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ABSTRACT 

In Markov Random Field (MRF) based super resolution mapping (SRM) the accuracy of classification is 
depend on the optimal parameters. The smoothness parameter �  balances the contribution of the prior 
and likelihood energy terms. Whereas,  p�  parameter balances the contribution of likelihood energy from 
the panchromatic and multispectral band. By proper setting of these parameters good classification 
accuracy can be obtained. However, poor parameter setting produces unsatisfactory results. Trial and error 
estimation of the parameters is time consuming. Therefore, this study concentrate on developing new 
models to estimate the optimal smoothness parameter �  and p�  parameters based on local energy 
balance analysis. The study shows how the optimal values of the parameters depend on the scale factor 
and class separability information.   
 
The data sets used during this study were synthetic images, generated systematically with various class-
separability values. This enables to evaluate the models at different class separability and scale factor 
information. The contextual and spectral information were modelled with prior and the likelihood energy 
functions respectively. The global energy was constructed and different combination of � and p�  parameters were tried. To find the minimum of the total energy in map estimate simulated annealing 
algorithm was used. An optimal �  and p� values were identified based on kappa value and in order to test 
the predicted �  and p�  values a range for the optimal �  and p�  value was specified.  
 
An optimal value of  �  and p�  parameters exists for each combination of scale and class separability 
values in the panchromatic and multispectral image. The result obtained from the developed model for the 
optimal �  and p�  parameters agree with the empirical data. The study shows that the incorporation of 
information from the panchromatic image increases the classification accuracy at the lower scale factors, if 
it is properly estimated.   
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1. INTRODUCTION 

1.1. Background 
Land cover mapping is a typical and important application of remote sensing data. Accurate land cover 
information is needed at a reasonable cost to many planning and monitoring programs. Different 
organization like geological survey and national mapping agencies are interested in extracting land cover 
information from remote sensing images. Different image processing and analysis techniques are used to 
extract information from the image. The traditional approach to land cover mapping is through hard 
classification from remotely sensed data in which each pixel is assigned to one land cover type. However 
this classification method is not appropriate when land cover information is required at sub-pixel level 
particularly in coarse spatial resolution image, where the presence of more than one type of land cover 
classes in a pixel, which is commonly referred to as mixed pixel. In sub pixel classification the pixel is 
resolved in to various class proportions to solve the problem of mixed pixels. However, it does not 
account the spatial distribution of class proportions within the pixel (Kasetkasem  et al., 2005). 
 
To overcome these problems super resolution mapping (SRM) techniques have been developed. SRM is a 
land cover classification technique that produces maps of a finer spatial resolution than that of an input 
image. It can be considered as a further step after sub-pixel classification in a sense that not only the 
fractions of classes within coarse resolution pixels are estimated, but also the spatial distribution of class 
proportions within and between pixels is considered(Tolpekin and  Stein, 2009). The class proportion in 
coarse resolution pixels is computed in the soft classification step with the use of techniques such as linear 
spectral unmixing, neural network and fuzzy classification.  

 
Accuracy of any land cover classification technique is influenced by spectral separability of classes(Swain 
and  Davis, 1978), which is the measure of similarity between spectral signatures. For low class 
separability, classification leads to confusion between classes. In SRM accuracy of classification is 
influenced by scale factor and class separability but it is difficult to separate the influences of the two, 
because class separability depends on class spectral variation, which in turn, depends on scale.(Tolpekin 
and  Stein, 2009) 
 
For many applications the information obtained from the single image is incomplete, imprecise or 
inconsistent. Additional source may provide complementary information(Solberg  et al., 1996). Fine spatial 
resolution images provide fewer spectral bands and larger within-class variation than the coarser resolution 
images whereas, the spatial resolution of the coarser resolution images are less than the fine resolution 
images. Due to these reasons, techniques have been developed that make an advantage to use both fine 
spatial resolution and spectrally rich coarse spatial resolution images, such as image fusion.(Solberg  et al., 
1996)  
 
 
Markov random field theory provide a suitable and consistent way for modelling context dependent 
entities such as image pixels and correlated features(Li, 2001). In SRM spatial dependency between and 
within pixels can be enhanced by integrating spatial context. Spatial context is defined by the correlation 
between spatially adjacent pixels in spatially neighbouring pixels. The spatial context is very important for 
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the interpretation of a scene and it may be derived from spatial, spectral and temporal attributes. More 
information can be derived by considering the pixel in context with other measurement and the suitable 
use of context allows the elimination of possible ambiguities, the recovery of missing information, and the 
correction of errors (Tso and  Mather, 2001). 

1.2. Problem statement 
Markov Random Field model plays an important role in image analysis because it integrates the contextual 
information associated with the image data in the analysis process, through the definition of suitable 
energy functions. However, an MRF model usually requires an estimation of one or more internal 
parameters before the application of the model. Particularly in the context of supervised classification, 
trial-and-error procedures are typically used to choose suitable values for at least some of the model 
parameter(Solberg  et al., 1996). MRF parameter estimation is difficult, especially when the number of 
information sources increase. 
                                 ))|()1()|()(1()(),|( cyUczUcUzycU pp ���� �
�
�                        (1.1)                           

The model (1.1) was introduced by Tolpekin, et al. (2010).  p� is an internal parameter of the MRF based 

SRM model which balances the contributions of the conditional energy from the multispectral and 
panchromatic image. Whereas, the smoothness parameter �  balances the contribution of the prior energy 
and conditional energy to the global energy. To increase the classification accuracy these parameters must 
be properly estimated. Trial and error estimation of these parameters is time consuming and inefficient. 
There is no existing method that estimates the optimal p�  parameter automatically. To obtain higher 

classification accuracy efficiently both the �  and p�  parameter must be estimated optimally. Therefore, 

this study focuses on developing a model for the automatic estimation of �  and p� parameters.  

1.3. Research objective 

1.3.1. General objective  
The general objective of this research project is to develop models for the automatic estimation of the 
optimal parameters �  and p�  in MRF based super resolution mapping.  

1.3.2. Specific objective 
To achieve the general objective the following specific objectives have been identified 

a. To identify how the scale factor and class separability affects the optimal �  and
p� parameter estimation. 

 
b. To develop models to be used for the optimal �  and p�  parameter estimation.  
c. To test the models.  

1.4. Research questions 
a. How does the scale factor influence the optimal � and p� parameters? 

b. How does class separability affect the optimal � and p� parameters? 

c. How to develop models to be used for the optimal � and p� parameters estimation? 
d. How should the models be assessed? 
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1.5. Research setup 
The adopted setup is carried out in six phases:  

1.5.1.  Synthetic image generation 
Several synthetic images are generated by varying the class separability in the assumed high resolution 
multispectral image. 

1.5.2. Image degradation 
The multispectral and panchromatic images are degraded spatially and spectrally from the assumed high 
resolution multispectral image by a degradation model. 

1.5.3. Modelling the prior and conditional energies 
The prior information is modelled from the assumed fine resolution multispectral image using the Markov 
Random Field model. The conditional energy of the panchromatic and multispectral image is modelled 
from the two spatially and spectrally degraded images. 

1.5.4. Parameter estimation 
The models are developed for the automatic estimation of the optimal �  and p� parameter in MRF 
based super resolution mapping based on local energy balance analysis. 

1.5.5. Simulated Annealing optimization 
The total conditional energy and the prior energy are integrated with the MRF model under the Bayesian 
framework to obtain the maximum probability that is used to get optimal solution for the output image. 
The MAP estimate for the super resolution map is found by minimization of the total energy by using 
simulating annealing algorithm.           

1.5.6. Accuracy assessment and performance analysis 
The accuracy is measured in kappa coefficient and the performance of the models is assessed with the 
numerical optimal value obtained by the experiment.  

1.6. Structure of the thesis 
This thesis contains five chapters. Chapter 1 describes the background, the problem statement, the 
objectives, the research questions and the approach of the research. Chapter 2 presents a literature review 
on previous work on MRF based super resolution mapping and parameter estimation techniques. Chapter 
3 describes about synthetic image generation and  �  and p� parameter estimation techniques developed 

in this study. Chapter 4 presents the result of the research. Finally Chapter 5 presents discussion, 
conclusion and recommendation for further research. 
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2. LITERATURE REVIEW 

This chapter explains previous works of MRF based super resolution mapping and reviews existing 
parameter estimation techniques 

2.1. Previous works of MRF based super resolution mapping 
 
Kasetkasem, et al.(2005) introduced MRF model based approach for the generation of super resolution 
land cover map from remote sensing data. The method works based on the assumptions that there is no 
mixed pixel in the fine spatial resolution images and the spectral values of classes in a fine spatial 
resolution image follow a multivariate normal distribution. It was applied into two phases: in the first 
phase initial SRM is generated from fraction images and in the second phase optimized SRM is produced 
by updating the pixels iteratively. Before implementing the second phase, it is important to determine 
neighbourhood window size that influences the labelling of the central pixel in the optimization process. 
Some of the limitation of the method was the weights given to the neighbouring pixels were estimated 
from the ground truth data which is not always easy to obtain. Moreover the neighbourhood size was 
fixed to second order for any scale factor value which limits the effectiveness of the method to work 
correctly at any scale factor. 
 
Hailu (2006) assessed the suitability of MRF based SRM techniques for super resolution land cover 
mapping with synthetic images and remotely sensing data. First the spatial and the spectral information 
were modelled with the prior and likelihood energy function then the smoothness parameter �  was 
introduced to control the two energy function. SA was used to perform global energy minimization and 
the result of the MRF based SRM was evaluated by comparing to the fine resolution reference map. 

 
Hailu identified several factors that can affect the accuracy of SRM like the smoothness parameter � , 
neighborhood size, initial temperature, temperature updating, and class separability, object size and scale 
factor. Finally, Hailu (2006) found that MRF based SRM method produces a high quality SRM when the 
neighborhood size grows in relation to the scale factor and the optimal value of the smoothness parameter 
was affected with the type of scene and class separability. The study also shows that, it is possible to get a 
reasonable accuracy even for poorly separable classes by setting the smoothness parameter to the optimal 
value. 
 
Tolpekin, et al (2010) extended the contextual MRF based SRM method developed earlier for 
multispectral image to include the panchromatic band for individual tree crown objects extraction purpose  
in urban area. Because of the limited spectral information offered by the sensors, It is difficult to 
discriminate tree crown objects from other land cover classes such as grass and shrubs by using spectral 
pixel-based classification techniques. However, the problem was solved in this method using contextual 
classification approach and the SRM technique was used to solve problems related to spatial resolution of 
the sensors.  
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2.2. Parameter estimation techniques 
A number of parameter estimation techniques for MRF have been developed by many authors. Serpico & 
Moser (2006) employed a Ho-Kashyap optimization for determining the parameters. Whereas, Jia & 
Richards (2008) presented a method for determining the appropriate weighting of the spectral and spatial 
contributions in the MRF based approach of contextual classification. Tolpekin and  Stein (2009) used 
local energy balance analysis as a means for estimating the smoothness parameter in MRF model. 
 
The determination of the MRF model parameter that weight the energy functions is a difficult issue and it 
is known that the performance of the model is dependent both on its functional form and on the accuracy 
of the model parameters estimation. Serpico and  Moser (2006) presented an automatic supervised 
procedure for the optimization of the weight parameters of the combinations of distinct energy 
contributions in MRF models with the Ho-Kashyap algorithm. The Ho-Kashyap Algorithm is used for 
the optimization of the weight parameter setting involved with MRF models for supervised image 
classification. 
 
The method uses training data in order to select a set of parameters that maximizes the classification 
accuracy by developing the linear relation between the energy function and the parameter vector. The 
method does not estimate the true values of the parameter of the MRF model Instead, the parameter 
values giving the highest classification accuracy are searched. The basic idea of the method is to use the 
training set in order to state a condition of correct classification of the training sample and find a 
parameter vector that fulfils the condition. 
 
To solve the parameter estimation problem, first the energy functions must be expressed as a linear 
combination of distinct energy contributions then the parameter estimation problem is expressed as the 
solution of a system of linear equalities. In this method ICM is used for the energy minimization process 
and it is initialized with a given label vector generated by a non-contextual supervised classifier and 
iteratively modifies the class labels in order to decrease the energy function. The HK-based parameter 
setting methods is coupled with the ICM classification approach for automatic contextual supervised 
classification. The major steps of HK-ICM method are 
 

1. Generate an initial non-contextual classification map by using supervised classification. 
2. Compute the energy difference matrix according to the MRF model and to the label vector. 
3. Compute an optimal parameter vector by running the HK procedure up to convergence. 
4. Generate a contextual classification map by running ICM up to convergence. 

 
The method has been presented in conjunction with the ICM algorithm for energy minimization and it 
can be used in conjunction with other energy minimization techniques such as simulated annealing. The 
method overcomes trial and error parameter optimization problems in MRF based supervised image 
classification. 
 
Jia & Richards (2008) developed a method that determines the appropriate weighting of the spatial and 
spectral contribution in the Markov random field based approach of contextual classification. In this 
method, first the spatial and spectral components are normalized to be in the range (0, 1) then the 
appropriate value for the weighting coefficient can be determined. The spatial information is incorporated 
in to the classification by changing the discriminant function through the addition of a term that 
distinguishes spatial correlations.  
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Tolpekin and  Stein (2009) developed MRF parameter estimation method based on local energy balance 
analysis. In this method the optimal smoothness parameter is estimated by considering class separability 
and scale factor information. When the label of the fine resolution pixel ija |  is changed from the true 

class value ��)( |ijac , to another wrong class value ��)( |ijac , the resulting change of the local prior 

energy will be                
                              

                                 pU��� = �



�
)( |

)](,())(,()[(
ijaNl

lll acIacIaq ��� = �q                                   (2.1)                       

 
 
According to Tolpekin and  Stein (2009), The value of γ depends on the neighbourhood system size, the 
configuration of class labels )( lac  in the neighbourhood )( |ijaN  and the choice of power-law index n. 

The smoothness parameter  is defined as  

                           
)1( q

q



��                                                                                                               (2.2) 

 Where ��� q0  is used to control the overall magnitude of the weights. 

The change of the fine resolution pixel label )( |ijac  from α to β also causes the change of the 

composition of the coarse-resolution pixel ib ; hence a change in the mean vector and the covariance 

matrix of that pixel value. For equal covariance matrices for the class� and � , The change in local 
likelihood energy is expressed as: 
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For equal covariance matrices for the classes �  and  �  the B distance is equal to    
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From the above equations, the change in local likelihood energy is expressed with divergence and scale 
factor as:                  
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The local contribution to the posterior energy from the considered pixel is lower for ��)( |ijac than for 

��)( |ijac  and the contribution of the likelihood energy should compensate the gain in the prior energy. 

Thus the  value can be determined from the balance between the changes in the prior and the likelihood 
energy values. 
 
                     pU��� = lU���                                                                                   (2.6)                         

Solving for �  

                     
�

�

��
)(

2

4
1

1

yB
S



�                                                                                  (2.7)                         

 
If the smoothness parameter �  is greater than the optimal value, the model will lead to over smoothing 
on the contrary �  value that is too small does not exploit the prior information in the model. 
 
Having reviewed the well known parameter estimation techniques, the focus of this research is to develop 
models that estimate the smoothness parameter �  and p�  in MRF based super resolution mapping. 

The models developed in this research is similar to the method of (Tolpekin and  Stein, 2009) and in both 
cases  parameter estimation is done by considering class separability information between spectral classes. 
The detail discussion about the method will be given in chapter 3. 
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3. METHODS 

The powerful property of the MRF models is that the prior information and the observed data from 
different sources can be easily integrated through the use of suitable energy functions.  However, an MRF 
model usually requires an estimation of one or more internal parameters before the application of the 
model (Serpico and  Moser, 2006). An appropriate choice of parameters can give successful result. 
Conversely,  improper selection of parameter values will produce unsatisfactory result (Li, 2001). MRF 
Parameter estimation is difficult, especially when the number of information sources increases that make 
the number of parameter to be estimated increases. 
 
The main focus of this chapter is to describe the MRF parameter estimation technique which is employed 
in this research. Section 3.1 describes about super resolution mapping. Section 3.2 explains how the 
synthetic images are constructed. Section 3.3 illustrates how the prior and the conditional energies are 
modelled. Section 3.4 briefly describes about the proposed method. Section 3.5 explains about simulated 
annealing optimization algorithm. Section 3.6 explains how the model is assessed. 
 

3.1. Super resolution mapping(SRM)  
 
SRM theory including its formulation described below is adapted from (Tolpekin  et al., 2010) with some 
minor changes. 
Consider the classification of a coarse resolution  multispectral remote sensing image y that consists of K 
spectral bands with spatial resolution R and pixel locations Ddi 
 , where D  is 21 MM �  pixel matrix 
and a panchromatic image z  with finer spatial resolution Rr � . The resulting super resolution map (SR 
map) c is a classified map which is defined on the set of pixel locations A and covers the same extent on 
the ground as y and z with spatial resolution r. The scale factor is denoted as rRS /� , which is the ratio 
between the coarse and fine resolution pixel sizes. Hence each pixel id will contain 2S fine resolution 
pixels of ija | . 
 
Further assume a multispectral image x  having the same spectral bands as y as well as the spatial 
resolution of r is defined on the set of pixels A. Image x is not observed directly while image y  and z   
are obtained by spatially  and spectrally degrading the image x. Furthermore it is assumed that every pixel 
in image x  can be assigned to a unique class: )( |ijac =� , where � 
1,2,…L.  The relationship between 
y and x , and z and x  are established by a degradation model as: 

 

                    �
�

�
2

1
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S

j
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3.2. Synthetic data sets and class separability 
 
Synthetic image provides a useful source of data for improving our understanding of information 
extraction from remotely sensed data(Tatem  et al., 2002). Tolpekin and  Stein (2009) showed that  the 
optimal smoothness parameter �  is dependent on the scale factor and class separability. Based on their 
findings, in this study it is assumed that the optimal �  and p� parameters depends on scale factor and 

class separability. The main advantage of using a synthetic image in this research is to explore the effects 
of scale factor and class separability on the optimal �  and p�  parameters. The synthetic image allows to 

concentrate on specific element of the problem by ignoring the complexity of real images and used to 
perform systematic controlled parameter variation.(Tolpekin and  Stein, 2009) 
 
The synthetic image generation starts with the reference map (60� 60) with three classes as shown in 
Figure 3.1b.  Pixel values are generated through multivariate pseudo random number generator using class 
parameter mean and covariance. During image generation the class separability is controlled by fixing class 
mean and covariance matrices.  
 
The fine-resolution multispectral image x  Figure 3.1(a) is produced by sampling from multivariate normal 
distribution using mean and covariance obtained from the real image. This image is consequently 
degraded to coarse resolution multispectral and fine resolution panchromatic image with different scale 
factor values S=2, 4, 5, 6,8,10. (See equation 3.1 and 3.2). An example of degraded synthetic image with 
S=2 is shown in figure 3.2. Several fine resolution multispectral images x  are constructed from the 
reference image with various class-separability values.  
 

 
Figure 3.1: Construction of synthetic images. (a) Fine-resolution multispectral image x . (b) Reference image with 
three classes, green: shadow vegetation, white: grass, brown: tree. 
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Figure 3.2: Degraded synthetic multispectral (30x30 pixel) and panchromatic (60x60 pixel) images. 

 
Class separability is a statistical measure that shows how well the user defined classes can be separated by 
classifier. The simplest class separability measure is the Euclidean distance evaluation where the spectral 
distance between the mean vectors of each pair of class signature is computed, and if this distance is not 
significant for any pair of bands available they may not be distinct enough to produce successful 
classification. The basic principle is that pixel values within a given land cover type should be close 
together in the measurement space; whereas pixels data in different classes should be well separated. 
 
To quantify the separation between spectral classes only distance between means is insufficient since 
overlap will also be influenced by the standard deviations of the distributions. Therefore, a combination of 
both the distance between means and a measure of standard deviation is required(Richards, 1993). The 
mean controls the location of the distribution and the variance controls the spread of the data. When 
more than one feature is involved, then the multivariate normal distribution has to be used. In multivariate 
normal distribution instead of a single mean controlling the location of the distribution there is one mean 
for each feature making up a mean vector. The multivariate equivalent of the variance is the variance –
covariance matrix which represents the variability of pixel values for each feature within a particular class 
and the correlations between the features. These two parameters are used to describe each class and 
computed for each sample. There are many class separability measures among them Bhattacharyya 
distance and Jeffries-Matusita distance is used in this study. 
 
Bhattacharyya distance measures the similarity of two probability distributions and it is used to determine 
the separability of classes in classification. The Bhattacharyya distance of multispectral band is expressed 
as: 
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In a similar way, the Bhattacharyya distance of panchromatic band is expressed with mean and variance as: 
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When the number of classes is larger than two, an average Bhattacharyya distance is used  
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Jeffries-Matusita distance )(JM  is introduced to transform the Bhattacharyya distance values to a specific 

range and the JM  distance tends to overemphasising low separability values while suppress high 
separability values. 
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When the number of classes is larger than two, an average Jeffries-Matusita distance is used 
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Bhattacharyya distance values vary from 0 to �  where as Jeffries-Matusita distance vary from 0 to 2. If 
the mean and covariance of the two classes are the same, then ��B = ��JM =0, this indicate that, it is 
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impossible to distinguish between the two classes based on spectral information only. On the contrary, 
when ����B  and ,2���JM  indicating that the two classes are totally separated in feature space. 
Separability between the classes increases with increasing JM values and because of the saturating 
behaviour Jeffries-Matusita distances is preferred over the Bhattacharyya distance. 
 
To see the effect of class separability of the multispectral image on the optimal �  and p� parameters 
different )( yJM  values are chosen as 0.5, 1.0 and 1.9. An example of resulting class separability values 
between the classes for )( yJM =0.5 and )(zJM =0.02 is presented in table 3.1 and table 3.2 respectively 
Similarly, to see the effects of class separability of the panchromatic image on the optimal �  and p�  parameters the class separability of the panchromatic image is varying with )(zJM  value of 0.5, 1.0 and 
1.9.  
Table 3.1:  Jeffries-Matusita distance between the classes for 5.0)( �yJM   

  class1 class2 class3 
class1 0 2 2 
class2 2 0 0.5 
class3 2 0.5 0 

 

Table 3.2: Jeffries-Matusita distance between the classes for 02.0)( �zJM  

  class1 class2 class3 
class1 0 1.811 1.914 
class2 1.811 0 0.02 
class3 1.914 0.02 0 

 

Table 3.3: Relation between minimal and average Jeffries-Matusita distance in image y and z 

 

 )( yJM   )( zJM   )( y
avgJM   )( z

avgJM  

0.5 0.02 1.5 1.24 
1 0.02 1.67 1.25 

1.9 0.02 1.97 1.26 
2 0.5 2 1.43 
2 1 2 1.6 
2 1.9 2 1.9 

 
 
It is possible to systematically control the class separability between spectral classes of the multispectral 
and panchromatic image, by expressing their class separability with the class parameter of the image x .  
 
Class separability in the image x  can be expressed with Bhattacharyya distance as: 
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(3.11)    

                  
 
To express the Bhattacharyya distance of image y  in terms of the mean and covariance of image x first 
the relationship between the class parameters of the two images should be determined. 
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Assume image x  and image y are spectrally similar. Then )(
,
y
ln� = )(

,
x
ln�  

Where )(
,
y
ln�  represents mean of image y and )(

,
x
ln�  represents mean of image x .  

 

)(
,,

y
mlnC = 2

1
S

)(
,,

x
mlnC    Where  )(

,,
y

mlnC  represent covariance of image y , )(
,,

x
mlnC  represent covariance of image 

x  and S is scale factor. 
 
Here n  represents the number of class, l and m represents the number of bands. 
 
 
Then the Bhattacharyya distance of the Image y  is expressed as: 
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(3.12)      

 
Where � and �  are the two spectral classes. 
 
Similarly, to express the Bhattacharyya distance of image z interms of mean and covariance of image x  
first the relationship between the class parameters of the two images should be determined. 
 
It is assumed that, the spatial resolution of image x  and image z are the same.  
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Then the Bhattacharyya distance of the image z  is expressed as: 
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Equation 3.12 and 3.13 is used to control the class separability values in the multispectral and 
panchromatic image only by changing mean and covariance of the image x  in the synthetic image 
generation. 
   

 

 

3.3. MRF  
 
The theory of MRF including its formulation described below is adapted from (Tolpekin  et al., 2010)  
with some minor changes. 
 
The advantages of using MRF models is that, the prior information and the observed data from different 
sources can be integrated through the use of suitable energy function. The super resolution map (SR) map 
c that corresponds to the maximum a posteriori probability ),|( zycp  solution for c given observed data 
y and z can be computed with Bayes theorem from prior probability p(c) and conditional 
probabilities )|( cyp  and )|( czp  as: 
 
                    ),|( zycp �  )|()|()( czpcypcp                                                                              (3.14) 
 
Assume y and z are conditionally independent given c and due to the equivalence of MRF and Gibbs 
random field, the probabilities can be specified by means of energy functions as: 
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Where 1A , 2A , 3A and 4A are normalizing constants, T is a constant termed the                     

temperature, )|(),|(),( czUcyUcU and ),|( zycU are the prior, two conditional and the posterior 
energy functions respectively. The resulting expression, when rewriting the Bayes formula for energy 
function is  
 
      ))|()1()|()(1()(),|( cyUczUcUzycU pp ���� �
�
�                                                  (3.19)     
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Where 10 �� � , is a parameter which balances the contribution of prior and conditional energy 

functions. � =0 indicates that the contextual information is ignored in the classification and only the 

conditional energy is used. Whereas, � =0.5 indicates that equal weights are assigned to the prior and 

conditional energy.  � =1 indicates, the conditional energy is ignored and only contextual information is 

used in the classification which results a similar class.  

Likewise, 10 �� p� , is a parameter which balances the contribution of the panchromatic and 

multispectral conditional energy functions. p� =0 indicates the conditional energy from the panchromatic 

image is ignored and the classification is done only by using the likelihood energy from the multispectral 

band. Whereas, p� =1 indicates that, the conditional energy from the multispectral image is ignored and 

only the conditional energy from the panchromatic image is used. This is similar to maximum likelihood 

classification of the panchromatic band.   

 

3.3.1. Prior energy function   
 
The prior energy is modelled as the sum of pair-site interactions. (Li, 2001) 
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Here, )( |ijaN  is the neighbourhood system, ))(( |ijacU  is the local contribution to the prior energy from 

the fine resolution pixel )( |ijac , )( law  represents the weight of the contribution from pixel   

)( |ijl aNa 
 to the prior energy and ),( 21 ccI  takes the value 0 if 21 cc � and 1 otherwise. 

 
This prior model penalizes the occurrence of pixels with different class labels in the neighbourhood 
system N and the weights )( law are chosen inversely proportional to the distance )( lad  between the 

central pixel ija |  and the pixel la  as 
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3.3.2. Conditional energy functions 
The likelihood energies consider the closeness of observed pixel values to each land cover class. The 
spectral values x  of a class �  is modelled with the normal distribution and it is assumed that the spectral 

values )( |ijax of the 2S  fine resolution pixel ija | are independent: spatially uncorrelated and identically 

distributed given their class association. 
 
The conditional energy is defined using the mean vector  ��  of class �  and the covariance matrix as: 

)|( cyU  =�
ji

iji acdyU
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| ))(|)((  

Where ))(|)(( |iji acdyU is the local contribution to the likelihood energy from the fine resolution pixel 
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The values i�  and iC  are modelled as a linear combination of mean vectors and covariance matrices 

based on  proportions of respective land cover classes inside the coarser resolution pixel. 
 
Similarly, the panchromatic conditional energy )|( czU is defined as: 
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Where z )( |ija  is the pixel value, �� is mean of the class � and �	 is the standard deviation of the 

class� . 
 

3.4. Estimation of  and p parameter 
 
 
�  and p�  are internal parameters of the MRF based SRM and it needs to be properly estimated before 

the method is applied to obtain higher classification accuracy. Based on the result obtained in Tolpekin, et 
al.(2010), it is assumed that, the incorporation of information from the panchromatic band improves the 
classification results when compared to classification with out information from the panchromatic band, if 
it is properly estimated. p�  parameter is introduced to balance the contribution of likelihood energy from 

the multispectral and panchromatic image. MRF parameter estimation for SRM is influenced by class 
separability and scale factor information(Tolpekin and  Stein, 2009). In this study models are developed 
based on local energy balance analysis and by relating the optimal �  and p�  parameter estimation to the 

class separability and scale factor information. 
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First assume correct classification of classes and consider a case when a fine-resolution pixel ija |  with a 

true class label ��)( |ijac , to which is assigned a different class label �  and all the other pixels are 

selected correctly. Then the resulting change in likelihood energy in multispectral and panchromatic band 
is as follows: 
The change in likelihood energy of the panchromatic band is:  
 

                          )(zU� = )()( ��cU z )()( ��� cU z                                                                      (3.24)    
                             

Where c is the label of the fine resolution pixel, � and �  are spectral classes.                           

 The panchromatic energy with the true class label ��)( |ijac  is expressed as: 

 

                         )()( ��cU z  = �
�

�
�
�

�



� 2
2

2

ln)(
2
1

�
�

�� 	
	

��

                                                  
(3.25)    

                           
  
 Where 	  represents standard deviations 
            
 The panchromatic energy with the wrong class label ��)( |ijac  is expressed as: 
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The change in energy when the fine resolution pixel label )( |ijac changes from � to �  is expressed as: 
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To simplify the modelling, it is assumed that, the variances of the two classes are the same.  

�	 = �	 , then the above expression is simplified as: 
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 Where �� is the difference between the mean of the two spectral classes. 
 
Similarly, equation 2.8 is simplified as: 
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Then, the change in energy of the panchromatic band is expressed with the Bhattacharyya distance as: 

                                   )( zU��� = )(4 zB��                                                                                                 (3.30)                                
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The change of the fine resolution pixel label )( |ijac  from �  to � also causes the change of the 

composition of the coarse-resolution pixel id and thus, to a change in the mean vector and the covariance 

matrix for this pixel value. 
 
The change in likelihood energy of the multispectral band is calculated with mean and covariance as: 
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With the same assumption for the classes � and � , Equation (3.3) of the Bhattacharyya distance between 
classes in the multispectral band is simplified as:  
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8
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Then, the change in energy of the multispectral band is expressed with the Bhattacharyya distance as: 
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Subsequently, the value of p�  is determined from the balance between the change in likelihood energy of 

the panchromatic and multispectral band with: 
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Likewise, to estimate the smoothness parameter�  consider also a case when a fine-resolution pixel 

ija | with a true class value ��)( |ijac ,to which is assigned a different class label � . Then the change of 

the local prior energy when the pixel label )( |ijac  changes from � to �  is  

 
 



 

20 

        pU��� = �



�
)( |

)](,())(,()[(
ijaNl

lll acIacIaq ��� = �q                                                             (3.37)        

 
 
The value of �  depends on the neighbourhood system size, the configuration of class labels )( lac  in the 

neighbourhood )( |ijaN  and the choice of power-law index n.(Tolpekin and  Stein, 2009).  

The total change in likelihood energy when the pixel label )( |ijac  changes from � to �  will be                   
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Then, the smoothness parameter  can be determined from the balance between the change in the prior 
and total likelihood energy values. 
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Finally, solving for �  
 

                        

)(2)(

2

44
1

1

zy BSB
S

����

�
�



�



�                                                                                         (3.40) 

 
If the class separability in the multispectral and panchromatic images is small, then the smoothness 
parameter � value will also be small. On the contrary if the class separability in the multispectral and 
panchromatic image is large, then the smoothness parameter �  value will be high. 
 

3.5. Simulated Annealing 
 
Once the global energy constructed and the optimal parameters have been determined, the next step of 
SRM is to find the minimum of the total energy in map estimate. To achieve this simulated annealing 
algorithm (SA) is employed to find the map solution. SA is a stochastic algorithm used to find a good 
optimization problem based on the use of random numbers and probability statistics. Temperature and 
	  are the main parameters in the simulated annealing algorithm that control the process of optimization 



 

21 

and mostly these parameters are estimated experimentally. In this study a power-law annealing schedule is 
used, where the temperature at the iteration n is changed according to  
 
                           1��� nn TT 	                                                                                                           (3.41)                      
 
The parameter 	  controls the rate of temperature decrease and the parameter T controls the randomness 
of the optimization algorithm. High temperature means high randomness and low temperature means less 
randomness and the high temperature increases the probability of a pixel label to be replaced with a new 
label. Pixel values are updated with the Metropolis-Hastings sampler then the number of successful 
updates is counted, being the number of updates that lead to a change of pixel value. If the number of 
successful updates is below 0.1% of the total number of pixels during three consecutive iterations the 
optimization is stopped.                     
 
The initial super resolution map is obtained by first applying linear spectral unmixing, to estimate the 
proportion of each class within each coarse resolution pixel id . Then the coarse resolution pixel is filled 

with randomly distributed fine resolution pixels of each class according to their proportions. Finally, by 
optimizing the spatial dependence the SRM is generated. In SRM, the optimal values of the parameters 

OT  and 	  in the annealing schedule depends on the scale factor and class separability.(Tolpekin and  

Stein, 2009) 

3.6. Accuracy assessment and performance analysis. 
 
It is necessary to evaluate the accuracy of the classification result against the reference data to assure its 
fitness for use of the intended application. In this context the accuracy is defined as the level of agreement 
between labels assigned by the SRM with the reference data. The common way of representing the 
classification accuracy is with the form of an error matrix which compares the classification results to the 
corresponding reference data on class by class basis.(Richards, 1993). 
  
The kappa coefficient is one of the quality measures that is derived from the whole error matrix 
information and estimates the overall agreement between the classified image and the reference data. The 
highest value of the kappa coefficient is 1 that means there is a perfect agreement between the classified 
image and the reference image where as kappa value 0 shows the classified image is completely different 
from the reference image. In this thesis the accuracy of the results are measured in kappa coefficient and 
the performance of the models are checked with the numerical optimal values obtained from the 
experiment. To do this, experiments are conducted to identify the optimal �  and p�  parameter for each 
scale factors and class separability. An optimal �  and p� values are those values that results the highest 
kappa value. After that, optimal �  and p�  range is specified. Finally the predicted values are compared to 
the experimentally determined optimal values.   
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4. RESULTS  

This chapter presents the optimal�  and p� parameter estimation results obtained in MRF based super 
resolution mapping and the analysis of the results. Section 4.1 presents the experimental results conducted 
to check how the scale factor and class separability value affects the optimal parameters of �  and p� . In 
section 4.2 the results obtained from the models are presented and analyzed. Section 4.3 summarizes the 
main findings of the results. 
 

4.1. Experimental results from synthetic datasets 
To understand how the optimal �  and p� parameters are affected with different scale and class 
separability values, several synthetic images were generated as mentioned in Section 3.2. This process of 
image generation simplifies the complexity of real image. Proper parameter identification and estimation 
are the most crucial part of this study and for this purpose, several experiments have been done and the 
quality of the result is measured using kappa coefficient. In each process the algorithm is run a minimum 
of ten times to get a consistent result and the mean kappa value has been determined.   

4.1.1. The effect of scale factor on the optimal   and p parameter. 

The intension of doing this experiment is to observe the effects of scale factor on the optimal parameter 
of �  and p� . This experiment is carried out using scale factor values of 2, 4,5,6,8, 10 and combination of 
�  values which range from 0.1-0.9 and pan value from 0.0-0.9 are used. The smoothness parameter �  is 
used as a balancing factor between the prior and likelihood energy function whereas p�  is used as a 
balancing factor between the multispectral and panchromatic likelihood energy functions. The first 
experiments are conducted to find the optimal �  and p� combinations, that give maximum classification 
accuracy and to quantify there relation with the scale factor. Figure 4.1 (b) shows an example of the super 
resolution map result obtained with the optimal combination of � and p�  at scale factor 2. 
 
Figure 4.2, shows that, as the scale factor increases the optimal smoothness parameter � value decreases. 
This is mainly due to the no of sub-pixels in the coarser resolution pixels increases with scale factor. This 
makes the coarser resolution pixels highly mixed and hence, using larger smoothness parameter decreases 
the classification accuracy. However, for smaller scale factors, using more contextual information 
increases the classification accuracy. 
 
As can be seen from figure 4.2, at the lower scale factor, p� is very important to obtain higher 
classification accuracy and almost equal amount of likelihood energy is contributed from the 
panchromatic and multispectral image. However, as the scale factor increases the optimal p� value 
decreases. This means that, the contribution of the likelihood energy from the panchromatic image 
decreases. In other words, for larger scale factors the inclusion of more likelihood energy from the 
panchromatic band decreases the quality of SRM. 
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Figure 4.1: super resolution map result. (a) lowest kappa obtained, (b) highest kappa obtained, (c) reference image. 

 
 

 
Figure 4.2: Optimal � value at different scale and class separability in the multispectral and panchromatic 
image. Lines are added to facilitate the interpretation of the data.  
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Figure 4.3: optimal pan value at different scale and class separability in the multispectral and   
panchromatic image. Lines are added to facilitate the interpretation of the data.  

4.1.2. The effect of class separability on the optimal  and pan parameter. 

 
This experiment is performed to see the effects of class separability between spectral classes in the 
multispectral and panchromatic image on the optimal values of �  and p�  parameters in MRF based 
super resolution mapping. This is carried out first by fixing the class separability values in the 
panchromatic image while varying class separability values in the multispectral image. To see the effects, 
the synthetic images is constructed with class separability values in the multispectral image of )( yJM =0.5, 
1.0 and 1.9 with fixed class separability value of )(zJM =0.02 in the panchromatic image, for different 
scale factor values. Similarly, to see the effects of the panchromatic image the class separability of the 
multispectral image is fixed while the class separability of the panchromatic image is varying with )(zJM  
value of 0.5, 1.0 and 1.9. 
 
As can be seen from Figure 4.1, when class separability between spectral classes in the multispectral and 
panchromatic image is smaller, the optimal smoothness parameter �  value becomes less. This indicates 
that, the contribution of the likelihood energy from the multispectral and panchromatic image to the 
global energy should be higher to get better classification accuracy. In another way, when the class 
separability between spectral classes in the multispectral image increases the optimal smoothness 
parameter �  value also increases. This shows that, if the spectral classes are well separated using more 
contextual information further increases the classification accuracy. Moreover, when the class separability 
in the panchromatic image increases the smoothness parameter �  value also slightly increases. These 
results shows that, class separability and smoothness parameters have direct relationships. If there is 
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maximum class separability between spectral classes in the multispectral and panchromatic image the 
smoothness parameter �  value becomes higher.  
 
In general, for most of the scale factors when the class separability in the multispectral band increases, the 
optimal �  value also increases. Nevertheless, increase in class separability of the panchromatic image 
does not significantly affect the optimal � value. As observed from Figure 4.2, the increase in the class 
separability between spectral classes results in increase the optimal p�  parameter. This indicates that, if 

spectral classes are well separated, using more likelihood energy from the panchromatic band increases the 
classification accuracy. 

 
 

 

 

Figure 4.4: The effect of class separability on the optimal values of  and pan.  (a) and (c) show the 
change of the optimal  and pan values respectively, when class separability in the multispectral image 
changes for a fixed JMZ value of 0.02. Here, (b) and (c) show the change of the optimal  and pan 
values respectively, when class separability in the panchromatic image changes for a fixed JMY value of 
2.0.       
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It is clearly seen from Figure 4.3 (a), when the class separability between spectral classes in the 
multispectral image increases, the optimal smoothness parameter � value as well increases significantly. 
This indicates good class separability between spectral classes make the prior model provide more 
information for the classification. The optimal smoothness parameter �  value is also slightly affected 
with the increase in class separability between spectral classes in the panchromatic image as shown in 
figure 4.3 (b). On the contrary, if class separability in the panchromatic image increases the optimal p�  
value increases more as shown in figure 4.3 (d). Where as, Figure 4.3 (c) show, optimal p� value is less 
affected with the increase in class separability in the multispectral image. 
               

4.1.3. Effect of scale factor and class separability on the classification accuracy kappa 

                       

Figure 4.5: The effect of scale factor and class separability in the classification accuracy kappa value. 

 
Figure 4.5 indicates that, classification accuracy kappa value show significant increase, when class 
separability between spectral classes in the multispectral image increases. On the contrary, very low class 
separability leads to confusion between spectral classes, which result in inferior classification accuracy. It is 
also noticed that, when class separability between spectral classes in the panchromatic image increases the 
classification accuracy kappa value increases to some extent. Generally it is observed from the figure that, 
when the scale factor increases the classification accuracy kappa value decreases. nevertheless, at larger 
class separability in multispectral and panchromatic image the classification accuracy kappa value does not 
show big variations, the value more or less remain the same for different scale factors. The effect of scale 
factor on the classification accuracy kappa value is very small for widely separable classes. However, it 
affects more, if the class separability between spectral classes in the multispectral and panchromatic image 
is small.  
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As it is observed from figures A.1, A.2 and A.3 in appendix A, the value of �  and p� has an effect on the 
value of kappa for each combination of S, )( yJM and )(zJM . For every combination of S, )( yJM  
and )(zJM , there exist an optimal �  and p�  combination where the classification accuracy attains the 
maximal value Kmax. There is also a range of �  and p�  values that results classification accuracy kappa 
close to maxk . In this study the range for �  and p� values is defined in such away that the kappa value 
obtained with those �  and p� values is greater than 0.85 maxk . 

4.2.  and p estimation results from synthetic image 
In this section the results estimated with the models for optimal �  and p� parameters are presented. As 
it is observed from figure 4.5, 4.6 and 4.7, the prediction of �  and p� value with the model fits the 
empirical data obtained from the experiments.  
 
To estimate the parameters with the model only scale factor and class separability information is required 
(see equation 3.22 and 3.26). The class separability between spectral classes in the multispectral and 
panchromatic image is calculated by using equation 2.7 and 2.8 respectively. In figure 4.5, the parameters 
are estimated by considering the minimum class separability between all classes and if class separability 
values between different pairs of classes vary strongly an average class separability value can be used. The 
estimation results based on the average class separability values of all classes are listed in table C.1 in 
appendix C. Some adjustment factors are used in the model developed in (3.22 & 3.26) to best fit the 
estimation with the experimental data. Identification of �  and p� is not very precise because the 

estimation was done by increasing �  and p�  values with step sites of 0.1.  
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Figure 4.6: Optimal  values for varying parameters S and JMY. : The experimentally determined optimal 
values. range: The range of corresponding to K � 0.85 maxk . : The estimation from the model. 
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Figure 4.7: Optimal pan values for varying parameters S and JMY. The experimentally 
determined optimal values. pan range: The range of pan corresponding to K� 0.85Kmax. * pan: The 
estimation from the model 
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Figure 4.8: Optimal values for varying parameters S and JMY. pan & : The experimentally determined optimal 
values. * pan & : The estimation from the model. pan range & range: The range of pan and corresponding to 

max85.0 kk � . Here (a) and (b) for JMY value of 0.5 and (c) and (d) for JMY value of 1.0. (e) and (f) for JMY value 
of 1.9 for a fixed JMZ value of 0.02. 
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4.3. parameter estimation result from  the real image 
 
The applicability of the models for real image is tested with the result obtained from the experiment, 
conducted by Wijeratna Nanthamuni (2010 MSC student, who works on the title, Integration of Spatial 
and Spectral data of very high resolution imagery for building footprint detection using Super Resolution 
Mapping).  The optimal � and p�  results obtained from the experiment are 0.8 and 0.3 respectively and 
the models estimates optimal � value equal to 0.98 and for p�  value 0.3. This shows that the models can 
estimate the optimal parameters for real images with in a tolerable range. 
 

4.4. Summary of observation from the results 
The result from the experiments proof that, the optimal �  and p�  parameters have a direct relation ship 
with class-separability and have an inverse relation ship with the scale factor values. There exist an optimal 
combination of �  and p�  values, where the classification accuracy attains the maximum value maxk , for 
each SRM input parameters scale factor and class separability. The result obtained from the models 
developed in this research for the optimal �  and p� parameter estimation agrees with the empirical data. 
The likelihood information obtained from the panchromatic band increases the classification accuracy at 
the lower scale factors. 
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5. DISCUSSIONS,CONCLUSION AND 
RECOMMENDATION 

5.1. Discussions 
 
The main objective of this study is to develop models based on local energy balance analysis for the 
estimation of optimal � and P�  parameters. The smoothness parameter �  acts as a balancing factor 
between the prior and conditional energy in the MRF model. Whereas P�  controls the balance between 
the likelihood energy from the panchromatic and multispectral band. In this study the effects of class 
separability and scale factor on the optimal parameters of � and P�  in the MRF based super resolution 
mapping are studied.  
  
The obtained result from the experiments show that the optimal �  and P� parameters are influenced 
with scale factor and class separability values. As the scale factor increases the optimal smoothness 
parameter �  value decreases. This is mainly due to the number of sub-pixels in the coarser resolution 
pixels increases with scale factor and makes the coarser resolution pixels highly mixed. In a similar way, as 
the scale factor increases the optimal P� value decreases. This implies that, the contribution of the 
likelihood energy from the panchromatic image decreases. Therefore, to obtain better classification 
accuracy the likelihood energy from the multispectral band should be high.  
 
As can be seen from Figure 4.1, when class separability between spectral classes increases the optimal 
� value also increases. This result pointed out that, for higher class separability between spectral classes, 
the global energy needs to be modeled with a higher �  value. Whereas, in the case of lower separability of 
classes the global energy has a tendency to depend on the likelihood more than the prior energy. In other 
words, for lower class separability of classes, the class labelling depends more on the spectral information. 
This substantiates the need for accurate estimation of mean and covariance matrices for each spectral 
class, to obtain better classification results. 
 
The classification accuracy kappa value decreases with increasing scale factor as shown in figure 4.5. How 
ever, an exception from this observation is an increase in classification accuracy with increasing scale 
factor value for class separability 5.0)( �yJM  and 02.0)( �zJM  at scale factor 5. The reason may be 
due to the less number of realizations of the images. With the same scale factor and class separability 
information the classification accuracy kappa value is depends on the optimal parameters of �  and p� as 
can be seen in figure 4.5. 
 
The models relate �  and P�  parameter estimation to scale factor and class separability information of 
the multispectral and panchromatic image. To estimate the parameters with the models only scale factor 
and class separability information is needed. The estimation is done by considering minimal class 
separability and an average class separability between spectral classes. The results achieved with these 
models for the estimation of the optimal parameters agree with the experimental data as shown in Figure 
4.6, 4.7, 4.8. 
 
The models are developed based on the assumption that the covariance matrices of the spectral classes are 
the same. This assumption simplifies the modeling significantly and considering unequal covariance 
matrices will make the model more powerful and realistic. The synthetic image which is used in this study 
was constructed with the assumption that the fine resolution pixels are conditionally independent. This 
assumption simplifies the construction of the synthetic images. However in real images, the spectral values 
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of pixel are spatially correlated. The applicability of the models to real image is tested and promising result 
was found however the models should consider the spatial structure of the pixels to be realistic. To apply 
the proposed models for real images first the scale factor value is decided, which is used as an input for 
SRM as well as for the model. Then the land cover classes are defined. Using the training set the class 
parameters mean and covariance of each class from the multispectral and mean and variance from the 
panchromatic band is estimated. These values are used for calculating the class separability (Bhattacharyya 
distance) between spectral classes in the multispectral and panchromatic image. Finally the optimal �  and 

p� parameter are estimated with the model based on class separability and scale factor information. 
 
 
 
 

5.2. Conclusion  
Automatic MRF parameter estimation is a challenging task, which is addressed in this research. The 
models are developed based on local energy balance analysis for the automatic estimation of the optimal 
parameters � and P�  in MRF based SRM. The Models relates the parameter estimation to scale factor 
and class separability information. The results of the experiments carried out using the synthetic images 
illustrate that the optimal �  and P� parameters depend on the scale factor and class separability. When 
the scale factor increases the optimal �  and P�  parameters decreases. On the contrary, when the class 
separability increases the optimal �  and P�  parameters also increase. Furthermore, for each 
combination of scale factor and class separability values in the multispectral and panchromatic 
images, an optimal �  and P�  values exist. There exists also a range of �  and P�  values for which the 
classification accuracy is close to the optimal value. The parameter values estimated with the model agreed 
with the results obtained from the experiment. The developed model allows users to estimate optimal �  
and P�  values by using the scale factor and class separability information of the panchromatic and 
multispectral images. Because of the incorporation of the panchromatic band, the result obtained for the 
optimal  smoothness parameter �  has a slight difference with the result obtained in Tolpekin and  Stein 
(2009) 
 
 

5.3. Recommendations 
 
   1. It is recommended to improve the models for real images where the spectral values of pixels are    
      Spatially correlated. 
 
  2. It is also recommended to improve the models by considering unequal class covariance matrices    
     of the Spectral classes.  
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APPENDIX 

A.  Summary of results for optimal  and  pan values. 
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Figure A.1: Combination of  and  pan values that gives kappa value above 0.85Kmax at JMY=0.5 and 
JMZ=0.02 
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Figure A.2: Combination of  and  pan values that gives kappa value above 0.85Kmax at JMY=1.0 and 
JMZ=0.02 
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 Figure A.3: Combination of  and  pan values that gives kappa value above 0.85Kmax at JMY=1.9 and 
JMZ=0.02 
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B.  Summary of the result for optimal  and  pan estimation with average class separability.  
 

scale JMY  JMZ   
*� pan  

*�  
2 0.50 0.02 0.14 0.98 
2 1.00 0.02 0.15 0.98 
2 1.90 0.02 0.45 0.98 
2 2.00 0.50 0.50 0.99 
2 2.00 1.00 0.50 0.99 
2 2.00 1.90 0.60 0.99 
4 0.50 0.02 0.16 0.93 
4 1.00 0.02 0.15 0.94 
4 1.90 0.02 0.42 0.95 
4 2.00 0.50 0.50 0.99 
4 2.00 1.00 0.50 0.99 
4 2.00 1.90 0.50 0.99 
5 0.50 0.02 0.12 0.90 
5 1.00 0.02 0.15 0.91 
5 1.90 0.02 0.17 0.92 
5 2.00 0.50 0.50 0.99 
5 2.00 1.00 0.50 0.99 
5 2.00 1.90 0.50 0.99 
6 0.50 0.02 0.11 0.88 
6 1.00 0.02 0.14 0.88 
6 1.90 0.02 0.15 0.90 
6 2.00 0.50 0.40 0.98 
6 2.00 1.00 0.40 0.99 
6 2.00 1.90 0.60 0.99 
8 0.50 0.02 0.09 0.82 
8 1.00 0.02 0.12 0.83 
8 1.90 0.02 0.13 0.85 
8 2.00 0.50 0.40 0.98 
8 2.00 1.00 0.40 0.99 
8 2.00 1.90 0.60 0.99 

10 0.50 0.02 0.07 0.77 
10 1.00 0.02 0.10 0.78 
10 1.90 0.02 0.11 0.80 
10 2.00 0.50 0.40 0.97 
10 2.00 1.00 0.40 0.99 
10 2.00 1.90 0.60 0.99 

 
 
 
 
 
 


