
 

 

RISK ASSESSMENT OF BARK 

BEETLE OUTBREAK IN THE 

SCHWARZWALD NATIONAL 

PARK 

FERNANDO FERNANDEZ PEREZ 

June, 2020 

SUPERVISORS: 

Dr. I.C. van Duren 

Drs. J.M. Looijen 





Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Spatial Engineering. 

SUPERVISORS: 

Dr. I.C. van Duren 

Drs. J.M. Looijen 

THESIS ASSESSMENT BOARD: 

Dr. R. Darvish (Chair) 

Prof.dr.ir. G.J.M.M. Nabuurs (External Examiner, Wageningen University) 

RISK ASSESSMENT OF BARK 

BEETLE OUTBREAK IN THE 

SCHWARZWALD NATIONAL 

PARK  

FERNANDO FERNANDEZ PEREZ 

Enschede, The Netherlands, June, 2020 



DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 



i 

ABSTRACT 

The main threat of Norway spruces (Picea abies L.) in Europe is the bark beetle (Ips typographus L.). This 

insect is able to colonize weakened trees, but when there is a mass-attack, it can also breed in healthy trees. 

Forest management in Europe tries to minimize the severe effects of this pest. By knowing in which areas 

the outbreak probability is higher, the monitoring resources can be optimized. Modeling the distribution of 

bark beetles has been done before, obtaining different results in each study area. Therefore, our objective is 

to identify which spatial variables can be used for predicting the bark beetle outbreak in the Schwarzwald 

National Park. To that aim, a model created with boosted regression trees was applied. In order to avoid 

spatial autocorrelation, ten sub-models were calculated. The most important variables for predicting bark 

beetle outbreak in the study area were number of Norway spruces, height of Norway spruces, altitude, soil 

depth, slope, and percentage of Norway spruces compared with other tree species. These variables, in 

combination with other predictors, were used for creating the outbreak probability map. By using AUC as 

a validation method, the accuracy was 0.8. The model performance was also assessed with TSS, obtaining 

an accuracy of 0.49. This research provides insights into the spatial variables that can predict bark beetle 

outbreaks, which will support the decision-making process carried out by the National Park committee. 

Keywords: Bark beetle outbreak, Ips typographus, BRT, SDM, Norway spruce, spatial variables 
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1. INTRODUCTION 

Bark beetles (Ips typographus L.) outbreaks are the biggest biotic threat to Norway spruce (Picea abies L.) in 

Europe (Caudullo, Tinner, & Rigo, 2016). This pest can cause significant economic losses and reduce other 

ecosystem services provided by the forest (Hlásny, Krokene, & Liebhold, 2019). It is expected that with 

climate change, the spread of bark beetles will rise (Bentz & Jönsson, 2015; Ogris & Jurc, 2010; Seidl, 

Schelhaas, Lindner, & Lexer, 2009). Norway spruces are sensitive to this type of disturbance when they are 

weakened. Importantly, when the bark beetle population has enough breeding material in the forest, a mass 

outbreak can take place, also affecting the healthy trees (Caudullo et al., 2016; Christiansen & Bakke, 1988).  

However, natural disturbances of the forest system are needed, since they are the drivers of the 

current forest ecosystems (Peltzer, Bast, Wilson, & Gerry, 2000). By means of disturbances, the abundance 

of forest species, the succession, and biodiversity are affected in the communities (Peltzer et al., 2000; Raffa 

et al., 2009).  

1.1. Bark beetles ecology 

In nature, there are around 6.000 different species of bark beetles (Hlásny et al., 2019). The most harmful 

species in Europe is the Ips typographus L. (Caudullo et al., 2016; Overbeck & Schmidt, 2012; Seidl, Schelhaas, 

& Lexer, 2011), which breeds in Norway spruces. Therefore, the bark beetle species of the Ips typographus 

will be the focus of the present study.  

Bark beetle is considered a secondary pest, which means that it breeds in weakened trees (Lausch, 

Fahse, & Heurich, 2011). Hence, severe climatic events can damage trees, providing more breeding material, 

which leads to outbreaks of this insect (Giunta, Jenkins, Hebertson, & Munson, 2016).  

Usually, Norway spruces have defenses against the colonization of the bark beetle, such as chemical, 

anatomical, and physiological (Hlásny et al., 2019). Christiansen & Bakke (1988) give the example of the 

oleoresin that is produced by the host tree. This oleoresin is expelled to sanitize and seal the wounds. The 

tree has the ability to defend itself against a certain amount of attacks. However, when a mass-attack takes 

place, the tree has not enough resources for producing defenses, and due to its amount, the bark beetle 

population is able to colonize healthy trees, as well (Christiansen & Bakke, 1988).  

The Norway spruce represents not the only interaction that bark beetles have with other species. 

They are also associated with bluestain fungi, which uses the bark beetle for transport purposes. These 

microorganisms penetrate in the xylem of the tree, affecting the water flow (Hall, Castilla, White, Cooke, & 

Skakun, 2016). What the bark beetle gets in return is a source of nutrients for the larvae and protection 

against pathogens (Hlásny et al., 2019).  
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Natural enemies of bark beetles are predators (woodpeckers, flies, mites, mice, shrews, ants, and 

wasps), parasites (wasps, and nematodes), and pathogens (braconids and chalcids) (Christiansen & Bakke, 

1988; Hlásny et al., 2019; Wegensteiner, Wermelinger, & Herrmann, 2015). As mentioned by Wegensteiner 

et al. (2015), these enemies hardly succeed in controlling the bark beetle population.  

1.2. Population dynamics 

The bark beetle attack is initiated in the weakened trees, in which the bark beetle is able to overcome the 

defenses of the trees (Hlásny et al., 2019). Nevertheless, as the population grows, the population attacks 

healthy trees and the symptoms of the attack can be classified into three different phases: 

- Green attack: In this first phase, the beetle enters the inner bark and attracts the mates. The females 

create the galleries for laying the eggs, and eggs are laid on the bark of the host tree (Abdullah, 2019; 

Hlásny et al., 2019). In this phase, the trees do not show yet any visual sign of being infested on the 

foliage (Hlásny et al., 2019). Boreholes, sawdust, and loss of bark on the trunk can be observed 

(Fassnacht, Latifi, Ghosh, Joshi, & Koch, 2014). In addition, the bark beetle inoculates the blue 

fungi, which disrupts the water and nutrient flow through the xylem and phloem by means of its 

spores. This disruption affects the cooling process of the host, increasing, consequently, its 

temperature (Abdullah, 2019). 

- Red attack: In this stage, the larvae hatch and feed on the bark by making tunnels into it. The larvae 

become adults and emerge from one tree to the ones, which are not with a high grade of infestation 

(Hlásny et al., 2019). The needles fade its color to yellow and then to red-brown (Abdullah, 2019; 

Fassnacht et al., 2014). This can last 1 or 2 years after the colonization of the tree (Hlásny et al., 

2019). 

- Grey attack: The effects on water and nutrient transport are critical, and the tree is not able to 

survive. The needles are lost (Hlásny et al., 2019). 

 

The life cycle of bark beetles can be univoltine, which means that the generation is completed annually. In 

this case, the adults emerge from the tree and disperse to hibernation sites (Hlásny et al., 2019). Nonetheless, 

in areas of Central Europe, bivoltine populations can be found, which means that there is a second 

generation in the same year (Christiansen & Bakke, 1988). Within the second generation, populations are 

build-up faster (Hlásny et al., 2019). This high development is aided by the increase in temperature (Hlásny 

et al., 2019). 

Two phases of a population can be differentiated (Figure 1). In the epidemic phase, the bark beetles 

are able to infest healthy trees. This is not the case in the endemic phase, in which most of the trees have 

enough defenses against the colonization, and the bark beetle population faces more difficulties (Hlásny et 

al., 2019). Therefore, at an endemic level, the colonization is influenced by the availability of hosts. In normal 

- or natural – conditions, the population is limited to endemic levels. Once the population is in an epidemic 
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phase, only the lack of resources, the outbreak of natural enemies, or extreme temperatures can shift back 

the population to the endemic phase (Raffa, Grégoire, & Lindgren, 2015). The dynamics between both 

phases of the population (i.e., endemic and epidemic) change according to some external factors (e.g., 

windthrow, drought, or natural enemies). Importantly, most outbreaks are caused by a combination of 

different factors (Raffa et al., 2015), which can be classified as biotic and abiotic factors. 

 

Figure 1. Bark beetle population dynamic. The diagram shows how the two phases of the population 
(endemic and epidemic) interact with each other. Factors that can trigger the phase change are indicated. 
Adapted from Hlásny et al. (2019). 
 

1.2.1. Abiotic factors relevant for bark beetles 

Abiotic factors relate to climate variables and create suitable conditions for the spread of bark beetles. In 

collaboration with other drivers, abiotic factors can cause great stress in the tree or even kill it (Millar & 

Stephenson, 2015).  

For instance, extreme climate events (e.g., storms) can damage trees. The windthrows are a perfect 

habitat for the breeding of bark beetles since the tree is weakened and not able to generate opposition against 

the colonization of the insect (Hlásny et al., 2019). Another example relates to temperature. High 

temperatures can induce stress in the trees since a loss of water by evapotranspiration is generated, which 

decreases the capacity of the tree for defending against the colonization (Raffa et al., 2015). This, combined 

with drought conditions, can trigger the development of the bark beetle population (Millar & Stephenson, 

2015). Noteworthy, the sun radiation received by the tree, and the temperature are determined by the 

topography of the area (Bentz & Jönsson, 2015). 

According to previous research, the defence of the tree is influenced by the changes in water balance 

and carbohydrate content. The resin secretion is done by means of conduits, which are affected by the turgor 

pressure of the parenchyma cells. Particularly, the water content has an influence on these cells turgor 

pressure (Baier, 1996; Christiansen & Bakke, 1988).  

One of the most important changes at a population-level occurs when weather conditions are very 

favorable for bark beetles. Then, the local population can turn from univoltine to multivoltine (Mezei, Jakuš, 

et al., 2017). 
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1.2.2. Biotic factors relevant for bark beetles 

A planted forest is defined as “a forest predominantly composed of trees established through planting 

and/or deliberate seeding” (FAO, 2018). In Europe, great areas of Norway spruces have been seeded for 

obtaining timber resources due to its high productivity (Klimo, Hager, & Kulhavý, 2000). However, the 

biodiversity in this type of forest is usually much lower than in a natural forest, which increases the effect 

of natural disturbances (Hlásny et al., 2019). Therefore, planted forests are particularly prone to bark beetle 

infestation (Klimo et al., 2000). 

As stated by Raffa et al. (2015), the forest structure has a strong importance in the outbreak. 

Specifically, a homogenous forest with mature individuals has a higher risk of being infested. On the 

contrary, heterogeneous forests are prone to maintain the population in the endemic phase (Hlásny et al., 

2019). Not only the forest structure is a driver of the bark beetle outbreak, but also the tree diameter and 

bark thickness, which are directly linked to the number of offspring (Hlásny et al., 2019). 

Moreover, as Jurc, Perko, Džeroski, Demšar, & Hrašovec (2006) stated, the location of the tree in 

the mountain can have an effect on the tree resistance against drought. The trees which are placed in the 

southern face of the mountain are adapted to more water-adverse conditions and develop a better root 

system, which makes them able to take water from higher depth in the soil. In addition, other biotic factors 

such as natural enemies, pathogens, symbionts, and competitors also have an effect on the population 

dynamic (Biedermann et al., 2019). 

1.2.3. Bark beetles and forest management 

The forest management approach followed in Europe tries to minimize the natural disturbances in order to 

maintain the forest structure and biodiversity (Seidl, Rammer, Jäger, & Lexer, 2008). Two main management 

strategies, according to the objectives of the forest owners and forest managers, can be differentiated 

(Hlásny et al., 2019). First, the multifunctional and production forest (MFPF) tries to reduce the bark beetle 

effects on timber production, since the main purpose is to get an economic benefit from the sale of wood 

(Hlásny et al., 2019; Zýval, Křenová, & Kindlmann, 2016). The ownership of this forest is normally private 

(Zýval et al., 2016). The second management approach occurs in high conservation value forests (HCVF). 

The management aims to maintain biodiversity and natural processes. Thus, the bark beetle outbreak is 

perceived as a natural disturbance with high importance on biodiversity, since it hits the monoculture forest, 

leaving space for regeneration with other tree species which will make the forest wilder (Hlásny et al., 2019; 

Lehnert, Bässler, Brandl, Burton, & Müller, 2013; Müller, Bußler, Goßner, Rettelbach, & Duelli, 2008). This 

kind of management normally takes place in state-owned forests (Hlásny et al., 2019; Zýval et al., 2016). The 

legislation differs in both types of forests. Compared to the MFPF, the HCVF has more legal restrictions 

related to the management of bark beetle (Hlásny et al., 2019). 

 

Measures 

The measures can be classified into consonance with the management strategy. For the MFPF, one of the 

measures is to reduce the rotation period, since the infestation is related to the age of the trees (Hlásny et 
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al., 2019). Another strategy is to reduce the availability of host trees by supporting the increase of biodiversity 

in forests (Hlásny et al., 2019). The removal of trees that are affected by wind, snow, or ice also reduces the 

risk (Hlásny et al., 2019). For managing the bark beetle population, sanitation felling can be used. By the 

extraction of already colonized trees from the forest,  an infestation of healthy trees can be avoided (Hlásny 

et al., 2019; Stadelmann, Bugmann, Meier, Wermelinger, & Bigler, 2013). Salvage logging is another 

technique that tries to diminish the effects of bark beetles on the timber quality and price by removing 

infested and damaged trees (Hlásny et al., 2019; Stadelmann, Bugmann, Meier, et al., 2013).  

However, in the HCVF, different measures take place. The most important one is the zoning. With 

this procedure, a non-intervention area is left without intervention, fostering the natural development of the 

ecosystem and the biodiversity (Hlásny et al., 2019; Zýval et al., 2016). This area is surrounded by a buffer 

area in which the intervention is allowed on a different level, depending on the local management plan 

(Hlásny et al., 2019). 

  

Monitoring bark beetle infestations 

As aforementioned, most of the measures take place once the bark beetle is in the outbreak phase. 

However, forest management is aimed at minimizing the outbreak risk (de Groot, Diaci, & Ogris, 2019; 

Fahse & Heurich, 2011; Netherer & Nopp-Mayr, 2005; Overbeck & Schmidt, 2012). Knowing which 

areas are at higher risk is useful for the optimization of financial and labor resources (Netherer & Nopp-

Mayr, 2005). This can be done by identifying local conditions that increase the outbreak probability 

(Pasztor, Matulla, Rammer, & Lexer, 2014). 

Some efforts have been made to describe the population distribution of the bark beetle. In the 

review from Bentz & Jönsson (2015), it is concluded that the most important variables for describing the 

spread of bark beetles in every study change according to the area where the study was performed.  

In this review, it could be demonstrated that in the Tatra mountains (Slovakia and Poland) various 

indicators, such as terrain, climate, soil, forest structure, or forest damage, are used in the description of 

bark beetle distribution (Netherer & Nopp-Mayr, 2005). Another study showed that in the European Alps, 

dry summers, and warm temperatures are the most important variables (Marini, Ayres, Battisti, & Faccoli, 

2012). In Austria,  it was demonstrated that climate means and extremes are the best indicators for the bark 

beetle outbreak, but they can be highly influenced by the forest management (Thom, Seidl, Steyrer, Krehan, 

& Formayer, 2013). In Switzerland, the most important variables for assessing the population dynamics 

were the temperature, volume of Norway spruce, and storm damage (Stadelmann, Bugmann, Wermelinger, 

Meier, & Bigler, 2013). Another study carried out in Sweden suggested that after a storm,  damaged trees 

have a great influence on the bark beetle outbreak (Marini, Lindelöw, Jönsson, Wulff, & Schroeder, 2013). 

In the same area, the influence of different predictors studied, being the amount of Norway spruce the 

highest predictable effect (Kärvemo, Van Boeckel, Gilbert, Grégoire, & Schroeder, 2014). Finally, in 

Slovenia, it was revealed that the trees in the northeast slopes of the mountains are more exposed to bark 

beetle infestation since they are more sensitive to drought (Jurc et al., 2006). Another study in the same area 
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suggested that the most important variables are the amount of Norway spruce trees, climate variables, 

salvage logging previous year, and the number of trees infested by bark beetles (de Groot & Ogris, 2019). 

 Peter Baier, Pennerstorfer, & Schopf (2007) created the PHENIPS model for simulating the brood 

development of the bark beetle. This model calculates the microclimatic conditions (temperature and solar 

radiation) by using the topography. It was validated in Kalkalpen National Park (Austria). The LPJ-GUESS 

ecosystem model was built based on the fact that in Sweden, the risk of infestation by bark beetle is directly 

related to the breeding material after extreme climatic events (Jönsson, Schroeder, Lagergren, Anderbrant, 

& Smith, 2012).  

In the light of forest management,  a model for simulating the required sanitary felling due to bark 

beetle infestation was created (Ogris & Jurc, 2010). This model used 21 different variables and was 

successfully applied in Slovenia. The impact of sanitation felling and salvage logging in Switzerland was 

analyzed and concluded that, if it is done at the right time, it can reduce the impact of the bark beetle in the 

forest (Stadelmann, Bugmann, Meier, et al.,2013). This idea is supported by further studies, which came to 

the conclusion that salvage logging has a more positive effect than sanitation felling (Havašová, Ferenčík, & 

Jakuš, 2017). Another agent-based model was developed by Fahse & Heurich (2011) for predicting the 

outbreak risk using the impact of antagonists and management. It was concluded that if 80% of beetles are 

removed, there is a low risk of having an outbreak.  

1.3. Species distribution modeling 

After the previously mentioned findings, it can be observed that every study uses a different statistical 

method for analyzing the importance of the variables in predicting a bark beetle outbreak. Some of the 

methods are principal component regressions (Thom et al., 2013), expert knowledge (Netherer & Nopp-

Mayr, 2005), general linear models (de Groot et al., 2019; Marini et al., 2012), general additive models (Mezei, 

Blaženec, Grodzki, Škvarenina, & Jakuš, 2017),or boosted regression trees (Kärvemo et al., 2014). 

All methods are species distribution models (SDM), statistical approaches that enable predicting the 

species occurrence based on environmental variables (Elith & Leathwick, 2009). Input data for these models 

are a dependent variable, which corresponds to the absence-presence data of a species, and the independent 

variables, which are the environmental predictors. The predictor variables can be numeric, binary, or 

categorical (Elith, Leathwick, & Hastie, 2008). 

In former research, methodological obstacles have occurred. Conventional regression models have 

been shown to be too simplistic to represent interaction among variables (Elith et al., 2008). More methods 

were developed, but the problem came when every individual method was giving different results. 

Therefore, the concept of ensemble methods was introduced, with the purpose of using several models, 

providing more robust results (Araújo & New, 2007). This principle is used by boosted regression trees 

(BRT), a machine learning method that has been applied successfully in other investigations with the 

purpose of mapping species distribution (Akayezu, van Duren, Groen, Grueter, & Robbins, 2019; Froeschke 
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& Froeschke, 2011; Sproull, Bukowski, McNutt, Zwijacz-Kozica, & Szwagrzyk, 2017; Veran et al., 2016; 

Vorster et al., 2017).  

 

 Boosted regression trees 

Boosted regression trees combine the predictions from weak classifiers - namely, simple regression tree 

models - with the purpose of getting a stronger classifier (De’ath, 2007; Elith et al., 2008). It uses two 

different algorithms for improving the performance: regression trees and boosting. Regression trees consists 

of continuous binary splits of the predictor variables with the purpose of fitting them to the response 

variable. Each of the groups in the end nodes is the most homogeneous possible (De’ath & Katharina, 

2003). With this algorithm, the interaction between predictors can be modelled. The algorithm is very 

sensitive to the training data (Elith et al., 2008), but this can be solved by the use of boosting. This algorithm 

improves model performance by combining the results of different trees and getting the average (De’ath, 

2007; Elith et al., 2008). This algorithm is sequential, which means that in every step, a new tree is built on 

the results of the previous tree, reweighting at every new stage and improving the performance (De’ath, 

2007; Elith et al., 2008). Stochasticity is an important characteristic of this method, as it reduces overfitting 

and introduces variability in the results. This randomness is created in the model by only using a sub-sample 

of the training data for fitting every regression tree (De’ath, 2007; Elith et al., 2008).   

1.4. Research problem and purpose of the study 

Bark beetles cause damage in forests, where Norway spruces occur. Therefore, a map of areas that can be 

prone to bark beetle infestation is highly needed for decreasing the impact of this insect. Previous studies 

identified different variables that, in every region, determine the future presence of this species. In the 

Schwarzwald National Park, investigations regarding the mapping of areas prone to bark beetle infestation 

have been lacking. Therefore, the objective of the present study is to analyze which spatial variables can be 

linked to the outbreak of bark beetle in our study area (i.e., Schwarzwald National Park), in order to create 

an outbreak probability map. This research can be divided into three research questions: 

1. What spatial variables are good candidates for building a predictive model for bark beetle 

infestation?  

2. What statistical model provides the strongest prediction of bark beetle infestation?  

3. Where is the probability of bark beetle infestation highest and lowest in the study area?  
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2. MATERIAL AND METHODS 

The first part of this section describes the study area. Then, the structure follows the research questions 

(Figure 2). For the first research question, we want to identify the candidate variables for building the 

model. The list is explained in this section, as these variables will be needed for the selection of the variables 

in the second research question. Apart from that, the data and method used in the second research question 

are explained. This section concludes with an explanation of how the prediction map was done and the 

accuracy of the model calculated, which correspond to the third research question.  

 

 

Figure 2. Steps of the method used in this research. This figure shows the steps taken in the 
methodology of the study and its relation with the research questions. The rectangles indicate a process and 
the parallelograms data inputs or outputs. 

 

2.1. Study area 

The research has been carried out in the Schwarzwald National Park, which is located in the south-west of 

Germany, in the federal state of Baden-Württemberg (Figure 3). In 2014, this area was declared National 

Park (Waldmanagement im Nationalpark Schwarzwald, 2017). 
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Figure 3. Study area and elevation map. The first image shows the location of our study area in Germany. 
On the right side, it is displayed a map of the elevation in the study area. This information was obtained 
from the Copernicus Land Monitoring Service. 
  

The surface of the Schwarzwald National Park is 10,062 hectares. The elevation in the area ranges between 

approximately 500 and 1100 meters (Figure 4). Due to this variation in altitude, the temperature also 

oscillates, with a yearly average around 7.2 °C (“DWD portal. Freudenstadt weather station,” 2020), with 

the highest temperatures reached within the months of June, July, and August. Conversely, in January and 

February, the lowest temperatures can be found (Figure 4a). The annual precipitation in the area is 

approximately 2100 mm (“DWD portal. Baiersbronn-Ruhestein weather station,” 2020). The precipitation 

is well distributed over the year (Figure 4b). Part of this precipitation falls in the form of snow. 

 

Figure 4. Weather data of the Schwarzwald National Park. The monthly average of the temperature (a) 
is from the period of 1981-2010, while the monthly average of precipitation (b) is from the period of 2006-
2018. This information has been obtained from the Deutscher Wetterdienst portal. 
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The temperate forest in the National Park is dominated by Norway spruces (Picea abies), with 70% of the 

trees. The silver fir (Abies alba) is the second most dominant specie (12%), followed by Scots pine (Pinus 

sylvestris) (6%). The most frequent deciduous species is the European beech (Fagus sylvatica) (5%). 

(Waldmanagement im Nationalpark Schwarzwald, 2017). The bedrock is mainly granite and gneiss, originating 

gley and podzol soils, which are acidic and low in nutrients (“Black Forest National Park Portal,” 2020).  

The management in the National Park follows a zoning strategy (Figure 5) (Waldmanagement im 

Nationalpark Schwarzwald, 2017). 33% of the surface is part of the core area, where the natural processes 

cannot be altered by human influence. Forest management measures can only be taken if there is a critical 

disturbance that threatens the survival of a species, or for protection of neighbouring areas.  

41% of the National Park area is designated as a development zone. This area will become part of 

the core zone after 30 years. The management in this area is done with the purpose of boosting natural 

processes. Examples of these measures are the increase of the mixed-forests area, restoration of bogs, and 

protection of species biotopes. In this area, bark beetles attacks in the endemic phase are considered 

important, since they create open areas for mixed-forest and drive the regeneration of the forest. However, 

there is a management plan against mass-attacks.  

The remaining area (26%) is considered a management zone, in which human interventions have 

the aim of protecting surrounding areas. In this buffer area, intense bark beetle management is carried out, 

with measures such as weekly monitoring or sanitation logging. In order to increase the effectiveness of this 

area, in the long term, silvicultural measures aim to increase the mixed-forest cover. 

The FVA institute is in charge of bark beetle monitoring. As soon as there is an outbreak alert, the 

committee “Regel-Jour fixe Borkenkäfer-Management im Nationalpark Schwarzwald“ takes the decision 

about the management that is carried out. The stakeholders that are part of this committee are local 

authorities, representatives of the federal state government, FVA Institute, and the National Park managers 

(Waldmanagement im Nationalpark Schwarzwald, 2017).  
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Figure 5. Management zones of the Schwarzwald National Park. In this figure, the different 
management zones are shown. This information has been provided by The Forest Research Institute Baden-
Wuerttemberg (FVA). 
 

2.2. Variables 

A literature review was performed to answer the first research question “What spatial variables are good 

candidates for building a predictive model for bark beetle infestation?”. Once all the variables that have been 

used by other authors were listed, the list was reduced, taking into account significance in the study area, 

and data availability. The variables can be grouped into four different groups: topography, vegetation, soil, 

and landscape. 

2.2.1. Candidate variables  

 

Topography 

´The topographic variables were selected to examine how the location of the trees in the mountain could 

affect the infestation risk. As it is a mountainous area, the elevation and slope have high variability and 
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potentially could be related to bark beetles presence (Sproull et al., 2017). Northness and eastness have been 

used in previous studies (Stadelmann, Bugmann, Wermelinger, & Bigler, 2014; Vorster et al., 2017) and are 

the transformation of the circular scale of the aspect to a linear scale. The irradiation (Baier et al., 2007) and 

topographic wetness index (TWI) (FVA Annual report, 2017) can explain the effect of sun and water in the 

distribution of bark beetles. TWI analyzes where the water is accumulated in the terrain (Mattivi, Franci, 

Lambertini, & Bitelli, 2019).  

 

Vegetation 

In relation to vegetation, three sub-groups of variables can be found. The first sub-group contains variables 

related to tree parameters, such as rooting depth, or leaf area index (LAI), which have been used by Netherer 

et al., (2019). Rooting depth influences the water storage capacity in the soil (Matthews et al., 2018). On the 

other hand, LAI is a variable that has an effect on transpiration and interception by the tree. The age of the 

Norway spruces was included by Seidl, Baier, Rammer, Schopf, & Lexer, (2007) since older trees are more 

prone to be infested. Norway spruces height can be taken as a representative of the age of the trees if the 

age of the tree is not available (Čihák & Vejpustková, 2018; Netherer et al., 2019; Thom et al., 2013). 

The second sub-group of vegetation variables is related to forest structure. Among these variables, 

the number of Norway spruces and the total vegetation describe the tree canopy density per pixel (Netherer 

& Nopp-Mayr, 2005). The percentage of Norway spruces among all the tree species is indicative of the tree 

diversity of the forest (Thom et al., 2013). 

Variables from the third sub-group are related to previous damages that have weakened trees, 

creating breeding substrate for bark beetles. One example of these variables is the number of Norway 

spruce, which were affected the previous year (de Groot & Ogris, 2019). A comparable variable is the 

sanitary felling data from the previous year (de Groot & Ogris, 2019; Kautz, Dworschak, Gruppe, & Schopf, 

2011). Storm-felled trees of the previous year were also employed in recent studies (Marini et al., 2017; 

Netherer & Nopp-Mayr, 2005; Stadelmann, Bugmann, Meier, et al., 2013). In addition, Stadelmann et al., 

2013 investigated salvage logging data, which is representative of damaged trees. Moreover, the snow effect 

on the trees was included in models with the parameter snow breakage (Netherer & Nopp-Mayr, 2005). The 

datasets from this sub-group can also be included in the models as distance maps. 

 

Soil 

The soil characteristics can determine the development of the roots (Puhe, 2003), which has an effect on 

the tree condition. Consequently, the soil also affects the defense system of the tree (Christiansen & Bakke, 

1988). The depth of the soil is associated with the capacity to retain water (Hengl et al., 2017; Puhe, 2003), 

since deeper soils have a higher water retention capacity, which can contribute positively to the defenses 

against bark beetles (Rehschuh, Mette, Menzel, & Buras, 2017). Moreover, when the soil is shallow, sufficient 

vertical penetration of the roots is not possible. Thus, the tree has a higher risk of being affected by 

windthrow (Puhe, 2003). The soil organic carbon stock variable was previously used since it improves the 
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soil structure and properties (Blanco-Canqui et al., 2013). Along the same lines, the cation exchange capacity 

(CEC) influences the tree access to minerals (Hobbie et al., 2007; Jentschke et al., 2001). Therefore, a high 

CEC could lead to a lower risk of bark beetle infestation, as shown by de Groot & Ogris, 2019. In the same 

article, soil base saturation was included as a representative of the calcium availability in the soil.  

The type of soil, as well as some structural characteristics of the soil, such as porosity, bulk density, 

or permeability, were utilized by Ogris & Jurc, 2010. Netherer et al., 2019 further included the saturated 

water content of the soil derived from the soil texture. 

 

Landscape 

Regarding landscape variables, previous studies suggested that the higher the proximity to streams, the 

higher will be the water availability for the tree, hence the lower the infestation risk (Ogris & Jurc, 2010). By 

including the distance to paths and roads as a variable, it is possible to test whether the open areas can act 

as a corridor for the bark beetles spread. It is similar to the variable edge effect used by Netherer & Nopp-

Mayr, 2005. 

Apart from the groups that have been commented, previous studies implemented weather variables, 

such as temperature and precipitation (Baier et al., 2007; Marini et al., 2017). However, our area is not very 

extensive, which means that the spatial variation of how these variables affect the vegetation is rather related 

to the previously mentioned variables.  

2.2.2. Selected variables 

As the study area is a mountainous region, and the topography changes, all topographic variables have been 

selected. Regarding the vegetation variables, the selected predictors are Norway spruces height, number of 

Norway spruces per pixel, total vegetation per pixel, and the percentage of Norway spruces among all species 

in the pixel. The vegetation variables related to damage to the forest were not used because the model 

created does not take into account the temporal aspect. Rooting depth and LAI was not selected because 

the data was not available. The only soil variables available in the study area are soil depth, soil organic 

carbon stock, and cation exchange capacity. As landscape variables, both proximities to streams, and 

distance to paths and roads were used. 

2.3. Data 

Once the selection of variables has been made, the next steps required were data acquisition and data 

processing. These steps were different for every group of variables. The description can be found in this 

section.  

2.3.1. Data acquisition 

The boundary of the study area was obtained from the Department of Ecosystem Monitoring, Research, 

and Wildlife Conservation from the National Park. For the topographic variables, the digital elevation model 

(DEM) was downloaded from Copernicus Land Monitoring Service and had a resolution of 25 m. 
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The vegetation layer was also obtained from the Department of Ecosystem Monitoring, Research, 

and Wildlife Conservation from the National Park. This point layer was created with multispectral 

photography acquired in 2014/2015 and LIDAR data from 2015. A classification using random forest 

algorithm was carried out with trees higher than 15 m and a crown surface above 10 m2. This shapefile 

contains information for every point about the monitoring date, tree species, height, and crown area.  

The soil layers were downloaded from Soilgrids data portal. This portal has been created by ISRIC 

- World Soil Information. The layers have a resolution of 250 m. The datasets downloaded were depth to 

bedrock, in cm; soil organic carbon stock, in tons/ha and depths between 0-5 cm, and cation exchange 

capacity in the upper soil layer, in cmolc/kg. The landscape variables used in the model were obtained from 

the Department of Ecosystem Monitoring, Research, and Wildlife Conservation from the National Park. 

Lastly, the bark beetle infestation layer was obtained from the National Park. This layer was created 

as part of the IpsPro-Project from the FVA Institute. In this project, aerial photography from 2014 to 2019 

was used for classifying which areas suffer a bark beetle infestation in the Schwarzwald National Park. The 

used algorithm for classifying the images was random forest. Every polygon contains information about the 

infestation date. 

2.3.2. Data processing 

In this section, the steps taken for creating the input layers of the model are described. First, the variable 

layers, which were vectors, were all rasterized. At the end of this step, every layer had a pixel size of 25 m, 

and the coordinate reference system used was EPSG: 25832. The preprocessing of the datasets was 

performed using QGIS, and R (R Development Core Team, 2008). Table 1 displays a brief description of 

the layers used. In the “Short name” column, the variable name for every layer during the processing steps 

is indicated. In the following, variable names in tables and figures will be referred to according to the short 

name provided in Table 1.  

 

Table 1. Description of input layers used. The table provides information about the variables groups, 
the variables that belong to every group, the name used in the model, units of the maps, and range of values. 

Variables group Variable Short name Unit Ranges 

Topographic Altitude Altitude m 490 – 1089 

Slope Slope degrees 0-90 

Northness Northness south or 

north 

-1 to 1 

Eastness Eastness west or east -1 to 1 

Irradiation Irradiation Wh/m2/day 2151-7106 

Topographic Wetness 

Index 

Topographic 

Wetness Index 

 6.606–19.773 
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Vegetation  Norway spruces total NS_sum number of 

trees / pixel 

1-22 

Norway spruces % NS_perc % 7.1-100 

Norway spruces height NS_height m 15-51.3 

Total vegetation Veg_total number of 

trees / pixel 

1-36 

Soil Depth Depth cm 645-1523 

Soil organic carbon stock Soil_org_stock tons/ha 39-56 

Cation exchange 

capacity 

Soil_cat cmolc/kg 30-66 

Landscape Distance to paths Dist_paths m 0-285 

Distance to water 

sources 

Dist_streams m 0-863 

 

Topography 

The digital elevation model (DEM) was used for creating different layers (Figure 6). First, the altitude and 

slope were obtained. Second, the northness and eastness were calculated from the aspect, being northness 

the cosin, and eastness the sin of it. These maps have a value range from -1 to 1. The highest values indicate 

northern and eastern slopes, while lowest values indicate southern and western slopes, respectively. 

The sun radiation was obtained with the r.sun.insoltime algorithm from GRASS (Hofierka & Súri, 

2002; Neteler, Bowman, Landa, & Metz, 2012). The sun radiation was calculated for the 15th day of the 

month in each month in which the bark beetle is active (from April until September). Then, the average of 

all these maps was calculated. The unit of this map is Wh/m2/day. 

In order to calculate the TWI, the Topographic Wetness Index from SAGA GIS (Conrad et al., 

2015), implemented in QGIS, was used. 

 

  

Figure 6. Workflow corresponding to the topographic variables. From the digital elevation model  
(DEM) different input maps were obtained.  
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Vegetation 

Since the initial vegetation map was a point layer, the initial step was to rasterize this map in order to extract 

different information. First of all, the number of spruces per pixel was obtained. Then, the total number of 

trees per pixel was extracted. With the previous two maps, the percentage of Norway spruces compared to 

other species can be calculated. Finally, the average height of the Norway spruces per pixel was obtained. 

In Figure 7 the processing steps taken for these layers are displayed. 

 

 

 

Figure 7. Workflow of corresponding to the vegetation variables. The vegetation map was rasterized, 
extracting different attributes. 

 

Landscape 

For the landscape variables, both maps followed the same processing steps. The layers were rasterized and 

reclassified. These maps were then used for calculating two raster maps with the distance to paths and roads, 

and distance to streams.  

 

Soil  

The only processing steps that the soil maps required were related to pixel size, coordinate reference system, 

and extent. 

 

Infestation  

For training the model, a layer with different sampling points indicating the presence or absence of the 

species is required. As the point layer of the Norway spruces was available, the sampling points selected 

correspond to an infested or non-infested tree. Regarding the presences sampling points, the first step was 

to overlay the infestation layer with the Norway spruces layer. We did not differentiate among years, because 

we were interested in the environmental conditions enabling infestations, rather than the temporal aspect. 

Randomly, 500 of the total infested trees were selected. 
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With respect to the absence sampling points, a buffer of 25 meters (one pixel) around the infestation 

area was created, to ensure that the environmental variables in presence and absence points were different. 

Subsequently, the area between the buffer and the National Park boundary was selected. This area was 

overlapped with the Norway spruces layer, and 500 of the non-infested trees were randomly selected. Finally, 

the presence and absence sampling points were merged in a layer that contained the 1000 observations. The 

processing steps can be seen in Figure 8. 

 

  

Figure 8. Workflow corresponding to the observations layer of the model. From the infestation area 
map, the vegetation map, and the National Park map, the observation layer with presences and absences 
has been obtained. The rectangles indicate a process, while the parallelograms indicate data inputs or 
outputs. 
 

After preparing the dependent variable (presence or absence of bark beetles), and the independent variables 

(environmental variables), the environmental variables of every sampling point need to be extracted.  

2.4. Boosted regression trees 

Boosted regression trees are the method for answering the second research question “What statistical model 

provides the strongest prediction of bark beetle infestation?”. Before creating the model, the collinearity 

needs to be analyzed, and related variables must be removed. Then, the model can be trained, and the 

weights and partial dependence plots can be created for results interpretation purposes. 



RISK ASSESSMENT OF BARK BEETLE OUTBREAK IN THE SCHWARZWALD NATIONAL PARK 

18 

Collinearity 

Collinearity occurs when two or more variables follow a linear relation (Alin, 2010). Ecological models are 

sensitive to collinearity, as variables are normally dependent on each other to some extent. Collinearity can 

lead to prediction errors and, consequently, more difficulty in the interpretation of results (Dormann et al., 

2013). In order to avoid the problem of multicollinearity among predictor variables, pairwise correlation 

coefficients, and variance inflation factor (VIF) were used. For these analyses, all observations (5000 

presences and 5000 absences) were used.  

For the pairwise correlation coefficients, Pearson’s r-correlation indices were used, which analyzed 

the collinearity of every pair of variables (Dormann et al., 2013). With the purpose of visualizing the pairwise 

interactions, the “corrplot” package in R has been used (Wei, 2017). 

The variance inflation factor (VIF) indicates how well one variable can be described by all the other 

variables. As a rule of thumb, VIF values higher than 10 indicated a collinearity problem among our 

predictors. Hence, when removing one of the variables with the highest VIF, the VIF of all the other 

variables should decrease (Naimi & Araújo, 2016).  

After following these two approaches, the variables which had the highest collinearity were 

excluded from the model.  

 

Model training and input parameters  

As found in previous literature, 70% of the data was implemented for training the model (Akayezu et al., 

2019). The rest was used for the accuracy assessment (section 2.4.2). The input data of the model consists 

of the dependent variable, which is the observations of bark beetles -or infested area-, and a set of 

independent variables, which are the predictor variables. The function applied for the model was “gbm.step” 

(Elith et al., 2008; Greenwell, Boehmke, & Cunningham, 2019), with Bernoulli response distribution, 

meaning that the distribution of the bark beetles was indicated using 0 for absences and 1 for presences. 

There are different parameters that need to be selected for fitting the model. The first of them is 

the learning rate (lr). This parameter determines the contribution of every tree to the model (Elith et al., 

2008). The tree complexity (tc) refers to the number of nodes in every tree. Lr and tc determine the number 

of trees (nt) required for the optimal prediction. As the lr is decreased, the nt will be increased, since each 

tree has a lower impact on the final model. For the tc, it can be observed that the more complex every 

individual tree, the less nt is required. The maximum nt that can be created is set to 10 000 (Elith et al., 

2008). The last parameter to select is bagging fraction (bf), which adds stochasticity to the model by taking 

random subsamples of training data for each iteration (De’ath, 2007). This parameter indicates the 

percentage of data that will be selected at each iteration.  

The optimal values for the parameters are those whose combination results in the lowest predictive 

deviance (Elith et al., 2008). After some combinations of the parameters, the best combination for fitting 

the model was lr=0.01, tc=5, and bf=0.5. The model, using a 10-fold cross-validation method, generated 

1500 trees. 
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The 10-fold cross-validation is a method used for estimating the expected, predicted error (PE) 

(Hastie, Tibshirani, & Friedman, 2001). It consists of splitting the data into ten subsamples equally sized 

and using 9 subsets for training the data. One of the subsets is used for the validation (De’ath, 2007; Naimi 

& Araújo, 2016). The model has been fitted using the “gbm” package (Greenwell et al., 2019) in R (R 

Development Core Team, 2008). 

 

Aggregated Boosted Trees 

Between some of the presences, high proximity was detected, which was creating a sampling bias problem 

(Komori, Eguchi, Saigusa, Kusumoto, & Kubota, 2020). In order to correct this, as well as to avoid model 

overfitting, smaller sub-samples of the dataset were selected, creating a collection of 10 BRT models. After 

running them, the predictions have been aggregated by calculating the average. This variation of BRT is 

called aggregated boosted trees (ABT) and was proposed by De’ath (2007). Thus, the only difference in 

every model was the observation layer. The step of the random selection of points (Section 2.3.2) for 

creating the observation layer was repeated for every sub-sample. Each of the sub-samples was composed 

of 500 presences and 500 absences. 

 

Weights 

The contribution of each variable in the response is calculated with the number of times that the variable 

was used for splitting in the model, multiplied by the square of the weighted improvement of the model in 

every split (Friedman & Meulman, 2003). 

 

Partial dependence plots 

Partial dependence plots help to visualize the dependence between response and individual predictors 

(Friedman, 2001). The data were extracted with the “plot.gbm” function, from the “gbm” package 

(Greenwell et al., 2019). Subsequently, the mean was calculated for all models, and the “ggplot2” package 

was used for displaying the results (Wickham, Chang, Henry, Lin Pedersen, & Takahashi, 2020). 

2.5. Prediction map and accuracy assessment 

To answer the third research question, “Where is the probability of bark beetle infestation highest and lowest 

in the study area?” a prediction map was made using the prediction model accompanied by an accuracy 

assessment. The prediction map has been created with all the variables used for model training. To that aim, 

the fitted functions created by every sub-model were implemented in every pixel of the study area, obtaining 

ten prediction maps. Then, a new map with the average of all the sub-models prediction maps was created. 

For the validation of the model, different methods were selected. Since the output of the model is 

a probability of species occurrence, the first step for carrying out the assessment of the model is to select a 

threshold, from which all pixels above will be classified as presence. The maximum value of Kappa in every 

model was selected as a threshold (Liu, White, & Newell, 2013). Once the predictive presence or absence 
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of the species was obtained, the error matrix was created (Fielding & Bell, 1997). In the confusion matrix, 

predicted and observed values are compared (Table 2), extracting the number of true positives (a), false 

positives (b), false negatives (c), and true negatives (d) (Allouche, Tsoar, & Kadmon, 2006). From these 

values, different predictive accuracy measures can be calculated. 30% of the data was used for the purpose 

of accuracy assessment. 

 

Table 2. Error matrix. It was adapted from (Fielding & Bell, 1997).  

 Validation dataset 

Presence Absence 

P
re

d
ic

ti
o

n
 

Presence True 

Positives 

(a) 

False 

Positives 

(b) 

Absence False 

negative 

(c) 

True 

Negative 

(d) 

 

AUC 

The receiver operating characteristic curve (ROC) assesses how good the model discriminates between 

presences and absences. In this graph, the false positive rate (1-specificity) is plotted in the x-axis against the 

true positive rate (sensitivity) in the y-axis. A quantitative index for assessing the ROC is the area under the 

receiver operating characteristic curve (AUC). It ranges from 0.5 to 1, being considered 0.5 as a random 

model without accuracy, and 1 as a perfect discrimination capacity model. The higher the value, the closer 

the curve to the left top corner of the ROC graph (Hanley & McNeil, 1982). 

 

TSS 

True skill statistic (TSS) contrasts the correct predictions, minus those that can be random guessing, against 

a hypothetical set of perfect forecasts (Allouche et al., 2006). In order to calculate TSS, first, the sensitivity 

and specificity need to be calculated (Table 3). The sensitivity corresponds to the proportion of presences 

that have been correctly predicted. In other words, it expresses the omission errors. On the contrary, 

specificity is the probability that an absence will be correctly predicted, indicating the commission errors 

(Allouche et al., 2006). The scale of the TSS ranges from -1 to 1, being values under 0 considered a random 

model and values close to 1, indicating perfect agreement (Allouche et al., 2006).  
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Table 3. Formulas for sensitivity, specificity, and TSS. Adapted from (Allouche et al., 2006) 

MEASURE FORMULA 

SENSITIVITY 𝑎

𝑎 + 𝑐
 

SPECIFICITY 𝑑

𝑏 + 𝑑
 

TSS 
Sensitivity + specificity - 1 = 

𝑎𝑑−𝑏𝑐

(𝑎+𝑐)(𝑏+𝑑)
 

  

 

For analysing the spatial variability of results among the different sub-models, an uncertainty map has been 

created. This has been done by calculating the standard deviation of the sub-models results per pixel.  
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3. RESULTS 

In this chapter, the data correlation is shown. Then, the results of the model, including weights, the data 

distribution of the variables, and partial dependence plots are presented. The last sections include the display 

of the prediction map and the results of the accuracy assessment.  

3.1. Correlation analysis 

Figure 9 displays the correlation between the different variables. The variables that have the highest 

correlation (0.801) are the number of Norway spruces and the total vegetation per pixel, being the latter 

excluded from the input data of the model due to collinearity, (see discussion). The amount of Norway 

spruces was also positively correlated (0.559) to the percentage of Norway spruces in comparison to the 

other vegetation. Besides that, we observed a negative correlation between eastness and irradiation (-0.732). 

Apart from this pair of variables, we detected a negative correlation (-0.505) between slope and irradiation, 

as well as between altitude and NS height (-0.553). It is noteworthy that, apart from the previous correlation 

mentioned, the altitude variable was correlated, on a lower intensity, with 11 of the other variables. 

 
Figure 9. Correlation analysis among the variables. The bigger the size of the circle, and the intensity 
of the color, the bigger the correlation between the two variables. Red circles indicate a positive correlation 
and blue circles a negative correlation. Only values below -0.1 and above 0.1 are displayed. This correlation 
matrix has been done using 10.000 observations.  
 

In Table 4, the values of the variance inflation factor (VIF) are displayed. In the second column of the table 

(VIF 1), the VIF values of all the variables are listed. The amount of Norway spruces, and the total vegetation 

show the highest VIF. It was decided to remove the latter from the input variables since we consider that 

the first one has a more predictive performance. After removing the variable “total vegetation”, it can be 

observed that the rest of the VIF values are also lowered (VIF 2 column in Table 4).  
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Table 4. VIF values for every variable.  

Variable VIF 1 VIF 2 

Altitude 2.301 2.275 

Irradiation 5.045 5.045 

Northness 1.200 1.198 

Eastness 3.735 3.733 

Slope 2.585 2.585 

NS_sum 13.016 1.517 

NS_height 1.7144 1.662 

NS_perc 4.614 1.546 

Veg_total 9.091 - 

Soil_depth 1.176 1.176 

Soil_cat 1.233 1.233 

Soil_org_stock 1.255 1.253 

Dist_streams 1.449 1.447 

Dist_paths 1.126 1.125 

TWI 1.248 1.248 

 

3.2. Model results 

From the model, different outputs were obtained. First of all, the relative importance of every variable in 

the model. Besides, the partial dependence plots of the six most influential variables were created. For a 

better interpretation of the results, the data distribution of the most influential variables is also shown. 

3.2.1. Weights 

The boosted regression tree analysis resulted in the relative importance of different variables in predicting 

the occurrence of bark beetle. This is expressed in Table 5 as a weight percentage. The number of Norway 

spruces with 19.19% of the weights (Table 5), had the most significant influence. This variable is followed 

by the height of the Norway spruces and the altitude, with weights between 10-11%. The variables soil 

depth, slope, and percentage of Norway spruces have weights between 6% and 8%.  

 

Table 5. Weights of every model variable expressed in %. 

Variable Weight  

NS_sum 19.19 

NS_height 10.87 

Altitude 10.11 

Soil_depth 8.51 

Slope 7.93 

NS_perc 6.92 

Dist_streams 5.84 

TWI 5.58 

Eastness 5.45 

Irradiation 5.26 

Northness 4.80 

Soil_cat 3.80 
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Soil_org_stock 2.94 

DIst_paths 2.72 

 

3.2.2. Data distribution of the most important variables 

In Figure 10, the data distribution of the most important variables in our model are shown and was visually 

inspected for normal distribution. For the NS_sum variable, most of the observations are pixels with only 

one Norway spruce. The pixels with less than 11 Norway spruces have a similar high frequency. After that, 

the frequency gradually decreases, being the maximum 28 Norway spruces per pixel. 

The height of the Norway spruces follows a normal distribution, being the highest frequency on 25 

m. The range of this variable is between 15 and 49 m. The altitude variable is also normally distributed. 

Elevation values from 511 to 1133 are visible, but most of the observations are found between 700 and 

1000 m. In the soil depth variable, we can also observe a normal distribution of the values. Most of the data 

are between 700 and 1100 cm, being 644 and 1528, the lowest and highest values. With regard to the slope, 

a normal distribution of the values is shown, while most of the observations have a lower slope than 30 

degrees. For the percentage of Norway spruces, we observe that the number is increasing, until reaching the 

maximum, which is 100% of Norway spruces. 

 

  
Figure 10. Data distribution of the most influential variables. The variables are the number of Norway 
spruces, the height of Norway spruces, altitude, soil depth, slope, and percentage of Norway spruces among 
all the tree species.  
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3.2.3. Partial dependence plots of the most important variables 

The partial dependence plots facilitates the interpretation of the effect of every variable in the model (Elith 

et al., 2008; Friedman, 2001). In Figure 11, the partial dependence plots of the six most important variables 

in the model are displayed.  

 

 
Figure 11. Partial dependence plots of the variables with more importance in the prediction. The y-
axis shows the change in the fitted function, and the x-axis shows the range of values for every variable.  
 

Figure 11a illustrates that the more Norway spruces are found in a pixel, the higher infestation probability 

the trees in this pixel have. In contrast, pixels with values under 5 have a very low probability of being 

infested. Furthermore, with a presence of more than 21 Norway spruces per pixel, there is a drop in the 

curve. The shape of the curve for the Norway spruce height variable (Figure 11b) is gradually increasing, 

being the older trees the ones which have the highest probability of being infested. For the altitude (Figure 

11c), we see that the higher areas have more probability of bark beetle infestation. Between 700-850 m, a 

drop in the curve indicates that the probability of infestation decreases. Figure 11d illustrates that trees 

located on shallower soils are more prone to be infested.  The curve is growing at the beginning until it 

reaches a peak at 800 cm depth. Then, it drops until its lowest value to 1100 cm, until it is growing again. 
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We must mention that the change in this variable response is not that big, as it ranges from -0.4 to 0.2. As 

displayed in Figure 11e, flat areas are more prone to be infested. The curve suffers a drop from the lowest 

values. After 10 degrees of slope, the probability starts being negative. Between 20-40 degrees, it stays 

constant, before dropping with slopes higher than 40 degrees. Regarding the percentage of Norway spruces 

variable (Figure 11f), the risk is very low at the beginning of the curve, but increases after 25% and around 

60% become positive, indicating that spruce-dominant forest is more prone to be infested.  

3.3. Prediction map 

Figure 12 displays the bark beetle occurrence probability in the Schwarzwald National Park with the 

variables used in this study.  

 
Figure 12. Bark beetle infestation probability map. It has been done getting the average value from the 
ten sub-models. For creating the sub-models predictions, all variables have been used.   
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3.4. Accuracy assessment 

In Table 6, the accuracy of each of the ten sub-models is displayed. The average area under the receiver 

operating characteristic curve (AUC) of all models is 0.80. The third and sixth sub-models, with an AUC of 

0.782 and 0.783, respectively, were the least accurate. The sub-model with the highest AUC was number 9, 

having an AUC of 0.856. 

 

Table 6. Accuracy measures for the different sub-models. AUC refers to the area under the receiver 
operating characteristic curve and TSS to true skill statistic. 

Sub-model AUC Sensitivity Specificity TSS 

1 0.831 0.847 0.727 0.574 

2 0.793 0.834 0.647 0.481 

3 0.782 0.778 0.664 0.442 

4 0.805 0.743 0.708 0.452 

5 0.838 0.775 0.783 0.558 

6 0.783 0.836 0.628 0.464 

7 0.815 0.743 0.755 0.498 

8 0.808 0.739 0.780 0.519 

9 0.846 0.932 0.615 0.546 

10 0.793 0.760 0.702 0.462 

 

When using the TSS as a validation method (Table 6), the sub-models register an average TSS of 0.49. The 

sub-model 1 with a TSS of 0.574 has the highest accuracy, while sub-model 3, with 0.442, has the lowest 

TSS. The average value for sensitivity was 0.79, and for specificity 0.70. 

For visual inspection of the model performance, the prediction map has been overlaid with the 

infestation map (Figure 13). Most of the large infestation locations are in the areas with higher outbreak 

probability. However, it can be observed that some of the infested areas are also in areas with low outbreak 

probability. 
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Figure 13. Outbreak probability map and infested areas in the Schwarzwald National Park. The prediction 
is the output of the model built with spatial variables, and the infestation layer has been created with an 
aerial survey. 
 

Figure 14 shows how uncertainty is distributed over the area. The range of uncertainty values is from 0 to 

0.22. Lower values indicate that the predictions of the sub-models were similar.  
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Figure 14. Uncertainty map. It shows the standard deviation of the sub-models results per pixel.  
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4. DISCUSSION 

In the present thesis a model was calculated which helps to foster the understanding of variables that can 

be used for describing bark beetle outbreaks. In the following chapter, the performance, weaknesses, and 

strengths of the model are presented. In the last section, the findings will be discussed in the light of previous 

investigations.  

4.1. Performance of the bark beetle infestation model 

Overall, using the area under the receiver operating characteristic curve (AUC) for assessing the 

performance, all sub-models had, at least, a fair accuracy, as they are above 0.78. According to Araujo, 

Pearson, Thuiller, & Erhard (2005), an accuracy of 0.8 is considered as a good accuracy. Moreover, the 

model has also been validated with true skill statistic (TSS). Using the TSS method, the results were positive 

(0.48), indicating accuracy of the model (Allouche et al., 2006). While AUC is a threshold-independent 

measure (i.e., it tests all possible thresholds), TSS is dependent on the selected threshold (Allouche et al., 

2006). As recommended by Allouche et al., 2006, both methods have been used, namely, a threshold 

dependent and a threshold independent measure. When comparing sensitivity and specificity, the latter one 

was higher, indicating that in the present model, the commission error was bigger than the omission error. 

The reason why kappa was not used in the current study is its proven dependence on prevalence (Allouche 

et al., 2006). 

The uncertainty map (Figure 14) illustrates the spatial reliability of the results, taking into account 

the different results of every sub-model. In combination with the outbreak probability map, the uncertainty 

map should help to prioritize the monitoring areas for forest managers. In Figure 13, a visual interpretation 

of the results and the infested areas can be seen. The infested regions in areas with low outbreak probability 

might be explained by the micro-conditions that every tree has. Improving the data quality could enhance 

the accuracy of the model, as discussed in the next sub-section. 

 

Data 

In order to enhance model performance, some considerations for the input data can be taken. The 

vegetation layer used for creating the vegetation input layers represents only the trees, which are higher than 

15 m. Bark beetles need a minimum of bark thickness of 2.5 mm to create the burrows (Grunwald, 1986). 

Since the bark thickness and height are related, modeling this relation can help to select a threshold. 

Importantly, this model should be applied locally, as it varies between regions (Stängle, Sauter, & Dormann, 

2017).  

Furthermore, for every sub-model, 1000 observations were selected. Future studies could further 

explore this issue by testing how the sample size can have an effect on the results of the model. This has 

been done previously by Elith, Leathwick, & Hastie (2008). 

Due to data availability, the absence observations were pseudo-absences. This means that it is 

assumed that wherever there is not a presence, there is an absence (Naimi & Araújo, 2016). Nevertheless, 

this assumption needs validation, as some pseudo-absences might not be true absences. These observations 

were obtained outside a buffer of 25 m from the infested area. Further studies could focus on assessing the 

sensitivity of the buffer size in the model. 

With regard to the soil layers, its coarse resolution (250 m) is likely not suitable for this study area. 

In mountainous areas, the soil development processes are influenced by the topography, with a very high 

spatial variability of soils at a local scale (Egli & Poulenard, 2016; Kruk, Ryczek, Klatka, & Malec, 2018). 
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Therefore, soil layers with better resolution should be used. Likewise, the sensitivity of the model to a 25 m 

spatial resolution should be tested. 

 

Model 

Moreover, some changes in the model training and model accuracy could have an impact on model 

performance. As mentioned previously, TSS is a threshold-dependent statistic. This type of method is not 

completely accepted, as it is dependent on the previously selected threshold, which can cause an 

overestimation of the true positives (Stephanie, Ceri, & S.J., 2001). For the present model, the maximum 

value of kappa was selected as a threshold. However, other thresholds should be tested for accuracy 

assessment (Freeman & Moisen, 2008; Liu et al., 2013). 

For this study, the dataset has been partitioned, using 70% of the data for model training and 30% 

for validation, as it was done by Akayezu, van Duren, Groen, Grueter, & Robbins (2019). Nevertheless, it 

is always difficult to find the right balance, as increasing one threshold will negatively affect the other one. 

This issue should be further examined by future research. 

The first idea of the current investigation was to create only one model. However, by having more 

data samples in the same area, the distance between each other is reduced, provoking spatial autocorrelation 

(Veloz, 2009). With the aim of avoiding spatial autocorrelation, different sub-models were created. 

Subsequently, the mean of all of them was calculated and used for further analysis. In the future it should 

be tested, whether the modification of the number of submodels leads to different results. 

 

Correlation between variables 

In the same way, the correlation between variables can affect model performance. As has been shown, the 

total amount of vegetation and the amount of Norway spruces are highly correlated. This can be explained 

by the great percentage of the vegetation (70%) composed by Norway spruces. The positive correlation 

between the number of Norway spruces and the percentage of Norway spruces per pixel demonstrates that 

Norway spruces are mainly located in low diversity areas. The other positive correlation that has been found 

was between distance to streams and altitude. This may relate to the location of the streams in the lowest 

areas of the National Park. Therefore, in pixels with low altitude, the distance to the streams is also lower. 

Regarding the negative correlation of the variables, three main relations can be observed. First of 

all, the irradiation and eastness are highly correlated, implicating that the west faces of the mountains receive 

more irradiation. Another correlation that can be observed is between altitude and the height of the Norway 

spruces. A possible explanation might relate to the availability of resources. Norway spruces originate from 

North Europe, regions where the precipitation is higher and the sun radiation through the year lower. In 

the Schwarzwald National Park, higher elevation is related to higher sun radiation and lower water 

availability, possibly mediating as growth limiting factors. Consequently, as the tree mortality in elevated 

areas is higher, younger trees have the opportunity to grow, thus, boosting the regeneration of the forest. In 

addition, a negative correlation was revealed between irradiation and slope. Notably, the top of the 

mountains of the National Park is not very steep (see Figure 3). As a consequence, higher areas, which also 

are the ones that receive more sun radiation, have a lower slope. 

4.2. Interpretation of the most important prediction variables 

The partial dependence plots aid in the interpretation of the variable responses. These results, together with 

previous studies, can provide a basis for understanding the ecology of bark beetle outbreaks. When 

interpreting the partial dependence plots, it is important to consider the data distribution. A communality 
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of most variables partial dependence plots is that the curve is more sensible in values that have a smaller 

number of observations, resulting in unexpected probability.  

 

Number of Norway spruces 

As Figure 11a shows, the more Norway spruces are in an area, the higher is the probability of finding bark 

beetles. This result ties well with the study from Kärvemo, Van Boeckel, Gilbert, Grégoire, & Schroeder 

(2014). The explanation seems to be related to tree species diversity. As mentioned before, areas with higher 

Norway Spruce density are mainly areas with low species diversity. According to Bauhus et al. (2017), the 

mixed forests resist better against specialized insect pests, as the density of feeding resources are reduced, 

and the insect population cannot evolve to the epidemic attack. In the same article, it is argued that in mixed 

forests, the host trees are more difficult to reach due to the distance that separates them. Another 

explanation for the lower infestation probability in mixed forests has to do with how the bark beetle 

colonizes trees. In this process, the first bark beetle arrives at a susceptible tree, and, if the tree is weak, it 

segregates a pheromone that aggregates other bark beetles. Other individuals join the attack, and the 

colonized trees have not enough resources to survive the attack (Byers, 1996). In mixed forests, it has been 

proved that other tree species can inhibit these pheromones, increasing the difficulty of aggregation at the 

same Norway spruce individual (Byers, Zhang, Schlyter, & Birgersson, 1998; Zhang & Schlyter, 2004; 

Zhang, Schlyter, & Anderson, 1999).  

 

Height of Norway spruces 

This predictor was also pointed by Kärvemo et al. (2014). The relation between the height of the host trees 

and the bark beetle infestation probability (Figure 11b) is caused by different reasons that have been 

addressed in previous studies.  

The first reason relates to the bark thickness. In the research carried out by Grunwald (1986), it was 

shown that the occurrence of a bark beetle attack was directly related to the thickness of the bark, since bark 

beetles prefer trees with a relative thick bark of over 2.5 mm to create their burrows.  

The height of the trees is directly related to the age of the tree (Netherer et al., 2019). Netherer & 

Nopp-Mayr (2005) also found that the stand age can be an accurate variable for predicting infestation 

probability. In this project, it was found that trees older than 60 years have a higher infestation risk. Likewise, 

in Seidl, Baier, Rammer, Schopf, & Lexer (2007), Bakke (1983), and Mezei et al. (2014), the older trees were 

more prone to be infested.  

The defense mechanism that the tree possesses when an attack occurs is the segregation of 

monoterpene hydrocarbons in the attacked area. The amount of monoterpene that the tree can segregate 

depends on the resin flow. As discovered by Baier, Führer, Kirisits, & Rosner (2002), in younger tissues, the 

flow of the resin is better. This may be the reason why older trees are facing a higher outbreak probability. 

 

Altitude 

In Figure 11c a drop in the curve between approx. 720 and 850 m can be observed. This could be attributed 

to the microclimatic conditions of the valleys, as Overbeck & Schmidt (2012) have demonstrated, 

concluding that the best location for Norway spruces is shadowed moist slopes. As can be seen in Figure 

3, these areas have altitude values within this range. This variable has also been an important predictor for 

Lausch, Fahse, & Heurich (2011); and Sproull, Bukowski, McNutt, Zwijacz-Kozica, & Szwagrzyk (2017). 

According to Mezei et al. (2014), this variable has predictive importance when the attack is in the epidemic 

phase. 

As revealed by the correlation analysis and has been reported by Temperli, Bugmann, & Elkin, 

2013, the Norway spruce biomass in the Schwarzwald National Park is higher in elevated areas. Hence, the 
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probability of finding weakened trees is also higher. Even though the correlation analysis does not show a 

high correlation between altitude and sun radiation, higher areas are slightly more exposed to solar radiation. 

As Baier, Pennerstorfer, & Schopf (2007) suggest, within areas where sun exposure is higher, the bark 

temperature also increases. The solar radiation as a predictor has also been addressed by Netherer & Nopp-

Mayr (2005). 

Another variable that is closely related to altitude is the distance to streams. Trees located in higher 

elevations are further from streams (Figure 15), which could have an effect on the water availability for 

them. In addition, higher areas could be more exposed to wind. Even though a heavy storm was not 

registered in the study area in the previous years, trees can get damaged by low-intensity storms (Mezei, 

Jakuš, et al., 2017). Within the years after the damage, the tree needs to heal the wound produced by the 

extreme event. As shown by Baier et al., 2002, the defenses of the tree are reduced when the tree is growing. 

 

Soil depth 

In the soil depth partial dependence plot (Figure 11d), it can be observed that the fitted function of this 

variable oscillates around 0, having ranges between -0.35 and 0.2, which are very low probabilities to 

consider them significant. The response of this variable in the model could be influenced by the low 

resolution (250 m) of the input layer. 

However, it has been indicated by Rehschuh, Mette, Menzel, & Buras (2017) that soil properties 

can negatively influence the effect of drought in Norway spruces. Namely, drought effects can be more 

severe in shallow sandy soils, which have a reduced water retention capacity.  

 

Slope 

The results (Figure 11e) demonstrated that, as found out by de Groot, Ogris, & Kobler (2018), the slope is 

negatively correlated with the bark beetle infestation. This result could be explained by the fact that the 

valleys are often narrow, being flatter slopes in higher areas with more sun radiation (Figure 3).  

 

Percentage of Norway spruces 

The results show that areas with a higher percentage of Norway spruces among all tree species have a higher 

infestation probability. In the study from Netherer & Nopp-Mayr (2005), most of the infestation areas took 

place where the spruce composition was above 70% of all the species.  

As mentioned previously in the discussion of the variable “number of Norway spruces”, a forest 

management reinforcing species diversity has been shown beneficial against the bark beetle infestation. 

However, this management is not only positive against bark beetles. Rötzer, Biber, Moser, Schäfer, & 

Pretzsch (2017) concluded that mixed forests also increase tree resistance against drought. The resources 

efficiency is higher when combining species that are complementary. The European beech is a slow-growing 

and shadow tolerant species. In contrast, Norway spruce is a fast-growing species that requires a lot of light 

(Pretzsch, 2014). 

Furthermore, in mixed forests, the growth of spruces would be benefited at the beginning of the 

spring, when water, light, and temperature are enough for pushing the tree growth, and beeches are still 

leafless. Beeches could benefit from sharing the space with the spruces since the rooting system is deeper 

and can compete better for water resources in summer (Rötzer, Häberle, et al., 2017).  

 

 



RISK ASSESSMENT OF BARK BEETLE OUTBREAK IN THE SCHWARZWALD NATIONAL PARK 

34 

5. CONCLUSION  

After following the recommendations for improving the accuracy, the model output can be used by the 

National Park managers. In the short term, the model can be used to increase monitoring efforts in areas 

that have a higher outbreak probability. As mentioned in previous sections, in the management zone of the 

National Park, a weekly bark beetle monitoring is carried out. The present model can reduce economic and 

human resources, as well as improve the response once the outbreak is in the early phases.  

In the long term, the vegetation cover planning can be improved by considering the environmental 

factors that contribute to the higher infestation probability. The variables altitude and slope indicate that the 

best location for the Norway spruces is found at an elevation below 850 m and slopes above 20%. There is 

a body of evidence that Norway spruces have been extensively planted in Central Europe for economic 

purposes (Hlásny et al., 2019), suggesting that they are not native from the Schwarzwald National Park. 

Importantly, previous researchers addressed that areas where the Norway spruce has been artificially 

planted, have a higher outbreak probability (Marini et al., 2012; Ogris & Jurc, 2010). This idea is in 

accordance with the variables “number of Norway spruces” and “percentage of Norway spruces compared 

with other tree species,” as well as by previous studies, which indicate that mixed-forests are more resilient 

(Neuner et al., 2015; Overbeck & Schmidt, 2012). This supports the objective of the Schwarzwald National 

Park of increasing the mixed-forest cover in development and management zones. Furthermore, the results 

confirm that higher trees are more prone to be infested.  

It is expected that within the next years, the severity of droughts on Norway spruces in the 

Schwarwald National Park will increase due to its location in the warm-dry edge of the natural range 

(Temperli et al., 2013). In this case, the mentioned monitoring and adaptation measures are even more 

important. Notably, the bark beetle is not the only pest that causes problems in areas with forest plantations 

(European Commission, 2012; Klimo et al., 2000). This modelling approach can also be applied with the 

same purpose with other species.   

The present study provides added insights in spatial variables that can predict bark beetles outbreaks. 

From a more general perspective, a structured problem has been investigated, in which different facets 

relating to the problem were analysed. Although these findings cannot solve the bark beetle problem in the 

Schwarzwald entirely, this knowledge will support the decision-making process carried out by the National 

Park committee. 
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6. APPENDIX 

 
Figure 15. Map of streams on the digital elevation model in the Schwarzwald National Park.  

 


