF model associated parameters for different image scales be determined? 
v. Which MRF method is suitable for multiscale texture analysis? 

vi. How should MRF texture classification be implemented? 
vii. How should MRF texture classification results assessment be performed? 
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1.3.3. Innovation  

The novelty of this study is to improve the understanding of the relationship between texture and 
scale to aid the application of texture in multispectral resolution data analysis such as super-
resolution mapping.  

1.3.4. Research approach 

The following sequence of activities was adapted to address the state research problem. The study 
set-out with literature review on MRF models to understand their characteristics, strengths, and 
weaknesses in RS image texture analysis applications. Their application in computer vision and 
pattern recognition fields where they have a long history of research will be done. This would 
identify their important characteristics to enhance their application in remote sensing particularly 
for this work. Many successful MRF methods for RS image analysis exist in literature. Therefore, 
finding a suitable MRF method and comprehending its mathematical foundations while focusing on 
its application for multiscale texture analysis forms the basis of this research. 
 
In spite of the description of texture-scale relationship being the main focus of this research, the 
importance of assessing the quality of a classified image cannot be underscored in this work. 
Therefore, an image with the classes under consideration (grass and tree crown objects) will be 
classified and the performance evaluated. 
 
Details of this approach are provided in section 4.5 of chapter four. 

1.3.5.  Structure of this thesis 

This thesis is composed of seven chapters. Chapter 1 provides a description of the background, 
motivation and problem statement, objectives, questions and innovation of this study. In chapter 2 a 
discussion of concepts of texture and its analysis, scale and texture and motivation for multiscale 
texture analysis are explained. The importance of texture analysis in urban land cover mapping 
alongside a review of texture analysis methods in RS image analysis is also given.  Some related 
works on GMRF for texture analysis of remotely sensed data, the mathematical theory behind 
MRF texture analysis and that related to texture based classification are discussed.      
Chapter 3, code named data, describes the data and study area of this research alongside, data 
preparation and pre-processing steps. In chapter 4, the order and steps taken to execute each task to 
facilitate satisfactory achievement of the objectives of this study are explained. 
Results of this research and their discussion are presented in chapter 5 and chapter 6 respectively. 
Chapter 7 concludes and gives the recommendations for further research in this field. 
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2. LITERATURE REVIEW 

The purpose of this chapter is to provide a theoretical background to the content of this research. 
Section 2.1 sets out with an introduction to texture analysis, a description of the notion of the 
definition of texture and its relation to scale alongside the motivation for multiscale texture 
analysis. Texture analysis for land cover mapping is explained in section 2.2 with regard to the 
aspirations of this research.  A brief review of the different texture analysis methods is contained in 
section 2.3. Section 2.4 deals with Gaussian Markov Random Fields (GMRF) for texture analysis 
whereas sections 2.5 and 2.6 present the mathematical background of MRF texture analysis and 
texture based classification functions respectively. 

2.1. Texture analysis 

Texture analysis aims to quantify the intuitive qualities of textures such as smooth, rough or silky 
among others as a of function image pixel intensity values’ spatial variation. Yindi et al. [20] points 
out that the analysis of texture has gained great attention in image processing for its importance as a 
complimentary tool to high-resolution satellite imagery interpretation. Petrou and Sevilla [21]  
present three major issues in texture analysis as texture classification or discrimination, texture 
description and establishment of boundaries between different textures, as earlier highlighted by 
Ehrich and Foith [22]  and Wechsler in [2].  Various studies have been carried out in an attempt to 
solve these problems. 

2.1.1. What is texture?  

Despite the importance of texture in RS image applications such as urban land cover mapping and 
its human vision association alongside the long history of research on the subject, there is neither a 
definite [23] nor a universal definition [13, 24] of texture in image processing. Haindl [25] explains 
that texture expresses the spatial information within features or objects.  The major impediments to 
a precise definition of texture is its multitude of attributes that people find indispensable [24, 26] 
and  the varied and contradicting properties of natural textures [23]. In their book “Feature 
Extraction and Image processing”, Nixon and Aguado [27] describe texture as derived from the 
human intuitive recognition actuated by the faculties of sight and feel.  
 
Haralick [12] defines texture as a scale deterministic property derived from the spatial reciprocal 
relationship of tonal primitives often too small to be distinguished as individual objects (such as tree 
leaves and leaf shadows) that constitute a region in an image. Haralick further states that, “texture is 
qualitatively described as fine or coarse, smooth or rough, mottled, irregular, granular, random, 
hummocky or linear” (p. 786), thus providing the visual impression of the image features. 
Additionally, other important properties fundamental in describing texture include directionality, 
uniformity, direction, phase and frequency identified by Tuceryan and Jain [6] in [28] with some of 
these qualities being dependent on each other. According to Marceau et al. [29] in [30], texture is 
the relationships between grey values in neighbouring pixels that define the image appearance. 
Various definitions of texture exist in literature. 

2.1.2. Scale and texture 

Scale is an important characteristic inherent of natural texture. Texture normally exits at more than 
one scale. From a certain textural threshold, detail may be perceptible at all scales to the 
confinement of visual performance.  
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In the RS domain, a lot of attention has been directed towards development, performance 
evaluation and comparison of various texture analysis measures, whereas the scale over which 
texture is analyzed [31] could be a more significant contentious subject of concern [32]. Marceau et 
al. [29] discovered that 90% of the classification variability in accuracy, in classifications involving 
texture is accounted for by the texture window size whereas a particular applied texture analysis 
technique only explains 10% of that accuracy is a typical proof to this important argument. 
 
Various important studies have satisfactorily supported the usefulness of scale in texture analysis, 
notable among them being the study of Hodgson [33]. For achievement of accurate cognitive 
classification, a minimum window size is a pre-requisite and that window size and spatial resolution 
should be increased concurrently, proved Hodgson. He further found out that at a certain size of 
larger windows, accuracy doesn’t increase even if the window size is increased. Woodcock and 
Strahler [34], used graphs of local variance as a function of pixel size (spatial resolution). The same 
technique was adapted for obtaining an appropriate spatial resolution for forested area analyzes 
[35]. Coburn and Roberts [36] also found out that classification accuracy increased with window 
size in their study on forest stand areas with local variance measure. 

2.1.3. Motivation for multi-scale texture analysis 

Kung-Hao and Tjahjadi [37] observed that for texture segmentation,  it is required to use multiscale 
techniques to ensure conditions for estimating texture contents concurrently with region boundary  
to achieve high accuracy are fulfilled which may not be satisfied by single scales. 
 
In the study of multiscale approaches for urban environments, Fengrui et al. [38] concludes that  a 
multiscale analysis performs an investigation on a global view of an image at different spatial 
resolutions unveiling undistinguishable features at a single scale which might be  part of the 
important aspects under investigation. They assert that an urban setting is a complex scenario 
whose analysis if executed at a unique scale is bound to be deficient and deceitful. A number of 
studies have been carried out at different scales such as the work of  Choi and Baranuik [39] which 
achieved excellent segmentation outputs. 

2.2. Texture analysis in land cover mapping  

Texture analysis is important for feature extraction and classification of different land cover types. 
It is employed in the mapping, extraction, monitoring and production of update maps among 
others in both urban and rural area applications. Different approaches are presented in literature for 
these tasks. This section describes related work of MRF based texture analysis for land cover 
mapping from remotely sensed images. 
 
Yindi et al. [20] proposed an improved GMRF method for classification of fine spatial resolution 
satellite imagery where they designed a procedure to classify texture samples of QuickBird and 
Ikonos data. Results of this work proved that with fine spatial resolution imagery, the accuracy of 
classifying texture samples is greatly improved when texture and spectral features are combined in 
the classification process.  
 
In addition, Clausi and Bing [40] also used a GMRF model for texture analysis of SAR sea ice image 
data to demonstrate its discriminative power in comparison to the GLCP methods. Segmentation 
of radar images was carried out where it was proved that a larger spatial extent is a pre-requisite for 
accurate segmentation results with GMRF models.  
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Various studies for land cover mapping been carried especially for urban areas applications. Urban 
cover mapping is very crucial to urban management for purposes of urban forest planning, air 
quality improvement, control of runoff and extenuation of global climatic change. Digital RS 
imagery analysis of the increasingly available very high resolution (VHR) images, offers an efficient 
way to obtain urban land cover maps worthwhile [41].  Urban area texture studies are based on the 
analysis of spatial distribution of ground radiance level variations that enable distinction of 
structures of a RS image for urban morphology characterization.  Ober et al. [42] presented a 
texture analysis definition in conformity with urban texture in RS as grey level variations  spatial 
distribution analysis able to identify geometrical structures in an image.  
 
Various important studies have been executed such as the urban area extraction through texture 
analysis using Markov Random Fields (MRF) [43]. The study developed a texture parameter 
estimation approach for analyzing images from different sensors and with various resolutions. 
Another major attempt in the detection of urban areas is the study of Ping and Runsheng [44] using 
conditional random fields (CRF), a form of  MRFs which was able to detect urban areas with tests 
on  various images and yielded competitive  results  over recent studies  in this regard.  
 
In 2008,  Corbane et al. [45] applied a GMRF model to analyze texture in the study of Rapid Urban 
Mapping Using SAR/Optical Imagery Synergy based on its robustness for parameter estimation 
resulting in accurate demarcation  of urban areas. This work was satisfactory in that it inspired an 
investigation into the performance of multi-parameter SAR  sensors for delineation of urban areas 
using a texture based GMRF model [46] where the capability of the model for delineation of urban 
areas over a range of spatial resolutions was proved. 
 
Notable among texture analysis studies for urban areas is the work of Puissant et al. [47]. The study 
confirmed the efficacy of texture analysis for the improvement of VHR urban area images’ 
classification accuracy especially in cases of more heterogeneous spectral images.  

2.3. Review of different methods for texture analysis in remote sensing 

There are four main categories of texture quantization techniques [13] grouped into statistical, 
geometrical, model based and signal processing methods are defined by Tuceryan and Jain [6] and 
Randen [7]. An expounded description of various image texture analysis methods can be found in 
Van Gool et al. [48] and Reed and Dubuf [49]. In the following subsections however, a brief 
discussion of these approaches is given with emphasis on MRF models, a class of model based 
methods. 

2.3.1. Model based methods 

Early research in the realm of texture analysis was mainly directed to the use of first and second-
order statistics  as highlighted by Zhang and Tan [8]. Many model based techniques to model 
texture including GMRFs [50], Gibbs Random Fields (GRF) [51] and Wold models [52, 53] have 
been developed.  In Tuceryan and Jain [6], MRFs and fractals are identified as model based texture 
analysis methods. Materka and Strzelecki [54]  adds autoregressive (AR) models as a model based 
method. These approaches are hinged on generation of an image model able to describe and 
synthesize/simulate texture. Image texture is represented as a probability function or as a linear 
combination of certain basic functions. Parameters of these models are used to capture and 
characterize the important perceived qualities of texture images.  The most significant problem in 
these methods is how to estimate the model parameters and how to determine the correct model 
suitable for a given texture [8]. 
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AR models envisage the assumption that a local interaction between the pixels in an image is a 
weighted sum of the neighbouring pixel in the intensity image. These approaches have been used in 
texture segmentation where the problem of determining an AR model order for texture 
segmentation was considered [55]. Zhang and Tan [8] highlights that these models have been 
employed in texture segmentation, classification and synthesis in many studies notable among them 
is the simultaneous AR model for invariant texture analysis of Kashyap and Khotanzad [56]. 
 
In MRF techniques, texture is as an attainment of an MRF and the specification of the associated 
conditional probabilities provides the representative description of texture.  These models have 
been employed in various RS and image processing in general such as texture synthesis [24], texture 
segmentation [57, 58] and texture classification [17, 50] among others. In recent years, GMRF 
models have attracted a lot of attention in texture modelling in many fields and RS in particular as 
will be demonstrated by the various studies in the section 2.4. 

2.3.2. Statistical methods 

The spatial distribution of grey values being one of the describing characteristics of texture, 
literature presents the application of statistical features as one of the early methods employed [6]. 
Statistical approaches describe texture by analysis of the non-deterministic local spatial distribution 
properties of grey values at each point in an image [59] through computation of  statistical 
parameters such as local mean or standard deviation [13] from the distribution of  the local features. 
Ojala and Pietikäinen [59] classified statistical methods into first, second and higher order referring 
to one, two and three or more pixels respectively depending on the number of pixels defining the 
local features. In [12], Haralick identified and provides a detailed description of eight groups of 
statistical techniques for image texture measurement and characterization. These include 
autocorrelation functions, optical transforms, and digital transforms which measure texture spatial 
frequencies. The other five are textural edgeness, structural elements, spatial grey tone co-
occurrence probabilities, grey tone run lengths, and autoregressive models. 

2.3.3. Geometrical methods 

Geometrical methods of texture analysis describe texture as comprised of patterns or primitive 
units referred to as texture elements as explained by Tuceryan and Jain in [6] where the methods are 
categorized into voronoi tessellation features and  structural methods. Texture in this regard is 
defined as a combination of such primitive units as per different placement rules. Image edges are an 
example of the primitive units commonly used in texture analysis [59]. Computation of the 
statistical properties from the extracted texture primitives which are used as texture features and 
extraction of the placement rules that characterizes the texture are the two main techniques used in 
texture analysis. 
 
The voronoi tessellation technique offers the advantage that the required characteristics in 
describing the local spatial neighbourhoods and distributions are depicted in the tessellation shapes. 
In this approach an image voronoi tessellation properties are used for extraction texture tokens 
ranging from simple high gradient points to complex structures like closed boundaries. On the 
other hand, structural approaches [12] characterize texture by defined primitives referred to as 
micro texture under a hierarchical spatial order of macro texture. In this consideration, one must 
define the primitive units to describe texture and thus structural texture analysis includes extraction 
of texture primitive and deduction of the primitive placement rules.  

2.3.4. Signal processing methods 

These are a kind of texture analysis techniques that perform a frequency content analysis of the 
image. Spatial domain filters are one class of signal processing methods. These include masks and 
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local linear transforms of  Laws [60] and Unser and Eden [61] respectively. Roberts and Sobel’s 
operators are other masks for edge detection which are the most frequency information capturing 
techniques [59]. The Fourier domain filters signal processing approach is the true frequency analysis 
that describes the global content image frequency. This method however doesn’t incorporate 
localization in the spatial dependency thus producing poor results. Inclusion of the spatial domain 
yields the Fourier transform [59]. Other classes of signal processing methods include the wavelet 
and Gabor transforms obtained by use of a window function that changes with frequency in an 
image [62] and a window function that is Gaussian [63] 
 
The wavelet theory, due to its explicit and remarkable potential to the analysis of spatial scales has 
also been under intensive research in image analysis. In the wavelet packet analysis [64], and the 
wavelet transform techniques [3], excellent results in the characterization of textures at different 
scales were achieved alongside reduced computational time in the solution of texture segmentation 
and classification problems. Using the Gabor filters, Dunn et al. [65] presented a mathematical 
multiresolution model to texture segmentation to solve the unique scale analysis problem. The 
multiscale image analysis of Fengrui et al. [38] combined the wavelet and watershed transforms to 
effect multiscale segmentation on multiple scale images. This approach provided headway in 
describing the intricacy inherent in urban areas at different scales besides provision of a new 
direction to multiple scale image interpretation.  

2.4. Previous work of GMRF models in RS image analysis 

GMRF models are a special type of MRF models [66] whose accurate compact description of  a 
variety  of textures has been demonstrated [67]. Kashyap and Chellappa [68] give a comprehensive 
study of these models.  
 
In earlier studies, the Gaussian Markov Random Field (GMRF) model was employed in texture 
analysis for describing a variety textures [18]. Over the years, this approach has yielded successful 
RS studies such as the multi-resolution texture segmentation [69] among others. The model has 
been proved to be an effective method for texture analysis and classification [20, 50, 70] and 
segmentation [57, 71]. In these studies, the method was used for classification of fine resolution 
imagery; extraction of texture features and texture image classification by the simple minimum-
distance classifier; and classification of rotated scaled texture images; and texture analysis for 
partitioning natural images and efficient segmentation of RS images respectively.  In [40], Clausi 
and Bing provide a comprehensive description of the application instances of the GMRF model for 
texture analysis of Synthetic Aperture radar (SAR) sea ice imagery and segmentation and in [72], 
Huawu and Clausi developed a GMRF approach for modelling of directional textures.   
In 2001, Dong et al. [73] using SAR images, proved the effectiveness of GMRF models in dealing 
with images with high level noise. In this study, the model iteratively merged primitive segments to 
attain a refined segmentation procedure. A similar consideration is the segmentation of remotely 
sensed imagery with GMRF of Li and Gong [57] whose segmentation principle was to merge 
similar segments iteratively based on the noise difference of two neighbouring segments.  
 
One of the earlier applications of GMRF was its incorporation in the split-and-merge algorithm in 
the segmentation of textured images as mentioned by Reed and Dubuf [49] in [74] and the method 
has since then attracted a lot of attention in this regard.  
These models have also been used in the modelling and segmentation of colour images in which 
spatial interaction within and between the bands of a colour image was effectively captured  [75]. 
 
A remarkable application of these models is the study of  Chellappa and Chatterjee [50]. They 
performed texture classification using a GMRF model and demonstrated the significance of window 
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size over which image texture should be analyzed. The issues of window size on the basis of these 
models has been extensively dealt with in [40], where a comparison between GMRF and Grey level 
Co-occurrence probability (GLCP) methods in unsupervised texture segmentation is done. 
 
In 2007, Yindi et al. [20] executed a study that demonstrated the effectiveness GMRF models for 
description of the spatial heterogeneity inherent in land cover and land-use of high resolution 
imagery. In this work, the effectiveness of spatial information was exhibited through texture 
analysis to improve classification accuracy.  In the study for the classification of textures using a 
GMRF model on linear wavelets, Ramana et al. [76] demonstrated the usefulness of GMRF models 
for precise classification of any textures. 

2.5. MRF texture analysis model 

Markov random field (MRF) is capable of representing the spatial distribution of the image pixels. 
The model explicitly specifies the local dependence of image regions through definition of image 
pixels neighbourhood system and probability density function on the spectrum distribution of the 
grey pixels. The model thus effectively captures the local spatial texture information with the 
assumption that the image intensity depends solely on the neighbouring pixels intensity. 
Let d = {d1, d2, ..., dm} define a set of the random variables on the set S of m sites wherein each 
random variable di  obtains a value from a set L-the label set. The grouping d defines a random field. 
In this representation, S, d and L are the image with m pixels, the pixel digital number values and 
label sets respectively. Label set L is the user-defined set of information classes such L= {forest, 
grass, roads, buildings, or water}.   
 
With reference to a specified random field the configuration for the set S is represented as 
 w = {d1 = w1, d2 = w2, …, dm = wm} for wr ∈L (1≤ r ≤ m). A neighbourhood system defined for a 
random field yields a Markov random field on condition that the following properties as satisfied 
by its probability density function. 
 

i. Positivity:  Implying that for all possible configuration of w, the probability of 
configuration P (w) is greater than zero i.e. ���� � 0. 

ii. Markovianity: ���r	|ws-r�		P��r	|wNr�	  
Where S-r and �s-r	denotes the set difference and the set of labels at the sites in S-r and Nr 
represents the neighbours of the site r. This property expresses each pixel’s neighbourhood 
dependency in an image. 

iii. Homogeneity: ���r	|wNr�  being the same for all sites r.  This property defines the 
conditional probability for the label at site r which does not depend on the location of the 
site in S. 

When the spectrum distribution of pixels is Gaussian, the described model is referred to as Gaussian 
Markov random field (GMRF). A GMRF is a typical MRF models which is currently widely 
employed for image texture modelling  [77]. 

2.5.1. GMRF texture model representation   

In this work, a GMRF model is employed [50]. Motivation for adoption of this popular models [58] 
is hinged on  its well description of natural phenomena textures since it characterizes behaviour 
that arises from the superposition of various random effects, under which none dominates. 
Descombes et al. [78] in the study of estimating GMRF parameters in a nonstationary framework 
in RS image analysis points out that application of this model is inclined to its simplicity, 
involvement of relatively few parameters and being computationally efficient. They assert that the 
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model parameters can efficiently separate several textures especially those typical of urban areas 
despite complexity of texture images from optical and SAR imagery. 
 
Let i(s) denote an image grey level in a texture region R of M� N lattice for a pixel S .The GMRF 
model for the texture region defining the grey level intensity of the pixels � is defined by the local 
Gaussian conditional probability density function represented as: 

                                                

	p�i�s�|R�  	 �
����² exp � �

��² !e�s�"�#																																																										�2.1�            
Where, e(s) is a zero-mean Gaussian noise sequence with the variance of	σ². Since the GMRF 
models are defined based on the neighbourhood of pixels s, its spatial interactions are given by the 
following equation: 

 

i�s�  μ  ) β�r��i�s + r�  μ� + e�s�																																																					
,∈.r

�2.2� 
Equation (2.2) shows a corresponding interpolative form of a GMRF where µ denotes the mean of 
variables i(s), β(r) are the model parameters and Nr	 is a set of the model neighbourhood system. We 
now have	 r	 Є	 Nr	 and -r	 Є	 Nr,	 and β(r) = β(-r) since the power spectrum represented by equation (2.2) 
must be real and positive [79]. Symmetric neighbourhood sites is the condition for the development 
of GMRF models and thus an asymmetric neighbour set Nr  similarly characterizes Nr	 such that if		
r	Є	Nr  then -r Є	Nr   and the relationship between Nr	 and Nr is 	Nr  1r: r ∈ Nr3 ∪ 1 r: r ∈ Nr3. The 
GMRF model can thus be represented by a modified equation (2.2) as follows: 

i�s�  μ  ) β�r���i�s + r�  μ� + �i�s  r�  μ� + e�s�																																						
,∈.r

�2	. 3� 
Solution of the model yields the parameters β(r)s and conditional variance σ² which describe and 
characterize the GMRF models and image textures respectively.	
2.5.2. GMRF model selection 

A pre-requisite important aspect for achievement of accurate estimates in random field modelling is 
application of an appropriate GMRF model.  In his report on parameter estimation in GMRF, 
Haindl [25] clearly affirms that a too small neighbourhood system is insufficient for securing all 
characteristics of the random field. Furthermore, an addition to the computation burden alongside 
potential degradation of the model performance as an additional noise source will ensue if 
extraneous neighbours are included. These important consideration in GMRF parameter estimation 
are further supported by his later co-authored papers [80, 81]. Selection of a neighbourhood size is 
thus very crucial in GMRF texture modelling. A detailed discussion of the problem of estimation 
and selection of neighbourhood  is presented by Kashyap and Chellappa in [68].  
 
A forthright technique for choosing the most favourable neighbourhood using the exhaustive 
search approach is computationally exorbitant and there is no motivation for its result being ideal 
notes Haindl in [25]. In texture analysis using MRF models hierarchical MRF models are frequently 
employed [25, 81]. This hierarchical neighbourhood, which is the symmetric neighbourhood 
system, is de-facto mainstream  GMRF modelling [25].  
 
If Nr  denotes a neighbourhood system, then the set of neighbours of site r define the hierarchical 
neighbourhood system which is expressed as 
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Nr		1s: 0 6 �71	–	s1�²	+�r2	–	s2�²	9	d²�k�3																																																																				(2-4) 

Where d²�k� represents the Euclidean distance between the site r and its furthest neighbour. k is the 
GMRF model order. 
Figure 2.1(a), (b) and (c) are example hierarchical neighbourhood systems relative to site r showing 
the first-order, second-order and a higher system up to the twelfth order respectively. 
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Figure 2.1: Neighbourhood system of site r in which (a) is 1st order, (b) 2nd order and (c) 12th order and (d) is 
2nd order neighbourhood system showing direction vectors for the beta (β) parameters 

The neighbours of the first and second-orders centered on site r are denoted by the set of shift 
vectors of Nr {(0, 1), (0, -1), (-1, 0), (1, 0)} and {(0, 1), (0,  -1), (-1, 0), (1,0),(-1, 1),(1,-1),(1,1),(-1,-1)} 
respectively.  Higher orders are defined in a similar way.	 	 In the second-order, asymmetric 
neighbour pairs (0, 1), (0, -1) and (-1, 0), (1, 0) yield the horizontal and vertical parameters denoted 
by β1 and β2 respectively. Similarly, the diagonal pairs (-1, 1), (1,-1) and (1, 1), (-1,-1) will also give 
two parameters β3 and β4 as shown in (Figure 2.1 (d)). 

2.5.3. GMRF parameter estimation 

Various techniques for GMRF model parameter estimation exist, however, Manjunath and 
Chellappa [82] and Yindi et al. [20] point out that consistency as well as stability cannot be 
guaranteed by any of them in estimating these unknowns. The terms consistency and stability 
respectively imply that parameter estimates converge to the true values and the covariance matrix 
derived from the joint probability density expression must be positive definite. 
 
Methods for estimation of the GMRF parameters include the coding method, Least Squares (LS) 
and Maximum likelihood (ML) estimation methods [83], the computationally demanding Markov 
chain Monte Carlo (MCMC) methods [84] and the pseudo-likelihood estimation method [25]. 
Derin and Elliott [51] states that the coding method is essentially a ML estimation technique whose 
parameter estimates maximize the joint conditional distribution of part of the data conditioned by 
the whole given data making it inefficient [83]. In spite of the ML estimation method giving more 
accurate estimates of texture parameters than those of the LS method [68, 85], the method is time 
consuming [84], computationally intensive as it involves evaluation of the estimation integral 
function and for image and signal processing application involving large lattices it may not be 
practical [83]. This difficulty is also noted by Haindl [25]. The Coding technique like the ML 
method involves solution of nonlinear equations which renders them cumbersome and difficult to 
be used reliably. In addition, different estimates are yielded from a single computation based on a 
certain neighbourhood order which necessitates a technique for combination of these estimates [51] 

β3 
β2 

β4 

β1 
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, which unfortunately  does not exist. The pseudo-likelihood estimation method on the other hand 
is computationally simple but not efficient [81]. 
 
The most popular methods used in the RS image analysis domain are the ML and LS estimation. 
The LS method is often employed   based on the motivation of its simplicity-stability trade-off [20, 
77, 82]. Chellappa and Chatterjee [50] in their work using GMRF for texture based classification 
asserts that the LS estimates are preferred because they are information preserving features as they 
construct textures close to the original. In addition to circumvent these “chicken and egg” problems 
of inconsistency and instability of the LS method and exploit its advantages, Kashyap and 
Chellappa [68] developed a finite lattice image model representation. This is achieved by assuming 
special boundary image conditions resulting in a computationally efficient process. The conditions 
state that the left and right edges like the top and bottom are regarded as adjacent yielding a toroidal 
field. This approach has produced successful results in the  analysis of both synthetic [68, 86] and 
real image textures [26, 82]. 
 
Although measures for attaining reasonably good estimates exist, since they are used for obtaining 
certain measures for texture analysis such segmentation its convenient to employ a less demanding 
computational scheme even if the estimates’ stability is not guaranteed [82]. 
In this study, the LS method is employed whose estimates of the GMRF model’s unknown 
parameters are  
 

β=  >)q�s�q@
A∈B

�s�C
D�
>)q�s�
A∈B

�i�s�  μ�C																																																										�2. 5� 
                                               

Where 	β=  is the LS estimate of the model parameters of the vector	β for	β=  colIβ=�r�|	r	ЄNJK, R 

denotes the image interior and  

 

q�s�  col!�i�s + r�  μ� + �i�s  r�  μ�|r	ЄNJr"																																																					�2.6�  
The estimate of the noise variance σM² is computed by 

  

σM²  1MxN	>)�i�s�  μ� β=@q
A∈B

�s�C
�
																																																										�2.7�	 

 

Where M×N is the size of the texture region R. The estimated parameters β=  and σM² are applied as 
GMRF texture features in this research for texture characterization. 

2.6. Image texture based classification 

Texture based classification is one of the intriguing important aspects of MRF texture analysis 
alongside texture segmentation and texture modelling [87]. Classification of texture entails texture 
features derivation and construction of a classification scheme. In this procedure, the class texture 
features obtained through the least squares GMRF model parameters estimation for tree crowns 
objects and grass land cover classes were used.  The design of the classification procedure is hinged 
on the MRF properties described in section 2.5 and subsequently proceeds with generation of a 
spatial neighbourhood system. Neighbour system definition is explained in section 2.5.2 where 
Figure 2.1 (a), (b) and (c) show the first, second and twelfth model orders respectively. 
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Pixel neighbourhood centred on a given site was assigned weights based on the second-order of 

window size 3 to aid generation of a neighbourhood list. 

2.6.1. Energy functions 

Referring to the random variable w since MRFs perform classification of pixels based on their local 

characteristic in the image, a Gibbs random field (GRF) was considered. The model defines a global 

property through a probability density function (p.d.f.) from which the attainment of a specific 

pixel label based on all pixels in an image is specified as 

 

p�w�  	1Z exp P Q�R�@ S																																																																																												�2.8� 
Where,  

Z  ) exp U U�w�T X																																																																																										�2.9�
Z[[		R				

 

                                                       

In this formulation, the normalization constant Z is known as a partition function denoting the 

summation of all the possible configurations of	w, constant T and  U�w� are the referred to as the 

temperature and energy function respectively. Minimization of the energy function yielding 

equation (2.10) is the similar to maximization of equation (2.8). 

U�w� )Vc�w�																																																																																													�2	. 10�
]Є^

 

                                                                    

Where U�w� from equation (2.10) is the sum of the clique potentials Vc�w� of a collection of all 

desirable cliques here denoted by	C. The local composition of image subsets expressing all pairs of 

the mutual neighbouring sites is termed as a clique, on which the potential function Vc�w� depends. 

Cliques of the first-order and second- order neighbourhood systems centered on site r shown in 

Figure 2.2 as adapted from [51]. 

              

                 

              

              r  (c) 

              

                 

                                             

                                             

                                           

                                          r  (d) 

                                             

 (a) (b) 
Figure 2.2: Possible cliques of neighbourhood system of site r of (a) a 1st order shown in (c), and (b) a 2nd order 
shown in (d). 

Another important element of the classification process is design of the global energy. This is 
important for finding the optimal solution of the pixel labelling process. The global energy is the 
total energy derived from the prior energy expressing contextual information and the conditional 
probability density function representing the probability of a pixel belonging to a given label. This 
is a framework based on Bayesian formulation [13] that; 
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P�wr|dr�	α	P�wr|wNr�P�dr|wr�																																																																														�2.11� 

 

In the equation (2.11) � and a are a certain random variable representing a dataset and class label. 
GRF and MRF equivalence results in equation (2.11) is reformulated as  

 U�wr|dr�  U�wr|wNr� + U�dr|wr�																																																																											�2. 12�  
                                                                          U�wr|wNr� and U�dr|wr� are the prior and conditional energies of Nr neighbourhood and U�wr|dr� is 
a pixel’s likelihood or posterior energy. 
To balance the two energies for achievement of an optimal classification solution, a controlling 
parameter known as the smoothing parameter	λ		is introduced transforming equation (2.12) to: 
 U�wr|dr�  λ	U�wr|wNr� + �1  λ�	U�dr|wr�																																																												�2. 13� 

                                                                       

It is observed from equation (2.13) that choosing the value of the smoothing parameter (λ) as 0, the 
contextual information which is the main characteristic of MRF classification is neglected and thus 
a value greater than one is used to tune the energy functions. 

2.6.2. Energy minimization 

Achievement of the optimal solution of the class labelling process is through minimization of the 
energy function. The Simulated Annealing (SA), Iterated Conditional Modes (ICM) and Maximizer 
of Posterior Marginal (MPM) iterative  techniques are  highlighted [13] as important approaches for 
the optimization process. The conventional simulated annealing as given by Tso and Mather is 
employed in this work [13]. 
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3. DATA  

This chapter provides a description of the dataset used, the selected study area and the data 

preparation and pre-processing steps.  

3.1. Dataset and study area 

 The development of advanced sensor system with finer spatial resolution has in the recent past 

attracted a lot attention in the RS field. Currently systems such as electro-optical cameras 

incorporated with in-flight features like the ADS40 Airborne Digital Sensors, Airborne High 

Resolution Stereo Cameras (HRSC-A), and satellite sensors such QuickBird (QB), Ikonos and 

GeoEye exists. Such systems provide high resolution imagery able to clearly reveal detail and vital 

object associated information such as texture and structure [88].  In spite of this advancement in 

sensor systems which has rendered increased spectral variability as spatial resolution increases, their 

products users have been entangled in a fresh confrontation to develop methods for automatic 

analysis of these data. This is supported by the inability of the available techniques such the 

traditional per-pixel classification and analysis methods’ failure to tackle the heterogeneity and 

context of the source information. Such challenges are prominently evident in the analysis of urban 

and their peripheral areas which are indispensable for effective planning and management of urban 

areas. Full knowledge of an urban area spatial information and distribution is crucial for its 

administration and the entire line departments such as disaster estimation and physical planning 

[89]. These ventures require effective mapping of trees, roads, and open grass areas among others.  

 

QuickBird and Ikonos data can be used as a source of information for urban applications because 

they satisfy some of the main requirements like high geometrical resolution, multi-spectral 

capabilities, radiometric sensitivity and good positioning accuracy, among others.   

QuickBird data is obtained with an 11 bit dynamic range which enhances visualisation hence 

greatly appropriate for application in urban territory studies. Satisfaction of the requirements for 

urban applications such high geometric resolution, radiometric sensitivity, an excellent accuracy in 

positioning, multi-spectral and revisit potentials and large imagery presents QuickBird as a 

dependable source of information in this arena [90].  The sensor incorporates both across and along 

track viewing capabilities which fosters its flexibility in data acquisition and frequent revisit time 

abilities. These characteristics are also typical of Ikonos satellite imagery. These imaging system 

provides an excellent source data relevant for almost all environmental studies such as land-

cover/land-use classification and environmental impact assessment studies [91] among others. 

Figure 3.1 provides a scene of QuickBird and Ikonos of part of the study area in panchromatic 

band. The QuickBird data used is part of the Enschede area, The Netherlands. The image was 

acquired on the 21st September 2009 covering an area with coordinates of 52° 12' 00"N, 

52° 12' 00"S, 6° 48' 00"W and 6° 48' 00"E.  On the other hand the Ikonos image of the same area 

was acquired in April 2000. 
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(a) (b) 

  

(c) 

 

Figure 3.1: Part of a single scene of QuickBird and Ikonos panchromatic band of Enschede, The Netherlands 

Figure 3.1 (a), (b) and (c) are part of the Quick Bird, Ikonos and a Google Earth view of portions of 

the scene showing the respective grass and tree crowns regions respectively. Details of QuickBird 

and Ikonos satellite system are provided in Table 3.1. 

 

Table 3.1: (a) QuickBird and (b) Ikonos imagery details 

(a) QuickBird 
Band Wavelength  

(µm) 

Resolution 

(m)  

Swath 

width 

(km)  

Revisit 

Time 

(days) 

Pan 0.45-0.90 0.6 16.5 3.5 

Band1 0.45-0.52 2.4 16.5 3.5 

Band2 0.52-0.60 2.4 16.5 3.5 

Band3 0.63-0.69 2.4 16.5 3.5 

band4 0.76-0.90 2.4 16.5 3.5 
 

(b) Ikonos 
Band Wavelength  

(µm) 

Resolution 

(m)  

Swath  

width 

(km)  

Revisit 

Time 

(days) 

Pan 0.45-0.90  1.0 11.3 3.0 

Band1 0.45-0.52 4.0 11.3 3.0 

Band2 0.51-0.60 4.0 11.3 3.0 

Band3 0.63-0.70 4.0 11.3 3.0 

band4 0.76-0.85 4.0 11.3 3.0 
 

3.2. Data preparation and processing 

In this section data selection from QuickBird and Ikonos data of which portions are shown in 
Figure 3.1 (a) and (b) alongside data preparation and reference image generation for validation of 
classification results are presented. 

Grass 

Grass 

Trees 
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3.2.1. Selection of land cover classes 

To enable this study objectives, image subsets were derived from the QuickBird data and Ikonos 

imagery for tree crowns objects and grass, the required land cover classes. The discrimination of 

tree crown objects from other land cover classes such grasslands by spectral pixel-based 

classification methods is still a major challenge in image processing applications [41] yet this is 

crucial for urban area development management.  

These reasons led to the choice of these lands cover classes in order to explore the texture-scale 

relationship especially when dealing with analysis of multispectral resolution data such as super-

resolution mapping. Six image subsets of either class were selected from the panchromatic and 

multispectral bands using ENVI version 4.7 software and converted from raster to ENVI ASCII 

format for the required computations in R software. Homogeneous cover of the classes was 

selected. In this case the word homogeneous refers to a repeated similar clustered pattern of the 

same class. Examples of these subset images are shown in Figure 3.2 and 3.3 of tree crowns objects 

and grass classes respectively. These subset images were extracted from the QuickBird and Ikonos 

panchromatic bands whose portions of a single scene are shown in Figure 3.1. 

 

(a) (b) (c) 

   

Figure 3.2: Tree crowns sample subset pairs of 0.6m panchromatic band QuickBird imagery 

(a) (b) (c) 

   
Figure 3.3: Grass sample subset pairs of 0.6m panchromatic band QuickBird imagery 

Use of more than one subsets of either class will aid the incorporation the possible different types 
of either class to aid non-deficient analysis.  
 
In the Enschede, The Netherlands, whose QuickBird and Ikonos imagery are used in this study, is 
comprised of artificial and natural forests which included closed forests (Figure 3.4) among other 
land cover classes. In these forests, trees cover a considerable proportion of the ground such as 
broadleaved and coniferous forests. The tree crowns objects sample subsets were extracted from this 
land cover in the image data. Similarly, the area is composed of continuous grass layers (Figure 3.4) 
such as recreation field grass found in most park areas among other places from where the grass 
class sample subsets referred to in this work were obtained in the imagery. 
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Figure 3.4: Google Earth view of a closed forest and continuous grass field. 

3.2.2. Reference data generation 

For accuracy assessment of the results of the applied GMRF method for texture based classification, 
reference data is required. The exact class map for the texture subset image to be classified is not 
available. Therefore, the reference map for the selected portion of image to be classified was 
prepared by manual digitization of the 0.6m QuickBird panchromatic band extracted subset image 
to be classified in ArcMap software. The image contains two homogeneous classes which are tree 
crowns objects and grass classes. A 200×200 pixel subset image and its generated reference are 
shown in Figure 3.5.  
 

(a) (b)  

  

Legend 

 

 
Grass 

 
Tree Crowns 

 

Figure 3.5: QuickBird panchromatic (a) original and (b) reference image 

As observed from Figure 3.5, the original image is made of two classes grass and tree crowns 

objects. However, the image contains a shadow, cast on some parts of the grass class which creating 

a mask. This part of the subset image was included in the tree crowns class in this task. This is a 

limitation in the classification which should be taken into account in the accuracy assessment.  

3.2.3. Software 

The main software used in the implementation of this research is the R Project for Statistical 

Computing version 2.12.1 that is referred to as R software in this work. It is a freely available 

statistical and graphics programming language. Other software used included ENVI version 4.7, 

ArcGIS and ERDAS IMAGINE 2010.  

 

Forest 

Grass 
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4. METHODOLOGY 

This chapter describes chronologically each step taken in the execution of this research. Section 4.1 
explains GMRF texture simulation by the developed model and its importance for this study. Data 
spatial modelling and texture-scale relationship exploration procedure are expounded in sections 4.2 
and 4.3 respectively. In section 4.4, the approaches used for class separability quantification are 
explained and texture based classification is explained in section 4.5. 

4.1. GMRF texture simulation 

The emphasis of this task was to illustrate the appropriateness of the GMRF model for texture 
simulation. The textures of grass, tree crown objects, and sand for instance, do not possess easily 
identifiable primitives. Stochastic texture can be described by statistical properties and the major 
challenges in simulation of such texture include appropriate model selection and model parameters 
estimation [92] . This will ensure generation of the adapted model compliant image that compares 
with natural textures.  
 
The aim in this development was to achieve as accurate as possible the texture parameter estimates 
generated by the model. The GMRF model of Clausi and Bing [40] and Chellappa and Chatterjee 
[50]  was employed. 
 
Gibbs sampler energy functions were initialized for simulation iterations and sampling from the 
field with this algorithm, grey values keep updating till the energy function settles to a constant 
minimum. This procedure was implemented in R software. Simulation of GMRF texture was 
carried at various patch sizes to assess its effectiveness. Patch sizes used are 8×8, 16×16, 32×32, 
64×64, 96×96, 128×128, 192×192 and 256×256 pixels. Different parameters were used and 
assessed for accuracy to ascertain the model suitability for this work.  

4.2. Spatial variation modelling  

In this section execution of data normality and spatial variability assessment are explained. 

4.2.1. Data distribution 

Approaches for geostatistical analysis are satisfactory when data are normally distributed and 
stationary [93]. This implies that there is no significant variation in space of the mean and variance. 
To assess data normality and stationarity, a histogram analysis technique was employed and 
inspection of data summary statistics using R software. The histograms of some of the sample 
subset images (Figure 3.2 and 3.3) were plotted as shown in Figures 4.1 and 4.2.  As depicted by the 
histograms, data are approximately normally distributed.  
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(a) (b) (c) 

  

Figure 4.1: Histograms of tree crown sample subset images 

 

(a) (b) (c) 

   

Figure 4.2: Histograms of grass sample subset images 

4.2.2. Variogram 

The variogram is used to characterize spatial variation in a region of interest. It is a quantitative 
descriptive statistic that can be graphically illustrated providing the spatial dependence of each point 
on its neighbour. It incorporates the spatial locations of data into the defining computations such as 
identification and quantification of texture differences between datasets unlike the common 
descriptive statistics and the histogram.  In the realm of RS, the variogram has been estimated and 
investigated in a range of applications [94-96] and Atkinson and Lewis [97] explain the use of 
variogram in classification as a measure of texture.  
 
Image pixel spectral values are spatially auto-correlated and their spatial dependence structure can 
be modelled or estimated by variogram. This experiment was carried out to investigate the spatial 
dependence of a pixel from its neighbours. It will also depict the textural difference between the six 
sample subset images used in this study for grass and tree crowns respectively to aid informed 
GMRF texture parameter estimation for class separability. The variogram will characterise the 
spatial variability of the image grey levels for purposes of quantifying the difference of the 
measured values between the two classes and the subsets of each of the classes themselves as the lag 
value of the pixel sampling increases. In this study variogram for the subset images were estimated. 

4.3. GMRF parameter estimation for texture-scale relationship exploration 

A second-order neighbourhood GMRF model was adopted.  The order also referred to as the eight-
neighbourhood system has eight neighbours for every interior site as shown in Figure 2.1. The 
model is an asymmetric neighbourhood system denoted by four pairs of a set of shift vectors 
described in section 2.5.2.  According to the LS parameter estimation explained in section 2.5.3 as 
adopted in this study, the second-order GMRF model parameter solution yields five parameters. 
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These are the four parameters from the four pair asymmetric neighbours here referred to as beta (β) 
(Figure 2.1(d)) and the conditional variance of the noise source (σ²). 
 
To enable explore texture-scale relationship, model parameters were estimated at different spatial 
scales or resolutions. Scale factor (SF) in this work is an absolute number used for determining the 
spatial scale/resolution at which texture is explored. This value determines the fineness or 
coarseness of image texture. QuickBird panchromatic band 0.6m was adopted as image at SF= 1 
(fine resolution). Image subsets of this band were then degraded with scale factors (SF) of 2, 4 and 7 
to provide an insight of texture. With QuickBird as the fine spatial resolution(SF=1), SF = 2, 4 and 
7 will enable analysis at 1.2m, 2.4m and 4.2m spatial scales respectively. The reason for choosing 
scale factors of 2, 4 and 7 was to facilitate texture-scale behaviour exploration at the spatial 
resolutions approximate to that of the 1m spatial resolution Ikonos panchromatic band, equivalent 
to QuickBird multispectral bands and that approximate to SPOT 5 imagery of 5m. Furthermore, 
they were selected for exploration of the behaviour of texture at various coarser spatial resolutions.  
 
GMRF parameter estimation was also performed in the multispectral band of QuickBird image of 
2.4m spatial resolution. Additionally, texture parameters were estimated for Ikonos panchromatic 
and multispectral band1 to provide a comparison of these parameters in different images with 
different spatial resolutions. With reference to the spatial variation of the texture subset images as 
explained in section 4.2.2, parameter estimation at the mentioned scales was carried out at different 
lag values from the interior site of the neighbourhood system. The system was extended to include 
more pixel value in order to account for variability inherent in the texture sample images. The lag 
values (distance in pixels) considered as informed by the variogram were 1, 3, 5, 7, 10, 15 and 20. 
These were visually determined from the variogram plots in the range showing the different spatial 
structure of grass and tree crowns objects. A lag in this study refers to a 1 pixel distance of a certain 
image of a given spatial resolution.  The 2nd order neighbourhood system used in this study that 
yields four beta parameters and the conditional noise variance is based on the lag values. The order 
remains 2nd despite the lag value.  With lag value 5 for instance, the 2nd order neighbourhood system 
contains an equivalent of 5 pixels distance. 

4.4. Class separability  

In this section, an explanation of the techniques employed to analyze class discrimination between 
tree crowns and grass land cover classes modelled by the GMRF model is provided.  
 
Feature spaces are often utilized to demonstrate class separability in image analysis applications. 
This procedure was also used in this study. However, these distributions have overlaps which 
impinge on classification of such data and hence the concept of separability. Class separability a 
classical notion in pattern recognition which is coordinate system independent [98] that expresses 
how well two classes can be discriminated [99]. This concept provides an account of the classes’ 
distribution. Several techniques for determining class separability exist. Jiancheng [99] notes Fisher 
criterion as one of the important and widely used separability measure. This measure was adopted 
in this study. However, the Fisher linear discriminant performs analysis band by band or considers 
each feature independently. Therefore to enhance findings derived for this analysis, the 
multidimensional Euclidean distance is employed. 
  

4.4.1. GMRF texture feature spaces 

A standard image feature space is a graph depicting image data files (digital numbers) of one band 
against another as a scatter plot. In this space significant features conform to feature space cluster 
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regions whose purpose of analysis is delineation of the clusters. GMRF estimated texture 
parameters used as texture features for texture characterization in this research have been combined 
to produce features spaces to graphically illustrate the separability between tree crown objects and 
grass land cover classes. This has been done at different scales and lag values mention in section 4.3. 

4.4.2. Fisher criterion 

Fisher criterion also known as Fisher discriminant function identifies a projection that maximizes 
the variance of the class means and minimizes the variance of the individual classes. The technique 
is a commonly favoured  measure of class discrimination using the distance between class clusters 
[26]. The approach is employed to assess estimated GMRF model texture features in a one 
dimensional space. This linear discriminant ratio can be used as a performance measure [100], as 
pattern classifier and for feature extraction [101] and feature selection.  Fukunaga, and Stathakis and 
Perakis [98, 100] define a two-class Fisher criterion which maximizes the linear projections w as: 
 

				J�w�  |d1Dd2|²A1efA2e 																																																																																																			�4.1�	
Where m represents a mean, s²	represents a variance, and the subscripts denote land cover classes 1 
and 2. The numerator of this criterion expresses the between-class discrimination while the 
denominators each denote the scatter (variance) within that respective class. Maximizing the 
criterion, the distance between the means of the classes is maximized whereas the variance within 
each class is minimized. The score	J, expresses the features’ discrimination or the class separability 
factor. The larger the score, the more likely a feature is more discriminative. 
  
The main purpose for using this criterion was to perform a separability analysis of the two land 
cover classes as modelled by the GMRF texture model. Since the accuracy of GMRF parameter 
estimation was ascertained from the texture simulation experiment that was carried out at different 
patch sizes explained in section 4.1, Fisher criterion results for parameters estimated from areal 
images was assessed as a function of patch size using the accuracies attained from the simulation. 
This was carried out for comprehension of class separability with different image patch sizes that 
may be used for a given application. In addition, this analysis was undertaken at different image 
scales and lag values mentioned in section 4.3. 

4.4.3. Euclidean distance for class separability 

To assess the separability of the classes, the Euclidean distance [102] between the two class centres is 
applied as a separability measure.  The Euclidean distance has been computed in a multidimensional 
space represented by the GMRF texture features. Referring to the parameters of the second-order 
GMRF model used in this work, a five multidimensional space Euclidean distance was computed. 
Each texture feature mean (β1, β2, β3, β4 and σ²) was calculated to obtain the class centre for that 
parameter for each class (tree crowns objects and grass). The square root of the sum of the squared 
differences was thus taken to get the Euclidean distance in this space. 

4.5. GMRF texture based classification  

This section provides the procedure used in the classification of texture subset images using the 
GMRF model. Texture classification in this work is significant for assessing classification accuracy 
of the adapted texture-scale exploration method. Studying the behaviour of texture at different 
scales without ascertaining the accuracy of the employed method in classifying the same texture 
classes is depriving the approach of its merit and innovation.  
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In this research, since it was confirmed that the simulated texture do reproduce the characteristics 
of the initial texture, texture features derived from the GMRF model are used in the classification 
process. The procedure used in the texture based classification is hereby provided. 

4.5.1. Classification procedure 

Texture image classification was carried out to illustrate the developed methods achieved accuracy. 
To execute this task, optimization of the GMRF classification process is a pre-requisite. This phase 
was thus based on an iterative optimization algorithm for initial image refinement. This is done 
through iterative updating of each pixel in the initial image by a new class label considering the 
spatial relationship of class neighbouring pixels. Since the GMRF texture model incorporates the 
modality of pixel neighbourhood contextual information and the data distribution, the image 
texture is thus modelled as a GMRF. For the classification process to succeed, specification of the 
prior and likelihood energy functions ( section 2.6.1) for interaction between neighbouring pixels 
and textural information expressing the local evidence of a pixel site respectively were done which 
are integrated resulting in the process global energy.  Energy functions are significant in this process 
for finding the minimum and quantifying the global solution of the classification scheme. 
 
Attainment of an appropriate result is achieved through regularization of the two constraint 
energies by a smoothing parameter denoted as lambda (λ ). Maximization of the probability of 
labelling a pixel to a certain class is the final aspect of the classification process achieved through 
energy minimization. The whole energy optimization process is implemented using the simulated 
annealing (SA) approach by the randomness optimization control parameter called the temperature 
(T) and the updating schedule parameter.  
 
Details of this process are provided in chapter 2 section 2.6.  

4.5.2. Accuracy assessment 

To understand and compare the quality and accuracy of the results of the classification scheme, an 
assessment of the applied GMRF model performance is a re-requisite. Without this assessment the 
degree of performance of the employed approach for objective of this work cannot be ascertained.  
The commonly classification results assessment approach used in RS – the confusion matrix is 
employed for this purpose. The confusion matrix also known as the classification error matrix or 
contingency table depicts the degree of misclassification of the classes in question. The kappa 
statistic  whose details are given in [103] derived from the confusion matrix was used in this study 
for accuracy assessment. 
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5. RESULTS  

This chapter is divided into seven main sections presenting the experimental results obtained for 
achievement of this study objective. Section 5.1 presents results of the texture simulation task for 
assessment of the accuracy of the estimated parameters used in the task. In section 5.2, variogram 
experimental results are given proving a range within which the considered land cover classes can 
be separated. Sections 5.3 and 5.4 describe the experimental results of the GMRF estimated 
parameters and their feature space plots respectively. Fisher criterion and inter-class separability 
analysis results are respectively provided in sections 5.5 and 5.6.  Section 5.7 provides the findings 
from the texture based classification experimental results using GMRF. 

5.1. Simulation of GMRF texture 

Texture simulation using GMRF aims to duly fit a model to certain specified real life texture and 
produce an image conforming to the chosen model. This ensures that the simulated texture from a 
set of random variables is perceptually close to the original texture. Therefore the model should 
estimate the original texture parameters with minimal errors as possible. True or initial texture 
parameters for which results are presented here are -0.25, 0.2, 0.08, -0.03 and 1 for β1, β2, β3, β4 and 
σ² (conditional variance of the noise source) respectively.  Results of the texture simulation 
experiment are provided in Figure 5.1. 
 

(a) (b) 

   
Figure 5.1: (a) 96×96 and (b) 128×128 simulated textures using a 2nd order GMRF model  

The accuracy for the estimated parameters from the simulation were assessed as a function of patch 
size mentioned in section 4.1.  Results of this task are given in Figures 5.2, 5.3 and 5.4.  
 

  
Figure 5.2: (a) Estimated and (b) error in estimated GMRF parameters as a function of patch size 



MULTISCALE TEXTURE ANALYSIS OF REMOTELY SENSED DATA WITH MARKOV RANDOM FIELDS 

 

28 

  

Figure 5.3: Conditional variance (σ²) and (b) average standard deviation of estimated (βs) GMRF parameters 
as a function of patch size. 

Figure 5.2 (a) shows the estimated parameters from the texture simulation task as a function of 
patch size whereas Figure 5.2 (b) represents the errors in estimated parameters as a function of 
patch size. It’s observed that very small errors which tend to zero as patch size is increased are 
obtained for each parameter. In a similar way, the estimated conditional variance of the noise 
source and the average standard deviation of the estimated (beta) parameters were plotted against 
the various patch sizes used as depicted in Figure 5.3 (a) and (b) respectively 
  
Since the purpose of the texture simulation exercise was to ensure that accurate estimated 
parameters of the initial true values are obtained, the individual standard deviations of the estimated 
beta parameters like the conditional variance of the noise source(Figure 5.3(a)) were also plotted as a 
function of patch size to aid their analysis as provided in Figure 5.4.   
 

  
Figure 5.4: (a), (b), (c) and (d) Standard deviation of estimated β1, β2, β3 and β4 as a function of patch size 

The graphs depict very small error for each of the parameters a trend conforming to the one shown 
by the average standard deviation (Figure 5.3 (b)). 

5.2. Variogram for land cover classes spatial variation modelling 

One of the most important aspects for application of GMRF models is choice of an appropriate 
model which is determined by the neighbourhood system adapted to achieve meaningful results of 
the method’s analysis. Haindl [25] pointed out that a small contextual neighbourhood and inclusion 
of unnecessary neighbours may not capture the variability inherent in data and can lead to model 
degradation as noise source respectively. For these reasons, variogram estimation of the prepared 
data whose distribution was analysed as described in section 4.2.1 was carried out. The purpose of 
variogram estimation is expounded in section 4.2.2 of chapter four. Variogram of the six texture 
image samples from the QuickBird panchromatic band of either land cover class used in this study 
(tree crown objects and grass) was produced to aid informed neighbourhood system determination 
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for the GMRF model.  Variograms of the image subsets whose samples are given in Figures 3.2 and 
3.3 are shown in Figure 5.5 characterizing the spatial variability of the image grey level.  
 

  

Figure 5.5: Tree crowns and grass variograms (a) before standardization (b) after standardization. 

As the data spatial distribution shown in section 4.2.1 of chapter 4 show a uniform distribution, an 
Omni-directional variogram was thus sufficient to represent the data [104] as shown in Figure 5.5.  
From Figure 5.5(a) both tree crowns and grass subset images have different sills (different overall 
variances) and different ranges (maximum distance of spatial autocorrelation). Either class subset 
images have got a very small nugget variance although that of tree crown objects is higher than that 
of grass images. This small value implies that there are fewer spatial effects of variation at this 
interval pixel distance for either class. 
  
The main objective of representing the sample image subsets in a variogram was to help assess how 
the image subsets are correlated for determination of an appropriated lag at which grass can be 
discriminated from tree crown objects. From Figure 5.5 (b) of both standardized tree crowns and 
grass variograms it is seen that grass and trees show a different spatial structure within the region of 
auto-correlation raging from 1 to 20 pixels. By visual inspection of the graph, lag values of 1, 3, 5, 7, 
10, 15 and 20 were chosen for GMRF parameter estimation at different scale to help find the most 
appropriate lag for class separability to effect texture-scale behaviour exploration. 

5.3. GMRF parameter estimation 

GMRF model parameters were estimated using the LS estimation technique described in section 
2.5.3 of chapter 2. Using this method, for every patch of size M×N,	q parameters (equation (2.6)) 
which characterize the smoothness of the texture are determined and then the β	 (betas) and 
conditional variance parameters are estimated which yield the GMRF texture features. In this 
work, these estimations were performed for tree crown objects and grass at with different scale 
factors (SF) of 1, 2 , 4, and 7 of QuickBird panchromatic band (section 4.3 chapter 4)  and different 
lag values (section 4.3)  to facilitate separation of the two classes (grass and tree crown objects). 

5.3.1. Parameter estimation with different scale factors from QuickBird panchromatic band 

As mentioned above, the aim of estimating GMRF parameter (texture features) at different lags was 
to find out the most appropriate lag at which grass and trees can be discriminated for texture 
exploration at different scales. Results of this experiment with SF = 1, 2, 4, and 7 from the 0.6m 
spatial resolution QuickBird panchromatic band are provided in Table 5.1.  
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Table 5.1: LS estimation of parameters corresponding to a 2nd order model of different lags with SF= 1, 2, 4, 
and 7 from QuickBird panchromatic band 

Lag value 

Parameter 

1 3 5 7 10 15 

Grass Trees  Grass Trees  Grass Trees  Grass Trees  Grass Trees Grass Trees  

β1 0.429 0.531 0.031 -0.024 0.113 0.063 0.082 0.019 0.056 -0.020 0.107 -0.048 

β2 0.442 0.536 0.099 0.109 0.151 0.215 0.135 0.172 0.155 0.143 0.134 0.121 

β3 -0.199 -0.292 0.161 0.186 0.105 0.089 0.121 0.124 0.137 0.101 0.130 0.037 

β4 -0.167 -0.276 0.220 0.268 0.145 0.134 0.171 0.147 0.194 0.109 0.186 0.042 

σ² 0.039 0.015 0.246 0.347 0.366 0.628 0.430 0.744 0.461 0.883 0.589 0.964 
 

(a) Estimated parameters with SF =1 
 

Lag value 

Parameter 

1 3 5 7 10 15 

Grass Trees  Grass Trees Grass Trees Grass Trees  Grass Trees  Grass Trees  

β1 0.338 0.394 0.058 0.002 0.062 -0.005 0.097 -0.051 0.101 -0.052 -0.127 -0.061 

β2 0.394 0.449 0.106 0.160 0.176 0.178 0.140 0.133 0.140 0.134 0.149 0.090 

β3 -0.135 -0.183 0.153 0.146 0.121 0.071 0.120 0.046 0.119 0.049 -0.087 0.027 

β4 -0.090 -0.146 0.203 0.197 0.207 0.084 0.220 0.059 0.121 0.014 -0.013 -0.014 

σ² 0.093 0.115 0.321 0.618 0.415 0.886 0.506 0.951 0.649 0.963 0.698 0.986 
 

(b) Estimated parameters with SF =2 
 

Parameter 

Lag value 

1 3 5 7 10 15 

Grass Trees  Grass Trees  Grass Trees  Grass Trees Grass Trees  Grass Trees  

β1 0.257 0.299 0.027 -0.061 0.164 -0.071 -0.058 -0.083 -0.320 -0.033 -0.605 0.018 

β2 0.310 0.398 0.118 0.158 0.203 0.159 0.209 0.117 0.006 0.093 0.145 0.000 

β3 -0.039 -0.101 0.165 0.097 0.102 0.059 -0.019 0.040 -0.191 0.032 -0.288 0.060 

β4 -0.006 -0.070 0.274 0.127 0.044 0.014 -0.008 -0.003 -0.129 -0.040 0.985 0.013 

σ² 0.148 0.275 0.355 0.856 0.618 0.934 0.687 0.954 0.643 0.962 0.352 1.051 
 

(c) Estimated parameters with SF =4 
 

Lag value 

Parameter 

1 3 5 7 

Grass Trees Grass Trees Grass Trees Grass Trees 

β1 0.175 0.226 0.081 -0.085 -0.364 -0.069 -0.478 -0.032 

β2 0.313 0.390 0.149 0.186 0.091 0.135 -0.126 0.102 

β3 -0.027 -0.057 0.169 0.060 -0.222 0.026 -0.118 0.016 

β4 0.093 -0.044 0.188 0.021 -0.083 -0.021 -0.295 -0.064 

σ² 0.152 0.433 0.520 0.892 0.509 0.929 0.778 1.001 
 

(d) Estimated parameters with SF =7 

  
GMRF parameter estimation was first executed with SF=1 at the resolution of QuickBird 
panchromatic band and the estimation carried out at the different lag values. The same procedure 
was then repeated with the 0.6m spatial resolution QuickBird panchromatic band degraded which 
SF= 2, 4 and 7, and parameters estimated in a similar way in R software.  Included in Table 5.1 are 
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estimated parameters of one image subset for either tree crowns objects and grass across the 
different scales. The estimated texture features with SF= 1 at lag 1 (Table 5.1 (a)) show that the 
texture describing features beta1 and beta2 are positively correlated whereas beta3 and beta4 are 
negatively correlated.  This trend is also clearly observed from the parameters with SF = 2 and 4 
(Table 5.1 (b), (c)). When the image is coarsened further with SF = 7 (Table 5.1(d)) this trend is not 
shown by beta4 of the grass class.  
At larger lags, texture features of both grass and tree crowns objects do not give a clear pattern. 

5.3.2. Parameter estimation from QuickBird imagery multispectral bands 

To show the behaviour of the two spectrally similar land-cover classes (grass and tree crowns 
objects) parameter estimation was also performed in the multispectral bands of QuickBird. 
Different six image subsets of either class were selected from the multispectral bands of QuickBird 
2.4m spatial resolution imagery. The patch sizes of subsets are 42×41, 75×99, 60×41, 75×73, 
63×62, 52x46 and 99×124, 129×110, 129×100 and 149×140, 79×51, 96×104 pixels for grass and 
tree crown objects respectively. Typical values of the second-order GMRF model for band 1 and 2 
are shown in Table 5.2. Values for bands 3 and 4 are not given here because of the volume of tables 
and the ones presented are their true representatives as shown in Appendix A. 
 
Table 5.2: LS estimation of parameters corresponding to a 2nd order model at different lags from QuickBird 
multispectral band 1 and 2 

Parameter 

Lag value 

1 3 5 7 10 15 

Grass Trees  Grass Trees  Grass Trees  Grass Trees Grass Trees  Grass Trees  

β1 0.320 0.368 0.182 -0.051 0.094 -0.034 0.012 -0.028 -0.136 0.026 -0.235 -0.024 

β2 0.294 0.358 0.109 0.139 0.230 0.139 0.182 0.097 0.114 0.079 -0.011 0.049 

β3 -0.076 -0.109 0.139 0.088 0.064 0.021 0.054 0.021 -0.107 0.006 -0.044 0.048 

β4 -0.043 -0.095 0.074 0.153 0.110 0.068 0.143 0.045 0.083 0.061 0.027 0.069 

σ² 0.305 0.319 0.574 0.859 0.725 0.951 0.842 0.973 0.880 0.976 0.650 0.984 
 

(a) Band 1 
 

Parameter 

Lag value 

1 3 5 7 10 15 

Grass Trees  Grass Trees  Grass Trees  Grass Trees Grass Trees  Grass Trees  

β1 0.362 0.466 0.179 -0.075 0.125 -0.063 -0.033 -0.050 -0.183 0.008 -0.286 -0.035 

β2 0.273 0.455 0.127 0.173 0.220 0.176 0.225 0.142 0.253 0.121 -0.029 0.073 

β3 -0.071 -0.218 0.081 0.092 0.119 0.046 0.107 0.029 -0.125 -0.018 -0.165 0.024 

β4 -0.062 -0.190 0.145 0.170 0.102 0.064 0.150 0.048 0.127 0.078 0.029 0.067 

σ² 0.167 0.152 0.348 0.805 0.518 0.928 0.609 0.957 0.697 0.970 0.423 1.001 
 

(b) Band 2 
 

A visual inspection of texture features estimated from QuickBird multispectral bands (Table 5.2 and 
Appendix A) reveals the same pattern observed at lag one with SF = 1, 2 and 4 with values 
comparable to those of SF = 4. The magnitude of parameters for tree crowns is generally larger 
than that of grass in all bands which pattern is lost at lag values greater than 1. In addition, the 
estimated parameters of lag 1 increase in magnitude from band 1 to 4; however the increase is not so 
marked depicting the same spatial distribution. The pattern observed at lag 1 with SF = 1, 2 and 4 
is not reported for parameters from Ikonos panchromatic band where values are mainly positively 
correlated (Table 5.3). In this imagery there is no clearly defined pattern shown by the features 
across the lag values although relatively large values for either class are reported for lags 1 to 7.  In 
all this cases it is noticeable that the conditional variance is recovered as the lag is increased.  
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5.3.3. Parameter estimation from Ikonos panchromatic band 

To gain a deeper insight of the texture-scale relationship, GMRF texture parameters were estimated 
from Ikonos panchromatic band. Results of the parameter estimates for the two spectrally similar 
classes (grass and tree crowns objects) at lag values of 1, 3, 5, 7, 10 and 15 are given in Table 5.3. 
 
Table 5.3: LS estimation of parameters corresponding to a 2nd order model of different lags from Ikonos 
panchromatic band. 

Parameter 

Lag value 

1 3 5 7 10 15 

Grass Trees  Grass Trees  Grass Trees  Grass Trees Grass Trees  Grass Trees  

β1 0.087 0.217 0.086 0.079 0.067 0.056 0.056 0.050 0.044 0.056 0.011 0.068 

β2 �.061 0.191 0.105 0.112 0.153 0.124 0.130 0.093 0.112 0.073 0.081 0.075 

β3 0.121 0.080 0.106 0.135 0.068 0.041 0.052 0.031 0.026 0.032 -0.014 0.049 

β4 0.124 0.044 0.117 0.170 0.091 0.120 0.095 0.125 0.068 0.111 0.051 0.045 

σ² 0.725 0.248 0.732 0.625 0.791 0.862 0.828 0.890 0.856 0.913 0.866 0.927 

 

This task was carried to facilitate a comparison of texture features from different images with 

different spatial resolutions hence comparison on the texture-scale behaviour in a similar way. 

Texture features form this band are mainly positive values and have got relatively small values 

compared to those of SF= 2 of QuickBird panchromatic band (comparable spatial scale). 

5.3.4. Parameter estimation from Ikonos multispectral band1 

In a similar way, GMRF texture features were estimated from Ikonos multispectral bands (imagery 
of 4m spatial resolution). Results of the five features at different lags for only one sample subset 
image of either class are presented in Table 5.4.  
 
Table 5.4: LS estimation of parameters corresponding to a 2nd order model of different lags from Ikonos 
multispectral band1 

Parameter Lag value 

1 3 5 7 10 15 

Grass Trees  Grass Trees  Grass Trees  Grass Trees Grass Trees  Grass Trees  

β1 0.115 0.403 0.059 0.085 0.100 0.018 0.077 0.043 0.040 0.011 0.103 0.017 

β2 0.116 0.177 0.079 0.146 0.093 0.150 -0.033 0.087 -0.075 0.129 -0.123 0.020 

β3 0.318 -0.043 0.261 0.109 0.153 0.089 0.193 0.083 0.153 0.089 0.082 0.135 

β4 -0.047 -0.032 0.082 0.059 0.088 0.057 0.101 0.056 0.067 0.018 -0.104 0.015 

σ² 0.148 0.266 0.165 0.517 0.226 0.555 0.251 0.596 0.268 0.595 0.298 0.741 

 
This task was only carried out for band 1 to provide a comparison of parameters from a different 
imagery at coarser spatial resolution.  

5.4. GMRF parameter feature spaces for class separability  

In the previous section, various estimated parameters for different lags at different scales have been 
given. Preliminary visual inspection of the parameters at the various scales reveals a reduction of the 
parameter values as the spatial resolution is coarsened. In addition, especially looking at parameters 
of lag 1, grass estimated texture parameter values are smaller than those of tree crown objects.  
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This visual inspection, however, cannot offer a lasting conclusion of the texture-scale relationship. 
To provide this comprehension, parameter feature spaces have been employed. This was done to 
provide a visual impression of the capability to perform class separability using the GMRF model. 
Details and importance of these scatter plots are provided in section 4.4.1 of chapter 4. In this 
research GMRF estimated texture features have been used in a similar way to discriminate tree 
crowns objects from grass to aid exploration of the texture-scale relationship. 

5.4.1. Feature spaces from QuickBird panchromatic band with SF = 1 and 2 

The texture-scale relation exploration task at different scales was started with SF=1 of QuickBird 
panchromatic band considered as the finest resolution (0.6m) at which various texture features can 
be distinctly discerned. Results of GMRF features (beta1 (β1), beta2 (β2) beta (β3), beta4 (β4) and 
conditional variance (σ²)) feature space combinations at lag one are shown in Figure 5.6. 
In a similar way to demonstrate class separability of grass from trees with SF =1, feature space plots 
were generated for lag values 3, 5, 7, 10, 15 and 20. Graphs at these lag values are provided in 
Appendix B. This will help provide a comparison of the separability power of the GMRF model 
from the feature spaces at the various lags for identification of the most favourable lag to perform 
texture-scale relationship exploration.  
 
Similarly, to facilitate the study of the texture-scale behaviour at a spatial resolution approximate to 
that of Ikonos panchromatic band (1m), the 0.6m spatial resolution QuickBird panchromatic band  
degraded with SF =2 GMRF estimated parameters were also plotted in a standard feature space. 
Figure 5.7 is hereby provided showing the feature space plots of the texture features at lag 1. 
 
 

  

  
Figure 5.6: Features spaces from QuickBird panchromatic band (SF =1, Lag =1) 
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Figure 5.7: Features spaces from QuickBird panchromatic band (SF =2, Lag =1) 

Graphs showing the feature space plots at lag values of 3, 5, 7, 10, 15 and 20 with SF = 2 are 
provided in Appendix C where it is observed that the plotted grass and tree crowns objects features 
exhibit more variability being less clustered as observed at lag 1. 

5.4.2. Feature spaces from QuickBird panchromatic band with SF = 4 

To demonstrated the texture-scale relationship behaviour at  spatial resolution equivalent to that of 
the QuickBird multispectral band, 0.6m QuickBird panchromatic band was coarsened with SF =4. 
This is important to study class separability of the spectrally similar land cover classes under 
investigation (grass and tree crowns objects).  Since the same behaviour is demonstrated by the 
texture features in space at various lag values as observed in sections 5.4.1 and 5.4.2, with SF=4 
only feature space plots at lag 1 are provided in Figure 5.8. 
 

  

  
Figure 5.8: Features spaces from QuickBird panchromatic band (SF =4, Lag =1) 
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5.4.3. Feature spaces from QuickBird panchromatic band with SF = 7 

SF = 7 was used to degrade the 0.6m QuickBird panchromatic band to provide an exploration of 
the texture-scale relationship at a more coarsened spatial resolution approximated to that of SPOT5 
panchromatic band. It will provide an assessment of the two spectrally similar grass and tree crowns 
classes at such a coarse resolution to aid informed decisions for any analyzes involving such classes 
with such imagery spatial resolution. From Figure 5.9, only lag 1 features space plots have been 
given, other lag values graphs are not provided here since they similarly depict the same trend. 
 

  
  

  
Figure 5.9: Features spaces from QuickBird panchromatic band (SF =7, Lag =1) 

With SF = 4 and 7 (Figure 5.8 and 5.9), class separability between the clusters formed by the 
respective texture features is still observed in some feature combinations, however, the classes are 
seen to overlap as the scale factor increases. The clusters defined by the texture features in space at 
lag 1 lose their compactness and dwindle away to overlapping classes as lag values increases across 
all scale factors (Appendix B, and C). 

5.4.4. Feature spaces from QuickBird multispectral bands 

Six sample images of grass and tree crowns as similarly used from the panchromatic band of 
QuickBird were taken from the multispectral bands.  Parameters estimation was then carried out 
band by band and analysis of class separability done in the same way at different lag values of 1, 3, 
5, 7, 10 and 15.  In this section, features space parameter combinations in all bands at lag 1 are 
presented whereas feature space plots at larger lags will be explained but results are not provided 
here since they give the same display. Results of parameter features space plots in band 1 at lag 1 are 
give in Figure 5.10. 
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Figure 5.10: Features spaces from QuickBird multispectral band 1 at Lag 1 

This experiment was primarily carried out to provide an understanding of the texture-scale 
relationship behaviour at such a coarser spatial resolution (2.4m), alongside helping to discover the 
data spatial distribution pattern in the different bands. To give the texture pattern with increased 
variability inherent in the land cover classes under consideration incorporated in the parameter 
estimation scheme, feature spaces from band 1 at lag 3, 5, 7, 10 and 15 are shown in Appendix D. 
 
To study the spatial data distribution and the texture-scale behaviour in the different QuickBird 
multispectral bands, feature space plots showing the visual class separability of grass from tree 
crowns at lag 1 in band 2 and 3 are give if Figures 5.11 and 5.12 respectively. Graphs of features 
estimated at lag 3, 5, 7, 10 and 15 are not given here because of showing the same display. 
 

 
 

 
Figure 5.11: Features spaces from QuickBird multispectral band 2 at Lag 1 
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Figure 5.12: Features spaces from QuickBird multispectral band 3 at Lag 1 

The same pattern is observed from the clusters formed by grass and tree crowns objects features in 
Figure 5.11 and 5.12 for band 2 and band 3 respectively. In a similar way, results of the features in a 
standard feature space from QuickBird multispectral band 4 are shown in Figure 5.13. which show 
the same trend as recorded from band 1, 2, and 3. 
 

 
 

 
Figure 5.13: Features spaces from QuickBird multispectral band 4 at Lag 1 

5.4.5. Feature spaces from Ikonos panchromatic band 

Texture features estimated from the 1m spatial resolution Ikonos panchromatic band were also 
plotted in a standard feature space to show the separability of grass from tree crowns objects. These 
experimental results are important for providing analysis of the behaviour of texture in a different 
image with different spatial resolution. This task was carried out only with scale factor 1 of the 
spatial resolution of this imagery but at different lags (1, 3, 5, 7, 10, and 15).  Feature space plots of 
the texture features at lags 1 are shown in Figure 5.14.  
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Figure 5.14: Features spaces from Ikonos panchromatic band (SF=1, lag value =1) 

As observed from Figure 5.13, all feature combinations provide a clear visual separability of the 
clusters formed by the texture features of the two classes at this lag value. To investigate the 
discrimination of the classes when more variability is included in the features estimation scheme 
graphs of feature spaces at lag values of 3, 5, 7, 10, and 15 are provided in Appendix E. 

5.4.6. Feature spaces from Ikonos multispectral band1 

Texture features were similarly estimated in Ikonos multispectral bands and plotted in a standard 
feature space plot. This experiment was carried to provide a comparison of the texture 
characteristics from the 4m spatial resolution imagery. Only one band out of the four bands of 
Ikonos multispectral band is sufficient from which texture features were estimated at lags 1, 3, 5, 7, 
10 and 15. Feature space plots for the texture features at lag 1 are given in Figures 5.15.  
 

  

  
Figure 5.15: Features spaces at SF=1 and Lag value =1 from Ikonos multispectral band1 

From Figure 5.15, clear visual separability is observed from the all feature combinations. 
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5.5. Fisher Criterion  

Fisher criterion whose details are provided in section 4.5.2 was applied to provide a deeper insight 
of the capability of the GMRF model to discriminated grass from trees. This approach provides an 
assessment of class separability for each band (GMRF texture feature) independently. This 
procedure in this work provides an efficient separability analysis procedure as it is not necessary for 
all feature combinations to show discrimination of the two land cover classes for them to be 
separable. This assessment has been carried out taking into account of the measurement error 
which depends on the patch size as explained in section 5.1. 

5.5.1.  Class separability analysis from QuickBird panchromatic band  

In this section, results of Fisher criterion in QuickBird panchromatic band of parameters estimated 
with SF=1 are provided. Outputs of this analysis in panchromatic band with SF= 2, and 4, 7 are 
give in Appendices F, and G respectively.  This is because they are provided in the same display. 
Table 5.5 shows Fisher criterion results from panchromatic band with SF= 1 class separability 
analysis at lag values of 1, 3, 5 and 7.  
 

Table 5.5: Fisher criterion of texture features as a function of patch size from QuickBird panchromatic band 
SF=1 (lag=1, 3, 5, & 7) 

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.474 0.297 0.470 0.366 0.321 

16 1.807 1.052 1.848 1.348 0.860 

32 3.494 1.864 3.727 2.496 1.359 

64 5.347 2.614 5.985 3.653 1.651 

96 5.707 2.745 6.450 3.865 1.718 

128 5.876 2.805 6.671 3.964 1.729 

192 6.049 2.866 6.900 4.064 1.745 

256 6.101 2.884 6.969 4.094 1.754 
 

 

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.209 0.001 0.054 0.425 0.196 

16 0.426 0.002 0.169 1.637 0.233 

32 0.519 0.004 0.269 3.215 0.243 

64 0.564 0.006 0.345 5.008 0.246 

96 0.570 0.007 0.357 5.363 0.247 

128 0.572 0.007 0.362 5.531 0.247 

192 0.575 0.007 0.368 5.703 0.247 

256 0.576 0.007 0.369 5.755 0.247 

(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3 
  

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.160 0.356 0.001 0.117 0.050 

16 0.288 1.473 0.002 0.459 0.058 

32 0.333 3.196 0.002 0.921 0.059 

64 0.354 5.649 0.002 1.470 0.060 

96 0.357 6.216 0.003 1.582 0.060 

128 0.358 6.495 0.003 1.636 0.060 

192 0.359 6.788 0.003 1.691 0.060 

256 0.359 6.879 0.003 1.707 0.060 
 

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.449 0.142 0.007 0.257 0.357 

16 0.841 0.580 0.018 0.903 0.407 

32 0.989 1.230 0.023 1.593 0.420 

64 1.058 2.104 0.027 2.222 0.425 

96 1.067 2.298 0.027 2.331 0.425 

128 1.071 2.393 0.027 2.382 0.425 

192 1.075 2.491 0.027 2.432 0.426 

256 1.076 2.522 0.027 2.447 0.426 
 

(c) Fisher Criterion at lag 5 (d) Fisher Criterion at lag 7 
 
It is observed that although all features show a considerable class separability power, some of them 
are more favourable than others across all lag values as shown in Table 5.5. Results of this criterion 
at lag 10 and 15 are given in Table 5.6 to further assess this trend. 
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Table 5.6: Fisher criterion of texture features as a function of patch size from QuickBird panchromatic band 
SF=1 (lag=10, 15) 

Patch 
size 

beta1 beta2 beta3 beta4 Variance 

8 0.600 0.033 0.052 0.129 1.010 

16 1.336 0.093 0.170 0.408 1.147 

32 1.694 0.134 0.277 0.649 1.182 

64 1.880 0.161 0.361 0.830 1.193 

96 1.905 0.165 0.375 0.859 1.195 

128 1.916 0.167 0.381 0.872 1.195 

192 1.927 0.169 0.387 0.884 1.195 

256 1.930 0.169 0.389 0.888 1.196 
  

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.690 0.058 0.107 0.002 1.209 

16 1.385 0.187 0.381 0.006 1.381 

32 1.675 0.304 0.683 0.009 1.425 

64 1.816 0.397 0.965 0.012 1.439 

96 1.835 0.411 1.015 0.012 1.441 

128 1.843 0.418 1.038 0.012 1.442 

192 1.850 0.425 1.061 0.012 1.442 

256 1.853 0.427 1.068 0.012 1.442 

(a) Fisher Criterion at lag 10 (b) Fisher Criterion at lag 15 

5.5.2. Class separability analysis from QuickBird multispectral bands 

Separability analysis with Fisher criterion was also performed in QuickBird multispectral bands to 
assess the discrimination power of the GMRF model using grass and tree crowns land cover classes. 
This was performed in each band to aid decisions for which band is more appropriate for selection 
in analysis involving spectrally similar land cover classes. Results of this assessment from band 2, 3 
and 4 are given in Appendix H, I and J.  Table 5.7 shows Fisher linear discriminant results of 
GMRF texture features as a function of patch size from QuickBird band 1. 
 
Table 5.7: Fisher criterion as a function of patch size from QuickBird band 1 (lag =1, 3, 5, 7, 10, 15)   

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.001 0.058 0.018 0.002 0.082 

16 0.004 0.265 0.082 0.007 0.118 

32 0.007 0.686 0.209 0.013 0.130 

64 0.011 1.672 0.495 0.021 0.135 

96 0.012 2.016 0.592 0.022 0.136 

128 0.012 2.211 0.645 0.023 0.136 

192 0.012 2.437 0.707 0.023 0.136 

256 0.013 2.513 0.728 0.024 0.136 
 

Patch 
size 

beta1 beta2 beta3 beta4 Variance 

8 0.745 0.002 0.018 0.062 0.894 

16 1.903 0.006 0.065 0.219 1.035 

32 2.596 0.010 0.114 0.385 1.072 

64 3.001 0.012 0.159 0.537 1.084 

96 3.058 0.013 0.167 0.563 1.086 

128 3.083 0.013 0.170 0.575 1.086 

192 3.108 0.013 0.174 0.587 1.087 

256 3.115 0.013 0.175 0.591 1.087 
 

(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3 
  

Patch 
size 

beta1 beta2 beta3 beta4 Variance 

8 0.763 0.010 0.062 0.000 2.223 

16 2.332 0.032 0.234 0.000 2.850 

32 3.609 0.052 0.445 0.001 3.036 

64 4.528 0.067 0.671 0.001 3.098 

96 4.670 0.069 0.714 0.001 3.110 

128 4.733 0.070 0.734 0.001 3.111 

192 4.796 0.071 0.755 0.001 3.114 

256 4.814 0.071 0.761 0.001 3.115 
 

Patch 
size 

beta1 beta2 beta3 beta4 Variance 

8 0.155 0.001 0.069 0.031 0.389 

16 0.364 0.003 0.184 0.110 0.425 

32 0.474 0.004 0.258 0.199 0.433 

64 0.533 0.004 0.303 0.283 0.436 

96 0.541 0.004 0.309 0.298 0.437 

128 0.545 0.005 0.312 0.305 0.437 

192 0.548 0.005 0.315 0.311 0.437 

256 0.549 0.005 0.316 0.314 0.437 
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(c) Fisher Criterion at lag 5 (d) Fisher Criterion at lag 7 

 
Patch 
size 

beta1 beta2 beta3 beta4 Variance 

8 0.040 0.000 0.042 0.001 0.320 

16 0.068 0.000 0.085 0.005 0.349 

32 0.078 0.000 0.103 0.010 0.355 

64 0.082 0.000 0.112 0.017 0.358 

96 0.083 0.000 0.114 0.018 0.358 

128 0.083 0.000 0.114 0.019 0.358 

192 0.083 0.000 0.115 0.020 0.358 

256 0.083 0.000 0.115 0.020 0.358 
 

Patch 
size 

beta1 beta2 beta3 beta4 Variance 

8 0.006 0.000 0.061 0.004 0.468 

16 0.009 0.000 0.134 0.011 0.502 

32 0.010 0.000 0.169 0.016 0.510 

64 0.010 0.000 0.187 0.020 0.513 

96 0.010 0.000 0.189 0.020 0.513 

128 0.010 0.001 0.191 0.021 0.514 

192 0.010 0.001 0.192 0.021 0.514 

256 0.010 0.001 0.192 0.021 0.514 
 

(e) Fisher Criterion at lag 10 (f) Fisher Criterion at lag 15 
 

From the multispectral band 1 of QuickBird imagery, no lag value offers separability across all 
features. However, at lag 1, 3 and 4 at least one feature offers considerable discrimination of grass 
from tree crowns and as lag is increased this power reduces to almost zero values (Table 5.7). 

5.5.3. Class separability analysis from Ikonos panchromatic band  

As similarly assessed in QuickBird imagery, Fisher criterion has also been used to express the 
discrimination power of the employed GMRF model for grass and tree crowns land cover classes 
from Ikonos panchromatic band. Results of this criterion texture features as a function of patch size 
of either class at lag 1 and 3 are given in Table 5.8. Assessment taking into account of the parameter 
measurement error per patch size will provided the expected discrimination power at that patch 
size. Outputs of the same analysis from this band at lag values of 5, 7, 10 and 15 are give in 
Appendix K. Lag 1 Fisher vector values offer reliable class separability.  
 
 Table 5.8: Fisher criterion of texture features as a function of patch size from Ikonos panchromatic band (lag 
=1, 3) 

Patch 

beta1 beta2 beta3 beta4 Variance size 

8 0.258 0.121 0.148 0.033 1.410 

16 1.018 0.507 0.656 0.151 1.673 

32 2.060 1.117 1.604 0.381 1.744 

64 3.323 2.016 3.453 0.878 1.767 

96 3.585 2.230 4.001 1.038 1.771 

128 3.709 2.335 4.292 1.127 1.772 

192 3.838 2.447 4.617 1.227 1.773 

256 3.877 2.482 4.721 1.260 1.773 
 

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.047 0.032 0.035 0.064 0.322 

16 0.191 0.142 0.143 0.222 0.386 

32 0.400 0.344 0.308 0.386 0.404 

64 0.673 0.731 0.543 0.531 0.410 

96 0.733 0.844 0.597 0.556 0.411 

128 0.762 0.903 0.624 0.568 0.411 

192 0.792 0.969 0.652 0.579 0.411 

256 0.801 0.990 0.660 0.582 0.411 
 

(a) Fisher Criterion at lag 1 (b) Fisher Criterion at lag 3 

5.5.4. Class separability analysis from Ikonos multispectral band 1  

Tables 5.9 shows the Fisher linear discriminant values for textures features from band 1 of Ikonos 
multispectral bands at lag values of 1 and 3.  In the same way each texture features is assessed as a 
function of patch size to demonstrate the attainable class discrimination power of the GMRF model 
for grass and tree crown objects. Results of the analysis from this band at lag = 5, 7, 10 and 15 are 
given in Appendix K. lag 1 values offer much separability power in this band. 
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Table 5.9: Fisher criterion as a function of patch size from Ikonos panchromatic band (lag =1, 3) 

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.355 0.188 0.395 0.182 0.114 

16 0.73 0.689 0.844 0.58 0.231 

32 0.892 1.268 1.048 0.929 0.297 

64 0.971 1.843 1.152 1.196 0.325 

96 0.982 1.948 1.166 1.238 0.331 

128 0.986 1.996 1.172 1.257 0.332 

192 0.991 2.046 1.178 1.276 0.333 

256 0.992 2.06 1.179 1.282 0.334 

(a)     Fisher Criterion at lag 1 
 

Patch 
size beta1 beta2 beta3 beta4 Variance 

8 0.013 0.016 0.001 0.013 0.167 

16 0.026 0.059 0.002 0.035 0.235 

32 0.032 0.109 0.003 0.049 0.258 

64 0.035 0.159 0.003 0.058 0.266 

96 0.036 0.168 0.003 0.059 0.267 

128 0.036 0.172 0.003 0.06 0.268 

192 0.036 0.177 0.003 0.06 0.268 

256 0.036 0.178 0.003 0.06 0.268 

(b)    Fisher Criterion at lag 3 
 

5.6. Euclidean distance for class separability analysis 

This section describes a set of results derived from experiments that were performed to demonstrate 
the separability of the two spectrally similar land cover classes (grass and trees) in a 
multidimensional space using Euclidean distance. This has been executed to enhance observations 
of Fisher criterion which was used to analyze the features one by one. In addition, using the six 
samples of either class, the variance of each feature has been computed to illustrate the scatter 
within each class represented by a given feature. Results of this analysis in panchromatic band with 
SF= 1, 2, 4 and 7 alongside those in multispectral bands are provided in the subsequent subsections.  

5.6.1. Class separability analysis from QuickBird panchromatic and multispectral bands 

Tables 5.10 provides the variance of each feature per class and the multidimensional Euclidean 
distance of the features from QuickBird panchromatic band with scale factors of 1, 2, 4 and 7 at 
different pixel separation distances (lag values). 
 
Similarly, class discrimination analysis of grass and trees was also performed in the QuickBird 
imagery multispectral bands.  This was carried to enhance observations derived from the feature 
space plots and Fisher criterion to ascertain class separability of grass from tree crowns objects. 
Experimental results of this task from QuickBird band 1, 2, 3 and 4 are given in Tables 5.11 
 
Table 5.10 shows the Euclidean distance for class discrimination with SF= 1, 2, 4 and 7. It is 
observed that that all lag values have got large enough values to facilitate separation of grass from 
trees. This is further supported by the fact that the scatter or each feature variance is a very small 
value compared to the Euclidean distance at all lags and scales. It is also noted that although lag 1 
has a relatively large value of Euclidean distance, this values increases slightly up to lag 10 or 15 and 
then starts to drop. This pattern is also recorded from the analysis in QuickBird multispectral 
bands(Table5.11).
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5.6.2. Class separability analysis from Ikonos panchromatic and multispectral band1 

To ascertain class discrimination of trees from grass in a different image with different spatial 
resolution, texture features’ variances expressing the scatter of each feature per class and the 
multidimensional analysis using the Euclidean distance have been studied from Ikonos 
panchromatic band and band 1 of its multispectral bands. Results of this analysis are given in Table 
5.12. Analysis in these bands will also aid comparison of class discrimination power with an 
equivalent spatial resolution to that of the degraded QuickBird panchromatic band with SF=2 and 
4 respectively. 
 
 Table 5.12: Feature variances and Euclidean distance from Ikonos panchromatic and multispectral band 1 

 

 
From Table 5.12 all lag values have got relatively large values of Euclidean distance compared to the 
scatter (feature variance) per feature for either class. 

Lag Class Feature Variance Euclidean 

beta1 beta2 beta3 beta4 Variance  Distance 

1 Grass  0.002 0.001 0.000 0.000 0.048 

0.393   Trees  0.000 0.000 0.001 0.000 0.001 

3 Grass  0.001 0.000 0.000 0.002 0.045 

0.155   Trees  0.000 0.001 0.001 0.001 0.001 

5 Grass  0.004 0.002 0.001 0.005 0.047 

0.363   Trees  0.005 0.001 0.002 0.001 0.003 

7 Grass  0.003 0.002 0.002 0.006 0.047 

0.381   Trees  0.006 0.002 0.003 0.002 0.003 

10 Grass  0.005 0.001 0.002 0.004 0.042 

0.378   Trees  0.002 0.003 0.002 0.002 0.004 

15 Grass  0.007 0.004 0.003 0.006 0.037 

0.335   Trees  0.001 0.001 0.002 0.001 0.002 
 

(a) Ikonos panchromatic band 
 

Lag Class Feature Variance Euclidean  
Distance 

beta1 beta2 beta3 beta4 Variance 

1 Grass  0.014 0.002 0.013 0.003 0.004 

0.209   Trees  0.001 0.000 0.001 0.001 0.003 

3 Grass  0.011 0.002 0.008 0.005 0.018 

0.084   Trees  0.003 0.001 0.001 0.002 0.003 

5 Grass  0.005 0.002 0.004 0.001 0.025 

0.127   Trees  0.003 0.001 0.006 0.001 0.002 

7 Grass  0.003 0.006 0.007 0.001 0.041 

0.162   Trees  0.001 0.005 0.005 0.001 0.004 

10 Grass  0.003 0.008 0.011 0.007 0.050 

0.248   Trees  0.005 0.006 0.004 0.002 0.008 

15 Grass  0.008 0.007 0.005 0.016 0.110 

0.261   Trees  0.013 0.008 0.006 0.008 0.018 
 

(b) Ikonos multispectral band1 
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5.7. Texture based classification results  

To perform GMRF texture classification, the texture classes are assumed to be Gaussian and thus 
can truly be modelled by a GMRF model. Consequently the LS method texture estimated 
parameters which are considered as image texture characteristics retaining features [50] are used in 
preparation of the required GMRF modelled class texture for classification. In this consideration, 
estimated texture parameters for grass and tree crowns objects at lag 1 were used to model a two 
class GMRF texture image of the same classes. In a similar way, a reference image of the same two 
classes (grass and trees) was prepared. 

5.7.1. Simulated texture based classification  

For this task, the generated two class image corresponds to the reference map which has crisp 
boundaries from each other providing the possibility for accuracy assessment 
 
To control the classification, MRFs functions and energy optimization parameters explained in 

section 3.3 used, were the smoothness parameter (λ  0.9�, the initial temperature, TO = 0.3 for 

controlling the randomness of the optimization algorithm and the pixel updating schedule, Tupd = 

0.9. Texture images of 32x32 and 150x150 pixels simulated, classified and results validated with their 

respective simulated reference image as shown in Figure 5.16 (a) and (b) respectively. 

 

(a) (b) 

 
 

 
 

Figure 5.16: Classification of simulated GMRF texture 

The classification of a 150x150 pixel image yielded an overall accuracy of 92% with all pixels in class 
1 (grass) being correctly classified and 684 pixels of class 2 (tree crowns objects) were wrongly 
classified. The 32x32 pixel simulated image gave an overall accuracy of 77% correctly classifying all 
grass pixels and 86 pixels of tree crowns were misclassified as per the error matrix.   
It is thus observed that large images can be classified more accurately than small ones. This is 
attributed to the fact that a larger number of pixels per class incorporate a wealth of contextual 
information. Plots of the temperature, the error evolution and energy minimization show that the 
temperature lowered till a freezing state, evolution of mean Square error (MSE) lowered 
consistently in each iteration as similarly observed for the minimization of energy till they reached 
the minimum level just after 60 and 80 iterations for the 150x150 pixel image in Figure 5.16 (b) and 



MULTISCALE TEXTURE ANALYSIS OF REMOTELY SENSED DATA WITH MARKOV RANDOM FIELDS 

47 

the 32x32 pixel image in (a) respectively. This is also supported by the texture simulation task 
where stable textures are obtained with large image patch size. 

5.7.2. Classification of QuickBird image    

To perform this classification, grass and tree crowns samples were taken from the 200×200 pixel 
subset image (Figure 3.4) and their GMRF texture features estimated. These features were used as 
training data for the GMRF texture based classification of the subset. Estimated parameters at 
different lag values were used. 
 
Similarly, as explained in section 5.7.1, to control the classification process the initial temperature, 
TO = 0.3, the pixel updating schedule, Tupd = 0.9 and the smoothness parameter,  λ  0.9 were 
first used yielding an overall classification accuracy of only 38%. This accuracy was achieved with 
lag 1 GMRF features. Larger lag values produced much lower overall accuracies. This prompted use 
of a trial and error method to search for appropriate parameters especially the smoothness value. 
However, no satisfactory result was attained. The task was then carried on by combining both 
spectral and texture data of the classes in the classification process. The experiment was first 
performed with spectral information alone giving an overall accuracy of 65.3%. Texture data was 
then included whose appropriate value was also searched by the trial and error technique. Results of 
this experiment are provided in Figure 5.17. 
 

(a) (b) (c) 

   
Figure 5.17:(a) GMRF texture features, (b) correspondingly classified (c) reference images 

The highest overall classification accuracy achieved in this procedure whose results are presented in 
Figure 5.17 was 62.7% with only 0.12 texture information included. Addition of more texture 
information reduced the classification accuracy. An investigation to find a solution to this problem 
was not carried out due to limited time. 
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6. DISCUSSION 

Results obtained in this study are discussed in this chapter. The suitability of the selected GMRF 
model for texture-scale exploration is discussed in detail.  The choice of the range over which lag 
values are selected for which the model is employed on the chosen data is also explained. An 
exploration of the texture-scale behaviour from the model estimated parameters (texture features) 
quantitatively, using the standard feature space plots, Fisher linear discriminant analysis and the 
multidimensional Euclidean distance are also fully discussed here. Results of texture based 
classification of both simulated and real image using the GMRF are discussed in the last part of this 
chapter. 
 
The GMRF model, for this study presented interesting results. The approach was able to simulated 
texture very close to the original. The simulation scheme which was carried out for a number image 
patch sizes yielded estimated parameters close to the initial ones with very small errors tending to 
zero as the patch size increased (Figure 5.2 (a), (b) and 5.3(a)).  It is observed that the achieved error 
increases exponentially with reduction in patch size (Figure 5.3(b) and 5.4). Results of this 
experiment conform to the observations made by Clausi and Bing [40] in their study comparing 
GLCPs and GMRFs for texture analysis of SAR sea ice imagery. They note that positive and 
negative GMRF model parameters exhibit a different behaviour in texture simulation. This element 
was not investigated in this work as it aimed at having estimated parameters with very small errors. 
In this research, it is observed that even with small patch sizes such 8×8 pixels, errors are 
sufficiently small not only for achievement of this study objectives but also the method can reliably 
be applied for any analysis at small patch sizes since the errors can be quantified and are small. It is 
important point out that larger patch sizes yielded stable GMRF estimated parameters than small 
ones. In addition, it was observed that unstable estimated texture features are obtained with very 
large initial values an issue that should be considered. 
 
Variogram estimation was vital in this work for providing an insight to the required 
neighbourhood system for effective GMRF texture modelling of the land cover classes under 
investigation.  Sample images variogram plots standardization (Figure 5.5 (b)) provided a feasibility 
assessment for the application of the GMRF model for modelling grass and tree crowns objects 
texture for achievement of their discrimination. This was significant in the application of this 
method for separability analysis of spectrally similar land cover classes. The approach confirmed 
that grass and tree crowns objects show a different spatial structure (at a pixel distance separation - 
lag values of between 1 and 20 pixels) that enabled the study for their discrimination. However, 
two grass samples exhibit a similar spatial structure to that of tree crowns objects. In the texture 
exploration task, it is important to select samples such that unrepresentative ones are not included 
in the analysis. Therefore, trees should be divided into evergreen and deciduous trees while grass 
would include play field grass, farm or agricultural grass among others. These need to be considered 
independently to derive intrinsic class separability characteristics. In addition, variogram of the class 
samples require modelling instead of being estimated to help logical choice of lag values. 
 
Experimental results of the estimated texture features from QuickBird panchromatic band with SF 
= 1, 2, 4, and 7 reveal an interesting trend at lag 1(Table 5.1).  At this lag, beta1, beta2 and beta3, 
beta4 texture features have got positive and negative values respectively a pattern clearly observed 
when QuickBird panchromatic band is degraded with SF = 1, 2 and 4 . However, it is not shown 
by beta 4 of the grass class when the image is coarsened further with SF =7. This pattern is also 
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shown in the results of Chellappa and Chatterjee [50] for grass, calf leather and pigskin in the 
classification of textures using GMRFs although it was not explained. In this pattern, tree crowns 
have got relatively large positive and negative values compared to those of grass which consistently 
reduced as the image is degraded tending to similar values. This is due to the fact that as the image is 
coarsened, the texture of the two classes become smoother and identical. There is however no 
explainable pattern shown by the texture features when more variability (at larger lags) inherent in 
the respective classes is incorporated in the parameter estimation scheme. The positive and negative 
trend recorded for the respective betas values at lag 1 could be explained by the fact that the GMRF 
model incorporates only the intrinsic properties of grass and tree crowns objects at this lag. At 
larger lags, more variability of either class is included in the feature estimation scheme and similarly 
at much coarser resolutions watering down this property. This is an important characteristic for 
analysis of these two classes which however, requires consideration because in [50] a 4th order 
GMRF model was used and hence incorporation of more variability. In addition, the pattern is not 
reported for texture features from Ikonos panchromatic band and is only identified in the tree 
crowns class and only beta4 of the grass class in Ikonos multispectral band 1. It could also be 
important to use higher model orders to investigate this property which has not been done here. 
 
The trend observed from texture feature estimated from QuickBird panchromatic band with SF 
=1, 2 and 4 is also identified in its multispectral bands as explained and shown in Table 5.2. The 
magnitude of texture features being generally the same show that same spatial information exists in 
all bands and thus for analysis involving texture analysis choice of one band is sufficient. Lack of an 
explainable pattern of texture features at larger lag values supports the choice of lag 1 as appropriate 
for class discrimination of grass from tree crowns objects. On the contrary, features from Ikonos 
panchromatic band are main positively correlated (Table 5.3). Thus, the property for grass and trees 
identified from QuickBird data cannot be concluded as their property from any imagery even with 
fine spatial resolution. However, the conditional variance of the noise source will be recovered as 
lag value increase in all scenarios. 
 
SF=2 degraded QuickBird panchromatic band (1.2m) and Ikonos panchromatic band (1m) have got 
a comparable spatial resolution. A comparison of these different images with slightly different 
spatial resolution shows that the parameters of the two classes are different for the two images. 
QuickBird parameters are bigger and exhibit a positive and negative correlation for beta1, beta2 and 
beta3, beta4 respectively as opposed to those of Ikonos at lag1. However, parameters estimated a 
larger lags will show the same behaviour and are smaller compared to those of lag 1. The same 
observation is made with SF=7 degraded QuickBird panchromatic band (4.2m) (Table 5.1(d)) and 
Ikonos multispectral bands (4m) (Table 5.4) also have got different parameters in magnitude at lag 1. 
This shows that different texture features will be obtained for different images for the same classes 
as expected. This analysis was carried out with assumption that the spatial resolutions are 
comparable. Consideration may be required for comparing degraded and none degraded images 
independently. 
 
Inspection of the feature space plots for texture features from QuickBird panchromatic band reveal 
a clear discrimination of grass from tree with SF=1 an 2 at lag 1 (Figure 5.6 and 5.7). Class 
separability between the clusters formed by the respective feature combinations of either class is 
observed in some combinations with SF = 4 and 7(Figure 5.8 and 5.9) however, the clusters begin 
to overlap as scale factor is increased. In the same trend very compact clusters of the texture features 
are observed with SF=1 which start to spread with SF=4 and finally the classes show considerable 
overlap as the scale factor is increased.  When larger lag values are used in the parameter estimation 
scheme, thus incorporating the variability inherent in either class, a clear visual separability 
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between the two classes is lost. The observation made at lag one makes the GMRF model attractive 
in describing the intrinsic properties of either texture class. It also confirms that reliable separability 
of spectrally similar class is achieved with spatial information when much variability is not 
incorporated in the model feature estimation process. The same trend is also recorded by the 
feature space plots from QuickBird multispectral bands (Figures 5.10, 5.11, 5.12 and 5.13), Ikonos 
panchromatic band (Figure 5.14) and Ikonos multispectral band 1 (Figure 5.15) and as explained in 
section 5.4.4, 5.4.5 and 5.4.6 respectively. Class separability with GMRF texture features does not 
require all the five features to show discrimination. One or two feature combinations can reliably 
be used and also help to carry out texture-scale exploration. 
 
Visual interpretation of feature space plots cannot guarantee a lasting conclusion of which lag offers 
more class discrimination power for texture-scale relationship exploration. Fisher criterion results 
are therefore hereby discussed to provide a deeper insight of texture behaviour across different 
spatial resolutions and to facilitate the separability of grass from tree crowns objects. Across all scale 
factors used for the QuickBird panchromatic band (Table 5.5, 5.6), its multispectral bands (Table 
5.7), Ikonos panchromatic (Table 5.8) and multispectral band 1 (Table 5.9), lag 1 Fisher vector 
values indicate high discrimination power although some features are more favourable than others. 
Fisher criterion was computed taking into account of the measurement error that can be achieved 
at a given patch size such 8×8, 32×38 and so on previously obtained in the texture simulation 
experiment. It is also evident that the degree of class discrimination power feature by feature 
increases with increasing patch size. This is attributed to the fact that GMRF models performance is 
embedded in the availability of enough contextual information.  Results of this criterion for all 
spatial resolutions of images considered reduce in magnitude with increase in lag value. In addition, 
the separability power also decreases as the spatial resolution becomes coarser. This is attributed to 
degradation of the important characteristics defining each class. In a similar way, for a given scale 
factor, lag 1 estimation scheme incorporates only those properties pertaining to a given class 
without inclusion of artefacts that water down the main characteristics of a class at larger lags hence 
the difficulty  in separating the classes at those lags. Fisher criterion provides assessment class 
separability feature by feature for accurate selection of feature that provides reliable separability at a 
given lag. This however, does not take into account all the defining features of a class.  
 
To fully understand the texture-scale behaviour and arrive at a firm conclusion for the separability 
of the two spectrally similar land cover classes (grass and tree crowns objects), it is imperative to 
carry out an analysis combining all the texture features. The multidimensional Euclidean distance 
was employed to include all the five feature used for describing texture in this work.  
 From this experiment it is seen that all lag values have got values large enough for reliable class 
separability of grass and tree crowns objects with SF= 1, 2, 4, and 7 of QuickBird panchromatic 
band (Table 5.10) and QuickBird multispectral bands (Table 5.11) and Ikonos panchromatic band 
and its multispectral band 1 (Table 5.12). 
 At larger lag values, more within class separability is incorporated in the texture features 
estimation leading to large scatter of either class texture features clusters in the features spaces. This 
accounts for the relatively large values of the multidimensional Euclidean distance at lag values 
greater than 1. Nevertheless, the values are so large in comparison to the ones got at lag1 across all 
scale factors considered where compact clear separable clusters of either class are observed in the 
feature space. Thus in conjunction with observations made from feature space, and Fisher criterion, 
reliable class discrimination can be achieved at lag 1. Similarly, comparison of Euclidean distance 
values for results for Quick band panchromatic band with SF = 1 to SF=7  it is noted that increase 
in Euclidean distance is explained by the increased variability in each class at coarser spatial 
resolutions which account the less compactness of the clusters of each class features. This led to a 



MULTISCALE TEXTURE ANALYSIS OF REMOTELY SENSED DATA WITH MARKOV RANDOM FIELDS 

 

52 

slight increase in the Euclidean distance but unfavourable class separability. Results from the 
multispectral bands of QuickBird reveal no marked difference in spatial information in all bands.  
 
This work has explored the behaviour of texture with scale where the discrimination of spectrally 
similar classes reduces at coarser spatial resolutions. However, only two land cover types with only 
six samples of either class were used because of limited time. In the description of class separability 
it is important to use more samples such that more strong methods for class discrimination such as 
the transformed divergence can be employed for its explicit quantification. 
 
In addition, the selected samples from the QuickBird and Ikonos imagery were combined leading to 
formation of a “super class” for either grass or trees. It is required to perform, an investigation of 
the need to have more than one sample of either class such that samples showing the same spatial 
for either class are not included in the analysis to avoid biasing the outcomes. Alongside that, 
important elements pattering to the data were assumed constant in this work. Aspects of the point 
spread function, radiometric and atmospheric effects among others could have considerable effects 
on the results. These are vital issues that would enhance more discoveries of the relationship 
between textures and scale which are limitations of this work. 
 
To test the performance of the GMRF model used in the texture exploration tasks, the method was 
employed in the classification of the same two spectrally similar land cover classes (grass and tree 
crowns objects). Figure 5.16 shows the results of the classification of simulated GMRF texture. The 
size of the image size has got an effect on the classification results. It is seen that a 150×150 pixel 
image achieved a considerably high overall accuracy of 92% compared to 77% of the 32×32 pixel 
image. Therefore, large images are classified more accurately than small ones by the GMRF model. 
This is due to a wealth of contextual information in large images per class. These results were 
however attained with the smoothness parameter of 0.9. Smaller values of this parameter gave noisy 
outputs and lower accuracy as similarly supported Karimov [105], clearly demonstrating the effect 
of this parameter in this scheme. 
Classification of the QuickBird image was one of the main challenges in this work. Yindi et al., 
2007 [20] point out that combination of spectral and texture data improves classification accuracy in 
their classification of high resolution images using GMRF-based texture features. However, in this 
work with spectral data 65% overall accuracy was achieved which reduced to 62.7% on of inclusion 
of texture information. As noted by Karimov [105] that optimization of the energy for 
classification of RS image is a challenge, failure of this scheme to achieve the desired results is partly 
attributed to the need for an appropriates  simulated annealing optimization process for spectrally 
similar real image classes. Another reason that could have hampered the task is the GMRF model 
that was applied. The 2nd order model used in this work may not have been appropriate for 
classification of spectrally similar real image classes. The limited time deprived this study of 
investigating these important reasons for achievement of this classification.   
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

The objective of this research was to explore the texture-scale relationship behaviour using a MRF 
model on RS data. To achieve this objective, seven research questions were formulated. With 
reference to the achieved results and discusion, the subsequent conclusions are made as per each 
research question. 
 
How can the texture-scale relationship be explored? 
The relationship between texture and scale was explored at different spatial scales and lag values 
while assessing class discrimination of two spectrally similar land cover classes. GMRF model 
estimated parameters here used as texture features are useful in describing the behaviour of texture 
at different scales most importantly at lag 1. Exploration of the texture-scale behaviour at fine and 
various coarser spatial resolutions was performed alongside its consideration in multispectral bands 
and in different images with different spatial resolution. This was important in providing an insight 
of the behaviour of texture of the same classes from different images with and without the same 
spatial resolution. The exploration was effected by quantitative comparison of estimated texture 
features, use of feature space plots, Fisher criterion and multidimensional Euclidean distance at 
different lag values. 
 
What is the texture-scale relationship? 
It has been demonstrated that at a fine spatial resolution spectrally similar land cover classes can be 
discriminated whereas as coarser spatial resolutions they become identical. 
 
 Standard feature space plots of texture features provided a visual revealing pattern of the 
relationship between texture and scale. With a finer scale image at lag 1, a given class texture will 
show a compact cluster of the features which lose the trend at coarser scales dwindling into an 
overlap with a spectrally similar class hence the difficulty to discriminate them. 
 
Fisher linear discriminant performs a quantification of class separability feature by feature clearly 
identifying the most appropriate lag for class discrimination and the most favourable feature for 
this purpose. This criterion greatly enhances the observations derived from the feature space 
graphs. 
 
Assessment of the texture features in a multidimensional space clearly affirms class separability and 
enhances the study of texture and scale. This is useful for providing a combined quantification of 
class separability. It is however important to draw conclusions about class discrimination using this 
measure assist by other measures as illustrated in this work. This study has shown that spectrally 
similar classes will gradually lose their most important inherent texture characteristics at coarser 
scales towards attaining similar characteristics. 
 
How should the texture of images with different spectral bands be compared? 
 Estimation of texture features band by band aided comparison of the texture of image with 
different spectral bands. As presented in chapter 6, it was observed that the spectrally similar land 
cover classes have got the same spatial distribution in all the multispectral bands of a given imagery. 
 
How can MRF model associated parameters for different image scales be determined? 
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The estimated parameters of the GMRF model used in this study were estimated by the LS 
estimation technique whose details are given in section 2.5.3 of chapter 2. For each spatial scale 
considered, parameters here used as texture features were estimated. The procedure and accuracy of 
the estimation was tested through simulation of texture.  
 
Which MRF method is suitable for multi-scale texture analysis? 
The study identified GMRF model able to simulate texture with as small errors as possible even 
with small image patch sizes. Demonstration of the exponential increase of these errors as patch 
size is reduced alongside their quantification is a significant aspect in the application of this 
approach. 
 
How should MRF texture classification be implemented? 
To execute texture based classification, GMRF texture features of the classes within the subset 
image to be classified were estimated, a reference image generated and the respective energy 
function and parameters for the optimization process designed. This experimenting was carried out 
for both simulated and real image. 
 
 
How should MRF texture classification results assessment be performed? 
Using the conventional error matrix the overall accuracy of the classification was employed. The 
method achieved sufficient results in the classification of simulated GMRF texture. However, 
because of limited time it was not possible to explore the reasons that hampered good performance 
of real image classification by the GMRF model. This task either required a different GMRF model 
order or a different simulated annealing scheme or both. 
 

7.2. Recommendations 

Based on the findings of this study, the following are the recommendations for further research: 
 

•  To carry on with the texture-scale relationship exploration, an investigation of the need to 
have more than one sample of either class which form a “super class” should be carried out 
to avoid bias of the outcome. This should be supplemented with consideration of the 
assumptions about data made in this study as presented in chapter 6. 
 

• The applicability of the model in performing texture based classification has been 
demonstrated in this work. However,  it was not successful with real image data for which 
further study is required. 
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