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ABSTRACT 

This research work concentrates on understanding the concepts of hyperspectral signal subspace 

identification or dimensionality reduction and endmember extraction by the integration of spatial 

information with spectrally rich hyperspectral datasets. Signal subspace identification has become an 

integral part of a number of hyperspectral image processing techniques in which the data dimensionality is 

high and there is a lot of redundant information present in the dataset. Effectively the image signal 

information is usually concentrated in lower dimensional subspace. Signal subspace identification enables 

the representation of signal vectors in this lower dimensional subspace and aids in the correct inference of 

the dimensionality of the dataset. Hyperspectral subspace identification by minimum error (HySime) is an 

eigendecomposition based technique and does not depend on any tuneable parameters. HySime initializes 

by determining the signal and noise correlation matrices and then representing the subspace by minimizing 

the mean square error between the signal projection and the noise projection. The result is an estimate of 

the number of spectrally distinct signal sources or the inherent dimensionality of the dataset. 

Most endmember extraction algorithms are based on the spectral properties of the dataset only to 

discriminate between the pixels. Endmembers with distinct spectral profiles or high spectral contrast are 

easier to detect, the endmembers having low spectral contrast with respect to the whole image are difficult 

to determine. The spatial-spectral integration approach searches for endmembers by analyzing the image 

in subsets such that it increases the local spectral contrast of the low contrast endmembers and increases 

their odds of selection. Spatial spectral integration process utilizes HySime to determine a set of locally 

defined eigenvectors explaining the maximum variability of the subsets of the image. The image data is 

then projected onto these locally defined eigenvectors which produces a set of candidate endmember 

pixels. The candidate endmember pixels, that the spectrally similar and having similar spatial coordinates 

are averaged together and grouped into different endmember classes.  

The results highlights that HySime performs effectively in determining the number of spectrally 

distinct signal sources in the spaceborne hyperspectral datasets. The spatial-spectral integration results 

show that the endmember pixels obtained by imposing spatial constraints are cleaner and more 

representative of the land use land cover classes. 

 

Keywords: Hyperspectral remote sensing, Dimensionality reduction, Signal subspace identification, 

Spatial-spectral integration, Endmember extraction, Spectral Unmixing 
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1. INTRODUCTION 

Recent advances in remote sensing technology and the launch of a number of satellites have 

drastically increased space borne remote sensing capabilities which has greatly enhanced our 

understanding of a number of aspects of earth sciences. The multispectral sensors acquire electromagnetic 

energy in a small number of discrete spectral bands with comparatively large bandwidths which limits their 

ability for making precise earth surface studies. Hyperspectral sensors record reflected electromagnetic 

energy from the Earth surface across the electromagnetic spectrum extending from the visible wavelength 

region through the near-infrared and mid-infrared (0.3µm to 2.5µm) in tens to hundreds of narrow (in the 

order of 10nm) contiguous bands [1]. These contiguous bands are also referred to as spectral bands. As a 

result of such narrow bandwidths an almost continuous and detailed spectral response can be generated 

for a pixel which provides accurate and precise information about its constituents and is clearly an 

advantage over multispectral imaging. A hyperspectral image can be illustrated as an image cube with the 

two dimensions of the face of the cube represents the spatial information and the third dimension 

representing the spectral information. Figure 1.1 shows the Hyperion datacube and the spectrum. 
 

 

 

 

 

 

 

 

 

Figure 1.1 Hyperion Image cube of Dehradun area and reflectance spectrum 
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1.1. Problem context and outline 

The availability and use of airborne hyperspectral data has been well studied and documented 

with a number of airborne sensors in operation since early eighties. With the launch of NASA‟s Earth 

Observing 1(EO-1) Hyperion instrument in the year 2000, a platform was created for exploiting the 

spaceborne hyperspectral imaging capabilities. Hyperion was the first hyperspectral sensor to provide a 

continuous spectral profile across the broad electromagnetic spectrum ranging from 400nm to 2500nm. 

The comparison of an airborne sensor, such as Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) and Hyperion datasets in terms of spectral information provide comparable results under 

optimum acquisition conditions viz. illumination, dark targets etc. [2]. The spatial resolution of airborne 

sensors (2-20 m depending upon flight altitude and sensor resolution) is however comparatively higher 

than that of spaceborne sensors (30 m in the case of Hyperion). The low spatial resolution of the hyperion 

sensor causes a problem of mixed pixels, a pixel which is formed when spectra of different underlying 

substances are combined into a mixture spectrum. Inspite of the limitations on the spatial resolution there 

are quite a few arguments which go in favour of spaceborne sensors. Firstly, they allow regular and 

repeated coverage over wider and restricted areas. Secondly, variations and distortions arising due to 

aircraft motion are reduced [3]. 

Due to the continuous spectrum for each pixel, the high-dimensional data space generated by 

hyperspectral sensors poses challenges in image processing and data analysis and is quite different from 

multispectral processing where there are only a few discrete bands Also the spaceborne hyperspectral 

remote sensing images are more affected by noise due to the narrow bandwidths, which can hamper the 

image interpretation and information extraction processes.  

The spectrum received at the sensor can be thought of as the sum of spectral radiance energy 

(useful signal) and the noisy component. Image noise in remote sensing imagery can be regarded as the 

random variation in the brightness values in the image induced by the sensor circuitry [4], which is always 

independent of the atmospheric errors [5]. Atmospheric attenuation is due to the intervening atmospheric 

constituents, such as water vapours, aerosols etc., between the observed terrain and the sensor which 

affects the radiance energy received at the sensor.  

Management of noise errors induced due to the sensor system and atmospheric attenuation forms 

the basis for applying pre-processing techniques, such as, bad band removal, destriping and atmospheric 

corrections, before proceeding to advanced processing for dimensionality reduction, endmember 

extraction or classification etc. 

Hyperspectral datasets are spectrally overestimated and there is a lot of redundant information 

present even after the pre-processing steps. Effectively there is still noise present in the dataset and the 

useful signals usually occupy lower dimensional subspace which needs to be inferred. So there is need for 

exploration of dimensionality reduction (DR) methods which can effectively reduce noise in hyperspectral 

datasets with minimum loss of information.  

 

1.2. Signal Subspace Identification 

Although the presence of such large number of spectral bands does assist in effectively defining 

different classes; to have realistic multivariate statistical estimates, the size of the training data required 

increases exponentially with the increase in dimensionality of a dataset [6]. Also computations performed 

on an entire data cube with limited number of training samples may not give the desired classification 

accuracy. Considering the impracticality of using large training datasets, the alternate solution must be 

considered, which calls for dimensionality reduction for determining optimal lower dimensional subspace 

with a minimum loss of information and class separability. Signal subspace identification enables us to 

correctly identify the inherent dimensionality of the dataset, thereby increasing the efficiency of 

endmember extraction algorithms and allowing more efficient use of storage space and computational 

power [7]. The high dimensional hyperspectral images contain a lot of redundant information and the 
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signal information is usually concentrated in lower dimensional subspaces. Thus signal subspace 

identification has become a necessary first step in number of hyperspectral processing algorithms such as 

target detection, classification and spectral unmixing.  

A number of different approaches have been applied for reducing data dimensionality or 

subspace identification over the decades. Band selection or extraction takes the high correlation between 

spectral bands into consideration and selects a few spectral bands with high signal to noise ratio (SNR) [8]. 

Principal component analysis (PCA) [9], maximum noise fraction (MNF) [10], and Singular valued 

decomposition (SVD) [11],  are projection techniques that aim at reducing the spectral information to 

lower dimensions.  

PCA represents the signal in terms of power residing in the data, according to the magnitude of 

eigenvalues and the number of non-zero eigenvalues giving the dimensions of the dataset [12]. PCA 

neither computes any noise statistics nor does it optimize the SNR. PCA reorders the components 

according to decreasing image quality with the increasing component number but that is not always the 

case in reality [10]. MNF always orders components by image quality and maximizes the SNR, but requires 

prior knowledge about noise and signal covariance matrices [10]. SVD estimates the signal and noise 

covariance matrices and the subspace are identified by selecting the eigenvalues whose values are larger 

than the variance in our dataset [7]. As discussed in [7], limitations of MNF and SVD based approaches 

are; 1) the assumption that noise present in Hyperspectral datasets is independent and identically 

distributed (i.i.d) which is always not the case, and 2) there are always some random disturbances in the 

estimates of variance, eigenvalues and eigenvalues matrices of the signal correlation matrices. Also MNF 

and SVD assume the subspace dimensions are known beforehand, which is not the case in most 

applications [7]. The shift difference method for noise estimation in MNF has two weaknesses [7]: it 

assumes that adjacent pixels have almost same signal information and, for good noise estimation, shift 

difference method should be applied on a homogeneous area. Both these assumptions are not always 

valid. 

The determination of the correct subspace dimensionality or the intrinsic dimensionality of 

hyperspectral datasets is a challenge. The intrinsic dimensionality of a dataset can be defined as the 

minimum number of parameters required to explain the properties of the acquired dataset [13]. Methods 

such as PCA [9] and factor analysis, are suitable for multispectral imagery as there are only a small no of 

bands, and uses the eigenvalues to determine the intrinsic dimensionality. The signal structure of the 

hyperspectral sensors, due to their high spectral resolution and a large number of contiguous bands, is 

largely unknown and may contain a number of unknown spectral sources which includes image 

endmembers (known or unknown), anomalies and other interference sources [13], which creates further 

issues in the correct determination of the intrinsic dimensionality. 

1.2.1. Hyperspectral Subspace Identification by minimum Error (HySime)  

This research work concentrates on a recently developed approach for dimensionality reduction 

or signal subspace identification (SSI), called Hyperspectral signal identification by minimum error 

(HySime), which is a minimum mean square error based approach to infer the subspace by minimizing the 

sum of projection power error and the noise power. This method was proposed in [7] and was applied on 

AVIRIS sensor. This method is eigen-decomposition based i.e. it decomposes or reduces the original 

signal into subsets of eigen vectors. The subspace obtained by HySime optimally represents the original 

signal with minimum error. HySime uses multiple regressions for the estimation of the noise and signal 

covariance matrices and is adaptive, i.e. it does not require any tuning parameters. Also it makes no 

assumptions about the noise being independent and identically distributed (i.i.d.) and the subspace 

dimensions.  

For hyperspectral datasets a common approach for dimensionality reduction is the application of 

eigen decomposition based techniques, such as PCA, MNF or SVD. The difficulty in getting reliable noise 

estimation from these eigenvalues is that these eigenvalues are still representing the mixtures of the signal 

sources and the noise present in the data. When the signal sources are too weak their contribution towards 
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the computation of eigenvalues is very less, which can be observed if there is no sudden drop in 

eigenvalues distribution [14]. HySime, as discussed in further sections, instead finds the subset of 

eigenvectors and the corresponding eigenvalues by minimizing the mean square error between the original 

signal and the noisy projection of it. 

This study will focus on the results of HySime, in terms of signal subspace inferred, when applied 

to Hyperion datasets, and then a comparison of the results with the other mentioned techniques. 

 

1.3. Endmember Extraction 

1.3.1. Spectral Unmixing 

Pixels values in spaceborne hyperspectral datasets, most of the times, have contribution from 

more than one type of ground objects due to their limited spatial resolution causing mixed pixel spectrum. 

Spectral unmixing aims at the decomposition of the mixed pixel spectrum into its constituent spectra, also 

called endmembers [12].  Each pixel in the hyperspectral image can be considered as being composed of 

linear combination of ground spectra or endmembers with each endmember contributing to the pixel 

spectra. Thus the spectral signature at each pixel in a L-dimensional hyperspectral image, i.e. the observed 

spectral vectors, Y   RL, when p is the number of endmembers, can be expressed as, 

 

      

            (1.1) 

where,  y - L-dimensional pixel vector 

x and n  - L-dimensional signal and noise vectors respectively 

 

Since the signal vectors lie in an unknown p-dimensional subspace, each signal vector is given as, 

 

            

 

   

 

            (1.2) 

where, M - L×p matrix, whose columns are  L×1 endmembers. 

 s – abundance fraction of each endmember in a pixel 

 

In essence spectral unmixing can defined as the process of determination of the number of image 

endmembers and their pure signatures and the amount in which they appear in the given mixes pixel.  

1.3.2. Spatial-Spectral Integration 

Most of the endmember extraction techniques, such as pixel purity index (PPI) [15], N-FINDR 

[16] etc., rely on the spectral properties of the data alone for endmember extraction without giving any 

importance to the spatial arrangement of the pixels. Thus, while searching for endmembers the 

hyperspectral dataset is treated as an unordered collection of spectral measurements with no spatial 

arrangement [17] [18]. So there is a need for image representation of the data in the quest for endmember 

extraction as spatially adjacent data elements may be similar despite the differences induced by the noise.  

Spatial context in hyperspectral processing is drawing attention of the researchers in this 

direction. Two of the most famous algorithms in this direction are the automated morphological 

endmember extraction (AMEE) algorithm [17] and the spatial spectral endmember extraction (SSEE) tool 

[19]. The AMEE method estimates for each pixel vector, a scalar quantity that gives some measure of the 

spectral similarity of adjacent pixels. This scalar quantity is then used to weigh the importance of the 
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spectral information associated with each pixel in terms of its spatial context, i.e. distance from other 

spectrally similar pixels. The SSEE algorithm on the other hand extracts endmembers by partitioning the 

hyperspectral image into subsets thus enhancing the local spectral contrast of the endmembers, thus 

enhancing their chances of selection.  

The SSEE model is adopted in this study for the integration of spatial spectral information for 

endmember extraction over AMEE, as AMEE has been primarily developed as a pre-processing method 

to run on full datacube before applying the conventional spectral based endmember extraction algorithms.  
 

1.4. Data Set 

1.4.1. Hyperion Sensor 

Hyperion instrument onboard NASA‟s Earth Observation-1 (EO-1), launched on 21st November 

2000 as part of NASA‟s New Millennium Program, is the first spaceborne Hyperspectral sensor for Earth 

Observation studies. It orbits the Earth in a sun-synchronous (polar) orbit at an altitude of 705km. The 

Hyperion is a Push-broom scanner with a high spectral resolution. It has 242 spectral bands spanning a 

spectral range from 0.4 to 2.5 µm, with a sampling interval of 10nm. The Spatial resolution is 30m (ground 

sample) with a swath width of 7.7 km and covers an area of 7.7x100 square km per image with high 

radiometric accuracy (12 bit quantization). 

The Hyperion sensor has two spectrometers operating over different spectral ranges. One 

operates in Visible and near Infrared region (VNIR) i.e. 0.4 to 1µm having 70 bands and the other 

operates in Shortwave Infrared region (SWIR) i.e. 0.9 to 2.5µm having 172 bands. The overlap region 

between the two spectrometers between 0.9 to 1µm allows for cross calibration between two 

spectrometers. Also it helps in improving the signal to noise ratio. 

The data in the form of cubes is put into Hierarchical Data Format (HDF) format and is 

archived. The dataset used for current analysis is radiometrically corrected Hyperion L1R radiance dataset 

[20].  

1.4.2. Hyperion L1R data of Dehradun 

The Hyperion image over Dehradun region was acquired on 25th December, 2006 at 05:08:45 

AM. The dimensions of the acquired dataset are 256 (ground samples of 30m width) x 3407 (lines ) x 242 

(bands). The data ia acquired in a wavelength range to 355.589 nm to 2577.070 nm at approximately 10nm 

sampling interval and the signal to noise ratio is 65 – 130 dB. The scene characteristics of the hyperion 

image of Dehradun area are listen in Table 1.1. 
 

Table 1.1 Scene Characteristics of Hyperion data of Dehradun Area 

(Source: http://edcsns17.cr.usgs.gov/NewEarthExplorer) 

Data Attribute  Attribute Value  
 

Data Attribute  Attribute Value  

Entity ID EO1H1460392006359110PY  
 

Scene Start Time 2006 359 05:08:45 

Acquisition Date 12/25/2006 
 

Scene Stop Time  2006 359 05:13:05 

Site coordinates 30.34020 N, 78.00660  E 
 

Date Entered  1/2/2007 

NW Corner 30°40'36.48"N, 78°03'07.97"E  
 

Target Path  146 

NE Corner 30°39'40.99"N, 78°07'45.03"E  
 

Target Row  39 

SW Corner 29°46'24.74"N, 77°48'47.43"E  
 

Sun Azimuth  153.720703 

SE Corner 29°45'29.66"N, 77°53'22.00"E  
 

Sun Elevation  31.538009 

Cloud Cover 0 to 9% Cloud Cover  
 

Satellite Inclination  98.18 

Receiving Station SGS  
 

Look Angle  3.3268 
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1.4.3. Study Area 

The city of Dehradun lies at 30°19' N and 78°20' E in the south central part of Dehradun district 

in the state of Uttaranchal. The Hyperion image strip highlighting the study area is given in Figure 1.2. 

 

 

Figure 1.2 Dehradun City and its corresponding Hyperion Image (Scale: 1:100,000) 

 

1.4.4. Linear Imaging Self Scanner (LISS-4) 

The Linear Imaging Self Scanner (LISS-4) is a high spatial resolution camera onboard the 

Resourcesat-1 satellite launched by Indian Space Research Organisation (ISRO) in October, 2003. LISS-4 

is a high resolution sensor with a spatial resolution of 5.8 meters and a swath width of 23.9 km from a sun 

synchronous orbit at an altitude of 817 km.  

 

1.5. Research Identification 

1.5.1. Problem Statement 

The high dimensionality and the mixed spectrum of Hyperion sensor give us an opportunity to 

study the behaviour of different signal decomposition techniques and spectral spatial integration 

techniques for endmember extraction. Current endmember extraction techniques treat the hyperspectral 
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datasets as unordered collection of spectral measurements without any spatial relationships. So there is a 

need of incorporating contextual information in the process of endmember extraction. 

Only a few attempts exist in the literature which aims at integrating contextual spatial information 

with spectrally decomposed subspace in the process of endmember extraction, and none of these have 

been applied on spaceborne hyperspectral datasets, which opens up possibilities of more research in this 

area and is the primary goal of this research. The endmember extraction process could benefit by 

incorporating spatial information into spectrally rich hyperspectral datasets.  

1.5.2. Research Objective 

To identify an optimal hyperspectral signal subspace in spaceborne hyperspectral datasets with 

HySime and to pursue endmember extraction by integration of contextual spatial information with the 

spectrally decomposed subspace. 

1.5.3. Research Questions 

The following research questions have been formulated: 

 

• Is the HySime signal decomposition technique more efficient than other existing techniques, 

in the context of spaceborne hyperspectral datasets? 

• What will be the intrinsic dimension of the subspace identified by HySime? 

• How to integrate spatial information with spectral subspace identified by HySime for 

endmember extraction? 

• How will the integration of spatial and spectral information improve the classification and 

mapping accuracies? 

 

1.6. Research Setup 

The research work methodology is divided into three different parts: 

 Pre-processing  

 Hyperspectral subspace Identification 

 Spatial-Spectral Integration for endmember extraction 

 Spectral unmixing 

1.6.1. Pre-processing 

The pre-processing of dataset is a necessary first step in Hyperspectral Processing algorithms. 

Spaceborne hyperspectral datasets require careful data pre-processing because of their low spatial 

resolution which causes the mixing of spectral response of materials within a pixel. The various steps of 

pre-processing applied to the dataset in this work are bad band removal, abnormal pixel removal and 

destriping and atmospheric corrections. 

1.6.2. Signal Subspace Identification 

Signal subspace is estimated in two steps: 

 Noise estimation 

Noise in the dataset is estimated using the multiple regression theory. These noise estimates 

become the input for the subspace identification algorithm. 
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 Hyperspectral Subspace Identification by minimum error (HySime) 

The dimension of the atmospherically corrected image is then reduced using the HySime 

algorithm which also gives an estimation of the number of endmembers present in the scene. 

HySime provides an estimation of the number of candidate endmember pixels in the dataset. 

1.6.3. Spatial Spectral Integration 

For analyzing the spatial and spectral properties of the candidate endmember pixels for 

endmember extraction, the model of the SSEE tool is adopted in this research work. 

1.6.4. Spectral Unmixing 

The extracted endmembers are used to unmix the hyperspectral data into the corresponding 

abundance fraction maps using the linear spectral unmixing module within ENVITM. 

 

1.7. Thesis Organisation 

The organization of the thesis is described in this chapter. The thesis contains a total of six 

chapters. 

In chapter one, problem context and outline, the problem statement, the research objectives, the 

research questions, the research setup and the thesis organization is described. In chapter two, the 

literature review about different stages and various relevant aspects of the thesis is presented which 

includes most relevant works on Dimensionality reduction methods, spectral unmixing and previous 

works on different endmember extraction algorithms. In chapter three, the different pre-processing 

methods applied on the dataset to ready it for further processing are described. Chapter four is divided 

into two sections, first signal subspace identification contains the methodology on the signal subspace 

identification. The second section, detailed description of the spectral spatial endmember extraction 

algorithm used for this work is described. Chapter 5 results obtained after following the proposed 

methodology are presented. In Chapter 6 the conclusions derived from the results are presented and 

recommendations for this work are given. 
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2. LITERATURE REVIEW 

The use and application of airborne hyperspectral imaging has been well studied and documented 

since the early eighties, but with the launch of the spaceborne Hyperion imaging spectrometer it was now 

possible to regularly obtain imaging spectroscopy data from the earth‟s orbit. Hyperion was a step forward 

in space based hyperspectral instrumentation and was designed as a technology demonstration instrument 

[21]. Although intended as technology demonstration and performance validation instrument for a period 

of one year, Hyperion is still providing data continuously. So with a number of spaceborne hyperspectral 

sensors planned to be launched in the next few years, EnMAP (Environmental Mapping and Analysis 

Program) to be launched in 2014 [22] by German Aerospace Center (DLR) and PRISMA [23] by Italian 

Space Agency (ASI) to be launched in 2012, the challenge will be either the development of new 

hyperspectral image processing techniques or refining the existing algorithms for the spaceborne 

hyperspectral datasets. This section will provide a brief overview of the existing hyperspectral processing 

algorithms and techniques. 

 

2.1. Review of Dimensionality Reduction Methods 

Dimensionality reduction or signal subspace identification has become a necessary pre-processing 

step in many hyperspectral processing and analysis algorithms. For accurate estimation of the signal 

subspace dimension, an effective noise estimation procedure is required so as to segregate noise from the 

signal component. A brief survey of the literatures reviewed for existing noise estimation methods and 

dimensionality reduction or signal subspace identification methods is presented in this section.  

Jimnez & Landgrebe [6] and Landgrebe [24] have given two significant properties of high dimensional 

datasets; Firstly, high dimensional datasets are mostly empty and can be projected onto lower dimensional 

subspaces without consequential losses in terms of class separability. And secondly, the number of 

training samples required for statistical estimates increases exponentially with the increase in 

dimensionality of a dataset. Thus the need arises to project the high dimensional datasets onto appropriate 

subspace without losing the class separability information. 

A band selection technique, using the process of feature weighting, was proposed by Huang & He 

[25], wherein the final spectral band components were selected based on the high correlation exhibited 

between the adjacent bands in the hyperspectral imagery. In hyperspectral data band selection was 

performed by pair wise separability criterion and matrix coefficient analysis. The criterion values for 

individual components were computed by Principal Component Transform (PCT). Sorting of bands for 

each class involved the evaluation of PCT coefficients and criterion values, determination of final weights 

for original bands and giving a threshold value for eliminating the redundant bands. The method was 

demonstrated to be better by comparison with two sequential searches and four feature weighting 

algorithms. 

2.1.1. Principal component analysis (PCA) 

PCT or PCA is one of the most popular tools for dimensionality reduction. As observed by Green 

et. al. [10], PCT does not provide an optimal ordering of components according to image quality due to 

varying noise characteristics from band to band. Principal component analysis (PCA) [9] is a linear 

transformation that maximizes the data variance by transforming the image data to a new coordinate 

system so that the original brightness values a are reprojected onto a new set of axis or dimensions. The 
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greatest variance or spread obtained by the redistribution of points by any projection is associated with the 

first principal component. The second principal component explains the second greatest variance in the 

dataset and is orthogonal to the first principal component. For dimensionality reduction the orthogonal 

axis are identified by eigendecomposition of the covariance matrix of the data as given in the following 

equation [12], 

 

   
 

 
                 

 

   

  

            (2.1) 

 where,    - sample covariance matrix, 

    - image pixel vectors, (           ), 

      - sample mean vector, 

 and, N – number of pixels   

„ 

 The eigenvalue decomposition of covariance matrix is represented as, 

 

        

            (2.2) 

 where, U - eigenvector matrix, 

 and,    - diagonal eigenvalues matrix 

 

 The magnitude of the eigenvalues determines the power residing in the data and the eigenvalues 

are used to reorder the eigenvectors and retaining those representing the maximum variance in the dataset. 

The number of non zero eigenvalues gives the effective dimensionality of the data. PCA does not take 

noise statistics of the dataset into account, and does not construct the eigenvectors of the data in a way 

that optimizes signal to noise ratio [12], thus may not always give better results. 

2.1.2. Singular Valued Decomposition 

Scharf [11] showed that SVD maximizes the variance in the data i.e. the span of the eigenvectors 

whose corresponding eigenvalues are larger than the variance in the dataset give the estimate of the 

subspace dimension and are ordered in the decreasing order of significance. 

Principal component analysis (PCA) as discussed in previous sections does not provide any noise 

statistics and thus may not be suitable for dimensionality reduction of high dimensional and noisy 

hyperspectral datasets. 

A common practice in performing dimensionality reduction in of hyperspectral datasets consists 

of assuming that the noise is having zero mean and is i.i.d (uncorrelated). The correlation matrix for the 

observed signal vectors,   , is given by: 

 

         
       

           (4.3) 

where, E - eigenvector matrix of the signal correlation matrix 

   - eigenvalues matrix of the signal correlation matrix, with the diagonal elements 

ordered in decreasing magnitude. 

Thus the signal subspace dimensions, p, or the signal subspace estimate is given by the 

eigenvectors corresponding to the first few largest eigenvalues. The estimated signal subspace ‹M› is  

given by: 
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where,        - eigenvectors spanning the subsapace 

 The expression 4.3 forms the basic idea behind the implementation of SVD based approaches for 

dimensionality reduction. 

2.1.3. Maximum Noise Fraction and Noise Adjusted Principal Component Transform 

 The inability of PCT to reliably segregate noisy signals from high spectral resolution remote 

sensing data led to the development of MNF transform. Switzer & Green [26], and Green et. al. [10] 

proposed the MNF transform which chooses the new components to maximize the SNR and orders them 

according to increasing image quality or decreasing noise. Maximum noise fraction (MNF) [10] computes 

the noise statistics information for effectively reducing the dimensionality of the dataset and removing the 

noise from the dataset.  

 MNF can be treated as two cascaded PCA‟s; the first is the transformation of the noise 

covariance matrix to an identity matrix also called as the noise whitening step. The second is the standard 

principal component transformation of the noise whitened dataset maximizing the signal to noise ratio 

(SNR) and thus segregating the signal from the noise. The noise statistics are calculated using the shift 

difference method also known as nearest neighbour difference [10]. MNF splits and projects the input 

image into two subspaces based on visual analysis eigenvalues and deciding the cut-off value: The first one 

is the Signal Subspace (signal plus noise) corresponding the largest eigenvalues and the second is the noise 

subspace corresponding to the lower eigenvalues. 

 If the estimates of noise correlation matrix (  
 ) and the correlation matrix of observed vectors 

(  
 ) are known, then MNF maximizes the SNR by the following expression, 

 

    
  

    
  

 

            (2.3) 

 where,   - eigenvector matrix and the component axis are given by the eigenvalues 

decomposition of the noise and signal covariance matrices. 

    
 -   noise correlation matrix 

    
  -  correlation matrix of observed vectors 

 

 MNF requires prior knowledge of the signal and noise covariance matrices and uses near-

neighbour difference to estimate the noise correlation matrix. 

 The nearest neighbour method for noise estimation is generally applicable for noise estimation in 

homogeneous areas as it assumes that the adjacent pixels in the dataset have the same signal information. 

And if noise is not present the correlation of the adjacent pixels should be zero and any variation is treated 

as noise. So for heterogeneous areas this variation in the signal information will be considered as noise 

thus disturbing the whole statistics. [27]. So it may be required to carefully select homogeneous areas for 

better noise estimation, which makes shift difference method not an appropriate method for estimating 

noise in the whole image. 

 Lee [28] proposed a method called Noise-adjusted Principal Components (NAPC) transform for 

dimensionality reduction of hyperspectral images, which is mathematically equivalent to MNF transform. 

NAPC transform is equivalent to two principal component transformations: First of the noise, and second 

of the transformed data set. The paper highlighted the first implementation of NAPC transform (or MNF 

transform) to high spectral resolution remote sensing dataset and proved the usability of NAPC transform 

(or MNF transform) for noise estimation and determination of the intrinsic dimensionality of data.  

Xu & Gong [27] applied the NAPC transform to EO-1 Hyperion image. The noise structure of 

the Hyperion sensor is mostly unknown. The paper investigates a method to accurately estimate the noise 

structure, from the random noise present in the data, for the application of NAPC transform. A strategy is 

adopted to remove both striping noise and the low variance noise across all bands. The striping bands are 
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first located followed by striping columns. The noise covariance structure is estimated either by a body of 

water such as a ocean or lake or by a piecewise chosen homogeneous site i.e. by generating a within site 

noise covariance matrix. It was observed that the noise estimation using water sites was more efficient 

than estimation from other homogeneous sites. The quality of the water vapour absorption bands 

improved considerably in the restored images. 

 The main limitations of the SVD based approaches and the MNF are that they assume the noise 

in hyperspectral datasets to be zero mean and uncorrelated which is not always the case is most datasets 

and more so in Hyperion data whose noise structure is largely unknown. So the signal subspace may not 

be given by the eigenvectors corresponding to the first few largest eigenvectors [7]. 

2.1.4. Estimating Spectrally Distinct Signal Sources 

Chang & Du [13] introduces a new concept called virtual dimensionality (VD) defined as “the 

minimum number of signal sources that characterize the hyperspectral data”. Due to the presence of 

many unknown signal sources in high spectral resolution hyperspectral sensors, the determination of the 

true dimensionality or intrinsic dimensionality (ID) becomes a difficult task. The signal sources identified 

by VD may also contain unknown sources such as unknown endmembers, natural signatures and 

anomalies. It uses multiple regression theory for the determination of noise covariance matrix. The 

number of spectral endmembers or VD is determined based on the Neyman-Pearson detection theory 

based thresholding method developed by Harsanyi, Farrand and Chang (HFC) which estimates the 

number of spectral signal sources in terms of their energies. Another method called noise whitened HFC 

(NWHFC) includes a noise whitening step [13]. The method provides an estimate of the number of 

spectrally distinct signal sources present in the hyperspectral data. 

Bioucas-Dias & Nascimento [7] proposes a new approach called HySime which is a mean square 

error based approach for estimating the number of spectrally distinct signal sources in hyperspectral 

dataset. HySime is eigendecomposition based and uses SVD for the decomposition of signal and noise 

correlation matrices and then selects the subset of eigenvectors that span the subspace in the minimum 

mean square error sense. For noise estimation it uses multiple regression theory which performs better 

than the near neighbour difference used in MNF [10] and NAPC [28]. The experimental results showed 

that the HySime outperforms the other algorithms such as HFC and NWHFC although all the above 

methods generally overestimate the number of endmembers present in the scene. 

The virtual dimensionality concept and the HySime are regarded as the two widely implemented 

methods available in literature, for estimating the signal subspace (or the number of endmembers) [29] . 

However, the advantage of HySime is that it does not require any input parameters. HySime has also been 

implemented for signal subspace identification by Iordache et al. in [30] and Farzam & Beheshti in [14] 

 

2.2. Spectral Unmixing 

In hyperspectral images, spectral mixing is the result of mixing of two or more spectrally distinct 

substances. The ground coverage of Hyperion is almost 900 square meters which allows disparate 

materials to occupy the same pixel. Spectral unmixing is the process by which we can identify the 

constituents of the mixed pixel and their proportions. The simplest and the most commonly assumed 

model for a mixed spectrum is a linear model. A single pixel can be portrayed as a checkerboard mixture, 

as illustrated in Figure 2.1 (a) and assuming that there is no multiple scattering between components, then 

the spectral response of the pixel is a linear combination of the fractional abundances (area covered by 

each endmember in the pixel) of the individual substances [12], hence the term Linear Mixture Model 

(LMM). If there are   endmembers, then the linear mixture model can be expressed as 

 

 



HYPERSPECTRAL SUBSPACE IDENTIFICATION AND ENDMEMBER EXTRACTIN BY INTEGRATION OF SPATIAL-SPECTRAL INFORMATION 

13 

        

 

   

                                            

            (2.4) 

where,    -     received pixel spectra 

  -     matrix, whose columns are  L×1 endmembers. 

     - abundance fraction of each endmember in a pixel 

    -     additive noise 

    - number of pixels in the image 

 

 To be physically meaningful the linear mixture model is subjected to following two constraints; 

the first is the non negativity constraint,  
 

      

 

and the second is the full additivity constraint, 

 

    

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Mixing model illustration, a) Linear mixing (no multiple scattering) and b) Non Linear mixing 

scenario (multiple bounces due to intimate mixture) 

 

2.3. Review of Endmember Detection Algorithms 

When the pixel size is large then each individual pixel spectrum measured by the sensor may 

contain contributions from a number of different materials on the ground. The resultant product is a 

mixed spectrum and the pure constituents which contribute to this mixed spectrum are called endmember 

Sensor 
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spectrum. By definition given by Schowengerdt [31] and cited by Zortea & Plaza [17], an endmember is an 

idealized pure signature for a class. A number of endmember detection algorithms are described in the 

literature. This section gives an overview of various endmember extraction algorithms. 

Boardman [32] showed that geometric analysis of high dimensional data requires the treatment of 

pixels as vectors in N-dimensional space, N being the number of spectral bands, and then the projection 

of data onto lower dimensional subspace. Endmembers are determined by fitting a simplex around the 

complex hull of the data. The convex geometry model defines endmembers to be the vertices of a simplex 

that surround the pixels in an image. Fig. 2.1. shows a two dimensional scatter plot of a simplex in 2-D 

space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2 Two dimensional scatter plot showing a simplex in 2-D space 

 

Most of the popular endmember extraction algorithms nowadays are based on geometric analysis 

of the image data. Keshava & Mustard [12] argued that the basic assumption for geometric endmember 

extraction is that endmembers are pure spectra in the image which lie at the extreme ends of the volume 

occupied by the data points. As shown in the Figure 2.1 the pixels lying at the extreme vertices of the 

simplex i.e. endmembers A, B and C are the most spectrally pure pixels, and those lying at the middle can 

be expressed as a linear combination of the these three pure spectra. This also forms the basic premise for 

linear spectral analysis (SMA) techniques or spectral unmixing.  

Endmember extraction from remotely sensed hyperspectral images is increasingly becoming a 

first choice over spectral measurements in field or laboratory. Field and laboratory spectra usually acquired 

from the areas of individual‟s interest and have direct physical meaning for mapping purposes [19].  These 

physically meaningful endmembers may not represent all the endmembers present in the area. From 

satellite hyperspectral data we can extract pure or relatively pure endmember spectra, either by visual 

inspection or by applying one of the various endmember extraction techniques available. 

2.3.1. Pixel Purity based Endmember Extraction Algorithms 

 A number of endmember extraction algorithms make the assumption that for each endmember, 

there exists, at least one pixel which belongs to that endmember only. With this comes the assumption 

that the spatial resolution of the imaging instrument does not combine the spectra of adjacent pixels [33], 

which is not practically possible for most of the hyperspectral sensors. The two popular algorithms based 

on the above assumption include the PPI algorithm [15] and the N-FINDR algorithm [16]. 

 Winter [16] proposed the N-FINDR algorithm for endmember extraction from hyperspectral 

dataset. The algorithm determines a simplex of largest volume, within the dataset, containing the 
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maximum number of pixels. The procedure initializes by appointing a set of randomly selected pixels as 

initial endmembers and calculates the volume. In order to refine the endmember estimate, the volume of 

the simplex is calculated by replacing each endmember by each pixel in the image. If the volume increases 

after replacement, the pixel is retained. The procedure continues until there is no further replacement of 

endmembers. 

 Boardman et al. [15] proposed the Pixel purity index (PPI) algorithm, is one of the most widely 

endmember extraction algorithm used for hyperspectral image analysis. It extracts the pure spectra or 

endmembers in the dataset by searching for set of vertices in the convex hull geometry of the dataset. 

First the dataset is transformed onto lower dimensions by using either PCA or MNF as the assumption 

here is that the endmembers lie in the first few principal components. The endmember pixels are obtained 

by repeatedly projecting the transformed data onto randomly projected vectors (k) in n-dimensional space. 

As the vectors are randomly generated the results depend upon the number of random projections. Pixels 

lying at the extremes of a random vector are assigned a purity value. The values are updated after each 

projection and the pixels having values more than a set threshold (t) are considered as “pure” pixels.  

 Despite being widely used PPI suffers from a number of limitations as discussed by Chang & 

Plaza [34]. One of the major limitations of the PPI algorithm is its sensitivity to the input parameters, k 

and t. Second problem is that the process to generate the initial random vectors may give us different set 

of endmember candidate in each run, making the process non repeatable owing to sensitivity to noise. The 

third concern is the amount of human intervention required to manually derive the final endmember set.  

 Another algorithm for endmember extraction based on the geometric analysis of the data is 

Vertex component analysis (VCA) [35] [36]. VCA is an unsupervised endmember extraction method and 

can be applied to hyperspectral datasets with or without dimensionality reduction, although it is generally 

preferred to reduce the dimensionality to reduce computational costs. VCA utilise two facts of geometric 

analysis: first, the image endmembers reside at the vertices of the simplex and, second, the affine 

transformation of a simplex is also a simplex. The algorithm starts by determining the subspace spanned 

by the endmembers using HySime and then projects the spectral vectors in a direction orthogonal to the 

determined subspace. The extreme ends of the projection correspond to the endmember spectra. The 

algorithm runs iteratively until all the endmembers are found. VCA algorithm was found to be performing 

better than PPI and better or comparable to N-FINDR. However the computational complexity of VCA 

was found to be least among the three algorithms. 

 Besides the above mentioned popular algorithms a lot of literature can be found on the subject of 

endmember extraction techniques such as the manual endmember extraction tool (MEST) by Bateson & 

Curtiss [37], the endmember optimization method by Tompkins et al. [38], the convex cone analysis (CCA) 

by Ifarraguerri & Chang [39]. 

 However, all the techniques mentioned above take into account the spectral properties of the data 

only for endmember determination. Two of the most noted steps towards integrating spatial-spectral 

information are the automatic morphological endmember extraction (AMEE) [17] and the spatial-spectral 

endmember extraction tool (SSEE) [19]. 

2.3.2. Spatial adjacency based Endmember Extraction Algorithms 

 Zortea and Plaza [17] defines the AMEE algorithm as a pre-processing module that uses the spatial 

information and then uses the existing spectral endmember extraction techniques to effectively extract 

spectral endmembers, and helps in the accurate representation of the original hyperspectral scene. The 

AMEE algorithm does not require any dimensionality reduction thus using information from all the bands 

in the dataset. It searches for the most spectrally pure and mostly mixed pixel in a spatial neighbourhood 

using the morphological operators of dilation and erosion. It then assigns an eccentricity value to each 

spectrally pure pixel which is calculated as the spectral angle distance (SAD) between the most spectrally 

pure pixel and the mostly mixed pixel. The process is iterative and the eccentricity values of the selected 

pixels are update at each iteration. A threshold is applied to the resulting eccentricity image to obtain the 

final set of candidate endmembers which can be used as input to existing endmember extraction 
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algorithms. The experiments in [17] with real and simulated datasets show that the AMEE algorithm by 

incorporating the spatial information effectively guides the traditional spectral endmember extraction 

algorithms to extract endmembers from hyperspectral datasets. There are a few issues however, firstly, the 

increase in processing time with the increase in maximum size of the spatial neighbourhood and secondly,        

the algorithm is able to select only one pixel per spatial neighbourhood as the candidate endmember pixel. 

An approach used for the integration of spatial contextual information is the spatial-spectral 

endmember extraction tool (SSEE) proposed by Rogge et al. [19], which takes the advantage of the spatial 

properties of image endmembers by partitioning the image into subsets. Running the image endmember 

extraction process on subsets may result in the selection of endmembers having high local spectral 

contrast within the subset. The SSEE algorithm starts with the projection of the image pixel vectors onto 

the eigenvectors compiled by the singular valued decomposition (SVD) of the subsets of the input 

hyperspectral dataset. The pixel vectors lying at the extreme ends of the projection are identified as the 

candidate endmember pixels. The spatial and spectral characteristics of the candidate endmember pixels 

are analyzed by averaging the spectrally similar pixels (based on minimum SAD score or root mean square 

error) within a given spatial neighbourhood and become the updated candidate endmember pixels. Then 

each candidate endmember pixel is averaged with all other candidate endmember pixels within the 

window and the process is repeated iteratively until the end product is a set of endmember pixels that are 

spectrally and spatially distinct. Then the endmember pixels are ordered according to their spectral angle. 

The proposed tool was shown to perform better than the well known spectral based algorithms in 

extracting unique endmembers. The major benefit of SSEE when compared to pixel purity index is the 

use of non random vectors and thus the results are repeatable.  

 Rivard et al. [40] uses the SSEE algorithm for integrating spatial constraints in the endmember 

extraction process thus improving the relative spectral contrast of the endmembers. The SSEE results are 

then integrated with an iterative spectral mixture analysis (ISMA) tool to optimize the endmembers pixel 

wise and to give accurate estimation of the abundance fractions of endmembers.  

2.3.3. Spectral Angle Distance (SAD)  

 The spectral angle distance (SAD) as explained in [41] computes the spectral similarity between a 

test (or pixel) spectrum, t, and the reference spectrum (target spectrum or laboratory spectrum or another 

pixel spectrum), r, and is expressed in terms of vector angle,  , as: 

 

      
     

 
   

    
  

       
  

   

 

(2.5) 

where,   - spectral angle,    - test or pixel spectrum 

    - reference spectrum,   - number of bands 

 

While computing the SAD each spectrum is considered a vector in the n-dimensional space, The 

output of spectral angle mapping for each pixel is an angular difference between the test and the reference 

spectrum measured in radians, ranging from zero radians to Π/2. The smaller the spectral angle more is 

the similarity between the test and the reference spectrum. Fig. 2.2 gives an example of the spectral angle 

between a pixel and the reference or target spectrum. 
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Figure 2.3 Spectral angle between target and the reference spectra 

 The spectral angle distance is preferred over other distance metrics as it is insensitive to 

illumination differences in a pixel. Any illumination change will change the magnitude of the vector but 

not the direction. Secondly, in the later stages of this study, unique image endmembers will be grouped 

based on the variation in their spectral response to represent various land use land cover classes. 
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3. DATASET AND PREPROCESSING 

This chapter discusses about the dataset used in this thesis, its properties and the various pre-

processing steps applied. The dataset used in this research work is the Hyperion level L1R dataset of the 

Dehradun area. The Dehradun area consists of different ground covers The study scene comprises of 

various land use land cover classes such as agricultural area, barren land, forest, settlement, tea garden, 

water body, settlements etc. A false colour combination (FCC) of the Hyperion image is shown in Figure 

3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 FCC of Hyperion data of Dehradun area (Scale: 1:100,000) 

 

The Hyperion is a push-broom sensor with 242 contiguous, narrow bandwidth bands. Because of 

the huge volume of spectral data available, and the noise present the spaceborne hyperspectral dataset, it 

requires careful pre-processing for managing the noise. The pre-processing of dataset can be considered as 

the first step towards further interaction with the dataset.  

The pre-processing approach adopted in this thesis involves:  

 bad band removal i.e. removing the bands with no information,  

 along track destriping and  

 atmospheric corrections to convert the radiance to reflectance. 
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3.1.  Bad Band Removal 

Hyperion level L1R data has 242 bands out of which only 198 are nonzero i.e. a few were 

intentionally left unused (Bands 1 to 7 and 225 to 242) and others fall in the overlap region of the two 

spectrometers (Bands 58 to 76). Among the non zero bands, four band are still in the overlap region of 

the two spectrometers i.e. bands 56, 57 and 77, 78 out of which bands 77 and 78 were eliminated because 

of the higher noise levels present in those bands [42]. Then there are water vapour absorption bands 

which needs to be eliminated and are identified as bands120 to 132 (1346nm to 1467 nm), bands 165-182 

(1800 to 1971 nm) and bands 221 (above 2356) and higher. Water vapour absorption bands absorb all the 

incident solar energy and can be easily identified visually. The list of bands which were eliminated is given 

in the table below: 
 

Table 3.1 List of Unused Bands of the Hyperion Sensor, L1R product 

 

Bands Description 

1 to 7 Not Illuminated 

58 to 78 Overlap Region 

120 to 132 Water Vapour Absorption Band 

165 to 182 Water Vapour Absorption Band 

185 to 187 Identified by Hyperion Bad Band List 

221 to 224 Water Vapour Absorption Band 

225 to 242 Not Illuminated 

 

 

All the bands were visually examined and a list of bad bands was prepared. The Hyperion L1R 

dataset was imported into using the Hyperion import utility (hyperion_tools.sav, source: 

http://www.ittvis.com/ ), which is used to convert L1R dataset into ENVI formats containing 

wavelength, full width half maximum (FWHM) and bad band information. The bad band list generated by 

hyperiontools.sav was applied to the converted dataset to eliminate the bad bands which resulted in 158 

bands to be used in further processing. 

 

3.2.  Along-track Destriping 

There are a number of corrupted pixels and dark vertical stripes in the Hyperion datasets that are 

caused by calibration differences in Hyperion detector array and temporal variations in the detector‟s 

response [4]. The vertical stripes are in the along-track direction and appear as a series of stripes either 

along the whole length of the image or intermittently and are also referred to as striping noise. These 

vertical stripes and the corrupted pixels are referred to as abnormal pixels [43]. These abnormal pixels 

must be accounted for and corrected before further processing. 

According to Han et al. [43] majority abnormal pixels in the Hyperion images appear as vertical 

stripes and can be classified into 4 categories: 

 Class1 - continuous with atypical DN values - extremely small DN values, usually zero 

 Class2 - continuous with low DN values - low DN values compared to adjacent columns 

 Class3 - intermittent with atypical DN values - extremely small DN values 

 Class4 - intermittent with lower DN values - low DN values compared to neighbouring pixels 
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The figures below show examples of different types of abnormal pixels in the Hyperion data. 

Figure. 3.2. a) shows the Class 1 type of abnormal pixels by taking a spatial subset from the Hyperion 

image and Figure 3.2. b) shows the corrected image after correcting the image using Hyperiontools.sav. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Original Band                  b) Band after correction 

Figure 3.2 a) Class 1 Abnormal pixels: Continuous with atypical DN values, Band 99 and b) Band after 
correction using Hyperion tools.sav 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Original Band       b) Band after correction 

Figure 3.3 a) Class 4 Intermittent pixels: Intermittent with atypical DN values, Band 14 and b) Band after 
correction using Hyperion tools.sav 
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a) Original Band               b) Band after correction c) Uncorrected Pixels 

Figure 3.4 a) Class 2 Abnormal pixels: Continuous with low DN values, Band 10, b) Band after 
correction using Hyperion tools.sav and c) Uncorrected pixels 

 

The level L1R Hyperion dataset contains a number of bands containing a series of vertical stripes 

which are left for the user to correct according to its convenience. While generating the bad band list the 

hyperiontools.sav utility of ENVI uses the flag mask correction for detecting and correcting the 

continuous vertical stripes and the abnormal pixels with atypical values. Figures 3.2 (b), 3.3 (b) and 3.4 (b) 

show the output of the hyperiontools.sav utility, for band number 99, 14 and 10 respectively. 

Even after destriping the image with the hyperiontools.sav utility, a lot of vertical stripes 

(continuous with low DN values and intermittent vertical stripes) were still remaining in different bands of 

the dataset as evident from the Figure 3.4.(c). The DN values of these vertical striping pixels or abnormal 

pixels are lower than their neighbouring pixels. Separate programs were created for the detection and 

correction of these abnormal pixels in the IDL environment of ENVI, following the algorithm proposed 

by Goodenough et al. in [44]. The IDL codes for identifying and correcting the abnormal pixels can be found 

in appendix A. The algorithm starts by traversing each band along the rows comparing the DN value of 

each pixel with the DN value of its immediate left and right pixels. If the DN value of a pixel is less than 

both the pixels then this pixel is labelled as abnormal pixel. As soon as an abnormal pixel is found, each 

column of each band is checked vertically to find the number of consecutive abnormal pixels. A column 

can be marked as a striping column if it satisfies two user defined conditions; first, the number of 

consecutive abnormal pixels should be above a user defined threshold value (five in this case) and second, 

the number of abnormal pixels should account for more than half of the total number of pixels in that 

column. If both conditions are satisfied then the column is marked as a striped column. The DN values of 

pixels in theses striping columns are replaced with the average DN values of the pixels of the adjacent 

columns on the left and the right. All of the 158 bands were also visually inspected for vertical stripes both 

continuous and intermittent and were combined with the results of the program output. Table 3.2 gives a 

list of vertical striped columns in each band of the Hyperion image. 
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Table 3.2 Detected striping columns 

  

After the removal of bad bands, removal of absorption bands and abnormal pixels the 158 band 

image is ready for further processing. 

 

3.3. Atmospheric Corrections using FLAASH 

After the removal of the bad bands and destriping the resized 158 bands were corrected for 

atmospheric errors using the FLAASH (Fast Line-of-Sight Atmospheric Analysis of the Spectral 

Hypercubes) model of ENVI‟s atmospheric correction module. The Hyperion image of Dehradun area, 

due to its time of acquisition, is badly affected by atmospheric error such as haze. Thus atmospheric 

corrections of Hyperion images are required for the reduction of the atmospheric influence on the 

reflectance and to filter out the target reflectance cleanly from the mixed signal [45]. Using FLAASH 

wavelengths ranging through visible, infrared and short wave infrared can be corrected for atmospheric 

errors. The different parameters which were applied for running the FLAASH model on hyperion image 

are listed in the table below 

 
Table 3.3 FLAASH parameters for atmospheric corrections 

Latitude 30º 20' 24.72" Flight Date  25th December, 2006 

Longitude 78° 0' 23.76" Atmospheric model Tropical 

Sensor Type Hyperion Aerosol Model Rural 

Sensor Altitude 705 km Aerosol Retrieval 2-Band (K-T) 

Ground Elevation 0.600 km Water Absorption Feature 1135 nm 

Pixel Size 30 m Initial Visibility 30 km 

Flight Time (HH:MM:SS) 5:10:23     

 

After running FLAASH the haziness in the image is reduced and the image features are 

sharpened and the image looks to be better illuminated. The Figure 3.5 shows the spectral plots of a forest 

pixel before and after atmospheric corrections. 

Band Column Band Column 

8 
68, 125, 132, 162, 168, 172, 183 ,189, 
198, 204, 237, 246 

95 to 119 256 

9 68, 148, 151, 166, 220, 223, 229 133 to 164 256 

10 68, 131, 149, 158, 164, 206, 212 183 to 184 116, 117, 246, 247, 256 

11 68, 195, 188 116, 117, 246, 247, 256 

27, 28 47 189 to 191 116, 117, 213, 214, 246, 247, 256 

39 177 192 256 

54 13 193 196, 256 

55 13, 17, 20, 37 194, 195 256 

56 8, 13, 17, 20, ,33, 37 196 to 200 246, 247, 256 

57 13, 18, 20, 32, 33 201 7, 256 

79 256 202 to 208 256 

80, 81 250, 256 209 to 210 88, 89, 256 

82 to 93 256 211 to 220 256 

94 91, 256 
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       (a)                                                    (b) 

Figure 3.5 Spectral profile (Z-profile) of a randomly selected pixel, a) before Atmospheric corrections 
and b) after Atmospheric corrections with FLAASH 

  

Atmospheric corrections transform the hyperspectral data to apparent surface reflectance. 

Atmospheric corrections are required for matching the image endmember spectra with the reference 

spectral libraries or ground data. 

3.4. Spatial Subset 

The spatial subset of the image is usually taken to extract the area of interest of the user. The raw 

Hyperion imagery of Dehradun area contained 256 samples and 3407 rows. For this study, a spatial subset 

consisting of 256 samples and 640 lines was extracted from the original Hyperion scene.  
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4. METHODOLOGY  

The methodology chapter includes the theory and the steps undertaken to achieve the research 

objective. The various processes performed and the algorithms used will be described in this section. The 

flowchart of the overall methodology adopted for this work is given below in Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Methodology Flowchart 
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This chapter concentrates on the problem of dimensionality reduction (signal subspace 

identification) of hyperspectral datasets and the reasons for choosing HySime. It starts with the 

description of noise estimation and subspace identification algorithms. Then the further sections deal with 

the issue of integrating spatial information for endmember extraction. 

 

4.1. Data Preprocessing 

Data pre-processing the first step of this research work. The various pre-processing steps include 

bad band removal, along track destriping and atmospheric corrections, and are described in detail in the 

previous chapter. 

 

4.2. Signal Subspace Identification:HySime 

 After pre-processing the data signal subspace estimation is performed using HySime.  The 

preliminary code for the HySime algorithm was implemented in MATLAB environment by Bioucas-Dias & 

Nascimento [7] and is freely downloadable from the author‟s website (Source : 

http://www.lx.it.pt/~bioucas/code.htm) . The input to the algorithm is the AVIRIS Cuprite dataset in 

the „.mat‟ (MAT-file) format of MATLAB. MAT-files are binary files which can contain variables of 

different data types such as strings, matrices and multidimensional arrays. So the first step was to convert 

the spaceborne Hyperion dataset into MAT-file format, containing the variables, which becomes the input 

for the HySime algorithm. A small MATLAB code was written for reading the Hyperion data into MAT-

file, and this MAT-file became the input to the HySime algorithm. 

 HySime [7] starts with the noise estimation step in which the noise correlation matrix of the data 

is computed. Then it calculates the signal correlation matrix and computes the eigenvectors by performing 

the eigen decomposition of the signal correlation matrix. The signal subspace is then derived by 

minimizing the sum of projection error power and noise power, which are decreasing and increasing 

functions of the subspace dimensions respectively. 

 Let us assume that the observed spectral vectors, Y   RL, for the given hyperspectral scene are 

given by: 

      

           (4.1) 

where   and    - L - dimensional vectors for signal and noise  

and   is the number of bands.  

 

The assumption here is that the signal vectors reside in an unknown p – dimensional subspace 

such that, 

     

            (4.2) 

where,     , 

   -     matrix, whose columns represent the image endmembers  

and            - abundance fraction of the endmembers.  

 

4.2.1. Noise Estimation 

Estimation of noise from a dataset is a challenging task in image processing and particularly in 

remote sensing images. In case of Hyperion images the task of noise estimation becomes difficult because 

of the large dimensions and the noise structure of the Hyperion images, which is largely unknown. One of 

the most widely used noise estimation procedure for hyperspectral images is the nearest neighbour 

method [10], also known as shift difference method, used in the MNF [10] transform. The basic limitation 
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of this approach, as discussed in previous sections, is that it requires a careful selection and prior 

knowledge of the homogeneous regions for obtaining quality noise estimates. 

HySime uses a multiple regression based approach for noise estimation from hyperspectral 

images, which performs better than the shift difference method because of the high correlation exhibited 

between adjacent spectral bands. In this algorithm the multiple regression theory has been used to 

determine the noise correlation matrix from the hyperspectral dataset.  

Let Y be an L×N matrix, where N is the number of observed spectral vectors and L is the 

number of bands. Then define a matrix,       , which is an N×L matrix, a N×1 vector,          , 

where        is the ith column of Z, i.e.    contains the data read by the hyperspectral sensor at the ith band 

for all image pixels, and the N×(L-1) matrix                     . 

Now if     is given by the linear regression equation, 

 

            

                              (4.3) 

where,     - data matrix of dimensions N×(L - 1) 

     - regression vector of size (L – 1)×1 

     - noise vector of size N×1 

 

The least square estimate for the regression vector     is given by the equation, 

 

 
 

      
      

     
    

            (4.4) 

The noise estimates,   
  , are given by the equation, 

 

 
 

            
 

            (4.5) 

and the estimated noise correlation matrix,     , is given by, 

 

       
 
      

 
     

 
      

 
    

                        (4.6) 

 

The algorithm for the noise estimation procedure is shown in Algorithm 1. The algorithm also 

contains a complexity reduction method included in Algorithm 1. 

 

Algorithm 1: HySime, Noise Estimation [7] 

Input: Observed Spectral Vectors,                     RL  

Output:   , i.e. the estimated noise matrix of dimensions N×L and the noise correlation matrix,     

 

1) Z =   ,         

2)          

3) for i=1 to L  

4)      
 

            
          

        
                   ; regression vector 

5)      
 

             
     ; noise estimates 

6) end for 

7)        
 
      

 
     

 
      

 
      ; Noise correlation matrix estimate 
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where,          
  - matrix obtained by removing the ith row and ith column from     

           
 - ith row of      

    
 

            -      
     

 
 

 

4.2.2. Signal Subspace Identification 

Signal subspace estimation starts by computing the noise and signal correlation matrices.  A 

subset of the eigenvectors of the signal correlation matrix is used to represent the subspace. This signal 

subspace is determined by minimizing the mean square error between the original signal, x, and the noisy 

projection of it i.e. the observed spectral vector. The signal correlation matrix is given by,     

 

                                 

          (4.7) 

where,     - signal estimates obtained after subtracting the noise estimates from the original data. 

 

The eigenvectors can be obtained by performing the eigen decomposition of the signal 

correlation matrix as given by, 

         

           (4.8) 

 where,               is the eigenvector matrix of    , 

and     - eigenvalues matrix of the signal correlation matrix, with the diagonal values ordered 

in decreasing magnitude. 

 

 Now let the space RL be decomposed into two orthogonal subspaces, the k-dimensional 

subspace,       be represented by               
  and       be the orthogonal component of 

subspace     , spanned by   
        

       
 . 

 Let        
  represent the projection matrix onto the subspace     , then the projection of 

the observed spectral vectors, y, or the noisy projection of x, onto the subspace      is given by, 

 

        

 

The first order moment of      given x is, 

 

                                       

           (4.9) 

 where,    is the projection of the signal vectors onto the subspace     . 

 

And the second order moment of      given x is, 

 

                                                            
              

  

           (4.10) 

 The mean square estimation between   and     is given by, 

 

                                                           

 

                               
      

(4.11) 
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Since,       , implies that        
 , which is  the orthogonal component of the signal 

projection vector onto the subspace     . Thus by using the projection matrix properties i.e.     , 

     and       , we have 

 

            
       

             
    

 

              
               

 

     
                   

           (4.12) 

where c is an irrelevant constant. The signal subspace      is inferred by the minimization of the mean 

square error given by (4.13) with respect to all the permutations              and is given by the 

expression, 

 

                  
                  

           (4.13) 

where    is the estimate of the subspace and the subspace is spanned by               
 . Now the 

first term of the equation (4.12) corresponds to the projection error power which is a decreasing function 

of subspace dimension and the second term corresponds to the noise power and is increasing function of 

subspace dimension. As mentioned above        
  is a projection matrix and from matrices properties 

we know that            , then the minimization equation (4.14) can be written as  

 

                            
  

 

   

  

                (4.14) 

where c is a constant and 

       
        

         (4.15) 

   
     

        

        (4.16) 

 

The term on the right hand side           
   is represented by     and by including all the 

negative terms of     , for           in the sum, the minimization of mean square error between 

projection power error and noise power is obtained. The estimate of the subspace dimension is given by 

the number of negative terms in    . The pseudo code for HySime Subspace Identification is given in 

Algorithm 2. 

HySime is computed for a subset size of 256x640x158 of the Dehradun area of the Hyperion 

Image. The subspace dimension,   , for this subset is obtained by minimizing the mean square error 

between the signal projection power and the noise projection. The output of the signal subspace 

estimation step is a set of matrices containing the eigenvalues and the eigenvectors spanning the signal 

subspace. 
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Algorithm 2: HySime, Subspace Identification, [7] 

Input: Observed spectral vectors                   

Output: signal subspace 

 

1)                   ,             

2)     
 

 
        

 
      ; Noise Estimates 

3)     
 

 
                 

 
     ; Signal correlation matrix estimates 

4)                 ; Eigenvectors of the signal correlation matrix 

5)             ] 

6)                     ; sorts the     terms in ascending order 

7)    = number of negative terms,       ; Signal subspace estimate 

8)               
     ; Eigenvectors spanning the signal subspace 

 

 

4.2.3. HySime Components 

The output of the HySime algorithm gives us the signal subspace estimates and the corresponding 

eigenvectors spanning the subspace i.e.               
 , sorted in descending order of their relevance. 

The HySime components, with the first component representing the maximum variance, corresponding 

to these eigenvectors can be computed by multiplying the eigenvector matrix,  , (can also referred to as 

transformation matrix or projection matrix) with the original image i.e. by projecting the original image by 

 . The components which are obtained will be ordered according to the decreasing variability. Each 

column of the eigenvector matrix produces a component image. The transformation can be achieved by 

the following expression [46], 

 

                                  

 

   

 

           (4.17) 

where,      - Eigenvector matrix 

          - Brightness value of pixel at ith row, jth column of the band k of original image 

             - Brightness value of pixel at ith row, jth column of the pth HySime component 

              - HySime component image 

  

 The HySime component image,        , was obtained by using the HySime output of 

eigenvectors spanning the subspace in the expression 4.19. The number of components in the HySime 

component image,        , will generally be equal to the subspace dimension inferred. However visual 

inspection of the components obtained must be carried out to decide the number of component images 

to be used for any further analysis. 

4.2.4. Inverse HySime for Hyperspectral image restoration 

 Once the HySime components have been obtained and the noise segregated the Hyperion data 

can be restored to its original spectral space without noise. The noise free original spectral space 

consisting of the noise less signals only can be achieved by performing an inverse HySime transform. As 

the original image data Y was transformed into HySime components,         in the HySime space, the 

inverse transformation can be achieved by inverting the projection matrix    and multiplying it with 
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        . The expression for restoration of signals to original spectral space is given in expression 4.18 

and was implemented as an extension to the original HySime algorithm. 

 

                 

           (4.18) 

where,             
      

      
      

          - is the HySime component image  

 p - the number of 1st components selected for restoring to the original spectral space 

 and   - the restored image 

 

4.3. Spatial-Spectral Endmember Extraction 

Two of the most noted attempts in this direction of integrating spatial information with the 

spectrally rich hyperspectral datasets are Automatic morphological endmember extraction (AMEE) [17] 

and spatial-spectral endmember extraction tool (SSEE) [19]. An approach based on the SSEE model is 

adopted for this study and is discussed further in this chapter. 

  Image endmember extraction techniques based on spectral based approaches differentiate 

between the signals sources based on the spectral properties only. No weightage is given to the spatial 

distribution of the image endmembers. In spectral based endmember extraction algorithms, the 

endmembers having high spectral contrast (distinct spectral features) are detected easily; however 

problems are encountered in the detection of endmembers having low spectral contrast with respect to 

the whole image [19]. It might be possible that the endmembers having low spectral contrast with the 

whole image may be having high local spectral contrast thus increasing their chances of detection when a 

algorithm is applied to utilize the local contrast of the endmembers. This is the idea behind the SSEE [19] 

model used in this work. The SSEE model divides the hyperspectral image into subsets so as to enhance 

the local spectral contrast of the endmembers, thus improving their odds for selection. The algorithm for 

spatial spectral endmember extraction from step 2 onwards was written in IDL programming tools within 

ENVITM environment. 

The spatial spectral endmember extraction process consists of four steps: 

 Determination of the set of eigenvectors explaining maximum variance from the image 

subsets 

 Projection of the image data onto these eigenvectors  

 Spatial constraints to average spectrally similar candidates 

 Ordering of endmembers with respect to their spectral similarity and spatial location 

 

4.3.1. Step 1: Eigenvector Determination 

Step 1 of the spatial spectral integration is to obtain a set of eigenvectors that explain maximum 

spectral variability of a given image. In this work we have used HySime for obtaining this set of 

eigenvectors from subsets of the image, instead of SVD as in the original SSEE algorithm. HySime is 

selected owing to its better estimation of the eigenvectors which explain the variability of the data. 

 The two major input parameters in this step are the subset size and the HySime threshold value, 

i.e. the number of eigenvectors to be retained from each subset.  Subset of the images is used to increase 

the relative spectral contrast of the endmembers. HySime is applied to subsets of an image which are 

square and non-overlapping. For each subset the eigenvectors accounting for majority (around 99.9%) of 

the spectral variability are retained and compiled into a single eigenvectors matrix,     where    is the 

total number of eigenvectors retained. These eigenvectors represent the local high contrast endmembers 

of the respective image subsets.  

Figure 4.2 shows an example of an image with three regions (A) and square and non overlapping 

image subsets created subsequently (B), for determining eigenvectors. 
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Figure 4.2 Step 1: (A) Original Image, (B) Image subsets (Source: Rogge et al. [19]) 

 

 The size of the subset can be varied based on the characteristics of the image. Larger subsets can 

be used for homogeneous image regions, whereas for heterogeneous or complex image regions smaller 

subsets should be used. Also the use of larger subsets limits the ability to extract low contrast 

endmembers from the image.  And the use of smaller subsets would result into a large number of 

eigenvectors being retained. Keeping this in mind a subset size of 32 pixels was chosen for this study. The 

minimum number of vectors retained from each subset should be 2 and maximum should be the number 

of eigenvectors explaining 99.9 % of spectral variability. However after visually examining the 

eigenvectors matrix spanning the subspace it was found that 99.9% of the variability was explained by first 

few eigenvectors only, so the minimum number of vectors to be retained from each subset was set 

accordingly.  

4.3.2. Step 2: Projecting Image data onto Eigenvectors 

In step 2, the full image data is projected onto each eigenvector in the compiled eigenvector 

matrix. The data cloud lies along the eigenvector and the endmembers or extreme pixels are those pixels 

that are lying at either extremes of the projection. These pixels are labelled as the candidate endmember 

pixels and or just candidate pixels. The following expression was used for the projection of the observed 

spectral vectors (image data),                  , onto the compiled eigenvector matrix,   
 , 

 

        
    

           (4.19) 

where,   
  - transpose of the compiled eigenvector matrix 

     - Observed spectral vectors (image data) 

      - matrix obtained after projecting   onto    
  

 

The projection the image data onto the compiled eigenvector matrix results into another matrix 

of projected data. Then it looks into the matrix for pixels on the extremes of the projection and pixels at 

the extremes of the vectors are assigned a hit. Pixels receiving more hits are designated as candidate 

endmember pixels. 

Figure 4.3 depicts the candidate endmember pixels obtained after projecting the image data onto 

the eigenvectors and selecting the extreme pixels. The pseudo code for step 2 is given in pseudo code 1 

and the IDL code is presented in Appendix B. 
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Figure 4.3 (C) Candidate Endmember Pixels (black squares) (Source: Rogge et al. [19]) 

 

Pseudo code 1: Spatial Spectral Endmember Extraction, Step 2 

Input: Observed Spectral Vectors (Image data),  , and Compiled Eigenvector matrix from Step1,    and 

 number of pixels to be retained at each extreme 

Output: Candidate endmember pixels,  
 

1)           
        ; transpose of eigenvector matrix 

2)         
         ; computation of projection matrix 

3)                   

4)                                ; Finds the extreme pixels 

5)                                                      

6)        

7) Number of pixels having more hits are designated as candidate endmember pixels 

 

 

4.3.3. Step 3: Spatial Analysis 

In step 3 a sliding window of the size equal to the subset size is used to scan the image. The 

sliding window scans the image checking whether the centre pixel of the image is a candidate endmember 

pixel or not. As soon as a candidate endmember pixel is encountered, spectral angle is computed between 

the candidate endmember pixel (reference pixel) and all the other pixels (target pixels) in the window 

according to the equation 2.1. Those pixels for which the spectral angle is less than the given threshold 

value for minimum spectral angle are the most similar to centre pixel and are labelled as the updated 

candidate endmember pixels as shown in Figure 4.4. 

The centre pixel i.e. the candidate endmember pixel is then averaged with all the other 

endmember pixels that are spectrally similar within the window. The average value is assigned to the 

centre endmember pixel. For reducing the effects of noise and for determination of endmembers which 

are spectrally similar and spatially similar, the averaging process may be repeated for n number of 

iterations, thus reducing the variance of the endmember clusters. An example of the updated candidate 

endmember pixels and the averaging window being used is shown in figure 4.4 (D) and 4.4 (E) 

respectively. The pseudo code for step 3 is shown in pseudo code 2. 
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Figure 4.4 (D) Updated Candidate endmember pixels (empty squares), (E) Spatial averaging (Source: 

Rogge et al. [19]) 

 

Pseudo code 2: Spatial Spectral Endmember Extraction, Step 3 

Input: Image Data, Candidate endmember pixels (CEM) data from step 3, threshold value for spectral 

angle      , sliding window size, number of iterations (n) 

Output: Averaged candidate endmember pixel spectra, number of averaged candidate endmember pixels 

(count) 

 
1) Select sliding window size = subset size defined in step 1 

2) count = number of candidate endmember pixels, 

3) Place window on the CEM (reference endmember pixel, centre pixel) 

4)                         ,  

5)                      ,  

compute spectral angle between candidate endmember pixel  (reference pixel) 

and all the other pixels (target pixels)  

Spectral angle,       
     

 
   

    
  

       
  

   

 

6)    if   <     

7)     update the target pixel as candidate endmember pixels 

8)           

9)    Compute average and store the average spectrum in centre pixel 

10)         

 

 

 

So after the averaging process the candidate endmembers will contain the average spectrum of the 

endmember pixels within the window thus reducing the noise and interclass variability of the candidate 

endmember pixels. These endmembers are then utilized further for classification and mapping purposes. 

4.3.4. Step 4: Reordering endmembers 

The set of endmembers obtained from step 3 is then reshuffled based on spectral angle. The 

spectrum of the first endmember is compared with the spectrum of all the other endmembers and the 

endmembers are ordered in the ascending order of their spectral angle. The reordering process is recursive 

in nature in the sense that each endmember is compare with every other endmember and the reordered 

endmembers can be stored as a matrix along with their spatial coordinates. The reordered endmembers 

still retain their image coordinates. The reordered endmembers are then grouped into endmember classes 

E D 
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based on their spectral and spatial similarity.  The endmembers are then visually examined for spectral 

similarity and similar spatial coordinates and are grouped into different endmember classes. 

The pseudo code for the implementation of step 4 of spatial spectral endmember extraction 

method is given in the pseudo code 3. 

 

Pseudo code 3: Spatial Spectral Endmember Extraction, Step 4 

Input: Averaged Endmember spectra, count 

Output: Reordered endmembers based on spectral angle 

 

1) Assign the first endmember in the average spectrum file as first spectra (reference spectra) 

2)                      

3)                          

4)    Compute   between the first spectrum and all other endmember spectra 

5)           

6)         

7) The reordered list is stored as a matrix  

8) Endmembers can be grouped according to their spectral and spatial similarity 

 

 

4.4. Spectral Unmixing 

Once the average spectrum of the endmembers grouped by their similar spectral and spatial 

characteristics has been obtained, the next step is to unmix the data into the respective endmember classes 

using the spectra of the obtained endmember pixels. To determine whether the obtained endmembers by 

spatial spectral integration show any meaningful spatial distribution spectral unmixing is applied using the 

ENVI software. The result of the unmixing step will be the fraction abundance images for each 

representative class. 

 

4.5. Validation 

 

The validation of the results will be performed by visually examining the endmembers obtained 

from the spatial integration process against a high resolution dataset of Dehradun, IRS P6 LISS-4 image 

of Dehradun area and field photographs of the features captured during earlier field visits and available 

from the Photogrammetry & Remote Sensing Division (PRSD) at IIRS.. The locations of the pure classes 

obtained are mapped to show the physical representation of the endmembers.  
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5. RESULTS AND DISCUSSIONS 

This chapter focuses on the results obtained from the methods discussed in chapter 4. Different 

section discusses about different experiments on Hyperion dataset and the results obtained from HySime 

and the spatial spectral endmember extraction. The chapter follows the methodology adopted and 

discusses the results obtained in each step. 

 

5.1. HySime: Noise Estimation and Eigenanalysis 

The signal subspace estimation is performed on the Hyperion (radiance) dataset of Dehradun 

area, to determine the number of spectrally distinct sources in hyperspectral signal or the intrinsic 

dimensionality of the dataset. The spatial subset size used for the experiment is 256 bands×640 lines and 

the spectral subset of 158 bands is taken.  

For a reliable estimation of the signal subspace or dimensionality of the dataset the random noise 

present in the dataset must be estimated accurately, to segregate it from signal information. For 

hyperspectral datasets a common approach for dimensionality reduction or signal subspace identification 

is the application of eigen decomposition based techniques, such as PCA, MNF or SVD. The eigenvalues 

obtained from these techniques are still representing the mixtures of the signal sources and the noise 

present in the data, which pose difficulty in obtaining reliable noise estimates as the signal sources are too 

weak and their contribution towards the computation of eigenvalues is very less.  

 As mentioned in chapter 4, HySime uses a multiple regression theory based approach for the 

estimation of noise from hyperspectral datasets and efficiently segregates noise from the signals. This can 

be explained by observing the eigenvalues and determining the spectral energy explained by the first few 

eigenvalues. The eigenvalues are ordered in the decreasing order of their magnitude. By calculating the 

cumulative percentage of all the eigenvalues, the percentage of variability explained by the first few 

eigenvalues can be determined.  

From the Table 5.1 and the subsequent graphs in Figure 5.1, it can be observed that in case of 

HySime and MNF there is a sudden drop magnitude after the first few eigenvalues indicating the presence 

of most of the spectral energy in the first few components. Whereas in case of SVD there is gradual 

decrease, thus indicating the presence of noise mixed with the signal information, as evident from Figure 

5.1. 

Table 5.1 below shows the first 20 eigenvalues obtained from MNF, SVD and HySime and the 

corresponding percentage of cumulative spectral energy explained by these eigenvalues.  

From the Table 5.1 we can observe that in case of HySime the first 7 eigenvalues contains more 

than 99.95% of the total spectral energy contained in the dataset. On the other hand the percentage of 

spectral energy explained by the first 7 eigenvalues of MNF and SVD is 96.63% and 83.47% respectively 

which indicates the presence of noisy signals. Thus in case of HySime the bulk of the spectral energy is 

explained by a small number of eigenvectors corresponding to the first 7 eigenvalues. This can be further 

explained by plotting the accumulated signal energy against eigenvalues index numbers in decreasing 

order. Figure 5.1 (a), (b) and (c) show the plots of percentage of spectral energy against the eigenvalues 

index for MNF, SVD and HySime respectively. 
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Table 5.1 Percentage Spectral Energy explained by Eigenvalues (MNF, SVD and HySime) 

Sl 
No 

MNF 
Eigenvalue

s 

%age of 
Spectral Energy 

explained by 
Eigenvalues 

SVD 
Eigenvalues 

%age of 
Spectral Energy 

explained by 
Eigenvalues 

HySime 
Eigenvalues 

%age of 
Spectral Energy 

explained by 
Eigenvalues 

1 1541662.38 77.02 3321243.40 65.48 168314510.00 97.61 

2 214695.35 87.75 444897.85 74.26 3019030.13 99.36 

3 119027.33 93.70 222513.90 78.64 755039.31 99.80 

4 26006.09 94.99 110716.90 80.83 185715.55 99.91 

5 16907.72 95.84 56405.54 81.94 46271.27 99.94 

6 9912.30 96.33 44104.73 82.81 22031.18 99.95 

7 5966.85 96.63 34034.12 83.48 12632.67 99.96 

8 4920.32 96.88 27954.65 84.03 10526.32 99.96 

9 4237.02 97.09 27318.29 84.57 9352.28 99.97 

10 3550.42 97.27 24012.09 85.04 6016.99 99.97 

11 3220.14 97.43 22257.25 85.48 4782.03 99.97 

12 3083.21 97.58 21234.01 85.90 4354.03 99.98 

13 2770.45 97.72 19330.88 86.28 3009.91 99.98 

14 2450.91 97.84 18784.18 86.65 2837.40 99.98 

15 2384.32 97.96 18012.87 87.01 2657.69 99.98 

16 2134.66 98.07 17570.90 87.35 2362.34 99.98 

17 1951.66 98.17 15149.22 87.65 2318.32 99.99 

18 1653.91 98.25 14540.29 87.94 2104.39 99.99 

19 1610.21 98.33 14269.19 88.22 1658.81 99.99 

20 1492.47 98.40 13861.15 88.49 1346.20 99.99 

 
 

  
Figure 5.1 Percentage of spectral energy explained vs. number of eigenvalues (a) MNF and (b) SVD 
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Figure 5.2 Percentage of spectral energy explained vs. number of eigenvalues, HySime 

 

5.2. HySime: Signal Subspace Estimation 

Once the noise has been estimated the next step is the estimation of the true dimensionality or 

the signal subspace. As mentioned in chapter 4 the signal dimension is estimated by minimizing the mean 

square error between the original signal and the noisy projection of it, as in expression 4.16 and the 

subspace dimension,   , is given by the number of negative terms in the minimization. Figure 5.3 below 

shows a plot of the mean square error as a function of subspace dimension   . The minimization for the 

Hyperion subset of 256×640×158 is obtained for    = 26 (depicted by a small circle), after which the mean 

square error curve begins to rise again. 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.3 Mean square error vs.    .  for the Hyperion data of Dehradun area 
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 The Figure 5.4 shows the mean square error vs.    plot generated by the MATLAB 

implementation of HySime. The plot shows the mean square error curve along with the projection error 

and the noise power error as a function of subspace dimension. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Mean square error vs.     plot: MATLAB output 

 

The signal subspace dimension,    , is estimated to be 26, which means there are 26 spectrally 

distinct signal sources in the dataset. However it may not always be the case. The subspace dimension is 

largely overestimated by HySime for spaceborne hyperspectral data and the reason for this is the spectral 

variability of the Hyperion dataset and a number of unknown signals present in the hyperspectral dataset 

such as unknown noise sources or interferers, unknown signatures etc. And the highly mixed spectrum of 

the Hyperion sensor and the area in question (Dehradun) adds to the problem. Thus HySime provides 

only an estimate of the number of spectrally distinct signal sources present in the spaceborne 

hyperspectral datasets and this can be used as a reference for determining the intrinsic dimensionality of 

the Hyperion dataset. Also the estimate of the number of spectrally distinct signal sources can be used 

further as an input for the existing endmember extraction algorithms.  

5.3. HySime Components 

Once the dimensionality of the Hyperion dataset is determined the different HySime components 

and the HySime component image,        , corresponding to the eigenvectors spanning the subspace 

i.e.               
 , can be generated using expression 4.17. The cut-off value for the number of 

components to be selected for further analysis can be decided by examining the individual components 

visually or by using the components corresponding to the eigenvalues explaining maximum variability in 

the data. Based on both visual examination and from eigenvalues the first six bands of         were 

found to be containing the maximum variability. Figure 5.5 shows the first five HySime components 

obtained after performing HySime. From table 5.1 it can be observed that the only the first five 

components explain about 99.94% of variability. So most of the signal information is in the first 5 or 6 

components only and rest of the components being mostly noisy and therefore not used for analysis. 

Figure 5.6 shows the first five components generated by MNF transform. A simple visual 

comparison also illustrates the better performance of HySime against MNF.  
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Figure 5.5 The first 5 HySime components, Hyperion 

 

 

   

Figure 5.6 The first 5 MNF components, Hyperion 
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5.4. Inverse HySime  

To illustrate the effective noise estimation procedure employed by HySime, the inverse HySime 

transform was also computed using the expression 4.18 to transform the image back into its original 

spectral space. The transformed image after performing the inverse HySime transform is much more 

noise free and cleaner than before restoration which can be observed by visual examination of different 

bands of Hyperion image before and after inverse HySime transform. Figure 5.7 and show the restored 

images for band 8 and band 220 of the Hyperion sensor against the images before restoration.  
 

 

 

 

 

 

 

 

                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

                       (a)                            (b)               (c)           (d) 

Figure 5.7 Original spectral image of band 8 (a) and band 220 (c) and the corresponding images after 
restoration (b) and (d) 

 

Figure 5.8 (a) shows spectra of a  pixel selected from the forest class  and Figure 5.8 (b) show 

the spectra of a pixel selected from settlement class before and after image restoration using Inverse 

HySime.  

                                 (a) Forest                                                                      (b) Settlement 

Figure 5.8 Spectral profile of Hyperion image before and after image restoration by Inverse HySime  
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5.5. Spatial-Spectral Iintegration 

The integration of spatial spectral information has been approached in a way to increase the local 

spectral contrast of the endmembers. So the endmembers having low spectral contrast with respect to the 

whole image can have high local contrast within a given region, thus increasing their odds of selection. 

The integration is achieved by adopting the SSEE model for spatial-spectral integration as described in 

chapter four.  

The step1 of the spatial spectral integration process produces a set of eigenvectors and compiled 

into a single vector file by selecting the eigenvectors from the image subsets that explain 99.9% variability 

of the subset data. After examining the eigenvectors, the number of subsets to be retained from each 

subset was set to 4.  These eigenvectors represent the local high contrast endmembers within the subset. 

An example showing the compiled eigenvector matrix for the first two subsets is given in Table 5.2.  

 
Table 5.2 Eigenvector matrix for the first two subsets of Hyperion Image (first 20 values out of 158) 

Eigenvectors, Subset 1 Eigenvectors, Subset 2 

-0.1048 -0.2540 -0.1949 -0.1143 -0.1056 -0.2989 -0.0216 0.0695 

-0.1013 -0.2461 -0.1814 -0.1081 -0.1012 -0.2870 0.0102 0.0909 

-0.0969 -0.2320 -0.1664 -0.1052 -0.0966 -0.2689 -0.0082 0.1145 

-0.0978 -0.2335 -0.1545 -0.0919 -0.0972 -0.2689 -0.0024 0.0891 

-0.0962 -0.2301 -0.1414 -0.0832 -0.0951 -0.2632 0.0015 0.0823 

-0.0968 -0.2324 -0.1335 -0.0816 -0.0954 -0.2637 -0.0006 0.0844 

-0.0866 -0.2084 -0.1014 -0.0620 -0.0841 -0.2302 0.0055 0.0614 

-0.0835 -0.2024 -0.0820 -0.0472 -0.0805 -0.2185 0.0125 0.0539 

-0.0811 -0.1959 -0.0637 -0.0341 -0.0776 -0.2056 0.0141 0.0464 

-0.0754 -0.1773 -0.0442 -0.0140 -0.0715 -0.1830 0.0208 0.0268 

-0.0773 -0.1718 -0.0311 0.0082 -0.0731 -0.1764 0.0199 0.0019 

-0.0766 -0.1604 -0.0218 0.0258 -0.0723 -0.1624 0.0184 -0.0134 

-0.0758 -0.1525 -0.0098 0.0413 -0.0714 -0.1507 0.0184 -0.0262 

-0.0737 -0.1436 0.0044 0.0535 -0.0688 -0.1385 0.0230 -0.0386 

-0.0684 -0.1358 0.0195 0.0546 -0.0631 -0.1266 0.0264 -0.0437 

-0.0634 -0.1319 0.0368 0.0548 -0.0575 -0.1179 0.0400 -0.0505 

-0.0617 -0.1319 0.0523 0.0566 -0.0549 -0.1125 0.0467 -0.0476 

-0.0584 -0.1291 0.0657 0.0636 -0.0514 -0.1030 0.0517 -0.0586 

-0.0570 -0.1284 0.0782 0.0642 -0.0493 -0.0995 0.0565 -0.0662 

  

 

The step 2 of the spatial spectral integration process projects the image data onto the compiled 

eigenvector set and the output is a set of initial candidate endmember pixels. The white dots in the figure 

5.9 (b) represents the spatial distribution of the initial candidate endmembers estimated by the projection 

of the image data onto eigenvectors. These are the pixels that lie at the extremes of the projection and are 

retained. The vectors onto which the image data is projected are non random in nature and it makes the 

whole process repeatable, and this is the primary benefit of this approach over PPI.   

In step 3, a sliding window equal to the size of the subset scans the image, traversing the initial 

candidate endmember pixels. By placing the window with the candidate endmember pixel at its centre the 

spectral angle distance (SAD) is computed between the centre pixel and all the other pixels in the window. 

The pixels within the window which were similar, based on minimum spectral angle distance were labelled 

as updated candidate endmember pixels. The threshold for the minimum spectral angle for spectral 
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similarity was set to 0.1 radians in this study. Figure 5.9 (c) shows the spectral angle distance (SAD) score 

image and gives an illustration how the sliding window is moving. 

 The pixels which were similar based on the minimum spectral angle are then averaged and their 

value stored in the centre pixel. This process can be repeated for a number of iterations. The numbers of 

iterations performed were 5. After the number of iterations of the averaging process an image containing 

the average spectra of endmembers after averaging process is generated. These endmembers are much 

cleaner and have reduced interclass variance.  

Figure 5.9 below show the images of the initial candidate endmembers from step 2 and the 

spectral angle distance score map from step 3 along with an false colour combination (FCC) of the 

dataset. 

 
          

(a)    (b)    (c)  

Figure 5.9 a) FCC of the Hyperion Image, b) Spatial distribution of the Candidate endmember pixels, and 
c) spectral angle distance score (in radians) of endmember pixels within subset size 

  

Step 3 results in a set of averaged candidate endmember pixels which are spectrally similar and 

are also defined spatially owing to the averaging process. The endmembers obtained after the averaging 

process are more noise free than before. This can be illustrated by plotting the spectral curve of the 

particular endmember before and after averaging process. Figure 5.11 shows the spectral profile of an 

endmember pixel taken from forest class, a) original endmember spectra and b) is the spectra obtained 

after averaging. The curve has been smoothened around the 1000 nm, 1650 nm and 2150 nm range. 

 

1.37 

 

 

 

0.00 
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               (a) original spectrum                     (b) spectra after averaging  

 
Figure 5.10 Spectra of a forest class endmember, (a) Original spectra and (b) Spectra after averaging 

process in step 3. 

 

In step 4, the endmembers obtained from step 3 are reordered based on their spectral angle. The 

first endmember is designated as the first endmember and then its spectrum is compared with all other 

endmembers. The most similar endmember with the lowest spectral angle is the second in the list and so 

on. A sample of the matrix containing the spectral angle distance of each endmember with all other 

endmembers is shown in Table 5.3.  
 

 

Table 5.3 Spectral angle distance between the endmember pixels 

 
1 2 3 4 5 6 7 8 9 10 

1 0.0000 
         2 0.0725 0.0000 

        3 0.0843 0.0766 0.0000 
       4 0.0903 0.0796 0.0763 0.0000 

      5 0.0985 0.0827 0.0822 0.0828 0.0000 
     6 0.0987 0.0808 0.0795 0.0816 0.0695 0.0000 

    7 0.0987 0.0854 0.0839 0.0845 0.0828 0.0729 0.0000 
   8 0.1075 0.0982 0.0882 0.0931 0.0877 0.0780 0.0841 0.0000 

  9 0.1017 0.0943 0.0913 0.0913 0.0821 0.0810 0.0820 0.0825 0.0000 
 

10 0.0883 0.0849 0.0845 0.0914 0.0855 0.0818 0.0870 0.0898 0.0779 0.0000 

 

 

The image coordinates of the endmembers are also stored. The endmembers are then reordered 

manually, according to their spectral similarity and spectrally similar endmembers with similar spatial 

coordinates are grouped together into endmember classes.  Once reordered the endmembers were then 

grouped into several different land use land cover classes such as Forest, Dry river, settlements, 

Grass/Shrubs, fallow land, agricultural crop fields etc. A number of endmembers in the obtained set were 

noisy and were rejected. 

 

The results obtained during different stages of the spatial-spectral integration process for the 

Hyperion Dehradun dataset are listed below in Table 5.2. The location of the dominant endmembers, 

which were identified after the reordering of the endmember spectra and grouping based on similar spatial 

coordinates, is also recorded in Table 5.5. 
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Table 5.4 Spatial-spectral integration results 

 

 

 
 Table 5.5 Pure endmembers extracted for different LULC classes and their image coordinates 

LULC Class Image Coordinates 

Forest 178, 1371 

Agricultural crop land 226, 1667 

Grounds with grass 124, 1491 

Settlement   212, 1558 

Dry River Bed 142, 1370 

Fallow Land 109, 1357 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Subset Size  

  128×128 64×64 32×32 16×16 

Number of Image subsets 10 40 160 640 

HySime Threshold 
99.9%   (4 
eigenvectors/
subset) 

99.9%  (4 
eigenvectors/
subset) 

99.9%  (4 
eigenvectors 
/subset) 

99.9% (4 
eigenvectors 
/subset) 

Step 1, Number of Vectors 40 160 640 2560 

Step 2, Number of 
Candidate Endmembers 

34 59 128 
Too many 
vectors, 
Program halted 

Step 3, Number of 
Averaged Endmember 
pixels 

34 59 128   

Step 4, Number of Unique 
endmembers 

Identified manually by grouping spectrally 
similar and spatially adjacent endmembers   
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5.6. Identified Endmembers : Visual Analysis 

In this section a visual interpretation of the results obtained for different land use land cover 

classes is presented to discriminate between various classes. The spectral profiles of the extracted 

endmembers are shown with their spatial coordinates. The spectral profile, averaged spectrum obtained 

from step 3, for each endmember is plotted till the 950 nm range for easier visual discrimination. The 

Hyperion image and the LISS-4 image of the land use land cover class which these endmembers are 

representing are also shown.  The field photographs captured earlier which are representations of these 

land use land cover classes are also presented. 

5.6.1. Forest Class  

The screen shot shows the image of forest with mainly Sal vegetation, taken during earlier field 

visits. The spectral profile shows a steep rise at 700 nm which reaches to a value of around 4000 before 

decreasing again. Then there exists small peaks in the near infrared (NIR) region.  Figure 5.11 shows the 

averaged spectral profile of the forest class and its reference images.  

 
 

       

(a)                  (b) 

 

 

 

 

 

 

    (c)               (d) 

Figure 5.11 (a) Spectral profile of Forest class, (b) snapshot of Sal forest, (c) FCC of the Hyperion Image 
and (d) LISS-4 image of the same area 
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5.6.2. Agriculture/Crop Land 

The screen shot shows the image of agricultural land or crop field in the Southern part of 

Dehradun. The spectral profile shows a steep rise at 700 nm which reaches to a value of around 3000 

before decreasing again. Then there exists small peaks in the near infrared (NIR) region.  Figure 5.12 

shows the averaged spectral profile of the agriculture/crop land class and its reference images.  

 

 

 
(a)                          (b) 

 

 

 

 

 

 

 

   (c)                       (d) 

 
Figure 5.12 a) Spectral profile of Agriculture class, (b) snapshot of crop field, (c) FCC of the Hyperion 

Image and (d) LISS-4 image of the same area 
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5.6.3. Grounds with grass 

The snapshot shows the grass in the lawns of the Forest research Institute (FRI) in Dehradun. 

The spectral profile of the averaged endmember is shown in figure 5.13 (a). The curve rises slowly till a 

wavelength of 675 nm and then steeply till 750 nm and peaks at a value of 3000 at 950 nm. 

Figure 5.13 shows the averaged spectral profile of a type of grass in Dehradun region and its 

reference images. 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                             (b) 

 

 

 

 

 

 

 

      (c)                                                                              (d) 

 

Figure 5.13 (a) Spectral profile of grass, (b) a snapshot of grass in FRI, (c) Hyperion zoom image of FRI 
and (d) LISS-4 zoom image of FRI 
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5.6.4. Settlement 

The snapshot shows a typical building feature present in the Dehradun city. The roof top mostly 

consists of sand, concrete and clay. The spectral curve of the building of Hyperion image rises steadily to a 

value of 2500 at around 850 nm and then there are a lot of peaks and dips. 

Figure 5.14 shows the averaged spectral profile of a building in Dehradun region and its reference 

images. 

 

(a)                (b) 
 

 

 

 

 

 

 

            (c)                                                                            (d) 

 

Figure 5.14 a) Spectral profile of settlement class, (b) a snapshot of typical building in Dehradun city,     
(c) Hyperion zoom image of settlement class and (d) LISS-4 zoom image of settlement class  
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5.6.5. River Bed 

The snapshot shows the dry river bed of the Tons river in Dehradun and flows from North east 

to south west direction in the area. The river is seasonal in nature and the river bed is dry most of the year. 

The river bed is characterised by cyan colour due to high silica content in dry river bed. The spectral curve 

of the river rises steeply to 1500 at around 575 nm and after that there are a lot of undulations. 

Figure 5.15 shows the averaged spectral profile of a dry river bed of Tons river in Dehradun 

region and its reference images. 

 

 

 
(a)                                                                      (b) 

 

 

 

 

 

 

 

          (c)                                                                         (d) 

 

Figure 5.15 a) Spectral profile of dry river bed, (b) a snapshot of Tons river in Dehradun, (c) Hyperion 
zoom image of dry river and (d) LISS-4 zoom image of dry river bed. 
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5.6.6. Fallow land 

The snapshot shows the land cover class called Fallow land, in the northern part of Dehradun 

and is characterised by mixed shade of red and cyan colours. The land cover class is called fallow land as it 

is deficient of any crop. The spectral curve of the fallow land rises steadily till 750 nm without any dips. 

After that a few dips and peaks can be observed in the near infrared region. 

Figure 5.16 shows the averaged spectral profile of fallow land near Tons river in Dehradun region 

and its reference images. 

 

 

 
(a)                                                                           (b) 

 

 

 

 

 

 

 

         (c)                                                                            (d) 
Figure 5.16 a) Spectral profile of fallow land, (b) a snapshot of fallow land, (c) Hyperion zoom image of 

fallow land and (d) LISS-4 zoom image of fallow land. 

 

5.7. Spectral Unmixing 

 

The spectra of the identified endmembers are stored as spectral library and are used for 

performing linear spectral unmixing in ENVITM. Linear spectral unmixing is performed using the 

endmember pixels whose averaged spectrum is shown in previous section. The outputs of linear spectral 

unmixing are fractional abundance images that show the abundance of that material in a particular pixel. 

The abundance fraction maps of the five endmember classes, i.e. forest, dry river, fallow land, crop fields 

and settlements, derived after spatial-spectral with a subset size of 32×32 and HySime threshold value of 

99.9% are shown in Figure 5.13 along with a false colour composite of the study scene. The black 

background represents values equal to zero values. The forest and the settlements have an abundance 

fraction greater than 50% and the rest of the three classes have abundance fraction greater than 75%. 
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 From the fraction images we can observe the five different land use land cover classes against the 

FCC of the study scene. From the fraction image for forest it can be seen that the forest in the lower part 

of the image is well delineated, the fractions of forest spectra are lower owing to mixing with other 

spectra. Figure 5.17(c) is the fraction image for settlement class and shows a general outline of the urban 

area. In Figure 5.17 (d) the dry river bed of the rivers can be clearly identified. Figure 5.17 (e) is the 

fraction image of fallow land. Here a lot of other classes such as grounds with grass, shrubs etc. have been 

mixed with fallow land. The Figure 5.17 (f) highlight the fraction image of agriculture/ crop land class. 

The different agricultural fields in the southern part of the Dehradun are well defined in this image. 
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6. CONCLUSIONS 

 This research work concentrates on two aspects of hyperspectral image processing; first, signal 

subspace identification or the estimation of the number of spectrally distinct signal sources present in 

spaceborne hyperspectral dataset using a recently proposed approach called hyperspectral subspace 

identification by minimum error (HySime) and second, the integration of spatial information with these 

spectrally distinct signal sources with the aim to improve the extraction of the pure image endmembers. 

This chapter summarizes the results obtained by following the methodology adopted for this research 

work.  

 

6.1. Is the HySime signal decomposition technique more efficient than other existing techniques, in 
the context of spaceborne hyperspectral datasets? 

 From the results obtained in chapter five, it was found that the HySime algorithm has an edge 

over the other mentioned techniques such as MNF and SVD for estimating the signal subspace in 

spaceborne hyperspectral imagery.  HySime is eigen-decomposition based and uses the eigenvalues to 

determine the percentage of variability explained by the first few eigenvectors as shown in section 5.1. The 

comparison of spectral energy explained by HySime with other techniques gave evidence that HySime 

performs better in the presence of strong random noise as in case of high dimensional hyperspectral 

datasets. This also proves the utility of the multiple regression based noise estimation procedure employed 

by HySime to estimate the noise correlation matrix. The effectiveness of the noise estimation procedure 

of HySime was also illustrated by transforming the HySime components back to its original spectral space 

in section 5.4. The restored image was cleaner and more noise free than the original image.  

 

6.2. What will be the intrinsic dimension of the subspace identified by HySime? 

The signal subspace dimension or the estimate of the number of spectrally distinct signal sources 

inferred by HySime,    , was found to be 26. However after looking at the eigenvalues and the HySime 

components it was found that only the first few components corresponding to the largest eigenvalues 

were useful for further analysis. HySime largely overestimates the subspace dimension, a conclusion that 

was also inferred in [7]. This is because of the presence of largely unknown noise structure of Hyperion, 

other noise sources or interferers or the presence of unknown spectral signatures in the study scene. 

 

6.3. How to integrate spatial information with spectral subspace identified by HySime for 
endmember extraction? 

The spatial information is incorporated in the endmember extraction process by partitioning the 

image into subsets thus enhancing the local spectral contrast of the endmembers which are having low 

spectral contrast with respect to the whole image. HySime is used to extract the local eigenvectors from 

the subset that enables the selection of both low and high contrast endmembers from a given scene. A 

total of 128 initial candidate endmembers were identified. By averaging the endmembers which are 

spectrally similar based on minimum spectral angle and also spatially related based on their similar spatial 

coordinates, the resultant averaged endmembers are both spectrally and spatially defined. The averaging 

process reduces the noise and their spectral profiles are smoother than before as illustrated by Figure 5.11 
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of section 5.5. The result is a set of all 128 endmembers which are both spectrally and spatially defined. 

However the set of unique pixels from the averaged endmember set was extracted manually by reordering 

the endmember set based on minimum spectral angle and identifying the endmembers which are 

spectrally similar and spatially related and grouping them into different land use land cover classes. 

 

6.4. How will the integration of spatial and spectral information improve the classification and 
mapping accuracies? 

The endmember set obtained after reordering and grouping into different spectral classes resulted 

in the delineation of the endmembers into six broad classes as given in Table 5.5 of chapter 5. The 

validation for the extracted endmembers was performed visually by comparing them against the original 

Hyperion spectra and their spatial locations were confirmed by comparisons with field photos taken 

during earlier field visits against the high resolution data set i.e. IRS-P6 LISS4 image of Dehradun area.  

The Hyperion dataset was unmixed using these unique endmembers using the linear spectral 

unmixing approach of ENVITM fractional abundance maps were generated. The endmembers represented 

distinct spatial regions which can be visually identified. Although visually identifiable the various classes 

were still a mixture of different spectra owing to complex land use land cover classes present in the study 

scene and the low spatial resolution of the Hyperion sensor. However the method proved to be effective 

in reducing the noise and the interclass variability of the candidate endmember pixels, thus making them 

more efficient to be used for unmixing. 

 

The result obtained from the spatial-spectral integration highlight the method is capable of 

extracting endmembers from the spaceborne hyperspectral datasets which are both spatially and spectrally 

defined. 

 

6.5. Recommedations 

The integration of spatial information with spectrally rich hyperspectral datasets is an active area 

of research. In this thesis the approach has been tested on spaceborne hyperspectral dataset. A few 

recommendations for spatial-spectral integration in the context of spaceborne hyperspectral datasets are: 

1) The HySime approach can be tested for Non-Linear mixing scenarios where the incident solar 

radiations are multiply scattered and the mixing between different substances is non-linear.        

2) The subsets used in this study were non-overlapping and square. However depending upon scene 

characteristics, overlapping subsets may be used for averaging such that all the pixels are 

compared with all other pixels, explaining how the endmembers are related in neighbouring 

subsets. 
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APPENDIX A 

 

A.1. Abnormal pixel detection: IDL Code for Along Track Destriping of Hyperion Images 
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A.2. Abnormal pixel correction: IDL Code IDL Code for Along Track Destriping of Hyperion Images 
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APPENDIX B 

B1: Spatial-Spectral Integration, Step 2 - IDL code for the Projection of image data onto Eigenvectors 
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B2:  Spatial-Spectral Integration, Step 2 - Function to project the Image data onto Eigenvectors 
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B3: Spatial-Spectral Integration, Step 2 - Function to sort the array and to find the extreme pixels 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




