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Abstract

A classification model for travel mode detection is developed. The input for the model is collected
with a triaxial accelerometer integrated in a smartphone. The classification model is based on logistic
regression. Four extensions based on logic reasoning are suggested. The developed model is tested
using five test cases. Accelerometer based classification does a good job for non-motorized travel
modes, such as walking and cycling. However, motorized travel modes are more difficult to classify
using only accelerometer data. Using the proposed algorithmic approach, an overall accuracy of
50.0% could be obtained.
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Chapter 1

Introduction

Since 1978, the Centraal Bureau voor de Statistiek, a Dutch governmental organisation that collects
data of the Dutch society, researches travel behaviour inside the Netherlands every year. This
research is nowadays called ‘Onderweg in Nederland’ [1]. The research is performed by conducting
an online survey among Dutch people. Participants have to answer questions about their travel
behaviour, and the results of the survey are used to investigate travel behaviour of all Dutch people.
However, the survey results are highly influenced by how they are filled in by the participants. This
most likely results in a lower quality of the research results.

It is hence clear that there are organisations that are interested in the travel behaviour of individuals.
However, conducting a survey is not the best way to obtain results on travel behaviour. A much
better way would be to give each participant a device that measures travel behaviour and automat-
ically concludes which travel mode is used for how long. Designing a device is not necessary, since
almost all Dutch people already carry such a device with them all day, namely the smartphone. If
it would be possible to measure travel behaviour and conclude which travel modes are being used
by installing an app on a smartphone, the whole survey would not be needed anymore. The results
for the ‘Onderweg in Nederland’ research, could simply be drawn from the smartphone data.

However, before this can be the case, apart from all the issues regarding privacy, the app should be
realised, and it should include a method to determine travel modes.

The research described in this report is conducted on behalf of Mobidot, another company interested
in the use of smartphones when it comes to collecting and analysing data about travel behaviour.
They would like to have a model that can use smartphone data to determine in which ways someone
has travelled. The above is the context under which this research was conducted.

1.1 The use of smartphones in detecting travel modes

Since the development of the smartphone, and even long before that, researchers have been busy
researching the determination of travel modes using certain devices, such as an accelerometer. This
is a device that measures acceleration [2]. Nowadays, smartphones almost always include an ac-
celerometer, as well as other sensors that can be used for travel mode detection [3]. Since almost
everyone owns a smartphone nowadays, almost all recent studies performed in the field of travel
mode detection make use of this. All sorts of sensors included in a smartphone are used to collect
data and analyse travel behaviour.

A lot of studies use both accelerometer data and GPS signals to detect transportation modes [4–6].
Some studies only use data collected with an accelerometer [7, 8], whereas others use a variety of
sensors, such as the gravity sensor, magnetometer, barometer and the light sensor [9, 10].
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In most cases, the GPS signal is used to determine velocity, whereas the accelerometer is used to
observe changes in direction and find patterns in movements. The gravity sensor and magnetometer
are often used to remove the influence of gravity from the accelerometer data, which unfortunately
is needed since an accelerometer not only measures motion, but is also influenced by gravitational
forces [11,12]. The magnetometer, barometer and light sensor can amongst other things be used to
sense whether the smartphone is in an indoor or outdoor environment [12]. For instance, the light
sensor determines the amount of ambient light. When walking or cycling, this amount can be higher
than when travelling with a motorised vehicle.

Online and offline classification
There are two approaches possible for performing classification. It can be done offline, after all the
data is collected, or online, while the data is collected. Hence, unlike offline classification, online
classification is done in real time. The big advantage of offline classification is that more data is
available. However, online classification can be used for updating the user on the travel mode, while
the trip has not been finished yet. Also, when performing classification on a smartphone, not all
data has to be kept until the end of data collection but can be removed when classification is done.

Machine learning and heuristics
A lot of studies are done on detecting travel modes, and a lot of different approaches have been
tried. Almost all studies use some machine learning technique for classification. Often used machine
learning algorithms are Support Vector Machines [11], Random Forests [5,8,10], Bayesian Networks
[13,14], decision trees and Hidden Markov Models [6], Naive Bayes [15], and Neural Networks [16].

Some studies add a heuristic in addition to the machine learning algorithm or developed their own
classification algorithm. An interesting heuristic is used by [17]. First walking is filtered out, based
on the average acceleration. Then, it is decided for the intermediate parts what kind of travel mode
is used. This approach is based on the assumption that every activity starts and ends with a bit of
walking. Also, it is assumed that changing between two travel modes always contains a little bit of
walking. Another interesting approach is suggested by [9]. In that paper, a model is described that
takes two steps in distinguishing between different travel modes. The first step is to make a selection
between wheeler and non-wheeler travel modes. Second, a differentiation between wheeler modes
must be made. In the study performed by [18], a algorithm is developed which is called MCODE
and is used for classification. No machine learning technique is used.

Features
Most travel mode classification algorithms are based on features derived from a trip. Those features
are calculated based on a short period of collected data. Most features are time- or frequency-
based [19]. Examples of time-based features are: mean, minimum, maximum and variance, whereas
frequency-based features are for example: energy, entropy and time between peaks. Frequency-based
features are often computed using for example the Fast Fourier Transform [20,21].

1.2 Research question and scope

Currently, Mobidot does not have a travel mode classification algorithm of their own. Instead, the
travel mode detection integrated in smartphones is used. This causes the detection to be depen-
dent on the smartphone brand and type. To overcome this issue, Mobidot would like to have a
classification algorithm of their own. The question answered in this report is therefore:

Is it possible to use accelerometer data for travel mode classification?

The collection of data for this research is done with an app provided by Mobidot. Therefore, this
report will not focus on how data collection is done. Preprocessing the data will be addressed, as
well as calculating features and building a classification model. The classification model must be
able to distinguish between travel modes still, walking, cycling, bus, train and car. Hence, other
travel modes are beyond the scope of this research.
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The classification model is developed on a laptop, hence running and testing the model on a smart-
phone are not part of this report.

1.3 Outline

The remainder of this report is structured as follows. In Chapter 2 first some terminology is discussed.
Furthermore, the details of the problem addressed by this report are described and the relevance of
the research is described. Chapters 3, 4 and 5 contain the description of the developed classification
model. In Chapter 3, some necessary preprocessing is described. This preprocessing is needed
to make the input data suited to work with in a classification model. Using the preprocessed
data, features can be extracted. This process is described in Chapter 4. Multiple classification
algorithms, developed for classifying travel modes, are described in Chapter 5. Chapter 6 and 7
respectively describe the experiment setup and the results obtained with the developed classification
models. Chapter 7 also establishes values for parameters used in the classification models. Finally,
conclusions and recommendations for further research and model development are given in Chapter
8.
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Chapter 2

Problem description

2.1 Glossary

Modality A way of traveling, like walking, cycling, public transport and so on.
Travel mode Similar to modality.
Trip A journey that lasts from the moment of departure until arrival elsewhere

2.2 The problem explained

Founded in 2013, Mobidot is a company that analyses travel behaviour on behalf of clients, such
as governments, service providers, and employers [22]. The goal of analysing this data, is to create
insight in travel behaviour and eventually being able to influence travel behaviour in a personal way.

Part of the work of Mobidot is analysing trips taken by users that have installed a specific app on
their smartphone. Through this app, data such as GPS locations, is collected in order to estimate the
participants position and travel path. If also travel modes would be known, those can for instance
be used to improve the position and travel path estimates.

Most modern smartphones already contain a chip that translates the 3D movement from the inte-
grated accelerometer into activities, like still, walking, cycling and in-vehicle. The Mobidot sensing
library already uses these deduced activities, for example as priors for the trip modality recogni-
tion. But there are some major drawbacks to this, like the heterogeneity between different phone
manufacturers, limited set of recognised activities, cycling detection is usually of lower quality, and
Mobidot does not have a handle to alter or improve the algorithms used.

Therefore, Mobidot would like to develop a new activity detection algorithm that is able to clas-
sify travel modes, and can be executed on every smartphone. Using the same algorithm on every
smartphone causes the travel mode prediction to be independent of the smartphone type used, and
is therefore more useful for Mobidot. Also, using their own activity detection algorithm allows them
to alter or improve the activity detection.

The classification algorithm, as the activity detection algorithm will be called in the remainder of
this report, must meet the following requirementes, as determined by Mobidot.

• Accelerometer based: The input data for the classification algorithm should only consist
of accelerometer data, collected with a smartphone. Since all smartphone accelerometers are
triaxial, this implies input data of the form (t, ax, ay, az), with t the time of measurement, and
ax, ay and az the measured acceleration with respect to the x-, y- and z-axis of the smartphone,
respectively. The data will be sampled at 5Hz, hence 5 measurements per second.
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• Battery-efficient: The classification algorithm is executed on a smartphone. In order not to
drain the battery, the algorithm must run in a battery-efficient way. This implies developing
a classification algorithm that does not require much computing power.

• Expandable: In future, the classification algorithm must be expandable, in the sense that
new activities can be easily added by Mobidot.

• Classify during trips only: Only accelerometer data collected during a trip should be
classified. Hence, activities such as ‘watching a movie while sitting on the couch’, which are
typically done while not travelling, are not included in the set of activities that have to be
recognised.

• Online classification: The classification must be done online, which means that it must
be done while data is collected. This also means that classification has to be done on the
smartphone itself.

Furthermore, the set of travel modes that must be recognised with the classification algorithm
consists of still, walking, cycling, bus, train and car.

The long term goal of the classification algorithm, together with other algorithms for trip analysis
by Mobidot, will be that that it leads to an activity story line per day, with a focus on personal
trips. As an example: “Today I left the office at 17:44, took the elevator to street level, and walked
to the bus stop. I had to wait for 3 minutes until the bus arrived, and I had to stand in the bus
until stop X before a seat became available. At station S, I walked to subway platform P, where
train T just arrived to bring me home. In the subway I tried to sleep a bit.” With this activity story
line in mind, the subsequent trip analysis algorithms can be much more targeted and precise, and
maybe also be more efficient with better performance. Creating this story line is beyond the scope
of this report, which will focus on developing the classification algorithm itself. In that sense, the
work done in the report can be seen as starting point for a later tool for generating such an activity
story line.

2.3 Relevance of our research

As a conclusion of the previous chapter, we can state that it is highly relevant to Mobidot to have
its own travel mode detection algorithm based on accelerometer data. Taking their wishes and
requirements into account, no suited model could be found in literature. Hence, a new model had
to be developed. Below I describe in more detail why a suited model did not exist.

As described in Chapter 1, there is a difference between online and offline classification. Many studies
conducted on travel mode detection focus on offline classification, and therefore have no absolute
need to be lean and battery-efficient. However, since one of the requirements for the developed
classification model is the possibility to perform online classification, we do need a lean and battery-
efficient way of classifying. Using logistic regression turned out to be suited for our purposes. As
far as we know, no study has used this technique before in a travel mode classification model.

Most studies known from the literature use multiple sensors, including the accelerometer. For our
model, however, the input may only consist of accelerometer data. This, in combination with what
is mentioned above, makes that our research is unique and not performed before.
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Chapter 3

Preprocessing

This chapter will discuss in detail how data is collected and preprocessed to be used as input for the
classification algorithm described later in Chapter 5.

3.1 Collecting data

Figure 3.1: Schematic representation of
the direction in which acceleration is
measured with respect to a smartphone,
adopted from [23].

The accelerometer included in a smartphone is a so-called
triaxial accelerometer, which means that acceleration is
measured in three directions. In Figure 3.1 those direc-
tions are visualised. For every phone, the three directions
are equal, however the names of the axes may differ per
smartphone type and brand. However, it always holds
that accelerometer data is of the form (t, ax, ay, az), where
t is the time at which acceleration is measured, and ax, ay
and az are the measured accelerations in the direction of
the x-, y- and z-axis, respectively.

At least every 0.2 seconds, which is 5Hz, the smartphone
measures the acceleration in all three directions. However,
it can be the case that the phone is busy with other things,
and therefore skips a measurement once in a while. If
not much is asked from the phone, for instance during
nighttime, it may also be that many more measurements
are taken, up to 200 Hz, which means 200 measurements per second.

The classification is done online, which means that data collection and classification are done at
the same time. To manage this, collected data is stored into windows. Every time s seconds have
passed, a new window will be created and filled with new accelerometer measurements. A possibility
is to use overlapping windows.

Hence, every s seconds, a new window w is filled with collected data. This data is then stored in
matrix Aw, which looks like

Aw =


t1 ax1

ay1
az1

t2 ax2
ay2

az2
...

...
...

...
tnw

axnw
aynw

aznw

 ,

where nw is the number of measurements in window w.
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When choosing a value for s, two things must be taken into account. First, if s is chosen too small,
there will be too few data points in the window to get an accurate classification. Second, if s is
chosen to large, activities that last only a short time will be missed or distorted when classifying.

While collecting data, one of the following things can happen:

• It can occur that for two time indicators ti, tj ∈ Aw, i 6= j it holds that ti = tj , while
(axi , ayi , azi) 6=

(
axj , ayj , azj

)
. Hence, there are two different measurements with the same

time point.

• Despite the fact that the sampling rate is set to 5Hz, it can occur that a window Aw is empty
or has only a few data points in it.

The reason why those things happen is not clear. In both cases, window Aw can not be used for
classification and the window must be classified the same as the previous window.

3.2 Changing the direction of the data with known gravita-
tional acceleration

A described in the previous section, acceleration is collected in three directions. However, due to
the fact that the smartphone is not held into the same position all day, the directions in which
acceleration is collected, are not consistent. By this, we mean that the forward/backward accelera-
tion, the sideways acceleration and the upwards/downwards acceleration with respect to the earth
are not always equal to the acceleration measured in the x-, y- and z-direction with respect to the
smartphone, respectively. Consider for example the fact that the smartphone is very likely to be in
a different position while cycling than when it is used to navigate while driving.

Figure 3.2: Real and desired direction of accelerometer measurements.

To make the data consistent, all measured data should be mapped to the coordinate system rela-
tive to the surface to the earth as shown on the right in Figure 3.2. Hence, the forward/backward
acceleration must be mapped to the x-axis, the sideways acceleration to the y-axis and the upward-
s/downwards acceleration to the z-axis. We will refer to those desired axes as the axes of the earth,
since we are interested in the orientation of the accelerometer measurement with respect to the earth
instead of the smartphone.

If the data would not be mapped onto those axes, it would not be possible to use the separate accel-
eration measurements ax, ay and az for classification, because the measured acceleration cannot be
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related to a specific direction. We then would only be able to use the magnitude of the acceleration,
which does not tell anything about the direction of the movement that caused the acceleration.

(a) (b)

(c) (d)

(e)

Figure 3.3: Projecting accelerometer data onto the axes of
the earth, while removing gravitational acceleration

To preprocess the data, we use the
fact that an accelerometer is affected
by both motion and gravity. This
causes that the data collected with the
accelerometer contains two types of
acceleration, which have been merged
into one output. The first type of
acceleration is gravitational accelera-
tion, caused by gravity. The direc-
tion of the gravitational acceleration
is always orthogonal and points away
from the surface of the earth [24]. The
second type of acceleration is called
linear acceleration and is caused by
movement of the accelerometer [25].

Figure 3.3 shows the process of map-
ping accelerometer data onto the axes
of the earth. For the sake of simplic-
ity, the z-direction has been omitted
in the pictures. In order to project
the data onto the axes of the earth,
the direction of the gravitational ac-
celeration must be known.

In the following, let us assume for
the time being that the gravitational
acceleration g = (gx, gy, gz) rela-
tive to measured acceleration a =
(ax, ay, az) would be known. Then a
and g can be depicted as in Figures
3.3a and 3.3b. Both the acceleration
a and the gravitational acceleration g
are measured in three directions, x, y
and z. Those directions are not nec-
essarily equal to the axes of the earth.
The first step in changing the axes
of the measured acceleration to the
axes of the earth, is finding the direc-
tion of the gravitational acceleration
g, with respect to the axes of the ac-
celeration measurement, as shown in
Figure 3.3c. Also, the gravitational
acceleration g must be subtracted from the total acceleration a, to find the linear acceleration
l = (lx, ly, lz) = a− g = (ax − gx, ay − gy, az − gz), depicted in Figure 3.3d.

The direction of the gravitational acceleration g is always perpendicular to and away from the surface
of the earth. Hence, the direction of the gravitational acceleration corresponds to the axis to which
the vertical acceleration should be mapped. Therefore, we know that the vector projection of linear
acceleration l to the gravitational acceleration represents the part of the linear acceleration that is
perpendicular to the surface of the earth, which will be called lv.

However, since we are interested in the length of vertical linear acceleration lv, it suffices to take
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the dot product of the linear acceleration l and the gravitational acceleration g instead of the vector
projection, see Equation (3.1). However, the vector projection of l onto g is needed to find the part
of the linear acceleration that is parallel to the surface of the earth, which will be called horizontal
linear acceleration. When subtracting this vector projection from the total linear acceleration l, the
remainder is equal to the horizontal linear acceleration, lh.

Gravity could be used to find the direction of the upwards acceleration, lv. However, no such thing
exists that can be used to find the direction of the sideways or forwards acceleration. Therefore,
the length of the horizontal linear acceleration is used. The final horizontal linear acceleration lh is
determined with the aid of Equation (3.2).

lv = l · g (3.1)

lh = ‖l− lv
g · g

· g‖2 (3.2)

After transforming the measured acceleration a to lv and lh, the mapping to the axes of the earth
is completed, see Figure 3.3e. The data can now be handled with respect to the axes of the earth
and no longer depends on the direction of the smartphone.

It is important to note that some phones are able to remove gravity from the signal themselves.
However, the way this is done is not always trustworthy and accurate. Also, older phones are not
able to remove gravity from the accelerometer measurement. Therefore, we chose to use the raw
accelerometer data for all smartphones, and remove gravity for all smartphones on the same way.
This makes our results more unambiguously.

3.3 Estimating gravitational acceleration

The result of the procedure described above heavily depends on the assumption that the gravitational
acceleration g relative to a is known. This is not the case, and therefore the estimation of the
gravitational acceleration should be done as accurately as possible.

Since only accelerometer data is used, the gravitational acceleration must be estimated with the aid
of the data that we have. The study of [7] proposes an algorithm for estimating the gravitational
acceleration, based on a more basic approach developed in an earlier study done by Mizell [25].
Both studies are based on the fact that the magnitude of the gravitational acceleration is always
equal, namely approximately 9.81 m/s2. Mizell suggests to obtain an estimate of the gravitational
acceleration with respect to each axis by taking the average of the accelerometer measurements in
the window on that axis. For instance, the gravitational acceleration in the direction of the x-axis is
calculated as gx =

(
ax1 + . . . axnw

)
/nw, with ax1 , . . . axnw

∈ Aw and nw the number of rows in Aw.

The study done by Heminki [7] notes that this approach contains two major drawbacks. The first
problem occurs if a window contains sustained acceleration, which is a constant acceleration caused
by motion that lasts several seconds. When using the method of Mizell, the sustained accelera-
tion will influence the gravity estimate, making it deviate from the real gravitational acceleration.
Therefore, both the gravity estimate and the linear acceleration are not correctly computed in case
of sustained acceleration. Second, sudden changes in orientation of the device are not taken into
account and will result into a wrong gravitational acceleration estimate, in case such a change takes
place.

To avoid the above disadvantages, we use a slightly modified version of the algorithm developed by
Heminki [7], summarised in Alg. 1. Short data windows are considered, and gravity is estimated
in windows that have sufficiently small variance. During periods with small variance, the sensor is
approximately stationary, which means that the main acceleration measured is caused by gravity.
Therefore, taking the window mean as gravitational acceleration is appropriate in windows with
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small variance. In many situations, however, variation is to high to properly estimate gravity. High
variance is caused by activities such as walking, cycling or travelling in a vehicle along an uneven
road. To estimate gravity during such activities, the variance threshold is dynamically adjusted
according to the current movement pattern. The variance threshold may increase until a hard upper
threshold of 1.5 is reached. In case that happens, the gravity estimate becomes overly inaccurate,
and it is more appropriate to use Mizell’s technique to estimate the gravitational acceleration.
To make sure orientation changes of the sensor do not influence the gravity estimate, the estimate
is reset in case a large shift in orientation is observed. Shifts in orientation occur when the phone
is used, or when for example the wearer of the device stands up or sits down. Shifts in orientation
are detected by comparing the current gravity estimate against the mean of the current window.
Whenever these differ by more than 2 m/s2 along any of the axes, the gravity estimate is re-initialised
to the mean of current accelerometer window.

Algorithm 1: Algorithm used to estimate the gravitational acceleration

Input : The current gravity estimate g, and the new window of measurements Aw

Output: The new gravity estimate g

1 Wmean = mean(Aw) % take the mean of Aw with respect to the x-, y- and z-axis
2 Wvar = var(Aw) % take the variance of Aw with respect to the x-, y- and z-axis
3 if |Wmean − g ≥ 2m/s2 then
4 g = Wmean

5 THvar = [0.01 0.01 0.01]

6 else if Wvar < 1.5 then
7 if Wvar < THvar then
8 g = Wmean

9 THvar = (Wvar + THvar)/2
10 V arInc = 0.1 · THvar

11 else
12 THvar = THvar + V arInc
13 end

14 else
15 g = Wmean

16 end

Heminiki uses windows of 1.2 seconds to estimate gravity, combined with a sample rate of at least 60
Hz. This results in at least 72 measurements per window. We collect data at a sample rate of 5Hz,
which gives only 6 measurements in 1.2 seconds. Forced by this, a choice must be made between
two non-optimal situations:

1. Taking short windows to be able to observe (almost) all changes in gravitational acceleration.

2. Taking longer windows such that enough data points are included.

Both situations have their drawbacks. Choosing method 1 results in more estimates, that are most
likely less accurate due to lack of enough data points. However, choosing method 2 results in fewer
estimates that apply to relatively large windows. This too is most likely inaccurate. In Chapter 7,
Alg. 1 is tested with multiple window lengths and results are shown.

Due to the fact that only accelerometer data is used, a less accurate estimate of the gravitational
acceleration will be obtained compared to the case when multiple sensors are used. However, recall
that by scope of the project, other sensors are not allowed.
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3.4 Computation of magnitude, angle and angle speed

Next to the vertical and horizontal linear acceleration, we are also interested in the magnitude of
linear acceleration l. The linear acceleration magnitude, which will be called c, is calculated by

c =
√
l2x + l2y + l2z . (3.3)

The acceleration magnitude c is calculated for all measurements in Aw.

Two other relevant characteristics of the accelerometer measurements are the angle between the
linear acceleration and the gravitational acceleration, and the related angular velocity. To calculate
the angle, both the gravitational acceleration g and the linear acceleration l must be known. The
angle is then calculated using Equation (3.4),

α = arccos

(
g · l

‖g‖ · ‖l‖

)
, (3.4)

where α is the angle between g and l. The angle is calculated for each acceleration measurement in
Aw.

Subsequently, the angular velocity is calculated. Angular velocity refers to how fast the orientation
of an object changes over time, and is therefore calculated by taking the difference in two consecutive
angles, and dividing this difference by the difference in time. Suppose that α1 and α2 are angles
related to two consecutive measurements in Aw, with corresponding time points t1 and t2, then the
angular velocity v is calculated as

v =
dα

dt
=
α2 − α1

t2 − t1
. (3.5)

3.5 Non-constant sample frequency

As said before, the rate at which samples are taken, differs from 5Hz to 200Hz. This is due to how
the accelerometer works, and cannot be influenced. Because of this, it is possible that the different
data points in Aw are not taken with equal time distances from each other. Therefore, it happens
that some consecutive data points are very close together, while others are more apart. This is
illustrated in Figure 3.4. All blue dots are data points collected at approximately 5Hz, the red dots
are extra data points added by the phone, for no clear reason.

Figure 3.4: Data points representing timestamps of data collected with the accelerom-
eter.

It is not desirable to keep these additional data points for several reasons:

• For classification purposes, several properties of the data have to be determined, such as the
mean and the variation. However, if the mean is taken over a window with data points that
are unevenly distributed over time, this will influence the quality of the mean. Clearly, the
mean is more representative if data points are evenly distributed over time.

• Some features, such as the fast Fourier transform, require data to be evenly distributed over
time, with a constant sample frequency. Hence, the fast Fourier transform cannot be used if
all data points are kept.

• More data means more computations to be done, resulting in high battery usage.

For the above reasons, the next step in the preprocessing is interpolation. Interpolation is done with
a sample frequency of 5Hz, the minimum rate at which data is collected.
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To interpolate the data, first a grid of ‘new’ timestamps is created. The first grid point x1 is the
timestamp of the first data point present in window Aw, which is t1. Then, the grid is constructed
as follows: {x1 = t1, x2 = t1 + 0.2, x3 = t1 + 0.4, . . . , xm}, where xm is as close to tnw

as possible,
the time point of the last measurement in Aw.

Now, let the grid points be {x1, x2, . . . , xm}, with m the total number of grid points. Using linear
interpolation, the data is interpolated on the grid.

Linear interpolation works as follows: For every point xi, i = 1, . . . ,m in the grid, two consecutive
values t1 and t2 must be found for which it holds that xi ∈ [t1, t2). The function values corresponding
to t1 and t2 are called f (t1) and f (t2). A straight line is drawn between the coordinates (t1, f(t1))
and (t2, f(t2)), see Figure 3.5. The goal is to find the value of f (xi). By linear interpolation, see
Figure 3.5, we obtain Equation (3.6) for the value of f(xi). In this equation, t1 and t2 are two
consecutive time points in the window.

Figure 3.5: Schematic representation of linear interpolation.

f (xi) = [f (t2)− f (t1)] · x− t1
t2 − t1

+ f (t1) , xi ∈ [t1, t2), i = 1, . . . ,m, (3.6)

For this thesis, we choose to use linear interpolation since it does not require a lot of computational
effort [26]. Therefore, it can be used on a smartphone without draining the battery. Another possible
option would be using spherical interpolation.

After interpolating the data, the preprocessing is finished.
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3.6 Preprocessing summarised

The flow chart in Figure 3.6 provides an overview of all the steps used to preprocess the collected
accelerometer data.

Figure 3.6: Flow chart summarising the preprocessing process.
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Chapter 4

Feature selection using L1
regularised logistic regression

Most machine learning algorithms have an integrated feature selection. However, using a machine
learning algorithm on a smartphone would most likely drain the battery way faster than desired.
Therefore, we had to come up with our own way of feature selection. This section describes the
process of calculating features and making a selection of useful features, using L1 regularised logistic
regression.

4.1 Computation of features

In the previous chapter, preprocessing accelerometer data is discussed. The following list shows all
relevant computed data that is contained in a window, after preprocessing.

• Linear acceleration magnitude: c = {c1, c2, . . . , cnw
}, magnitude of the linear acceleration.

• Vertical linear acceleration: lv = {lv1 , lv2 , . . . , lvnw
}, linear acceleration pointing away

from the surface of the earth.

• Horizontal linear acceleration: lh = {lh1 , lh2 , . . . , lhnw
}, linear acceleration parallel to the

surface of the earth.

• Angle: α = {α1, α2, . . . , αnw}, angle between the gravitational acceleration and the linear
acceleration.

• Angle speed: v = {v1, v2, . . . , vnw−1}, angle speed related to the angle between the gravita-
tional acceleration and the linear acceleration.

For all five vectors, kind of randomly and based on common sense, a list of potentially relevant
features for the classification model is proposed. A side constraint for the proposed features is that
they can be computed fast. The idea then is that L1 regularised logistic regression will identify
which of the features will help with the classification of travel modes. The process of making a
selection of features is described in Section 4.3.

– Mean: The mean of the vector components.

– Variance: The variance of the vector components.

– Maximum: It can happen that some measurements deviate from reality. For instance, a very
high measurement that is not in line with the rest of the measurements in the window can
occur. Therefore, instead of taking the maximum, the 95th percentile is taken. This means
that the 5 percent highest numbers are skipped and the next highest number is taken as the
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maximum. We expect this to be enough to avoid the event that a very high measurement,
which is most likely noise, is chosen as the maximum.

– Minimum: For the reason mentioned above at Maximum, the 5th percentile is chosen as the
minimum value.

– Skewness: The skewness of the window is a measure for how the data is distributed around
its mean.

– Kurtosis: This parameter is a measure for the probability of outliers. The higher the kurtosis,
the less chance there is for having an outlier.

– Median: The middle number in the vector.

– Most dominant frequency: Both walking and cycling consist of repeated movements that
can be detected by a smartphone. When driving a motorised vehicle, less repeated movements
happen that can be detected by the smartphone. This makes sense, since one sits still while
driving a car, but has to move in order to walk or cycle. Therefore, every type of movement
has its own frequencies with which movements are repeated. Most likely, walking and cycling
have a higher frequency with which movements are repeated than driving a motorised vehicle,
if it is already the case that there is some repeated movement in the latter case.
Therefore, one of the features is equal to the frequency that is most dominant in the signal.
For example, if one takes 2 steps per second while walking, the most dominant frequency will
be 2 Hz. To obtain this frequency, the Fourier Transform is computed, with the aid of the fft
(fast fourier transform). The frequency with the hightest energy level is then selected as the
frequency that is most dominant. For more information about the fft and how to calculate the
most dominant frequency, see [27].

– Root mean square: To calculate the root mean square, the following formula is used:

RMSx =

√
1

n
(x21 + x22 + · · ·+ x2n)

– Zero-crossings: The number of zero-crossings is equal to the number of times that two con-
secutive measurement in a vector do not have the same sign. For instance, x = [1,−2, 4, 5,−7]
contains 3 zero-crossings, since there are three cases for which consecutive numbers do not
have the same sign.

– Energy: To calculate the energy of the signal, the sum of the squares of all elements in the
vector is taken.

A final feature that is calculated is based on linear acceleration l. For each measurement i in window
w, l is a vector containing linear acceleration in directions x, y and z. The calculated feature is
called the Signal Magnitude Area. The signal magnitude area is calculated by taking the sum of
the absolute values of the linear acceleration in three directions,

SMA =

nw∑
i=1

(
|l(i)x |+ |l(i)y |+ |l(i)z |

)
,

where nw is the total number of measurements inside window w [28].

Computing the above features results into a vector of feature values of length 56. The algorithm
should consume as few battery capacity as possible. Therefore, it is desirable to use as few features
as possible in the classification algorithm. To make a selection of features to be used by the model,
L1 regularised logistic regression is used. The remainder of this chapter describes L1 regularised
logistic regression and how it can be used to make a selection of features to be used by the model.
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4.2 L1 regularised logistic regression

4.2.1 Basic principle of L1 regularised logistic regression

The idea behind logistic regression is that, given a few data points, a curve is fit through those data
points. This is done in order to estimate the probability that the data points belong to a certain
class. In Figure 4.1, an example of a curve fitted by logistic regression is given, for the case that
two classes and one feature are involved. The value of this feature is given on the x-axis, and the
probability p to belong to class 1 is given by the value of the curve that corresponds to the values
on the x-axis. Transforming the curve using the logit-function, see Equation (4.1), results into a
straight line, see Figure 4.2.

logit(p) = ln

(
p

1− p

)
(4.1)

Hence, in case one feature is used, this line is represented by

ln

(
p

1− p

)
= β0 + β1x,

for some coefficients β0 and β1. In case multiple features are involved, the line is represented by

ln

(
p

1− p

)
= β0 + β1x1 + · · ·+ βnxn, (4.2)

for some coefficients β0, β1, . . . , βn and feature values x1, . . . , xn [29].

Figure 4.1: Example of a curve fitted by logistic regression.

The curve is thus represented by an equation that depends on multiple coefficients βi, i ∈ {0, . . . , n}.
Each of the coefficients relates to one of the feature values. Section 4.2.2 goes into more detail about
finding optimal coefficients βi in order to get the best fitted curve to the data.

By adding L1 regularisation to logistic regression, two things are ensured. The first and main
reason for performing regularisation, is to makes sure that the curve will not fit the training data
perfectly, to avoid so-called overfitting. We say that the curve is overfit, if the model is well fitted to
training data, but very ill-fitted to test data. The second thing, and thereby the big advantage of L1
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Figure 4.2: Example of a curve fitted by logistic regression, transformed using the logit
function.

regularisation for our model, is that some of the coefficients used to form the curve, are forced to be
zero. This means that the features related to those specific coefficients are not relevant in classifying
the data points. Therefore, those features can be left out and do not have to be calculated. The
selection of features is further explained in Section 4.3.

The fact that feature selection is possible with L1 regularised logistic regression, is the main reason
to use it in the model. To be allowed to use logistic regression, however, the data has to fulfil some
requirements, which are listed below [30].

• The classes must be non-ordinal, so no clear ordering may exist for the classes. This is clearly
the case for the classes still, walking, cycling, bus, train and car.

• All observations must be independent from each other. Hence, data may not be used more
than once to obtain multiple observations. Since our observations are obtained using non-
overlapping windows, this requirement is fulfilled.

• Preferably, the used features may not be too highly correlated to each other. Using to highly
correlated features makes the computation of logistic regression unstable and increases com-
putation times. In our case, one could argue that mean and median are highly correlated. L1
regularised logistic regression was performed with and without including median in the list of
features. Both times, the same coefficients were found. Hence, we decided to keep both mean
and median in the list of suggested features.

• A large sample size is needed. Since we have at least 500 windows of measurements per class,
this requirement is easily obtained.

Based on the above, we conclude that using L1 regularised logistic regression is possible for the data
we are dealing with.

4.2.2 Binary logistic regression

Let us first consider binary logistic regression. In this case we are given a set S = {
(
x(i), y(i)

)
}mi=1

of m training samples. Here, x(i) represents the i-th training sample consisting of n feature values
calculated from the input data. Hence, x(i) is of the form

x(i) =
[
x
(i)
1 , x

(i)
2 , . . . , x(i)n

]
.
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Furthermore, y(i) ∈ {0, 1} is the class label for the i-th training sample. Since we are dealing with a
binary case, there are only two classes the data can belong to. The construction of such a set S is
discussed in Section 4.4.

In case of binary logistic regression, the curve is fitted using coefficients βi, i = 0, . . . , n and prob-
abilities are calculated with the aid of Equation (4.3). Here, p

(
y(i) = 1

)
is the probability that

y(i) = 1.

ln

(
p
(
y(i) = 1

)
1− p

(
y(i) = 1

)) = β0 + β1x
(i)
1 + · · ·+ βnx

(i)
n (4.3)

To simplify notation, we will add a 1 to the beginning of each x(i), such that β0 does not have to
be denoted separately. The righthandside of Equation (4.3) therefore becomes βTx(i).

Rewriting Equation (4.3) gives

p
(
y(i) = 1

)
1− p

(
y(i) = 1

) = exp
(
βTx(i)

)
,

p
(
y(i) = 1

)
=
(

1− p
(
y(i) = 1

))
· exp

(
βTx(i)

)
,

p
(
y(i) = 1

)
·
(

1 + exp
(
βTx(i)

))
= exp

(
βTx(i)

)
,

p
(
y(i) = 1

)
=

exp
(
βTx(i)

)
1 + exp

(
βTx(i)

) ,
=

1

1 + exp
(
−βTx(i)

) . (4.4)

And hence,

p
(
y(i) = 0

)
= 1− p

(
y(i) = 1

)
=

1

1 + exp
(
βTx(i)

) . (4.5)

The coefficients are fit by maximum likelihood, using the conditional likelihood of y(i) given x(i) and
β. The log-likelihood for m observations is

l(β) =

m∑
i=1

log p
(
y(i) = 1|x(i),β

)
.

Rewriting the log-likelihood yields

l(β) =

m∑
i=1

(
y(i) log p

(
y(i) = 1|x(i),β

)
+ (1− y(i)) log

(
1− p

(
y(i) = 1|x(i),β

)))
,

=

m∑
i=1

(
y(i)
[

log p
(
y(i) = 1|x(i),β

)
− log

(
1− p

(
y(i) = 1|x(i),β

)) ]
+ log

(
1− p

(
y(i) = 1|x(i),β

)))
,

=

m∑
i=1

(
y(i) log

(
p
(
y(i) = 1|x(i),β

)(
1− p

(
y(i) = 1|x(i),β

)))+ log

(
1−

exp
(
βTx(i)

)
1 + exp

(
βTx(i)

))),
=

m∑
i=1

(
y(i)βTx(i) + log 1− log

(
1− exp

(
βTx(i)

)))
.
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To maximize the log-likelihood, the derivative is taken and set to zero.

∂l(β)

∂β
=

m∑
i=1

(
y(i)x(i) − x(i) exp

(
βTx(i)

)
1 + exp

(
βTx(i)

)),
=

m∑
i=1

(
x(i)

(
y(i) −

exp
(
βTx(i)

)
1 + exp

(
βTx(i)

))) = 0. (4.6)

Solving Equation (4.6) yields coefficients β for which the curve is optimally fit to the training data.
For a detailed description of how the equation is solved, see [29]. In conclusion, the model that is
solved to find coefficients β uses maximum likelihood and looks as follows [31]:

max
β

m∑
i=1

log p
(
y(i) = 1|x(i),β

)
. (4.7)

The model is only solved for the case that y(i) equals 1, since the probability of belonging to class
0 is equal to 1 minus the probability of belonging to class 1.

4.2.3 Multiclass logistic regression

In multiclass logistic regression, the restriction to have only two classes no longer exists. Instead, it
is possible to have multiple (i.e. more than two) class labels. To be able to handle those multiple
class labels, some things have to be adjusted to the way the logistic regression is performed. In the
following two subsections, two ways of multiclass logistic regression are described, namely multino-
mial logistic regression, and one-vs-rest logistic regression, which will be referred to as ovr logistic
regression in the remainder of this report.

For aid of simplicity, we will assume that there are now K classes to consider.

In both ovr logistic regression and multinomial logistic regression, computing the coefficients is done
in almost the same way as it is done for binary logistic regression, using the model described with
Equation (4.7). The only difference is that y(i) can be equal to 1 up to K instead of only equal to 1.

One-vs-rest logistic regression

The basic idea behind ovr logistic regression, is to take the data from one class, and compare it to
all other classes, as if all those other classes were one class instead of multiple classes. Hence, the
problem is transformed from comparing K classes at once, to performing binary logistic regression K
times. Thereby, K sets of coefficients are obtained, one for each time logistic regression is performed.
For all those binary cases, we compute the probability of belonging to the ‘lonely’ class as described
in section 4.2.2, namely

p
(
y(i) = k

)
=

1

1 + exp
(
−βT

k x
(i)
) , ∀k = 1, . . . ,K.

Computing the above probabilities for all the classes, will result in probabilities that do not neces-
sarily add up to one, if we consider all classes. For instance, if we consider a case where K = 3, the
probabilities can become

p(y = 1) = 0.25,

p(y = 2) = 0.30,

p(y = 3) = 0.28.

Clearly, those numbers do not add up to one. The probabilities are therefore scaled such that they
add up to one. The formula for computing the probabilities thus becomes

p
(
y(i) = k

)
=

1∑K
k=1

1

1+exp(−βT
k x

(i))

· 1

1 + exp
(
−βT

k x
(i)
) , ∀k = 1, . . . ,K. (4.8)
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Multinomial logistic regression

Instead of handling the multiclass logistic regression with multiple binary cases, multinomial logistic
regression handles all the classes at once. To calculate probabilities, one reference class has to be
taken out of all classes in the classification problem. The choice of the reference class is arbitrary,
since it does not influence the final result.

For this report, we chose to set the last class, class K, as our reference class, Then, given the
definition of logistic regression, the probabilities for class 1 to K − 1 can be calculated by using the
formulas below,

ln
p
(
y(i) = 1

)
p
(
y(i) = K

) = βT
1 x

(i),

ln
p
(
y(i) = 2

)
p
(
y(i) = K

) = βT
2 x

(i),

...

ln
p
(
y(i) = K − 1

)
p
(
y(i) = K

) = βT
K−1x

(i).

Here, β
(i)
1 , . . . ,β

(i)
K are all vectors of coefficients of length n + 1, where n is the number of features

computed. Taking the exponential on both sides and multiplying with p
(
y(i) = K

)
yields

p
(
y(i) = 1

)
= p

(
y(i) = K

)
· exp

(
βT
1 x

(i)
)
,

p
(
y(i) = 2

)
= p

(
y(i) = K

)
· exp

(
βT
2 x

(i)
)
,

...

p
(
y(i) = K − 1

)
= p

(
y(i) = K

)
· exp

(
βT
K−1x

(i)
)
.

The probability that y(i) equals K can now be determined, by the fact that probabilities add up to
one,

p
(
y(i) = K

)
= 1−

K−1∑
k=1

p
(
y(i) = k

)
.

The fact that

K−1∑
k=1

p
(
y(i) = k

)
= p

(
y(i) = K

)
·
K−1∑
k=1

exp
(
βT
k x

(i)
)
,

yields

p
(
y(i) = K

)
= 1− p

(
y(i) = K

)
·
K−1∑
k=1

exp
(
βT
k x

(i)
)
,

=
1

1 +
∑K−1

k=1 exp
(
βT
k x

(i)
) , (4.9)

and

p
(
y(i) = k

)
=

exp
(
βT
k x

(i)
)

1 +
∑K−1

j=1 exp
(
βT
j x

(i)
) , ∀k = 1, . . . ,K − 1. (4.10)
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4.2.4 L1 regularisation

The basic idea of L1 regularisation is adding a penalty term to the model given in Equation (4.7).
As said before, the purpose of this is to make the model less fitted to the training data to prevent
overfitting.

The penalty term added by L1 regularisation is the sum of the absolute value of the coefficients,
multiplied by some regularisation parameter λk > 0. Normally, the intercept term, β0, is left out of
the penalty. For simplicity, we will ignore this. We then get the model as shown in Equation (4.11).

max
βk

m∑
i=1

log p
(
y(i) = k

∣∣x(i),βk

)
− λk

K∑
i=1

|βk|. (4.11)

The regularisation parameter λk has to be determined based on the training data, and each class
can get a different λk.

To find values for all λk that are best to use, we split the training data into two parts, of which one
part is now used for training the model, and the other part is used for testing the model. Now, train
the model for a lot of different values for λk, ranging from 0.00001 to 10000. Then, with the aid of
the test set, validate for each λk how many samples are classified correctly. Then, choose as final
λk’s the values that performed best in correctly classifying test samples. [31].

4.3 Feature selection

By using L1 regularised logistic regression, the chosen value for regularisation parameter λ will
make some coefficients equal to 0. In cases where this happens, we conclude that we do not need
the corresponding feature for classification purposes.

The larger the value chosen to use for λ, the less features are used in the feature selection. However,
this does not automatically mean a worse result. It may even be the case that using less features
results into a better classification. Figure 4.3 shows the values of 5 coefficients related to 5 feature
values, computed for different values of λ. Indeed, higher values for λ result into more coefficients
equal to 0.

Figure 4.3: Coefficients for logistic regression computed using L1 regularisation with
several values of λ

In Chapter 7, the selection of features, based on L1 regularised logistic regression will be discussed.
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4.4 Training data

In order to find the coefficients βk that are used in Equations (4.8), (4.9) and (4.10), it is required
to have some training data, see Section 4.2.2.

Since the classification model must be able to classify movements in the classes still, walking, cycling,
bus, train and car, training data needs to be collected for those six classes. Using a smartphone and
an app provided by Mobidot, we were able to create our own training data. Over 30 hours of data
was collected and used to train coefficients used for performing L1 regularised logistic regression.

The collected training data is divided into windows of length s, and features are calculated for each
window, see Section 4.1. This results into m training samples of the form

(
x(i), y(i)

)
, where x(i) is a

vector containing the computed features for the i-th window of training data, and y(i) ∈ {1, . . . ,K}
is the class label belonging to the data in the window. The m training samples form the training set
S = {

(
x(i), y(i)

)
}mi=1. Based on this set, coefficients βk are determined for all classes k ∈ K, where

K is the set of classes used in the classification model.
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Chapter 5

Classification algorithm

After preprocessing the data and calculating a set of derived features, the feature values are used to
determine the used travel modes. In order to do so, two basic methods are developed, again based
on logistic regression. Furthermore, four extensions to these models are developed, which can all be
switched on and off as desired. In all cases, one of the basic methods must be selected to be used
for classification, and extensions can be added. In Chapter 7, the performances of the basic models
and the extensions are evaluated using five test cases, which are described in Chapter 6.

5.1 Basic methods

The two basic methods are both based on logistic regression. The choice for using logistic regression
is based on the following.

• The coefficients used for logistic regression can be computed based on a training set. Hence,
coefficients are computed once, and can from then on be used on every test set. Therefore, no
additional computation has to be done regarding computation of coefficients, when it comes to
online classification. Taking into account the requirement for battery-efficiency, using logistic
regression for classification is suited.

• In fact, computing the feature selection also yields the coefficients used for logistic regression.
Thereby, logistic regression can be used for both feature selection and classification, and no
additional classification technique will be needed.

The first basic method is based on the ‘one-vs-rest’-principle, see Section 4.2.3. For each window,
probabilities to belong to each of the six classes are calculated using Equation (4.8). The class with
the maximum probability is then chosen as the current travel mode. In the remainder of this report,
referring to this basic method is done with OVR.

The second basic method works the same, only the probabilities are calculated based on multinomial
logistic regression. This is done using Equations (4.9) and (4.10). In the remainder of this report,
referring to this basic method is done with MULT.

5.2 Extension 1: Dealing with close probabilities

The two basic methods both select travel modes based on maximum probability. However, it can
be the case that probabilities are as shown in Table 5.1. Both basic methods would now classify the
window with class 4. However, since the probabilities associated with classes 3 and 4 are only 10%
apart, it is not at all unlikely that class 3 is the correct travel mode to chose. However, if probabilities
would be as shown in Table 5.2, it is very likely that class 4 is the correct travel mode. As can be seen
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Class 1 2 3 4 5 6
Probability 0 0 0.45 0.55 0 0

Table 5.1: Possible outcome of probabilities calculated for 5 classes.

Class 1 2 3 4 5 6
Probability 0 0 0.1 0.9 0 0

Table 5.2: Possible outcome of probabilities calculated for 5 classes.

from the above example, picking the class with the highest probability will not always result into
a correct classification, especially when probabilities are close to each other. Extension 1 provides
a way to deal with situations in which the two highest probabilities are relatively close. The flow
chart shown in Figure 5.1, shows how the extension works. It starts with creating a set of all classes
in the classification problem. Then, using one of both basic methods, the probabilities of belonging
to all of these classes are calculated. If it holds that pmax − p2nd max ≥ th1 for some threshold
value th1 ∈ [0, 1], the class corresponding to the maximum probability is chosen. Otherwise, classes
with a corresponding probability lower than th2 ∈ [0, 1], are removed from the set, since it would
be improbable that one of those classes is the correct travel mode. After removing those classes,
probabilities are again calculated using the formulas corresponding to the chosen basic method. This
process of removing classes and recalculating and comparing probabilities is repeated, until one of
three things happens:

1. pmax − p2nd max ≥ th1.

2. There is only one class left in the set.

3. After calculating probabilities, it does not hold that pmax − p2nd max ≥ th1 and there are no
classes with probabilities lower than th2. Hence, the selection of classes will be equal to the
entire set.

If case 1 holds, the case corresponding to the maximum probability is set as the current travel mode.
If case 2 holds, the leftover class is set as the current travel mode. Lastly, if case 3 holds, the window
is classified the same as the previous window.

After a window is classified, the same process is repeated for the next window.

Figure 5.1: Flow chart for Extension 1
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5.3 Extension 2: Walk-still logic

A possible sequence of consecutive classified travel modes could be car - bike - train - walk. However,
for example, it is (almost) impossible to get on a bike directly out of the car without walking a short
distance. Similarly, there are other combinations that are not possible in real life. In Extension 2, this
sort of logical reasoning is implemented to remove the possibility of obtaining those combinations.

The extension is based on four rules. Notation-wise, k − 1, k and k + 1 represent the last, current
en next classified activities, respectively, and K represents the entire set of activities. For the sake
of completeness, the last two rules have been added.

1. if k − 1 6= walk and k = still, then k + 1 ∈ {still, walk, k − 1},

2. if k 6= walk, k 6= still, then k + 1 ∈ {walk, still, k}.

3. If k = walk, then k + 1 ∈ K.

4. if k − 1 = walk and k = still, then k + 1 ∈ K,

Figure 5.2: Flow chart for Extension 2

Using extension 2 all the time, has one major drawback. Consider the case where the current
classified activity is train. Then Extension 2 would allow the next window to be classified as train,
walk or still. This will give a problem if the current activity is not equal to train, which can be the
case since classification is not flawless. Therefore, Extension 2 can only be used if it is certain that
classification has been done correctly.

Therefore, we introduce a certainty measure, which is described in Section 5.6. Only if certainty is
high, Extension 2 is used to make a selection of classes to chose from. Otherwise, the algorithm will
skip this step.

5.4 Extension 3: Shortcut on computation times

It almost never happens that an activity is performed for the length of one window. Most activities
take much longer. Extension 3 takes advantage of that.

In case the last window is classified as activity k with high certainty, the probability is calculated that
the activity belonging to the current window is also k. This is done by making use of the equations
used in one-vs-rest logistic regression, however, only the equation for class k is used, instead of
calculating probabilities for all K classes. Hence, the probability of belonging to class k is calculated
using Equation (5.1). This equation calculates the probability that a set of features belongs to class
k. Obviously, 1 - p

(
y(i) = k

)
is the probability that the set of features does not belong to class k.

p
(
y(i) = k

)
=

1

1 + exp
(
−βT

k x
(i)
) , (5.1)
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If now p
(
y(i) = k

)
≥ th3 for a threshold th3 ∈ [0, 1], class k is chosen as the activity belonging to

the current window. If p
(
y(i) = k

)
< th3, the classification algorithm continues as usual.

5.5 Extension 4: Exponential smoothing of feature values

Suppose one is taking a ride on a bicycle and suddenly encounters a red traffic light. After five
seconds, however, the traffic light turns green again and one can continue cycling. This will heavily
influence the measurements done by the accelerometer. Suppose the five seconds of standing still
exactly fall inside one window, then the feature values of this window will differ from the feature
values of surrounding windows. Also, the feature values of this window are not equal to typical
‘still-features’ or typical ‘cycling-features’. Hence, most likely, this window will not be classified
correctly. Even worse is the case where the 5 seconds are divided over two windows, in which case
both windows most likely will not be classified correctly.

To solve this problem, Extension 4 can be used. This extension is based on exponential smoothing
of the feature values. The exponential smoothing equation used is of the form

x̂(i) = γx(i) + (1− γ)x̂(i−1) (5.2)

where x(i) is the feature vector for window i, x̂(i) the smoothed value for window i, and x̂(i−1)

is the smoothed value for window i − 1. Parameter γ is called the smoothing constant [32]. The

smaller γ, the more f̂i depends on feature values of previous windows. This method requires little
computation, as well as little extra storage space.

Exponential smoothing works best if the data pattern is approximately horizontal [32]. This means
that the data fluctuates around a constant mean. During continuous movement in the same way,
this requirement is met. Only if the way of movement is changed, the mean of the data changes.
Basically, changes in travel mode cause a jump in the mean. Experiments should show whether
the benefits of exponential smoothing outweigh the behaviour of exponential smoothing related to
changes in travel mode, see Chapter 7.

5.6 Certainty measure

To be able to assess the quality of the classification, a certainty measure is suggested. This measure
uses the computed probability pw related to the class that has been selected for the current window
by the classification algorithm, and the certainty calculated for the previous window, Cw−1. That
said, certainty Cw is computed as

Cw =
Cw−1 + pw

2
. (5.3)

We say that:

• certainty is low for window w, if Cw ∈ [0, thc),

• certainty is high for window w, if Cw ∈ [thc, 1],

for some threshold thc ∈ [0, 1]. A specific value for threshold thc is determined in Chapter 7.

It for instance can happen that a few consecutive windows are classified as walking with high cer-
tainty. Suppose the model would then make a mistake and classify the next window as cycling with
pw > thc, where it had to be walking. Then, using the suggested measure, this classification will be
assessed with high certainty, whereas the classification is not correct. To prevent this from happen-
ing, certainty Cw is reset to 0 in case a change in classified travel modes occurs. Hence, certainty is
set to low in this case.
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We chose to use this measure instead of just using pw as a certainty measure, because this measure
makes sure that pw has to be quite high for a few consecutive windows, before certainty becomes
high. Thereby, the chance of having a false high certainty is reduced.
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Chapter 6

Experiment setup

To evaluate the model, some test cases are needed. Using the test cases, the behaviour of the
model regarding some ‘special’ situations can be tested. Examples of such special situations are the
following.

• Transitions between two travel modes It is important to know how the model behaves
on transitions between two travel modes. Especially when Extension 4 is activated, we want
to be able to see if there occurs a shift transitions.

• Test data collected by a different person than the one that collected the training
data The model is trained on data that is collected by one person. To know if this suffices,
it is needed to test the model with test data collected by a different person. In case it is not
sufficient, training data should namely be collected by multiple persons.

• A travel mode that is not contained in the six classes considered by the classifi-
cation model A lot of travel mode are outside the six classes contained currently contained
in the classification model. It is interesting to see how the model behaves on a travel mode
that is not one of the six classes. Perhaps some movemements can be contained in one class.
For example, cyling on an electric bike perhaps behaves the same as cycling on a regular bike.
This should be tested by including a travel mode that is not part of the six classes.

Based on the above list, the following requirements are chosen for the test cases.

• Each test situation consists of several travel modes.

• The travel modes still, walking, cycling, bus, train and car must be contained in the test
situations.

• One of the test files has to contain a ‘travel mode’ that is not included in the classes considered
by the classification model, to see what the model does in this case.

• All training data is collected by one person. Therefore, someone else has to create data for
one test situation, to test the performance of the model in that case.

The data for the test cases is collected using an app provided by Mobidot. Below follows a list of
test cases designed to fulfil the requirements. Each schematic representation shows the activities
that are performed, together with the exact duration of each activity.
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Case 1:
Contained classes: still, walking and cycling.
Peculiarities: None.

Figure 6.1: Schematic representation of Case 1

Case 2:
Contained classes: still, walking, bus, train and car.
Peculiarities: None.

Figure 6.2: Schematic representation of Case 2
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Case 3:
Contained classes: walking and car.
Peculiarities: The car ride includes driving in a traffic jam.

Figure 6.3: Schematic representation of Case 3

Case 4:
Contained classes: walking, cycling and shopping.
Peculiarities: This case includes shopping, which is not one of the classes considered by the classifi-
cation model.

Figure 6.4: Schematic representation of Case 4
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Case 5:
Contained classes: still, walking and cycling.
Peculiarities: The data for this case is collected by another person than the one that collected the
training data for the classification model.

Figure 6.5: Schematic representation of Case 5
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Chapter 7

Computational results

To be able to compute results with our model and test cases, first some parameter values have to
be calibrated. Cases 1 and 2 are used to tune the parameter values, since together they contain
movements of all 6 classes. After the parameter values have been determined, the model is tested
using Cases 1 to 5. The determination of the parameter values and the obtained results are discussed
in this chapter.

7.1 Gravitational acceleration estimate

In Section 3.3, the estimation of the gravitational acceleration is explained. As said, there are two
options when choosing a window length for estimating gravitational acceleration.

1. Taking short windows to be able to observe (almost) all changes in gravitational acceleration.

2. Taking longer windows such that enough data points are included.

Therefore, gravitational acceleration is estimated using windows of 2.5, 5 and 10 seconds. Since the
results for the x-, y- and z-direction of the accelerometer measurements are comparable, here only
the results for the x-direction are given.

Figure 7.1: Gravitational acceleration estimate for movement still, using a window
length of 2.5 seconds.

A disadvantage of using a window length of 2.5 seconds for estimating the gravitational acceleration
is that the estimation is based on only 12 or 13 data points. This makes the estimate sensitive to noise
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present in the measurements. This becomes clear when looking at Figure 7.1, where the estimates
of the gravitational acceleration for movements belonging to the class still are depicted, using a
window length of 2.5 seconds. During movements belonging to class still, we expect gravitational
acceleration to be constant. However, the lower the window length used for estimation, the larger
the variance, as can be seen from Table 7.1, where the variance, maximum and minimum of the
gravitational acceleration in the x-direction are shown for window lengths 2.5 and 5 seconds. The
corresponding estimates of the gravitational acceleration for movements belonging to the class still
using a window length of 5 seconds, are shown in Figure 7.2.

Figure 7.2: Gravitational acceleration estimate for movement still, using a window
length of 5 seconds.

Window length 2.5 sec 5 sec
Minimum -0.1048 < -0.1044
Maximum -0.122 > -0.1032
Variance 0.054e-05 > 0.0155e-05

Table 7.1: Minimum, maximum and variance for the gravitational acceleration esti-
mates, using window length 2.5 and 5 seconds.

Using a window length of 10 seconds also has disadvantages. When estimating gravitational accel-
eration for the class walking, see Figure 7.3, the estimate becomes almost constant. However, when
walking, the phone will change position all the time, and therefore, the gravitational acceleration
is not constant at all. When using smaller windows, this is less of a problem, as can be seen from
Figure 7.4 and Table 7.2.

Window length 5 sec 10 sec
Minimum -0.4576 < -0.3948
Maximum 0.4877 > 0.4061
Variance 0.0558 > 0.0510

Table 7.2: Minimum, maximum and variance for the gravitational acceleration esti-
mates, using window length 5 and 10 seconds.

Observation 1: Both of the above mentioned disadvantages are less of a problem when using a
window length of 5 seconds for estimating gravitational acceleration, see Figures 7.2 and 7.4.

Therefore, henceforth the window length is set to 5 seconds for estimating gravitational acceleration.
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Figure 7.3: Gravitational acceleration estimate for movement walking, using a window
length of 10 seconds.

Figure 7.4: Gravitational acceleration estimate for movement walking, using a window
length of 5 seconds.

Observation 2: Both of the above mentioned problems are not solved by taking a window length
of 5 seconds. To fully solve both issues, the sample frequency should be increased to be able to pick
smaller window lengths.

7.2 Window length

When choosing a length for the windows used for classification, it must be taken into account that
gravitational acceleration is estimated using windows with a length of 5 seconds. Using windows for
classification with a length equal to a multiple of 5 seconds, is computationally easiest. Therefore,
window lengths of 5, 10, 15 and 20 seconds are tested, using both basic methods and Cases 1 and 2.

To determine which window length gives the best results, two measures are used.

1. Accuracy: The fraction of windows that is correctly classified,

ACC =
# correctly classified windows

total # windows
· 100%. (7.1)
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2. Relative accuracy: The mean fraction of windows that is correctly classified per class,

ACCREL =
1

K
·

K∑
k=1

# correctly classified windows belonging to class k

total # windows belonging to class k
· 100%. (7.2)

The results of using both measures to asses the quality of the classification are given in Table 7.3,
where the maximum values are marked.

To finally asses the quality of the classification and to decide which window length is best to use,
a score measure is suggested that takes all accuracy measures into account. To score each window,
the mean of the differences between the achieved (relative) accuracy and the maximum (relative)
accuracy is taken. For instance, the score for window length 5 seconds and basic method OVR is
calculated as:

|72.04− 64.60|+ |71.85− 69.61|+ |34.86− 34.86|+ |42.91− 42.91|
4

With this definition, the window length with the lowest score is assumed to be the better window
length.

Basic Window Case 1 Case 2
method length (sec) ACC (%) ACCREL (%) ACC (%) ACCREL (%) score
OVR 5 64.60 69.61 34.86 42.91 2.42

10 66.89 71.85 31.65 39.05 3.055
15 69.30 55.53 23.70 31.05 10.52
20 72.04 57.25 24.05 30.76 9.39

MULT 5 72.65 74.74 31.22 37.90 1.91
10 75.95 77.68 31.65 38.87 0
15 71.48 56.92 25.12 31.62 9.75
20 72.48 57.48 25.95 31.93 9.0775

Table 7.3: Accuracy and Relative accuracy when classifying Cases 1 and 2, using the
two basic methods and several window lengths.

Observation 3: As can be seen in Table 7.3, it is clear that for basic method MULT it is best to
use a window length of 10 seconds. For both Case 1 and Case 2, ACC and ACCREL are maximum
for a window length of 10 seconds, and therefore, the score is minimal for this window length.

Observation 4: For basic method OVR, using a window length of 5 seconds results in the lowest
score.

However, for Case 1, the maximum values for ACC and ACCREL are not obtained when using this
window length. Also, the score for window length 5 seconds is only a bit lower than the score
for window length 10 seconds, whereas computation wise taking a window length of 5 seconds will
require more computation time overall. Taking into account that battery efficiency is one of the
requirements for the classification model, we decided to use window lengths of 10 seconds for both
basic methods.

7.3 Overlap

Since the gravitational acceleration is estimated in windows of 5 seconds, and classification is done in
windows of 10 seconds, it is possible to use a five second overlap between consecutive windows used
for classification. This will not violate the assumption made in Section 4.2.1 regarding independence
of observations. This assumption only has to hold for training data. Running Cases 1 and 2 with 0
or 5 seconds overlap for both basic methods, gives the results as shown in Table 7.4.
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Basic Case 1 Case 2
method overlap (%) ACC (%) ACCREL (%) ACC (%) ACCREL (%) score
OVR 0 66.89 71.85 31.65 39.05 0.99

0.5 67.17 71.98 33.28 41.17 0
MULT 0 75.95 77.68 31.65 38.87 0.4325

0.5 76.34 78.02 32.17 39.35 0

Table 7.4: Accuracy and Relative accuracy when classifying Cases 1 and 2, using the
two basic methods with and without overlap

Observation 5: The performance of the classification model is only a little bit better when using
the overlap, however will result in almost twice the running time and computational effort, due to a
double amount of windows that need classification.

Taking in mind the requirement for battery-efficiency, we choose to use no overlap between consec-
utive windows.

7.4 Certainty threshold thc

Cases 1 and 2 are used to establish threshold thc for the certainty measure. Running both basic
methods using a window length of 10 seconds, results into a list of classified windows with corre-
sponding certainties. In Table 7.5, the 99th percentile of certainties that belong to a misclassified
window is given for all combinations of basic methods and Cases. The 99 percentile is used instead
of the maximum, to reduce the influence of noise.

Basic Method Case 1 Case 2
OVR 0.62 0.29

MULT 0.59 0.47

Table 7.5: 99th percentile of certainties related to misclassified windows.

Observation 6: The 99th percentile for certainties corresponding to a misclassified window equals
0.62 for Case 1, and 0.47 for Case 2.

To have a little margin, we choose to set thc = 0.70.

The above reasoning does not assure that all certainty measures belonging to misclassified windows
are below 0.70. More testing on different cases should be done.

7.5 Parameter values for the extensions

There are several parameters present in the extensions, namely thresholds th1 and th2 in Extension
1, threshold th3 in Extension 3 and smoothing constant γ in Extension 4. This section describes the
determination of those parameter values.

Thresholds th1 and th2

Extension 1 contains two threshold values that have to be determined, namely thresholds th1 and
th2. As described in Section 5.2, threshold th1 is used to set a threshold on the minimal distance
between the two highest computed probabilities. Threshold th2 is used to eliminate classes with a
computed probability less than th2. Both thresholds must get a value between 0 and 1.
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To find optimal values for thresholds th1 and th2, basic methods OVR and MULT are run with
several values for th1 and th2. Scores are calculated using the method explained in Section 7.2. The
fifteen results with the lowest scores for basic methods OVR and MULT are shown in Table 7.6 and
Table 7.7, respectively.

Case 1 Case 2
Method th1 th2 ACC (%) ACCREL (%) ACC (%) ACCREL (%) Score

OVR 0.1 0.1 85.01 88.97 24.37 27.98 1.85
0.2 0.2 72.37 75.97 30.06 37.03 3.59
0.3 0.2 72.15 75.8 29.43 36.27 3.81
0.5 0.2 72.15 75.76 29.43 36.27 3.81
0.6 0.2 72.15 75.76 29.43 36.27 3.81
0.7 0.2 72.15 75.76 29.43 36.27 3.81
0.8 0.2 72.15 75.76 29.43 36.27 3.81
0.9 0.2 72.15 75.76 29.43 36.27 3.81
1 0.2 72.15 75.76 29.43 36.27 3.81

0.4 0.2 72.04 75.69 29.43 36.27 3.84
0.1 0.2 71.81 75.64 29.43 36.1 3.89
0 0 66.89 71.85 31.65 39.05 4.57
0 0.1 66.89 71.85 31.65 39.05 4.57
0 0.2 66.89 71.85 31.65 39.05 4.57
0 0.3 66.89 71.85 31.65 39.05 4.57

Table 7.6: Accuracy and Relative accuracy when classifying Cases 1 and 2, using basic
method OVR with several values for th1 and th2.

Case 1 Case 2
Method th1 th2 ACC (%) ACCREL (%) ACC (%) ACCREL (%) Score
MULT 0.1 0.3 83.33 81.4 32.28 39.91 2.35

0.2 0.3 83.33 81.4 32.28 39.91 2.35
0.3 0.3 83.33 81.4 32.28 39.91 2.35
0.4 0.3 83.33 81.4 32.28 39.91 2.35
0.5 0.3 83.33 81.4 32.28 39.91 2.35
0.6 0.3 83.33 81.4 32.28 39.91 2.35
0.7 0.3 83.33 81.4 32.28 39.91 2.35
0.8 0.3 83.33 81.4 32.28 39.91 2.35
0.9 0.3 83.33 81.4 32.28 39.91 2.35
1 0.3 83.33 81.4 32.28 39.91 2.35

0.1 0 92.62 94.3 22.47 25.72 2.49
0.1 0.6 92.62 94.3 22.47 25.72 2.49
0.1 0.7 92.62 94.3 22.47 25.72 2.49
0.1 0.8 92.62 94.3 22.47 25.72 2.49
0.1 0.9 92.62 94.3 22.47 25.72 2.49

Table 7.7: Accuracy and Relative accuracy when classifying Cases 1 and 2, using basic
method MULT with several values for th1 and th2.

Observation 7: For basic method OVR, clearly the lowest score is obtained using th1 = 0.1 and
th2 = 0.1. For basic method MULT, the lowest scores are obtained when th1 ∈ {0.1, . . . , 1} and
th2 = 0.3.

Therefore, we choose to set th1 = 0.1, th2 = 0.1 for basic method OVR, and th1 = 0.1, th2 = 0.3
for basic method MULT.
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Threshold th3

Threshold th3 is used in Extension 3, where the probability is calculated that the activity performed
in the current window is equal to the activity performed in the previous window. If this probability
is higher than th3, the current window is classified with the same activity as the previous window.
Extension 3 is only executed if the certainty measure is high. The certainty measure will for sure
stay high if th3 is set to thc or higher. Therefore, we choose to set th3 equal to thc, hence th3 = 0.70.

Smoothing constant γ
To find a proper value to be used for smoothing constant γ, both basic methods are run for Cases
1 and 2, using several values for the smoothing constant.

The results in terms of ACC and ACCREL are given in Tables 7.8 and 7.9, for basic methods OVR
and MULT, respectively. To score the results, the scoring method described in Section 7.2 is used.

Case 1 Case 2
Method γ ACC (%) ACCREL (%) ACC (%) ACCREL (%) Score

Ovr 0 66.89 71.85 31.65 39.05 5.3925
0.1 67.34 72.14 32.59 40.33 4.6525
0.2 68.23 72.76 33.23 41.44 3.9975
0.3 69.35 73.92 32.91 41.01 3.455
0.4 70.81 74.91 33.23 41.39 2.8275
0.5 71.92 76.03 32.59 40.70 2.4425
0.6 73.15 76.68 31.96 39.83 2.3475
0.7 74.83 77.75 31.96 39.71 1.69
0.8 76.96 79.48 30.06 37.10 1.8525
0.9 77.18 78.39 21.84 27.03 6.6425
1 50.67 33.33 13.61 20.00 28.35

Table 7.8: Accuracy and Relative accuracy when classifying Cases 1 and 2, using the
Basic Method Ovr and several values for smoothing constant γ.

Case 1 Case 2
Method γ ACC (%) ACCREL (%) ACC (%) ACCREL (%) Score

Mult 0 75.95 77.68 31.65 38.87 6.505
0.1 77.40 78.70 32.60 40.44 5.2575
0.2 79.87 80.58 32.59 40.56 4.1425
0.3 81.10 81.78 31.33 38.91 4.2625
0.4 82.55 82.96 30.70 38.23 3.9325
0.5 83.33 83.51 30.38 37.76 3.7975
0.6 84.68 84.55 30.06 37.38 3.375
0.7 86.80 86.54 28.48 35.35 3.25
0.8 87.92 86.85 26.58 33.00 3.955
0.9 90.16 86.63 13.61 16.49 10.82
1 50.67 33.33 0 0 41.5425

Table 7.9: Accuracy and Relative accuracy when classifying Cases 1 and 2, using the
Basic Method Mult and several values for smoothing constant γ.

Observation 8: For both OVR and MULT, the lowest score is obtained when the smoothing constant
is equal to 0.7.

Therefore, smoothing constant γ is set to 0.7.
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7.6 Parameter overview

In the previous sections, the following list of parameters is determined, to be used in combination
with the two basic methods:

• Window length used for gravitational acceleration estimation: 5 seconds.

• Window length used for classification: 10 seconds.

• Overlap between windows used for classification: none.

• Certainty threshold thc: 0.70.

• Thresholds th1 and th2 (Extension 1):

– For basic method OVR: th1 = 0.1, th2 = 0.1.

– For basic method MULT: th1 = 0.1, th2 = 0.3.

• Threshold th3 (Extension 3): 0.7.

• Smoothing constant γ (Extension 4): 0.7.

7.7 Feature selection

As explained in Chapter 4, a selection of features is made to be used in the classification model by
making use of L1 regularised logistic regression. Using a window length of 10 seconds, coefficients
are trained by making use of training data, see Section 4.4. The final selection of features is the
following:

• linear acceleration magnitude c: energy.

• horizontal linear acceleration lv: variance, maximum, minimum, energy.

• vertical linear acceleration lh: energy.

• angle α: mean, variance, minimum, root mean square, energy.

• angle speed v: variance, maximum, minimum, median, root mean square, energy.

• linear acceleration l: Signal Magnitude Area.

Hence, in total there are 18 features used in the classification model.

Observation 9: All 5 vectors computed in the preprocessing step are used in the final model.
However, the majority of features is related to the angle and the angle speed. Also, the energy of all
5 vectors for which it is calculated is included in the feature selection.

7.8 Results obtained with the classification model

The classification model starts with measuring accelerometer data, preprocessing and calculating
features. This process is described in Chapters 3 and 4.

In Figure 7.5, the measured acceleration in three directions and the variance of the magnitude of
the linear acceleration for a window of 10 seconds, which is one of the calculated features, are given
for Case 1. The figures regarding Case 2 - 5 are placed in Appendix B, Figures B.1 to B.4.
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Figure 7.5: Acceleration in three directions as measured by the accelerometer and
variance of the magnitude of the linear acceleration for a window of 10 seconds for
Case 1.

Observation 10: A clear difference is visible between movements belonging to different classes. This
is also the case for the other Cases, however, the difference is less visible for motorised vehicles. Case
5 contains the same movements as Case 1, However, as said, the data is collected by two different
persons. This is also very clearly visible in the measured accelerometer data and the corresponding
variances.

By simply looking at the variances for the 5 cases, it is at least imaginable that a classification model
should be able to make (some) distinction between the six classes.

After calculating features values, classification is done as described in Chapter 5. Since there are two
basic methods and four extensions available to form the classification model, a total of 32 different
combinations can be made. To asses the quality of the classifications done with all combinations,
three measurements are used.

• ACC, see Equation (7.1),

• ACCREL, see Equation (7.2),

• TIMEhigh, the fraction of windows that is correctly classified with high certainty,

TIMEhigh =
# windows correctly classified with high certainty

total # windows
· 100%.

The results of running Cases 1 to 5 with all possible combinations of basic methods and extensions,
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using above three measures to asses the quality of the classification, are placed in Appendix C, Table
C.1 to Table C.5.

Observation 11: The results for Case 5 do not match the results for Case 1, despite the fact that
the same movements are included. This is due to the fact that the data for Case 5 is collected by
a different person than the data for training the model. Therefore, Case 5 will not be considered in
the following analysis of the results.

Looking at the results for Cases 1 to 4, the following things stand out.

• Basic method OVR:

– Extension 1 can be used to classify still, walk and bicycle. However, using it to classify
car, bus and train reduces the quality of the classification.

– Extension 2 and 3 do not improve or deteriorate the quality of the results.

– Extension 4 should only be used if Extension 1 is not used.

• Basic method MULT:

– Extension 1 should be used to classify still, walk, bicycle and car. However, using it for
classifying bus and train should only be done if Extension 4 is not used.

– Extension 2 sometimes improves the quality of the classification, it never makes it worse.

– Extension 3 should be used to classify bus and train. When classifying car, Extension 3
should only be used in combination with Extension 4. Extension 3 should only be used
to classify still, walk and bicycle in combination with Extension 1 or Extensions 1 and 4.

– Extension 4 only improves the quality of the classification for still, walking and cycling.

Based on the results and the above remarks, we expect the best combinations of basic methods and
extensions to be as shown in Table 7.10. It should be noted that different classes can have a different
optimal combination of basic method and extensions.

Still, Walk, Bicycle Bus, Train Car
OVR 1 4 4

MULT 1,2,3,4 1,2,3 1,2,3,4

Table 7.10: Expected best combinations of basic methods and extensions when classi-
fying movements belonging to one of the six mentioned classes.

In Table 7.11, the combinations of basic methods and extensions that obtained the overall best
results for the five cases are shown.

Observation 12: When comparing the underlying movements present in the cases with the expec-
tations listed in Table 7.10, it must be noted that the conclusions agree with each other.

OVR MULT Ext 1 Ext 2 Ext 3 Ext 4
Case 1 • • • • •
Case 2 • • • •
Case 3 • • • • •
Case 4 • •
Case 5 • •

Table 7.11: The combinations of basic methods and extensions that result into the best
classification, per Case.
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In Figures 7.6 to 7.10, the results are visualised for running Cases 1 to 5 with the combination of
basic methods and extensions as given in Table 7.11. The blue lines are the ground truths. For
each window of 10 seconds, a red dot is placed by the class with which the window is classified.
Together with the plots, confusion matrices are given for each case. In a confusion matrix, on the
horizontal dimension, the ground truth is given, while on the vertical dimension the prediction made
by the classification model is given. Shortly said, a confusion matrix shows the ways in which the
classification model is confused when it makes predictions.

Cases 1 and 5 are based on the same movements, however, the data is collected by two different
persons carrying the same smartphone.

Figure 7.6: Classification and confusion matrix for Case 1, using basic method MULT
and all four extensions.

Figure 7.7: Classification and confusion matrix for Case 5, using basic method MULT
and extension 4.

Observation 13: For Case 1, most windows are correctly classified. The only part where the
classification model goes wrong for a long time, is the first part of still.

This is most likely caused by one of the extensions, since this behaviour is not included in all model
outputs.

Observation 14: Looking at the output belonging to Case 5, it stands out that almost all windows
belonging to bicycle are classified as walk.
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This is most likely caused by the fact that the data is collected by another person. This person
probably moves his legs faster when cycling, and therefore causes the model to think that the correct
movement is walking.

Observation 15: The output of Cases 2 and 3 shows that the model is not doing well at classifying
movements belonging to the class car. For Case 2, those movements are mostly classified as still,
train or bicycle, and for Case 3, a lot of windows with ground truth car are classified as still.

The later is probably partly caused by the traffic jam, which took place from approximately 00:45
to 01:00. Also, steady driving with little breaking and turning can cause the model to think that
the movement belongs to still instead of car.

Observation 16: Looking at the output of Case 2, it stands out that train can be classified using
the classification model. Movements belonging to the class bus, however, are very badly classified.

Perhaps this is the case since bus is a lot more alike with car than with train.

Figure 7.8: Classification and confusion matrix for Case 2, using basic method MULT
and Extensions 1, 2 and 3.

Figure 7.9: Classification and confusion matrix for Case 3, using basic method MULT
and all four extensions.

Case 4 is the case that includes a movement that is not part of the six classes used in the classification
model, namely shopping.
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Observation 17: All movements belonging to shopping are classified as walking and cycling.

A reason for this is that slowly walking, which is common to do in some shops, probably is easily
seen as cycling.

Observation 18: The model does not identify shopping as bus, train or car.

Hence, shopping is most likely more alike with non-motorised movements such as walking and cycling
than with motorised movements such as bus, train and car.

Figure 7.10: Classification and confusion matrix for Case 4, using basic method OVR
and Extension 4.

The final model used for classification, should exist out of one basic method combined with a selection
of extensions. Using basic method MULT and all four extensions yields an average accuracy of 50.0%,
which is on average the best result obtained.

7.9 Computation times

One requirement for the model was that online classification must be possible, hence, data collection
and classification must be done real time. Real time classification is only possible if classifying a
window costs less time than filling the next window for classification, which in our case takes 10
seconds. If this would not be the case, windows ready to be classified will pile up, resulting in a
non-real time classification that can only be finished when the collecting of data stops. Therefore,
it must be known how long it takes on average to classify one window of data.

Table 7.12 shows the results for running the 5 cases with their optimal classification model settings,
which can be found in Table 7.11.

Observation 19: As becomes clear, the average time it takes to classify a window is 0.0101 seconds,
which is far below the window length of 10 seconds. Also, the mean variance is 0.000097, which
implies that with high probability it will never happen that it takes longer than 10 seconds to classify
a window.

Therefore, we believe that it is safe to say that online classification is possible with the suggested
classification model.

The above results are obtained by running the classification model on a laptop with 8 GB RAM
and a Intel(R) Core(TM) i5-5200U CPU 2.20GHz. It seems a bit odd to discuss computation times
for running the model on a laptop, since a requirement for the model is that it must be able to run
on a smartphone. However, since nowadays smartphones are (almost) as fast as laptops in terms of
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Mean duration (sec) Variance
Case 1 0.0086 0.000061
Case 2 0.0108 0.000175
Case 3 0.0107 0.000067
Case 4 0.0121 0.000121
Case 5 0.00853 0.000063
Mean 0.0101 0.000097

Table 7.12: Computation times for classifying one window with a length of 10 seconds.

computing, we think it is valid to belief that the computational times shown in Table 7.12 can also
(or at least almost) be obtained when running the model on a smartphone.

It is (almost) not possible to compute the amount of memory used by the algorithm. This is due to
the fact that the model is currently programmed in MATLAB, and will eventually be programmed
on a smartphone, where MATLAB is not available. Therefore, most likely, the programming code
will change, resulting in a different use of memory. However, since no complex algorithms are used,
we expect the model not to blow up and therefore always use a reasonable amount of memory, which
can be easily handled by a smartphone.
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Chapter 8

Conclusions and recommendations

This thesis presents a first attempt to classify travel modes using accelerometer data collected with a
smartphone. As can be concluded from this report, classifying travel modes with accelerometer data
is generally possible, however, more development is needed in order to get accurate classification
results.

Requirements for the classification model
The classification model is constructed according to the requirements set by Mobidot, as stated in
the problem description. The requirements were the following.

1. Accelerometer based.

2. Battery-efficient.

3. Expandable.

4. Classify during trips only.

5. Online classification.

Clearly, the first requirement is met by definition.(1)

It cannot be said with certainty that the battery-efficiency has been obtained.(2) However, during the
development of the model and while determining parameter values, it has been taken into account
that choices must be made in such a way that battery capacity is not used unnecessary. For instance,
a selection of feature values is made instead of using all features. Also, window lengths are not set
to 5 seconds, due to battery saving considerations. To be entirely sure about the battery-efficiency,
however, it is necessary to run the model on a smartphone and perform some additional tests.

By(3) the way the model is set up, it is made sure that it is not hard to add more classes to the
list. When adding an extra class, however, new data has to be collected and coefficients have to be
trained again by using L1 regularised logistic regression. This can also cause that the selection of
features changes and more or less features are used in the final classification model. Thereby, the
running time and computational complexity of the model will most certainly change.
It is also possible to add features to the feature selection. Coefficients for logistic regression should
be determined again if this is done.

When(4) running the model on the cases, the fourth requirement is also met by definition.

It(5) is not entirely certain whether the model will work on a smartphone and if online classification
is indeed possible. However, it is expected to be the case. Since no machine learning model has
been used for preprocessing, feature calculation, and classifying with the basic methods and the
extensions, it most certainly is possible to program the model on a smartphone. Also, as shown
in Section 7.9, the model takes slightly over 0.01 seconds to classify a window of 10 seconds of
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accelerometer data. It must be noted that this result is achieved using a laptop, however, nowadays,
most smartphones are nearly as fast as a laptop or even faster. Therefore, we expect the model to
be able to run on a smartphone and classify windows in a reasonable time. It remains uncertain
how much memory and RAM will be needed to run the model on a smartphone.
The model is created in such a way that online classification is possible. However, when running the
model on a smartphone while continually collecting data, we need to know when to start classifying
and when to stop. Therefore, a boolean has to be included to the model, which is true if the phone
is changing position with respect to GPS-coordinates and false if this is not the case. Such a feature
is already part of the app constructed by Mobidot used to gather data, hence it will not be a big
deal to include it into the model. The boolean could also be based on detection of walking by the
classification model. However, therefore, continuous classification is needed. To know for sure if
online classification is possible, the model must be implemented on a smartphone and tested.

Conclusion 1: The proposed classification algorithm appears to be a feasible approach for online
classifying of travel modes on a smartphone.

Estimation of the gravitational acceleration
We believe that the current used method for estimating gravitational acceleration is suitable and
the highest achievable when using accelerometer data collected at 5Hz. A better result can be
obtained with decreasing the length of windows used for estimating gravitational acceleration in
combination with increasing the sample rate. This allows the estimate to better follow the data,
while the estimate is still based on enough data points, making sure the estimate is not influenced
by noise.

It would be even better to include measurements of the gyroscope into the model, to obtain more
accurate gravitational acceleration estimates. With the aid of a gyroscope, the position of the
smartphone relative to the earth can be determined, and therefore, it can be used to find the exact
direction of the gravitational acceleration.

We believe it is needed to improve the estimation of gravitational acceleration, as it might help with
obtaining a better classification. Looking at the obtained results, it strikes that motorised travel
modes are often confused with movements belonging to the class still. This can be explained by
the fact that differences in acceleration are often very subtle for those movements. For example,
when driving on the highway with a constant speed, the acceleration will not change drastically,
but stay nearly zero. Improving the gravitational acceleration estimate will prevent that to much of
the accelerometer signal is removed when changing the directions of the measurements. It must be
investigated whether this ensures a more clear difference between motorised vehicles and movements
belonging to the class still.
Again, of course, increasing the sampling frequency can also help in separating still from motorised
movement.

Conclusion 2: We believe the current used method for estimating gravitational acceleration is
suitable. However, the sample rate for collecting data should be increased to obtain more accurate
estimations, resulting in a better classification of motorised vehicles.

Logistic Regression: feature selection
The feature selection done in this thesis is based on L1 regularised Logistic Regression. A selection of
18 out of 56 features is made and used in the classification model. Since the feature selection is done
offline, obtaining the lowest computation times is not necessary. However, to improve running time,
it is better to avoid having highly correlated features, such as mean and median, in the original list
of features. Removing one of those two features did not improve the classification result, however,
the running time decreased and the numerical stability increased.

Conclusion 3: We believe that L1 regularised Logistic Regression is a suitable method for selecting
features. Using highly correlated features should be avoided, to decrease computation times and
increase numerical stability.
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Logistic Regression: travel mode classification
When developing the classification model, we chose to use Logistic Regression for classification
purposes. We found that an overall accuracy of 50.0% can be obtained using basic method MULT
and all four extensions. However, this combination of basic method and extensions is not optimal
for all used test cases. Therefore, we conclude that it can be necessary to chose a non-optimal
combination of basic method and extensions, to get on average the best classification.

We believe classification can be improved by increasing the sample rate and by training the model
with data collected by more than one person. Also using data from other smartphone sensors can
help in obtaining a higher accuracy.

Generally, the model separates movements belonging to classes walking and cycling very well. How-
ever, it is striking that whenever walking and cycling are misclassified, they are often classified
as each other. We believe this is caused by the fact that slowly walking might look like walking,
and fast cycling might look like walking. Increasing the sample rate might help to improve on this
separation, since then the whole movement is easier to follow.

Increasing the sample rate might also help in distinguishing between motorised movement. Due to
the fact that no repeated movement is included in motorised movement, it is important that even
smaller changes in acceleration are noticed. As can be seen in the results, the model is able to
correctly classify movements in the class train, however, classifying car and bus often goes wrong.
For the model to be able to separate better between car and bus, we believe it may help to see all
small changes in acceleration, and hence it might help to increase the sampling frequency.
Another thing that might help with better distinguishing between classes such as car, train and
bus, is making use of other available smartphone sensors to collect additional data as input for the
classification model. For instance, a Bluetooth-sensor can be used to find if many other Bluetooth-
devices are nearby for a longer time. If this is the case, most likely the smartphone is in public
transport. Other sensors, such as the gyroscope, can also help with estimating the gravitational
acceleration, as said.

A thing to take in mind when using multiple sensors, is the fact that the model must be suited to
run on all smartphones. Some older smartphones might not include all additional sensors, or access
to the sensor might be denied by the operating system. For instance, it is way harder to get access
to all kind of sensors when using iOS than when using Android. When using data from additional
sensors for the classification model, this should be taken into account.

As can be seen from the model, Logistic Regression works best on classifying test data collected
by the same person as the one that collected the training data. This applies mainly to the classes
walking and cycling. However, it is impossible to have training data for every person who’s data
needs to be classified. We believe the quality of the classification will improve if the model is trained
on data collected by more than one person, making the training data more representative to all kind
of users who’s data needs to be classified.

Conclusion 4: We believe that Logistic Regression is a suitable method for both feature selection
and classification, however, further development is needed to obtain a higher accuracy. Increasing the
sample rate for data collection might help to improve the results for classification, as well as training
the model with data collected by more than one person, and using data collected with multiple sensors.

Data collection on a smartphone
The fact that the data is collected with a smartphone, may cause some trouble. During non-
motorised travel modes such as cycling, the position of the phone influences the collection of data.
For instance, it makes a huge difference whether the phone is in a pocket or in a bag. Cycling with a
smartphone in the pocket of your pants or cycling with the smartphone in a bag on the handlebars
makes a huge difference for the obtained signal. However, both ways of cycling were included in the
training and testing data for our model, and both are classified as cycling as well. Hence, we believe
that considering all possible positions of the smartphone when collecting training data, will solve
the above issue.

51



Also, influences on the measurements from holding the smartphone while in motorised vehicles, are
almost impossible to deal with, and influence the measurements in such a way that recognising
the motorised movement is not possible anymore. Perhaps making a class user interaction with
smartphone will solve this issue.

Lastly, the unit of acceleration measured by smartphones can differ per smartphone brand. Some
accelerometers measure with unit m/s2, others measure with unit g, where 1 g = 9.80665 m/s2.
Hence, in some cases an extra preprocessing step is necessary, where the unit of the accelerometer
measurements is changed to m/s2. Instead of preprocessing, it is also possible to make the model
self learning, where parameter values are learned from the data.

Conclusion 5: It is possible to collect accelerometer data with a smartphone for classification
purposes. A way should be found to deal with external influences on the signal, made by the wearer
of the smartphone.

Adding more travel modes
Currently, six classes are included in the classification model. However, way more travel modes are
possible. For instance, using a step or a tram or a metro could be possible other ways of travelling.
The use of overarching classes, where for instance all vehicles driving on a track are included in one
class, should be further investigated. If this proves to work, more travel modes can be included into
the model, without extending the classification model to much, making it to complex to run on a
smartphone.

Conclusion 6: We believe further research is needed on extending the classes taken into account
by the classification model, in order to be able to classify more travel modes.
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Appendix A

List of symbols

Symbol Unit Description
α radians angle between l and g
Aw - matrix with accelerometer measurements, used for prepro-

cessing data
a = (ax, ay, az) m/s2 accelerometer measurements measured by a triaxial ac-

celerometer, in directions x, y and z. For specific directions,
see Figure 3.1

β0, β1,β - coefficients used in logistic regression
γ ∈ [0, 1] - smoothing constant
c m/s2 magnitude of linear acceleration
Cw ∈ [0, 1] - certainty measure for window w
g = (gx, gy, gz) m/s2 gravitational acceleration estimate
K - set of activities used in the classification model
λ - regularisation parameter
l = (lx, ly, lz) m/s2 linear acceleration
lh - horizontal linear acceleration
lv - vertical linear acceleration
l(β) - log-likelihood
n - total number of features calculated
m - total number of grid points for interpolations
nw - number of measurements in window w
p - probability to belong to a certain class
pw ∈ [0, 1] - probability related to the class with which window w is clas-

sified
s seconds length of windows used for classification
S - set containing training data
t seconds time stamp of accelerometer measurements
th1, th2 ∈ [0, 1] - thresholds used in Extension 1
th3 ∈ [0, 1] - threshold used in Extension 3
thc ∈ [0, 1] - threshold used to determine when certainty is high
v m/s angle speed
w - window of length s with accelerometer measurements
x = {x1, . . . , xn} - feature values

y(i) - class label of i-th training sample
ACC, ACCREL, TIMEhigh - measurements to assess the quality of a classification
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Appendix B

Accelerometer data and variance

Figure B.1: Acceleration in three directions as measured by the accelerometer and
variance of the magnitude of the linear acceleration for a window of 10 seconds for
Case 2.
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Figure B.2: Acceleration in three directions as measured by the accelerometer and
variance of the magnitude of the linear acceleration for a window of 10 seconds for
Case 3.
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Figure B.3: Acceleration in three directions as measured by the accelerometer and
variance of the magnitude of the linear acceleration for a window of 10 seconds for
Case 4.
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Figure B.4: Acceleration in three directions as measured by the accelerometer and
variance of the magnitude of the linear acceleration for a window of 10 seconds for
Case 5.
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Appendix C

Results

Ovr Mult Ext 1 Ext 2 Ext 3 Ext 4 ACC ACCREL TIMEhigh

• 66.89 71.846 33.445
• • 85.011 88.968 33.445
• • 66.89 71.846 33.445
• • • 85.011 88.968 33.445
• • 66.89 71.846 33.557
• • • 85.011 88.968 33.557
• • • 66.89 71.846 33.557
• • • • 85.011 88.968 33.557
• • 74.832 77.75 34.452
• • • 80.201 73.637 34.452
• • • 74.832 77.75 34.452
• • • • 80.201 73.637 34.452
• • • 74.832 77.75 34.452
• • • • 80.201 73.637 34.452
• • • • 74.832 77.75 34.452
• • • • • 80.201 73.637 34.452

• 75.951 77.68 32.886
• • 83.445 83.195 34.564
• • 75.951 77.68 32.886
• • • 83.557 83.269 35.011
• • 76.174 77.921 33.669
• • • 84.228 83.805 36.913
• • • 76.174 77.921 33.669
• • • • 84.228 83.805 36.577
• • 86.801 86.537 34.452
• • • 90.716 85.208 36.577
• • • 86.801 86.537 34.452
• • • • 90.716 85.208 39.038
• • • 86.689 86.463 34.452
• • • • 90.94 85.355 40.716
• • • • 86.689 86.463 34.452
• • • • • 91.387 85.649 45.414

Table C.1: Results Case 1
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Ovr Mult Ext 1 Ext 2 Ext 3 Ext 4 ACC ACCREL TIMEhigh

• 31.646 39.052 4.4304
• • 24.367 27.983 5.6962
• • 31.646 39.052 4.4304
• • • 24.367 27.983 5.6962
• • 31.646 39.052 4.4304
• • • 24.367 27.983 5.6962
• • • 31.646 39.052 4.4304
• • • • 24.367 27.983 5.6962
• • 31.962 39.707 6.3291
• • • 22.152 25.602 6.3291
• • • 31.962 39.707 6.3291
• • • • 22.152 25.602 6.3291
• • • 31.962 39.707 6.3291
• • • • 22.152 25.602 6.3291
• • • • 31.962 39.707 6.3291
• • • • • 22.152 25.602 6.3291

• 31.646 38.874 5.3797
• • 31.962 39.748 7.5949
• • 31.646 38.874 5.3797
• • • 32.911 40.602 8.2278
• • 31.646 38.874 5.6962
• • • 32.278 40.125 7.9114
• • • 31.646 38.874 5.6962
• • • • 33.228 40.979 8.5443
• • 28.481 35.348 5.6962
• • • 24.051 29.774 7.9114
• • • 28.481 35.348 5.6962
• • • • 24.051 29.774 8.2278
• • • 29.114 36.103 6.962
• • • • 24.684 30.529 8.8608
• • • • 29.114 36.103 6.962
• • • • • 24.684 30.529 9.1772

Table C.2: Results Case 2
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Ovr Mult Ext 1 Ext 2 Ext 3 Ext 4 ACC ACCREL TIMEhigh

• 1.6692 7.7698 0
• • 0.45524 7.1429 0
• • 1.6692 7.7698 0
• • • 0.45524 7.1429 0
• • 1.6692 7.7698 0
• • • 0.45524 7.1429 0
• • • 1.6692 7.7698 0
• • • • 0.45524 7.1429 0
• • 2.5797 1.3323 0
• • • 0 0 0
• • • 2.5797 1.3323 0
• • • • 0 0 0
• • • 2.5797 1.3323 0
• • • • 0 0 0
• • • • 2.5797 1.3323 0
• • • • • 0 0 0

• 6.0698 3.1348 0
• • 8.953 4.6238 0
• • 6.0698 3.1348 0
• • • 8.1942 4.232 0
• • 6.0698 3.1348 0
• • • 8.953 4.6238 0
• • • 6.0698 3.1348 0
• • • • 8.1942 4.232 0
• • 8.953 4.6238 0
• • • 8.953 4.6238 0.91047
• • • 8.953 4.6238 0
• • • • 9.8634 5.094 0.75873
• • • 8.953 4.6238 0
• • • • 8.953 4.6238 0.91047
• • • • 8.953 4.6238 0
• • • • • 10.015 5.1724 0.75873

Table C.3: Results Case 3
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Ovr Mult Ext 1 Ext 2 Ext 3 Ext 4 ACC ACCREL TIMEhigh

• 48.077 48.812 8.3333
• • 76.923 77.323 8.3333
• • 48.077 48.812 8.3333
• • • 76.923 77.323 8.3333
• • 48.077 48.812 8.3333
• • • 76.923 77.323 8.3333
• • • 48.077 48.812 8.3333
• • • • 76.923 77.323 8.3333
• • 64.744 65.217 10.897
• • • 74.359 74.253 10.897
• • • 64.744 65.217 10.897
• • • • 74.359 74.253 10.897
• • • 64.744 65.217 10.897
• • • • 74.359 74.253 10.897
• • • • 64.744 65.217 10.897
• • • • • 74.359 74.253 10.897

• 46.154 45.849 8.3333
• • 58.974 58.062 8.3333
• • 46.154 45.849 8.3333
• • • 58.974 58.062 8.3333
• • 46.154 45.849 8.3333
• • • 58.974 58.062 8.3333
• • • 46.154 45.849 8.3333
• • • • 58.974 58.062 8.3333
• • 63.462 62.527 7.6923
• • • 67.949 66.826 16.026
• • • 63.462 62.527 7.6923
• • • • 67.949 66.826 16.026
• • • 66.667 65.951 16.667
• • • • 71.154 70.251 25
• • • • 66.667 65.951 16.667
• • • • • 71.154 70.251 25

Table C.4: Results Case 4
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Ovr Mult Ext 1 Ext 2 Ext 3 Ext 4 ACC ACCREL TIMEhigh

• 53.745 64.848 35.768
• • 54.869 66.847 35.955
• • 53.745 64.848 35.768
• • • 54.869 66.847 35.955
• • 53.745 64.848 35.955
• • • 54.869 66.847 36.142
• • • 53.745 64.848 35.955
• • • • 54.869 66.847 36.142
• • 52.809 63.277 36.142
• • • 51.311 61.005 36.142
• • • 52.809 63.277 36.142
• • • • 51.311 61.005 36.142
• • • 52.809 63.277 36.142
• • • • 51.311 61.005 36.142
• • • • 52.809 63.277 36.142
• • • • • 51.311 61.005 36.142

• 55.431 66.046 36.142
• • 56.18 67.282 36.33
• • 55.431 66.046 36.142
• • • 55.993 67.145 36.517
• • 54.12 65.09 36.142
• • • 54.869 66.326 36.33
• • • 54.12 65.09 36.142
• • • • 54.682 66.189 36.517
• • 54.12 63.973 36.33
• • • 53.558 62.874 36.704
• • • 54.12 63.973 36.33
• • • • 53.558 62.874 37.453
• • • 53.371 63.426 36.33
• • • • 52.809 62.327 36.704
• • • • 53.371 63.426 36.33
• • • • • 52.809 62.327 37.453

Table C.5: Results Case 5
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