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ABSTRACT 

Drought is a naturally occurring event, causing temporary imbalance water availability and vegetation 

damage. It exists when the amount of received precipitation has been significantly below normal recorded 

levels. To reduce the devastating effects of drought and minimize the losses, early warning system can 

help decision and policy makers to implement policies timely. Satellite-based Normalized Difference 

Vegetation Index (NDVI) data are consistently available and continuous in space and time, applied to 

prediction drought in this research.  

 

As drought has many characteristics, varying region by region and may last for several months or even 

years, it represents a challenge to fully evaluate the characteristics for its prediction. In this research, the 

main objective is to predict the changes of vegetative drought classes, also called states. This is done by 

modelling these changes using Markov chains applied to predefined fuzzy vegetative drought states. 

 

Four regions of different agricultural patterns in Kenya are selected as study areas to apply this method. 

There is a strong relationship between NDVI and accumulated almost three-month precipitation data. 

The highest correlation value R can be larger than 0.9. It indicates that NDVI can be an indicator for 

vegetative drought prediction. The every dekadal NDVI data are acquired from FEWS NET from 2004 to 

2008. Fuzzy membership functions are applied in this research as a description of drought classes. The 

vegetative drought classes are classified by fuzzy classification.  

 

Under the Markovian property tests, the NDVI anomaly data can be modelled in first-order Markov chain, 

but the time homogeneity is interrupted by the data in February and September. The validation data is the 

comparison of prediction result and pre-existing reference data. Half of the pixels in study area are well 

predicted by fuzzy Markov chain. And also, the changing of fuzzy membership function influences the 

result of prediction. In conclusion, the Markov chain with fuzzy membership function has the potential to 

be applied in vegetative drought prediction and provide benefit for early warning system. 

 

Key words: NDVI, vegetative drought, fuzzy, Markov chain 
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1. INTRODUCTION 

1.1. Drought 

Drought is a naturally occurring event, causing temporary imbalance water availability and vegetation 

damage. It exists when the amount of received precipitation has been significantly below normal recorded 

levels over an extended period of time, such as several weeks, months or years. As most vegetation is 

dependent on rainfall, drought has negative effects on natural vegetation and agricultural productivity. 

When drought occurs, it also leads to diminished power generation, disturbed riparian habitats, and 

suspended recreation activities, which are closely linked to livelihoods of citizens and the national 

economy (A. K. Mishra & Singh, 2010). Because drought is an integral part of climatic variation, it can 

occur in all climatic regimes no matter how is the mean annual rainfall. Contrast to aridity, a permanent 

feature of the climate and restricted to low rainfall areas, drought is a temporary aberration (D. A. Wilhite 

& Svoboda, 2000). 

 

Generally, drought itself does not kill the most among all the natural hazards. However, because of 

drought and lack of alternatives to water plants, vegetation in form of pastures for livestock and crops wilt 

(Speranza, Kiteme, & Wiesmann, 2008). This can cause crop loss, reduced harvest, feeds for livestock, and 

in severe cases livestock and human deaths. Therefore, a large number of people die from food-shortage 

and famine, which are the most serious outcomes of drought (Smith, 2009). In North Carolina,  U.S.A., 

the economic loss incurred by the drought of the year 2002 was estimated as $413-148 million for both 

agriculture and municipalities, while $610 million for agriculture and timber growth loss in South Carolina 

(Rhee, Im, & Carbone, 2010). The Australian Federal government spent $740 million in aid during the 

2002-2005 “Big Dry”. The overgrazing and poor cropping methods, deforestation and improper soil 

conservation techniques may not create drought but they amplify drought-related disaster. During the 

1980s and early 1990s, the agricultural drought which affected many countries and people in Africa, were 

probably some of the most shocking famine emergencies in recent history, causing a 54% reduction in 

cereal harvest and exposing more than 17 million people in risk of starvation(Rojas, Vrieling, & Rembold, 

2011). The entire Horn of Africa has been prone to dry periods over the recent decades. A prolonged 

drought has crippled agriculture production in rural Kenya from 2009, greatly affecting millions of families 

who earn their lives on farming, fishing or herding. Nowadays, in Kenya, the drought has forced herder to 

be away from home in search for water and food supplies for their animals, and as such, leave women, 

children and elderly to fend for themselves. The droughts cause also threat of violence such as conflict 

about pastoral territories and education issues of migration children. An estimation of 100,000 cattle have 

died and the government estimates 10 million people will be affected by food shortages and diseases from 

drinking dirty water in the present drought. 

 

In theory, the artificial stimulation of rainfall by cloud seeding can reduce the hazard but with the 

limitation that the clouds should have natural precipitation potential. Unfortunately, such clouds are hardly 

to be present in large number during drought conditions. Also the additional supply of water is not always 

the best solution for drought. Drilling of new boreholes in dry areas without proper local management 

cannot reduce the effect of disaster. Inappropriate irrigation water consuming agricultural productivity will 

do nothing to alleviate food shortages during drought(Smith, 2009).  

 



PREDICTING DYNAMICS OF VEGETATIVE DROUGHT CLASSES USING FUZZY MARKOV CHAINS 

 

2 

To reduce the devastating effects of drought and minimize the losses, preparedness, prediction and early 

warning system can help decision and policy makers to implement policies timely. With several weeks’ 

lead-time warning, farmers can make decisions of altering agricultural systems, for example reducing high 

water consumptive crops, to cope with drought. Therefore, to develop practical methods of forecasting 

drought some weeks or even months ahead should be considerable (Paulo & Pereira, 2007; Pereira, 

Cordery, & Iacovides, 2009). The challenge of implementing emergency response, such as early warning 

system, is to know the probability of drought occurrence and measure the phenomena of drought (Rojas, 

et al., 2011). The phenomenon of drought represents relative instead of absolute variation from norm and 

is identified on the basis of human impacts rather than physical causes.  

 

Conventional climate-based drought monitoring from weather ground station network is limited by its 

density and distribution, and difficult to obtain near-real time data. Although the spatial interpolation can 

provide valuable information, high uncertainties may exist by many factors during interpolation 

process(Rhee, et al., 2010). Satellite-based data are consistently available and continuous in space and time. 

As vegetation has direct response to precipitation deficiency, satellite-based observations have proven to 

be efficient for detecting vegetation dynamic conditions in large coverage and multi-temporal 

measurements. 

1.2. Research Statement 

As drought has many characteristics, varying region by region and may last for several months or even 

years, it represents a challenge to fully evaluate the characteristics for its prediction. In this research, 

instead of using climate-based dataset, such as precipitation and temperature, Normalized Difference 

Vegetation Index (NDVI) satellite-based data are used to model vegetation stress, considered as vegetative 

drought. A Markov chain approach is used to predict the probability of occurrence of vegetative drought.  

1.2.1. Research objective  

The main objective of the research is to predict the changes of vegetative drought classes, also called 

states, using the NDVI values. This is done by modelling these changes using Markov chains applied to 

predefined fuzzy vegetative drought states. The performance of the method is evaluated against pre-

existing reference data. 

1.2.2. Research questions 

The following research questions need to be address in order to achieve the objective: 

 What is vegetative drought and how can it be characterised? 

 How to determine and model the vegetative drought states? 

 How to model the change between vegetative drought states? 

 How to evaluate the prediction result? 

 How the number and value range of classes can affect the results? 

1.2.3. Innovation aim  

Commonly, the definition of natural phenomenon for each drought state is crisp in Markov chains. In 

reality, the transition between vegetative drought classes is a gradual, hence a crisp model is less realistic. 

In this study, we model these changes using Markov chains applied to fuzzy models of drought states, 

referred to as Fuzzy Markov Chains. 

1.3. Overview of research  

The overall method used to conduct this study is as follows:  
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 The research starts with a literature review on drought prediction, followed by a selection of  a study 
area, as drought characteristics can differ from regions.  

 Within the study area, study sites are selected to represent the major land use types of interest and 
a dataset is selected accordingly.  

 Vegetative drought classes are determined and modeled in a similar way as Rulinda et al. (2010), 
accounting for the gradual transition between the classes. 

 A transition matrix is built to model the changes between the vegetative drought classes which are 
then predicted for the next time step.  

 To assess the validity of using vegetation stress as a proxy of vegetative drought, a combination of 
rainfall data and drought reports are used, 

 And to assess the accuracy of the prediction, classified vegetative drought maps corresponding to 
the predicted time step are used as reference data.  

1.4. Structure of  the thesis 

The rest of the thesis is structured as follows: Chapter 2 provides with a literature review of drought 

prediction using Markov chains. Chapter 3 describes the study area and chapter 4 describes the dataset 

used in this study. Chapter 5 details the methodology used and in chapter 6 the results are presented and 

discussed. In the last chapter, a conclusion is given together with some recommendation for further study 

in this field.  
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2. LITERATURE REVIEW 

2.1. Understanding Drought 

As a natural hazard, drought differs from other natural hazards in several ways. First, it is difficult to 

determine the onset and the end of drought, because its impact accumulate slowly and may linger for years 

after the termination. Hence, drought is often referred to as a creeping phenomenon. Second, due to the 

lack of a precise and universally accepted definition of drought, its existence and degree of severity are 

vague. In reality, drought occur in both dry and humid regions sometimes in the same country (WMO, 

2006). Definition of drought must be considered as relative, regional and impact specific as it sometimes 

varies dramatically from one region to another. The impact of drought is less obvious and spreads over a 

larger geographical area than those of other natural hazards (D. A. Wilhite & Svoboda, 2000). Take 

agricultural drought for instance, the impact can be accurately assessed when crop are harvested, which is 

a few months after the symptoms began to appear (Boken, Cracknell, & Heathcote, 2005). Unlike 

earthquake or floods constrained to a particular tectonic and topographic setting, drought can extend over 

regions with potential of causing catastrophe and affect several neighbouring countries (Smith, 2009). 

These characteristics of drought have increased the difficulties of accurate, reliable and timely estimates of 

severity and impacts of drought for preparedness plans. However, with improving monitoring, early-

warning system and appropriate mitigation actions, the impacts of future drought events can be efficiently 

reduced (D. Wilhite, 2005). 

 

Drought has three essential features: intensity, duration and spatial coverage. Intensity refers to the 

severity of impacts caused by precipitation shortfall. It is generally measured by the departure of some 

climatic index for example Standardized Precipitation Index (SPI), from its long-term mean. Duration is 

that how long the drought event lasts. Usually drought requires a minimum of a month to become 

established and then continue for months and years. Another distinguishing characteristic is the spatial 

coverage. The areas affected by severe drought evolve gradually, and regions of maximum intensity shift 

from season to season and year to year in the event of a multi-year drought(D. A. Wilhite, 1992).  

2.1.1. Types of drought   

Drought is generally classified into four categories: meteorological drought, agricultural drought, 

hydrological drought, and socioeconomic drought. Meteorological drought is usually first detected and 

defined as a lack of precipitation for a period of time, in comparison to an average level for a specific 

region. Usually there is a deficiency threshold over a predetermined period time to define this drought, 

which will vary by location according to local water demands. The Australia Bureau of Meteorology 

employs a threshold of an exceed of 10 % of normal precipitation in the same period of the year,  and the 

duration period is more than three months (Smith, 2009). Meteorological drought is often the focus of 

drought forecasting techniques for famine early warning system(Sene, 2010). 

 

Agricultural drought is commonly defined by declining soil moisture and consequent crop failure with 

below-normal precipitation at the surface over a period of time. The impact of agricultural drought is 

complex. It depends not only on the magnitude, duration and timing of drought, but also on the 

responses of the region’s soils, plants and animal to water stress(Nagarajan, 2009b). It occurs over a large 

area and its impact is not accurately assessed until a few months after the symptoms of agricultural 

drought begin to appear (Boken, et al., 2005). Agriculture is the first economic sector to be affected by 
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drought because many subsistence economies rely mainly on rain-fed agriculture and soil moisture 

supplies are often quickly depleted. There is no significant relationship between precipitation and 

infiltration of precipitation into the soil. The soil water-holding capacity, differences between actual 

evapotranspiration and potential evapotranspiration, and soil water deficits can affect the soil moisture. 

The soil with low water-holding capacity is more prone to agricultural drought. A definition of agricultural 

drought should account for the various biological characteristics of crops at different stages of growth, 

because the plant’s demand of water is different(WMO, 2006).  
 

Hydrological drought is associated with a period of inadequate surface or subsurface water supply. Since it 

takes longer time to show precipitation deficiencies in components of the hydrological system, 

hydrological drought is generally out of phase or lags behind meteorological and agricultural drought. The 

recovery of a hydrological system after drought is slow because of the long recharge periods of the 

system’s water supplies. Like agricultural drought, it is no directly related to precipitation amount and the 

status of hydrological system supplies in lakes, reservoirs, aquifers and streams, because water stored in the 

system often has multiple and competing purposes, such as irrigation, recreation, flood control and power 

generation (WMO, 2006). As a result, impacts are difficult to quantify. Stream-flow data have been widely 

used for hydrological drought analysis and geology is found to be one of the main influencing factors(A. 

K. Mishra & Singh, 2010).  

 

Socioeconomic drought occurs when the demand for an economic good exceeds supply as a result of a 

weather-related shortfall in water supply(A. K. Mishra & Singh, 2010). It significantly differs from the 

other types of drought because it reflects the relationship between supply and demand, and emerges when 

meteorological, agricultural and hydrological drought adversely affects demand and supplies of economic 

goods. Demand also increases and is often associated with a positive trend as a result of increasing 

population, development and other factors(WMO, 2006). 

 

The sequence and impacts between meteorological, agricultural and hydrological drought is illustrated in 

Figure 2-1. Agricultural, hydrological and socioeconomic drought occurs less frequently than 

meteorological drought, because these sectors are not directly related to precipitation deficiency. It usually 

takes several weeks to produce soil water deficiency leading to stress on crops, pastures and rangeland 

when precipitation deficiency begins. Continued dry conditions for several months bring reduced stream-

flow, inflow to reservoirs, lakes, and ponds reduced wetlands. When drought conditions persist for a long 

period of time, economic, social and environmental impacts come out.  

 

 
Figure 2-1 Sequence and impacts between Meteorological drought, Agricultural drought and Hydrological 

drought(NDMC, 2006) 
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In the past, the primary sources for drought information are climate and meteorological data. With the 

development of technology, satellite observations have recently proved to be a valuable source of timely 

and spatially continuous data for monitoring vegetation dynamics over large areas. One of the most 

commonly used vegetation indices, extracted from satellite images, is NDVI. It has the advantages of 

minimizing soil and other background effects, reducing data dimensionality, providing a degree of 

standardization for comparison, and enhancing the vegetation signal (Tadesse, Brown, & Hayes, 2005). In 

this study, the focus is on the drought impact on vegetation, observed from satellite images. This research 

does not address desertification and aridity, which are different from drought.  

2.1.2. Drought indices 

Rainfall, temperature, evaporation, vegetation health, soil moisture, stream flow, and so on are the 

parameters that are used in drought analysis for scientific evaluation of drought situations (Nagarajan, 

2009a). In recent decades, a number of indicators or indices have been developed based on different 

parameters. Figure 2-2 shows the drought indices used in different examples. Precipitation based indices 

are often used.  

 

 
Figure 2-2 Examples of drought monitoring indicators and indices (Sene, 2010). 
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2.1.2.1. Drought Indices derived from Hydro-meteorological data 

Percent of normal precipitation is one of the simplest index of drought, but it has limitations in defining 

the appropriate threshold and the distribution should be a normal distribution instead of skewed. 

Precipitation deciles are commonly used by Australian Bureau of Meteorology and overcome the 

limitations of percent of normal precipitation. Annual rainfall of a long series of years are sorted in order 

and classified into 5 equal groups as shown in Table 1. The current precipitation is then assigned to the 

historical classification (Cancelliere, Mauro, Bonaccorso, & Rossi, 2007). SPI is calculated from a monthly 

precipitation dataset of ideally a continuous period of at least 30 years. The normal distribution density of 

historical rainfall data is used to estimate the probability of any precipitation observation, which is with a 

mean of zero and transformed from a Gamma function(Mckee, Doesken, & Kleist, 1993). The Palmer 

Drought Severity Index (PDSI) is a soil moisture algorithm using historic records of precipitation and 

temperature data within a two-layer soil model. The PDSI perhaps is the most widely used index for 

region drought monitoring and it has been used to illustrate the areal extent and severity of various 

drought episodes(A. K. Mishra & Singh, 2010). A modified version known as Palmer Hydrological 

Drought Index (PHDI) is used to monitor long term moisture anomalies that affect water supplies and 

widely used in USA(Karl, 1986). The relationship between these three indices and drought categories is 

shown in the Table 2-1. 

 

Deciles classification SPI classification PDSI classification 

Deciles Drought 

category 

SPI value Drought 

category 

PDSI values Drought 

category 

Lowest 20% Much below 

normal 

 -2.0 Extremely dry  -4.00 Extremely dry 

Next higher 

20% 

Below normal -1.99 to -1.50 Severely dry -3.99 to -3.00 Severely dry 

Middle 20% Near normal -1.49 to -1.00 Moderately dry -2.99 to -2.00 Moderately dry 

Next higher 

20% 

Above normal -0.99 to +0.99 Near normal -1.99 to -1.00 Mild drought 

Highest 20% Much above 

normal 

1.0 to 1.49 Moderately wet -0.99 to -0.50 Incipient 

drought 

  1.5 to 1.99 Very wet -0.49 to 0.49 Near normal 

   2.0 Extremely wet   

Table 2-1 Relationship between indices and drought categories 

2.1.2.2. Drought indices derived from Remote Sensing data 

Utility of remote sensing data especially satellite images have been proven in drought monitoring, 

mitigating and prediction. Satellite observations provide more spatially and timelier continuous input data 

sources then ground gauge station observations. Because of the characteristics of the spatial coverage of 

drought, satellite images enable to understand manifestation of drought in larger area in a less time 

consuming way than conventional methods. When a drought exists, due to reduction of precipitation, the 

capacity to carry out the chlorophyllian function on the part of the vegetation is notably reduced (Sharma, 

2006). The response of the green vegetation is characterized by a maximum absorption radiation in the red 

region and large reflection in the neighbouring infrared region. It also has been observed that in unhealthy, 

ageing or subject to condition of vegetation stress, the reflectance in red region increases while in near-

infrared region deceases. The normalized difference vegetation index (NDVI), developed by Tucker in 

1979 is the most popular vegetation index used to monitor vegetation at regional to global scales. It is 

calculated as in equation 2-1. 
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NDVI = (λNIR - λRED) / (λNIR + λRED)                                                                           (2-1) 

 
Where λNIR and λRED are the reflectance in the NIR and Red band, the values vary in [-1,+1] 

 

As NDVI is not sensitive to influences of soil background reflectance at low vegetation cover and lag 

vegetation response to precipitation deficient, NDVI itself does not reflect drought or non-drought 

conditions. But the severity of drought may be defined as NDVI anomaly from its long-term. The 

anomaly NDVI is calculated as the difference between the NDVI at current time step, such as month, and 

a long-term mean NDVI of the same time step for each pixel. When the NDVIanomaly is negative, it 

indicates the below-normal vegetation condition and maybe a drought situation. The larger the negative 

departure, the greater drought severity may be suggested. The formula is equation is in equation 2-2. 

 

NDVIanomaly = NDVIi – NDVIi,mean                                                                               (2-2) 

where NDVIi is the value for time step i, NDVIi,mean is the long-term mean value of same time step i 

 

The Vegetation condition index (VCI) was first introduced by Kogan to measure “health” in vegetation 

and shows promises in drought detection and tracking (F. N. Kogan, 1995). It is calculated with a long-

term maximum and minimum record. The formula is shown is shown in equation 2-3, where i is the index 

of current month or week, NDVIi,min and NDVIi,max are the minimum and maximum values from record 

of time i. The onset, intensity, duration and impact of drought on vegetation can be detected by VCI. The 

limitation of VCI is that mainly useful in growing season as during the non-growing season, the vegetation 

is largely dormant (Heim, 2002). The relationship between VCI values and drought categories is shown in 

Table 2-2. 

,min

,max ,min

100 i i
i

i i

NDVI NDVI
VCI

NDVI NDVI


 


                                                                   (2-3) 

 

VCI value Drought Category 

[0, 5) Exceptional  

[5, 15) Extreme  

[15, 25) Severe   

[25, 35) Moderate  

[35, 50) Abnormally dry condition 

≥50 Non-drought 

Table 2-2 Relationship between VCI and drought categories(STAR, 2010) 

2.2. Vegetation drought monitoring 

The type of drought this research focuses on is vegetative drought. It is similar to the agricultural drought 

while involving more vegetation than agricultural plants. Various studies have demonstrated the utility of 

satellite measurement of drought monitoring and provide analysis of the relationship between climate 

variables, e.g. precipitation, and satellite-based indices(Ji & Peters, 2003). Satellite image-based NDVI and 

VCI value are commonly used indices for vegetation health evaluation. They had been tested for the 

correlation with precipitation in East Africa and Iran, which indicated that these vegetation indices can be 

applied for drought monitoring. Results illustrate a highest correlation given with three-month of 

precipitation values. NDVI had better performance than VCI, which made NDVI a better indicator for 

vegetation changes and drought conditions (Bajgiran, Darvishsefat, Khalili, & Makhdoum, 2008; 

Davenport & Nicholson, 1993). However, there are some limitation of the correlation between NDVI and 
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rainfall. First, in the period of three month, precipitation is not the only factor influencing vegetation. 

Second, correlation normally performs better during growing season. VCI is also noted as an indirect 

value showing vegetation stress from droughts,  insects, disease and lack of nutrients(Vicente-Serrano, 

2007). It is not highly correlated with meteorological drought and it is sensitively influenced by spatial 

environmental factors(Quiring & Ganesh, 2010). Carefully estimated must be taken when using the VCI 

for monitoring drought.  

2.3. Markov chains for drought prediction 

The Markov chain model is named after the Russian mathematician Andrei Andreevich Markov (1856-

1922). He developed the Markov chain as a natural extension of sequences of independent random 

variables. In 1906, he proved that for a Markov chain with positive transition probabilities, named as 

regular Markov chain, and numerical states, the average of the outcome converges to the expected value 

of the limiting distribution, the fixed vector(Grinstead & Snell, 1997). A Markov process usually refers to a 

first-order process of autoregressive processes. The future development of this process is completely 

determined by the present state and is independent of the way in which the present state has developed, 

which explains the “first-order” (Chatfield, 2004). A Markov chain is a discrete-state random process of 

Markov process and it is a simple linear model (Meyn & Tweedie, 1993; Sinclair, 2005).  

 

A Markov chain is a special case of a Markov process, which itself is a special case of a random or 

stochastic process. In the most general terms, a random process is a family, or ordered set of related 

random variables X(t) where t is a time parameter. There are many kinds of random processes. Two of the 

most important distinguishing characteristics of a random process are its state space, or the set of values 

that the random variables of the process can have; and the nature of the indexing parameter. We can 

classify random processes along each dimension. 

1. State Space: Continuous-state: X(t) can take on any value over a finite or infinite continuous interval 

or set of such intervals; Discrete-state: X(t) has only a finite or countable number of possible values 

{s0,s1,s2,…,si,…}. A discrete-state random process is also often called a chain. 

2. Index parameter (time): Discrete-time:  permitted times at which changes in value may occur are finite 

or countable; Continuous-state: changes may occur anywhere within a finite or infinite interval or set 

of such intervals  

The state of a continuous-time random process at a time t is the value of X(t); the state of a discrete-time 

process at time n is the value of Xn (Sinclair, 2005). In a first-order Markov chain, Xn+1 depends only in Xn, 

and not on any Xi, 1  i   n, as shown in equation 2-4(Sinclair, 2005). 

 

P(Xn+1 = si| Xn, Xn-1, …, X1, X0) = P(Xn+1 = si| Xn = sj)                                           (2-4) 

 

Mishra (A. Mishra, Singh, & Desai, 2009) combined Joint probability Density Function and Markov chain 

process to characterize the drought with SPI. The time duration of mean drought interval changed in SPI 

series and in higher SPI series have higher probability of persistence for coming in the same states. Banik 

et al. (2002) modelled weekly rainfall data by Markov chain and the result illustrated a better understanding 

of drought-proneness and identification of the areas for a long term drought mitigation strategy. Paulo & 

Pereira (2007) used SPI value of 67 years rainfall data into Markov chain for both homogeneity and non-

homogeneity to predict hydrological drought. The results showed that the Markov chain approach applied 

to time series is proved to be a useful tool to understanding the stochastic characteristics of drought and 

for early warning system. 

 

Markov chains were also used for non-drought studies, such as Balzter (2000) who used four different 

locations with different climatic and soil conditions, to examine different grassland species. The results 

showed that Markov chain models are sensitive to changes and information from models is valuable for 
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conservation, land planning and ecology. Compared to regression variables in crop field forecasting, the 

Markov chain proved to be an attractive alternative to regression analysis, because the approach is non-

parametric, simple to implement with Markov property as the only requirement (Matis, Saito, Grant, Iwig, 

& Ritchie, 1985). 
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3. STUDY AREA 

3.1. Location and extent of study area 

The study is conducted in East Africa, a known drought prone region which experienced severe drought 

episodes in the last decade. Kenya is selected as the study area as it is one of the most affected countries in 

the region and has a good record of rainfall data that can be used for drought validation.  

 
Kenya has a land area of 580,000 km2 and a population of nearly 39 million residents. As Figure 3-1 shows, 

with the Indian Ocean to its southeast, Kenya is bordered by Somalia, Ethiopia, Sudan, Uganda and 

Tanzania. Lake Victoria is situated to the southwest, and is shared with Uganda and Tanzania. From the 

coast, the altitude changes gradually through the coastal belt and plains, 52 meters above sea level, the dry 

intermediate low belt to what is known as the Kenya Highlands, over 900 meters above sea level. 

Settlement is confined to places where water can be found. Wildlife is found on the greater part of the low 

belt(SouthTravles, 2001).  

 

  
Figure 3-1 Kenya (sources: NationMaster http://www.nationmaster.com/country/ke-kenya) 

3.2. Climate characteristics 

The climate of Kenya varies by location. It is hot and humid at the coast, temperate inland and very dry in 

the north and northeast parts of the country. Although Kenya is centred at the equator, it shares the 

seasons of the southern hemisphere: the hottest time in Kenya is in February and March and the coldest in 

July and August with only a few degrees cooler. The coastal region is largely humid and wet. The low 

plateau area is the driest part of the country.  The climate along the coast is tropical; this means rainfall 

and temperatures are higher throughout the year. The further away from the cost, the more arid the 

climate becomes. For many areas of Kenya, the daytime temperature usually rises about 12 °C. Elevation 

is the major factor in temperature levels, with the higher areas, on average, as 11°C cooler. At lower 

altitudes, the temperature increases throughout the day. There are slight seasonal variations in temperature 

of 4 °C cooler in the winter months. On the higher mountains, such as Mount Kenya, Mount Elgon and 

Kilimanjaro, the weather can become bitter cold for most of the year. Some snowfall has occurred on the 

highest mountains. 

 

Higher elevation areas within the highlands receive much larger amounts of rainfall. The Lake Victoria 

basin in western Kenya is generally the wettest region in the country, particularly the highland regions to 

the north. Rainfall occurs seasonally throughout most of Kenya. There are two rainy seasons: the first 
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rains, long rainy season, between March and May and the second rains, short rainy season, between 

October and December. The average seasonal rainfall amounts range between 120–240 mm (long rainy 

season) and 220–410 mm (short rainy season). The short rainy season is the major farming season, but 

rainfall in both seasons is highly variable and unreliable(Speranza, et al., 2008). The coast, eastern plateaus, 

and Lake Basin experience two rainy seasons and the highlands of western Kenya have a single rainy 

season.  

 

3.3. Land use and agriculture 

Both large and small holder farming is carried out in the highlands. Major cash crops are tea, coffee, 

pyrethrum, wheat and corn. Livestock farming is also practiced. The Lake Victoria Basin is dominated by 

Kano plains which are suited for farming through irrigation. The northern part of Kenya is plain and arid 

and pastoralism is the main land use activity.  

 

Kenya derives their livelihoods mainly from crop production and marketing, livestock keeping and sale, as 

well as from low-income off-farm and non-farm activities. Although the major perennial rivers have 

potentials for irrigation, rain-fed agriculture is practised, and together with livestock keeping, are the major 

sources of livelihoods (Speranza, et al., 2008). At least 72% of the households simultaneously engage in 

crop production, livestock keeping and off-farm. 84% of the households derive part of their income from 

crops sales, 83% from livestock sales, while households earn off-farm incomes from various activities such 

as unskilled casual jobs (37%), business (28%), paid employment and pensions (26%), and remittances 

(20%). Thus incomes from sale of crops, sale of livestock and from off-farm activities are all comparably 

important but to different degrees at different times, vary from place to place, and are influenced by 

resource constraints, rainfall variability and drought (Speranza, et al., 2008). The vegetation and 

agricultural cash crops is shown in Figure 3-2.  

 

 
Figure 3-2 Vegetation and agricultural cash crops distribution in Kenya (source: 

http://www.nationmaster.com/country/ke-kenya) 

3.4. Drought in Kenya 

Drought is one of the significant hazards in Kenya especially during rainy seasons. When drought occurs, 

although it is not a terrible natural disaster in directly killing people, it can cause related situation, such as 
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famine, which increases the number of affected people, livestock and deaths. Millions of families who rely 

on farming, fishing and herding have to leave their home to search water resources and food. Violence will 

rise because of pastoral territories conflict from immigration families. An estimated 400 people died due to 

such violence in 2009.  As illustrated in Table 3-1, from the 1982 to 2011, drought has the largest number 

in affecting people. In 1999, the number of affected people reached to 23million, almost 80% of the 

residents influenced by that disaster. The most recent drought in 2008-2009, had the third number of 

affected people and the country is still recovering from the effect. Form last 30 years, drought occurred 8 

times and totally killed people 196 and affected people 38 700 000, almost the same as the population 

(Centre for Research on the Epidemiology of Disasters http://www.emdat.be/).  Table 3-1 show a list of 

all the natural disasters of the past 30 years, where it can be seen that drought occurred often. 

 

Nature 

Disaster Date(Month/Year) 

No. Total Affected 

people 

Drought 12/1999 23,000,000 

Epidemic 01/1994 6,500,000 

Drought 07/2008 3,800,000 

Drought 12/2005 3,500,000 

Drought 1991 2,700,000 

Drought 07/2004 2,300,000 

Drought 01/1997 1,600,000 

Drought 03/1994 1,200,000 

Flood 09/1997 900,000 

Flood 10/2006 723,000 

Table 3-1 Top 10 of number of natural disasters in Kenya from 1982 to 2011 (source: The OFDA/CRED 
International Disaster Database http://www.emdat.be) 
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4. DATA  ACQUISITION 

In Kenya, early drought detection, tracking mapping and severity assessment has been considerably 

constrained by incomplete meteorological data. The rain gauge network density and communication 

infrastructure have been declining over years, which makes the monitoring relying solely from 

precipitation data, not always reliable (Felix N. Kogan, 1997). When NDVI data are used to model 

vegetation stress, rainfall data can be used as a reference parameter for drought prediction. Generally, 

countries near equator do not have significant change of temperature from month to month or season to 

season. The dynamics of temperature in the Voi city in Kenya for instance, pixel 4 (one of the study areas, 

with more details in Section 4.1) in 2007 is shown as Figure 4-1. The highest temperature is 31°C in 

February, lowest 20°C in August and average around 25°C for the whole year. As such, temperature data 

are not considered and only satellite-derived NDVI data and rainfall data are considered. The following 

sections detail the characteristics of the data and the collection processes. 

 

 
Figure 4-1 Temperature changes of study area pixel 4 in 2007(°C) 

4.1. Satellite data acquisition of NDVI 

The dataset used in this study is from the GIMMS (Global Inventory Modelling and Mapping Studies), 

and is composed of 10-day NDVI data from the NOAA-AVHRR (National Oceanic and Atmospheric 

Administration - Advanced Very High Resolution Radiometer). NDVI is calculated from two channels of 

the AVHRR sensor, the near-infrared (NIR) and visible (VIS) wavelengths as shown in equation 4-1. 

 

NDVI = (NIR - VIS)/ (NIR + VIS)                                                                                     (4-1) 

 

Values of NDVI for vegetated land generally range from about 0.1 to 0.8, with values greater than 0.5 

indicating dense vegetation and smaller than 0.3 indicating less vegetation. In the GIMMS 10-day NDVI 

dataset, the pixel values are stretched from [0, 1] to [0, 250], water values are assigned to 255, erroneous 

and missing values to 253 and 254. These 10-day composite images are constructed at regular intervals by 

selecting pixels with the maximum NDVI, in order to construct cloud-free views of the Earth. A 10-day 

time step is generally selected as the minimum period since the NOAA orbit repeats at that frequency. 

The data are given in an 8 km Albers Equal Area Conic projection, Clark 1866 ellipsoid and in geographic 

coordinates, WGS84 datum at 0.07272727 degree resolution per pixel. The data is available from July 1982 

to present. The long-term mean data is calculated from 1982 to 2008 and short-term mean data is 

calculated from 2004 to 2008. This dataset is available for free at FEWS NET (Famine Early Warning 

System Network http://earlywarning.usgs.gov/fews/africa/index.php). The dataset is inter-calibrated 

with SPOT Vegetation NDVI, and uses NOAA-17 data since January 2004. The NOAA-17 NDVI data 

have also been inter-calibrated with NOAA-16 and previous NDVI products. More information can be 
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found in GIMMS document 

(ftp://landval.gsfc.nasa.gov/Documentation/GIMMS_NDVI_8km_doc.pdf). 

 
For this study, a subset of 180 NDVI images of East Africa is selected covering the period from the first 

dekadal of January to the last dekadal of December from 2004 to 2008. The long term mean values also 

selected for calculating NDVI anomaly. Spatial subsets of locations of interest are extracted in Kenya and 

each pixel covers 64 km2 areas on the ground.  

 

Point 1 (3.117N, 35.617E) is selected in the Rift Valley, as shown in Figure 4-2. It is located west of the 

Lake Turkana and east of the city of Lodwar, which is the largest town in north-western Kenya. The river 

Turkwel goes through the area and the Loima Hills lie to its west. This area is arid and hot. The mean 

annual rainfall is less than 250 mm and the occurrence of rainfall is very erratic and unpredictable, though 

rainfall occurs mostly during “long rain” season. Hence the agriculture type of this area is pastoral farming. 

Point 2 (1.75N, 40.067E) is selected near the city of Wajir, which is in the North Eastern Province the 

headquarters of Wajir District. The satellite image from Google Earth of Point 2 is shown in Figure 4-3. 

This area is located is arid and prone to drought. In spring 2006, there was a severe famine caused by 

drought. The annual precipitation is 240 mm and there are two rainy seasons in this area. The agriculture 

type is pastoral farming in low plateau. Point 3 (0.5S, 37.45E) is selected north-east of the city of Embu, 

which serves as the headquarters of Eastern Province and Embu District. The satellite image of this area is 

shown in Figure 4-4. The average annual precipitation is 870 mm, with the highest rainfall in April and 

November. The annual average temperature is 19.2°C and it varies slightly from month to month. The 

agriculture type of this area is cultivation. Point 4 (3.4S 38.567E) is selected south of city of Voi, which is a 

market town in the Coast Province. The satellite image of this area is shown in Figure 4-5. The average 

temperature is 25.4°C and annual precipitation is 570 mm. The agricultural type of this area is cultivation.  

 

                           
Figure 4-2 Point 1 from Google Earth© images       
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Figure 4-3 Point 2 from Google Earth© images 

                             
Figure 4-4 Point 3 from Google Earth© images              

 

 Figure 4-5 Point 4 from Google Earth© images 
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These points are chosen based on the station position on the National Climate Data Centre (NCDC, 

http://gis.ncdc.noaa.gov/website/ims-cdo/gsod/viewer.htm), for a later validation of drought using rainfall 

data collected at those stations. In order to reduce random noise, 4 surrounding points are selected around 

the each of the five originally selected points. In the context, Region1 represents point 1 and its 4 

surrounding pixels, so as for region2, region3 and region4. In Figure 4-6, the light blue dots are shown the 

locations of the four originally selected pixels in Kenya, on a satellite image. Number all the pixels from 1 

to 20. Region 1 includes pixel 1 to pixel 5 and pixel 3 cover the area of point 1. Region 2 contains pixel 6 

to pixel 10 and pixel 8 is the original point2. Pixels 11 to pixel 15 are in region 3 and the rest pixels belong 

to region4. Pixel 13 cover the area of point 3, so does pixel 18 to point 4. 

 

 
Figure 4-6 Kenya satellite images of 4 selected pixel locations (Source from: 

http://www.maplibrary.org/stacks/Africa/Kenya/index.php) 

4.2. Station data 

The Station data are provided by the World Meteorological Organization (WMO) World Weather Watch 

Program. The input data sources come from the Integrated Surface Data (ISD), which includes global data 

obtained from the USAF Climatology Centre, located in the Federal Climate Complex with NCDC. The 

latest daily summary data are normally available 1-2 days after the date-time of the observations used in 

the daily summaries. The online data files begin with the year 1929, and are now at the Version 7 software 

level. Over 9000 stations' data are available. This dataset contain a lot of gauge information such as daily 

mean temperature, maximum and minimum temperature, precipitation and wind. However, considering 

the incompleteness and low density distribution of station data on in Kenya, the satellite-based Rainfall 

Estimated (RFE) dataset are used, after comparing the correlation with the gauge information. The 

correlation of this two dataset is shown in Section 4.4. 

4.3. Rainfall estimated data 

RFE version 2.0 has been implemented by NOAA's Climate Prediction Centre. Input data used for 

operational rainfall estimates are from 4 sources:  
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1) Rainfall amounts from up to 1,000 rain gauges across Africa, quality controlled using 

maximum/minimum range checks and plausibility checks against the satellite estimates 

2) Precipitation estimates from the Special Sensor Microwave/Imagery (SSM/I) microwave sensors on 

the Defense Meteorological Satellite Program polar orbiting satellites, which are available up to 4 

times per day at a resolution of approximately 25 km 

3) Precipitation estimates from the Advanced Microwave Sounding Unit (AMSU-B) aboard NOAA-N 

series polar orbiting satellites, at a similar spatial and temporal resolution to SSM/I 

4) Precipitation estimates based on Meteosat 5 and 7 infrared cloud top temperature measurements 

using the GOES Precipitation Index with a threshold of < 235 K at half hourly intervals and a 

resolution of 4 km(Sene, 2010) 

 
RFE 2.0 obtains the final daily rainfall estimation using a two-step merging process. First, the three 

satellite estimates are combined linearly using predetermined weighting coefficients. This step is to reduce 

the random error of the satellite precipitation. The second step of the merging process compares the 

satellite-estimated precipitation in step one with GTS rain gauge data to remove as much bias as possible, 

then sums daily totals to produce dekadal estimates. The data are given in an 8km Albers Equal Area 

Conic projection, Clark 1866 ellipsoid and in geographic coordinates, WGS84 datum at 0.07272727 degree 

resolution per pixel. The data are available from 1995 to present. The RFE Long Term Mean was derived 

from interpolated rain gauge data for the period 1920 to 1980. The Short Term Mean was derived from 

satellite rainfall estimates for the period 2005 to 2009. In this research, the RFE Long Term Mean value is 

derived from 1995 to 2008. 

4.4. Comparison between station data and RFE data 

The comparison is evaluated for every 10-day rainfall data of the 4 originally selected pixels during the 

whole year of 2008 using the Pearson correlation (r). There should be 36 data in comparison from station 

data and RFE data, but there are 34 data available from station dataset in pixel 4. The result is shown in 

Table 4-1. According to the document of Station data from NCDC, it is still possible that for some daily 

record, the precipitation occurred but was not report. Hence for small precipitation occurrence, RFE has 

larger value than Station value, which may influence the correlation coefficient. The correlation value in 

pixel 4 is quite lower than other pixels. It could be that the number of available datasets influenced the 

result. Also, RFE data is based on the four kinds of data sources, which could have generated errors 

during data mining. 

 

Pixel label Available station data Available RFE data Correlation coefficient 

Pixel 1 36 36 0.99 

Pixel 2 36 36 0.87 

Pixel 3 36 36 0.92 

Pixel 4 34 36 0.75 
Table 4-1 Correlation of station data and RFE, the second and third columns show the available numbers of station 

data and RFE data for comparison  
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5. METHODS 

5.1. Drought characterisation 

5.1.1. NDVI anomaly 

Drought is a natural hazard of water deficiency from normal demands. It should be considered relative to 

some long-term average condition rather than absolute condition (D. A. Wilhite & Svoboda, 2000). 

Traditional methods of drought assessment and monitoring heavily depend on the density of rainfall data 

network. Reliable satellite imagery coving large regions over long periods of time has efficiently reduced 

the influence of density limitation (Gouveia, Trigo, & DaCamara, 2009). NDVI is a widely used vegetation 

index of environmental studies, but it does not reflect drought or non-drought, low value of NDVI, from 

0 to 0.3, may represent less density of vegetation or non-growing season. NDVI anomaly calculated as in 

Equation 2-2 is used for this study as the long-term mean values are provided. When the NDVIanomaly is 

negative, it indicates a below-normal vegetation condition and hence a prevailing drought situation. The 

larger the negative departure, the greater drought severity may be suggested.  

5.1.2. Correlation with rainfall 

This study assuming that NDVI anomaly is caused by drought and can be used as a vegetation drought 

indicator. If the NDVI anomaly demonstrates a sensitive and consistent response to an inter-dekadal 

fluctuation of rainfall, it can provide an indicator of drought conditions (Davenport & Nicholson, 1993). 

In order to study the statistical relationship between various time lag periods of precipitation and NDVI 

anomaly, Pearson(r) correlation analysis is applied and correlation coefficients between the value of 

vegetation index and precipitation data are determined.  

 

A Pearson correlation r is a number between -1 and +1 that measures the degree of association between 

two dataset, in this study, NDVI anomaly and precipitation. A positive value for the correlation implies a 

positive association. A negative value for the correlation implies a negative or inverse association. Zero 

implies that there is no linear correlation between the variables.  

5.2. Data processing methodology  

The main data processing adopted in this study, as shown in Figure 5-1, involve to:  

1. Get input data of four study regions of NOAA-AVHRR image from 2004 to 2008.  

2. Calculate deviation NDVI anomaly as NDVI deviation from the long-term mean NDVI values. 

3. Define drought classes for the study area and use the classes as input states to make the transition 

matrix of Markov chains. Membership function is used to classify drought. 

4. Use both transition matrix and membership function to predict drought 

5. Validate the predicted results using satellite image data.  
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Figure 5-1 Flowchart of the data processing  

5.2.1. Drought modelling from NDVI anomaly using fuzzy set theory 

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were first introduced by Lotfi 

A. Zadeh (1965) as an extension of the classical set theory. In classical set theory, the membership of 

elements in a set is assessed in binary terms according to a bivalent condition with only two values, 0 and 

1. In fuzzy set theory, classical bivalent sets are usually called crisp sets. By contrast, fuzzy set theory 

permits the gradual assessment of the membership of elements in a set, as shown in Figure 5-1. Each 

fuzzy set is bounded by transition zones. Fuzzy membership function μA(x) has often been regarded as a 

compatibility function, which denotes the degree in which the proposition “x is A” is true(Drakopoulos, 

1995). 

  
Figure 5-1 Membership function of a fuzzy set 

To define a fuzzy set, values of threshold, dispersion and selection of appropriate membership function is 

required. Make a fuzzy set A in Rn (an Euclidean n-space) is determined by a membership function μA : Rn 
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 [0, 1], which assigns a membership grade with [0, 1] to element μA(x) and Rn is an Euclidean n-space. 

The nearer the value of μA(x) to unity, the higher the grade of the membership of x is in A. The 

probability of a fuzzy event x is defined by the Lebesgue-Stieltjes integral, as shown in equation 5-1(Zadeh, 

1968). The probability of a fuzzy event is the expectation of its membership function. The existence of the 

integral in equation 5-1 is assumed by the assumption that μA Borel measurable. 

 

( ) ( ) ( )
n A AR

P A x dP E                                                                                                   (5-1) 

 

There are different types of membership functions. Common examples are Boolean, bell-shaped, 

triangular, Gaussian, trapezoidal, or function with a central core region and upper and lower transition 

zones with different width. The triangular shape type of membership function has a single core value and 

linear dispersion slopes, while bell-shaped has curved dispersions. The trapezoidal shape type of 

membership function has an interval of value on core zone. The parameter of these membership 

functions can be selected with statistical methods or based on field knowledge(Musaningabe, 2007). In this 

research, the parameter is selected with statistical methods, and trapezoidal shape function is selected to 

model the drought.  

 

Vegetative drought is not a crisp phenomenon in nature. Dividing vegetation drought into different 

classes can be more realistic while using a membership function than using crisp sets. Rulinda et al. (2010) 

modelled vegetative drought in eastern Africa using the deviation of the current NDVI values from long 

term mean values, and assessed the evolution of drought conditions. While doing so, they accounted for 

the gradual transition between drought classes, and assumed a linear relationship between vegetation stress 

and drought.  

 

In the section 2.1.2, there are several ways in drought classification. For different drought indices, the 

number of classes and the name of drought categories are different. As NDVI is a new indicator of 

drought compared to meteorological indices, such as SPI and PDSI, there is no standard of drought 

classification. The classification in this research is based on the way how SPI classified. There are 7 classes 

in SPI classification, 3 drought classes, 4 non-drought classes. As the aim in this research focus on drought 

situation in study area, the number of drought classes increases to 4 based on the SPI and non-drought 

classes reduces to 2. Hence, number of drought classes is arbitrarily decided to 6 and the drought 

categories of these six classes are: extremely drought, severely drought, moderately drought, dryness, wet 

and moderately wet. In the following context, these six classes are numbered from 1 to 6 sequentially. 

Here, fuzzy classification is introduced as fuzzification. As drought is a vague phenomenon, the drought 

categories though vague are usually classified into binary classes. The result of fuzzification for each 

drought classes is a vague partition, consisting of values of each drought class. In Figure 5-2, general 

membership function of each drought classes is shown. Because the shape and calculation of membership 

function for middle four drought classes: severely drought, moderately drought, dryness and wet, the 

similar, only three memberships are shown in the figure. Range [ai, bi], i   N, which N being the total 

number of classes, is the core zone for each membership function of each drought class, where i 

represents the index of drought classes. Range [bi-1, ai] is the transition zone. From the Figure 5-2, it clearly 

shown that the first class and the last drought class are the special cases with just one transition zone.  
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Figure 5-2 Membership functions concept for drought classes, [a1, b1] refers to core zone of the first drought class, [ai, 

bi], i   {2, 3, …, N-1} refers to core zone of middle drought classes, [aN, bN] refers to core zone of last drought class 
The dash lines show the boundaries for crisp classification. 

The formula of the six membership functions of drought classes can be represented into three kinds of 

functions as shown in Figure 5-2. The formulas are shown in equation 5-2, 5-3 and 5-4, where x: NDVI 

anomaly; f(x) is the membership value, core zone for each drought class is [ai, bi], i   {1, 2, …, N} 

represent drought class. 

 

For first class with only one transition zone on the left:  
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The middle functions with two transition zones, where j   {2, 3, .., N-1}: 
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The last drought class with only one transition zone on the right: 
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NDVI anomaly is not a widely used indicator for vegetation stress or drought. There is not a standard to 

classify the drought as SPI or PDSI shown in Section 2.1.2. In this study, original classification is based on 

the same frequency in the whole dataset. When building transition matrix for Markov chains, equal 

frequencies can ensure that the number of observations per class is sufficiently high to obtain reasonable 
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estimates(Bickenbach & Bode, 2003). [ai, bi] represents 95% observations of each original class and rest 5% 

observations of the same class are assigned to transition zone. This is the primary step to define ai and bi 

of each drought class. As slope of membership function are determined by ai and bi, they can be adjusted 

during prediction until satisfactory. 

5.2.2. Drought dynamic modelling using Fuzzy Markov chains 

The dynamics of vegetative drought is modelled using Markov chains applied to fuzzy states or classes. As 

mentioned in Chapter 2, the Markov chains approach has been successfully used to predict the dynamics 

of drought, and in particular meteorological drought. In those studies, the states of drought are modelled 

as crisp. In this study we model the states of Markov chains with fuzzy classes which are mentioned 

above. Dilo et al (2006) use fuzzy Markov chains to model beach erosion with the ratio of average area. 

Results showed that those transition probabilities can be used to predict the volume of erosion for next 

year. Miao et al. (2005) predicted the future value of cultivated land demand in land use planning using the 

traditional time homogeneous Markov chains model with fuzzy probabilities. The result verified that the 

accuracy of prediction is improved with fuzzy theory. The fist-order Markov chain “is a stochastic process 

in which the future development depends only on the present state, but on the past history of the process 

or the manner in which the present state was reached”(Collins, 1975). In a second-order Markov chain, 

the states of system at time t2 would also depends on the states on both at time t0 and t1.  However, even 

in first-order Markov chain, at time  t1 , the state  S1 only depends on state  S0  and not refer to  S0-1,  S0-2,  

S0-3,…, these past states are included in S0, which represents the sum of the past history.   
 

As mentioned in Section 2.3, a Markov chain is conditionally independent from X0, X1, X2,…, Xt-1 given 

by Xt; the probability that Xt+1 takes a particular value j depends on the past Xt: where i, j   {1, 2, 3, 4, 5, 6} 

are the maximum fuzzy class values; t   T, which is the whole time series. The probability formula has a 

little change from equation 2-4 to equation 5-5. 

  

1 1 1 0 1( | , ,..., , ) ( | )t t t t tP X j X X X X P X j X i                                                                  (5-5) 

 
The transition probability pij is the element in the probability transition matrix P, where the Markov chain 

is at the next time point in class j, given that it is at the present time point in state i. The transition 

probability matrix P is estimated from the samples, counting the number of times, nij. The formula is 

shown in equation 5-6. 

 

P = 1( | )ij t tp P X j X i
                                                                                                            (5-6) 

where, 0ij
ij

ijj

n
p

n
 


,  1ijj
n   

 

A Markov chain is called an regular Markov chain if it is possible to go from every state (drought class) to 

every state, not necessarily in one step(Grinstead & Snell, 1997), and some power of matrix P, there are 

only positive entries the transition matrix. For a regular Markov chain, there are two important theorems: 

Theorem I: Matrix V is the power of P, in which each row is the same probability vector v and all the 

element in a are all positive. The formula is shown in equation 5-7. 

V = limn Pn                                                                                                                                     (5-7)          

 

Theorem II: If V and v are as in Theorem I for P, then vP = v. The matrix V is defined as the limiting 

matrix and v is called a fixed row vector(Collins, 1975). 
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Since the chain is an ergodic chain, it is possible to reach drought class j from any other class. Hence, if a 

Markov chain is started in class i, the expected number of steps of reach class j for the first time is called 

the mean first passage time from class i to class j. It is denoted by mij. If i=j, in some reference, mij called 

mean recurrence time. It is the expected number of steps to return to the same class. The matrix of mean 

first passage time is denoted by M. The formula is shown in equation 5-8. 

 

M = (I –Z + EZdg) D                                                                                                     (5-8) 

Where: 

 I is an identity matrix; 

 Z =            , P is the transition matrix and V is the limiting matrix of P, Z denoted as 

fundamental matrix 

 Zdg results from Z by setting off diagonal entries to 0  

 E is a matrix with all entries 1 

 D is the diagonal matrix with j-th entry 1/aj, a is a fixed row vector of P 

 

The mean first passage time is applied to estimate: the expected time in each class of drought, the 

recurrence time to a particular drought class and the expected time for NDVI anomaly value change from 

a particular class to another. It provides useful information for early warning system of drought prediction. 

Before applying the Markov chain with fuzzification, the Markovian properties should be tested. The 

following section details the processes.  

5.3. Testing the Markovian property of vegetative drought   

The reliability of predicting NDVI anomaly, considered as vegetative drought, using Markov chain 

generally depends on two conditions. First, the data-generating process must meet the Markov property, 

which involves time homogeneity and time independence. The transition probabilities can be estimated 

using the Maximum likelihood ratio (LR) criteria and Pearson χ2-tests (Q) under specific null and 

alternative hypotheses. Although the LR and Pearson χ2 statistic are asymptotically equivalent, in cases of 

poor asymptotic, they are not equivalent (Anderson & Goodman, 1957). Therefore, both of the statistics 

will be tested. Second, the estimates have to be based on a number of observations, large enough to be 

able to rely on the asymptotic properties of the estimators(Bickenbach & Bode, 2003). Otherwise, the 

accuracy will be rather poor.  

5.3.1. Tests of time homogeneity  

The test of time homogeneity, i.e. time stationarity, is appropriate for deciding whether the transition 

probabilities are constant over time. The test is done by dividing the entire sample period into M sub-

periods and comparing each transition matrix of sub-periods from the entire sample. Under H0:  m: pij|m = 

pij (m = 1, 2, …, M) Ha:  m: pij|m   pij , α = 0.05. The comparison can be implemented using the LR or 

Pearson χ2-test as shown in equation 5-10 and equation 5-11(Bickenbach & Bode, 2003).  

|
|

|

ij m
ij m

i m

n
p

n


                                                                                                                         

(5-9) 

where, | | ( )ij m ij mt m
n n t


 , | | ( 1)i m i mt m

n n t


   
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Where N is the drought classes= {1, 2, 3, 4, 5, 6}; i = {1, 2, …, N} at time t-1; j = {1, 2, …, N} at time t; 

pij|m is the transition probability of sub-sample m; pij is the transition probability of entire sample. Ci|m is the 

set of non-zero transition probabilities in the ith row of the transition matrix estimated from the mth sub-

period. ci is the number of elements in Ci, and di is the number of sub-periods for which a positive number 

of observations is available for the ith row. Both of the tests have an asymptotic χ2 distribution with 

degrees of freedom (df) equal to the number of additional independent restrictions imposed by H0 as 

compared to Ha. For each sub-period test m, the df =N(N-1), LRprob and Qprob separately represent the 

probability of LR test and Q test under df (Anderson & Goodman, 1957). 

5.3.2. Tests the time independence 

The aim of this test is to see whether the chain is the first-order Markov chain. In estimating the order of 

Markov chain, first, it is required to test order 0 versus order1; second, to test order 1 versus order 2. If 

the test of order 0 against order 1 is rejected, and the order 1 against order 2 is “fail to reject”, then the 

process is assumed to be the first-order. In this study, the Markov property requires the transition 

probabilities to be of the first-order. If the order 1 against order 2 is also rejected, then the chain may be 

of the second-order or higher order and the transition matrix will be misspecified(Bickenbach & Bode, 

2003). 

 

To test for the order 0, under H0:  i: pij = pj (i, j = 1, 2, …, N) Ha:  i: pij   pj , α = 0.05, where  pj = nj/n,     

nj = ( )jt
n t . The LR and Pearson χ2-test read as shown in equation 5-12 and equation 5-13(Bickenbach 

& Bode, 2003). 
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where, ( 1) ( )i ijj
n t n t  , Ci = {j: pij>0} 

 

To test the order 1 against order 2, a second-order chain is defined by also considering the vegetation 

stress classes h (h = 1, 2, 3, …, N) at time t-2 and the pair of successive classes h and i forms a composite 

state. The probability of moving to state j at time t, given it was in h at time t-2 and in i at t-1, is phij. The 

hypothesis H0:  h: phij = pij (h = 1, 2, …, N) Ha:  h: phij   pij , α = 0.05. phij = nhij/nhi , 2
( )T

hij hijt
n n t


  

and 
2

( 1)T
hi hit
n n t


  . The LR and Pearson χ2-test read as equation 5-14 and equation 5-15. 
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where Ci = {j: pij >0}, ci is the number of elements in Ci.  

5.4. Drought prediction 

For each pixel value α at time t is applied a fuzzy membership function f(x). f(α) =π(α) = (π1, π2, …, πN ). π1, 

π2, …, πN refer to the membership value of each drought classes at time t. To predict the drought class 

PClass at time t+1, PClass t+1=π(α)*P, where P is the transition matrix. There are some correlation between 

NDVI value and RFE data.  

 

The Markov chain is applied on the classified images of the last 10-day of year 2008, π2008, to predict the 
class probabilities, PClass2009, of the first 10-day drought situation in 2009. The formula is shown in 
Equation 5-16. The drought class with the maximum probability value in PClass2009 is the most  
 

PClass2009 = f2008*P = π2008 *P                                                                           (5-16) 
 

5.5. Validation 

The validation data is the same satellite image from GIMMS 10-day NDVI dataset of year 2009. The 

reference values of 2009 are denoted VClass2009. The validation is from comparison of the predicted result 

PClass2009 and VClass2009. The compassion is made by the probability distribution in PClass2009 and membership 

value distribution in satellite image in VClass2009. The drought class assigned to PClass2009 and VClass2009 are 

according to the maximum values. Root Mean Square Error (RMSE) is applied to be the quantity value of                   

validation.  
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6. RESULT AND ANALYSIS 

6.1. Correlation between RFE and NDVI 

Table 6-1 and Table 6-2 shows the correlation between RFE data and NDVI value in time series, where t 

means current time, t+i means the current RFE value added to the i previous RFE dekadal value, i = {1, 2, 

3, …}. RFEt+i = 
t

t i
RFE

 . In practical, the correlation test is taken until t+15, approximately equal to 

five month rainfall data. Since there are two growing season in Kenya, and each rainfall season lasts about 

four months and the interval between rainfall seasons are 2-3 months, correlation test taking more than 5 

months data makes less sense in Kenya. Also, the correlation values from t+11 to t+15 are not shown in 

the Table 6-1 and Table 6-2, because of space limitation and the values decrease dramatically after t+10. 

 

Region Pixel t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 

1 

1 -0.014 0.032 0.114 0.181 0.233 0.278 0.301 0.299 0.300 0.313 0.316 

2 -0.028 0.035 0.143 0.219 0.286 0.338 0.340 0.321 0.297 0.268 0.228 

3 0.021 0.092 0.229 0.302 0.333 0.371 0.384 0.370 0.368 0.377 0.360 

4 0.028 0.115 0.207 0.276 0.318 0.356 0.370 0.376 0.408 0.438 0.440 

5 0.101 0.180 0.291 0.330 0.377 0.410 0.423 0.424 0.453 0.480 0.479 

2 

6 0.014 0.161 0.327 0.472 0.578 0.672 0.736 0.786 0.804 0.804 0.788 

7 0.100 0.269 0.444 0.591 0.703 0.773 0.813 0.832 0.827 0.806 0.769 

8 0.079 0.235 0.417 0.559 0.681 0.765 0.819 0.848 0.847 0.826 0.789 

9 0.098 0.263 0.436 0.580 0.697 0.783 0.828 0.852 0.848 0.823 0.782 

10 0.127 0.298 0.484 0.649 0.761 0.812 0.830 0.833 0.817 0.786 0.742 

3 

11 0.067 0.209 0.335 0.433 0.495 0.546 0.563 0.560 0.533 0.487 0.441 

12 -0.004 0.120 0.254 0.365 0.468 0.545 0.578 0.586 0.564 0.522 0.465 

13 0.033 0.181 0.330 0.440 0.518 0.572 0.594 0.594 0.566 0.531 0.485 

14 0.033 0.175 0.322 0.433 0.515 0.572 0.597 0.599 0.579 0.555 0.520 

15 0.132 0.212 0.278 0.303 0.322 0.328 0.310 0.262 0.207 0.141 0.068 

4 

16 0.292 0.459 0.616 0.715 0.765 0.779 0.781 0.770 0.754 0.734 0.708 

17 0.279 0.406 0.509 0.588 0.638 0.656 0.659 0.652 0.628 0.600 0.569 

18 0.186 0.343 0.500 0.594 0.645 0.665 0.679 0.673 0.645 0.607 0.569 

19 0.312 0.492 0.647 0.742 0.792 0.792 0.775 0.741 0.712 0.682 0.650 

20 0.198 0.342 0.482 0.561 0.607 0.634 0.655 0.652 0.642 0.619 0.584 

Table 6-1 Correlation (r) between RFE and NDVI for 20 pixels for the period between 2004 to 2008, value in bold is 
the maximum and significant α < 0.001.  

From the Table 6-1, study pixels in Region 1(defined in Chapter 1) hardly show signification correlation 

between NDVI and RFE while region 2 have high correlation value between current NDVI and rainfall 

accumulation for the past 80 days (column “t+7”) above 0.8, and both region 1 and region 2 have in the 

same land use type, pastoral farming. In this region1, the vegetation density is low as shown by the 

maximum NDVI value being 0.288 for all pixels for 5 years. In region 2, as we can observe from the 

maximum NDVI value of 0.76 and rainfall amount between 1394mm to 1482mm in 5 years, the 

vegetation density is higher than in group 1. The rainfall amount is also slightly higher than region 1 of 

total rainfall amount is 1233mm to 1319mm in a 5-year (2004-2008). Hence, the low correlation observed 

in group 1 can be caused by the low density of vegetation. In region 3, the highest correlation is for the 

past 80 days as in the region 2. However, not all of the pixels in region 3 have the high correlation value 
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with rainfall data. The NDVI value in pixel 15 is from 0.792 to 0.1, and the long-term mean value of this 

pixel area varies from 0.612 to 0.284. The total amount of precipitation in pixel 5 in 2004-2008 is 3100mm, 

approximately 620mm per year. So the reason why there is a non-significant correlation in this area maybe 

that the input data has some random noise, as the nearby pixel has high correlation with rainfall data. In 

region 4, the most highest correlation between current NDVI and RFE accumulation is for the past 70 

days, as shown in column “t+6”. 

 

Region Pixel t+0 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 

1 

1 -0.312 -0.037 -0.048 -0.064 -0.075 -0.056 -0.046 -0.010 0.032 0.091 0.125 

2 -0.137 -0.076 0.004 0.084 0.193 0.291 0.345 0.374 0.394 0.398 0.352 

3 -0.201 -0.170 -0.029 0.127 0.259 0.393 0.531 0.590 0.595 0.571 0.489 

4 -0.065 0.011 0.132 0.247 0.370 0.472 0.573 0.630 0.676 0.682 0.640 

5 -0.394 -0.388 -0.335 -0.257 -0.135 -0.026 0.086 0.184 0.240 0.293 0.336 

2 

6 0.321 0.478 0.640 0.762 0.845 0.901 0.928 0.923 0.885 0.825 0.750 

7 0.326 0.467 0.629 0.768 0.871 0.935 0.958 0.942 0.890 0.822 0.741 

8 0.363 0.515 0.677 0.806 0.890 0.939 0.953 0.931 0.881 0.814 0.735 

9 0.376 0.528 0.684 0.806 0.886 0.931 0.939 0.913 0.862 0.795 0.720 

10 0.388 0.540 0.695 0.820 0.903 0.946 0.954 0.930 0.881 0.813 0.736 

3 

11 0.176 0.322 0.477 0.622 0.735 0.819 0.870 0.883 0.866 0.810 0.733 

12 0.240 0.408 0.575 0.723 0.838 0.920 0.963 0.968 0.942 0.885 0.807 

13 0.293 0.460 0.620 0.754 0.853 0.918 0.948 0.941 0.902 0.842 0.767 

14 0.324 0.473 0.618 0.749 0.846 0.911 0.937 0.928 0.893 0.829 0.747 

15 0.490 0.583 0.667 0.733 0.769 0.776 0.749 0.689 0.606 0.491 0.355 

4 

16 0.562 0.692 0.780 0.847 0.896 0.926 0.936 0.928 0.909 0.876 0.831 

17 0.544 0.663 0.753 0.825 0.884 0.926 0.950 0.953 0.945 0.926 0.898 

18 0.605 0.713 0.785 0.835 0.873 0.899 0.909 0.903 0.885 0.853 0.814 

19 0.563 0.700 0.797 0.868 0.906 0.926 0.928 0.907 0.873 0.831 0.783 

20 0.550 0.676 0.764 0.823 0.861 0.888 0.901 0.897 0.875 0.838 0.790 

Table 6-2 Correlation (r) between mean RFE and mean NDVI for 20 pixels, mean values are calculated from 1995 to 
2008. Value in bold is the maximum and significant α < 0.001 

From Table 6-2, two pixels in study region 1 has shown a significant correlation between mean NDVI and 

rainfall accumulation for around last past 90 days. According to the analysis of Table 6-1, the vegetation 

density of pixel 3 and 4 was higher than in the time period 2004-2008. The mean NDVI value of pixel 3 is 

in the range [0.092, 0.1], pixel 4 in [0.088, 0.096]. Also the rainfall values of these two pixels do not change 

a lot every dekadal, which is in the range [0, 14] (mm). But, three other pixels show non-significant 

correlation between NDVI and rainfall in both Table 6-1 and Table 6-2. The mean NDVI value of these 

three pixel varied bigger than pixel 3 and 4, thought they have the almost the same rainfall amount in each 

dekadal. Compared to the analysis of Table 6-1, although the low vegetation area sometimes shows the 

correlation between NDVI and rainfall, the reliability of these values should be further study analyzed. In 

region2, the correlation is the highest among all four study regions. All of the pixels show the highest 

value above 0.9 between NDVI and rainfall accumulation of the last 70 days. Both of NDVI and rainfall 

value follow the two-season rainfall pattern in the study area. The range of mean NDVI in region 2 is 

[0.14, 0.364] and the annual amount of rainfall is around 380mm. In region 3 and region 4, the correlation 

patterns are similar in the two tables. The highest correlation value is with the rainfall accumulated of the 

almost last three month. 
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By comparing Table 6-1 and Table6-2, it can be observed that the patterns of maximum correlation value 

are similar. Both of the tables show that there is a strong relationship between NDVI and almost three 

previous month’s rainfall, indicating a lagged response(Davenport & Nicholson, 1993). It also suggests 

that NDVI can be an indicator of vegetative drought. However, values in Table 6-2 are much higher than 

those in Table 6-1.The mean values have much stronger relationship than recent year values. The severe 

drought reported in Kenya in year 2004, early 2006 and 2008, can explain the low relationship. As after 

sever drought, the recovery time can take up to several months to be back to normal situation. Another 

reason could be the artificial change of land cover. All the study regions are selected near the big city in 

Kenya. During city development, more settles and facilities are build to support the increasing population 

whom occupied the original place of vegetation. These human behaviours add more uncertainty in 

vegetation dynamics not only dependant of rainfall amount.  

6.2. Drought classification based on NDVI anomaly 

The anomaly NDVI data is calculated for every 10-day with the average value from 20 pixels from 2004-

2008. The entire observed number of sample is 3600. Figure5-2 shows the NDVI anomaly distribution of 

the dataset, with the maximum anomaly 0.432 and the minimum -0.376. The NDVI values in GIMMS are 

converted from [0, 250] to [0, 1].  

Figure 6-1shows the histogram of NDVI anomaly for all 20 pixels and the black curve line shows the 

density distribution of the values. The number of positive anomaly and negative anomaly are almost 

equivalent. In section 5.2.1, the research applied 6 drought classes in referring to SPI class number: 

extreme, severe drought, moderate drought, dryness, wet, moderately wet, which denoted by class1, class2, 

class3, class4, class5 and class6. The sample is divided into 6 vegetative drought classes with equal 

frequencies to ensure that the number per class is sufficiently high to obtain reasonable estimates. There 

are 4 drought classes and 2 non-drought classes; also the data distributed is almost normal, equal 

frequencies here has not the exactly “equal” meaning. In practical, the input data was originally divided 

into 8 classes with 4 drought classes and 4 non-drought classes, each class has around 450 values. Because 

the focus should be in drought classes, there is a combination of three non-drought classes into one. Here 

is the way to get 6 classes. This is however subject to modification according to different needs. The core 

zone of each fuzzy class is base on the 95% confidence interval, with details in Section 5.2.2. 

 

  

Figure 6-1 Hisogram of NDVI anomaly from the period 2004 to 2008 of all 20 pixels 

The core zone of class1 is in the range [min, -0.072], Class 2: [-0.060, -0.036], Class 3: [-0.024, -0.016], 

Class 4: [-0.004, 0], Class 5: [0.008, 0.012], Class 6: [0.024, max], where min and max represent the 
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minimum and maximum values of the whole dataset. Table 6-3 shows clearly the fuzzy parameters, which 

is applied to the function as mentioned in Section 5.2.2. Figure 6-2 shows the membership function of 

drought classes. First a membership function is applied, and the pixel is assigned the class of membership 

value, as shown in Figure 6-3. In the early 2006, there was reported drought almost all over Kenya. It also 

can be seen from the figure, in the first month in 2006, all the regions are classified in to drought classes.  

  

Drought category Class index i ai bi 

Extremely drought 1 -0.376 -0.072 

Severely drought 2 -0.060 -0.036 

Moderately drought 3 -0.024 -0.016 

Dryness 4 -0.004 0.000 

Wet 5 0.008 0.012 

Moderately wet 6 0.024 0.432 
Table 6-3 Relation between drought category and drought index, i denoted by drought index and [ai, bi] represented 
the core zone of each class 

 

 
Figure 6-2 Membership function of drought classes  

 

 
Figure 6-3 Classification of drought classes for four regions of every dekadal from September 2005 to March 2006 
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6.3. Markovian property tests 

6.3.1. MC Transition matrix 

Based on “equal” frequency classification, the entire estimated transition matrix is shown in Table 6-4 and 

in Table 6-5 is shown the estimated transition matrix for 20 pixel calculated for the period from 2004-

2008. The process under consideration is a stationary first-order Markov chain. 

 

Initial distribution 

Abs. Rel. 

397 0.11 

387 0.11 

355 0.10 

416 0.12 

316 0.09 

1709 0.48 

Table 6-4 Distribution of entire estimated transition matrix 

 

 Transition Probabilities 

( t-1 to t) 

classes 1 2 3 4 5 6 

1 0.574 0.196 0.071 0.035 0.025 0.098 

2 0.202 0.390 0.189 0.083 0.023 0.114 

3 0.101 0.203 0.304 0.172 0.034 0.186 

4 0.036 0.072 0.161 0.385 0.132 0.214 

5 0.022 0.019 0.051 0.203 0.351 0.354 

6 0.019 0.029 0.039 0.050 0.069 0.795 

 Limiting distribution 

 0.111 0.108 0.100 0.116 0.088 0.477 

Table 6-5 Estimated transition matrix for 20 pixel calculated for the period from 2004-2008 

6.3.2. Test of time homogeneity  

In this study, the sub-samples are divided following two steps.  In the first step the samples are divided by 

the year: M = {2004, 2005, 2006, 2007, 2008}, in total 5 different transition matrices are estimated. The 

result is shown in Table 6-6, where Q and LR represent the result of Q and LR test, df is the degree of 

freedom and Qprob and LRprob represent the probability of χ2 distribution, the significant α < 0.05. All 

of the tests are fail to reject that this Markov chain is homogeneity of each year.  

 

Year Q LR df Qprob LRprob 

2004 12.4 15.8 30 0.998 0.985 

2005 31.1 27.2 30 0.411 0.615 

2006 34.0 26.1 30 0.282 0.672 

2007 35.8 43.3 30 0.215 0.055 

2008 16.0 23.3 30 0.983 0.805 

Sum 129.2 135.6 120 0.267 0.157 

Table 6-6 Pearson and Likelihood ration tests of time homogeneity yearly 
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In the second step, the samples are divided monthly: M = 12 different transition matrices are estimated. 

The result is shown in Table 6-7. There are two growing seasons on the study area: March to June and 

September to December. Monthly division is applied to estimate whether the transition matrix is constant 

for both growing seasons and non-growing seasons. The result of February and September are less than 

0.05, which reject the homogeneity of Markov chain. The rainy seasons in Kenya are from March to June 

and October to December, with details given in Section 3.2. Since both February and December are the 

last month before rainy season comes, dynamics of vegetation is in the different growing pattern from rest 

of the year. It is affected by more factors than during the growing seasons. These effects disturb the 

homogeneity of Markov chain(Balzter, 2000). This can be one of the reasons why they are not in the 

homogeneity as other months.  

 

Month Q LR df Qprob LRprob 

Jan 29.8 34.0 30 0.477 0.281 

Feb 46.6 64.6 30 0.027 0.000 

Mar 35.2 44.1 30 0.236 0.047 

Apr 26.4 34.1 30 0.655 0.277 

May 36.0 47.6 30 0.209 0.022 

Jun 26.0 28.9 30 0.674 0.521 

Jul 29.6 37.2 30 0.489 0.171 

Aug 31.4 36.6 30 0.395 0.190 

Sep 45.3 58.7 30 0.036 0.001 

Oct 37.2 44.9 30 0.171 0.039 

Nov 25.4 38.1 30 0.706 0.146 

Dec 32.3 38.1 30 0.353 0.147 

Sum 401.1 507.0 330 0.004 1.23E-09 

Table 6-7 Pearson and Likelihood ration tests of time homogeneity monthly 

Remove February and September, re-calculated the estimated transition matrix and re-test time 

homogeneity monthly, the result is shown in Table 6-8. Both of the Qprob and LRprob of the rest 10 

months are failed to reject the homogeneity property, after excluding the February and September from 

the data sample. The Pearson test statistic is 225.1(Qprob = 0.978, df = 270), and the LR statics is 268.3 

(LPprob = 0.517). Neither of the tests indicates a statistically significant in homogeneity. It means that 

without these two months, the estimated transition matrix fits the Markovian property of time 

homogeneity and can be used for further process. In the next section, this transition matrix is applied for 

the test of time independence. The estimated transition matrix without February and September is shown 

as below in Table 6-9. 

Month Q LR df Qprob LRprob 

Jan 27.1 25.2 30 0.618 0.713 

Mar 18.5 26.3 30 0.950 0.659 

Apr 16.5 22.3 30 0.979 0.843 

May 17.7 16.9 30 0.964 0.973 

Jun 18.3 19.6 30 0.953 0.928 

Jul 22.9 29.5 30 0.820 0.492 

Aug 26.9 29.6 30 0.630 0.487 

Oct 29.0 32.7 30 0.519 0.336 

Nov 24.3 36.9 30 0.757 0.179 
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Dec 24.0 29.3 30 0.772 0.504 

Sum 225.1 268.3 270 0.978 0.517 

Table 6-8 Pearson and Likelihood ration tests of time homogeneity monthly without February and September 

 

 Initial 

Distribution 

Transition Probabilities 

(t-1 to t) 

t-1 Abs. Rel. 1 2 3 4 5 6 

1 337 0.09 0.596 0.211 0.059 0.027 0.033 0.074 

2 299 0.08 0.190 0.434 0.175 0.066 0.020 0.115 

3 255 0.07 0.108 0.194 0.324 0.144 0.072 0.158 

4 311 0.09 0.021 0.067 0.163 0.351 0.247 0.151 

5 230 0.06 0.016 0.025 0.061 0.141 0.531 0.227 

6 1348 0.38 0.018 0.036 0.032 0.021 0.099 0.793 

         

Limiting distribution 0.119 0.106 0.091 0.111 0.082 0.490 

Table 6-9 Estimated transition matrix for 20 pixel calculated for the period from 2004-2008 without February and 
September 

6.3.3. Test of time independence 

From the time-homogeneous dataset in Section 6.3.2, 2780 observations are available for test of 

Markovity of order 0 against order 1. As the transition matrix shown in Table 6-9 and applied equation 5-

12 and 5-13, the order 0 is tested by comparing each row of estimated transition with the limiting 

distribution at time t. The results of Qprob and LRprob, Q = 800.5569, LR = 693.3868, df = 25, are much 

smaller than significant lever α. The results reject the Markov chain of order 0 and indicate that the 

process strongly depends on the past. For the test of Markovity of first-order against second-order, there 

are 2560 observations are available. The result is shown in Table 6-10, applied by the equation 5-14 and 5-

15. Six subsamples h = {1, 2, 3, 4, 5, 6} are defined, representing the drought class at time t-2. Both                      

statistic tests result in Qprob=0.207 and LRprob = 0.200, with Q = 163.9, LR = 164.3 and 150 degree of 

freedom. The result illustrates that the process is in the first-order as consideration and can be applied in 

further prediction. 

 

Class in time t-2 Q LR df Qprob LRprob 

1 30.9 30.2 25 0.193 0.216 

2 34.3 29.9 25 0.102 0.229 

3 20.2 24.0 25 0.736 0.521 

4 27.5 25.3 25 0.331 0.446 

5 25.1 25.6 25 0.456 0.431 

6 25.9 29.4 25 0.413 0.248 

Sum 163.9 164.3 150 0.207 0.200 

Table 6-10 Pearson and Likelihood ration tests of first-order against second-order 

After all the pre-work of correlation between rainfall and NDVI, and the Markov property test, the results 

shows that the transition matrix in Table 6-9 is well modelling the dynamic of vegetative drought, which 

suggests that it could be used in vegetative drought prediction. The fix row vector v and mean first 

passage time M is shown in Table 6-11. The values in first mean passage matrix shows how many dekadals 

it takes to transfer from one class of drought to another class of drought. For example, it will take about 
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110 days for all the vegetation in class 1 improving to drought class 2. And also it needa more than 80 

days for the vegetation original in class 1 first return back to class 1. 

Drought class 1 2 3 4 5 6 

v 0.113 0.103 0.090 0.110 0.083 0.501 

 Mean first passage time (dekadal) 

1 8.88 11.31 14.05 14.61 20.00 7.36 

2 15.89 9.70 12.16 13.39 19.72 6.77 

3 19.69 13.58 11.17 11.89 18.51 5.82 

4 22.68 16.57 13.83 9.07 16.26 5.06 

5 24.48 18.57 16.74 11.71 12.05 3.84 

6 24.87 18.85 17.70 14.77 17.21 1.99 

Table 6-11 fix row vector a and first mean passage matrix 

6.4. Prediction 

In this research, the fuzzy Markov chain is used to predict the first dekadal in January of 2009 from the 

known data of last dekadal of December in 2008. Table 6-12 shows the membership value of 20 pixels, 

using the membership functions with parameters shown in Table 6-3 and the prediction value of 2009 is 

shown in Table 6-13. The maximum membership value in Table 6-12 and probability value in Table 6-13 , 

shown in bold, represent the highest probability of drought class for each pixel, and then the pixel is 

assigned to that class. Compared the prediction result to the real satellite image result shown in Table 6-14, 

7 out of 20 pixels are assigned to the same class and the average RMSE of 20 pixel = 0.304. All the pixels 

in region 1 are well predicted. In region 2, 4 out of 5 pixels are totally wrong. In region 3 and region4, 

most of the pixels are predicted in neighbouring drought class.  

 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.000 0.000 0.000 0.000 0.000 1.000 

2 0.000 0.000 0.000 0.000 0.000 1.000 

3 0.000 0.000 0.000 0.000 0.667 0.333 

4 0.000 0.000 0.000 0.000 1.000 0.000 

5 0.000 0.000 0.000 0.000 0.667 0.333 

2 

6 0.000 0.000 0.000 0.000 0.000 1.000 

7 0.000 0.000 1.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 1.000 0.000 0.000 

9 0.000 0.000 0.000 0.000 0.000 1.000 

10 0.000 0.000 0.000 1.000 0.000 0.000 

3 

11 0.333 0.667 0.000 0.000 0.000 0.000 

12 1.000 0.000 0.000 0.000 0.000 0.000 

13 1.000 0.000 0.000 0.000 0.000 0.000 

14 1.000 0.000 0.000 0.000 0.000 0.000 

15 1.000 0.000 0.000 0.000 0.000 0.000 

4 

16 0.000 1.000 0.000 0.000 0.000 0.000 

17 0.000 1.000 0.000 0.000 0.000 0.000 

18 1.000 0.000 0.000 0.000 0.000 0.000 

19 0.000 0.000 0.667 0.333 0.000 0.000 

20 1.000 0.000 0.000 0.000 0.000 0.000 

Table 6-12 membership value of 20 pixels of the last dekadal in 2008, maximum value is in bold 
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Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.018 0.036 0.032 0.021 0.099 0.793 

2 0.018 0.036 0.032 0.021 0.099 0.793 

3 0.017 0.029 0.051 0.101 0.387 0.416 

4 0.016 0.025 0.061 0.141 0.531 0.227 

5 0.017 0.029 0.051 0.101 0.387 0.416 

2 

6 0.018 0.036 0.032 0.021 0.099 0.793 

7 0.108 0.194 0.324 0.144 0.072 0.158 

8 0.021 0.067 0.163 0.351 0.247 0.151 

9 0.018 0.036 0.032 0.021 0.099 0.793 

10 0.021 0.067 0.163 0.351 0.247 0.151 

3 

11 0.325 0.360 0.136 0.053 0.024 0.101 

12 0.596 0.211 0.059 0.027 0.033 0.074 

13 0.596 0.211 0.059 0.027 0.033 0.074 

14 0.596 0.211 0.059 0.027 0.033 0.074 

15 0.596 0.211 0.059 0.027 0.033 0.074 

4 

16 0.190 0.434 0.175 0.066 0.020 0.115 

17 0.190 0.434 0.175 0.066 0.020 0.115 

18 0.596 0.211 0.059 0.027 0.033 0.074 

19 0.079 0.152 0.270 0.213 0.130 0.156 

20 0.596 0.211 0.059 0.027 0.033 0.074 

Table 6-13 Predict probability value of 20 pixels of the first dekadal in 2009, maximum value is in bold 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.000 0.000 0.000 0.000 0.000 1.000 

2 0.000 0.000 0.000 0.000 0.000 1.000 

3 0.000 0.000 0.000 0.000 0.333 0.667 

4 0.000 0.000 0.000 0.000 1.000 0.000 

5 0.000 0.000 0.000 0.000 0.333 0.667 

2 

6 0.000 0.000 0.000 0.000 0.333 0.667 

7 0.000 1.000 0.000 0.000 0.000 0.000 

8 0.000 1.000 0.000 0.000 0.000 0.000 

9 0.000 1.000 0.000 0.000 0.000 0.000 

10 0.000 0.667 0.333 0.000 0.000 0.000 

3 

11 1.000 0.000 0.000 0.000 0.000 0.000 

12 0.000 0.000 1.000 0.000 0.000 0.000 

13 1.000 0.000 0.000 0.000 0.000 0.000 

14 0.000 1.000 0.000 0.000 0.000 0.000 

15 0.000 1.000 0.000 0.000 0.000 0.000 

4 

16 1.000 0.000 0.000 0.000 0.000 0.000 

17 1.000 0.000 0.000 0.000 0.000 0.000 

18 0.000 0.000 0.000 0.000 0.000 1.000 

19 0.000 0.333 0.667 0.000 0.000 0.000 

 20 0.000 0.000 0.000 0.000 0.000 1.000 

Table 6-14 membership value of 20 pixels of the first dekadal in 2009, maximum value is in bold 
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Therefore, adjust slope of membership function is under consideration so as to improve the accuracy of 

perdition. After several trials, because of time limitation, the best slope parameters among all the trails are 

shown in Table 6-15.  

 

Drought category Class index i ai bi 

Extremely drought 1 -0.376 -0.300 

Severely drought 2 -0.039 -0.032 

Moderately drought 3 -0.020 -0.014 

Dryness 4 -0.004 0.000 

Wet 5 0.012 0.014 

Moderately wet 6 0.030 0.432 
Table 6-15 Relation between drought category and drought index after adjust, i denoted by drought index and [ai, bi] 
represented the core zone of each class 

The prediction value of first dekadal in 2009 is shown in Table 6-16. Compared the prediction result to 

the real satellite image result shown in Table 6-17, as reference data, 11 out of 20 pixels are assigned to the 

same class and the average RMSE = 0.260. In region 1 and region 3, more pixels are in good performance. 

After adjusted by using smaller core zone and bigger transition zone for each class, the prediction shows 

better result as more pixel are predict into correct drought classes, such as pixel 7. Before adjustment, the 

maximum probability of prediction of pixel 7 appears in drought class 3, but the validation drought class is 

class 2.  Expanding the transition zone between class 2 and class3, the maximum probability of pixel 7 

appears in drought class 2 and the reference data has high membership value in class2. By changing the 

size of core zones or slope of membership functions, the results change and may improve the accuracy. 

 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.018 0.036 0.032 0.021 0.099 0.793 

2 0.018 0.036 0.032 0.021 0.099 0.793 

3 0.016 0.026 0.058 0.127 0.480 0.294 

4 0.016 0.025 0.061 0.141 0.531 0.227 

5 0.016 0.026 0.058 0.127 0.480 0.294 

2 

6 0.018 0.036 0.032 0.021 0.099 0.793 

7 0.135 0.274 0.273 0.119 0.055 0.144 

8 0.021 0.067 0.163 0.351 0.247 0.151 

9 0.018 0.036 0.032 0.021 0.099 0.793 

10 0.021 0.067 0.163 0.351 0.247 0.151 

3 

11 0.236 0.409 0.162 0.062 0.021 0.110 

12 0.327 0.359 0.136 0.053 0.024 0.101 

13 0.321 0.362 0.137 0.053 0.024 0.102 

14 0.346 0.348 0.131 0.051 0.025 0.099 

15 0.413 0.312 0.111 0.045 0.027 0.092 

4 

16 0.193 0.432 0.174 0.066 0.020 0.115 

17 0.193 0.432 0.174 0.066 0.020 0.115 

18 0.260 0.395 0.155 0.059 0.022 0.108 

19 0.091 0.169 0.292 0.185 0.107 0.157 

20 0.266 0.392 0.153 0.059 0.022 0.107 

Table 6-16 adjusted predict probability value of 20 pixels of the first dekadal in 2009, maximum value is in bold 
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Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.000 0.000 0.000 0.000 0.000 1.000 

2 0.000 0.000 0.000 0.000 0.000 1.000 

3 0.000 0.000 0.000 0.000 0.647 0.353 

4 0.000 0.000 0.000 0.000 1.000 0.000 

5 0.000 0.000 0.000 0.000 0.647 0.353 

2 

6 0.000 0.000 0.000 0.000 0.647 0.353 

7 0.038 0.962 0.000 0.000 0.000 0.000 

8 0.083 0.917 0.000 0.000 0.000 0.000 

9 0.008 0.992 0.000 0.000 0.000 0.000 

10 0.000 1.000 0.000 0.000 0.000 0.000 

3 

11 0.173 0.827 0.000 0.000 0.000 0.000 

12 0.000 0.000 1.000 0.000 0.000 0.000 

13 0.398 0.602 0.000 0.000 0.000 0.000 

14 0.068 0.932 0.000 0.000 0.000 0.000 

15 0.068 0.932 0.000 0.000 0.000 0.000 

4 

16 0.444 0.556 0.000 0.000 0.000 0.000 

17 0.474 0.526 0.000 0.000 0.000 0.000 

18 0.000 0.000 0.000 0.000 0.000 1.000 

19 0.000 0.667 0.333 0.000 0.000 0.000 

20 0.000 0.000 0.000 0.000 0.000 1.000 

Table 6-17 adjusted membership value of 20 pixels of the first dekadal in 2009, maximum value is in bold 

Prediction of the second and third dekadals of January, 2009, are separately shown in the Table 6-18 and 

Table 6-19, and the maximum probability value are also shown in bold. It suggests that, most of the pixels 

are in drought situation and only pixel 1, 2 and 5 are not drought in the coming two dekadals. In region 2, 

all the pixels are in drought class 2, according to Table 6-11, normally, it will more than half year for the 

vegetation to recover from this drought class. Long-term drought response plan should be applied in to 

this region. In region 1, the situation getting worse and most of the pixels would go to the drought class 1. 

The same situation occurs in region 4. 

 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.018 0.036 0.032 0.021 0.099 0.793 

2 0.018 0.036 0.032 0.021 0.099 0.793 

3 0.017 0.029 0.051 0.099 0.379 0.427 

4 0.016 0.025 0.061 0.141 0.531 0.227 

5 0.017 0.029 0.051 0.099 0.379 0.427 

2 

6 0.017 0.029 0.051 0.099 0.379 0.427 

7 0.205 0.426 0.171 0.065 0.020 0.113 

8 0.224 0.416 0.165 0.063 0.021 0.112 

9 0.193 0.432 0.174 0.066 0.020 0.115 

10 0.190 0.434 0.175 0.066 0.020 0.115 

3 

11 0.260 0.395 0.155 0.059 0.022 0.108 

12 0.108 0.194 0.324 0.144 0.072 0.158 

13 0.352 0.345 0.129 0.050 0.025 0.099 

14 0.217 0.419 0.167 0.063 0.021 0.112 
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15 0.217 0.419 0.167 0.063 0.021 0.112 

4 

16 0.370 0.335 0.124 0.049 0.026 0.097 

17 0.382 0.328 0.120 0.048 0.026 0.096 

18 0.018 0.036 0.032 0.021 0.099 0.793 

19 0.163 0.354 0.225 0.092 0.037 0.129 

20 0.018 0.036 0.032 0.021 0.099 0.793 

Table 6-18 adjusted predict probability value of 20 pixels of the second dekadal in 2009, maximum value is in bold 

 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.018 0.034 0.037 0.042 0.175 0.693 

2 0.017 0.031 0.044 0.070 0.277 0.560 

3 0.021 0.067 0.163 0.351 0.247 0.151 

4 0.021 0.067 0.163 0.351 0.247 0.151 

5 0.016 0.025 0.061 0.141 0.531 0.227 

2 

6 0.190 0.434 0.175 0.066 0.020 0.115 

7 0.254 0.399 0.157 0.060 0.022 0.109 

8 0.291 0.379 0.146 0.056 0.023 0.105 

9 0.199 0.429 0.172 0.065 0.020 0.114 

10 0.224 0.416 0.165 0.063 0.021 0.112 

3 

11 0.565 0.228 0.068 0.030 0.032 0.077 

12 0.596 0.211 0.059 0.027 0.033 0.074 

13 0.596 0.211 0.059 0.027 0.033 0.074 

14 0.596 0.211 0.059 0.027 0.033 0.074 

15 0.340 0.352 0.132 0.052 0.025 0.100 

4 

16 0.388 0.325 0.118 0.047 0.026 0.095 

17 0.419 0.308 0.110 0.044 0.027 0.092 

18 0.205 0.426 0.171 0.065 0.020 0.113 

19 0.279 0.385 0.150 0.057 0.023 0.106 

20 0.217 0.419 0.167 0.063 0.021 0.112 

Table 6-19 adjusted predict probability value of 20 pixels of the third dekadal in 2009, maximum value is in bold 

6.5. Validation 

The validation compares the predicted result to the reality image result. Pclass represents the maximum 

probability value of prediction while Vclass represents the maximum membership value of validation. Then 

assigned the drought class of each pixel with maximum value to Pred (prediction class) and Vad. 

 

The Comparison of the predicted result and reality image in the first dekadal of January in 2009, shown in 

Table 6-17, is shown in Figure 6-4. In the region1, almost all the pixels are correctly classification. In 

region 2, there is a big different. Checking the class of last dekadal in 2008, there are class jumps from 

2008 to 2009. As we know the correlation between rainfall and NDVI, check the accumulated 70 days 

previous, the rainfall anomaly is around -68 mm. Also, December should be the rainy season in study 

region, which means the rainfall anomaly affected the result of prediction in the first 10-days in 2009. In 

this prediction, 11 out of 20 pixels are correctly predicted.  
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Figure 6-4 Validation drought class of 20 pixels of the first dekadal in 2009 

The Comparison of the predicted result and reality image in the second dekadal of January in 2009, shown 

in Table 6-20, is shown in Figure 6-5. There are 3 pixels miss-classified in to non-drought class which 

from the validation, they should be in drought. 12/20 pixels well predict the drought, while 10/20 pixels 

have the right drought class.  

 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.000 0.000 0.000 0.000 0.176 0.824 

2 0.000 0.000 0.000 0.000 0.412 0.588 

3 0.000 0.000 0.000 1.000 0.000 0.000 

4 0.000 0.000 0.000 1.000 0.000 0.000 

5 0.000 0.000 0.000 0.000 1.000 0.000 

2 

6 0.000 1.000 0.000 0.000 0.000 0.000 

7 0.158 0.842 0.000 0.000 0.000 0.000 

8 0.248 0.752 0.000 0.000 0.000 0.000 

9 0.023 0.977 0.000 0.000 0.000 0.000 

10 0.083 0.917 0.000 0.000 0.000 0.000 

3 

11 0.925 0.075 0.000 0.000 0.000 0.000 

12 1.000 0.000 0.000 0.000 0.000 0.000 

13 1.000 0.000 0.000 0.000 0.000 0.000 

14 1.000 0.000 0.000 0.000 0.000 0.000 

15 0.368 0.632 0.000 0.000 0.000 0.000 

4 

16 0.489 0.511 0.000 0.000 0.000 0.000 

17 0.564 0.436 0.000 0.000 0.000 0.000 

18 0.038 0.962 0.000 0.000 0.000 0.000 

19 0.218 0.782 0.000 0.000 0.000 0.000 

20 0.068 0.932 0.000 0.000 0.000 0.000 

Table 6-20 adjusted membership value of 20 pixels of the second dekadal in 2009, maximum value is in bold 

The prediction has better performance in region 2 than any other regions. In pixel 18 and 20, the 

prediction class is moderately wet but in validation they should be severe drought. Look back the NDVI 

anomaly in the January 2009, the values show no continuity as other pixel in the same region. We may 

assume that either there are errors in NDVI value or suddenly land cover changing. 
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Figure 6-5 Validation drought class of 20 pixels of the second dekadal in 2009 

In Figure 6-6, it validates the prediction of third dekadal in January, 2009 to the reference values shown in 

Table 6-21. There are 11/20 pixels are well predicted in the same drought class as in the validation 

drought class, 9 pixels miss-predicts to the neighbour drought class and only 1 pixel has 4 step jumps. 15 

pixels are well detected the drought situation, thought not all of them are in the correct drought class. 

Pixel 1 and pixel 15 have the fake warning of drought. Although the drought classes in pixel 17 and 19 are 

not the same as prediction, the membership values of these two pixels in class 1 and class 2 are almost 

equal.  

 

Region Pixel class1 class2 class3 class4 class5 class6 

1 

1 0.000 0.000 0.000 0.000 0.000 1.000 

2 0.000 0.000 0.000 0.000 0.000 1.000 

3 0.000 0.000 0.000 0.333 0.667 0.000 

4 0.000 0.000 0.000 1.000 0.000 0.000 

5 0.000 0.000 0.000 0.667 0.333 0.000 

2 

6 0.008 0.992 0.000 0.000 0.000 0.000 

7 0.173 0.827 0.000 0.000 0.000 0.000 

8 0.233 0.767 0.000 0.000 0.000 0.000 

9 0.218 0.782 0.000 0.000 0.000 0.000 

10 0.158 0.842 0.000 0.000 0.000 0.000 

3 

11 0.158 0.842 0.000 0.000 0.000 0.000 

12 0.429 0.571 0.000 0.000 0.000 0.000 

13 0.383 0.617 0.000 0.000 0.000 0.000 

14 0.383 0.617 0.000 0.000 0.000 0.000 

15 0.000 0.000 0.000 0.000 0.000 1.000 

4 

16 0.609 0.391 0.000 0.000 0.000 0.000 

17 0.444 0.556 0.000 0.000 0.000 0.000 

18 0.444 0.556 0.000 0.000 0.000 0.000 

19 0.579 0.421 0.000 0.000 0.000 0.000 

20 0.023 0.977 0.000 0.000 0.000 0.000 

Table 6-21 adjusted membership value of 20 pixels of the third dekadal in 2009, maximum value is in bold 
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Figure 6-6 Validation drought class of 20 pixels of the third dekadal in 2009 

Pixels in the same region as pixel 15 are miss-predicted into neighbour class while pixel 15 jumped from 

class 2 to class6. Check the original NDVI value of region 3, shown in Table 6-22. In the second dekadal 

of January, the NDVI values significantly decreased and then, in the next 10 days, the values increased 

extremely. Although it is not surprise to see decreasing of NDVI as January is not in the rainy season, 

dramatically flicked should be considered as some error in the satellite images.  

 

pixel 11 12 13 14 15 

20080123 0.584 0.516 0.492 0.500 0.404 

20090101 0.552 0.544 0.436 0.516 0.484 

20090102 0.328 0.092 0.164 0.148 0.384 

20090103 0.508 0.376 0.384 0.376 0.620 

Table 6-22 original NDVI value of all pixels in region3 from last dekadal of 2008 to the third dekadal of 2009, first 
column shows the time, in format year/month/index of dekadal 

In the Figure 6-7, RMSE values of prediction are shown. Three different shapes represent different 

dekadals in January. In region 1, most of the values are less than 0.3, which shows pixels in regions 1 can 

be well predicted with this method. In region 2, pixel 6 to pixel 10, the results in the first dekadal greater 

than those in the second and third dekadals. As December is the last month of rainy season, we may 

assume that, in region 2, this method cannot performance well when great change happen. In region 3, all 

the values are stable in the range [0.20, 0.40], showing the accuracy of this method. As the analysis of 

Table 6-22, the method can also be applied in region 3. Pixel 18 and pixel 20 show unpredictable in this 

method in the first and second dekadal. Rest of the values in region 4 are less than 0.3, indicating that the 

vegetative classes can be well predicted.  
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Figure 6-7 RMSE values of 20 pixels in three dekadals in January 
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7. DICUSSION  

7.1. Methodology in this research 

In this research, fuzzy Markov chain is applied to predict the dynamics of vegetative drought using NDVI 

index. As the results shown in the Chapter 6, we may say that this method has a potential in drought 

prediction. After changing the slope of membership function, it indicates that the accuracy of vegetative 

drought prediction changes and early warning system can take benefit from it. As time limited, the 

membership function may not be the optimal in this study area. Hence, we assume that, with trial-and-

error, the optimal function could be found and the prediction of vegetative drought can be improved 

more with fuzzy Markov chain. In this research, the time interval of dataset is 10-day and from year 2004 

to 2008. The large amount of data, in total 3600 observations, is suitable to estimate fuzzy Markov chains. 

7.1.1. NDVI anomaly 

NDVI from satellite images is proved can be used in vegetative drought. For a very long time, drought is 

measured, modelling, predicted with meteorological data, such as precipitant. However, the density 

distribution of rainfall gauge station limits the accuracy and continence. Satellite images overcome these 

limitations. The index, NDVI, has been widely used in every field when it has a relation to vegetation. It 

can not only give the information about health and density of vegetation, but also contain information 

direct and indirect to vegetation, such as drought in this research. Normally the meteorological drought is 

modelled with precipitation data and agricultural drought is modelled with data of soil condition. Since 

NDVI shows a strong relationship with previous almost three-month precipitation data, it can be used as 

an indicator of drought. As the vegetation lag precipitation deficiency, it can be a better indicator of soil 

moisture than of rainfall (Davenport & Nicholson, 1993).  

 

The dataset used in this research is free to obtain on the website. The time period of NDVI is available 

from 1985 to present. Other aspects of vegetation dynamics can use this dataset for modelling and 

prediction other than vegetative drought.  

7.1.2. Fuzzy classification 

Introducing fuzzy set theory into this study makes the drought more reality as a vague object and the 

result of Markov chain improving. Fuzzy set theory applied as fuzzification to classify the vegetation 

drought class before applying Markov chain. As NDVI anomaly seldom used in drought study, there is 

not a standard to classify the drought and related the drought into reality or traditional classification.  With 

the concept of several drought classes and without exact value of each drought class in reality, fuzzy 

membership functions provide good performance in this situation. Modelling states in Markov chain is the 

basis, but the crisp states do not fit the property of vegetative drought. Using fuzzification instead of crisp 

classification makes the states in Markov chain meet the reality and more precise. From the result, we can 

see that, with the changing of slope of membership functions, the prediction is changing. This fuzzy 

classification can be further applied in similar area while the study object is vague and crisp classification 

values are not clear. 

7.1.3. Fuzzy Markov chain 

Drought is complicated natural disaster compared with others. There are several different factors can 

affect drought. As it is a relative phenomenon, precipitation deficiency is not the only reason cause 

drought, the capacity of soil water container, evapo-transpiration which has related to the temperature, 
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and also management of water supplies could cause drought or making the situation worse. Using 

traditional regression analysis, such as linear regression, many factors should be under consideration. 

Drought is spatial difference as the needs of water supply, vegetation types vary from region to region. 

Using linear models, it needs to figure out every affected factor while the model can not be directly 

applied into other regions where have different vegetation pattern, rainfall pattern or even population 

density. Compared to it, first-order Markov chain seems to be a simpler approach in modelling and 

prediction. Applying Markov chain does not need estimate every signal factors in different study region 

and even not need to find out new factors which may come out in recent years. Modelling Markov chain is 

based on the time series, which simplifies the effect of each factor and combined them into the time. It 

saves the time and energy to test various. In this study, Markov chain model the dynamics of vegetative 

drought in four regions of Kenya. The four study areas have different agricultural types, which all of them 

proves can be predicted in Markov chains.  

7.2. Applications of fuzzy Markov chain 

From this study, we can see than fuzzy Markov chain can be applied into vegetative drought prediction. 

Vegetation drought is most likely to agricultural drought, which we assume that this approach can also 

applied to agricultural drought. The difference is that agricultural drought most focuses on crops or grass 

for cattle. Crops have growing seasons and growing pattern, which cannot be modelling through whole 

year time and should be considered(Banik, et al., 2002). In harvest season, crops can be collected by 

famers in few days, which do not change gradually as non-agricultural plant does. The fuzzy Markov chain 

can only be applied during growing season and forecast the yield of crops, because of its property that 

good performance in vague objects.  

 

Drought is a complex environmental hazard and also a vague object. As well predicting in drought 

situation provides a potential to let fuzzy Markov chain predict in other environmental issues and 

geographical phenomena, such as air pollution, climate changing,  For example, forest fire modelling need 

to consider wind speed, wind direction, NDVI of forest and few parameters to make model stable 

(Umamaheshwaran, Bijker, & Stein, 2007). If we have the enough amounts of data for every minute or 

even smaller time intervals, the track of fire can be detected. What we need to do is applied the fuzzy level 

of destroy by fire in small forest area, put the observations in to time series and then using Markov chain 

to model it. It greatly saving the time of calculates weight for each factor and measure them. 

 

Not only in ecological vague objects, also can the vague objects in other field be considered. In socio-

economic area, income convergence has applied to Markov chain theory frequently(Bickenbach & Bode, 

2003). As long as large history dataset supported, fuzzy Markov chain can apply as predictive framework. 

7.3. Limitations in fuzzy Markov chain 

As the fuzzy Markov chain shows a great potential in prediction, the limitation of this research is obvious. 

First limitation is the time period of NDVI dataset in this research. The NDVI anomaly is the deviation 

from long-term mean calculation. When the variability in vegetation conditions in a region is very high in 

any one given year, the mean value can be misinterpreted(Thenkabail, Gamage, & Smakhtin, 2004). In 

order to improving the accuracy, the longer the mean value can be calculated, the mean is more near the 

normal value. However, the definition of “long” is tricky. If the land cover has changed dramatically in 

recent days by human behaviours, the mean value should be calculated just in recent years. If the land 

cover is changed gradually or just in a regular pattern, the mean should calculated from longer time period. 
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Furthermore, the fuzzy Markov chain is constructed in 5 year. With expanding or reducing the time period, 

it could have different trend.  

 

Second, in the study area Kenya, only 20 pixels, grouped into four regions, are considered for the 

prediction. Although these four regions are in different agricultural pattern and land covers are different, 

knowing whether they represent all the vegetation growing patterns all over the country needs further 

study. As in the assumption, vegetation growing is done in a gradually pattern, which can be predicted 

with historic data using a fuzzy Markov chain. How the different agricultural types fit into the general 

fuzzy Markov chain should be under consideration. More pixels or regions for the research can solve this 

limitation. The spatial resolution of a pixel is 8km, covering the area of 64 km2. It is difficult to validate 

with ground collected observations, which makes both of the prediction and validation have to solely rely 

on the satellite images.  

 

Third, the Markov chain is very sensitive to the classification process. Using different approach in 

classification, equal frequency and equal interval, the property of markovian is changed. For few 

classification approach used, there was no markovian properties, hence could not be modelled in Markov 

Chain. That is also why only equal frequency is applied in this study. One of the reason is that the number 

of observations in each states will affect the result of LR and Q test.  

 

Fourth, although changing the slope of membership function influenced the results, this changing process 

should have some physical meaning. Although the membership functions are built based on the study data 

not related to drought report, the results can not be directly applied into early warning system or 

government response without further analysis of the method on a larger area.  

  

As far as we known, fuzzy Markov chain is good to apply in the gradually class-changing vague objects. 

The sudden change will not affect Markov model, but affect the prediction. With less required parameters, 

the model will need to be re-built if the environment suddenly changes dramatically. In drought situation, 

this can be that people suddenly immigrate which reduce the need of water, new kind of vegetation 

introduced or global alter by El Niño. Slightly environment changes will hardly affect the whole property 

of fuzzy Markov chain, but need reference data to get accurate prediction result.  
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8. CONCLUSIONS AND RECOMMENDATION 

8.1. Conclusions 

Drought is a natural hazard than involves many factors and has complex inter-correlation. Vegetative 

drought is a term describing the drought affecting by the dynamics of vegetation. This study, NDVI 

shows a strong relationship with rainfall accumulation for almost three previous months, which reveals 

that NDVI can be used as vegetative drought indicator. The research applied fuzzy Markov chain in four 

regions of Kenya. The time period is from 2004 to 2008 and then predicts the vegetative drought in 

January, 2009. It demonstrates that fuzzy Markov chain can be used in vegetative drought prediction. 

 

 What is vegetative drought and how can it be characterised? 

Vegetative drought is a type of drought similar to the agricultural drought, while involving more 

vegetation than agricultural plants. It is the vegetation stress caused not by human behaviours but 

water deficiency, less soil moisture and so on. Under traditional meteorological measurement of 

drought, it can be characterised with precipitation data, soil parameters, and temperature. Because 

satellite images have strength in time and spatial continuity, the vegetative drought is characterised by 

NDVI index. There is a linear relationship between NDVI and precipitation reveals that the NDVI 

can be an indicator for vegetative drought. Comparing with the NDVI mean value, if the anomaly 

NDVI value is negative, it could be the appearance of vegetative drought.  

 

 How to determine and model the vegetative drought states? 

The vegetative drought states are determined as drought classes in this study. According to the 

drought categories in other drought indices and purpose on this study, there are 4 drought states and 

2 non-drought states. They are extremely drought, severely drought, moderately drought, dryness, 

wet and moderately wet. The original determination of the drought states are based on the equal 

frequency of sample data. 

 

 How to model the change between vegetative drought states? 

As vegetative drought is vague object, crisp drought states do not describe it appropriately. The fuzzy 

membership functions are applied to account for the gradual transition between states. The higher 

the value is, the higher probability the vegetative states it belongs to. 

 

 How to evaluate the prediction result? 

With the data from time period 2004-2008, the first-order Markov chain can be modelled for 

prediction. The validation data is from the same satellite images of 2009. The validation is from 

comparison the probability value of prediction with the reference data applied in membership 

functions. The RMSE is applied to be the quantity value of validation.  

 

 How the number and value range of classes can affect the results? 

More classes can describe more detail of drought, but also introduce discontinuity in fuzzy Markov 

chain modelling. With more classes, the time-independent of first-order is damaged. Less class can fit 

the Markovian properties, but giving less information in prediction and early warning system. The 

value range, modelled in membership function, affect the prediction result. In this study, smaller core 

zone and bigger transition zone in membership functions improve the accuracy of prediction. 
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8.2. Recommendations  

For further studies on predicting drought using this approach, we recommend to first quantify the 

relationship between drought categories and vegetative index based on the field knowledge in order to 

ensure the completeness of data model. Also, the acquisition of ground situation is recommended for 

quantitative validation of prediction result.  

 

The fuzzy membership functions applied in this study is in trapezoidal shape and it effectively predict 

vegetative drought with Markov chain. For further study, we recommend to select other function types, 

such as Gaussian to improve the accuracy of result.  

 

Further work is also recommended to upscale and downscale the spatial resolution of sample data. And 

changing of time interval is also recommended, such as monthly or weekly.  
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