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ABSTRACT 

Forest ecosystems cover about 30% of the earth’s land surface and provide a significant contribution to 

the terrestrial biodiversity, biomass and carbon storage, as well as timber production. Quantitative timely 

information about the forest canopy cover and characteristics is important for ecologists and decision-

makers to assess the influence of climate change and expanding human activities on forest ecosystems. 

However, traditional field sampling of plant traits is often laborious and limited to small areas. Remote 

sensing, because of its repetitiveness, cost-effectiveness, and non-destructive characterization of land 

surfaces, has been recognized as a prevalent technology and a practical mean for monitoring forest canopy 

characteristics over a large scale. Among many characteristics, leaf area index (LAI) is a widely used 

biophysical parameter to quantify forest health and growth. Thus, accurate estimating LAI and mapping 

its spatial distribution is crucial for forest management and many ecological studies. Among existing 

remote sensing-based methods, machine learning algorithms, in particular, kernel-based machine learning 

methods, such as Gaussian processes regression (GPR), have shown to be promising alternatives to 

conventional empirical methods for retrieving vegetation parameters. However, the performance of GPR 

in predicting forest biophysical parameters has hardly been examined in the literature. The main objective 

of this study was to evaluate the potential of GPR to estimate forest LAI using airborne hyperspectral 

data. To achieve this, field measurements of LAI were collected in the Bavarian Forest National Park 

(BFNP), Germany, concurrent with the acquisition of the Fenix airborne hyperspectral images (400-2500 

nm) in July 2017. The performance of GPR was further compared with three commonly used empirical 

methods (i.e. narrowband vegetation indices (VIs), partial least square regression (PLSR), and artificial 

neural network (ANN)). The cross-validated coefficient of determination (R2 
CV) and root mean square error 

(RMSEcv) between the retrieved and field-measured LAI were used to examine the accuracy of the 

respective methods. The results showed that using the entire spectral data (400-2500 nm), GPR yielded 

the most accurate LAI estimation (R2 
CV = 0.67, RMSEcv = 0.53 m2 m-2) compared to the best performing 

narrowband vegetation indices SAVI2 (R2 
CV = 0.54, RMSEcv = 0.63 m2 m-2), PLSR (R2 

CV = 0.74, RMSEcv = 

0.73 m2 m-2) and ANN (R2 
CV = 0.68, RMSE = 0.54 m2 m-2). Consequently, when a spectral subset obtained 

from the analysis of VIs was used as input, the predictive accuracies were generally improved (GPR 

RMSEcv = 0.52 m2 m-2; ANN RMSEcv = 0.55 m2 m-2; PLSR RMSEcv = 0.69 m2 m-2), indicating that 

extracting the most useful information from vast hyperspectral bands is crucial for improving model 

performance. In general, there was an agreement between measured and estimated LAI using different 

approaches (p > 0.05). The generated LAI map for BFNP using GPR and the spectral subset endorsed 

the LAI spatial distribution across the dominant forest classes (e.g. deciduous stands were generally 

associated with higher LAI values). The accompanying LAI uncertainty map generated by GPR shows 

that higher uncertainties were observed mainly in the regions with low LAI values (low vegetation cover) 

and forest areas which were not well represented in the collected sample plots. The results of this study 

demonstrated the potential utility of GPR for estimating LAI in forest stands using airborne hyperspectral 

data. Owing to its capability to generate accurate predictions and associated uncertainty estimates, GPR is 

evaluated as a promising candidate for operational retrieval applications of vegetation traits. The generated 

trait maps can offer spatially explicit and continuous information of vegetation to effectively support 

sustainable forest management and resource decision-making.  

Keywords: hyperspectral data, leaf area index, GPR, VIs, PLSR, ANN, uncertainty; spectral subset; 

temperate mixed forests. 
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1. INTRODUCTION 

1.1. Background 

Forests, one of the most dominant terrestrial ecosystem of Earth, hold more than three-quarters of the 

world’s terrestrial biodiversity and provide a wide variety of environmental materials and ecosystem 

services, such as habitat for plant and animal species, biomass and carbon storage, timber products, as well 

as climate adaptations (Canadell et al., 2000; FAO, 2010; Hill et al., 2019). However, forest ecosystems 

face great challenges as a result of global warming and expanding human activities (Klos et al., 2009; 

Birdsey and Pan, 2011). The important processes which affect forest ecosystems include, deforestation 

caused by the conversion of forests to agricultural fields and logging activities, drought stress, biotic stress, 

and wildfire (Ciais et al., 2005; Anderegg et al., 2013). Moreover, due to the impact of heat waves and dry 

spells, forest ecosystems are also becoming more susceptible to insects infestation. These combined 

effects posed a severe risk of reduction of forest ecosystem services (Hill et al., 2019). In order to keep 

track of these effects and effectively manage forest ecosystems, monitoring the forest dynamics is of 

exceptional importance.  

Monitoring the forest dynamics requires spatially, temporally, and accurate quantification of forest 

biophysical variables (Gower et al., 1999; Hansen and Schjoerring, 2003; Hill et al., 2019). Among many 

biophysical variables, leaf area index (LAI) is a primary measure since it controls many physiological 

processes within vegetation canopies, such as photosynthesis, transpiration, evapotranspiration, as well as 

rainfall interception (Chen and Black, 1992; Weiss et al., 2004). In a broader context, LAI is recognized as 

one of the essential climate variables (ECVs) to be implemented in the Global Climate Observing System 

(GCOS) (Bojinski et al., 2014). Moreover, LAI is also a critical input in ecosystem models (Fischer et al., 

1997), and recently has been proposed as one of the essential biodiversity variables (EBVs) to remotely 

track biodiversity change in ecosystems from space (Skidmore et al., 2015). 

Traditionally, estimation of forest LAI relied on field surveys such as destructive sampling, leaf traps, and 

plant canopy analysers (Chen et al., 1997). Although these methods are perhaps the most accurate pathway 

for determining LAI, they are time-consuming, costly, and impractical to extrapolate over large spatial 

extents (Norman and Campbell, 1989). Remote sensing (RS) provides an opportunity for quantifying 

biophysical variables over large areas being fast, repeatable, synoptic, and cost-effective (Cohen et al., 

2003; Atzberger, 2000; Yuan et al., 2017). In particular, hyperspectral remote sensing that can capture 

detailed vegetation information from hundreds of contiguous spectral narrow bands has significantly 

improved the prediction of vegetation parameters (Hansen and Schjoerring, 2003; Lee et al. 2004; 

Mutanga and Skidmore, 2004). 

In general, there are two common approaches to estimate LAI from remotely sensed data as described in 

the RS literature: (1) physically-based models; and (2) empirical approaches (Baret and Buis, 2008; 

Atzberger et al., 2015). According to Skidmore (2002), these approaches can also be characterized as 

inductive and deductive by their logics, or as deterministic and stochastic by their processing methods. 

The physically-based approach involves using radiative transfer models (RTMs) to explicitly simulate the 

interaction between spectral radiation and vegetation biophysical and biochemical parameters (also 

referred to as plant traits) (Houborg et al., 2007). However, a major drawback of using RTMs is their ill-

posed nature which causes different sets of biophysical input variables to yield similar spectral reflectance 

(Weiss and Baret, 1999; Combal et al., 2003; Atzberger et al., 2013). Moreover, RTMs requires prior 

knowledge of several input variables to calibrate and run the model in the forward mode (Darvishzadeh et 

al., 2008a). 
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Compared to physically-based models, empirical approaches aim to establish relationships between 

spectral observations and the target biophysical variable (e.g., LAI). Empirical methods can incorporate 

parametric or non-parametric regression methods (Verrelst et al., 2015). In parametric regression methods, 

empirical/inductive models are used to fit a function between the spectral reflectance or its transformation 

and plant traits (Skidmore, 2002; Haboudane et al., 2004). Parametric regression methods have been 

frequently used for retrieving vegetation biophysical variables from remote sensing data. Plenty of studies 

have demonstrated the importance of spectral vegetation indices (VIs) (Gong et al., 2003; Lee et al., 2004; 

Schlerf et al., 2005; Ali et al., 2017). While some other studies have focused on quasi-continuous spectral 

band configurations, such as red-edge position and continuum removal (Cho and Skidmore, 2006; 

Darvishzadeh et al., 2009; Schlerf et al., 2010; Cho et al., 2007). Parametric regression methods are 

outstanding for their intrinsic simplicity and fast processing speed. However, these methods do not exploit 

the complete spectral information from 400-2500 nm, and their established parametric models are often 

sensitive to site, sensor, and sampling conditions, thus lack robustness and generalization (Baret and 

Guyot, 1991; Broge and Leblanc, 2001). 

Unlike parametric regression methods, the non-parametric regression methods make use of full-spectrum 

information, and therefore, an explicit selection of spectral bands or transformation is not required. The 

non-parametric models are usually optimized through a learning phase based on training data. The non-

parametric regression methods can be further divided into linear and nonlinear models based on different 

formulations (Verrelst et al., 2015). Linear non-parametric regression methods such as stepwise multiple 

linear regression (SMLR) and principal component regression (PCR), have effectively enhanced the 

estimation of vegetation parameters compared to parametric regression methods (Kokaly and Clark, 1999; 

Atzberger et al., 2010). This type of method, however, is usually hampered by the multicollinearity 

problem especially when the sample size is smaller than the number of hyperspectral bands (Curran, 1989; 

De Jong et al., 2003). By contrast, partial least square regression (PLSR) which has been widely used in 

chemometrics was specifically developed as a better alternative to conventional linear non-parametric 

regression methods for quantifying vegetation parameters. An important property of PLSR is that it 

decomposes the spectra by also considering the response variable information (Geladi and Kowalski, 

1986). Several studies have confirmed the feasibility of PLSR for estimating vegetation biophysical 

variables using hyperspectral data in grasslands (Cho et al., 2007; Darvishzadeh et al., 2011) and 

agricultural areas (Li et al., 2014). Recently, PLSR was used for predicting canopy foliar nitrogen in a 

mixed temperate forest using airborne hyperspectral data (Wang et al., 2016).  

Nonlinear non-parametric methods, also referred to as machine learning algorithms, have been developed 

rapidly during the last few decades (Verrelst et al., 2015). Conventional machine learning algorithms 

applied in the vegetation remote sensing domain include, for instance, artificial neural network (ANN) and 

decision-tree (DT) based learning (e.g., random forest) (Verrelst et al., 2019). Such methods are popular 

for their capability in establishing robust and adaptive nonlinear relationships between biophysical 

variables and the reflected spectrum (Hastie et al., 2009). Successful applications using machine learning 

algorithms such as ANN include the estimation of foliage nitrogen concentrations (Huang et al., 2004), 

shrubland LAI prediction (Neinavaz et al., 2016), and crop LAI estimation (Liang et al., 2015). 

Nevertheless, some limitations of these methods remain to be addressed, for instance, the overly complex 

model tuning process may largely affect the robustness of the ANN model (Verrelst et al., 2012b). 

Among nonlinear non-parametric methods, recently, a group of kernel-based machine learning algorithms 

has emerged as a potential alternative to conventional machine learning methods in the retrieval of 

vegetation parameters. Such kernel-based methods owe their names to use kernel functions to transfer 

training data into a higher dimensional feature space, in which the nonlinear relationships can be modelled 

by quantifying similarities between input samples of a dataset (Verrelst et al., 2013). The main advantage of 
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kernel methods is their flexibility in performing input-output mapping and thus generate robust 

relationships. In particular, Gaussian processes regression (GPR), which is developed based on statistical 

learning and Bayesian theory (Williams and Rasmussen, 2006), has been shown to outperform other 

machine learning models in estimating vegetation variables (Pasolli et al., 2010; Verrelst et al., 2012b). 

Compared to other machine learning approaches, GPR has the benefit of simple implementation and 

requires a relatively small training dataset (Verrelst et al., 2013). Moreover, GPR automatically provides 

uncertainty estimates (also called confidence intervals) along with their mean estimates (Williams and 

Rasmussen, 2006). Uncertainty estimates which are often absent in the empirical models are especially 

important to evaluate the reliability of the generated model and assess the utility of the mapping results 

(Wang et al., 2019). Lacking information about variable uncertainties can lead to errors in subsequent 

analysis when such vegetation variable maps are used in ecological applications. Pixels with high prediction 

uncertainties can be improved by collecting additional calibration data from these under-represented 

regions. Uncertainties mapping is thus crucial for improving model performance and mapping quality. 

While GPR has been recently used for the estimation of plant canopy traits by a few studies, its 

applications have been mainly limited in the agricultural fields (Caicedo et al., 2014; Verrelst et al., 2013, 

2016) and grassland ecosystems (Wang et al., 2019). To the best of our knowledge, only the study by 

Halme et al. (2019) has examined GPR and support vector regression (SVR) for LAI estimation in a 

boreal forest. However, the data which was used in their study was limited to visible and NIR regions 

(400-1000 nm), and therefore did not explore the full spectral range (400-2500 nm). Thus, the utility of 

GPR on full-spectrum hyperspectral imagery for estimating LAI in mixed temperate forest stands remains 

under-explored. Moreover, although several previous studies have investigated the performance of 

different empirical methods in estimating forest LAI from airborne hyperspectral data, to date, the 

comparisons among different methods are still missing. 

1.2. Research objective and research questions 

The aim of this study is to accurately estimate LAI and map its spatial distribution in the Bavarian Forest 

National Park (BFNP) using full-spectrum Fenix airborne hyperspectral data. To achieve this aim, the 

objectives and associated research questions (RQ) are as follows: 

(1) To determine the best narrowband vegetation indices (VIs) (in terms of RMSE and R2) for estimating 

LAI using airborne hyperspectral data in BFNP; 

RQ 1. Which spectral narrowband combinations can provide the most accurate LAI estimation? 

RQ 2. Which spectral regions are more important for LAI estimation using narrowband VIs? 

(2) To investigate the utility of Gaussian processes regression (GPR) as a representative of kernel-based 

machine learning algorithms for estimating LAI using airborne hyperspectral data in BFNP; 

RQ 3. What are the main factors causing high LAI retrieval uncertainties? 

(3) To compare the performance of GPR with other commonly used empirical methods namely 

narrowband VIs, artificial neural network (ANN) and partial least square regression (PLSR); 

RQ 4. What are the most informative bands when estimating LAI using the PLSR model? 

RQ 5. What is the impact of utilizing a spectral subset (obtained from the analysis of VIs) as an alternative 

to the entire spectra on the predictive performance of studied models? 

(4) To map the spatial distribution of LAI in BFNP using the best-performing approach (in terms of 

prediction accuracy); 
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RQ 6. How does the distribution of LAI vary within the BFNP? 
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2. MATERIALS AND METHODS 

Figure 1 presents the general workflow adopted in this study. First of all, field measurements were 

collected in the study area as the validation dataset. Fenix airborne hyperspectral imagery was acquired 

paralleled with the field data collection and preprocessed. Once the reflectance of the field plots were 

properly extracted, Gaussian processes regression together with other three widely used empirical 

approaches (i.e. narrowband vegetation indices, partial least square regression, and artificial neural 

network) were then calibrated and validated by applying the leave-one-out cross-validation using the LAI 

field measurements and corresponding extracted reflectance. The suitability for each retrieval method was 

then analysed. Moreover, to examine the impact of reducing data dimensionality, a spectral subset 

obtained from the analysis of VIs was used as input for prediction of the other models. Finally, a forest 

LAI map was generated using the most accurate method, together with its accompanying prediction 

uncertainties produced by GPR. 

 

Figure 1. General analytical framework developed for this study. 
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2.1. Study area 

The study area for this research is Bavarian Forest National Park (BFNP) (49°3’19” N, 13°12’9” E), which 

is located in the south-eastern part of Germany, close to the border of the Czech Republic (Figure 2). 

BFNP is Germany’s first designated national park (founded in 1970) and covers an area around 24,250 ha. 

Together with the neighbouring Czech Sumava National Park, they form the largest, strictly protected 

contiguous forest area (called the Bohemian Forest Ecosystem) in Central Europe (Heurich et al., 2010). 

The elevation in BFNP ranges from 600 m to 1453 m above sea level (a.s.l) and is composed of terrains 

varying from the low valley, hillsides, to highlands. This forest national park has a temperate climate with 

the mean annual temperature between 6.5 °C in the valleys and 2 °C at highlands. The average annual 

precipitation ranges from 1200 mm to 1800 mm. The predominant soil type for lower areas (below 900 m 

a.s.l) is brown soils, while for higher altitude areas, the main soil types are brown soils and brown podzolic 

soils (Heurich et al., 2010). 

 
Figure 2. The location of Bavarian Forest National Park (BFNP) and the mosaic of Fenix hyperspectral data of four 
transects acquired on 6 July 2017 using a true colour composite (bands 469, 549, 640 nm). Red dots represent the 
locations of sample plots. 

Tree species are mainly distributed as a function of altitude. In the peak regions, the majority of trees are 

Norway spruce (Picea abies) and with a few existences of sub-alpine spruce forests and Mountain ash 

(Sorbus aucuparia). Mountain slope areas, characterized by mixed forest, mainly consist of Norway 

spruce, silver fir (Abies alba) and European beech (Fagus sylvatica). In valley depressions, Norway 

spruce is the dominant species with some silver fir and mixture of Birches (Betula spp.) (Cailleret et al., 

2014). Since the mid-1990s, the forested area in BFNP has been affected by the proliferation of the spruce 

bark beetles. By 2012, the bark beetle attack had resulted in a massive die-off of about 6000 ha of spruce 

stands (Lausch et al., 2013). 
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BFNP is also an important ecosystem that provides habitats for a broad range of animals, plants, and 

fungi. Moreover, BFNP plays an essential role in the protection of large wildlife species, including lynx 

(Lynx lynx), capercaillie (Tetrao urogallus), and also large ungulates such as red deer (Cervus elaphus) 

and roe deer (Capreolus capreolus) (Cailleret et al., 2014). Many efforts, such as wildlife population 

control, reducing disturbance by restricting public access to certain areas, or reduction of winter feeding, 

have been made to preserve the natural diversity from human interference and activities and to protect 

privately-owned forests that border the BFNP (Heurich et al., 2011). 

2.2. Data 

2.2.1. Airborne hyperspectral data  

Airborne images of the study area (along permanent transects) were acquired during a field campaign on 6 

July 2017 (Figure 2). The data were collected based on 29 flight lines covering 68.24 km2, with an average 

35 percent overlap with each adjacent strips. The Specim AISA Fenix sensor comprises two detectors 

covering the visible and near-infrared (VNIR) and short wave infrared (SWIR) regions. It contains 623 

narrow spectral bands ranging from 380 to 2500 nm. The average spectral resolution is 3.5 nm over the 

VNIR region and 12 nm over the SWIR region. The spatial resolution of the imagery is approximately 3 m 

based on the average flight height of 2087.3 m above ground level. A pair of black bodies, which are 

mechanically moved in front of the sensor lens one by one, were used for calibration of the sensor. Most 

of the flight lines were acquired under a cloud-free condition. 

2.2.2. Field measurement 

Field measurements of LAI were collected simultaneously with the airborne data acquisition (Figure 2) 

(Gara et al., 2019). The stratified random sampling strategy was performed within the major cover types in 

order to select samples. This resulted in 13 plots of broadleaf, 14 plots of conifer, and 13 plots of mixed 

stands (n = 40). Sample plots located outside the image strips were not considered in this study (four 

plots). The size of each square plot is approximately 900 m2 (30m × 30m). Their precise positions were 

recorded based on the centre coordinate of each plot using Leica GPS 1200 (Leica Geosystems AG, 

Heerburgg, Switzerland), and reached less than 1 m positioning accuracy after post-processing.  

Within each sample plot, LAI and other forest structural parameters were measured. For each plot, three 

above-canopy observations were taken using Li-Cor LAI-2200 canopy analyser (Li-Cor, 1992) as a 

reference reading in a nearby opening forest to minimize the difference of incoming radiation. Next, five 

below-canopy LAI observations were measured in each plot, and then the average value was computed to 

present the LAI value for the sample plot. The summary statistics of LAI field measurements are 

presented in Table 1.  

Table 1. Summary statistics of the measured LAI of sample plots in BFNP (n = 40). 

Measured variable Min Max Mean Std.dev 

LAI (m2 m-2) 1.33 5.42 3.82 1.01 

2.3. Image processing 

The image strips were preprocessed by the NERC Airborne Research Facility (NERC-ARF). Image data 

were converted from digital number (DN) to at-sensor radiance. A MODTRAN-4 based radiative transfer 

model was employed to atmospherically correct each image line using the ATCOR4 software resulting in 

reflectance images (Richter and Schläpfer, 2019). Rough terrain model, ASTER Digital Elevation Model 

(DEM), and rural aerosol model were utilized for geometric and atmospheric correction respectively. 

Since the corrected image data still contained some systematic noise, a moving Savitzky-Golay filter with a 
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frame size of 11 data points (second-degree polynomial) was used to eliminate the noise of the canopy 

reflectance spectra (Savitzky and Golay, 1964). The spectral data from 380-400 and 2400-2500 nm was not 

utilized due to their low signal-to-noise ratio. 

The mean spectral reflectance for each plot was extracted using a 9 × 9 pixel window (i.e. 27m by 27m) to 

assure that we extracted true representatives of sample plots and avoided edge disturbance (Darvishzadeh 

et al., 2011). Since each plot may have been covered by a couple of image strips, for each sample plot, the 

average spectra from different adjacent image strips were calculated. Then the spectrum which had a large 

deviation (greater than one standard deviation) from other spectrums was disregarded. Finally, the mean 

of rest spectrums was calculated to represent the canopy reflectance of the sample plot.  

Except for field plots that are outside the image transects, six plots were excluded from further analysis. 

Figure 3 presents some examples of the three types of excluded plots. Three plots that either are located 

on the border between different vegetation cover (Figure 3 (a)) or are within a very heterogeneous region 

were strongly affected by the geo-referencing error (Figure 3 (b)). Moreover, another three plots covered 

by cloud (shadow) were also disregarded by this study (Figure 3 (c)). Taking into account another four 

plots that were located outside the image boundary, the remaining 30 plots were used for further analysis. 

Data processing and analysis were performed using MATLAB R2019a (The MathWorks, Inc.) 

 
Figure 3. Examples of excluded plots. (a) fall closely to the border with different vegetation cover; (b) located in a 
very heterogeneous area; (c) covered by cloud (shadow). 

2.4. Narrowband vegetation indices 

Four widely used vegetation indices (VIs) were utilized as representatives of ratio-based and soil-based 

vegetation indices to estimate LAI. These indices are normalized difference vegetation index (NDVI), 

ratio vegetation index (RVI), second soil-adjusted vegetation index (SAVI2), and transformed soil-adjusted 

vegetation index (TSAVI). Narrowband indices were calculated using the equations of these broadband 

indices (Table 2) and the hyperspectral wavebands extracted from the processed image spectra. 

To calculate the soil line parameters from spectral measurement, two assumptions were made: (1) the soil 

line concept which originally defined for the red-NIR feature space could be transferred to other spectral 

domain (Thenkabail et al., 2000; Darvishzadeh et al., 2008b), and (2) since there was hardly any bare soil 

on the forest floor, the soil parameters (𝑎  and 𝑏) were calculated based on the mean reflectance of 

different understory layers found in the study area (Ali et al., 2016). A Savitzky-Golay filter with a frame 

size of 11 data points (second-degree polynomial) was applied to eliminate the noise of the measured 

background reflectance. 
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Table 2. Vegetation indices used in this study and their broadband forms in the literature. 𝜌𝑟𝑒𝑑  and 𝜌𝑁𝐼𝑅  are the 

reflectance in the red and NIR region. 𝜌𝜆1
represents the reflectance at the wavelength 𝜆1, and 𝜌𝜆2

stands for the 

reflectance at the wavelength 𝜆2 (𝜆1 ≠ 𝜆2). 𝑎 and 𝑏 denote the slope and intercept of the soil line, respectively. 

No. References Broadband VI Narrowband VI 

1 (Pearson and Miller, 1972) 
𝑅𝑉𝐼 =

𝜌𝑁𝐼𝑅

𝜌𝑟𝑒𝑑

 𝑅𝑉𝐼𝑛𝑎𝑟𝑟𝑜𝑤 =
𝜌𝜆1

𝜌𝜆2

 

2 (Rouse et al., 1974) 
𝑁𝐷𝑉𝐼 =

𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑

 𝑁𝐷𝑉𝐼𝑛𝑎𝑟𝑟𝑜𝑤 =
𝜌𝜆1

− 𝜌𝜆2

𝜌𝜆1
+ 𝜌𝜆2

 

3 (Major et al., 1990) 
𝑆𝐴𝑉𝐼2 =

𝜌𝑁𝐼𝑅

𝜌𝑟𝑒𝑑 + (𝑏/𝑎)
 𝑆𝐴𝑉𝐼2𝑛𝑎𝑟𝑟𝑜𝑤 =

𝜌𝜆1

𝜌𝜆2
+ (𝑏/𝑎)

 

4 (Baret et al., 1989) 
𝑇𝑆𝐴𝑉𝐼 =

𝑎(𝜌𝑁𝐼𝑅 − 𝑎𝜌𝑟𝑒𝑑 − 𝑏)

𝑎𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑 − 𝑎𝑏
 𝑇𝑆𝐴𝑉𝐼𝑛𝑎𝑟𝑟𝑜𝑤 =

𝑎(𝜌𝜆1
− 𝑎𝜌𝜆2

− 𝑏)

𝑎𝜌𝜆1
+ 𝜌𝜆2

− 𝑎𝑏
 

In order to find the optimal bands for narrowband VIs, all possible pairwise wavebands were used for 

systematically calculating selected narrowband VIs. The coefficients of determination (R2) between 

narrowband VIs and measured LAI were used to evaluate the performance of the indices. The results are 

presented through a 2-D correlation matrix, in which the most sensitive regions can be identified based on 

R2 greater than 0.5. The optimal bands which generated the maximum R2 were selected to compute the 

narrowband indices. The linear regression model was employed to establish relationships between 

narrowband VIs and LAI. Further, these sensitive wavebands were selected as a spectral subset input for 

all other methods used in this study for LAI estimation.  

2.5. Partial least square regression 

Partial least square regression (PLSR) has been widely used for the retrieval of vegetation parameters (Cho 

et al., 2007; Darvishzadeh et al., 2011; Singh et al., 2015). PLSR is a multivariate non-parametric regression 

approach designed to alleviate multicollinearity, which is an inherent problem in hyperspectral data. Using 

PLSR, a linear model was built between the response variable (LAI) and predictors (spectral reflectance). 

The observed collinear predictors were concentrated on a few non-correlated latent variables and the less 

informative variables were eliminated. The iterative decomposition was then performed on both 

explanatory and response variables to maximize the fit of Principal Component Analysis (PCA) on the 

response variables (Abdi, 2003; Schlerf et al., 2003). Further details about the PLSR model can be found in 

Geladi and Kowalski (1986).  

In conditions where the input variables are highly correlated, feature selection on input data is known to 

improve the model prediction (Dormann et al., 2013; Rivera et al., 2017). In this study, the PLSR was 

performed using the entire reflectance spectra (400-2400 nm) and the spectral subset, which was identified 

to be sensitive for LAI prediction using narrowband VIs in the above section. The spectral data were 

mean centred before applying PLSR analysis. Leave-one-out cross-validation was used to identify the 

optimal number of components to calibrate the model. To avoid the overfitting problem, the number of 

components was determined according to a standard criterion that the added component increases the R2 
CV 

and reduces the RMSECV by > 2% (Kooistra et al., 2004; Cho et al., 2007). Moreover, the importance of 

each band was evaluated based on the standardized regression coefficient (B coefficient) (Haaland and 

Thomas, 1988). PLSR analysis was carried out in TOMCAT toolbox 1.01 within MATLAB (Daszykowski 

et al., 2007). 

2.6. Machine learning algorithms 

Machine learning algorithms were used to learn the relationship between spectral reflectance and 

vegetation parameters through fitting a nonlinear transformation (Verrelst et al., 2012b). In this study, the 
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performance of the artificial neural network (ANN) as a representative of the most common machine 

learning approach, and Gaussian processes regression (GPR) which is being recently introduced as kernel-

based machine learning algorithms were evaluated respectively. 

2.6.1. Artificial neural network 

ANN is a commonly used approach to develop nonlinear non-parametric models for the estimation of 

vegetation parameters (Kimes et al., 1998; Rivera et al., 2014; Neinavaz et al., 2016). In general, ANN is an 

interconnected structure of neurons organized in one or more hidden layers (Figure 4). In this study, a 

standard multi-layer perceptron with one hidden layer (tan-sigmoid transfer function) was adopted to 

connect the input (reflectance data) and output layer (corresponding LAI). To test the impact of input 

data on the performance of ANN, the entire reflectance and the spectral subset obtained from the analysis 

of narrowband VIs were separately used as inputs for model predictions. The widely used Levenberg-

Marquardt learning algorithm in backpropagation with a squared loss function was utilized for training the 

nonlinear relationship between input and output datasets.  

 

Figure 4. Schematic diagram of ANN architecture. White, blue, and yellow circles represent input data, neurons, 
output data, respectively, arrows represent links (weights) between them. 

It is known that increasing number of neurons usually enhance the prediction power of the network, but it 

would also make the model computationally demanding (Skidmore et al., 1997; Bacour et al., 2006). Thus, 

in this study, the optimal number of neurons was determined through testing model performance with 

different neuron numbers. To avoid overfitting, the training stops early as soon as the validation sets fail 

to improve cross-validated results in the iterative procedure (so-called “early-stopping”) (Nowlan and 

Hinton, 1992). During the training process, the layer weights and biases were initialized randomly using 

the Nguyen-Widrow method (Nguyen and Widrow, 1990). To alleviate the effect of random model 

initialization, the cross-validated results were then averaged based on multiple trials following the 

suggestion of Neinavaz et al. (2016). The ANN analysis was performed with the MATLAB R2019a neural 

network toolbox (The MathWorks, Inc.) 

2.6.2. Gaussian processes regression 

In recent years, GPR has been gradually introduced as a powerful regression tool to retrieve vegetation 

parameters in remote sensing community (Verrelst et al., 2013; Halme et al., 2019; Gewali et al., 2019). 

GPR is a probabilistic (Bayesian) approach that provides predictions through kernel (covariance) 

functions, which is calculated by evaluating the similarity between pairs of testing and training input 
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values. A proper kernel function always plays a vital role in successful prediction in GPR. For this study, a 

scaled squared exponential covariance function was employed, which has proven to be useful for 

extracting vegetation parameters by previous studies (Verrelst et al., 2013; Wang et al., 2019): 

 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜈 exp (−
1

2
∑

(𝑥𝑖
𝑏−𝑥𝑗

𝑏)
2

𝜎𝑏
2

𝐵
𝑏=1 ) + δ𝑖𝑗𝜎𝑛

2           (1) 

Where 𝜈 is a scaling factor, 𝐵 is the number of bands, 𝜎𝑏  is the length scale, 𝜎𝑛  is the noise standard 

deviation and δ𝑖𝑗 is the Kronecker’s symbol. In GPR, each output of training and testing data is assumed 

to be a noisy observation composed of true output value and additive Gaussian noise, so-called “prior 

distribution”. Based on the assumptions and Bayesian inference, the posterior probabilistic estimates 

(predictive mean and variance) can be obtained in the Gaussian distribution by conditioning the training 

data. It should be noted that the input spectra need to be normalized before they are used for learning. 

Further details on GPR theories can be found in Williams and Rasmussen (2006). 

GPR does not require prior knowledge about the model hyperparameters (𝜈, 𝜎𝑛, 𝜎𝑏 ), because these 

parameters and model weights can be automatically optimized through maximizing the negative log 

marginal likelihood (Williams and Rasmussen, 2006). Another important advantage is a GPR model 

provides not only a prediction for each input spectra, but also a corresponding predictive variance (also 

called uncertainty estimates). The delivery of uncertainties allows us to post-evaluate the mapping results 

when GPR is applied to map variables of interest from images.   

In this study, GPR was first applied to the entire spectra (i.e., 594 bands) to test the performance of the 

original reflectance. The reduction of data dimensionality is known to improve the GPR performance (van 

der Maaten et al. 2009; Rivera et al., 2017). To study the importance of removing redundant information 

on the model performance, the spectral subset obtained from the analysis of narrowband VIs was used as 

input to the GPR model. The GPR analysis was implemented using the GPML package within MATLAB 

(http://www.gaussianprocess.org/gpml). 

2.7. Model validation and mapping 

Leave-one-out cross-validation (LOOCV) was utilized to validate the studied methods. In LOOCV, each 

sample is left out and estimated by a model developed based on the other remaining samples, and this 

procedure was repeated for all the samples. Cross-validated root mean square error (RMSECV) and cross-

validated coefficient of determination (R2 
CV) between estimated LAI and measured LAI were selected as 

indicators of model accuracy of all studied methods. The LAI map of BFNP was then generated using the 

best-performing method (with the lowest RMSECV). Boxplot and paired t-test were employed to evaluate 

the statistically significant difference between measured LAI and estimated LAI using different retrieval 

methods. Before mapping LAI, the forest cover was extracted from the BFNP land use map provided by 

the national park administration (Silveyra Gonzalez et al., 2018). Then the non-forested area was masked 

out from the hyperspectral imagery using the extracted forest map. The masked image with the lowest 

cloud (shadow) coverage (i.e. Flight line 29) was used as input to the model for LAI prediction. To analyse 

the mapping output, the results were further compared with the forest type map and the RGB airborne 

imagery. 
  

http://www.gaussianprocess.org/gpml
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3. RESULTS 

3.1. LAI measurements and extracted plot reflectance 

The values of LAI field measurements cover a range from 1.33 to 5.42, presenting a relatively wide variety 

of LAI values involved in this study. Analysis of field data per species type showed that the mean LAI 

value for broadleaf was 4.10, while the conifer had a mean LAI value of 3.46. The mean reflectance 

spectra for the three dominant tree species extracted from the airborne hyperspectral data are presented in 

Figure 5, which also confirms the mean LAI values of the species. As can be seen in this figure, 

broadleaved stands exhibit the highest mean spectra, while the mean reflectance for conifer stands is 

relatively low. 

 
Figure 5. Mean canopy reflectance for broadleaf, conifer, and mixed forest stands measured using the Specim AISA 
Fenix hyperspectral sensor. 

3.2. Narrowband vegetation indices 

The selected four narrowband vegetation indices (VIs) were systematically computed from canopy 

reflectance using all possible paired wavebands. The coefficients of determination (R2) between 

narrowband VIs and measured forest LAI were calculated. Figure 6 presents the results for the two best-

performing indices (i.e., SAVI2 and RVI) of each narrowband VI type in the 2-D correlation matrix 

(where the meeting points represent the R2 values between the measured LAI and narrowband indices). 

The highest R2 between LAI and narrowband VIs, as well as the sensitive wavebands range (where R2 > 

0.5), are reported in Table 3. Based on the identified sensitive spectral wavebands in Table 3, a spectral 

subset was formulated. 

The narrowband VIs generated by the optimum band combinations were further used to estimate LAI 

through linear regression models, and R 2 
CV  and RMSECV were used to evaluate model accuracy. As 

presented in Table 4, four studied narrowband VIs overall produced reasonable prediction for LAI, while 

soil-based narrowband VIs performs slightly better comparing to ratio-based ones. The relationship 

between the measured LAI and the best-performing indices (SAVI2) is presented in Figure 7. The results 

for the other three narrowband VIs are shown in Figure 14, Appendix A. 
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Figure 6. 2-D correlation plot presenting the coefficient of determination (R2) between measured LAI and (a) 
narrowband RVI and (b) narrowband SAVI2 calculated using Fenix airborne hyperspectral data. The highlighted 
regions in (b) refer to the strongly noisy bands existed in the measured understory reflectance. 

Table 3. The highest R2 between measured LAI and narrowband VIs calculated using Fenix airborne hyperspectral 
data and obtained sensitive regions for predicting LAI using different narrowband indices (R2 > 0.5). 

Type Narrowband VI Maximum R2  Sensitive spectral range (nm)  

    𝜆1(𝑛𝑚) 𝜆2(𝑛𝑚) 

Ratio-based 

narrowband VIs 

RVI 0.55  739-767 718-743 

   1158-1167 1290-1298 

   1517-1561 1507-1525 

   1942-1981  1870-1963  

   2029-2085 1822-1867 

NDVI 0.54  739-761 720-743 

   1286-1299 1160-1168 

   1517-1562 1507-1525 

   1942-1981 1868-1964 

   2029-2085 1822-1868 

Soil-based  

narrowband VIs 

SAVI2 0.62  682-688 683-690 

   742-771 729-731 

   1167-1185 1290-1302 

   1238-1274 1275-1290 

TSAVI 0.61  682-689 684-690 

   740-765 729-730 

   1162-1180  1282-1296 

   1246-1266  1272-1290 

Table 4. R2 
CV and RMSECV between estimated and measured LAI using narrowband VIs calculated using Fenix 

airborne hyperspectral data and the wavelength of optimum bands combination. 

Narrowband VI R2 
CV RMSECV  The best bands combination  

    𝜆1(𝑛𝑚) 𝜆2(𝑛𝑚) 

RVI 0.43 0.69  1161 1295 

NDVI 0.41 0.71  1167 1296 

SAVI2 0.54 0.63  1259 1281 

TSAVI 0.53 0.64  1260 1280 
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Figure 7. Measured LAI and estimated LAI calculated from entire reflectance data from Fenix airborne sensor using 
the SAVI2. The dashed line shows the 1:1 relationship, while the solid line indicates the relationship between the 
field measured and estimated values of LAI. 

3.3. Partial least square regression 

The regression coefficients (B coefficient) in Figure 8 represents the relative contribution of each 

waveband to the LAI prediction. Important wavebands can be identified where the corresponding B 

coefficient is greater than the standard deviation. When we considered the criterion that added component 

increases R2 
CV and meanwhile reduces RMSECV by > 2%, six components were determined to establish the 

final model. The performance of the PLSR model using the full spectrum for LAI estimation is presented 

in Figure 9. As it can be observed, PLSR yields higher R2 
CV value compared to narrowband vegetation 

indices (Table 4) but failed to reduce the RMSECV.  

 
Figure 8. Regression coefficient (B) of each wavelength for the partial least square regression model. Dashed lines 
represent the standard deviation of B. The regression coefficients larger than its standard deviation (absolute value) 
indicate a larger influence of the spectral data on the regression model. 
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Figure 9. Measured LAI and estimated LAI calculated from entire reflectance data from Fenix airborne sensor using 
partial least square regression (No. of factors = 6). The dashed line shows the 1:1 relationship, while the solid line 
indicates the relationship between the field measured and estimated values of LAI. 

3.4. Artificial neural network 

In ANN, four neurons of the hidden layer produced the most accurate LAI prediction. By applying the 

early-stopping technique, the optimum model complexity was determined by tuning the training parameter 

values as soon as the validation sets fail to improve cross-validated results. Based on the optimum neuron 

size and selected model complexity, the relationship between measured and estimated LAI was calculated 

and is present in Figure 10. In comparison with narrowband VIs and PLSR model, ANN significantly 

improved RMSECV and obtained a relatively high correlation with LAI (R2 
CV). 

 
Figure 10. Measured LAI and estimated LAI calculated from entire reflectance data from Fenix airborne sensor using 
artificial neural network (No. of neurons = 4). R2 

CV and RMSECV are averaged results of 1,000 random initializations. 
The dashed line shows the 1:1 relationship, while the solid line indicates the relationship between the field measured 
and estimated values of LAI. 
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3.5. Gaussian processes regression 

The performance of GPR was firstly evaluated from the original hyperspectral reflectance data. The cross-

validated results are shown in Figure 11. As can be seen from Figure 11, both the RMSECV and R2 
CV 

outperformed the majority of other assessed approaches in this study. GPR not only provides prediction 

means (𝜇) but also their corresponding uncertainties (𝜎) (i.e., variance of the mean prediction) (Verrelst, et 

al., 2012a). The associated variance of LAI predictions are presented in Figure 12. It can be observed that 

most of the plots were estimated with a high confidence level, while Plot 24 (index = 18) was predicted 

with a relatively large uncertainty interval.  

 
Figure 11. Measured LAI and estimated LAI using Gaussian processes regression calculated from the entire 
reflectance data from the Fenix airborne sensor. The dashed line shows the 1:1 relationship, while the solid line 
indicates the relationship between the field measured and estimated values of LAI. 

 

Figure 12. Uncertainties (σ) of LAI for sample plots (n = 30) estimated using Gaussian processes regression from the 
entire spectral reflectance. 
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3.6. Use of spectral subset in predicting LAI 

In addition to predicting LAI using entire reflectance data, a spectral subset obtained from the analysis of 

narrowband VIs in Table 3 was used as input to all studied models for LAI prediction. The cross-validated 

results are shown in Table 5. A positive impact of using these informative wavebands for the PLSR model 

was observed, where R2 
CV slightly increased from 0.74 to 0.75 and RMSECV decreased from 0.73 to 0.69. 

Also, applying the spectral subset to the GPR model decreased the RMSECV from 0.53 to 0.52 and 

improved R2 
CV from 0.67 to 0.69. Nevertheless, using a spectral subset was not able to further improve the 

retrieval accuracy of the ANN model compared to the full-spectrum range.  

Table 5. Cross-validated results (RMSECV and R
2 
CV) for estimating LAI using entire reflectance data versus the spectral 

subset obtained from the analysis of VIs. Note that the statistical results of ANN are averaged results of 1,000 
random initializations. The best model with the highest R2 

CV and lowest RMSECV is boldfaced. 

Input Regression methods R2 
CV RMSECV 

Entire reflectance PLSR 0.74 0.73 

 ANN 0.68 0.54 

 GPR 0.67 0.53 

Spectral subset PLSR 0.75 0.69 

 ANN 0.68 0.55 

 GPR 0.69 0.52 

3.7. Mapping forest leaf area index 

GPR with the identified spectral subset which produced the highest accuracy (Table 5) was applied to the 

Fenix image strip with the lowest cloud coverage (i.e., Flight line 29) to generate the LAI map of the 

BFNP. The generated LAI map and its associated uncertainty map are presented in Figure 13 (c) and (d). 

The non-forest area was masked out in advance using the BFNP land use map. To check the consistency 

and analyse the output map, the true colour (RGB) Fenix image and the forest classification map are also 

shown in Figure 13 (a) and (b). As it can be compared between the modelled LAI and forest cover map, 

the variation of LAI corresponds well with the distribution of deciduous, coniferous, and mixed forest 

stands. Higher LAI values can be observed predominantly in the deciduous stands, followed by mixed 

stands, while lower LAI values are found in the coniferous area. The average LAI value of all the masked 

forest pixels is 3.67, which is quite close to the mean LAI of the field sample measurements reported in 

Table 1 (LAImean = 3.81). In the obtained LAI uncertainty map, pixels with lower 𝜎 values indicate more 

confident estimations retrieved by the trained GPR model. Generally, the uncertainty levels mapped by 

GPR were low across the entire image (Figure 13 (d)). 

 

  



AIRBORNE HYPERSPECTRAL DATA FOR ESTIMATION AND MAPPING OF FOREST LEAF AREA INDEX 

18 

 

Figure 13. (a) Fenix airborne hyperspectral data (Flight line 29), (b) forest classification map, (c) modelled 

LAI in BFNP using GPR and the selected spectral subset, and (d) associated uncertainty estimates.
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4. DISCUSSION 

This study examined the performance of Gaussian processes regression (GPR), a novel kernel-based 

machine learning algorithm in comparison to the most commonly used empirical methods (i.e., 

narrowband vegetation indices, partial least square regression, and artificial neural network) for estimating 

forest LAI using Fenix airborne hyperspectral data. The results showed that GPR outperformed the other 

methods and yielded the most precise prediction for forest LAI (RMSECV = 0.53 m2 m-2). This was 

despite complex forest structure, signal distortion, and contribution of optical properties from understory 

layers which usually have undesired impacts on the LAI retrieval processes (Gitelson et al., 2005; Schlerf et 

al., 2005; Ollinger, 2011). The results are consistent with those of Verrelst et al., (2012a) and Rivera et al. 

(2014) who reported better predictive performance of GPR compared with narrowband VIs and classical 

machine learning algorithms for biophysical parameter estimation in agricultural fields. Predictions 

obtained using four different approaches were compared for their statistically significant difference from 

in situ data. The results of the boxplot (Figure 15, Appendix B) and paired t-test (Table 6, Appendix C) 

showed that, in general, there was an agreement between measured and estimated LAI using different 

approaches (p > 0.05). Although this suggests a comparable predictive accuracy for different empirical 

approaches in retrieving LAI, GPR may be a preferred method for its more precise estimation of LAI. In 

addition to accurate predictions, using GPR, the variance of the predicted LAI provided insights on the 

uncertainty level of the model retrievals, which could also contribute to assess the reliability of resulting 

plant traits map (Wang et al., 2019). 

All narrowband VIs produced reasonable LAI predictions, while soil-based narrowband VIs performed 

slightly better (RMSE 0.63-0.64 m2 m-2) comparing to ratio-based ones (RMSE 0.69-0.71 m2 m-2). As most 

of the field plots were within the open canopies where the contribution of the background was 

pronounced, consideration of soil (understory) parameters improved the LAI estimation. This finding is 

also in line with previous studies, which demonstrated the importance of soil-based vegetation indices, 

particularly in open canopies (Broge and Leblanc, 2001; Darvishzadeh et al., 2009). We also observed that 

when sample plots were stratified according to individual species, the results of LAI estimation were 

highly improved than when the pooled data was used (not shown). This finding can be explained as the 

heterogeneous nature of the mixed forest species which may have different crown density, canopy 

structure, and leaf angle distribution (Ollinger, 2011; Wang et al., 2016, 2017; Gara et al., 2018). 

Narrowband VIs computed from wavebands located in red-edge and SWIR spectral regions yielded higher 

correlations with LAI (Table 3). The identified important bands are consistent with previous studies that 

observed canopy reflectance especially in the red-edge and SWIR spectrum are important for LAI 

estimation (Brown et al., 2000; Gong et al., 2003; Lee et al., 2004; Darvishzadeh et al., 2008b; Verrelst et 

al., 2016). Spectral data from these wavebands were further used as a spectral subset in PLSR, ANN, and 

GPR. Although vegetation indices are simple and computationally cheap retrieval methods of vegetation 

biophysical properties, their limited use of the full spectral information, as well as sensitivity to sensor 

configuration and sampling sites, makes them less attractive for quantitative estimation of vegetation 

parameters (Haboudane et al., 2004; Darvishzadeh et al., 2011; Atzberger et al., 2015). 

Compared to narrowband VIs, applying the PLSR model (using the entire spectra) with six latent factors 

resulted in a significantly increased correlation coefficient (R2 
CV) between measured and estimated LAI by 

0.21 to 0.33, but did not reduce the prediction error (RMSECV). Although spectral information from 

additional wavebands contains more comprehensive information related to the plant traits (Lee et al., 

2004), the inclusion of the full-spectrum may also introduce data of noisy bands leading to a deterioration 

of the model quality (Rivera et al., 2017; Darvishzadeh et al. 2011). When including the spectral subset 
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obtained from the analysis of narrowband VIs to the PLSR model, the predictive performance of PLSR 

was improved (Table 5). This result highlights the importance of selecting relevant bands for enhancing 

LAI estimation using the PLSR model (Cho et al., 2007; Darvishzadeh et al., 2008b). As may be observed 

in Figure 8, the informative spectral bands in the PLSR model are mainly located within the SWIR region 

and correspond well to those identified as sensitive wavebands in the analysis of narrowband VIs (Table 

3). The irregular peaks that are observed at the shortest wavelength (400 nm) and towards longest 

wavelength (2400 nm) in Figure 8 are mainly attributed to the poor signal-to-noise ratio at these regions 

which is probably caused by the silicon photodiode detector of the sensor (Milton et al., 2009). The 

obtained results broadly support the work of other studies (Brown et al., 2000; Cohen and Goward, 2004; 

Darvishzadeh et al., 2011; Rivera et al., 2014; Schlerf et al., 2005) that demonstrated SWIR region to be an 

important spectral domain for modelling leaf area index.  

The optimum neural net node size for estimating LAI in this study was determined through a comparative 

analysis of ANN (not shown) and the most accurate results (in terms of both RMSECV and R2 
CV) were 

achieved using four neurons within the hidden layer. Similar number of neurons was used in the study by 

Neinavaz et al. (2016) when modelling LAI using a field spectrometer. Compared to the narrowband VIs 

and PLSR model, LAI estimations were significantly improved when the ANN was applied. This is 

probably due to the sophisticated training process and highly specialized model developed by ANN, 

though this property can make the developed model less robust when inverted and used for prediction 

(Rivera et al., 2014; Verrelst et al., 2015). Nevertheless, using ANN, the high LAI values appeared to be 

underestimated (typically for LAI greater than 4.5), while the intermediate LAI values (LAI range of 2 to 

4) were somehow overestimated (Figure 10). According to Bacour et al. (2006) who observed a similar 

trend, ANN applies a global training strategy to estimate the variables of interest, therefore the 

underestimation in the intermediate range can logically be compensated by the overestimation occur for 

the higher values. 

Further, the ANN retrieval accuracy was not improved by reducing the data dimensions using the spectral 

subset (Table 5). This result is in agreement with the finding of Rivera et al. (2017), who showed that 

adopting the dimensionality reduction methods in the ANN model could not improve the LAI estimation 

of agricultural fields. In the backpropagation training phase, the ANN model is adjusted to minimize the 

distance between the model output and the training targets. Therefore, the spectral bands which are 

poorly-related to the target LAI are iteratively identified and adjusted to lower weights during the 

optimization process (Kimes et al., 1998; Bacour et al., 2006). Hence, eliminating them may not have a 

positive impact on the prediction results.  

The higher performance of GPR confirmed the findings of Rivera et al. (2014) and Verrelst et al. (2015) 

which demonstrated the superiority of GPR over linear parametric methods and classic machine learning 

algorithms for estimating LAI and LCC (leaf canopy chlorophyll) in agricultural fields. The accuracy of 

GPR was further improved (RMSECV = 0.52 m2 m-2, R2 
CV = 0.69) using the selected spectral subset 

obtained from the analysis of narrowband VIs. This increase concurs with Verrelst et al. (2016) and Rivera 

et al. (2017) who observed that removing less relevant spectral data may enhance the GPR prediction 

compared to using all hyperspectral bands. The existence of much redundant information could make the 

model unnecessarily complex and computationally demanding, therefore lead to reduced predictive power 

(van der Maaten et al., 2009).  

An important benefit of GPR is its property of providing the associated uncertainty estimates. Such a 

property is of interest to the remote sensing community to assess the model reliability and post-evaluate 

the performance of the calibrated model on mapping products. As can be seen in Figure 12, most of the 

plots were estimated with a high confidence level, except Plot 24 (index = 18). This high uncertainty of 

Plot 24, might be due to the proximity of the plot to a deadwood area which is under-represented in the 
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training dataset, thus yielding a greater uncertainty. We note that the low confidence does not necessarily 

mean that the prediction is wrong, it only indicates that the input reflectance deviates from the spectrum 

provided in the training phase, thus leading to an uncertain estimation (Verrelst et al., 2013).  

The generated LAI map confirmed the spatial variation of LAI across different forest classes (i.e., higher 

LAI are observed in deciduous stands than coniferous and mixed stands), which is in agreement with the 

observation during the field campaign. The same distribution pattern for canopy chlorophyll content was 

found in BFNP (Ali et al., 2020). The artefacts on the edge of the map (Figure 13 (c)) are possibly due to 

the wide FOV sensor and the related BRDF. Uncertainties generated by GPR were generally low across 

the entire resulting map (Figure 13 (d)). Regions with high prediction uncertainties infer poorly predicted 

results and can be either masked or improved by collecting additional training data from these areas. As 

can be interpreted from Figure 13 ((a), (c), and (d)), higher uncertainties are mainly located in the 

deadwood area (displayed as pink colour) and the regions with cloud cover or regions with low LAI values 

(i.e., low vegetation cover). Since these areas were not considered in the training samples, this was 

somehow expected. These results also match the finding of a previous study in a grassland experiment that 

concluded high uncertainties are largely associated with additional treatments (i.e., not represented in the 

field sampling) or with low vegetation cover (Wang et al., 2019). 

Owing to the vast number of contiguous spectral channels, a general challenge of using hyperspectral data 

is the intrinsic problem of multicollinearity. In the present study, this problem was alleviated by forming a 

spectral subset obtained from the analysis of narrowband VIs as an alternative to using the whole spectral 

range. This is perhaps the most typical way for defining a spectral subset to represent the most useful 

information of the original reflectance (le Maire et al., 2008) compared to extracting a small set of new 

features obtained from latent factors in principal component analysis or partial least squares (Motoda and 

Liu, 2002; Lee and Verleysen, 2007), which is often limited to be suitable for retrieval of vegetation 

parameters which have a broad sensitive spectral response (e.g., LAI) (Rivera et al., 2017). Alternatively, 

selection of important wavelengths from literature to form a spectral subset that can present similar 

information of the full spectrum (Cho et al., 2007; Faurtyot and Baret, 1997; Darvishzadeh et al., 2008b) 

would require, a careful literature search, particularly of controlled experimental studies to ensure that the 

selected wavelengths are truly sensitive to the studied vegetation parameters.   

It has long been a consensus for ecologists and forest managers to identify suitable methods for accurately 

mapping the spatial distribution of forest biophysical variables from remote sensing (RS) data. Maps of 

plant traits play an important role in monitoring forest ecosystems and are mandatory inputs for spatially 

ecological modelling such as biodiversity assessment, examining productivity, and ecosystem dynamics. 

Forest monitoring can further support innovations in forest management, ecology conservation, and 

resource decision-making in the context of increasing pressure due to climate change and expanding 

human activities (Asner et al., 2016). The continuous and explicit information of vegetation traits can 

facilitate assessing the long-term impact of increasing drought events (Hill et al., 2019). By comparing and 

analysing the changes in vegetation traits, it can also contribute to post-evaluate the effect of forest 

damages such as wildfire. Moreover, environmental decision-making usually needs to consider resource 

management for both the conservation of wildlife and privately-owned areas, especially in edges of 

ecological zones where stakeholders may have conflicting interests. Therefore, regional vegetation 

mapping products can be an effective tool for monitoring the expanding human activities and wildlife 

damages, which can further provide decision support to strategic spatial planning. 

Previous studies were carried out to develop numerous models and approaches for improving the 

estimation of vegetation parameters. As demonstrated by this study, GPR seems to be a promising 

candidate for the retrieval of vegetation parameters compared to conventional empirical methods due to 

its excellent predictive performance. However, generated trait maps usually can not be directly used for 
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ecological applications because the absence of uncertainties can lead to errors in subsequent analysis. This 

is especially important when models are being applied to new sites without ground truth data. Therefore, 

the generated variable maps are strongly required to check with its uncertainties to assess the utility of the 

resulting maps. The trait uncertainty maps like we produced in this study provide an opportunity to fill 

this knowledge gap and give additional insights for managers and researchers to evaluate and improve the 

model and mapping results.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

This study demonstrated the potential of a recently introduced machine learning algorithm, namely 

Gaussian processes regression (GPR), for estimating LAI using Fenix airborne hyperspectral data (400-

2500 nm) in a heterogeneous mixed mountain forest. Our findings confirmed the outperformance of GPR 

over conventional empirical methods in estimating crop LAI as reported in previous studies (Verrelst et 

al., 2012b; Rivera et al., 2014). Comparing to narrowband vegetation indices (VIs), partial least square 

regression (PLSR), and artificial neural network (ANN), the most accurate LAI prediction was obtained 

using GPR in this study (RMSECV = 0.53 m2 m-2). The LAI map generated by GPR demonstrated a spatial 

variation of LAI across forest types. Another important benefit of using GPR is its property of providing 

the prediction uncertainty estimates along with the predicted values. The uncertainty map shows that LAI 

uncertainties were generally low across the entire images. Higher uncertainties were observed mainly in the 

forested areas which were under-represented in the collected sample plots and low LAI region (i.e. low 

vegetation cover). Therefore, comprehensive data sampling in regions associated with high uncertainties is 

recommended in future fieldwork to improve the model. Moreover, a spectral subset obtained from the 

analysis of narrowband VIs generally improved model performance of the studied approaches. This 

emphasized the importance of utilizing the most useful information and eliminating irrelevant bands for 

estimating vegetation parameters from hyperspectral data.  

With the development of spaceborne hyperspectral missions, global full-range spectral data will be soon 

available for vegetation monitoring (Labate et al., 2009; Stuffler et al., 2007; Drusch et al., 2017). The 

upcoming big data stream would thus require methods that can cope well with the hundreds of 

hyperspectral bands and provide accurate, robust, fast predictions for operational vegetation parameter 

retrieval. Gaussian processes regression, being able to generate adaptive and robust relationships between 

image spectral reflectance and target variables and the accompanying uncertainty estimates, shows great 

potentials to be implemented in future retrieval applications on a global scale. Therefore, further studies 

can investigate the utility of GPR for vegetation parameter retrieval using simulated spaceborne 

hyperspectral data, such as EnMAP end-to-end simulation tool (Segl et al., 2012). These efforts are critical 

in preparation for the forthcoming satellite missions and the imminent availability of full-range spectral 

data from space and contribute to monitor plant function and diversity globally. Moreover, the GPR 

model investigated in this study could be potentially applied in other vegetation types to generate trait 

maps and uncertainty estimates. Once the model is validated and uncertainties are evaluated, the generated 

trait maps can be used for ecological applications. 
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APPENDIX 

A. The relationship between measured LAI and estimated LAI predicted using narrowband 

vegetation indices. 

 
Figure 14. Measured LAI and estimated LAI calculated from entire reflectance data from Fenix airborne sensor using 
the narrowband VIs (i.e., NDVI, RVI, TSAVI). The dashed line shows the 1:1 relationship, while the solid line 
indicates the relationship between the field measured and estimated values of LAI. 

B. Illustration of the central tendency of the four methods predictions compared to in situ LAI 

data. 

 
Figure 15. Boxplot of in situ LAI and predicted LAI values using four methods. 

C. Statistically significant difference for predictions obtained using four different approaches 

against in situ LAI data. 

Table 6. Paired t-test results between measured LAI and evaluated methods in this study (i.e., SAVI2, PLSR, ANN, 
and GPR). 

Method Std. dev 95% confidence interval t-stat p-value 

SAVI2 0.65 (-0.24, 0.25) 0.03 0.97 

PLSR 0.47 (-0.18, 0.18) 0.01 0.99 

ANN 0.47 (-0.16, 0.20) 0.24 0.71 

GPR 0.53 (-0.15, 0.25) 0.39 0.63 

 


