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Abstract

Over the past decades, virtual reality (VR) technology has gained significant popularity and interest,
both in research as well as on the consumer market. One promising application area of VR is virtual
reality exposure therapy (VRET), which treats anxiety disorders by gradually exposing the patient
to his/her fear using VR. To make VRET safe and effective, it is important to monitor the patient’s
fear levels during the exposure. Non-invasive neuroimaging can be used to unobtrusively detect
fear responses, among which functional near-infrared spectroscopy (fNIRS) technology exhibits the
greatest potential for a combination with VR, due to its comparably low susceptibility to motion
artifacts. This thesis aims to investigate to what extent the fNIRS signals captured from people
with a fear of heights response and people without a fear of heights response during VR exposure
differ, and to what extent a person’s fear of heights response to a VR environment can be detected
using fNIRS data.

Only a very limited amount of work has investigated how fear responses are reflected in fNIRS
signals. Furthermore, no previous work on the automatic detection of fear responses using fNIRS
data exists. The literature indicates that a combination of VR and fNIRS technology is feasible and
that it allows for experiments with greater ecological validity than traditional lab experiments.

An experiment was conducted during which participants with moderate fear of heights (exper-
imental group, ne = 14) and participants with no to little fear of heights (control group, nc = 15)
were exposed to VR scenarios involving heights (height condition) and no heights (ground condition).
During the experiment, the participants’ fNIRS signals were recorded. As an additional measure-
ment, the heart rate (HR) of every participant was extracted from the fNIRS signals. Permutation
tests were used to perform between-group statistical analyses and within-group statistical analyses
(for the experimental group) on the fNIRS data and HR data. Furthermore, Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVM) were used to train and test subject-dependent
classifiers and subject-independent classifiers on the data of the significant fNIRS channels of the
experimental group, in order to detect fear responses.

The between-group statistical analyses show that the fNIRS data of the control group and the
experimental group are only significantly different in channel 3, where the grand average ∆[HbO]
contrast signal of the experimental group exceeds that of the control group. Furthermore, the HR
data of both groups are not significantly different. The within-group statistical analyses show that
there are significant differences between the grand average ∆[HbO] values during fear responses and
those during no-fear responses, where the ∆[HbO] values of the fear responses were significantly
higher than those of the no-fear responses in the channels located towards the frontal part of the
pre-frontal cortex. Also, channel 23 was found to be significant for the grand average ∆[HbR]
signals. No significant differences were found between the HR data during fear responses or no
fear responses of the experimental group. The subject-dependent SVM classifier using 1-second
history of the fNIRS signals can detect fear responses at an average accuracy of 72.47% (SD 20.61).
The subject-independent SVM classifier using 5-second history of the fNIRS signals can detect fear
responses at an average accuracy of 77.29% (SD 10.64). The subject-independent classifiers show
potential for usage in online detection scenarios, as they can be trained beforehand on existing fNIRS
data and can classify the unseen data of a new person at an average accuracy above 75%.

ii



Acknowledgements

There are some people to whom I would like to express my gratitude for their help throughout this
thesis research project. First of all, I would like to thank the members of the supervising committee,
Mannes Poel, Nattapong Thammasan, and Dirk Heylen. Thank you for your help, suggestions, and
feedback.

Furthermore, I would like to thank the people from the BMS Lab of the University of Twente.
Thank you for providing me with a lab space and the required materials to do the experiments.
I would like to thank Tenzing Dolmans in particular, for explaining to me how to use the fNIRS
hardware and for thinking along with my project.

Of course, I would also like to thank all the 41 people who took the time to participate in my
experiment. Without your voluntary participation, I would not have been able to perform this
specific research. Next to the participants, I am also very thankful for the help of the people who
asked their friends and family to participate in my experiment.

Last but not least, I would like to thank my family and Joep. Thank you for your support and
the motivational words whenever I needed it.

iii



List of Figures

2.1 Example of an immersive VE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 User wearing an HMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Molar absorption coefficients of HbO and HbR . . . . . . . . . . . . . . . . . . . . . 6
2.4 Schematic overview of emitter and detector placed on the scalp . . . . . . . . . . . . 6
2.5 An example of a plot of OD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Physiological noises and a motion artifact in an fNIRS signal . . . . . . . . . . . . . 8
2.7 Plot of pre-processed ∆[HbO] and ∆[HbR] . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Brain areas where mental states were measured using fNIRS . . . . . . . . . . . . . . 10
2.9 Custom-made helmet combining fNIRS and VR . . . . . . . . . . . . . . . . . . . . . 16
2.10 The HTC Vive HMD and a custom-made fNIRS probe arrangement . . . . . . . . . 17
2.11 Comprehensive overview of the procedure of the permutation test . . . . . . . . . . . 19
2.12 An example of a possible permutation distribution . . . . . . . . . . . . . . . . . . . 20
2.13 Example of a decision boundary made by LDA . . . . . . . . . . . . . . . . . . . . . 22
2.14 Example of the separating hyperplane and the margin optimized by the SVM . . . . 22
2.15 Example where the data are not linearly separable . . . . . . . . . . . . . . . . . . . 23
2.16 Example non-linearly separable data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Movement possibilities offered by a 6 DoF HMD . . . . . . . . . . . . . . . . . . . . 27
3.2 Positioning of the optodes on the scalp during the experiment . . . . . . . . . . . . . 28
3.3 The VEs of the ground condition and height condition . . . . . . . . . . . . . . . . . 28
3.4 Participant wearing the fNIRS headcap and the VR HMD during the experiment . . 29
3.5 The experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 The fNIRS pre-processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Example of a filtered signal and the detected HR peaks . . . . . . . . . . . . . . . . 33

4.1 Grand average contrast ∆[HbO] traces for the control group and the experimental
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Grand average contrast ∆[HbR] traces for the control group and the experimental
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Box plot of the average contrast HR of the control group and the experimental group 41
4.4 Grand average ∆[HbO] traces of the ground condition and the height condition of the

experimental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Grand average ∆[HbR] traces of the ground condition and the height condition of the

experimental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Box plot of the average baseline-corrected HR during the ground condition and the

height condition for the experimental group . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Train and test data of the 1-second subject-dependent classifiers of participant 1 . . 46
4.8 Train and test data of the 1-second subject-dependent classifiers of participant 2 . . 47
4.9 Train and test data of the 1-second subject-dependent classifiers of participant 7 . . 47
4.10 Train and test data of the 1-second subject-dependent classifiers of participant 9 . . 48
4.11 Train and test data of the 1-second subject-independent classifiers of participant 2 . 49
4.12 Train and test data of the 1-second subject-independent classifiers of participant 10 . 50

iv



E.1 Example of motion correction with the TDDR algorithm . . . . . . . . . . . . . . . . 81

F.1 The 27 smallest p-values and the FDR correction threshold . . . . . . . . . . . . . . 82

I.1 Train and test data of the subject-dependent classifiers on 3-second history and 5-
second history of participant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

I.2 Train and test data of the subject-dependent classifiers on 3-second history and 5-
second history of participant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

I.3 Train and test data of the subject-dependent classifiers on 3-second history and 5-
second history of participant 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

I.4 Train and test data of the subject-dependent classifiers on 3-second history and 5-
second history of participant 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

I.5 Train and test data of the subject-independent classifiers on 3-second history and
5-second history of participant 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

I.6 Train and test data of the subject-independent classifiers on 3-second history and
5-second history of participant 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

J.1 Pre-experiment and post-experiment AQ scores of the control group . . . . . . . . . 94
J.2 Pre-experiment and post-experiment AQ scores of the experimental group . . . . . . 95

v



List of Tables

2.1 Previous work on the detection of mental states with fNIRS . . . . . . . . . . . . . . 15

3.1 Participant demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 IPQ subscales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Post-experiment selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Mean scores and standard deviations of the questionnaire results . . . . . . . . . . . 37
4.2 Accuracies of the subject-dependent classifiers . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Accuracies of the subject-independent classifiers . . . . . . . . . . . . . . . . . . . . . 48

B.1 Overview of mental states that can be measured with fNIRS . . . . . . . . . . . . . . 74

C.1 AQ items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.2 SUDS items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.3 IPQ items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

G.1 The hyperparameters of the LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
G.2 The hyperparameters of the SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

H.1 Confusion matrix of the subject-dependent LDA over 1-second history . . . . . . . . 84
H.2 Confusion matrix of the subject-dependent SVM over 1-second history . . . . . . . . 84
H.3 Confusion matrix of the subject-dependent LDA over 3-second history . . . . . . . . 84
H.4 Confusion matrix of the subject-dependent SVM over 3-second history . . . . . . . . 85
H.5 Confusion matrix of the subject-dependent LDA over 5-second history . . . . . . . . 85
H.6 Confusion matrix of the subject-dependent SVM over 5-second history . . . . . . . . 85
H.7 Confusion matrix of the subject-independent LDA over 1-second history . . . . . . . 85
H.8 Confusion matrix of the subject-independent SVM over 1-second history . . . . . . . 85
H.9 Confusion matrix of the subject-independent LDA over 3-second history . . . . . . . 86
H.10 Confusion matrix of the subject-independent SVM over 3-second history . . . . . . . 86
H.11 Confusion matrix of the subject-independent LDA over 5-second history . . . . . . . 86
H.12 Confusion matrix of the subject-independent SVM over 5-second history . . . . . . . 86

vi



List of Acronyms

AQ Acrophobia Questionnaire

BPM Beats per minute

BVP Blood volume pulse

CCN Cognitive Control Network

dlPFC Dorsolateral prefrontal cortex

DPF Differential pathlength factor

DoF Degrees of freedom

EEG Electroencephalography

FDR False discovery rate

fMRI Functional magnetic resonance imaging

fNIRS Functional near-infrared spectroscopy

GSR Galvanic skin response

HbO Oxygenated hemoglobin

HbR Deoxygenated hemoglobin

HMD Head-mounted display

HR Heart rate

HRV Heart rate variability

IPQ IGroup Presence Questionnaire

LDA Linear Discriminant Analysis

MBLL Modified Beer-Lambert law

MEG Magnetoencephalography

NI Near-infrared

OD Optical density

OFC Orbitofrontal cortex

PCA Principal component analysis

PFC Prefrontal cortex

vii



RT Reaction time

SFG Superior frontal gyrus

SUDS Subjective Units of Distress Scale

SVM Support Vector Machine

TDDR Temporal Derivative Distribution Repair

TPJ Temporoparietal junction

VE Virtual environment

vlPFC Ventrolateral prefrontal cortex

VHI Visual height intolerance

VR Virtual reality

VRET Virtual reality exposure therapy

viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Functional Near-Infrared Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Mental State Detection with fNIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Immersive VR and fNIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Physiology of Fear in VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Statistics and Classifiers used in this Research . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Preliminary Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Method 26
3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Results 37
4.1 Participant Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Discussion 51
5.1 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 57

Bibliography 59

Appendices 70

A Deriving Equations for ∆[HbO] and ∆[HbR] 71

B Mental States Measured with fNIRS 74

C Experiment Questionnaires 76

D Interview Experiment 79

ix



E TDDR Motion Correction 80

F FDR Correction Threshold 82

G Classifier Hyperparameters 83

H Confusion Matrices 84
H.1 Subject-Dependent Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
H.2 Subject-Independent Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

I Scatter Plots Error Analysis 87
I.1 Subject-Dependent Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I.2 Subject-Independent Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

J Pre-Experiment and Post-Experiment AQ Scores 94

x



Chapter 1

Introduction

This chapter provides an introduction to this thesis research. First, the motivation behind the research
is described. Then, the problem statement will be given, including the goals of this research and the
research questions. This chapter ends with an outline of the contents of this report.

1.1 Motivation
Over the past decades, virtual reality (VR) technology has gained significant popularity and interest,
both in research as well as on the consumer market [1–3]. With the recent advances made in hardware
and computer graphics, VR has become more and more realistic and accessible [4]. The increase in
realism and accessibility also increased VR’s application to certain use cases, including education,
training, anxiety therapy, physical therapy, games, entertainment, and pain management [1–10].
Such realistic virtual circumstances can have a significant influence on a person’s mental state [8,
11], for example causing mental workload, stress, or feelings of fear.

One promising application area of VR is virtual reality exposure therapy (VRET), a form of
therapy that stems from traditional exposure therapy. Exposure therapy treats anxiety disorders by
gradually and repeatedly exposing the client to his/her fear [12]. Exposure to fear in the absence
of harm activates the fear extinction process, which explains why exposure therapy is an effective
intervention [13]. The added value of VRET is that the exposure happens in the virtual world,
which makes the exposure setting more controlled, safer, and in some cases also less expensive than
traditional exposure therapy [5, 14, 15]. Furthermore, the exposure protocol can be completely
standardized when using VRET, which increases the therapist’s control over the stimuli and the
duration of the exposure, as opposed to traditional in vivo exposure [16]. Despite the greater
amount of control that VRET offers to the therapist, it is still common practice that the therapist
monitors the fear responses of the client [12]. One important reason to do this is to ensure that the
gradual exposure to the fear-eliciting stimuli do not overwhelm the client. Exposure to situations
that induce too much fear can, for example, cause panic attacks for the client and might therefore
worsen his/her anxiety, instead of treating it [14].

1.2 Problem Statement
Monitoring a person’s fear responses whilst using VR can be very challenging. Facial expressions
are hard to read when one is wearing a VR head-mounted display (HMD) and people generally find
it difficult to verbalize subjective indicators of their current mental state [17]. Additionally, fear
responses may change throughout the virtual exposure, while self-reporting on them tends to focus
the evaluation on only the last moments of virtual exposure and could interfere with the person’s
experience in the virtual environment (VE) [18]. Therefore, this research aims to combine VR with
non-invasive neuroimaging to unobtrusively detect a person’s fear response during virtual exposure.
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Not all non-invasive neuroimaging modalities are suitable for a combination with VR. Functional
near-infrared spectroscopy (fNIRS) seems to be the most appropriate technique when compared to
the other non-invasive methods (electroencephalography (EEG), magnetoencephalography (MEG),
and functional magnetic resonance imaging (fMRI)) [7]. The main reason for this is that the ability
to move around freely, which is desirable to create realistic VR scenarios, is very limited in the other
modalities, due to their high sensitivity to motion artifacts. Furthermore, MEG and fMRI equipment
restrain the subject to a very minimal area wherein it is almost impossible, if not undesirable, to
move. fNIRS is less sensitive to motion artifacts than the other non-invasive modalities [19], while
its portable and lightweight head-caps enable the subject to move to some extent [20]. Therefore,
fNIRS technology exhibits the greatest potential among the non-invasive neuroimaging techniques
for a combination with VR.

1.2.1 Goals and Research Questions
This research investigates the possibility of inducing and detecting a fear response in VR, using
fNIRS data. However, fear responses can be elicited by many different VR stimuli. Examples of
VRET applications from the literature were targeted at fear of spiders [21–23], fear of flying [24–26],
fear of heights [27–30], fear of driving [31], and even posttraumatic stress disorders [32–35]. Taking
the limited time scope of this thesis research into account, it was decided to aim for inducing and
detecting a fear of heights response. This decision was made as it was expected that creating a
VE that induces a fear of heights response is the least complex and the least time-consuming, as
compared to creating a VE that induces any other type of fear.

No previous research has investigated whether the fNIRS data of people with a fear of heights
response and people without a fear of heights response are actually different. Therefore, this is the
focus of the first research question, which is defined as follows:

1 To what extent do the fNIRS signals captured from people with a fear of heights response
and people without a fear of heights response differ?

In order to answer this question, both people with fear of heights (experimental group) and people
without fear of heights (control group) were invited to participate in an experiment, during which
they were exposed to virtual heights and virtual ground conditions. It was hypothesized that the
virtual heights cause a fear response for the experimental group, whereas it does not cause a fear
response for the control group. Furthermore, it was hypothesized that the ground condition does not
cause a fear response for any of the groups. Between-group statistical analyses were performed on
the fNIRS data of both groups to determine if there are significant differences between the groups.

Furthermore, this research investigates if the fear responses of the experimental group can be
detected using machine learning classifiers. Therefore, the second research question is formulated as
follows:

2 To what extent can a person’s fear of heights response to a virtual reality environment be
detected using fNIRS data?

The answer to this research question is obtained using the fNIRS data of the experimental group,
since this group experienced fear responses as well as no-fear responses. Within-group statistical
analyses were performed to determine if there are significant differences between the fNIRS data of
the experimental group during the ground trials (i.e. "no fear") and during the height trials (i.e.
"fear"). Then, subject-dependent and subject-independent classifiers were trained and tested on the
data of the experimental group, with the goal to classify between "fear" and "no fear" data. The
accuracies of the classifiers serve as an indicator of the performance of the fear detection.

2



1.3 Report Structure
This report describes the work that was done in order to answer the research questions that were
posed in this chapter. First, a review of the literature will be given in Chapter 2. This review consists
of definitions of VR and fNIRS, an explanation of fNIRS technology, findings from other works that
used fNIRS to detect mental states, related work on the combination of VR and fNIRS and the
use of other modalities to detect fear responses induced by VR, and background information on the
statistics and classifiers used in this research. Then, Chapter 3 will describe the method that was
used to answer the research questions. The methods for collecting the data through the experiment
as well as processing it, are described in this chapter. Chapter 4 gives an overview of the results that
were generated by the experiment, which can be divided into the results of the statistical analyses
and the classification results. After that, a discussion of the results will be given in Chapter 5.
Finally, Chapter 6 concludes this thesis research by answering the research questions.
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Chapter 2

Literature Review

This chapter contains the literature review. First, relevant background information on VR technology
and fNIRS technology is given. Then, the literature on mental states that can be measured with fNIRS
is described. Additionally, the previous work on the combination of immersive VR and fNIRS and
on the use of physiological signals to measure or detect fear responses in VR is reviewed. Finally,
background information on the statistics and classifiers used in this research is given.

2.1 Virtual Reality
Virtual reality (VR) can be described as an advanced human-computer interface which presents a
real-time three-dimensional simulation of an environment or situation to the user [1, 3, 5]. Typical
VR environments (VEs) allow user interaction [1, 5], enabling the user to see the environment from
different angles, to move around in it, and to touch, grab, or manipulate its three-dimensional objects
[3]. Often, VR addresses multiple senses of the user, including visual, auditory and sometimes even
haptic stimulation [5]. The more senses are addressed in a realistic manner, the more immersive VR
the is [3]. An example of an immersive VE is given in Figure 2.1.

Figure 2.1: Immersive VE that shows a 3D simulation of a cockpit, an instructor, and the user’s
hand in real-time. This VE is used by Airbus for pilot training purposes. Image obtained from [36].

2.1.1 Immersiveness and Presence
Immersive VR systems typically include head-tracking sensors, a head-mounted display (HMD),
sound effects, and an input device for user interaction with the environment [10, 37]. The head-
tracking sensors are used to compute the user’s head position with respect to the VE and to determine
the user’s vision based on that. The HMD, also called VR glasses or goggles, displays the VE to
the user while blocking the user’s view of the actual (i.e. physical) world [37]. Figure 2.2 shows an

4



example of a user wearing an HMD while using a hand-held controller as input device to control a
VE.

Figure 2.2: A user wearing an HMD and using a controller to interact with the VE (left) and the
vision of the user in the VE of the cockpit from Figure 2.1 (right). Image obtained from [36].

The main attribute that distinguishes VR from other human-computer interfaces is the sense
of ‘presence’ that it induces [1], which makes a user feel as if he/she is actually physically present
in the VE [11, 37]. This feeling is typically only caused by immersive VEs. When a person feels
physically present in the VE, this person will most likely respond in a realistic way to the virtual
stimuli [3, 4]. Therefore, experiments, training, and therapy sessions that use realistic immersive
VR are able to reach a high level of ecological validity [8], which can be too dangerous, expensive
or simply impossible to create otherwise [4, 6].

2.2 Functional Near-Infrared Spectroscopy
Functional Near Infrared Spectroscopy (fNIRS) is a non-invasive neuroimaging modality that utilizes
light in the near-infrared (NI) spectrum (650 nm – 1000 nm wavelength) to detect concentration
changes of the chromophores oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR)
[19, 38–43]. fNIRS relies on the principle of neurovascular coupling, which describes the relationship
between neural activity and changes in cerebral blood flow because of that activity [43]. Neural ac-
tivity demands for increased oxygenated blood in the activated cortical area [19, 39, 44]. The supply
of oxygen to an activated cortical area exceeds its oxygen consumption rate, causing an increase in
HbO concentration and an accompanying decrease in HbR concentration. This phenomenon is also
described as the hemodynamic response and is indicative of brain activity [42, 43].

Skin, tissue, and bone are generally transparent to NI light, while HbO and HbR absorb it [38,
41, 43, 46]. The fact that HbO and HbR have different molar absorption coefficients for varying
wavelengths of NI light makes it possible to detect the two separately [19, 43]. Figure 2.3 shows the
molar absorption coefficients for both HbO and HbR at varying wavelengths. The molar absorption
coefficients are identical at around 800 nm wavelength. Therefore, fNIRS systems typically use at
least two wavelengths to be able to dissociate between HbO and HbR: one below 800 nm and one
above 800 nm [19, 44, 46].

2.2.1 Brain-Signal Acquisition
Brain signals are acquired through emitter-detector pairs that operate at varying wavelengths, often
around 780 nm and 830 nm [44]. Every unique emitter-detector pair is a measurement channel,
whereas a single emitter or detector can be referred to as an optode [43]. The NI light is distributed
in a banana-shaped region between the emitter and the detector [39, 46], as can be seen in Figure
2.4. The depth at which the brain signals are measured is approximately half the distance between
emitter and detector [43, 46]. A trade-off exists between measurement depth and signal quality [43].
Emitters and detectors that are placed too close to each other (∼ 1 cm apart) will only measure
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Figure 2.3: Molar absorption coefficients of HbO and HbR for different wavelengths within the NI
spectrum, data obtained from [45].

skin, whereas placing them too far apart (∼ 5 cm apart) will weaken the signal [19]. The optimal
distance between an emitter and a detector is approximately 3 to 3.5 cm [19, 38, 43, 46]. However,
the optimal distance might vary depending on the NI light intensity, the wavelengths, the age of the
subject, and the brain area that is measured [38].

Figure 2.4: Schematic overview of emitter and detector placed on the scalp and the banana-shaped
light distribution between them [19].

2.2.2 Deriving Chromophore Concentration Changes
The HbO and HbR concentration changes can be derived based on the Modified Beer-Lambert
law (MBLL), which extends the Beer-Lambert law by taking into account the scattering of light
with a scattering-dependent light intensity loss parameter (G) [44, 47]. The MBLL describes the
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loss of light intensity (optical density, OD) as a function of chromophore concentrations (c), molar
extinction coefficients (ε), distance between emitter and detector (l), path length of light scattering
(differential pathlength factor, DPF ) and loss parameter G, see equation 2.1. OD is expressed as
the logarithm of the quotient of the detected light intensity (I) and the emitted light intensity (I0)
on the tissue. Chromophores HbO and HbR are expressed by index i. The variables t and λ denote
time and wavelength, respectively. Figure 2.5 gives an example plot of OD.

OD(t, λ) = − log10

I(t, λ)

I0(t, λ)
=
∑
i

εi(λ) · ci(t) · l ·DPF (λ) +G(λ) (2.1)
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Figure 2.5: An example of a plot of OD. The OD data used in this plot was obtained from [48]
and baseline corrected before generating the plot.

The change in optical density ∆OD(∆t, λ) = OD(t1, λ)−OD(t0, λ) can be computed under the
assumption that there is constant light scattering loss over time, thus eliminating G from equation
2.1, see [44, 46]. Furthermore, it is assumed that the emitted light intensity I0 is constant as well
[44]. This yields the following equation for the change in optical density ∆OD:

∆OD(∆t, λ) = − log10(
I(t1, λ)

I(t0, λ)
) =

∑
i

εi(λ) ·∆ci · l ·DPF (λ) (2.2)

Solving equation 2.2 for ∆ci at two different wavelengths λ1 and λ2 yields equations 2.3 and 2.4
for chromophore concentration changes ∆[HbO] and ∆[HbR], respectively. See Appendix A for a
step-by-step approach to deriving these equations.

∆[HbO] =
εHbR(λ2) · ∆OD(∆t,λ1)

l·DPF (λ1) − εHbR(λ1) · ∆OD(∆t,λ2)
l·DPF (λ2)

εHbO(λ1) · εHbR(λ2)− εHbO(λ2) · εHbR(λ1)
(2.3)

∆[HbR] =
εHbO(λ1) · ∆OD(∆t,λ2)

l·DPF (λ2) − εHbO(λ2) · ∆OD(∆t,λ1)
l·DPF (λ1)

εHbO(λ1) · εHbR(λ2)− εHbO(λ2) · εHbR(λ1)
(2.4)
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2.2.3 Data Pre-Processing and Analysis
According to Pinti et al. [40] and Hocke et al. [49], the data analysis approaches of different fNIRS
researches vary significantly. Therefore, it is difficult to define a standard method for the analysis
of fNIRS data. In an effort to identify a more general approach, they reviewed the data analysis
methods of other fNIRS studies and tested these different methods within their own experiments.
The results of their reviews are given below.

A typical first step in the analysis of fNIRS data is to visually inspect the signal and assess its
quality. Motion artifacts [39], instrument and environment noise, and poor coupling of optodes on
the scalp can significantly degrade the signal quality [19, 40, 42, 49]. Signals that do not show cardiac
oscillations should be excluded, because the absence of cardiac oscillations indicates that changes
in the signal are not coupled with hemodynamic changes [49], thus making the signal meaningless.
Channels with large artifacts, often visible as sudden spikes, can be removed upon visual inspection
[40]. However, automated methods, like assessing every channel’s coefficient of variation, are less
subjective and less time-consuming [49]. Therefore, the usage of such methods is preferred when
working with larger datasets and in cases of real-time detection.

The second step is to convert the raw light intensities to changes in optical density and then to
HbO and HbR concentration changes using equations 2.3 and 2.4 [40, 46]. The HbO and HbR con-
centration changes should be compared against a baseline period where no stimulation was present
[40, 42, 46]. This can for example be done by subtracting the mean HbO and HbR concentration
changes during the baseline period from every HbO and HbR concentration change during stimula-
tion, respectively [50].

Figure 2.6: Example plot of physiological noises and a motion artifact in an fNIRS signal, figure
obtained from [51].

A next step is to filter out the physiological noises that contaminate the fNIRS signal. Sources
of physiological noise include breath cycles (∼ 0.2 - 0.3 Hz), cardiac cycles (∼ 1 Hz), and Mayer
Waves (∼ 0.1 Hz) [19, 39, 40]. See Figure 2.6 for a visualization of such noise signals. Digital filters
(i.e. low-pass filters, band-pass filters or high-pass filters) can be used to reduce the physiological
noises in the fNIRS signal. In most fNIRS studies, a Butterworth filter is used [40, 49]. Pinti et
al. advise to use a band-pass filter, with a low cut-off frequency of 0.01 Hz and a high cut-off
frequency above the stimulation frequency but below the Mayer Waves frequency of approximately
0.1 Hz [40]. This way, the physiological noises, which have frequencies of 0.1 Hz or higher, will be
filtered out of the signal, while the important information about the stimulation remains present.
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Figure 2.7: An example of a plot of pre-processed ∆[HbO] and ∆[HbR]. The data used in this plot
was obtained from [48] and filtered and averaged over trials before generating the plot.

This recommendation was made based on the fact that they achieved the highest performance on
signals that were filtered this way, where performance is defined as the amount of influence the filter
had on the statistical inference.

Once the filtering step is completed, the ∆[HbO] and ∆[HbR] signals are pre-processed and can
be used for statistical analyses. Figure 2.7 gives an example of a typical plot of pre-processed ∆[HbO]
and ∆[HbR] signals.

2.2.4 Advantages and Limitations
The use of fNIRS has several advantages over other neuroimaging modalities. First of all, fNIRS
is completely safe, portable, and equipment costs are moderate to low as opposed to most other
neuroimaging modalities [19, 39, 41–43]. Secondly, fNIRS measurements are relatively resistant to
movement artifacts as compared to all other non-invasive neuroimaging modalities [19, 42, 43]. This,
and the fact that the equipment is portable, allows fNIRS measurements to be taken in naturalistic
environments without many movement restrictions for the participant [39, 41]. Therefore, experi-
ments with high ecological validity can be executed. Finally, fNIRS is also compatible with other
neuroimaging modalities, such as EEG [39].

Besides the advantages, the use of fNIRS also has its limitations. As explained before, this
neuroimaging modality is not capable of measuring activity in the deeper brain regions [39, 42, 43].
Therefore, only the activity in the outer cortical regions can be assessed, which limits experimental
designs. Furthermore, hair and dark skin color tend to weaken the NI light [39], which makes it
difficult to use fNIRS on certain subjects. Especially thick hair can obstruct the contact between
the optodes and the subject’s scalp. Also, the spatial resolution of fNIRS is limited as compared to
fMRI, although it is superior to that of EEG [42, 43]. On the other hand, the temporal resolution of
fNIRS is inferior to that of EEG [43], due to the hemodynamic delay in the signals. When there is
an activation in the brain, it takes approximately 5 to 7 seconds before a peak in the hemodynamic
response can be observed [43, 52]. Therefore, fNIRS is an inappropriate modality for the observation
of instantaneous events.

2.3 Mental State Detection with fNIRS
The effects of a multitude of mental states on fNIRS measurements were investigated in previous
work. These states include mental workload [53–65], mental stress [66–73], fear responses [74–
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81], affective responses [82–86], attentional state [87–92], deception [93–97], preference [52, 98–100],
anticipation [101–103], suspicion [104, 105], and frustration [105–107]. In the following sections, it
will be discussed how such mental states are measured using fNIRS. See Appendix B for a complete
overview of the mental states and their effects on the oxygenated and deoxygenated hemoglobin
concentration changes. Only a small portion of the literature that is under review in this section
also focused on the detection of the mental state using machine learning classifiers. Table 2.1
summarizes the mental states that were detected, along with the classification algorithms that were
used and the performances (i.e. accuracies) of the classifiers. For an overview of the brain areas
that are mentioned in this section, see Figure 2.8.

Brain area Number
Prefrontal cortex 1 to 5
Orbitofrontal cortex 1 + 2
Anterior PFC 2
Superior frontal gyrus 3 + 4
Dorsolateral prefrontal cortex 3
Ventrolateral prefrontal cortex 5
Sensory association cortex 6
Supramarginal gyrus 7
Temporoparietal junction 8
Superior temporal gyrus 9
Occipitotemporal area 10

Figure 2.8: Rough estimation of the locations of the brain areas where mental states were measured
using fNIRS. This figure shows a schematic lateral view (top) and medial view (bottom) of the human
brain. Brain areas are denoted by numbers, the names of the areas are given in the table on the
right.

2.3.1 Mental Workload
The human brain contains a limited amount of mental resources [58], which determine what a person
can or cannot do. Mental workload can be defined as the portion of those limited mental resources
that are demanded by a task [53, 54, 56, 60]. When a task demands more mental resources than a
person has available, the person’s performance generally decreases [53, 54], leading to slower task
performance and human errors [58, 60]. Furthermore, mental overload can cause cognitive tunneling,
which can be defined as a person’s inability to redistribute his/her attention from one task to another.
[54, 58].

A great body of fNIRS research is dedicated to measuring the effects of mental workload on the
hemodynamic activity, often focusing on the differentiation between diverse levels of mental workload
based on n-back tasks [53, 55–57, 61, 63, 65]. Studies that aim at measuring mental workload effects
on fNIRS signals generally measure the hemodynamic response over the prefrontal cortex (PFC),
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which is a logical choice as this region has a functional relationship with working memory [54]. Such
studies often report a positive relation between mental workload and HbO concentration changes
[53–56, 58, 59, 61–64]. However, some studies focus on the HbR concentration changes instead.
These studies complementarily report a negative relation between HbR concentration changes and
mental workload [57, 60, 63, 65].

Whereas some studies only mention that they measured cortical activations over the PFC [55,
56, 60, 61, 63, 65], others specify the areas with significantly higher or lower concentration changes
in more detail. Areas that showed significantly higher HbO concentration changes differ per study,
and include the dorsolateral PFC (dlPFC) [53, 54, 62], the left dlPFC [58], the left anterior PFC
[64], and the left PFC in general [53, 59]. Regarding the HbR concentration changes, the right
hemisphere was reported as an area with significant concentration changes [57].

The work of Aghajani et al. [56] focused on the detection of mental workload from fNIRS data.
To this end, they trained and tested a linear Support Vector Machine (SVM) on the data of 17
participants who performed n-back tasks. The linear SVM performed at an average accuracy of
74.8% in the case of a binary classification task (rest versus 3-back task) over a 5-second window.
The features that were used in the classification consisted of the amplitude, slope, standard deviation,
kurtosis and skewness of the HbO and HbR concentration changes.

2.3.2 Mental Stress
Mental stress can be defined as the state in which a person believes that what is expected from
him/her exceeds their abilities [66, 67]. Both the body and mind respond to stress. The hypothalamus-
pituitary-adrenocortical axis and the sympathetic nervous system are both activated by stress, which
causes an increase in the cortisol production in the body [66–69]. Next to cortical activity, stress
can be measured by heart rate variability (HRV), blood pressure, and galvanic skin response (GSR)
[67, 68, 70–72].

The literature on the effects of stress on fNIRS signals shows mixed results. Some studies
mention that in stress conditions, the concentration change of HbO decreases as compared to control
situations. This effect was observed over the right PFC [66, 68] and the ventrolateral PFC (vlPFC)
[73]. One of those studies hypothesizes that the lowered HbO concentration changes could be due
to task disengagement [73]. Other studies show contradictory results, which indicate that the HbO
concentration changes during stress situations are higher as compared to control situations. The
significant brain regions in those cases include the right PFC [69] with electrode position FP2
mentioned specifically [67], the right dlPFC [70, 72], the left vlPFC, and the sensory association
cortex [72].

Parent et al. [71] used the Naive Bayes classifier to discriminate between stress and no stress,
based on the fNIRS data of 17 participants. The averages and slopes of the HbO and HbR concen-
tration changes were used as features in the classification. Their classifier performed at an average
accuracy of 63%.

2.3.3 Fear Response
The fear circuit includes multiple brain areas, which are related to emotion and managing attention
and cognitive control [74–76]. The latter is also called the Cognitive Control Network (CCN), and
comprises of the dlPFC, the vlPFC and the angular gyrus [74]. Due to the fNIRS measurement
capabilities, the literature on fear responses measured with fNIRS is mainly about activities in the
CCN, which can be measured over the PFC area. The PFC is connected to both the induction
and regulation of emotions, such as fear responses [76], and therefore plays an important role in the
mediation of fear responses [75].

The majority of fNIRS studies about cortical responses to fear-invoking stimuli report an increase
in cortical activations in the parietal cortex [77, 78] or the PFC [74, 76, 79–81] during fearful
stimulation. The studies that found activations in the parietal cortex presented subjects to fearful
and neutral sounds. Decreased HbR concentration changes [78] and higher HbO concentration
changes [77] were found when subjects were listening to fearful sounds as compared to neutral
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sounds. The areas with significant activations include the (right) supramarginal gyrus and the right
superior temporal gyrus (STG).

The studies that found an increased cortical activation in the PFC exposed their subjects to
spiders [74], fearful faces [76, 79], a fear learning experiment based on shocks [80] or virtual heights
[81]. All those studies measured increased HbO concentration changes in the PFC when subjects were
exposed to the fearful stimuli as compared to the control situations. The complementary decrease
in HbR concentration changes were only reported in one case [76]. PFC areas where significant
activations were found include the left PFC [80], dlPFC, anterior PFC [81], left dlPFC, and left
vlPFC [74]. One of the studies recorded cortical responses to fearful stimuli over multiple sessions
and reported decreased activation of the PFC over sessions, along with a decrease in fear symptoms
[74].

All of the above studies were conducted with healthy participants. This is important, as studies
conducted on patients with anxiety disorders display contradictory results. Next to the studies
mentioned above, other (non-fNIRS) studies also reported that fearful responses in healthy subjects
lead to increased cortical activity in the PFC [108, 109], which is inversely related to the activity in
the amygdala [109]. On the contrary, it was found that patients with anxiety disorder show decreased
activity in the PFC in response to fearful stimuli and increased activity in the amygdala instead
[110–112]. A similar effect was observed in an fNIRS study that used a cave automatic virtual
environment system to expose subjects with moderate acrophobia to artificial heights [75]. Their
subjects displayed decreased HbO concentration changes in the dlPFC and anterior PFC during the
first exposure session. However, towards the third exposure session, significant increases in HbO
concentration changes were detected in the dlPFC and anterior PFC, accompanied by significant
decreases in HbR concentration changes in the right dlPFC. Based on this observation, the authors
hypothesize that subjects learned how to manage their fear responses better.

2.3.4 Affective Responses
The induction and regulation of emotional responses cause cortical activations [75]. Next to fear
responses, the fNIRS field also studied multiple other affective responses. Such fNIRS studies inves-
tigated the cognitive evaluation of threatening stimuli [82], neural correlates of affective responses
to robot interlocutors [83], cortical activations caused by emotional stimuli [84], and the effect of
negative mood on prefrontal activations during working memory tasks [85, 86].

Some of those studies interpret the cortical activity that they measured as related to emotion
regulation. Those studies found increased activation in the ventrolateral PFC (vlPFC) during the
labeling of threatening visual stimuli [82] and increased HbO concentration changes in the PFC
when people were responding aversively to a robot [83]. Another study is more related to the
induction of emotion and focuses on distinguishing between emotional and neutral audio-visual
stimuli. The results suggest that exposure to stimuli from the emotional classes, which varied in
valence and arousal, resulted in increased HbO and decreased HbR concentration changes over the
PFC, whereas the opposite effect was observed for the neutral stimuli [84]. However, it was not
possible to distinguish between the emotional classes based on the hemodynamic responses. Finally,
the effects of negative and positive mood on activity in the PFC during working memory tasks were
also studied. The results show that negative moods significantly correlated with decreased HbO
concentration changes in the left dlPFC during working memory tasks [85, 86].

The detection of affective responses was investigated by Heger et al. [84]. Using SVMs with
radial basis function kernels, they were able to train a binary classifier that predicts between neutral
states and low valence-high arousal states at an average accuracy of 67.9%, based on the data of 8
participants. The average HbO and HbR concentration changes over 5-second windows were used as
features, because the usage of other time-domain fNIRS features did not significantly improve the
average classification performance.
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2.3.5 Attentional State
Attention can be defined as a person’s ability to remain focused and alert during a cognitively
demanding task [87–90]. Since attention performance is dependent on the availability of mental
resources [90], it is also related to mental workload.

Traditionally, reaction times (RTs) are used to measure a person’s attentional state, as increasing
RTs indicate attention losses [89, 91]. It was observed that RTs correlate with the time at which the
HbO concentration change peaks in the PFC and parietal cortex, with longer RTs resulting in later
peaks [89]. Furthermore, the general trend seems to be that HbO concentration changes measured
over the PFC increase during the performance of tasks that require attentional resources. Such
effects were measured over the dlPFC [88] and over the right PFC [87, 91], which is in accordance
with the claim that right lateralization is related to attention [89, 90]. On the contrary, one study
that focussed on distinguishing between ’drowsy state’ and ’alert state’ during a driving task, found
that the mean HbO concentration change over the right PFC during the drowsy state is higher as
compared to the alert state [92].

The detection of attentional state based on fNIRS signals was investigated using SVM [88, 90–92]
and Linear Discriminant Analysis (LDA) [92] classifiers. Harrivel et al. [88] were able to discriminate
between rest and task periods using an SVM at an average accuracy of 83.8% over 7 participants.
As features, the HbO and HbR concentration changes of the optodes that showed the highest task
discrimination based on F-scores were used. A similar average accuracy was obtained by Khan et al.
[92], who used SVMs and LDAs to decode alert versus drowsy attentional states. They obtained the
highest average accuracies when using the mean HbO concentration changes, the signal peaks, and
the sum of peaks over 5-second windows as features. The LDA classifier reached an average accuracy
of 83.1% over the 13 participants, whereas the average accuracy of the SVM classifier was 84.4%.
Similarly, Zhang et al. [90] used an SVM classifier to distinguish between the attentional states of
easy and hard tasks based on the fNIRS data of 15 participants. The selected features were the mean,
signal slope, power spectrum, and approximate entropy of the HbO and HbR concentration changes
over a 10-second window. Their binary classifier that discriminated between attentional states during
easy and hard tasks performed the best, at an average accuracy of 81.53% over participants. They
also implemented a multi-class classifier in order to discriminate between the attentional states during
easy, medium, and hard tasks. The average accuracy of this classifier was 57.04%. Furthermore,
Derosière et al. [91] discriminated between full attentional states and decremented attentional states
using an SVM. As features, they used the HbO and HbR concentration changes averaged for each
1-second epoch duration. The average accuracy over their 7 participants was highest when using
both the HbO and the HbR features over the PFC and the right parietal area, which resulted into
an average accuracy of 90.7%.

2.3.6 Deception
Deception, the act of deliberately concealing the truth, is a mentally demanding task [93] which
seems to gain increasing interest in the neuroimaging field. A number of fNIRS studies measured
the effect of deception on fNIRS measurements. In general, these studies report increased HbO
concentration changes over the PFC during deception-related tasks as compared to the neutral
control tasks. The locations within the PFC where such activations were most significantly present
include the left PFC [93, 94], with the left superior frontal gyrus (SFG) mentioned specifically [95],
the right anterior PFC [93], the right SFG [94, 96], and the bilateral dlPFC [97]. The differences in
lateralization could indicate that there is a collaboration between the left and the right PFC during
deception [93]. Some studies also reported complementary decreases of HbR concentration changes
[93, 94]. However, those concentration changes were not significant as compared to the baseline.

Hu et al. [93] were able to detect deception using a binary SVM classifier at average accuracies
of 83.44% (using radial basis function kernels) and 81.14% (using linear kernels) over 7 participants.
The HbO and HbR concentration changes were used as features, along with their short histories
over different time windows: 1 second, 3 seconds, and 5 seconds. The best accuracies were obtained
using the 3-second window.
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2.3.7 Preference
Some fNIRS studies investigated how preference can be measured using fNIRS signals. Since pref-
erence is a subjective rating, these studies employed user evaluations of the presented stimuli to
determine what a person’s actual preferred option is. The brain activities related to the preferred
options were measured over the PFC. The preferred stimuli caused an increase in HbO concentration
changes in the orbitofrontal cortex (OFC) [98, 99], the anterior PFC [100], and the right PFC [52] as
compared to neutral stimuli. A simultaneous decrease in HbR concentration change was only mea-
sured by one study [99]. Interestingly, Hosseini et al. [98] detected an increase in HbR concentration
change along with the increase in HbO concentration change. This phenomenon of simultaneous
peaks in both HbO and HbR concentration changes has not been reported in any other study that
is part of this literature review and seems to be inconsistent with the principle of neurovascular
coupling, as explained in section 2.2.

Hosseini et al. [98] also investigated the decoding of attractive and unattractive visual stimuli
based on fNIRS signals. Using a linear SVM, they decoded attractive versus other stimuli at an
average accuracy of 72.9% over 5 participants. The average accuracy of the detection of unattractive
versus other stimuli was 68.3%. As features they computed the average HbO and HbR concentration
changes over 4-second windows (from 1 to 5 seconds post-stimulus onset) for every channel. Principal
component analysis (PCA) was used to reduce the dimensionality of the data while keeping 99% of
the variance.

2.3.8 Anticipation
Anticipation, the mental preparation for a certain event, is a mental state that was investigated by
only a few fNIRS studies. These studies investigated the anticipation of a mentally demanding task
[101], positive emotion [102], and a walking task [103]. All of those studies found increased HbO
concentration changes under the anticipatory conditions. The HbR concentration change signal was
excluded from their analyses due to its relatively low sensitivity and signal-to-noise ratio.

Both the anticipation of a mentally demanding task and the anticipation of positive emotion
cause increased HbO concentration changes in the dlPFC [101, 102], with a left lateralization in
the latter case. Such activations were significantly less for the anticipation of an ‘easy’ mental task
or the anticipation of neutral or negative emotion. The anticipation and execution of a walking
task elicited increased HbO concentration changes in the PFC and the premotor cortex, which were
significantly less present for participants who were not anticipating the walking task [103].

2.3.9 Suspicion
Suspicion can be described as a demanding mental state that induces uncertainty and concern about
the trustworthiness of certain information [104, 105]. It is important to note that only a very limited
body of fNIRS research was dedicated to this mental state and that the two research papers that
were found about this topic were partially written by the same authors.

Both studies used surveys to let the participants self-report on their emotions, cognitive load,
and feelings of trust and distrust. Those results were used to identify the cases in which subjects
were suspicious. In the first study, higher HbO concentration changes were found in the SFG for
suspicious subjects as compared to non-suspicious subjects [105]. The second study, however, showed
different results. In this case, higher levels of HbO concentration changes were reported in the OFC
(Brodmann Areas 10 and 11) and some areas that are part of the left and right temporoparietal
junction (TPJ) [104]. The activations in the OFC are in accordance with several fMRI studies,
which report that the OFC is activated during decision-making in risky and uncertain situations
[113, 114]. As uncertainty is a characteristic of suspicion, it seems logical that this mental state
activates the OFC.
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2.3.10 Frustration
Frustration is a negative mental state that is caused when goal-oriented actions are obstructed [106].
This mental state was also investigated by only a very limited number of fNIRS studies. One of those
studies had the participants self-report on their feelings of frustration during a computer task [105],
whereas the others constructed simulated driving scenarios that were labeled as either ‘frustrating’
or ‘non-frustrating’ [106, 107]. The results of these studies indicate that frustrating scenarios cause
increased HbO concentrations in various cortical areas, including the dlPFC [105], the vlPFC, and
the occipitotemporal area [106, 107].

The detection of frustration was investigated by Ihme et al. [106]. They used multivariate logistic
regression to distinguish between the fNIRS measurements of frustrated and non-frustrated trials
during a driving experiment. The fNIRS data of a total of 12 participants was collected and an
average detection accuracy of 78.1% over participants was obtained. The normalized values of the
pre-processed HbO and HbR concentration changes were used as features in the classification model.

Table 2.1: Overview of the previous work on the detection of mental states. This table contains
the mental state that was detected, the classifier that was used, the number of participants in the
study (N), the average detection accuracy, and the features used in the model.

Detection Classifier N Accuracy Features Ref

Mental workload SVM 17 74.8% Amplitude, slope, standard [56]
versus rest deviation, kurtosis and skewness

of ∆[HbO] and ∆[HbR]
Stress versus Naive Bayes 17 63% Averages and slopes [71]
no stress of ∆[HbO] and ∆[HbR]
Low valence-high SVM 8 67.9% Average ∆[HbO] and ∆[HbR] [84]
arousal versus over 5-second windows
neutral
Attention versus SVM 7 83.8% ∆[HbO] and ∆[HbR] with [88]
rest highest F-scores
Attention during SVM 15 81.53% Mean, signal slope, power [90]
easy versus hard spectrum and entropy of
tasks ∆[HbO] and ∆[HbR] over
Attention during 57.04% 10-second windows
easy versus medium
versus hard tasks
Decremented versus SVM 7 90.7% ∆[HbO] and ∆[HbR] averaged [91]
full attention over 1-second epochs
Alert versus SVM 13 84.4% Mean ∆[HbO], signal peaks [92]
drowsy state LDA 83.1% and sum of peaks over

5-second windows
Deception versus SVM 7 83.44% ∆[HbO] and ∆[HbR] short [93]
truth telling histories over 3-second windows
Attractive versus SVM 5 72.9% Average ∆[HbO] and ∆[HbR] [98]
other stimuli over 4-second windows
Unattractive versus 68.3%
other stimuli
Frustration versus Logistic 12 78.1% Normalized ∆[HbO] and [106]
no frustration regression ∆[HbR]

2.3.11 Discussion
The literature described throughout this section implies that fNIRS can be used to measure the effects
of mental workload, mental stress, fear responses, affective responses, attentional state, deception,
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preference, anticipation, suspicion, and frustration. Although the different studies claim that they
were able to measure different mental states, the brain signals that were indicative of those mental
states have similar characteristics. The majority of the reviewed studies reported increased HbO
concentration changes and/or decreased HbR concentration changes over the PFC under a certain
condition as compared to a control condition or the baseline. Furthermore, the brain areas with the
most significant activation for a certain mental state seem to differ per study. This implies that it is
very difficult, if not impossible, to distinguish between different mental states based solely on fNIRS
data. Therefore, the context of the experiment and potential other measurements (i.e. behavioral
data, self-reports or other physiological signals) seem important to be able to claim which mental
state was measured or detected using fNIRS.

2.4 Immersive VR and fNIRS
The combination of immersive VR and fNIRS for research purposes seems to be a novel one, based
on the very limited amount of literature available on this topic. Previous studies focused on a virtual
line bisection task [115], the assessment of prospective memory [116, 117], the processing of racial
stereotypes [118], performance monitoring during training [119], and a neurofeedback system to help
people focus their attention [120]. Each of these studies are described below, highlighting their main
findings and how they combined the fNIRS measurements with a VR HMD.

Seraglia et al. [115] already investigated the combination of immersive VR and fNIRS in 2011.
In order to do so, they assembled their own custom-made VR helmet from a bike helmet and the
LCD screens of another HMD, see Figure 2.9. However, their fNIRS measurements were limited to
the occipital area, because the helmet did not leave enough room for measurements over the PFC.
Furthermore, their helmet was not adjustable in size, which caused problems with the measurements
as head circumferences differ among people. Their experiment investigated cortical activations over
the occipital area during a virtual line bisection task in peripersonal space (i.e. close to the subject’s
body) and extrapersonal space (i.e. further away from the subject’s body). The fNIRS measurements
of both conditions were not significantly different. However, they did find significant activity during
the conditions as compared to the baseline period, over the right parietal and occipital lobes.

Figure 2.9: The custom-made helmet of [115], consisting of a bike helmet, fNIRS optodes, and
LCD screens from another VR HMD.

The combination between immersive VR and fNIRS was also used to conduct two experiments
on prospective memory [116, 117]. During the experiments, the participant was located in a virtual
city environment. In this environment, the participant got a shopping list with items to collect and
actions to undertake. This is referred to as the ’prospective memory’ component. Furthermore, there
was an ‘ongoing’ component that asked the participant to press a button every time he/she passed
a store. Their results indicate that the hemodynamic activity over the anterior PFC is significantly
greater during the prospective memory component than it is during the ongoing component [116]. In
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a follow-up experiment, they compared the fNIRS data generated by the immersive VR experience
to that generated by PowerPoint slides. Their results show that the hemodynamic response during
the VR-based task was greater than during the slide-based task [117]. This could potentially indicate
that higher task engagement can be achieved by VR experiments. The researchers also pointed to
some challenges cause by the simultaneous use of fNIRS and the immersive VR HMD that they
used, the Oculus Rift. First of all, the VR HMD makes it difficult to move the hair aside underneath
the fNIRS optodes, hence the fNIRS signal quality gets degraded. Furthermore, the VR HMD and
the fNIRS headcap had cables attached to them, which made it difficult for the participant to move
freely.

Another study focused on the cortical processing of racial stereotypes using immersive VR and
fNIRS [118]. During the experiment, participants were seated and exposed to a racially-charged VR
scene and a non-racially-charged VR scene. The VR scenes were presented to the participants via
the HTC Vive. A custom-made fNIRS probe arrangement was used, to measure over the medial
and lateral PFC, see Figure 2.10. The results of the experiment show that there is significant
activation over the right lateral PFC during the racially-charged exposure, which is absent during
the non-racially-charged exposure.

Figure 2.10: The HTC Vive HMD and a custom-made fNIRS probe arrangement [118].

Hudak et al. [119] investigated whether immersive VR training performance can be monitored
using fNIRS measurements. They measured the cortical hemodynamic responses over the PFC area
using an fNIRS sensor pad. This sensor pad fitted underneath the HTC Vive, which was their HMD
of choice. Participants underwent a virtual tutorial during which they followed basic life support
training. After the tutorial, there were two VR scenarios where the participants had to apply their
newly acquired knowledge in the form of a serious game. The serious game performance of the
participants was compared to their fNIRS measurements. The results show a negative correlation
between performance and PFC activation, hence learning the contents of the training reduced the
amount of mental resources needed to perform the tasks.

Additionally, the combination of immersive VR and fNIRS measurements was used to develop
a neurofeedback intervention in which participants had to control room lighting with their dlPFC
activity [120]. The Oculus Rift HMD was used in this research. After 8 training sessions over the
course of two weeks, participants significantly increased their dlPFC activity on a go/no-go task,
which indicates that they learned how to activate the dlPFC. The authors mention that immersive
VR has the potential to improve the ecological validity of neurofeedback training situations.

17



2.5 Physiology of Fear in VR
A limited amount of research was conducted on measuring fear in VR scenarios based on physiology.
Previous works collected data from various physiological signals, including HR [15, 121–124], GSR
[15, 121, 122, 124–126], EEG [15, 122, 127], skin temperature [121, 126], blood volume pulse (BVP)
[126, 128], and salivary cortisol levels [124]. These studies reported on the change in physiological
signals during fear responses or the use of physiological signals to detect fear responses using machine
learning classifiers. The VR scenarios that elicited these fear responses were focused on fear of flying
[121], fear of heights [15, 122–125, 127], fear of public speaking [126], and social anxiety [128].

2.5.1 Physiological Effects of VR-Induced Fear
Several studies found that HR significantly increased between virtual ground conditions and virtual
heights [122, 124], with a positive correlation between HR and self-reported fear of heights [123].
One study also reported an additional increase in HRV [122]. However, in two studies the significant
increases were not only reported for the experimental group who suffered from fear of heights, but
also for the control group who did not have fear of heights [123, 124]. On the contrary, another study
that measured HR during fear of heights responses in VR reported no significant changes between
the HRs of ground conditions and height conditions [125]. Furthermore, a study that focused on the
HR measurements taken during VR flying scenarios did not find significant differences between the
HRs of participants with flight phobia and healthy controls [121]. The authors suggest that more
sensitive measures, like HRV, might have the potential to unravel differences between phobics and
healthy controls.

Additionally, significant differences in GSR were measured during VR exposure scenarios. Sev-
eral studies measured a significant increase in GSR during virtual heights conditions as compared
to virtual ground conditions [122, 124]. However, this difference was not only measured for partic-
ipants with fear of heights, but also for the control group who did not have a fear of heights [124].
Also, a positive correlation between GSR and the participants’ self-reported fear was found [125].
Furthermore, in the case of VR exposure to flying scenarios, a significant difference in GSR between
participants with flight phobia and healthy controls was found [121].

The literature suggests that skin temperature and salivary cortisol levels have less potential to
discriminate between fear responses and non-fear responses, although the amount of findings are
very limited. The skin temperatures of participants with flight phobia and healthy controls during
an airplane flight in VR were not significantly different [121]. Also, no significant differences in
salivary cortisol levels were measured between virtual ground and virtual height conditions [124].

2.5.2 Detecting Fear in VR
Several other studies used physiological signals acquired during VR exposure to detect fear responses
using machine learning classifiers. Handouzi et al. [128] collected the BVP data of 7 participants
who were exposed to VR scenarios related to social anxiety. Before, during, and after every exposure
scenario, the participants indicated their perceived level of fear on the Subjective Units of Distress
Scale (SUDS), which is an 11-point Likert scale. The SUDS scores served as the ground truth labels
for the classifier. An SVM classifier was trained to discriminate between data from calm and anxious
episodes. Their classifier performed at an accuracy of 76%.

Similar work was done by Salkevicius et al. [126], who trained an SVM classifier on BVP, GSR
and skin temperature data to discriminate between different fear levels related to public speaking
anxiety. They collected the data from 30 participants during a VR scenario in which the participants
had to perform a public speaking assignment. There were multiple public speaking assignments, and
the participants’ SUDS scores were taken directly after the assignments and at baseline. The SUDS
scores served as the ground truth labels for four different levels of fear: low, mild, moderate, and
high. Using leave-one-subject-out-cross-validation, their 4-class classifier performed at an accuracy
of 80.1%.
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Another study conducted by Balan et al. [15] investigated the performance of multiple classifiers
on the discrimination of two classes of fear (fear versus relaxation) and four classes of fear (relaxation,
low fear, medium fear, and high fear). They collected GSR, HR, and EEG data from 8 participants
who scored sufficiently high on the Visual Height Intolerance (VHI) questionnaire to be characterized
as having fear of heights. During the experiment, the participants were exposed to virtual heights
and virtual ground conditions, while their measurements were taken. Again, SUDS scores after
every VR trial served as the ground truth labels for the classifiers. Their best subject-dependent
classifiers performed at accuracies of 89.5% (two-class SVM) and 42.5% (four-class SVM). Their best
subject-independent classifiers performed at accuracies of 79.12% (two-class deep neural network)
and 52.75% (four-class k-Nearest Neighbors).

A similar experiment was conducted by Hu et al. [127], who collected EEG data from 60 par-
ticipants during virtual heights and virtual ground conditions. After the experiment, participants
indicated their level of fear of heights using the VHI questionnaire. The VHI scores served as the
ground truth labels for four classes of fear: not strong, moderately strong, quite strong, and very
strong. Using 10-fold cross validation, their 16-layer deep convolutional neural network was able to
distinguish between the four classes at an accuracy of 88.77%.

2.6 Statistics and Classifiers used in this Research
This section provides the relevant background information for the statistical tests and classification
algorithms that were used in this research. To this end, permutation testing, false discovery rate
correction, linear discriminant analysis and support vector machines will be discussed in the following
sub-sections.

2.6.1 Statistics
2.6.1.1 Permutation Test

The permutation test is a non-parametric test that can be used on small sample sizes and makes
minimal assumptions about the distribution of the data, unlike the commonly used t-test or ANOVA
[129]. Instead, it is a data-driven approach that utilizes all the possible values of the test statistic
under random rearrangements (permutations) of the observed data, to obtain the distribution of the
test statistic under the null hypothesis [130].

Let’s say a given dataset consists of a list of observations that fall into one of two possible classes:
class A and class B. Under the null hypothesis, the observations of class A and class B are assumed
to follow the same distribution. If the null hypothesis is true, the observations can be exchanged
from one class to the other while the value of the test statistic remains the same. The permutation
test tests this null hypothesis by permuting the data and calculating the permutation test statistic
Tperm for every permutation. See Figure 2.11 of an example.

Figure 2.11: Comprehensive overview of the procedure of the permutation test.
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The values of Tperm can be used to construct the permutation distribution. A comprehensive
example is given in Figure 2.12. Based on this, the resulting p-value of the test is calculated by
taking the proportion of permutations where Tperm is larger than the observed test statistic Tobs.
The obtained p-value should be compared against a significance level α to determine if the null
hypothesis can be rejected (p < α) or not (p ≥ α).

Figure 2.12: An example of a possible permutation distribution. The gray dots indicate the values
of Tperm that are larger than the value of Tobs.

The number of possible permutations np equals the factorial of the number of observations nobs,
hence np = nobs!. Even with a rather small dataset, this can easily lead to more than millions of
possible permutations. In practice, however, a smaller number of permutations is often chosen, in
order to reduce computation times. A minimum of 5,000 (at α = 0.05) to 10,000 (at α = 0.01)
permutations is enough to approximate the distribution of the null hypothesis [131].

2.6.1.2 False Discovery Rate

When multiple hypothesis tests are executed simultaneously, the amount of p-values below the
significance level due to chance increases. Wrongful rejection of the null hypothesis causes "false
positive" findings, also referred to as type I errors [132]. The False Discovery Rate (FDR) correction
is a way to correct for type I errors. It can be used with any statistical test for which a p-value is
generated [133]. The FDR is defined as follows:

FDR =
FP

R
=

FP

FP + TP
(2.5)

Where FP is the number of false positives (i.e. the number of times the null hypothesis is wrongly
rejected), TP is the number of true positives (i.e. the number of times the null hypothesis is correctly
rejected), and R is the total number of times that the null hypothesis is rejected. The FDR correction
procedure for neuroimaging data as suggested by Genovese, Lazar and Nichols [133] is as follows:

1. Specify the rate q between 0 and 1, such that the FDR does not exceed this rate. If q = 0.05,
it means that in only 5% of the cases a false discovery is made (on average).

2. Sort the p-values in ascending order: p1 ≤ p2 ≤ ... ≤ pt. Hypothesis test ti corresponds to the
p-value pi.

3. Let r be the largest i for which the following holds:

pi ≤
i

T
· q (2.6)

Where T is the total number of hypothesis tests that were conducted.
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4. Hypothesis tests t1, ..., tr survive the FDR correction, hence it is concluded that their null
hypotheses are correctly rejected and that a significant result is found.

2.6.2 Classifiers
2.6.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a probabilistic classification method that aims to separate the
data of different classes using a linear decision boundary [134, 135]. Consider a two-class problem
with dataset {xn, ln}, where xn are the observations (consisting of multiple features f such that
xn = {xn1, xn2, ..., xnf}) and ln are the class labels, ln ∈ {0, 1}. There are two different class labels,
thus there are two classes, C ∈ {c1, c2}. The observations xn are real numbers, hence xn ∈ RD.
Following Bayes’ theorem, the posterior probability that an observation xn belongs to a certain class
c is defined as follows [134, 136, 137]:

P (c|xn) =
P (xn|c)P (c)

P (xn)
(2.7)

LDA assumes that the data from each separate class comes from a multivariate Gaussian distribution
with identical covariance matrices Σc1 = Σc2 = Σ [134, 137]. The probability density function is
then defined as follows:

P (xn|c) =
1√

2πf |Σ|
exp(−1

2
(xn − µc)TΣ−1(xn − µc)) (2.8)

Where µc denotes the class mean of class c and Σ denotes the shared covariance matrix. These two
parameters can be estimated as follows [134, 136]:

µc =
1

Nc

∑
n:ln=c

xn (2.9)

Σ =
1

N − C
C∑
c=1

∑
n:ln=c

(xn − µc)(xn − µc)T (2.10)

Where Nc is the number of datapoints that belong to class c and N is the total number of datapoints
of the different classes.

The prior probability of class c, also referred to as πc, is the proportion of the data samples that
belong to class c, hence:

P (c) =
Nc
N

= πc (2.11)

The term P (xn) is identical for each class, hence it does not have an influence on the posterior
probability and can therefore be canceled from equation 2.7. Now the posterior probability that an
observation xn belongs to class c can be calculated as follows:

P (c|xn) =
πc√

2πf |Σ|
exp(−1

2
(xn − µc)TΣ−1

c (xn − µc)) (2.12)

After simplification, the discriminant function of class c can be written as:

δc(xn) = xTnΣ−1µc −
1

2
µTc Σ−1µc + log(πc) (2.13)

Every datapoint will be classified as belonging to the class for which the value of the discriminant
function is highest [134], hence the decision boundary can be defined as the line where δc1(xn) =
δc2(xn), see Figure 2.13.
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δc 1
=
δc 2

Figure 2.13: Example of a decision boundary made by LDA. Datapoints of two classes are shown:
red rectangles and blue circles.

2.6.2.2 Support Vector Machine

A Support Vector Machine (SVM) is a supervised learning algorithm that can be used for data
classification and regression [136, 138]. SVMs are non-probabilistic binary linear classifiers that aim
to find a linear hyperplane that separates the data into two different classes [136]. The hyperplane
that creates the largest distance between itself and the nearest datapoints in the training set (i.e. the
support vectors), is the one that yields the best separation. This distance between the hyperplane
and the support vectors is also referred to as the margin. See Figure 2.14 for an example. The larger
the margin, the less errors due to generalization by the classifier, hence the SVM tries to maximize
the margin [134, 136, 138, 139].

xn1

xn2

M
ar
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w T
x
n +

b =
0

w T
x
n +

b =
1

w T
x
n +

b = −
1

Figure 2.14: Example of the separating hyperplane (the black solid line) and the margin optimized
by the SVM. Datapoints of two classes are shown: red rectangles and blue circles. The datapoints
that touch the dashed lines are the support vectors.

Let’s consider the two-class problem with the dataset from the previous section again. The
dataset {xn, ln} consists of the real-valued observations xn = {xn1, xn2, ..., xnf} and labels ln ∈
{0, 1}, hence x ∈ RD. The SVM aims to find a linear separating hyperplane such that the margin
is maximized. The linear separating hyperplane y(x) is defined as follows [140]:

y(x) = wTxn + b (2.14)
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Where b is a constant for the offset of the hyperplane. The conditions for correct classification are:

y(xn) =

{
1, if wTxn + b ≥ 1

−1, if wTxn + b ≤ −1
(2.15)

These conditions can be rewritten to:

yn(wTxn + b) ≥ 1 (2.16)

In this case, the margin equals 2
||w|| . The goal is to maximize this margin, which is equivalent to

minimizing

L(w) =
||w||2

2
(2.17)

Subject to the constraint given in equation 2.16. The Lagrange multiplier method can be used to
solve this constrained optimization problem.

xn1

xn2

M
=

1||w||

ξ ∗
1 =

ξ
1||w|| <

1

ξ ∗
2 >

1

ξ ∗
3 >

1

Figure 2.15: Example where the data are not linearly separable. The slack parameter is denoted
by ξ.

So far, the only case considered is the one where the data are linearly separable. However, in
many real-world applications, the data are not linearly separable. In such a case, one can introduce
a slack parameter ξ in order to relax the constraints [136, 140], see Figure 2.15. The slack parameter
relaxes the constraint such that most (instead of all) datapoints will be classified correctly, to avoid
underfitting of the data. The slack variable relaxes the constraint as follows:

yn(wTxn + b) ≥ 1− ξn, ξn ≥ 0 (2.18)

In order to maximize the margin, the following equation has to be minimized, subject to the relaxed
constraint given in equation 2.18:

L(w) =
||w||2

2
+ C

N∑
n

ξn (2.19)

Where C is a parameter that regulates the trade-off between the width of the margin and the number
of datapoints that are missclassified during training [136].

Until now the decision boundary (hyperplane) was considered to be linear. However, there are
also cases where a linear decision boundary is not applicable, an example is given in Figure 2.16a. In
such cases, the datapoints can be mapped onto a higher dimensional feature space, where the data
becomes linearly separable [141]: φ : RD → RM , and therefore φ(x) ∈ RM . See Figure 2.16b for
an example. Computation of the mapping function itself can be avoided by using the kernel trick.
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The kernel function K is used to perform this operation, by taking the inner product between two
observations xi and xj [140]:

K(xi, xj) = φ(xi) · φ(xj) (2.20)

In the case of a linear SVM, the linear kernel function is used:

K(xi, xj) = xTi xj + b (2.21)

Hence the optimization problem changes into:

argmin
w

||w||2
2

+ C

N∑
n

ξn

subject to yn(wTφ(xn) + b) ≥ 1− ξn, ξn ≥ 0

(2.22)

(a) Data are not linearly separable.

x2
n1

x2
n2

w T
φ
(x
n ) +

b =
0

(b) Data become linearly separable when
mapped onto a higher dimensional feature
space.

Figure 2.16: Example non-linearly separable data (a) and how mapping the datapoints to a higher
dimensional feature space can make the data linearly separable (b).

2.7 Preliminary Conclusions
The findings of the literature review allow for some preliminary conclusions to take into account for
this thesis research. These preliminary conclusions will be given in this section.

First of all, it can be concluded that only a very limited amount of work has investigated how
fear responses are reflected in fNIRS signals. Especially the use of fNIRS to measure fear responses
to virtual heights was researched to a very limited extent.

Additionally, no previous research has investigated the use of fNIRS signals to detect fear re-
sponses using machine learning classifiers. However, there are previous works that focus on the
detection of other mental states using fNIRS signals. From these studies, it can be concluded that
the SVM classifier is often used for the detection of mental states based on fNIRS data. However,
similar performances were also obtained using the LDA algorithm. The features and windows that
were used to train and test the classifiers vary widely among the reviewed studies. However, in most
of the cases the average ∆[HbO] and ∆[HbR] signals over windows ranging from 1 to 10 seconds
were used as features.

Furthermore, previous work on the simultaneous use of immersive VR and fNIRS during ex-
periments indicates that the combination is feasible, although the VR HMD sometimes limits the
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fNIRS measurement possibilities. These studies were able to create experiments with high ecological
validity, because the VR HMD can show a simulation of the real world to the participant.

Finally, previous work on the use of physiological signals to measure or detect fear responses to
VR environments indicate the potential of this direction. Especially the detection of fear responses
based on physiological signals shows promising results, with accuracies ranging from 76% to even
89.5% for two-class classification, and 42.5% to 88.77% for four-class classification.

25



Chapter 3

Method

This chapter describes the methods of data collection and data processing that were carried out in
order to answer the research questions of this thesis. The first part of this chapter describes the
experiment that was conducted in order to create a dataset. In the second part of this chapter, it is
explained how the data generated with the experiment was (pre-)processed in such a way that results
could be generated from it.

3.1 Data Collection
An experiment was conducted to collect fNIRS data from people with fear of heights and people
without fear of heights, while they were experiencing virtual ground situations and virtual height
situations. The goal of the experiment was to construct a dataset that contains fNIRS data measured
from people with virtually induced fear of heights responses and people without those responses, as
such a dataset could not be found in the available fNIRS literature.

3.1.1 Participants
The experiment was approved by the Ethics Committee of the Faculty of Electrical Engineering,
Mathematics and Computer Science at the University of Twente (reference number: RP 2020-
76). Every participant gave written informed consent before the experiment started. Two different
groups of participants were recruited: participants with fear of heights (experimental group) and
participants without fear of heights (control group). Potential participants who were interested in
participating in the experiment were asked to fill out the Acrophobia Questionnaire (AQ), which is a
self-report questionnaire about situations involving heights [142, 143]. The AQ consists of 20 items
that should be rated on a seven-point Likert scale, ranging from not anxious at all to extremely
anxious, see Appendix C. Similar to other works, the AQ scores were used to assess the potential
participants’ fear of heights [27–30, 75]. Participants were recruited as part of the experimental
group if their AQ score was 35 or higher, and recruited as part of the control group if their AQ score
was 20 or lower, similar to [30].

Table 3.1: Overview of the participant demographics of the experimental group and the control
group.

Demographic Experimental group Control group
Females 9 9
Males 11 12
Mean AQ score (± SD) 52.40 (± 11.47) 9.71 (± 5.89)
Mean age (± SD) 26.10 (± 10.47) 22.95 (± 2.11)
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A total of 20 participants were recruited to be part of the experimental group (ne = 20) and
21 participants were recruited to be part of the control group (nc = 21). Table 3.1 contains the
demographic information of both groups. None of the participants suffered from anxiety disorders.

3.1.2 Instruments
3.1.2.1 VR

The VEs that were developed for this experiment were presented to the participants via the Oculus
Rift S [144]. The Oculus Rift S is a VR HMD with 6 degrees-of-freedom (DoF) inside-out tracking.
This means that the HMD tracks a person’s head rotations and translations (forward/backward,
left/right, up/down). Therefore, participants were able to look around in the VEs by simply ro-
tating their head and to walk around by moving their body in the physical world. The movement
possibilities are clarified by Figure 3.1.

Figure 3.1: The movement possibilities offered by a 6 DoF HMD: translation and rotation along 3
axes [145].

3.1.2.2 fNIRS

Changes in HbO and HbR concentrations were measured using the Artinis Brite 24 [20]. The Brite
is a wireless continuous wave fNIRS device that can measure up to 27 channels. The NI light is
emitted at two nominal wavelenghts: 760 nm and 850 nm. Every participant’s cortical hemodynamic
response was measured at a sampling rate of 10 Hz. The optodes were arranged such that a large
part of the PFC was covered, including the dlPFC, anterior PFC and part of the vlPFC. This choice
was based on the outcomes of the literature review on detecting fear responses with fNIRS. Every
emitter-detector pair had a maximum distance of 3 cm between the optodes. Figure 3.2 shows the
positioning of the optodes and channels on the scalp, with an overview of the 10-20 system next to
it as a reference.

3.1.3 Stimuli
The participants were alternately exposed to two different types of VEs, which are the stimuli of
the experiment. The VEs were created using the Unity development platform [146]. In the first
type of VEs, the participant is standing on a sidewalk or square in the middle of a city (ground
condition), whereas the other type of VEs place the participant on the rooftop of a high building
(height condition). All the VEs were accompanied by city sounds, to make the experience more
immersive. The same audio was used for every VE. See Figure 3.3 for an overview of all the VEs
that were presented to the participant.

It is hypothesized that the distinct types of VEs elicit different responses for the participants
of the different groups. For the experimental group, it is hypothesized that the height condition
evokes a fear response, while the ground condition would not evoke a fear response. This hypothesis
is based on the assumption that the participants who are part of the experimental group have a
moderate fear of heights. For the control group, it is hypothesized that the ground condition nor
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Figure 3.2: The positioning of the optodes on the scalp during the experiment. On the left are the
detectors (blue) and emitters (yellow) with the channels indicated by a circle with a number in it.
On the right, the channels are projected on the layout of the 10-20 system, as a reference.

Figure 3.3: The VEs of the ground condition (top) and height condition (bottom).

the height condition evoke a fear response, as the participants who are part of this group have little
to no fear of heights.

3.1.4 Experimental Procedure
Before the experiment started, the participant was asked if he/she has a fear of heights. This was
done as an extra step, next to the AQ scores, to verify that the participants of the experimental
group had a fear of heights and that the participants of the control group did not have a fear of
heights.

After the participant answered the question, the participant was instructed about the usage of
the Oculus Rift S. The researcher demonstrated how the Oculus Rift S should be adjusted to fit the
head and how the hand-held controllers should be held. Participants could not use the hand-held
controllers to interact with the VR application. However, the controllers were needed to make the
tracking of the Oculus Rift S more reliable, hence every participant was asked to hold the controllers
during the experiment. Once the explanation was given, there was a practice round during which
the participant saw an example VE, which was similar to the ground type VE. This was done to
make the participant familiar with the VE, the HMD, and the hand-held controllers. The practice
round ended when the participant indicated that he/she felt familiar enough.

After the practice round, the Oculus Rift S was removed from the participant’s head and the
fNIRS cap was put on. The researcher used a narrow, oblong tool to move the participant’s hair to
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Figure 3.4: Participant wearing the fNIRS headcap and the VR HMD during the experiment.

the side in case it got in between an optode and the participant’s skin. This was done to prevent the
hair from absorbing the NI light. When the raw NI light intensities were in the appropriate range,
the researcher checked if there was a heartbeat visible in the signals. This is a way to verify that
the optodes make good contact with the scalp and that they are measuring hemodynamic activity
[49]. As soon as this final check was performed successfully, the participant was asked to stand in a
designated place and to put the Oculus Rift S on his/her head. In order to do so, the straps of the
Oculus Rift S were loosened as much as possible, such that they would not interfere with the optodes
of the headcap while putting the HMD on the participant’s head. Figure 3.4 shows a participant
wearing both the fNIRS headcap and the VR HMD.

When everything was set up correctly, the experiment started. As said before, there were two
conditions: the ground condition and the height condition. The experiment consisted of 5 trials
for each condition, which makes 10 trials in total. Every trial lasted for 30 seconds. Although the
Oculus Rift S provides the possibility to walk around in the VE, the participant was instructed not to
do so, to prevent severe motion artifacts. Instead, the participant was asked to gently look around
in the VE, while preventing large head movements. Additionally, the participant was allowed to
bend forward slightly during the height condition, if he/she felt comfortable enough to do so. The
participant was also asked to step back into his/her original position after bending forward, to
prevent problems due to lack of space in the experimental room. The ground condition and height
condition were alternately shown to the participant, with every time a baseline period in between.
During the baseline period, there was no stimulus, hence the VE turned entirely black and the audio
stopped playing. The participant was instructed to relax and not think about anything during the
baseline period. See Figure 3.5 for an overview of the experimental design.

After the experiment, the participant was asked to rate his/her perceived feelings of distress or
fear using the Subjective Units of Distress Scale (SUDS), similar to [15, 75, 126, 128]. The SUDS is
a self-report 11-point Likert scale ranging from 0 (no distress/anxiety) to 100 (worst distress/anxiety
that you have ever felt) [147] that is often used to assess exposure settings during cognitive behavioral
treatment [148]. The participant was asked to give two SUDS ratings: one for the ground condition
VEs and one for the height condition VEs. The participant was asked to give the ratings after the
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Figure 3.5: The experimental design. B = baseline, G = ground condition, H = height condition.

experiment to ensure that he/she would not be distracted from the VEs during the experiment. See
Appendix C for the SUDS.

Additionally, the participant was asked to fill out the IGroup Presence Questionnaire (IPQ),
which measures a person’s sense of presence in VR [149]. The IPQ consists of 14 items that should be
rated on a seven-point Likert scale. The items cover three subscales (spatial presence, involvement,
and realism) and there is one additional item (sense of being there) that does not belong to a
subscale. Table 3.2 gives an overview of the subscales and what they measure. Because presence
and fear responses in VR are often positively correlated [150, 151], it is expected that a fear response
can only be evoked in VEs where the person feels present. Therefore, the IPQ scores were taken to
test if the participants felt present enough in the VEs for a fear response to occur.

Table 3.2: The IPQ subscales and what they measure [152].

Subscale Measures Items
Spatial presence The sense of being physically present in the VE 2 - 6
Involvement The attention devoted to the VE and the involvement experienced 7 - 10
Realism The subjective experience of realism in the VE 11 - 14

After filling out the IPQ, the participant was asked to fill out the AQ once more. This was
done to test if the participant’s AQ scores prior to and after the experiment were similar. Since
the AQ has adequate test-retest reliability (median r = 0.82) [142], it would be expected that every
participant’s pre-experiment and post-experiment AQ scores are similar. The post-experiment AQ
scores were taken to check if participants would still belong to their respective group (experimental
group or control group) after the experience of the experiment.

Finally, a structured interview was held to ask every participant about their experiences during
the experiment, see Appendix D. During the interview, the participant was asked if he/she felt any
feelings of fear during the experiment and, if yes, at which moments. Additionally, the participant
was asked if he/she felt any other emotions throughout the experiment and again, at which moments.
The main goal of the interview was to have an extra measure of every participant’s fear of heights,
next to their AQ scores.

3.2 Data Processing
The data that was collected with the experiment was used to answer the research questions of this
thesis. Participants with fear of heights responses (experimental group) and participants without
fear of heights responses (control group) were selected based on the questionnaire data that was
collected during the experiment. The fNIRS data of these participants was pre-processed and the
HR was extracted from it, which served as an additional physiological measurement. Statistical
analyses and classification of fear responses were performed using the pre-processed fNIRS and HR
data.

3.2.1 Questionnaires
For every participant, the AQ scores were computed by taking the sum of every item. Higher
AQ scores indicate more severe fear of heights. Based on the pre-experiment AQ scores, potential
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participants who belonged to the control group (AQ score < 20) or experimental group (AQ score ≥
35) were invited to participate in the experiment. The post-experiment AQ scores were computed in
the same manner and compared against the threshold values for both groups, to determine if every
participant still belonged to their respective group after experiencing the experiment.

The SUDS scores were taken as the absolute values that the participants indicated. Similar to
the research of Balan et al. [15], the SUDS scores between 0 and 30 were labeled as "relaxation" and
the SUDS scores above 30 were labeled as "fear". Based on the SUDS scores and their accompanying
labels, it was decided whether a participant felt relaxed or anxious during the ground trials and the
height trials.

Before the IPQ scores were computed, individual scores on items 3, 4, 9, and 11 had to be
inverted, to ensure that every item ranged from negative/not present to positive/present. Once this
was done, the IPQ scores were computed by taking the averages of every item. Both the overall
averages as well as the averages per subscale were computed. Since a score of 3 is the neutral option,
an average score above 3 indicates a stronger feeling of presence. The higher the average score, the
more present the participant felt.

3.2.2 Participant Selection
Before the experiment started, participants were selected to be part of either the control group (AQ
score < 20) or the experimental group (AQ score ≥ 35), based on their pre-experiment AQ scores.
The pre-experiment AQ scores therefore served as an indicator of a person’s fear of heights and
expected fear responses during the experiment. However, the results of the questionnaires that were
taken during the experiment were used to determine in a more reliable way if participants were
actually experiencing a fear of heights response (experimental group) or not (control group). To this
end, the scores of the post-experiment AQ, the SUDS, and the IPQ were used.

The post-experiment AQ scores were used to determine if participants would still fall within their
respective group after experiencing the experiment. Therefore, the threshold values for the post-
experiment AQ scores are identical to those of the pre-experiment AQ scores. The SUDS scores
of the height trials were used to determine if a participant felt relaxed or scared during the height
trials. Participants who felt relaxed (no fear response) will be part of the control group, whereas
participants who felt scared (fear response) will be part of the experimental group. Finally, the
IPQ presence score of every participant should be 3 or higher to be part of one of the groups. IPQ
presence scores lower than 3 indicate that the participant did not feel present in the VEs, hence
no realistic fear or relaxation responses could be induced in that case. Therefore, participants who
did not feel present will be excluded from the analysis, to avoid possible discrepancies due to this
matter. Table 3.3 gives a complete overview of the post-experiment selection criteria that were used
to determine if a participant suited the control group or the experimental group. If a participant
did not suit any of the groups, the data of the participant was disregarded from the analyses.

Table 3.3: The post-experiment selection criteria for the control group and the experimental
group, based on the post-experiment AQ scores, SUDS scores, and IPQ scores.

Control group Experimental group
Post-experiment AQ < 20 Post-experiment AQ ≥ 35
SUDS height trials ≤ 30 ("relaxation") SUDS height trials > 30 ("fear")
Average IPQ ≥ 3 Average IPQ ≥ 3

3.2.3 fNIRS Pre-Processing
A schematic overview of the fNIRS pre-processing pipeline is given in Figure 3.6. The first step
is to convert the raw time series to ∆[HbO] and ∆[HbR] signals. The fNIRS data was recorded
using the Artinis Oxysoft software, after which the Oxysoft2Matlab script was used to export the
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∆[HbO] and ∆[HbR] signals to Matlab. Before the time series were pre-processed further, they were
visually inspected. Channels with severe motion artifacts and channels that did not show cardiac
oscillations were excluded from further analysis. Motion correction was applied to the remainder
of the channels, using the Temporal Derivative Distribution Repair (TDDR) procedure of Fishburn
et al. [153]. TDDR takes the temporal derivative of the time series to compute the fluctuations
in the signals. It estimates observation weights for each time point and leverages this to remove
spikes and baseline shifts from the signal. The TDDR procedure was validated on simulations
and on an empirical experiment, and yielded better activation detection performance than five other
methods that are often used for motion correction, which are Correlation-Based Signal Improvement,
Movement Artifact Reduction Algorithm, Targeted PCA, Kurtosis Wavelet, and Spline Savitzky-
Golay. See Appendix E for a step-by-step description of the algorithm and an example of a signal
that was corrected using TDDR.

Transform to ∆[HbO] and ∆[HbR]

Visual inspection

TDDR motion correction

Compute correlation coefficient
between ∆[HbO] and ∆[HbR]

If > 0, reject channel

If ≤ 0, keep channel

3rd order Butterworth band-pass
filter 0.01 - 0.1 Hz

Define trials

Baseline trials

Average over trials

Figure 3.6: The fNIRS pre-processing pipeline.

After motion correction, the correlation coefficients of every channel’s ∆[HbO] and ∆[HbR] signal
were calculated. Channels with a positive correlation coefficient (correlation coefficient > 0) were
removed. This decision is based on the work of Cui et al. [154], who found that ∆[HbO] and ∆[HbR]
are negatively correlated when the amount of motion artifacts in the signals is low. The more motion
artifacts are introduced in the signals, the more positive the correlation becomes. Therefore, the
positive correlation between the ∆[HbO] and ∆[HbR] signals can be used to automatically identify
bad channels.

Once the bad channels were identified and excluded from the dataset, the signals were filtered. A
3rd order Butterworth band-pass filter with low cut-off frequency 0.01 Hz and high cut-off frequency
0.1 Hz was used, as it is one of the most frequently used filters for fNIRS data [19, 40]. The cut-off
frequencies were chosen such that the physiological noise arising from breath cycles (∼ 0.2 - 0.3 Hz),
cardiac cycles (∼ 1 Hz), and Mayer Waves (∼ 0.1 Hz) is mostly removed.

The filtered signals were epoched and baselined. The epoch duration was set from 0 to 30 seconds
after the trial onset, such that one epoch contains the data of an entire trial. The 5 seconds before
the epoch were used as a baseline period. A total of 10 epochs of equal length were extracted: 5
for the ground condition and 5 for the height condition. For every participant, the grand averages
over the epochs for each condition were computed, for every channel separately. This resulted into a

32



grand average ground condition signal and a grand average height condition signal per channel per
participant.

3.2.4 Heart Rate Extraction
Since the fNIRS data is contaminated by cardiac cycles, it is possible to extract the HR from the
∆[HbO] signals [155–158]. HR extracted from fNIRS signals was shown to correlate to a high degree
with the more traditional HR extracted from electrocardiography (r > 0.90) [155, 157].

As a first step, the motion-corrected ∆[HbO] time series were filtered using a Butterworth band-
pass filter between 1 Hz and 1.9 Hz, to remove the components from the signal that are not related
to the cardiac cycles [157, 158]. Then, the HR peaks in the signal are detected using Matlab’s
findpeaks() peak detection algorithm [155]. See Figure 3.7 for an example of the filtered signal of a
trial with the detected HR peaks in it.

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time (sec)

C
on

ce
nt

at
io

n
ch

an
ge

(µ
M

)

Figure 3.7: Example of the filtered signal (black) and the detected HR peaks (red circles) over a
time interval of 30 seconds.

The HR in beats per minute (BPM) over a certain time interval was calculated using the total
number of peaks detected during that time interval:

BPM =
pnum
t/60

(3.1)

Where pnum is the number of detected peaks and t is the total time of the time interval over which
the peaks are detected in seconds. Since there is a ∆[HbO] signal for every measurement channel,
the calculated HRs were averaged over the channels, such that a final HR value was obtained [157].
This entire procedure was executed per trial, such that an average HR in BPM was computed for
every trial of every participant.
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3.2.5 Statistical Analysis
Statistical tests were performed on the fNIRS data and the extracted HR data to determine whether
there are significant differences between the data of the control group and the experimental group
(between-group analysis) and to determine whether there are significant differences between the data
of the ground trials and the height trials of the experimental group (within-group analysis). The goal
of the between-group analysis is to investigate if the physiological measures taken from participants
who had a fear response are indeed significantly different from those taken from participants who
did not have a fear response. The goal of the within-group analysis is to determine whether the
physiological measures taken during fear responses (i.e. during height trials) are indeed significantly
different from those taken during relaxation (i.e. during ground trials).

3.2.5.1 Between-Group Analysis

The results of the fNIRS pre-processing phase (see section 3.2.3) contain the grand average ground
condition signals per channel per participant and the grand average height condition signals per
channel per participant. In order to simplify the between-group statistical analysis and to deal
with the inter-personal differences in the fNIRS signals, the contrast between the ground condition
and the height condition grand average ∆[HbO] signals and ∆[HbR] signals for all channels and all
participants were computed. The contrast was computed by subtracting the grand average ground
condition signal from the grand average height condition signal. This resulted into p ·c grand average
contrast signals, where p is the amount of participants and c the amount of channels. For all of these
signals, the mean over the window from 3 to 15 seconds post-stimulus onset was computed. The 3-15
second window was chosen because the hemodynamic response only starts to become visible after 3
seconds (2.8-second lag was found [159]), and because it was found that the hemodynamic response
is most intense in the first 5 to 17 seconds after the stimulus onset [160]. Therefore, this window
seems to be the most appropriate in order to analyze if there is a significant difference between the
grand average contrast signals of both groups. For every channel, a permutation test with 50,000
permutations was used to test for significant differences between the contrast signal means over
the 3-15 second window of the control group and the experimental group, at the significance level
α = 0.05. The sample means were used as the test statistic. These analyses were executed once for
the ∆[HbO] signals and once for the ∆[HbR] signals.

Another between-group statistical analysis was performed on the HR data. The results of the
HR extraction procedure (see section 3.2.4) contain the average HR of every ground trial and of
every height trial per participant. From these values, the average HR over the ground condition and
average HR over the height condition were computed for every participant, by taking the average
of the HR over the different trials of the condition of interest. Similar to the fNIRS between-group
analyses, the contrast in the HR values between the ground condition and the height condition were
computed. This was done by subtracting the ground condition HR value from the height condition
HR value, for every participant. This resulted into a list of contrast HR values for both groups. A
permutation test with 50,000 permutations was used to test for significant differences between the
contrast HR values of both groups, at the significance level α = 0.05. The sample means were used
as the test statistic.

3.2.5.2 Within-Group Analyses

The within-group statistical analysis of the fNIRS data was performed on the data of the ground
trials (i.e. relaxation trials) and the height trials (i.e. fear trials) of the experimental group. Similar
to the between-group analysis, the grand average ground condition ∆[HbO] and ∆[HbR] signals
and the grand average height condition ∆[HbO] and ∆[HbR] signals were averaged over the 3-15
second window. For every channel, a permutation test with 50,000 permutations was used to test
for significant differences between the ground trial means and the height trial means over the 3-15
second window, at the significance level α = 0.05. The sample means were used as the test statistic.
Also this analysis was performed once for the ∆[HbO] signals and once for the ∆[HbR] signals.
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Another within-group statistical analysis was performed on the HR data of the experimental
group, which consists of the average HR during every ground trial and every height trial per partic-
ipant. It must be noted that HR is a very personal measurement and that inter-personal differences
in resting state HR can be as large as 70 BPM [161]. This could impact the statistical analysis of
the differences in average HR between conditions within the same group. In order to minimize the
effect of inter-personal differences in resting state HR, the average HR values of every trial were
baseline-corrected by subtracting the average HR over the 10-second pre-stimulus baseline period.
From these baseline-corrected HRs, the averages over the ground condition and height condition were
computed. A permutation test with 50,000 permutations was used to test for significant differences
between the baseline-corrected ground condition HRs and the baseline-corrected height condition
HRs of the participants of the experimental group, at the significance level α = 0.05. Again, the
sample means were used as the test statistic.

3.2.5.3 Correction for Multiple Comparisons

The fNIRS data that was collected with the experiment contains measurements of 27 channels per
participant. Therefore, the permutation tests of a single chromophore are executed a total of 27 times
on the fNIRS data, once for every channel. As was explained in sections 3.2.5.1 and 3.2.5.2, a total
of 4 statistical analyses were executed on the fNIRS data (between-group analysis on the ∆[HbO]
data, between-group analysis of the ∆[HbR] data, within-group analysis of the ∆[HbO] data, and
within-group analysis of the ∆[HbR] data). This results into a total of 4 · 27 = 108 hypothesis tests.
Two additional hypothesis tests were executed on the HR data, one for the between-group analysis
and one for the within-group analysis, which makes a total of 110 hypothesis tests. This causes
the multiple comparisons problem, as was explained in section 2.6.1.2. Therefore, FDR correction
was executed on the 110 p-values that resulted from the statistical analyses to correct for multiple
comparisons. The rate q was set to q = 0.05.

3.2.6 Classification
This section describes the classification of fear of heights responses. Two different linear classification
algorithms were used in order to perform the classification: LDA and SVM. This research uses the
Matlab 2020a implementation of both algorithms, with the standard hyperparameter settings. See
Appendix G for an overview of the hyperparameters of the classifiers. It was decided to use the
standard hyperparameters because optimization did not have much influence on the classification
outcomes and would yield a different set of hyperparameters for every participant’s model. The
following sub-sections will discuss the feature extraction for the classifiers and how subject-dependent
and subject-independent classifiers were trained and tested.

3.2.6.1 Feature Extraction

The gathered fNIRS data consists of ∆[HbO] and ∆[HbR] measurements of 27 channels sampled at
10 Hz, hence there is a measurement for every 0.1 seconds. Similar to the statistical analyses, the
time window of 3-15 seconds post-stimulus was used in the feature extraction process.

Based on the within-group statistical analyses, it was determined which fNIRS channels show
significant differences between the ground (i.e. fear) condition and the height (i.e. no fear) condition.
Only the data of the significant channels was extracted, as the statistical analyses indicated that
those channels have the most potential to discriminate between fear and no fear. Due to movement
artifacts and hardware malfunctions, data from different amounts of channels were available for
the different participants. Therefore, it was decided to average the extracted ∆[HbO] and ∆[HbR]
measurements over the significant channels for every participant. The ∆[HbO] and ∆[HbR] averaged
over the significant channels will be referred to as ∆[HbO] and ∆[HbR], respectively. Then, the
averages of ∆[HbO] and ∆[HbR] over 1-second windows were computed. This was done by taking
the average of every 10 consecutive values of ∆[HbO] and ∆[HbR], similar to the procedure of [91].
Short histories of the averaged ∆[HbO] and ∆[HbR] signals of every second were also computed,
such that the information arising from the changes in the signal over time could be utilized for
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classification, similar to [93]. An x amount of seconds was defined to be the short history. For
every observation, the current observation and the observations of the x amount of seconds before
the current observation were extracted (which made a total of x+ 1 features for each chromophore
(∆[HbO] and ∆[HbR]) for every observation (second) in the dataset). In order to investigate the
effect of the short histories, the classifiers were trained and tested on three different short histories
similar to [93]: 1 second, 3 seconds, and 5 seconds.

3.2.6.2 Subject-Dependent Classifiers

Subject-dependent classifiers were trained and tested on the data of every single subject from the
experimental group. Hence, a certain subject-dependent classifier is specific to that subject and
cannot be used for other subjects. Only the data of the experimental group was used for these
classifiers, as there is a clear separation between fearful trials (i.e. height trials) and non-fearful
trials (i.e. ground trials) for this group, which can be used to classify between a fear of heights
response and no fear of heights response. Therefore, the ground trials were labeled as "no fear
response", whereas the height trials were labeled as "fear response", and the goal of the classifiers
was to classify the available datapoints into the correct class.

In every participant’s dataset, there were a total of 5 ground trials and 5 height trials. The
data was divided into 60% training data and 40% testing data. The training data was used to train
the classifiers, whereas the testing data was used to test the performance of the classifiers. To this
end, the first 6 trials (consisting of 3 ground trials and 3 height trials) were part of the training
data, whereas the final 4 trials (consisting of 2 ground trials and 2 height trials) were part of the
testing data. The performance of each classifier on the test data was measured by the classifier’s
accuracy. The accuracy was calculated as the percentage of correctly classified observations in the
test dataset. Please note that for every participant, six different subject-dependent classifiers were
trained and tested: the LDA classifier and the SVM classifier, both on the 1-second, 3-second, and
5-second history.

3.2.6.3 Subject-Independent Classifiers

The subject-independent classifiers were trained on the data of all the participants of the experi-
mental group minus one, and tested on the data of the final participant. This procedure is similar
to k-fold cross validation, where k equals the amount of participants in the experimental group [91].
Again, the data from the ground trials were labeled as "no fear response", whereas the data from
the height trials were labeled as "fear response". Both an LDA classifier and SVM classifier were
trained for every participant on the 1-second, 3-second, and 5-second history. The performance of
every classifier was measured by the classifier’s accuracy on the test data again.

The idea behind these classifiers is that the data of the other participants can be used to train a
classifier that can be used to classify unseen data from an unknown participant. This could be useful
in real-life VRET settings, where training a classifier on the data of every single person would be an
exhaustive process. Instead, it would be easier if the data of others could be used by the classifier
to make informed decisions about the measurements of a new person [15].
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Chapter 4

Results

This chapter contains the results that were generated based on the method described in the previous
chapter. First, the selection of participants based on AQ scores, SUDS scores and IPQ scores will be
described. Then, the results of the between-group statistical analyses and the within-group statistical
analyses of the experimental group will be given. The final section describes the results of the subject-
dependent classifiers and the subject-independent classifiers.

4.1 Participant Selection
Three participants did not complete the experiment due to motion sickness caused by the VR
application, hence their data was excluded. Based on the post-experiment selection criteria (see
Table 3.3) a total of 15 participants (nc = 15) were selected to be part of the control group and 14
participants (ne = 14) were selected to be part of the experimental group. All the results described
in this chapter are based on the analyses of the data of these participants. Table 4.1 gives the mean
scores and standard deviations of the questionnaire results for both groups. These results show that
there are clear distinctions between the two groups in terms of AQ scores (pre-experimental as well
as post-experimental, see Appendix J for an overview) and SUDS of the height condition. The two
groups are similar in terms of SUDS of the ground condition and the experienced presence in the
VEs.

Table 4.1: Mean scores and standard deviations of the questionnaire results for the control group
and the experimental group.

Questionnaire Control group mean (± SD) Experimental group mean (± SD)
Pre-experiment AQ 10.80 (± 5.66) 56.07 (± 11.20)
Post-experiment AQ 10.73 (± 6.41) 50.36 (± 11.85)
SUDS ground condition 3.00 (± 4.55) 6.43 (± 6.02)
SUDS height condition 11.53 (± 8.08) 69.86 (± 11.55)
IPQ presence 4.20 (± 0.86) 4.21 (± 0.97)

4.2 Statistical Analysis
The statistical analyses that were performed can be divided into between-group analyses and within-
group analyses. The latter is only executed on the data of the experimental group. This section is
divided into two sub-sections, that each cover one of the analyses types.
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4.2.1 Between-Group Analysis
The between-group statistical analyses were performed separately on the ∆[HbO] signals, the ∆[HbR]
signals, and the HR extracted from the ∆[HbO] signals. The results of each of these between-group
statistical analyses are given below.

4.2.1.1 fNIRS Oxyhemoglobin

The first between-group statistical analysis was performed on the ∆[HbO] data of the control group
and the experimental group. Figure 4.1 shows the grand average ∆[HbO] traces of the contrast
between the ground condition and the height condition for the two groups for every channel, with
the standard error given around every trace. The 3-15 second window over which the mean values
were calculated that were used in the permutation tests is indicated by the gray shaded areas in
the graphs. The graphs are arranged according to the optode layout that was used during the
experiment, as presented in Figure 3.2.

In almost all of the graphs, it can be seen that the grand average contrast trace of the experimental
group exceeds that of the control group during the 3-15 second window, hence there seems to be a
stronger contrast between ground trials and height trials for the experimental group. However, the
outcomes of the FDR-corrected permutation tests indicate that there is only a significant difference
between the contrast ∆[HbO] means of both groups in channel 3 (p = 0.0008). Appendix F provides
a visual representation of the FDR threshold based on the total amount of p-values generated from
the statistical tests. From this visual representation, it can be seen which p-values survive the FDR
correction.

4.2.1.2 fNIRS Deoxyhemoglobin

The second between-group statistical analysis was performed on the ∆[HbR] data of the control
group and the experimental group. Figure 4.2 shows the grand average ∆[HbR] traces of the contrast
between the ground condition and the height condition for the two groups for every channel, with
the standard error given around every trace. Again, the arrangement of the graphs is according to
the optode layout used during the experiments and the 3-15 second window is indicated by the gray
shaded areas.

The differences in the grand average contrast ∆[HbR] traces are less apparent in this case than
they were for the ∆[HbO] traces. However, there are some channels (i.e. channels 15, 23, 24, and 27)
where the grand average trace of the control group behaves somewhat differently than that of the
experimental group during the 3-15 second window. However, the outcomes of the FDR-corrected
permutation tests show that there are no channels with significant differences between the contrast
∆[HbR] means of the control group and the experimental group.

4.2.1.3 Heart Rate

The third between-group statistical analysis was performed on the HR data (extracted from the
∆[HbO] signals) of the control group and the experimental group. Figure 4.3 shows a box plot of
the average contrast HR (of the contrast between the ground condition and the height condition)
for both groups separately. As can be seen from this box plot, the median of the contrast HR of
the experimental group is positive, while it is negative for the control group. This indicates that, on
average, the HR of the participants of the experimental group increased between ground trials and
height trials, whereas it decreased for the participants of the control group. However, when taking
the range of the box plots into account, it can be seen that the positive and negative changes in
average HR between conditions are not the case for every participant in every group. The ranges of
the box plots indicate that some participants of the control group experienced increased HR values
when going from a ground trial to a height trial, while some participants of the experimental group
have experienced decreased HR values in this case.

Based on the permutation test at the predefined significance level a = 5%, the average contrast
HRs of the two groups are not significantly different (p = 0.051). Although the resulting p-value
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Figure 4.1: Grand average ∆[HbO] traces of the contrast between ground condition and height
condition for the two groups: control group (black traces) and experimental group (red traces).
Around the traces are the standard errors. The gray shaded area is the window over which the
means were taken that were used for the permutation tests. On the x-axis is time (seconds), ranging
from 0 to 30. On the y-axis is concentration change (µM), ranging from -0.4 to 0.6. Channel numbers
are given in every plot. The plot with the border around it shows the channel where a significant
difference was found between the means of the control group and the experimental group.
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Figure 4.2: Overview of the grand average ∆[HbR] traces of the contrast between ground condition
and height condition for the two groups: control group (black traces) and experimental group (blue
traces). Around the traces are the standard errors. The gray shaded area is the window over which
the means were taken that were used for the permutation tests. On the x-axis is time (seconds),
ranging from 0 to 30. On the y-axis is concentration change (µM), ranging from -0.4 to 0.6. Channel
numbers are given in every plot.
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is very close to a significant result in the case of a single hypothesis test, this result is far from
the threshold that is needed to survive the FDR-correction for multiple testing, as can be seen in
Appendix F.
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Figure 4.3: Box plot of the average contrast HR in BPM of the control group (left) and the
experimental group (right).

4.2.2 Within-Group Analysis
The within-group statistical analyses were performed on the data of the experimental group. Similar
to the between-group statistical analyses, the within-group statistical analyses were performed sep-
arately on the ∆[HbO] signals, the ∆[HbR] signals, and the HR extracted from the ∆[HbO] signals.
The results of each of these within-group statistical analyses are given below.

4.2.2.1 fNIRS Oxyhemoglobin

The first within-group statistical analysis was performed on the ∆[HbO] data of the experimental
group. Figure 4.4 shows the grand average ∆[HbO] traces of the ground condition and the height
condition for the experimental group, with the standard error given around every trace. Again, the
gray shaded area shows the 3-15 second window over which the mean values were calculated that
were used for the permutation tests. Also, the graphs are arranged according to the optode layout
used during the experiments again.

In all of the graphs, there is a clear visual difference between the grand average traces of the
ground condition and of the height condition, where the grand average traces of the height condition
exceed those of the ground condition. This effect is especially visible during the 3-15 second window.
This indicates that, in general, the participants of the experimental group experienced increased
∆[HbO] values during the height (i.e. fearful) condition. On the contrary, their ∆[HbO] values
decreased or remained somewhat constant during the ground (i.e. non-fearful) condition. According
to the outcomes of the FDR-corrected permutation tests, there are significant differences between the
means of the ground condition and the height condition of the experimental group in the following
channels: 1 (p = 0.0022), 2 (p = 0.0022), 3 (p = 0.00001), 4 (p = 0.0003), 6 (p = 0.0022), 11
(p = 0.0016), 12 (p = 0.0041), 14 (p = 0.0016), 18 (p = 0.0009), 20 (p = 0.00002), 23 (p = 0.00002),
25 (p = 0.0001), and 26 (p = 0.0022).
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Figure 4.4: Overview of the grand average ∆[HbO] traces of the ground condition (green traces)
and height condition (orange traces) of the experimental group. Around the traces are the standard
errors. The gray shaded area is the window over which the means were taken that were used for
the permutation tests. On the x-axis is time (seconds), ranging from 0 to 30. On the y-axis is
concentration change (µM), ranging from -0.4 to 0.6. Channel numbers are given in every plot. The
plots with the border around it show the channels where a significant difference were found between
the means of the ground condition and the height condition for the experimental group.
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Figure 4.5: Overview of the grand average ∆[HbR] traces of the ground condition (blue traces)
and height condition (purple traces) of the experimental group. Around the traces are the standard
errors. The gray shaded area is the window over which the means were taken that were used for
the permutation tests. On the x-axis is time (seconds), ranging from 0 to 30. On the y-axis is
concentration change (µM), ranging from -0.4 to 0.6. Channel numbers are given in every plot. The
plot with the border around it shows the channel where a significant difference was found between
the means of the ground condition and the height condition for the experimental group.
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4.2.2.2 fNIRS Deoxyhemoglobin

The second within-group statistical analysis was performed on the ∆[HbR] data of the experimental
group. Figure 4.5 shows the grand average ∆[HbR] traces of the ground condition and the height
condition for the experimental group, with the standard error given around every trace. Similar to
the previous figures, the graphs are arranged according to the optode layout and the gray shaded
areas indicate the 3-15 second window over which the mean values that were used in the permutation
tests were calculated.

The grand average ∆[HbR] traces shown in the graphs seem rather flat for both the ground
and the height condition, hence no activation and no significant differences between the conditions
are expected based on visual inspection. However, the outcomes of the FDR-corrected permutation
tests show that there is a significant difference in channel 23 (p = 0.0017) between the means of the
grand average ∆[HbR] signal of the ground condition and that of the height condition over the 3-15
second window.

4.2.2.3 Heart Rate

The third within-group statistical analysis was performed on the average baseline-corrected HR over
ground trials and the average baseline-corrected HR over height trials of the experimental group. See
figure 4.6 for a box plot. It can be seen that the ranges of the box plots of the different conditions are
somewhat similar, although the height condition box plot contains values that are more negative than
those of the ground condition box plot. This indicates that, compared to the baseline, the average
HR during the height condition dropped more severely for some participants than it did during
the ground condition. However, both box plots contain positive as well as negative values, which
means that for both conditions the average HRs dropped and increased with respect to the baseline.
Therefore, no distinctive patterns can be observed between the baseline-corrected HRs of the two
conditions, which suggests that the change in HR with respect to the baseline is rather subject-
dependent. Based on the outcome of the permutation test, the average baseline-corrected HRs of
the ground condition and the height condition within the experimental group are not significantly
different (p = 0.381).
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Figure 4.6: Box plot of the average baseline-corrected HR in BPM during the ground condition
(left) and during the height condition (right) for the experimental group.

44



4.3 Classification
Multiple classifiers were trained and tested on the data of the experimental group, with the data
from the ground trials labeled as "no fear response" and the data from the height trials labeled
as "fear response". The within-group statistical analyses of the experimental group show that the
∆[HbO] signals of channels 1, 2, 3, 4, 6, 11, 12, 14, 18, 20, 23, 25, 26 and the ∆[HbR] signals of
channel 23 differ significantly between the ground and height condition. Furthermore, the average
HRs of the different conditions do not differ significantly. Therefore, only the data of the significant
∆[HbO] channels and the significant ∆[HbR] channel were used in the classifiers.

Two different types of classifiers were trained and tested: subject-dependent classifiers and
subject-independent classifiers. Due to motion artifacts and hardware malfunctions, some chan-
nels were excluded from the analyses. Every subject-dependent classifier therefore used the data of
the significant channels that were available for their respective participant. The subject-independent
classifiers only used the data of the significant ∆[HbO] channels, as the significant ∆[HbR] channel
was excluded for some participants, which made it impossible to train and test classifiers on this
data. The classification results of both types of classifiers will be given in the following sub-sections.

4.3.1 Subject-Dependent Classifiers
The accuracies of the subject-dependent classifiers on the test dataset are given in Table 4.2. See
Appendix H.1 for the confusion matrices of the classifiers. For every subject, six different subject-
dependent classifiers were trained and tested: LDA and SVM, both on 1-second history, 3-second
history, and 5-second history.

Table 4.2: Accuracies of the subject-dependent classifiers.

1s history 3s history 5s history
Participant LDA SVM LDA SVM LDA SVM

1 45.83 66.67 47.92 68.75 52.08 60.42
2 20.83 18.75 14.58 14.58 10.42 14.58
3 60.42 62.50 75.00 64.58 68.75 64.58
4 85.42 83.33 77.08 85.42 70.83 81.25
5 93.75 91.67 79.17 89.58 79.17 77.08
6 60.42 60.42 77.08 64.58 72.92 68.75
7 95.83 100.00 95.83 100.00 100.00 100.00
8 79.17 81.25 77.08 85.42 75.00 91.67
9 54.17 56.25 54.17 47.92 54.17 52.08
10 91.67 91.67 95.83 91.67 95.83 91.67
11 89.58 89.58 77.08 87.50 58.33 85.42
12 77.78 75.00 80.56 72.22 83.33 72.22
13 62.50 62.50 68.75 62.50 56.25 62.50
14 77.08 75.00 64.58 75.00 66.67 72.92

Mean 71.03 72.47 70.34 72.12 67.41 71.08
(± SD) (± 21.47) (± 20.61) (± 20.74) (± 21.80) (± 21.89) (± 21.16)

The performances of the six different subject-dependent classifiers can be determined based on
their mean accuracies over participants. In this regard, the SVM on the 1-second history performs
best, with a mean accuracy of 72.47% (SD 20.61) over participants. However, the mean accuracies
of the other classifiers are close to that of the 1-second history SVM, with a maximum difference of
roughly 5%. Therefore, the amount of history taken into the classifier seems to have minimal effect
on this metric. Similarly, the choice between LDA or SVM classifier also seems to have a minimal
effect, with a maximum of less than 4% difference between the accuracies of the different classifiers.

The performances of the different classifiers vary considerably within participants. For example,
the accuracies of the different classifiers of participant 1 range from 45.83% (1-second history LDA)

45



to 68.75% (3-second history SVM), which is a difference of almost 30.00% accuracy between the
worst and best performing classifier. Furthermore, the mean accuracies over participants do not
always reflect the performances of the different classifiers on the data of a single subject. For
example, the 5-second history LDA is the worst performing classifier in terms of mean accuracies
over participants, while it is one of the best performing classifiers for participants 7 (accuracy of
100.00%), 10 (accuracy of 95.83%), and 12 (accuracy of 83.33%).

Besides the within-participant variation in accuracies of different classifiers, it is worth noting
that the accuracies vary considerably among the different participants. This is also reflected by
the rather high standard deviation of the accuracies of the different classifiers. The accuracies
among participants range from as low as 10.42% (LDA classifier on 5-second history, participant
2) to even 100.00% (multiple classifiers of participant 7). In general, there are some participants
for whom (almost) all of the classifiers perform around or even below the level of chance. Those
participants are participant 1, participant 2, and participant 9. In the cases of these participants,
the classifiers have no added value. However, there are also some participants for whom (almost) all
of the classifiers perform very good, with accuracies above 90.00%. This is the case for participant
7 and participant 10. Therefore, the performances of these classifiers seems to be largely dependent
on the subject.

4.3.1.1 Error Analysis

The differences in accuracies among participants are further analyzed in this section. To this end,
the train and test data of participant 1, 2, and 9, for whom the classifier accuracies are around or
below the level of chance, were inspected. For comparison, the train and test data of participant 7,
for whom the subject-dependent classifiers perform the best, was also reviewed. Figures 4.7, 4.8, 4.9
and 4.10 contain scatter plots of the train data, test data, and the decisions of the subject-dependent
classifiers on 1-second history of participants 1, 2, 7, and 9, respectively. PCA was used to find the
first and second principal components of the data on which the classifiers are trained, which serve as
the axes for the scatter plots. See Appendix I for the PCA procedure. The same plots can be made
for the 3-second history and 5-second history data of those participants. However, the patterns of
these plots are very similar to those of the 1-second history data. Therefore, the plots of the 3-second
history and 5-second history data of these participants are given in Appendix I, while this section
focuses on the 1-second history data only.
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(c) Classifier decision

Figure 4.7: Train and test data of the 1-second subject-dependent classifiers of participant 1.

Figure 4.7 contains scatter plots of the data labeled as "fear" (red circles) and "no fear" (blue
squares) along the first and second principal component for participant 1. The data on which the
classifiers are trained is plotted in Figure 4.7a, while the data on which the classifiers’ performances
are tested is plotted in Figure 4.7b. Figure 4.7c shows the decisions made by the LDA and SVM
classifiers, plotted along the same axes as the train and test data. The test data depicted in Figure
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4.7b shows good linear separability along the first principal component. However, the train data
shown in Figure 4.7a consists of a different pattern and is not linearly separable along the first
principal component. Therefore, the linear classifiers trained on the data of Figure 4.7a are unlikely
to generalize well to the test data of Figure 4.7b. From Figure 4.7c it becomes clear that the LDA
and SVM try to separate the datapoints along another direction instead, which explains why the
accuracies of the classifiers of participant 1 are mediocre.
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Figure 4.8: Train and test data of the 1-second subject-dependent classifiers of participant 2.

Similar scatter plots are given for participant 2 in Figure 4.8. From these figures, it can clearly
be seen that the train data does not give a good representation of the test data. The train data
of Figure 4.8a consists of mostly negative values along the first principal component for the data
labeled as "no fear", and mostly positive values along the first principal component for the data
labeled as "fear". However, in the test set the opposite is true, see Figure 4.8b. Therefore, it is
impossible to train a classifier on the provided train data that generalizes well on the given test data,
which explains why the classifiers perform at exceptionally low accuracies in the case of participant
2. From Figure 4.8c, it can be seen that the classification decisions are almost the opposite of the
true test data.
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Figure 4.9: Train and test data of the 1-second subject-dependent classifiers of participant 7.

The scatter plots for participant 7 are given in Figure 4.9. The distribution of the test data shown
in Figure 4.9b is rather similar to the distribution of the train data in Figure 4.9a. Additionally,
the test data demonstrates very clear linear separability. This explains why the classifiers trained
on the train data of participant 7 generalize very well to this participant’s test data, as can be seen
in Figure 4.9c. Therefore, high accuracies are achieved for participant 7.
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Figure 4.10: Train and test data of the 1-second subject-dependent classifiers of participant 9.

Lastly, Figure 4.10 contains the scatter plots of participant 9. Similar patterns can be observed
as for participant 1. The test data plotted in Figure 4.10b shows good linear separability along the
first principal component, with positive values for the data labeled as "fear" and negative values
for the data labeled as "no fear". However, this pattern is absent in the train data in Figure 4.10a.
In fact, the train data can better be separated along the second principal component, although
perfect separation is impossible. The classifier decisions depicted in Figure 4.10c show that the test
data is indeed separated along the second principal component during classification. Therefore, the
classifiers of participant 9 yield accuracies around the level of chance.

4.3.2 Subject-Independent Classifiers
The accuracies of the subject-independent classifiers on the test dataset are given in Table 4.3.
See Appendix H.2 for the confusion matrices of the classifiers. Again, six different classifiers were
trained and tested for every participant: the LDA and SVM on 1-second history, 3-second history,
and 5-second history.

Table 4.3: Accuracies of the subject-independent classifiers.

1s history 3s history 5s history
Participant LDA SVM LDA SVM LDA SVM

1 72.50 74.17 75.83 72.50 75.00 75.00
2 60.83 60.83 57.50 57.50 57.50 57.50
3 80.83 80.83 82.50 82.50 82.50 82.50
4 83.33 83.33 85.83 85.83 85.00 85.00
5 85.83 87.50 88.33 89.17 89.17 89.17
6 74.17 75.83 86.67 87.50 85.00 85.83
7 84.17 83.33 86.67 86.67 89.17 86.67
8 58.33 60.83 60.83 58.33 60.83 60.83
9 69.17 70.00 70.00 72.50 67.50 70.83
10 89.17 88.33 93.33 94.17 92.50 93.33
11 81.67 80.83 83.33 83.33 82.50 80.83
12 70.37 69.44 65.74 68.52 60.19 71.30
13 72.50 70.00 70.83 70.00 70.83 70.00
14 70.00 67.50 71.67 71.67 73.33 73.33

Mean 75.21 75.20 77.08 77.16 76.50 77.29
(± SD) (± 9.29) (± 9.12) (± 11.15) (± 11.48) (± 11.74) (± 10.64)
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Based on the mean accuracies over participants, it can be concluded that the SVM on the 5-second
history performs best on average, with a mean accuracy of 77.29% (SD 10.64) over participants. On
the contrary, the SVM on the 1-second history performs the worst on average, with a mean accuracy
of 75.20% (SD 9.12). Again, the difference between the accuracies of the classifiers that perform
best and worst on average is only a few percent, which indicates that the amount of history and the
type of classifier (LDA or SVM) have only a small influence on the classification performance.

The mean accuracies within participants vary less between the different classifiers than in the
case of the subject-dependent classifiers. However, still the mean accuracies of the classifiers do not
always reflect the performance in the case of every individual participant. For example, the 1-second
history SVM has the lowest mean accuracy over participants, while it is one of the best performing
classifiers in the cases of participant 2 and participant 8 (both with an accuracy of 60.83%).

Furthermore, the accuracies vary considerably among participants again, although also this effect
is less severe than in the case of the subject-dependent classifiers. The accuracies of the subject-
independent classifiers range from 57.50% (multiple classifiers for participant 2) to 94.17% (3-second
history SVM for participant 10). The overall performance is worst for participant 2, with accuracies
ranging from 57.50% (3-second and 5-second history classifiers) to 60.83% (1-second history classi-
fiers). However, this is still above the level of chance. The classifiers perform best in the case of
participant 10, which accuracies ranging from 88.33% (1-second history SVM) to 94.17% (3-second
history SVM).

Overall, the subject-independent classifiers seem to be more stable than the subject-dependent
classifiers. This is mainly because of the smaller variation in accuracies within and between partici-
pants, and the higher mean accuracies overall.

4.3.2.1 Error Analysis

This section provides an analysis of the differences in the accuracies of the subject-independent clas-
sifiers of the participants for whom the performance was worst (participant 2) and best (participant
10). Figures 4.11 and 4.12 contain scatter plots of the 1-second history train data, test data, and
classifier decisions for participant 2 and 10, respectively. Again, the datapoints are plotted along
the first and second principal components of the train data. The plots of the 3-second history and
5-second history data show patterns that are very similar to those of the 1-second history data.
Therefore, this section focuses on the analysis of the 1-second history data only, while the scat-
ter plots of the 3-second history and 5-second history data of these participants can be found in
Appendix I.
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(c) Classifier decision

Figure 4.11: Train and test data of the 1-second subject-independent classifiers of participant 2.

Figure 4.11 contains the scatter plots of the 1-second history train data, test data, and classifier
decisions of the subject-independent classifier of participant 2. The train data depicted in Figure
4.11a shows that the data labeled as "no fear" is mostly centered around the negative values of the
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first principal component, while the opposite is true for the data labeled as "fear". However, the
test data of Figure 4.11b does not follow the same pattern. Instead, the data of the different labels
are much more distributed over the positive and negative values on the first principal component,
which makes it impossible to separate the test data of the different labels by a linear decision
boundary. The differences in the distributions of the data shown in Figures 4.11a and 4.11b explain
why the classifiers trained on the train data of Figure 4.11a perform mediocre on the test data of
Figure 4.11b. Figure 4.11c shows that the decision boundary separates the test data along the first
principal component, where it is actually not linearly separable.
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(c) Classifier decision

Figure 4.12: Train and test data of the 1-second subject-independent classifiers of participant 10.

Similar scatter plots are given for participant 10 in Figure 4.12. Again, the train data depicted in
Figure 4.12a shows that the data labeled as "no fear" is centered around the negative values of the
first principal component, while the data labeled as "fear" is centered around the positive values of
the first principal component. Figure 4.12b shows that the test data of participant 10 is distributed
in a similar manner, albeit more densely. A linear classifier trained on the data of Figure 4.12a can
generalize well to the test data of Figure 4.12b, as can be seen in Figure 4.12c.
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Chapter 5

Discussion

This chapter provides the discussion of the results that were generated by this research. The results of
the statistical analyses and the offline classification are discussed and compared with the literature.
Furthermore, the contributions and limitations of this research, along with recommendations for
future work on this topic are provided.

5.1 Statistical Analyses

5.1.1 Between-Group fNIRS Analysis
The results of the between-group statistical analysis of the fNIRS signals show that the grand average
contrast ∆[HbO] signals of the control group and the experimental group are significantly different
in channel 3. No significant differences were found between the grand average contrast ∆[HbR]
signals of the two groups. The fact that only one out of 27 channels shows a significant difference
between the two groups for only one chromophore suggests that the fNIRS signals of people with
fear of heights responses and people without fear of heights responses are not very different from
each other.

These results cannot be compared to the literature, as no previous work was found that compares
fNIRS signals of an experimental group (people with a certain fear) and a control group (people
without this fear) to each other. Instead, only literature was found that compares the ∆[HbO]
and sometimes the ∆[HbR] signals of the same group of participants during fearful conditions and
control conditions to each other [74–81]. The grand average ∆[HbO] plots of the contrast given in
Figure 4.1 show that, in most cases, the ∆[HbO] signal of the experimental group peaks higher than
that of the control group. This is somewhat in line with the findings from literature, where it is
reported that increased ∆[HbO] is measured in (some areas of) the PFC during fearful conditions
[74, 76–81]. Although higher ∆[HbO] values are measured for the experimental group than for the
control group, their ∆[HbR] values seem more or less equal, with a few exceptions. See Figure 4.2.
This is contrary to what was found in some other works that reported decreased ∆[HbR] values
during fearful conditions [75, 76, 78], although the majority do not report this decrease in ∆[HbR]
[74, 77, 79, 80].

It is important to note that previous works also measured increased ∆[HbO] values over the PFC
while participants were experiencing other mental states, such as mental workload [53–56, 58, 59,
61–64], mental stress [67, 69–73], affective responses [82–84], attention [87, 88, 90, 91], deception [93–
97], preference [52, 98–100], anticipation [101–103], suspicion [104, 105], and frustration [105–107].
This indicates that increased ∆[HbO] values are not only an indication of fear responses, but also of
many more mental states. Therefore, it is possible that in this research the ∆[HbO] measurements of
the control group might have been influenced by other mental states, which could have affected the
statistical differences between the two groups. This effect is less likely for the experimental group, as
they indicated that they were feeling afraid during the height exposure, which makes it improbable
that they also experienced other mental states.
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5.1.2 Between-Group HR Analysis
The contrast HR values of the experimental group and the control group are not significantly dif-
ferent. However, a rather low p-value was obtained (p = 0.051), which suggests that the difference
in contrast HR values of both groups is close to significance. One other work was found that ana-
lyzed the HR between groups (phobics versus control group), which also did not find a significant
difference [125]. Other works that assessed the HR values of an experimental group and a control
group during virtual exposure reported that the HR values of both groups increased from virtual
ground conditions to virtual height conditions [123, 124]. The box plot given in Figure 4.3 shows
that this was also the case for some participants of the control group of this research, which could
have affected the statistical significance of the differences in HR between groups. Based on these
observations, it can be said that the results of the between-group HR analysis are similar to those
found in the literature.

5.1.3 Within-Group fNIRS Analysis
The results of the within-group statistical analysis of the fNIRS signals show that the grand average
∆[HbO] values are significantly higher during the height (i.e. "fear") condition than during the
ground (i.e. "no fear") condition. This significant difference was observed in a total of 13 channels,
which are all located towards the frontal part of the PFC. These results indicate that during fear
responses, the ∆[HbO] values increase significantly as compared to no fear responses, which is in
accordance with the vast majority of literature on fNIRS measurements taken during fear responses
[74, 76–81].

Additionally, the results of the within-group analysis show that the grand average ∆[HbR] values
of the height (i.e. "fear") condition and the ground (i.e. "no fear") condition are significantly
different in channel 23. Surprisingly, the grand average ∆[HbR] signal of the height condition is
higher than that of the ground condition in this channel. This contradicts with some findings from
the literature, where decreased ∆[HbR] values are reported for fearful conditions [75, 76, 78]. It
remains unclear why this result differs from the literature.

The significant differences that were found in the ∆[HbO] and ∆[HbR] signals of the height (i.e.
"fear") condition and the ground (i.e. "no fear") condition for the experimental group suggest that
fear responses can be detected based on fNIRS data. Therefore, the results of this within-group
statistical analysis provide the foundation for the use of classifiers to detect fear responses based on
fNIRS data.

5.1.4 Within-Group HR Analysis
The within-group statistical analysis of the HR values of the experimental group did not show
significant differences between the baseline-corrected HR values of the ground condition and the
height condition. This contradicts with other findings described in the literature, which found
significant increases in HR values between virtual ground and height conditions [122–124]. A possible
explanation for the discrepancies between the result of this thesis research and the results found in the
literature might be the experimental procedure. The experimental procedures of [122–124] presented
their participants once to each condition for longer periods of time (up to 10 minutes), whereas the
experiment of this thesis research presented participants multiple times to every condition for much
shorter periods of time (30 seconds). The frequent change between conditions and the relatively
short time intervals could have had an influence on the HR of the participants.

5.2 Classification

5.2.1 Subject-Dependent Classifiers
The subject-dependent classifier that achieved the highest average accuracy over participants is the
1-second history SVM, with an average accuracy of 72.47% (SD 20.61). This average accuracy
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is only a few percent higher than the average accuracies of the other subject-dependent classifiers,
which operated on 3-second history, 5-second history, and/or used the LDA algorithm. These results
suggest that the amount of history and the choice between the LDA or SVM algorithm have minimal
influence on the subject-dependent classification.

It is striking that the subject-dependent classifiers do not perform well for participants 1, 2, and
9, while they are all trained on the data of their respective subject. The error analysis showed that
in the case of participant 2, the test data has a very different pattern than the train data, which
makes it impossible to train a model that performs well on the classification of the test data of this
participant. Furthermore, in the cases of participant 1 and 9, the test data is linearly separable
along one dimension, however the classifiers learned a decision boundary that separates the data
along another dimension. It can be said that the train data of participants 1, 2 and 9 does not
give an accurate representation of their test data, which caused the subject-dependent classifiers
to perform at accuracies around or below the level of chance. It remains unclear what caused the
observed differences between the train and test data of these participants. One possible explanation
could be that the fear responses and accompanying fNIRS measurements of these participants were
not stable over time. Recall that the subject-dependent classifiers are trained on the data of the first
6 trials, while their accuracies are tested on the data of the final 4 trials. It could be the case that
the fear responses of these subjects changed over time, which influenced their fNIRS measurements,
while the labels in the train and test datasets remained the same.

5.2.2 Subject-Independent Classifiers
The subject-independent classifiers perform better than the subject-dependent classifiers, with an
average accuracy of 77.29% (SD 10.64) over participants for the 5-second history SVM. Again, the
other classifiers that operated on 1-second history, 3-second history, and/or used the LDA algorithm
yielded very similar average accuracies. Therefore, also in the case of the subject-independent
classifier, the choice between LDA and SVM and the choice for the amount of history to take into
account do not have much influence on the performance of the classifier.

There is one participant for whom the subject-independent classifiers perform only slightly better
than chance: participant 2. The test data of this participant shows that, in fact, no clear separation
between the "fear" and "no fear" fNIRS measurements exists, see Figure 4.11b. This is surprising,
as this participant had high AQ, SUDS, and IPQ scores (pre-experiment AQ = 59, post-experiment
AQ = 64, SUDS height trials = 80, SUDS ground trials = 0, average IPQ = 4.4). Based on these
scores, it can be assumed that this participant has a strong fear of heights, felt very anxious during
the height trials, felt relaxed during the ground trials, and felt present in the VEs. Therefore, it
would be expected that the "fear" and "no fear" fNIRS data of this participant would be more
distinctive from each other than they actually are. The error analysis of the train and test data
of the subject-dependent classifier of participant 2 revealed that the fNIRS measurements of this
participant are not stable over time. The train data, taken from the first 6 trials, shows almost the
opposite pattern as the test data, taken from the final 4 trials. See Figure 4.8. This explains why
the test data of participant 2 for the subject-independent classifier is distributed over the data space
without a clearly recognizable pattern. However, it remains unknown what caused the instability
observed in the data over time.

It is remarkable that for most participants, the subject-independent classifiers outperform the
subject-dependent classifiers. Instead, it was expected that the subject-dependent classifiers would
perform better, as they are trained on the data that contains the characteristics that are specific to
the subject, whereas the subject-independent classifiers do not. It was already discovered that the
subject-dependent classifiers of participants 1, 2, and 9 do not perform well due to the fact that the
train data of the first 6 trials deviates from the test data of the last 4 trials. However, from the
error analysis of the subject-dependent classifiers it was observed that the data from the final 4 trials
of participants 1 and 9 was very close to perfect linear separability, with positive values along the
first principal component for the data labeled as "fear" and negative values along the first principal
component for the data labeled as "no fear". Similar patterns can be observed for the train data of
the subject-independent classifiers, shown in Figures 4.11a and 4.12a. It could be the case that the
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data of the participants for whom the subject-dependent classifiers performed worse, converges over
time to patterns similar to those of the other participants. This would explain the relatively good
performance of the subject-independent classifiers.

The fact that the subject-independent classifiers perform at least as good as the subject-dependent
classifiers (based on accuracy), indicates the potential of these classifiers for online detection sce-
narios. In such a scenario, the subject-independent classifier can be trained on the data of a given
number of people, based on which it can classify the fear responses of an unknown person. The
results of this research suggest that training the subject-independent classifier on the fNIRS data
of 13 people is already enough to classify the fear responses of an unknown person at an average
accuracy above 75%.

5.2.3 Overall Classification Performance
The overall average classification performances of the subject-dependent classifiers are around an
accuracy of 70%, whereas the subject-independent classifiers have average accuracies around 75% to
77%. These accuracies are significantly higher than the level of chance, which is 50%. However, an
accuracy around 70% to 77% is not sufficient for real-life applications, where this technology could
for example be used during VRET settings. At an accuracy of 70%, the classifier makes the wrong
decision 30% of the time. Imagine that 30% of an exposure therapy session consists of the wrong
exposure scenario based on these decisions. This would not only decrease the effectiveness of the
exposure therapy, it could also cause very inconvenient situations, such as patients having panic
attacks because they are exposed to the wrong scenario.

The average accuracies obtained by the classifiers of this research are mediocre compared to
those of other classifiers that use fNIRS data to detect other mental states, see Table 2.1. Other
works reported that they were able to detect mental workload [56], attentional state [88, 90–92],
deception [93], and frustration [106] at average accuracies ranging from 74.8% to 90.7%. However,
lower average accuracies ranging from 63% to 72.9% were also reported in the literature for the
detection of mental stress [71], affective state [84], and preference [98]. It must be noted that it is
difficult to compare the performance of the classifiers of this research to those found in the literature,
as none of the other works focused on the detection of a fear response.

The average accuracies at which the classifiers of this research perform are also mediocre to
inferior compared to those of other studies that focused on the detection of fear elicited by VR
exposure, using different physiological signals. Accuracies ranging from 76% to 89.5% were reported
for the classification of fear versus no fear based on the BVP data of 7 participants [128] and the
combination of GSR, HR, and EEG data of 8 participants [15]. However, the smaller number of
participants, and thus smaller amount of data used in those works, makes their results less reliable
than the results generated by this thesis research.

5.3 Contributions
There are several contributions made by this thesis research. First of all, this research is the first
to expose both a control group and an experimental group to virtual heights while their fNIRS
measurements were taken and to show that their cortical hemodynamic responses are different to
some extent. Furthermore, this research has shown the feasibility of the combination of immersive
VR (presented through an HMD) and fNIRS measurements, to elicit and detect fear responses.
Finally, this research demonstrated that fNIRS measurements have the potential to be used to
detect fear responses to some extent, using linear classifiers.

5.4 Limitations
The research described in this thesis comes with several limitations. These limitations will be
discussed in this section.
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First of all, the amount of participants is a limitation. Eventually, only 15 participants were part
of the experimental group and 14 participants were part of the control group. The limited amount
of participants in both groups makes the statistical significance of the outcomes of this research
debatable, as larger groups of participants could potentially reveal different results.

Secondly, the use of the AQ to select participants with a fear of heights and participants with-
out a fear of heights was less reliable than expected. Although several other works about fear of
heights responses used the AQ to assess the severity of their participants’ fear of heights [27–30,
75], it was not always a reliable indication in this research. Based on the post-experiment AQ
scores, discrepancies between people’s fear of heights according to the AQ scores were discovered,
see Appendix J. This made the distribution of participants over the control and experimental group
complex and potentially even inaccurate, which could have had an impact on the statistical results
and the classification performances.

Moreover, the statistical analyses of the fNIRS data and the classification performances are
based on the mean ∆[HbO] and mean ∆[HbR] values only. However, from the literature on mental
state detection it is know that signal features like amplitude, slope, standard deviation, kurtosis,
skewness, and signal peaks were used in other classifiers for mental state detection [56, 71, 90, 92],
see Table 2.1. This thesis research did not investigate to what extent the statistical significance and
classification performances could be improved when using different features of the fNIRS signals.

Furthermore, the amount of data that was captured from every participant was limited. Partic-
ipants were only asked to undergo 10 trials of virtual exposure during which their fNIRS measure-
ments were taken. The limited amount of data makes it more difficult to perform reliable statistical
analyses and to train and test robust classifiers. The amount of data also limits the possibilities
of the classifier. Now, only binary classifiers, that classify between "fear response" and "no fear
response", could be trained and tested. Unfortunately, the limited amount of data does not allow
the training of multi-class classifiers that could detect the level of the fear response.

Besides the small amount of trials that were recorded, the trial duration was also limited to only
30 seconds. The short trial duration impacted the analysis of cardiac signals derived from the fNIRS
data. Although the HR could successfully be extracted from the fNIRS signals, the HRV data of
the participants could not be assessed, as conventional time- and frequency-domain measurements
of HRV require at least 2 to 5 minute data epochs [162]. HRV is suggested to be a useful feature to
detect fear [121, 122]. However, due to the short trial duration it remains unknown to what extent
the HRV could have improved the statistical results or classification performances of this research.

Additionally, the hardware components were not optimal for simultaneous usage. The fNIRS cap
(i.e. the Artinis Brite 24) and the VR HMD (i.e. the Oculus Rift S) caused an uncomfortable feeling
for most participants when they were worn simultaneously. The Oculus Rift S had to be tightened
with a headband around the participant’s head. This put some extra pressure on the optodes of the
fNIRS cap, which felt unpleasant for the participant. This might have influenced the experience of
the participants. Since it is difficult to quantify the effect of the uncomfortable feeling caused by
the hardware components, it is unknown to what extent it affected the participants and the results
generated by this research.

Finally, the fNIRS technology proved to be less resistant to motion artifacts than was expected
from the literature [19, 42, 43]. Therefore, participants were instructed to look around very slowly
in the VEs and to limit their bodily movements. This is contrary to the research of Landowska
et al. [75], who instructed their participants to walk over a wooden plank during the exposure.
The limited movement that was allowed during the experiment could have made the experience of
the VEs less realistic for the participants, which could have influenced the data that was collected.
Furthermore, even looking around slowly caused motion artifacts in the fNIRS signals, due to which
some channels could not be used in the data analyses.

5.5 Recommendations for Future Work
Based on the results and the limitations of this research, several recommendations for future work
on the topic of fear detection based on fNIRS data can be made. These recommendations will be
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discussed below.
A first recommendation would be to verify the results of this thesis research by conducting

more experiments with more participants, both belonging to the control group and the experimental
group. Data from more participants will make the statistical analyses, and thus the results, more
reliable than they are now.

A second recommendation would be to recruit more participants who suffer from varying degrees
of fear of heights. Data from, for example, people with little, moderate, and severe fear of heights
can be used to train multi-class classifiers. This way, it can be investigated whether a classifier can
be used to distinguish between different degrees of fear using fNIRS data.

Apart from collecting more fNIRS data by recruiting more participants, future research could also
focus on the collection of more fNIRS data from every individual participant. Longer trial durations
allow to extract the HRV from the fNIRS data, which could be used to investigate whether the
fNIRS derived HRV data between or within groups are significantly different and if it could benefit
the detection of fear responses. Additionally, data from longer trial durations could be used to study
the effects of fearful stimuli on fNIRS data within a given time period.

Furthermore, it is advised to find better metrics to test before the experiment if someone has a fear
of heights, in order to establish a clearer distinction between the control group and the experimental
group. Besides the AQ, other questionnaires like the VHI can be used to assess a person’s fear of
heights, similar to [15, 127]. Another suggestion would be to let people experience various situations
involving heights before the actual experiment, and to let them fill out the pre-experiment AQ after
that. This might make it easier for people to self-report on their actual fear of heights.

Moreover, it should be investigated if different signal features could improve the statistical sig-
nificance of channels and the performances of the classifiers. The grand average ∆[HbO] traces
presented in Chapter 4 revealed that the traces of the experimental group generally rise to a peak
value, whereas this pattern is less apparent for the grand average traces of the control group, see
Figure 4.1. A similar observation was made for the grand average ∆[HbO] traces of the height con-
dition and ground condition of the experimental group, see Figure 4.4. Based on these observations,
it is expected that the additional usage of features such as the maximum signal value, the time to
peak, and the signal slope have the potential to improve the results.

Finally, when this research would be executed on a larger scale or when the technology would be
implemented in real VRET settings, it would be advisable to develop a single hardware component
that contains both the fNIRS cap and the VR HMD. This hardware device should be developed
in such a way that the optodes and the VR HMD do not interfere with each other anymore, such
that they do not cause unpleasant pressing feelings on the user’s head. This can be achieved by
integrating the fNIRS optodes into the headbands of the HMD.
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Chapter 6

Conclusion

This chapter provides the conclusions that can be drawn based on the research described in this thesis.
To this end, the research questions that were posed in the introduction will be answered.

This thesis started with the motivation to detect fear responses during VR exposure, using non-
invasive fNIRS measurements. Based on the findings from the literature research, an experiment
was designed similar to that of Landowska et al. [75]. The goal of the experiment was to create
non-fearful situations (i.e. the ground condition) and fear eliciting situations (i.e. the height con-
dition) in the VEs, while collecting fNIRS data from the participants. A total of 41 participants
were invited to participate in the experiment. Both people with fear of heights and people without
fear of heights were recruited, based on an assessment of the severity of their fear of heights using
the AQ. The fNIRS data that was captured from the participants consisted of ∆[HbO] signals, from
which HR was extracted, and ∆[HbR] signals. Post-experimental AQ scores, SUDS scores, and IPQ
scores were used to decide which participants were experiencing fear responses during the experiment
(experimental group) and which participants were not (control group). A total of 15 participants
were selected to be part of the control group for the analysis, while 14 participants were selected to
be part of the experimental group for the analysis.

1 To what extent do the fNIRS signals captured from people with a fear of heights response
and people without a fear of heights response differ?

The grand averages of the ∆[HbO] signals of the contrast between the ground (i.e. "no fear")
condition and the height (i.e. "fear") condition show that in most channels the signals of the
experimental group exceed those of the control group between the 3-15 second post-stimulus window.
However, this effect is only significant at channel 3. Therefore, it can only be concluded that at
channel 3 there exists a significant difference between the grand average ∆[HbO] contrast signals
of people with a fear of heights response and people without a fear of heights response, where the
grand average ∆[HbO] contrast signal of the people with the fear of heights response shows a clear
peak in the 3-15s window, whereas this peak is non-existent for the people without a fear of heights
response.

On the contrary, no significant differences were found between the ∆[HbR] contrast signals and
the contrast HR (extracted from the ∆[HbO] signals) of the people with fear of heights responses
and the people without fear of heights responses. Therefore, it is concluded that the grand average
∆[HbR] contrast signals and the contrast HRs of people with fear of heights and people without fear
of heights do not differ significantly.

2 To what extent can a person’s fear of heights response to a virtual reality environment be
detected using fNIRS data?
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The within-group statistical analysis of the experimental group showed that there are significant
differences in the grand average ∆[HbO] values during fear responses and during no-fear responses,
where the ∆[HbO] values of the fear responses were significantly higher than those of the no-fear
responses in channels 1, 2, 3, 4, 6, 11, 12, 14, 18, 20, 23, 25, and 26. Another significant channel
was found for the grand average ∆[HbR] signals, which is channel 23.

Subject-dependent as well as subject-independent classifiers can be used to detect a person’s
fear of heights response to a VR environment based on the fNIRS data of the significant channels
of the experimental group. The subject-dependent SVM classifier on 1-second history of the fNIRS
signals can detect a fear of heights response with an average accuracy of 72.47% (SD 20.61) over
participants. However, the accuracies of this classifier range from 10.42% (far below the level of
chance) to 100.00%. The subject-independent SVM classifier on 5-second history of the fNIRS
signals can detect a fear of heights response with an average accuracy of 77.29% (SD 10.64). The
accuracies of this classifier range from 57.50% to 94.17%. Based on the variation in accuracies, it is
concluded that it is very dependent on the person to what extent his/her fear of heights response
to a VE can be detected using fNIRS data. The subject-independent classifiers show potential for
usage in online detection situations, as they can be trained beforehand on existing fNIRS data and
can classify the unseen data of a new person at average accuracies above 75.00%.
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Appendix A

Deriving Equations for ∆[HbO] and
∆[HbR]

According to the MBLL, the OD can be found with the following equation:

OD(t, λ) = − log10

( I(t, λ)

I0(t, λ)

)
=
∑
i

εi(λ) ·∆ci · l ·DPF (λ) (A.1)

Therefore, the change in OD (∆OD) over time can be found by inserting ∆t into the equation and
solving for two different points in time:

∆OD(∆t, λ) = − log 10
( I(λ, t1)

I0(λ, t1)

)
−
(
− log 10

I(λ, t0)

I0(λ, t0)

)
(A.2)

with ∆t = t0−t1. The emitted light intensity I0 remains the same over time, hence I0(t1) = I0(t0) =
I0. Therefore:

∆OD(∆t, λ) = log10

(I(λ, t0)

I0

)
− log10

(I(λ, t1)

I0

)
= log10

(I(λ, t0)

I0
· I0
I(λ, t1)

)
= log10

(I(λ, t0)

I(λ, t1)

)
= − log10

(I(t1, λ)

I(t0, λ)

)

∆OD(∆t, λ) = − log10

(I(t1, λ)

I(t0, λ)

)
=
∑
i

εi(λ) ·∆ci · l ·DPF (λ) (A.3)

Based on equation A.3, the change in OD for wavelength λ1 can be computed as follows:

∆OD(∆t, λ1) = εHbR(λ1) ·∆[HbR] ·DPF (λ1) · l + εHbO(λ1) ·∆[HbO] ·DPF (λ1) · l
= l ·DPF (λ1) · (εHbR(λ1) ·∆[HbR] + εHbO(λ1) ·∆[HbO])

(A.4)
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with ∆[HbO] and ∆[HbR] denoting ∆cHbO and ∆cHbR, respectively. Likewise, the change in OD
for wavelength λ2 can be found as follows:

∆OD(∆t, λ2) = l ·DPF (λ2) · (εHbR(λ2) ·∆[HbR] + εHbO(λ2) ·∆[HbO]) (A.5)

Equation A.5 can be solved for ∆[HbR]:

∆OD(∆t, λ2)

l ·DPF (λ2)
= εHbR(λ2) ·∆[HbR] + εHbO(λ2) ·∆[HbO]

∆OD(∆t, λ2)

l ·DPF (λ2)
− εHbO(λ2) ·∆[HbO] = εHbR(λ2) ·∆[HbR]

∆[HbR] =
∆OD(∆t, λ2)

l ·DPF (λ2) · εHbR(λ2)
− εHbO(λ2)

εHbR(λ2)
·∆[HbO] (A.6)

Now equation A.6 can be substituted into equation A.4, which can be solved to find the expression
for ∆[HbO]:

∆OD(∆t, λ1) = l ·DPF (λ1) · (εHbR(λ1) ·
( ∆OD(∆t, λ2)

l ·DPF (λ2) · εHbR(λ2)
− εHbO(λ2)

εHbR(λ2)
·∆[HbO]

)
) + εHbO(λ1) ·∆[HbO]

∆OD(∆t, λ1)

l ·DPF (λ1)
=
εHbR(λ1) ·∆OD(∆t, λ2)

l ·DPF (λ2) · εHbR(λ2)
− εHbR(λ1) · εHbO(λ2)

εHbR(λ2)
·∆[HbO] + εHbO(λ1) ·∆[HbO]

∆OD(∆t, λ1)

l ·DPF (λ1)
− εHbR(λ1) ·∆OD(∆t, λ2)

l ·DPF (λ2) · εHbR(λ2)
= ∆[HbO] ·

(
εHbO(λ1)− εHbR(λ1) · εHbO(λ2)

εHbR(λ2)

)
[∆OD(∆t, λ1)

l ·DPF (λ1)
− εHbR(λ1) ·∆OD(∆t, λ2)

l ·DPF (λ2) · εHbR(λ2)

]
·
[
εHbO(λ1)− εHbR(λ1) · εHbO(λ2)

εHbR(λ2)

]−1

= ∆[HbO]

[
εHbO(λ1) · εHbR(λ2)

εHbR(λ2)
− εHbR(λ1) · εHbO(λ2)

εHbR(λ2)

]−1

=[εHbO(λ1) · εHbR(λ2)− εHbR(λ1) · εHbO(λ2)

εHbR(λ2)

]−1

=

εHbR(λ2)

εHbO(λ1) · εHbR(λ2)− εHbR(λ1) · εHbO(λ2)

∆[HbO] =
εHbR(λ2)

εHbO(λ1) · εHbR(λ2)− εHbO(λ2) · εHbR(λ1)
·
(∆OD(∆t, λ1)

l ·DPF (λ1)
− εHbR(λ1) ·∆OD(∆t, λ2)

l ·DPF (λ2) · εHbR(λ2)

)

∆[HbO] =
εHbR(λ2) · ∆OD(∆t,λ1)

l·DPF (λ1) − εHbR(λ1) · ∆OD(∆t,λ2)
l·DPF (λ2)

εHbO(λ1) · εHbR(λ2)− εHbO(λ2) · εHbR(λ1)
(A.7)
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Since equation A.1 is symmetric for ∆[HbO] and ∆[HbR], substituting ∆[HbR] for ∆[HbO] and
∆[HbO] for ∆[HbR] yields the following expression for ∆[HbR]:

∆[HbR] =
εHbO(λ1) · ∆OD(∆t,λ2)

l·DPF (λ2) − εHbO(λ2) · ∆OD(∆t,λ1)
l·DPF (λ1)

εHbO(λ1) · εHbR(λ2)− εHbO(λ2) · εHbR(λ1)
(A.8)
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Appendix B

Mental States Measured with fNIRS

Table B.1: Overview of the mental states that can be measured with fNIRS. For every mental
state, the characteristics of the measured signal and the brain areas with significant activations are
given.

Mental state Signal characteristics Brain areas Reference

Mental workload Increased ∆[HbO] PFC [55, 56, 61, 63]
dlPFC [54, 62]
Left dlPFC [58]
Left PFC [53, 59]
Left anterior PFC [64]

Decreased ∆[HbR] PFC [60, 63, 65]
Right PFC [57]

Mental stress Increased ∆[HbO] Right PFC [67, 69]
Right dlPFC [70, 72]
Left vlPFC [72]
vlPFC [73]
Sensory association cortex [72]

Decreased ∆[HbO] Right PFC [66, 68]
Fear response Increased ∆[HbO] PFC [76, 79]

Left PFC [80]
dlPFC [81]
Anterior PFC [81]
Left dlPFC [74]
Left vlPFC [74]
Right supramarginal gyrus [77]

Decreased ∆[HbR] Supramarginal gyrus [78]
Right superior temporal gyrus [78]
Right dlPFC [75]
PFC [76]

Decreased ∆[HbO] dlPFC [75]
Anterior PFC [75]

Affective response Increased ∆[HbO] PFC [83, 84]
vlPFC [82]

Decreased ∆[HbR] PFC [84]
vlPFC [82]

Decreased ∆[HbO] Left dlPFC [85, 86]
Attention Increased ∆[HbO] Right PFC [87, 91]

dlPFC [88]
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Decreased ∆[HbO] Right PFC [92]
Attention loss Late ∆[HbO] signal peak PFC [89]
Deception Increased ∆[HbO] Left PFC [93, 94]

Left SFG [95]
Right anterior PFC [93]
Right SFG [94, 96]
dlPFC [97]

Preference Increased ∆[HbO] OFC [98, 99]
Anterior PFC [100]
Right PFC [52]

Decreased ∆[HbR] OFC [99]
Increased ∆[HbR] OFC [98]

Anticipation Increased ∆[HbO] PFC [103]
dlPFC [101]
Left dlPFC [102]

Suspicion Increased ∆[HbO] ACC [105]
OFC [104]
TPJ [104]

Frustration Increased ∆[HbO] dlPFC [105]
vlPFC [107]
Occipitotemporal area [106, 107]
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Appendix C

Experiment Questionnaires

Table C.1: AQ items, 0 = not at all anxious, 6 = extremely anxious.

Situations 0 1 2 3 4 5 6

Diving off the low board at a swimming pool. O O O O O O O
Stepping over rocks crossing a stream. O O O O O O O
Looking down a circular stairway from several flights up. O O O O O O O
Standing on a ladder leaning against a house, second story. O O O O O O O
Sitting in front of an upper balcony of a theater. O O O O O O O
Riding a ferris wheel. O O O O O O O
Walking up a steep incline in country hiking. O O O O O O O
Airplane trip to San Francisco. O O O O O O O
Standing next to an open window on the third floor. O O O O O O O
Walking on a footbridge over a highway. O O O O O O O
Driving over a large bridge (Golden Gate). O O O O O O O
Being away from the window in an office on the 15th floor O O O O O O O
of a building.
Seeing window washers 10 flights up on a scaffold. O O O O O O O
Walking over a sidewalk grating. O O O O O O O
Standing on the edge of a subway platform. O O O O O O O
Climbing a fire escape to the 3rd floor landing. O O O O O O O
On the roof of a 10 story apartment building. O O O O O O O
Riding an elevator to the 50th floor. O O O O O O O
Standing on a chair to get something off a shelf. O O O O O O O
Walking up the gangplank of an ocean liner. O O O O O O O

Table C.2: SUDS items.

Feeling of distress Score
No distress; totally relaxed. 0
Alert and awake; concentrating well. 10
Minimal anxiety/distress. 20
Mild anxiety/distress; no interference with functioning. 30
Mild-to-moderate anxiety/distress. 40
Moderate anxiety/distress; uncomfortable, but can continue to function. 50
Moderate-to-strong anxiety/distress. 60
Quite anxious/distressed; interfering with functioning. Physiological signs 70
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may be present.
Very anxious/distressed; can’t concentrate. Physiological signs present. 80
Extreme anxiety/distress. 90
Highest anxiety/distress that you have every felt. 100

Table C.3: IPQ items.

Statements/questions 0 1 2 3 4 5 6

Not at Very
all much

In the computer generated world I O O O O O O O
had a sense of "being there".

Fully Fully
disagree agree

Somehow I felt that the virtual world O O O O O O O
surrounded me.

Fully Fully
disagree agree

I felt like I was just perceiving pictures. O O O O O O O
Fully Fully

disagree agree
I did not feel present in the virtual space. O O O O O O O

Fully Fully
disagree agree

I had a sense of acting in the virtual space, O O O O O O O
rather than operating something from outside.

Fully Fully
disagree agree

I felt present in the virtual space. O O O O O O O
Extremely Not aware

aware at all
How aware were you of the real world O O O O O O O
surrounding while navigating in the virtual
world? (i.e. sounds, room temperature, other
people, etc.)?

Fully Fully
disagree agree

I was not aware of my real environment. O O O O O O O
Fully Fully

disagree agree
I still paid attention to the real O O O O O O O
environment.

Fully Fully
disagree agree

I was completely captivated by the virtual O O O O O O O
world.

Completely Not real
real at all

How real did the virtual world seem to you? O O O O O O O
Not Very

consistent consistent
How much did your experience in the virtual O O O O O O O
environment seem consistent with your real
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world experience?
About as Indisting-
real as an uishable
imagined from the

world real world
How real did the virtual world seem to you? O O O O O O O

Fully Fully
disagree agree

The virtual world seemed more realistic O O O O O O O
than the real world.
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Appendix D

Interview Experiment

Below are the interview questions that were asked to the participants after the experiment:

1. How did you experience the virtual environments?

2. Were there moments during the virtual exposure when you felt afraid? If yes, can you describe
these moments?

3. Were there moments during the virtual exposure when you felt other emotions? If yes, can
you describe these emotions and moments?
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Appendix E

TDDR Motion Correction

This section provides an explanation of the TDDRmotion correction algorithm proposed by Fishburn
et al. [153]. TDDR assumes that the fluctuations in the fNIRS signals that are not due to motion
are normally distributed, that the majority of signal fluctuations are not related to motion, and that
the fluctuations in the signal due to motion artifacts have greater magnitude than the ones that are
not related to motion. The procedure of the TDDR algorithm is given below, based on the steps
described in [153]:

1. Let’s take a signal x, which is a function of time t, to be the raw, unfiltered input signal.
Calculate the temporal derivative x, which represents the fluctuations in the input signal:

yt = xt − xt−1 (E.1)

2. Initialize the observation weights as a vector consisting of ones:

wt = 1 (E.2)

3. Estimate robust observation weights:

(a) Use the weights to estimate the weighted mean of the fluctuations in the signal:

µ =
1∑
(w)

∑
(wtyt) (E.3)

(b) Subtract the weighted mean from the signal fluctuations to obtain the absolute residuals:

rt = |yt − µ| (E.4)

(c) Calculate a robust estimate of the standard deviation of the absolute residuals:

σ = median(r) · 1.4826 (E.5)

Where 1.4826 is the scaling factor of the median absolute deviation of the normal distri-
bution.

(d) Use σ to scale the deviations of each observation, using the tuning constant 4.685:

dt =
rt

4.685σ
(E.6)

(e) Use Tukey’s biweight function to calculate new weights:

wt =

{
(1− d2

t )
2, dt < 1

0, otherwise
(E.7)

Fluctuations that are far from the mean get lower weights assigned. In case of an extreme
fluctuation, the weight is set to 0.

80



(f) Iterate until µ converges.

4. Center the fluctuations in the signal by subtracting their weighted mean, and scale with the
robust weights to obtain the corrected signal fluctuations:

y′t = wt(yt − µt) (E.8)

5. Compute the corrected signal by integrating the corrected signal fluctuations:

x′t =

N∑
t=1

y′t (E.9)

See Figure E.1 for an example of motion correction with the TDDR algorithm.
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Figure E.1: Example of motion correction with the TDDR algorithm on a ∆[HbO] trace of one of
the participants. The top part of this figure contains the uncorrected ∆[HbO] signal, the bottom part
contains the TDDR-corrected ∆[HbO]. Large spikes and baseline shifts that exist in the uncorrected
signal are mostly removed by the TDDR algorithm.
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Appendix F

FDR Correction Threshold

Figure F.1 shows a bar graph containing the 27 lowest p-values (arranged in ascending order) that
were generated by the 110 statistical tests that were performed. Recall that a p-value survives the
FDR correction if the following holds:

pi ≤
i

T
· q (F.1)

Where i is the index of the p-value under examination when all p-values are arranged in ascending
order, T is the total amount of hypothesis tests that were performed, and q is the FDR-rate,
which equals 0.05 in this research. In Figure F.1 the FDR correction threshold calculated based on
equation F.1 is visualized by the red line. It can be seen that the 15 smallest p-values survive the
FDR correction at q = 0.05, as their values are still below the FDR correction threshold.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 270

0.01

0.02

0.03

0.04

0.05

i

P-
va

lu
e

P-values
FDR threshold

Figure F.1: Graph containing the 27 smallest p-values generated by the 110 statistical tests per-
formed in this research and the FDR correction threshold. P-values below the threshold survive the
FDR correction.
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Appendix G

Classifier Hyperparameters

Table G.1: The hyperparameters of the LDA.

Parameter Value Description
Discriminant type Linear Specifies the choice between linear and quadratic discriminant analysis
Gamma 0 Regularization parameter for the covariance matrix
Delta 0 Linear coefficient threshold, to reduce dimensionality of the data space

Table G.2: The hyperparameters of the SVM.

Parameter Value Description
Box constraint 1 Parameter C in equation 2.19, to regulate the trade-off between the

width of the margin and the number of datapoints that are misclassified
during training

Kernel scale 1 Scaling of the data features
Standardize data Yes Standardization of the data
Kernel function Linear Specifies the choice between different types of kernel functions: linear,

quadratic, cubic, gaussian
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Appendix H

Confusion Matrices

H.1 Subject-Dependent Classifiers

Table H.1: Confusion matrix of the subject-dependent LDA over 1-second history.

Predicted
No fear Fear Recall

Actual No fear 251 85 74.70
Fear 107 217 66.98
Precision 70.11 71.85 70.91

Table H.2: Confusion matrix of the subject-dependent SVM over 1-second history.

Predicted
No fear Fear Recall

Actual No fear 258 78 76.79
Fear 104 220 67.90
Precision 71.27 73.83 72.42

Table H.3: Confusion matrix of the subject-dependent LDA over 3-second history.

Predicted
No fear Fear Recall

Actual No fear 244 92 72.62
Fear 105 219 67.59
Precision 69.91 70.42 70.15
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Table H.4: Confusion matrix of the subject-dependent SVM over 3-second history.

Predicted
No fear Fear Recall

Actual No fear 256 80 76.19
Fear 104 220 67.90
Precision 71.11 73.33 72.12

Table H.5: Confusion matrix of the subject-dependent LDA over 5-second history.

Predicted
No fear Fear Recall

Actual No fear 229 107 68.15
Fear 110 214 66.05
Precision 67.55 66.67 67.12

Table H.6: Confusion matrix of the subject-dependent SVM over 5-second history.

Predicted
No fear Fear Recall

Actual No fear 248 88 73.81
Fear 103 221 68.21
Precision 70.66 71.52 71.06

H.2 Subject-Independent Classifiers

Table H.7: Confusion matrix of the subject-independent LDA over 1-second history.

Predicted
No fear Fear Recall

Actual No fear 665 175 79.17
Fear 238 590 71.26
Precision 73.64 77.12 75.24

Table H.8: Confusion matrix of the subject-independent SVM over 1-second history.

Predicted
No fear Fear Recall

Actual No fear 678 162 80.71
Fear 251 577 69.69
Precision 72.98 78.08 75.24
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Table H.9: Confusion matrix of the subject-independent LDA over 3-second history.

Predicted
No fear Fear Recall

Actual No fear 680 160 80.95
Fear 221 607 73.31
Precision 75.47 79.14 77.16

Table H.10: Confusion matrix of the subject-independent SVM over 3-second history.

Predicted
No fear Fear Recall

Actual No fear 696 144 82.86
Fear 236 592 71.50
Precision 74.68 80.43 77.22

Table H.11: Confusion matrix of the subject-independent LDA over 5-second history.

Predicted
No fear Fear Recall

Actual No fear 679 161 80.83
Fear 229 599 72.34
Precision 74.78 78.82 76.62

Table H.12: Confusion matrix of the subject-independent SVM over 5-second history.

Predicted
No fear Fear Recall

Actual No fear 696 144 82.86
Fear 234 594 71.74
Precision 74.84 80.49 77.34

86



Appendix I

Scatter Plots Error Analysis

I.1 Subject-Dependent Classifiers
Scatter plots of the train and test data of the subject-dependent classifiers on the 3-second history
and 5-second history data of participants 1, 2, 7, and 9 are given in Figures I.1, I.2, I.3, and I.4,
respectively. PCA was used to compute the first two principal components of the train data of the
3-second history and the 5-second history separately, see section I.3. For both types of history, the
train and test data are plotted against the first two principal components of the train data.
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(d) 5s history test data.

Figure I.1: Train and test data of the subject-dependent classifiers on 3-second history and 5-second
history of participant 1.
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The scatter plots given in Figure I.1 show that the test data of participant 1 is almost perfectly
linearly separable along the first principal component for both the 3-second history and the 5-second
history. However, the corresponding train data shows a pattern that is slightly different, where the
data can be separated more accurately along the second principal component instead. Applying the
separation along the second principal component to the test data yields accuracies around the level
of chance.
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(d) 5s history test data.

Figure I.2: Train and test data of the subject-dependent classifiers on 3-second history and 5-second
history of participant 2.

From Figure I.2 it can clearly be seen that the train data of participant 2 shows a pattern that is
very contradictory to that of its test data. Therefore, the trained classifiers will not generalize well
on the available test data of this participant, leading to very poor accuracies.
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(d) 5s history test data.

Figure I.3: Train and test data of the subject-dependent classifiers on 3-second history and 5-second
history of participant 7.

The scatter plots given in Figure I.3 show that the train and test data of participant 7 follow
very similar patterns. Furthermore, a clear distinction is visible between the test data labeled as
"Fear" and the test data labeled as "No fear", which makes it easy to separate the data using a
linear classifier. This explains why the subject-dependent classifiers of participant 7 reach very high
accuracies.
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(d) 5s history test data.

Figure I.4: Train and test data of the subject-dependent classifiers on 3-second history and 5-second
history of participant 9.

Finally, the scatter plots of the data of participant 9 in Figure I.4 show a pattern that is similar
to that of participant 1. The test data is linearly separable along the first principal component.
However, this is not the case for the train data, which can better be separated along the second
principal component. Therefore, the models trained on this participant’s train data are unlikely to
generalize well to the test data.
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I.2 Subject-Independent Classifiers
Scatter plots of the train and test data of the subject-independent classifiers on the 3-second history
and 5-second history data of participants 2 and 10 are given in Figures I.5 and I.6, respectively.
Again, PCA was used to compute the first two principal component of the train data of the different
types of history, see section I.3, which serve as the axes along which both the train and test data
are plotted.
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(b) 3s history test data.
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(d) 5s history test data.

Figure I.5: Train and test data of the subject-independent classifiers on 3-second history and
5-second history of participant 2.

Figure I.5 shows that the train data of participant 2 consists of mostly negative values along the
first principal component for the "No fear" data, whereas the data of the "Fear" class has mostly
positive values along the first principal component. However, this pattern is not reflected in the test
data of participant 2. In fact, the test data of participant 2 is not linearly separable at all. This
explains why the classifiers trained on the train data of participant 2 do not perform well on the
test data.
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(c) 5s history train data.
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Figure I.6: Train and test data of the subject-independent classifiers on 3-second history and
5-second history of participant 10.

The train data of participant 10 also shows that the data labeled as "No fear" consists of mostly
negative values along the first principal component, whereas the data labeled as "Fear" consists of
mostly positive values along the first principal component. See Figure I.6. Similar patterns can be
observed from this participant’s test data. The test data of participant 10 is not perfectly linearly
separable. However, the similarities in the patterns of the train and test data of this participant
explain why the classifiers perform at rather high accuracies in this case.

I.3 Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality-reduction method that aims to find a low-
dimensional representation of a given dataset that contains as much of the variation of the original
dataset as possible [134]. It does so by finding an orthogonal projection of the original data onto a
lower-dimensional subspace where the variance in the projected data is maximized [136, 137]. Let’s
consider a dataset {xn} where n = 1, ..., N and every datapoints has f features (dimensions). PCA
can be used to reduce the dimensionality of the data from f to k, where f ≤ k. The step-to-step
approach to this dimensionality reduction using PCA is as follows:

1. PCA assumes that the data of every dimension has zero mean. Therefore, the data has to be
standardized first.

2. Calculate the covariance matrix of the standardized data:

Σ =
1

N

N∑
n=1

(xn − x)(xn − x)T (I.1)
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Where x represents the sample mean of the original dataset.

3. Calculate the eigenvalues and eigenvectors of the covariance matrix Σ using the following
relation:

Σv = λv (I.2)

Where λ is the eigenvalue of the eigenvector v associated with Σ.

4. The variance in the data is largest when it is projected onto the eigenvector with the largest
eigenvalue. Therefore, project the original data onto the k-dimensional subspace, using the k
eigenvectors with the largest eigenvalues:

zn =


vT1 xn
vT2 xn
...

vTk xn

 (I.3)

Where zn denotes the projected data.
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Appendix J

Pre-Experiment and Post-Experiment
AQ Scores

Figures J.1 and J.2 give the pre-experiment and post-experiment AQ scores of the control group and
the experimental group, respectively. The figures show that there are some inconsistencies in the
pre-experiment and post-experiment AQ scores for both groups. In Figure J.1 it can be seen that two
participants of the control group exceed the threshold AQ score of 20 with their post-experiment AQ
scores. Figure J.2 shows that four participants of the experimental group score below the threshold
AQ score of 35 with their post-experiment AQ scores.
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Figure J.1: Overview of the pre-experiment and post-experiment AQ scores of the control group.
Participants were selected to be part of the control group if both their pre-experiment and post-
experiment AQ scores were below the threshold value of 20.
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Figure J.2: Overview of the pre-experiment and post-experiment AQ scores of the experimental
group. Participants were selected to be part of the experimental group if both their pre-experiment
and post-experiment AQ scores were equal to or higher than the threshold value of 35.
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