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ABSTRACT 

Super resolution mapping (SRM) is a method that divides pixels of input image into finer resolution 

classified map. Among the existing techniques for SRM, Markov random field (MRF) based on SRM has 

been introduced as method that use contextual information for SRM to reduce the number of isolated and 

misclassified pixels. Current SRM either ignore within class variance or model it with normal distribution. 

Many classes are normally distributed but not all of them and to classify, the classes that are not normally 

distributed, it is better to use non-parametric classifications methods such as support vector machine 

(SVM). The SVM classification method has been presented better accuracy than other classifications 

methods such as maximum likelihood. SVM does not make assumption for distributed of classes and 

contains transformation with kernel functions for non-linear separable classes. It also does not  need big 

training set. Therefore to apply SRM on images with non-normally distribution classes, in this study SVM 

was incorporated into MRF-SRM classification method.   

The data that used in this study were two synthetic images and a remote sensing image. The synthetic 

images produced in different class distributions and remote sensing image is from different sources, 

optical image and radar image. To estimate mixture probability distance of each data from separating 

hyperplane and the histogram of those distances are used. The histogram of mixed pixels is obtained by 

mixing the histograms of distances for pure data set. The interpolation method is used to find the value of 

mixture probability for a mixed pixel with known proportion of each class. Additionally the proposed 

SVM mixture probability method is used in likelihood energy of MRF-SRM. The accuracy assessment of 

the method is done by RMSE for mixture probability and by kappa coefficient for application of MRF-

SRM with SVM. 

The SVM mixture model gives identical RMSE value and final SRM results are smooth maps of fine 

resolution. Also this method converts multiband dataset to a single band size (distance from hyperplane) 

that makes the implementation faster. The experimental results from application of the method on 

synthetic images and remote sensing data show that the MRF-SRM method incorporated with SVM is 

suitable for the images with any kind of distributions. 
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1. INTRODUCTION 

1.1. Background 

Land cover classification has been identified as one of the requirements to manage and understand the 

environment. Remote sensing has the ability of data acquisition to produce land cover classification maps 

from satellite images. With this technology users do not need to do field work to get information of large 

area because satellite images can cover a large area just in one image. In satellite images the spatial 

resolution is very important to interpret land cover information and users have been interested in more 

detailed information of the ground through these images. 

Fine spatial resolution images help to have more spatial detail in classification map. There are some 

problems in using these images such as, usually they have fewer spectral bands and more mixed pixels 

than coarse resolution images and it is often expensive to use fine resolution images for covering a large 

area. So it is useful to identify a technique that can obtain finer resolution classification map from coarse 

resolution images (Foody, 2006; Kasetkasem, et al., 2005; Tatem, et al., 2001; Tolpekin & Stein, 2009). 

SRM is a method which divides a large pixel into a finer classified map (Verhoeye & De Wulf, 2002). It 

changes a soft classification result into a finer scale hard classification map. But after producing the initial 

SRM map, spatial distribution of classes is still unknown and there are many pixels that do not have 

similar classification as their neighbours. Therefore statistical correlation between neighbouring pixels 

should be computed (Kasetkasem & Varshney, 2002). 

In many studies the concept of contextual model such as Markov Random Field (MRF) has been used in 

image classification. With MRF, pixels are not considered as an isolated pixel (B. Tso & Mather, 2001). 

This algorithm is a useful tool to solve spatial dependency between neighbourhood pixels in initial SRM 

map (Kasetkasem, et al., 2005). MRF-based SRM described in (Kasetkasem, et al., 2005) uses Bayesian 

classification where the class spectral values have been modelled with normal (Gaussian) distribution. 

Many classes can be described by normal distribution but not all of them, for instance radar images are 

exponentially, Gamma or Rayleigh distributed, or in high resolution images like, Quick Bird, DN values of 

the classes are often not normally distributed. To classify these classes non-parametric classification 

methods are appropriate. These methods do not make assumption about probability distribution. 

Many non-parametric classifiers have been developed. One of the most popular is Support Vector 

Machine (SVM). The concept of this method is based on discriminating the classes optimally by a decision 

boundary, a hyper-plane. Hyper-plane should be in maximum distance from training samples of both 

classes (Brown, et al., 1999).  

1.2. Problem Statement 

MRF-based SRM requires a model for spectral mixture i.e. the mixed pixel’s spectral value in relation to 

pixel composition for classes. In existing MRF-based SRM the classes are assumed to be normally 

distributed for modelling mixed pixels (Kasetkasem, et al., 2005; Tolpekin & Stein, 2009). To apply MRF-

based SRM technique for non-normally distributed classes, a non-parametric method, such as SVM, might 

be used. Application of MRF-based SRM to model spectral mixture with SVM has not been described in 

literature. This is the aim of this research. 
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1.3. Research Objective 

The main objective of the research is to improve MRF-based SRM technique by incorporating SVM 

classification method, for modelling conditional probability of spectral values of mixed pixels. 

1.4. Research questions 

1) How to estimate mixture probability for mixed pixel with SVM? 

2) How to integrate SVM mixture probability with MRF-based SRM? 

3) How to estimate a parameter of MRF based SRM technique incorporated with SVM? 

4) How to validate the results of the MRF based SRM technique incorporated with SVM? 

1.5. Research approach 

The research starts with literature review about SRM, MRF and SVM, to know about the advantage and 

limitation of each method. As the objective of the study is to apply MRF based SRM for different 

distributions, two synthetic images with normal and non-normally distribution for the classes prepared. 

Initial study focused on normal distribution class then the results generalised for other distributions. SVM 

classification and different properties of this classification method studied. The algorithm to find the 

mixture probability from the results of SVM is executed on synthetic images and its accuracy was 

obtained. Then developed method for SVM mixture incorporated with MRF based SRM algorithm. At the 

end the obtained results are evaluated. 

General Framework of the research is shown in Fig1-1. 
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Apply the SVM mixture 
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Figure 1-1General approach of the thesis 
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1.6. Structure of the thesis 

 
The thesis organized in eight chapters. The first chapter is about background of the research, objective, 

questions, problem statement and research set up. Second chapter includes literature review of the 

researches that are related to super resolution mapping, Markov random field and support vector machine. 

Chapter three explains the remote sensing data that is used and the software that implementation was 

done with them. Chapter four describes the methods was used for implementation. It is about their 

mathematic background and how they can be applied on the methods. Chapter five describes the process 

of applying the methods. Chapter five of the thesis explains about the result of the implementation. 

Chapter seven discusses the results and analyse them. And the last chapter makes conclusion and 

recommendation for further researches. 
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2. LITRERATURE REVIEW 

2.1. Land Cover Classification 

Landcover identification from the earth’s surface is important in many fields such as agricultural, 

hydrological, environmental and ecological. One of the sources of data acquisition for land cover 

information is remotely sensed images. The advantage of remote sensing is that producers do not need to 

go to the field to gather information and the information can be extracted from satellite sensors. General 

properties of remote sensing instruments are their spatial, spectral and temporal resolution and the 

number of captured spectral bands. Spatial resolution is the geometric characterise of satellite images, it is 

the ability to distinguish between target points and to measure the distance between them. Spectral 

resolution is the width of spectral bands of an image. Temporal resolution refers to the difference of time 

between the multiband images taken from different moments and from same area (Mather & Koch, 

1987). Extracting information of land cover from satellite images is by means of classification which is the 

process to define each pixel labelled as one class. Usually, classification is done by the spectral information 

of the pixel. Most of the methods for classification are based on statistical algorithms that the pixels in the 

same class are in the same probability distribution.  

Classification can be done by two main methods: supervised and unsupervised classification. In supervised 

classification the user define the property of the classes by training sets of pixels that have similarity in 

spectral properties. Then the computation of classification will be done with parametric classification that 

use mean and covariance of classes or non-parametric methods such as neural networks and support 

vector machines (Richards & Jia, 2006). In unsupervised classification the definition of classes and the 

process itself to do the classification is done automatically. Mostly unsupervised classification methods 

uses clustering algorithm. They can be used to define spectral composition of classes for primary 

information of supervised classification. Presenting the information of land cover classification is done in 

thematic maps, that is a map wherein each set of pixel with similar values is represented by thematic 

categories (Richards & Jia, 2006).  

2.2. Mixed pixel 

Pixel is the smallest part of the image. The objective of land cover classification is based on the 

assumption that each pixel corresponds to a single class but it is not always true. When the Instantaneous 

Field of View (IFOV) , the area on the ground which is view by the sensor, has more than one type of 

land cover or object, then the pixel may have more than one class and is defined as a mixed pixel (Fisher, 

1997; Foody, 2006), this means that for each pixel the spectral signature reflects the different surface 

materials (Zhu, 2005). The nature of the classes also has influence on mixing the classes for example 

mixture of classes is more in mixed of vegetation classes rather than mix of vegetation and soil classes 

(Kasetkasem, et al., 2005). Four main types of mixed pixels are introduced in a paper from Fisher, (Fisher, 

1997): 

 Boundaries are between more than one mapping units 

 The integrated between phenomena 

 Linear sub-pixel objects 
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 Small sub pixel object 

Classification of mixed pixels is done by soft or sub-pixel classification. Different class labels in each 

mixed pixel are identified with class memberships. The output of soft classification is shown by the 

thematic map for each class. these maps  show the degree of membership in each pixel  (Haglund, 2000). 

2.3. Spectral unmixing 

A variety of methods are used to classify mixed pixels usually these methods estimate the fraction of each 

class in one pixel (Foody, 2006). Spectral unmixing is the process that decomposes each pixel into the 

number of classes. The proportion of each class is represented by fraction or abundance of that class 

(Keshava, 2003). Linear spectral mixture is a common approach that is used to solve spectral mixture 

problems. The assumption of linear spectral mixture is based on linear mixing of received signal between 

different land cover within the pixel (Zhu, 2005). In description of linear spectral mixture the weights are 

derived from the proportion of each class in the pixel (Bastin, 1997). 

2.4. Super Resolution Mapping  

Super Resolution Mapping (SRM) is a method that divides a coarse resolution pixel to finer pixels and 

prepare classified map in finer resolution. SRM has been done with variety of algorithms, such as; 

knowledge-based procedure, Hopfield neural networks, linear optimization, genetic algorithm and neural 

network predicted wavelet coefficients. This section describes number of works that have been done with 

different SRM algorithms. 

Super resolution mapping with Hopfield neural networks was developed in a paper from Tatem, et al. 

(2001). They used Hopfield neural networks as an energy minimization tool for fuzzy classification results 

and presented spatial distribution of classes between pixels only for simulated imagery (Tatem, et al., 2001). 

They extended their research in Tatem, et al. (2003) by applying their algorithm on Land sat TM 

agricultural imagery. The results represent that SRM with Hopfield neural networks can produce higher 

accuracy than traditional algorithms and class for each pixel are correctly located, but it does not  have 

accurate result for complex features (Tatem, et al., 2003).  

The research for sub-pixel mapping with the application of linear optimization techniques was done in  

Verhoeye and De Wulf (2002) paper. In that research coarse resolution images were used but if the main 

assumption about spatial dependency exists, it is possible to apply also on any resolution. The algorithm 

used limited number of classes with known spatial dependency and it was not able to locate the objects 

that are smaller than a pixel (Verhoeye & De Wulf, 2002). Mertens, et al. (2003) continued  Verhoeye and 

De Wulf (2002) study and developed  genetic algorithm in SRM to locate sub-pixels. Genetic algorithm is 

a fast method base on natural principles. Finding many parameters from the algorithm was the 

disadvantage of that approach. The results showed that the measured accuracy was higher than 

conventional hard classification (Mertens, et al., 2003). 

Boucher and Kyriakidis (2006) introduced geostatistical algorithm of indicator Kriging and indicator 

stochastic simulation.in SRM. In their research the prior spatial information model was parameterized 

explicitly with variogram models that show spatial variety of classes in fine resolution pixels. They 

continued their work in Boucher, et al. (2008) by using training image additional to variogram models as 

prior information. They showed that their methodology can be used for spatial analyse (Boucher, et al., 

2008). 

In most of those algorithms accuracy of SRM depends on the accuracy of classification method and 

spatial dependency between pixels was used only after finding fraction of each classes (Kasetkasem, et al., 

2005). 
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Kasetkasem, et al. (2005) introduced MRF base SRM method. The initial SRM classified map was 

generated from raw coarse resolution image. As MRF can model the statistical correlation between 

neighbouring pixels, it used to define spatial dependency between pixels. They showed that by 

incorporating MRF in SRM, the classified map has less number of misclassified pixels so the land cover 

map is smoother and more connected (Kasetkasem, et al., 2005).Influence of class separability was studied 

by Tolpekin and Stein (2009).They used MRF-SRM method of Kasetkasem, et al. (2005) in their research. 

Smoothness parameter was introduced, it controls the balance between two parameter of MRF; prior and 

conditional energy. They reported that SRM quality is related to smoothness parameter, scale factor and 

class separability. Class separability would be less important by increasing scale factor (Tolpekin & Stein, 

2009). 

2.5. Markov Random Field 

Context defined as spatial, spectral and temporal dimension. Spectral dimension is different bands of 

electronic spectrum. Spatial dimension is the correlation between pixels in spatial neighbourhood. 

Temporal dimensional is the context between images of same area in different time (Solberg, et al., 1996). 

 Researches have been done about usability of MRF in remote sensing such as segmentation, 

classification, texture analysis and recently in super resolution mapping. 

Hu and Fahmy (1992) developed an algorithm with MRF for supervised and unsupervised segmentation. 

Their algorithm combined binomial model for texture and the multi-level logistic model for region 

distribution. In supervised segmentation maxima of a posterior (MAP) was used and for unsupervised 

segmentation a new parameter estimation was presented that can extract parameter directly from a given 

image (Hu & Fahmy, 1992). Unsupervised segmentation for classification of multispectral image with 

MRF was proposed in Sarkar, et al. (2002). Region adjacency graph Madevska-Bogdanova, et al. (2004) 

applied on the original image by using MRF. Minimization of energy function for MRF was done by 

multivariate statistical test. Results for classification were compared with maximum likelihood procedure 

and the accuracy of their method was higher in different samples (Sarkar, et al., 2002). 

Melgani and Serpico (2003) used MRF algorithm to increase the accuracy and reliability of the 

classification to extract better temporal information. They improved an algorithm base on the perception 

of ‘minimum perturbation’ that was implemented with pseudo inverse technique for minimisation of sum 

of squared errors. Acceptable accuracy was obtained from their algorithm (Melgani & Serpico, 2003). 

Unsupervised classification for radar images with hidden Markov chain models and mixture estimation 

considered in Fjortoft, et al (2003). They determined the distribution families and parameters of classes by 

generalization of mixture estimation. The algorithm had good results but it has difficulty in estimation of 

the regularity parameter (Fjortoft, et al., 2003). Tso and Olsen (B Tso & Olsen, 2005) improved contextual 

information based on MRF and multi-scale fuzzy line process for image classification. They used 

panchromatic and multi-spectral IKONOS images as data. The parameter estimated with probability 

histogram for boundary pixels and maximum a posterior margin (MPM) applied to find the solution. 

Their results presented success in generating the patch-wise classification patterns, and increasing the 

accuracy and visual interpretation (B Tso & Olsen, 2005). 

2.6. Support Vector Machine 

Support Vector Machine (SVM) is a non-parametric method that classifies data by drawing separating 

hyperplane between classes in feature space. This section discusses some studies that were done with SVM 

in remote sensing. 
Vapnik and Cortes (1995) introduced support vector machine as a binary classification in their study.  

Their study SVM contains three main ideas; optimal hyper-planes, dot product (to extend results from 
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linear to non-linear) and soft margin (for error in training set). SVM classification method was compared 

with other algorithms and results shows that SVM has higher accuracy (Vapnik & Cortes, 1995). 

Huang, et al. (2002)  used TM and MODIS images to study image classification by SVM. Selecting kernel 

function and kernel parameter was considered in their research. They compared different parameter for 

polynomial kernel and RBF kernels and results revealed that kernel type and its parameter affect the shape 

of hyperplane and influence the results for SVM classification. They also compared three different 

classification methods, Maximum Likelihood, Neural Network and Decision Tree Classifiers with SVM. 

Their study showed that SVM has higher accuracy than the other three classification methods, especially 

for high dimensional space. Also SVM has more stability in overall accuracy (Huang, et al., 2002).  

Foody and Mathur (2004b) studied training samples for SVM classification they used three bands of 

SPOT HRV image and chose training samples from agricultural crops. They analysed data in two classes 

and investigated that by using SVM classification only training samples that placed in vicinity of hyper-

plane are needed and other samples does not  affect the SVM results (Foody & Mathur, 2004b). 

The parameters that affect the SVM classification were discussed in Watanachaturaporn (2004). They 

applied SVM on hyper-pectral image from AVIRIS sensor. Different penalty value for three multiclass 

classification methods (one against the rest, pairwise and directed acrylic graph were applied) also different 

kernels compared. They investigated that for each set of data there is an optimum penalty value but it 

takes more time for classification with higher penalty value (Watanachaturaporn, et al., 2004).  

Bruzzone and Persello (2009) presented a context-sensitive SVM classifier. They applied the method on 

two set of image data, IKONOS image for low resolution set and Land-Sat image for medium resolution. 

The aim of their method is to reduce the effect of mislabelled data in training set on defining the 

hyperplane in SVM classifier therefore learning algorithm is less related to unpredictable training data. 

They compared method with other algorithms and showed that their results are more accurate and stable 

for noisy training set (Bruzzone & Persello, 2009).   

The results of classification with SVM is hard classification that label each class only with one label, but as 

mentioned in 2.1.1 , naturally there are many mixed pixels so it is required. SVM probabilistic method can 

be improved by fitting the output of SVM to a sigmoid which defined in the paper from Platt (1999). 

Maximum likelihood estimation was used to estimate the parameter of the sigmoid in Lin, et al. (2001) 

improved the Platt’s Method and their algorithm could be used in calculating posterior probability of SVM 

output. 

Lin (2002) applied a fuzzy membership to each input point in SVM, therefore with different input, 

different decision would be optimized (Lin, 2002). By improving Lin (2002) results Bovolo, et al. (2010) 

found the membership of an unknown pixel with SVM and developed their method for multiclass 

classification. The method has all the properties of crisp SVM such as; could be apply for high 

dimensional data and good generalization capability .Their results have better accuracy for sub-pixel 

classification rather than fuzzy classification with neural network (Bovolo, et al., 2010).  

Support vector machine classification was defined as binary classification. Numbers of methods have been 

used to improve SVM for multiclass classification and the most popular ones are one-against-one, one-

against-all and directed acyclic graph. In one-against-one many binary classifiers compare together while in 

one-against-all each class compares to the rest of classes, directed acyclic graph is also works by many 

binary classifiers (Hsu & Lin, 2002). 

Hsu and Lin (2002)  studied decomposition implementation of two method. Results showed that for big 

problems the methods that use all data at once needs less training data and one-against-one and directed 

acyclic graph are more appropriate than the other methods of multi classification of SVM (Hsu & Lin, 

2002). Foody and Mathur (2004a) also developed classification of airborne thematic map (ATM) data with 

SVM to multiclass classification. They classified the same data with a discriminate analysis, decision tree 
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and multilayer perception neural network. They used the method one-against-all in their research because 

classification parameter such as penalty value or kernel function need to estimate only one time and it 

needs fewer support vectors. The accuracy of each classification method was related to the number of 

training set and with more training set more accurate classification was obtained. But the most accurate 

classification was derived from SVM multiclass classification (Foody & Mathur, 2004a).  
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3. MATERIALS 

3.1. Remote sensing Data 

In order to apply the method on remote sensing image, an optical image with normal distribution classes 

and a radar image with exponential distribution classes are selected. Brief introduction about these images 

and the study area is explained in his chapter.  

3.1.1. Location of Study area 

The study area is located in Hengelo a town in the center of the Twente area in the east of the 

Netherlands. Geographical information of the area is approximately            N,          E. The area 

includes many types of classes such as water bodies, trees, agricultural fields and buildings. Figure 3-1 

shows the location of study area. From this area ERS image as radar image and Spot-5 as optical image are 

selected for implementation. The reference data is the topographic map of the Netherlands 1:10000, this 

reference is used to visual interpretation of the final product. 

 

 

 

3.1.2. ERS image 

European Remote Sensing satellite (ERS1) was launched in 1991. It has an image Synthetic Aperture 

Radar (SAR), a radar altimeter and powerful instruments to measure surface temperature. Another satellite 

from ERS, ERS2, was launched in1995 with additional sensor to study about atmospheric ozone. This 

satellite was built with two specialised radar and an infrared imaging sensor. ERS is useful to monitor 

natural disaster such as floods and earthquake in elusive parts of the earth (ERS) 

Figure 3-1 Study area, Source: Google Earth 
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The values for radar images appear with several signals that are called Speckle. It shows the reflectance of 

earth surface as ″salt and pepper ″ in the image which causes problems to interpret the image. To 

overcome this problem some methods such as multi-looking is used. Multi- looking method can reduce 

the variance of speckle (Ferretti, et al., 2007; Tough, et al., 1995). The ERS satellite image that used in this 

research is acquired in year 2002 from the Hengelo. The multi-looking is used in the ERS image to help 

for visualisation and interpretation the image. The multi-looking process was done with range of 6 and 

azimuth of 1. One subset of 30×30 pixels was prepared from ERS image in of C-band, the pixel size is 

approximately 20×20 (Figure3-2). 

 

 

3.1.3. Spot-5 image 

Spot-5 earth observation satellite was launched in May 2002 from the Guiana Space Centre in Kourou. It 

is an optical satellite that has two high resolution geometrical (HRG) instruments. Its spatial resolution is 

5m and 2.5m in panchromatic band and 10m in multispectral bands. The width imaging swath of this 

satellite can cover 60×60 km or 60×120 km, that can be asset for application of medium-scale mapping 

(Spot-5). 

The spot image that is used in this study was acquired in 2002 and covers study area. To use this image 

with ERS for SRM-SVM method, the red band from multispectral bands is selected. The spot image was 

co-registered with ENVI software, the reference image for co-registering is ERS image. Then from the 

Figure 3-2 The C-band of  ERS image (a) Hengelo area, (b) 30×30 pixels subset 

(a) 

(b) 
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same area as ERS subset a subset from spot is selected. Figure 3-3 shows the red band of spot image and 

its subset before and after co-registration. 

 

 

 

 

 
 

3.2. Software 

3.2.1. The R software  

The R software is a programming language for statistical computation and graphics. It is useful for storage 

facility and it is appropriate for calculating arrays in matrices. The R software has simple programming 

language for loops, conditional and makes simple input and output ("An introduction to R,"). In this study 

preparing synthetic data, statistical calculation and preparing some plots is done with R. 

 
Kernlab package in R 

The R software has the ability to solve SVM classification. Four package for SVM classification in R were 

introduced, e1071, kernlab,  klaR and svmpath (Karatzoglou, et al., 2006). 

(a) 

(b) (c) 

Figure 3-3 The spot image in red band (a) area of Hengelo, (b) subset before co-registeration (c)subset after 
co-registeration 
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Package Kernlab aims to prepare a flexible SVM implementation. It has most of the SVM formulations 

and kernels. Its kernels are Gaussian RBF, polynomial, linear, sigmoid, Laplace, Bessel RBF, spline, and 

ANOVA RBF, interested kernel can be select by the user. Kernlab also has the ability to apply multiclass 

classification and do SVM classification with C-svc or nu-svc. This package uses one against one and one 

against all multiclass classification. In Kernlab SVM classification is implemented with function ksvm. 

(Karatzoglou, et al., 2006). 

3.2.2. ENVI 

ENVI is software to process and analyses the geospatial images. It includes spectral tools and radar 

analysis. ENVI is written in IDL (Interactive Data Language) that is a programming language to integrate 

image processing (Banks, 2000). In this research ENVI was used for analysing images, co-registering, 

selecting subsets and extract training set from images. 
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4. METHODS 

4.1. Super Resolution Mapping with Markov Random Field 

Super Resolution Mapping (SRM) is a technique that produces fine spatial resolution classified map from 

coarser satellite image. The finer resolution pixels are inside the coarse pixel and summation of their value 

is the same as coarse pixel (Tatem, et al., 2001). After dividing coarse pixel to finer pixels, class label 

should be assigned to each fine pixel with maximum special dependency.  

Let y be the coarse resolution image and x the fine resolution classified map from y. The scale factor 

between Y and x is S, so if the number of pixels in coarse image is M×N for fine image this number is 

SM×SN, and each coarse pixel has    number of fine pixels. After applying the scale just the number of 

pixels will change and the area in both images and the number of bands remains the same. Dimension of 

image could be set as a matrix with M×N pixels and each coarse pixel identified by    that   

*       +. Fine resolution pixels identify as      , i is the number of coarse pixels in matrix and 

  *      +  is the number of fine pixels, therefore        is jth fine pixel belongs to pixel   . The 

relation between x and Y is established as degradation model for pixel    is: 

 (  )  
 

  
∑  (     )

  

                                                           4.1 

The first step to produce initial SRM map is, divide each pixel with the scale factor S into    fine pixels 

(sub-pixels). These sub-pixels labelled randomly and do not have correct class label so a method should be 

applied to rebuild initial SRM and labelling sub-pixels correctly (Kasetkasem, et al., 2005). The process of 

finding spatial dependency for SRM in this research was done by Markov Random Field (MRF) algorithm. 

MRF and its combination with SRM is described in detail in the follow sections. 

4.1.1. Neighbourhood system 

If y set as an image that pixel (   ) in this image can be indexed as  , where       and    M×N 

is the number of pixels in the image. So B can be defined as a set of sites (Li, 2009): 

  *       +                                                        4.2 

Sites on a lattice are spatially regular. For image with size of M×N a rectangular lattice can be defined as: 

  *(   )|       +                                                        4.3 

The sites in B are related to each other with a neighbourhood system. The neighbourhood system for B is: 

  *  |    +                                                        4.4 

Where    is the set of neighbours of pixel, . Relationship between neighbours has the following 

properties: 

1) A site is not neighbouring to itself:      

2) The relationship between neighbouring is mutual:               

 

In the neighbourhood system, the first order neighbouring system is defined as four pixels that share the 

same border with pixel r, it shown in Fig4.1.a. The second order neighbouring system, Fig4.1.b contains 

four pixels that share their corners with pixel r. Higher order of neighbouring can be defined in similar 
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way as shown in Fig4.1.c that is up to five order neighbouring. For image Y a pixel has four nearest 

neighbours as (Li, 2009): 

     *(     ) (     ) (     ) (     )+                                                      4.5 

Pixels at the boundary of image have three neighbours, and at corners has two neighbours.  

 

 

Neighbourhood order would be changed in SRM related to scale factor. If windows size shown as Wsize 

then the relation between window size and scale factor is (Kassaye, 2006): 

Wsize   (   )                                                        4.6 

4.1.2. MRF and Gibbs Random Field 

Let   *          + be a group of random variable on the set of B and each value in   takes a label 

from label set of L. Group   is called random field .If B is an image with   number of pixels then   can 

be set as DN value of pixels and L is the set of class labels. By applying MRF algorithm in classification 

class labels is assigned to the pixels with their spatial dependency. Markov random field is a random field 

that used a neighbourhood system and has three following properties (Li, 2009):  

1) Positivity:  ( )   , it can be observed in practice and the joint probability   ( ) for all random 

fields is uniquely determined by local conditional property. 

2) Markovianity:   (  |    )   (  |   
),       denotes all the pixels in the set of B except r and 

   is the neighbouring of pixel r. This property define that labelling of pixel r just depends on its 

neighbouring pixels. 

3) Homogeneity:  (  |   
) is equal for all pixels  , this property defines that conditional property 

for pixel   given the neighbouring pixels is not related to the location of   in B. 

MRF is related to Gibbs random field (GRF). Probability density function in GRF is defined as (B. Tso & 

Mather, 2001): 

 ( )  
 

 
    0 

 ( )

 
1                                                            4.7 

 Where   ( ) is energy function,   is a constant termed temperature and   is partition function.  

Figure 4-1 Neighborhood on a set of irregular sites source: (Li, 2009) 



SUPER RESOLUTION MAPPING WITH SUPPORT VECTOR MACHINE 

 

17 

  ∑     0 
 ( )

 
1                                                                    4.8 

Where   in this equation is all possible configuration for  . 

Energy function in GRF defines as number of cliques. These cliques are subsets and all pairs of sites are 

mutual neighbours. Energy function with its clique is:  

 ( )  ∑   ( )                                                          4.9 

With different types of cliques it can be written as: 

 ( )  ∑   (  )  ∑   (      )*    +   * +   
 ∑   (          )*       +   

          4.10 

  ( ) is potential function with respect to clique type C. First order clique: 

   {* +|   } 

Second order clique is: 

   {*    +|         } 

And: 

   **       +|          are neighbours to one another} 

 For every MRF there is a unique GRF, however the GRF is defined as cliques on the neighbourhood 

system. An MRF describes for local properties but GRF is defined for global property of whole image (B. 

Tso & Mather, 2001). 

Posterior energy for image classification 

For labelling a pixel, considered contextual information, posterior energy is used. This posterior energy is 

an objective function and constructed from Bayesian formulation. Context in Bayesian formula is a priori 

information addition to pixel label that based on pixel DN value. Conditional probability for Bayesian 

formula for label    given the observation    in pixel r is (B. Tso & Mather, 2001):  

 (  |  )   (  |  ) (  )                                                       4.11 

By using the definition of Gibbes field in the equation 4-7 the posterior energy can be defined as: 

 (  |  )   (  |  )   (  )                                                        4.12 

Equation 4-7 shows that minimising the energy function  (  ) is equal to maximising the  (  ).  (  ) 

is called priori energy and mostly is based on pairwise clique potential function that can be written as(Li, 

2009): 

 (  )  ∑   (  )  ∑ ∑   (      )                                                        4.13 

If label set just has two labels   *    + then the energy function define as: 

 (  )  ∑     ∑     *    +   * +   
                                                    4.14 

For a single clique   ,   (  ) is not dependent to label and can be written as: 

  (  )      if label for    is k 

  is constant that reflect interaction coefficients between   and    (Li, 2009). 



SUPER RESOLUTION MAPPING WITH SUPPORT VECTOR MACHINE 

18 

  (      )              If sites on clique      have the same label   

  (      )              Otherwise        4.15 

So the prior energy is (Li, 2009): 

 (  )  ∑ ∑   (      )                                                               4.16 

And the posterior energy would be rewritten as: 

 (  |  )   (  |  )  ∑ ∑   (      )                                                           4.17 

Class label define by estimating maximum a posterior (MAP) of  (  |  ). This means minimising the 

posterior energy:      

 ̂          ( | )                                                            4.18 

4.1.3. SRM   

In initial SRM finer image x could classify as an MRF with neighbourhood system  (    ), and each pixel 

in the image   assigned as only one class  (    )    ,    *       +. The prior probability is  ( ), the 

conditional probability that image   is observed with the true SR map is  ( | ). The posterior probability 

is  ( | ). According to equation 4-7: 

 ( )  
 

 
    0 

 ( )

 
1                                                            4.19 

  ( | )  
 

 
    0 

 ( | )

 
1                                                      4.20 

 ( | )  
 

 
    0 

 ( | )

 
1                                                      4.21 

 Prior energy 

By using equation 4-10,  ( ) is the prior energy and can be written as sum of pair-site interaction: 

 ( )  ∑  . (    )/    ∑ ∑  (  ) ( (    )  (  ))   (    )                      4.22 

Where  . (    )/ is the local contribution to the prior energy from pixel  (    )  and  (  ) is the 

weight of the contribution from pixel      (    )  to prior energy.  (  )    (  )  , 

∑  (  )   (    )
=1,        controls the overall magnitude of the weights. Larger value for    cause 

more smooth results. In  (  ) an isotropic equation is used which is related to distance between pixels 

     and    ,  (       ): 

 (  )  
 

 
 (

 (       )

  
*
  

                                                      4.23 

Where   is a normalise constants and   is a power-law index and    is pixel size in fine resolution map. 

When   (    )   (  ) prior energy is zero and it is equal or larger than 1 otherwise (Tolpekin & Stein, 

2009). 

So the equation 4-23 can be rewritten as: 

 ( )  ∑  . (    )/     ∑ ∑  (  )  ( (    )  (  ))   (    )             4.24 
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 Likelihood energy 

 

By using the assumption of spatially uncorrelated spectral values of Y, likelihood probability is: 

 ( | )  ∏  . (  )| (    )/                                                         4.25 

If all the classes are normally distributed, it would be: 

 ( | )  ∏
 

(  ) 
 
 |  |

 
 

    ( 
 

 
( (  )    )   

  ( (  )    ))                   4.26 

Where    is covariance and    is mean for mixing distribution. Likelihood energy is equal to: 

 ( | )  ∑  . (  )| (    )/                                                  4.27 

 Posterior energy 

Refer to equation 4-12 posterior energy is: 

 ( | )   ∑ ∑  (  )  ( (    )  (  ))   (    )    ∑  . (  )| (    )/             4.28 

To control the contribution of prior a likelihood energy smoothness parameter,  , is introduced in 

posterior equation   is: 

  
 

   
 

So if the equation 4-28 divided to     the posterior energy become (Tolpekin & Stein, 2009): 

 ( | )   ∑ ∑  (  ) . (    )  (  )/   (    )    (   )∑  . (  )| (    )/        4.29 

 

MAP, equation 4-18, is used to find the appropriate class label for pixels. To estimate MAP three 

algorithms that usually use are, simulated annealing, iterated conditional model and maximier of posterior 

(B. Tso & Mather, 2001). The number of all possible class labels for all pixels is large. Simulated annealing 

(SA) is useful method to minimise function, so it is suitable for SRM. Simulated annealing algorithm is 

explained briefly in next section. 

 

Simulated Annealing Algorithm 

Simulated annealing (SA) is a stochastic algorithm for combinational optimization (Li, 2009). It simulated 

a physical annealing producer that physical material is melted and slowly cooled down to find a low energy 

configuration. If any x that are random variable on the set of B has the probability: 

  ( )  , ( )-  ⁄  

    is the temperature parameter. When     , probability is uniform distribution and when     

  ( ) is on the pick of  ( ) (Li, 2009). This algorithm starts with high value of T as initial value then in 

each iteration this value would be decreased. The iterations will be continued until    . For each pixel 

 ,   ( |  ) and  ( |   ) and     ( |  )    ( |   ) is obtained and if      then     is replaced by 

   otherwise another random value for     would be selected. The steps repeats again until the system 

become frozen (B. Tso & Mather, 2001). 
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4.2. Support Vector Machine 

Support Vector Machine (SVM) is a supervised classification method. It uses optimal algorithms to locate 

best boundary between classes in feature space (Huang, et al., 2002). The boundary is called separating 

hyperplane and has maximum margin from both classes (Vapnik & Cortes, 1995). SVM just works with 

pixels that are in the vicinity of classes therefore with small training set it is possible to have accurate 

classification (Foody & Mathur, 2004b). It also has the ability to work with high dimensional feature space 

by applying kernel function (Karatzoglou, et al., 2006). Figure 4-2 shows an example of hyperplane 

between two classes in two dimensional feature space. 

 

 

4.2.1. Linear Separable SVM 

Suppose that    (          )       are the training samples from two classes in   dimensional 

feature space with      *     +  as labels of classes and they can be represented as 

(     ) (     )   (     ), hence equation for optimal hyperplane between two classes can be written 

as : 

 (  )                                                                             4.30 

Where   is weight vector and    is vector for  th data. 

In Figure 4-2 separating hyperplane between two classes is in 2D space and its equation is: 

                

Two hyperplanes parallel to the optimal hyperplane and on vicinity of boundary pixels is called marginal 

hyperplanes and for separable data they called hard margins. Figure 4-3 shows marginal hyperplane in 2D 

feature space. The marginal hyperplanes are in the same distances to optimal hyperplane and the equations 

for them are: 

Figure 4-2 2D feature space with two linear separable classes separated  
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                                                                                    4.31 

                                                                                     4.32 

For the data that are not on the marginal hyperline the equations are: 

If                                                                                   4.33 

 If                                                                                 4.34 

 

Training data that confirm the equations 4-31 and 4-32 are called support vectors. SVM classification is 

depends on these support vectors and by eliminating one of them the results for hyperplane will change 

(Burges, 1998). The perpendicular distances between the marginal hyperplanes is  ‖ ‖⁄ , where ‖ ‖ is 

the length of weight vector. When this distance is maximize the separating hyperplane has the best 

position. By maximising the distance the ‖ ‖should be minimized, minimizing  ‖ ‖  is a quadratic 

programming (QP) problem and could be done by Lagrange multipliers (Richards & Jia, 2006). It should 

be minimize subject to:  

 

 (  )                                                               4.35 

To give: 

Figure 4-3 Marginal hyperplans between classes 
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‖ ‖   ∑    (  )

 
                                                                 4.36 

  
 

 
‖ ‖  ∑   

 
   (  (     )    )                                       4.37 

Where   is Lagrangian,      are Lagrange multipliers and   is the number of support vectors. Each 

data in training set has one   and it is zero for all data except support vectors (Burges, 1998). To find the 

values of   and   that minimise   the following step would be done: 

  

  
   ∑      

 

   

   

  ∑                                                                                 4.38 

 

And: 

  

  
  ∑      

 

   

 

∑        
                                                                            4.39 

  

Equation (4.37) can be rewritten as (Richards & Jia, 2006): 

  
 

 
(∑      

 

   

)(∑      
 

)  ∑  [  ((∑      
 

)    )  ]

 

   

 

The simpler way to write this equation is: 

  ∑  

 

   

 
 

 
∑            
   

 

The   that are not equal to zero lie on the marginal hyperplans so      are corresponds to support 

vectors and shown as   
  (Vapnik & Cortes, 1995). If   

  put in equation 4-38 optimal training vector 

would be obtained as (Richards & Jia, 2006): 

  ∑   
     

 
                                                                       4.40 

Support vectors are on marginal hyperplanes, these values are in the equations 3.31 and 3.32 that can write 

as: 

  (     )                                                               4.41 

So the value for   is obtained from k number of support vectors: 
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 ∑     

 
                                                                  4.42 

The decision rule for classification of pixel    in SVM method is: 

 (  )     (       )                                                     4.43 

 

4.2.2. Non-Separable SVM 

If data are separable equation 4-45 can be used for classification with support vector machine, but to deal 

with non-separable training sets, SVM classification will have error with that equation, so a penalty value 

for misclassify errors and non-negative variables    are introduced (Figure 4-5)(Huang, et al., 2002). This 

variables define the distance of the data from marginal hyperplane that passed through support vectors of 

the same class, marginal hypeplanes in this case are called soft marginal (Foody & Mathur, 2004b). 

 

 

                                                                                  4.44 

With error values the equations 4-33 and 4-34 would be changed to: 

Figure 4-4 Error for non-separable data in SVM (   is the error) 
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                 If       class1                                                    4.45 

               If        class2                                                    4.46 

By minimizing    subset of minimal training errors would be found. To separate training set without 

errors these subset is excluded from dataset. A new optimal separating hyperplane combined with these 

error s required. To find that hyperplane following functional minimize (Vapnik & Cortes, 1995): 

 

 
‖ ‖   ∑   

 
                                                                        4.47 

The first part of the equation is for maximising the margin and the second part is for penalizing data that 

are in the wrong side of separable hyperplanes. The basic concepts of SVM is to find a balance between 

maximising of the margin and minimising the training errors (Hsu & Lin, 2002). The value C is a constant 

for penalty value of misclassification error this parameter controls the magnitude of the errors with data 

that are in the wrong side of hyperplane. The value C is selected by user, if it is chosen very small then 

predictor function is simple and if it is selected very big the analysis will over fit training data (Foody & 

Mathur, 2004b).  To find hyperplane, Lagrange multipliers is used (Hastie, et al., 2003): 

   
   

 

 
‖ ‖   ∑  

 

   

  

Subject to:         

              (     )        

And the Lagrange function is: 

  
 

 
‖ ‖   ∑   

 
    ∑   

 
   (  (     )  (    ) )  ∑     

 
          4.48 

Where    are positive constrains to enforce variable    be positive (Burges, 1998). The dual problem will 

be: 

  ∑  

 

 

 
 

 
∑            
   

 

It should be maximized subject to:       

         and   ∑         

4.2.3. Non-linear SVM 

If data are not linearly separable, SVM algorithm that explained in the previous sections cannot be applied 

for SVM classification. To solve the problem of nonlinear separability, input values transform to higher 

dimensional feature space H with the function   (Vapnik & Cortes, 1995). 

          (  ) 

As the dataset    is transformed to higher dimensional space and moreover working with   in H is 

complicate so training algorithm can only be done by dot product from  (  )   (  ). Now if there is a 

kernel function that (Huang, et al., 2002): 
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 (     )   (  )   (  )                                                    4.49 

Then instead of using dot product kernel function  (     ) can be used.  

Non-linear SVM classification has the same properties and equations as linear SVM. The equation 4-35 

for the hyperplane  in new feature space is: 

   (  )                                                                        4.50 

 So the other equations change to: 

  
 

 
‖ ‖  ∑   

 
   (  (   (  )   )    )                                         4.51 

And: 

  ∑   
 
    

 

 
∑          (     )                                                                                        

  ∑   
    (  )                                                                   4.52 

 (  )  ∑      (     )
 
                                                                4.53 

And the decision function is: 

 ( )     (∑      (     )
 
      )                                                    4.54 

 

4.2.3.1. Kernel functions 

Two of popular kernel functions in remote sensing and also SVM classification method are: 

 The linear kernel implementing the simplest of all kernel functions:  

 (     )  (     )                                                                   4.55 

 

 The Gaussian Radial Basis Function (RBF) kernel: 

usually RBF kernel is used when there is no prior information about data (Karatzoglou, 

et al., 2006). 

 (     )     .  ‖     ‖
 
/                                       4.56 

 

4.2.4. Distance to hyperplane in SVM classification 

In order to incorporate SVM with SRM, mixture probability should be formulated with SVM outputs 

Probabilistic output from SVM was done in previous researches, but they didn’t consider mixture 

probability. To find mixture probability with SVM in this research distance from hyperplane, histograms 

and interpolation were used. 

As mentioned before SVM classification based on separating hyperplane with equations 4-35 for linear 

support vector and with equation 4-52 for non-linear support vector. Distance between the separating 

hyperplane and data    can be calculated and from decision function of SVM class label for    would be 
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obtained, thus with distance and class label probability that    belongs to which class can be estimated. If 

the equation of hyperplane is   ( ) then distance of data    from the hyperplane is: 

        (  )  
  (  )

√‖ ‖ 
                                                               4.57 

Where   is the weight of hyperplane. 

If linear SVM classification is used weight and bias for hyperplane could be find simply and use them for 

compute the distances, but in non-linear SVM classification method   is related to  ( ) . Since 

computing  ( ) is difficult, to find the weight objective function and Lagrange multipliers in equation 4-

37 used in the following way: 

  
 

 
‖ ‖  ∑  

   

    (  ) 

As    is for support vectors, and for support vectors    (  )     so: 

‖ ‖   (  ∑     )                                                               4.58 

Distance between    and hyperplane  (  ) is: 

        (  )  
  (  )

√ (  ∑    )
                                                      4.59 

Formulating distance with equation 4-61 is helpful to calculate distance from separating hyperplane with 

any kind of kernel function that is used in SVM classification. 

4.3. Linear Interpolation 

Interpolation is a method to find interested values of a new data set that is subset of known values. If 

(     ),   *     +, there is only one polyline that goes through that set of points. This polyline is 

called interpolating polyline and write as: 

 (  )    ,    *     + 

Now if there is another point   , and it is between two points   ,      of dataset, then the value    for 

that point can be calculated as (Moler, 2004):  

 

 (  )     
(     )(       )

(       )
                                                             4.60 

 

Where    and      are values related to    and     . The equation 4-62 is called linear interpolation 

equation. 

Figure 4-5shows the linear interpolation between     and     , these points can be connected to each 

other with a straight line and as the slope is equal for the line through the points, any other value can be 

find with equation 4-62. 
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Figure 4-5 Interpolation   that is between   and      
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5. IMPLEMENTATION 

This chapter discuss about how methods that explained in Chapter four applied to obtain the objective of 

the research. Preparation Synthetic data is described in section 5.1. Section 5.2 describes the adopted 

method for SVM mixture probability with histograms and in section 5.3 combining SVM mixture 

probability with MRF-SRM algorithm is explained. (In this research MRF-SRM is the MRF based SRM 

method that uses normal assumption and SRM-SVM is the MRF based SRM that uses SVM in its 

assumption.)       

5.1. Synthetic Images 

Synthetic images allow the user to introduce parameters and the number of classes in the most appropriate 

way for the research. These images are extracted from a real image. The purpose of the research is to use 

different class distributions while having control on its parameters, thus synthetic images are generated to 

test the proposed method before applying the method on the remote sensing image. 

DN values for pixels are generated from random values of classes, based on the reference image. The 

reference image is a Google image from an agricultural area in Flevoland, the Netherlands. This image has 

60×60 number of pixels Figure 5-1 shows the reference image and reference landcover map that prepared 

from reference image. 

 

 

 

Two synthetic images were generated with different class distribution, and different number of bands.  

The synthetic image1 contains two bands and two classes with normal distributions, and the synthetic image2 

has two classes with exponential distributions and one band. Synthetic image2 generated in one band to 

simulate radar image that is going to be use later on. The distribution of classes for synthetic image2 is 

presented in Figure 5-2. 

To prepare these synthetic images the R programming language was used in order to control certain 

statistical parameters. 

Figure 5-1 (a) Google map image of Flevoland, the Netherlands source: Google map (b) 
Reference landcover map for two classes 
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5.1.1. Synthetic image for SRM 

As in SRM method import data is coarse resolution and final results is in fine resolution, to apply the SRM 

method, synthetic images are generated as fine resolution images, then coarse resolution images are 

prepared by applying spatial degradation with different scale factors in both synthetic images. The purpose 

to prepare fine image as the reference is to compare it with the results of the SR map. If S is the scale 

factor for SRM, each    number of fine pixels is degraded to produce one coarse pixel. An example of 

degradation with      is shown in the Figure 5-3. 

Figure 5-3 Degradation of reference synthetic image, S=2 (a) Fine resolution image (b) Degraded image 

Figure 5-2 Exponential Distribution of classes in Synthetic image2 with one band 

(a) (b) 
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5.2. Implementation of SRM-SVM 

5.2.1. Mixture probability in SVM classification 

As mentioned in Chapter four, SVM is a hard classification method which by decision function, equation 

4-43, the class label of the data will be known. In order to estimate mixture probability, it is necessary to 

obtain the probability from SVM output results. To achieve this purpose a set of training data from pure 

classes was generated with parameter of classes in the synthetic image1. Each coarse resolution pixel has    

number of fine resolution pixels so if there is just two classes, a coarse mixed pixel in SRM can have 

     different proportion of that classes, therefore with scale factor 2,  five set of mixed pixels can be 

prepared manually from training data. 

Figure 5-4 shows the feature space for five proportions of two classes with scale factor two. As it is shown 

in the figure, the distance between mixed pixel and the SVM separating hyperplane changes related to the 

proportion of each class in the mixed pixel, moreover the mixed pixels are more near to the class with 

larger proportion. The probability that one pixel belongs to each class depends on the distance of the pixel 

from the separating hyperplane, so the distance to separating hyperplane can help to find the conditional 

probability. 

 

Figure 5-4 Feature space of SVM lines for two classes and mixed classes in five different proportion, S=2 
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In section 4.2.4 it was shown that the distance to the separating hyperplane can be calculated by using 

equation 4-59. The distances of the training data from SVM separating hyperplane are calculated with that 

equation and the set of distances for class1 is named as Dc1 and for class2 is named as Dc2. 

Distance is a mathematical concept that is always positive. In this research to define that from which side 

data is going to the separating hyperplane, the distance of pixel in one side of hyperplane is set as positive 

and in the other side is set as negative. Furthermore to find the mixture probability with distances, 

histograms and its concepts are used. 

 

Histograms for distance 

To obtain the histogram of mixture classes histograms for Dc1 and Dc2 are prepared. To mix these 

histograms, they prepared with the same number of bins. Selecting the same number of bins is possible in 

R software. As the histograms have different variance, the width of the bins is different between two 

histograms. Therefore to calculate the probability of classes, the width of the bins is multiplied to the 

density of each bin that extracted from histograms. If the width of histogram Dc1 is shown as Wd1 and the 

width of Dc2 is shown as Wd2, then the width of bins in each histogram is: 

 

Wb1 =Wd1/ (number of bins) 

And :                                                                         5.1 

Wb2 =Wd2/ (number of bins) 

Where Wb1 and Wb2 are the width of bins in each histogram. The probability can be shown as: 

    Wb1dc1i  

      Wb2dc2i  

Here dc1i and dc2iis the frequency in the i th bin of histograms.  

In order to find the mixture probability, the probability of ith bin from Dc1 (   ) was mixed with ith bin 

of Dc2 (   ). 

                                                                              5.2 

Furthermore the mid of each bin in histogram was extracted and mixed as: 

                                                                          5.3 

Where    and    are the proportions of two classes in the pixel and they related to each other as: 

        

The     are the values for the mixture probability it shows  (        |     ),     show the position 

of mixture bins. There is      number of estimated (    ,    ) that is obtained from the histograms of 

Dc1 and Dc2. To calculate mixture probability for a mixed pixel, interpolation can be done with the values 

(    ,    ) and by assigning the distance of mixed pixel as the known value and the mixture probability 

as the unknown value. 

Briefly to use the histograms for calculating mixture probability of pixel   with SVM classification the 

following should be done: 

 Apply SVM classification to find hyperplane, Dc1 and Dc2 

 Calculate the distance of    from the hyperplane  

 Calculate (    ,    ), with the proportion of classes in that pixel  

 Set (    ,    ) as values for interpolation 

 Set the distance of     as a known value and its probability is an unknown value  

 Put distance of     in equation 4-60 and calculate the mixture probability related to     
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The method was applied on two sets of distributions, one with class distribution of synthetic image1 and the 

other with class distribution of synthetic image2. 

An illustration of this method is shown in Figure 5-5 that the histograms for Dc1 and Dc2 and the 

distances for mixed classes with the S=2 and the proportion of 25% for class1 and 75% for class2. The 

parameter of classes is the same as classes in synthetic image1 with normal distribution. In plot (c) the 

estimated density for all mids of histogram with the above method and the density of histogram 

performed. 

 

 

 

 

    

    

    

    

(a) 
(b) 

Figure 5-5 Histogram for distances S=2 (a) Distances for class1 Dc1 (b) Distances for class2 Dc2 (c)Distances for 
mixed pixels 25% of class1 and 75% of class2  

(c) 
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5.3. SRM-SVM 

After defining the above method and find the mixture probability with SVM, the method should be 

incorporated with SRM-MRF. The algorithms to apply MRF-SRM on the image were discussed in section 

4-1 of the Chapter four. How to use SVM mixture algorithm in MRF-SRM is described in detailed in the 

following section. 

5.3.1. Prior Energy 

Prior energy in MRF-SRM is related to cliques and neighbourhood systems so does not affect by 

distribution of classes. The size of windows for neighbourhood system is assigned with the equation 4-6 

and the equation 4-22 is used as prior energy for SRM-SVM.  

5.3.2. Likelihood energy  

Likelihood energy in MRF-SRM is computed with equation 4-27. The equation needs mixture probability 

for different proportion of classes in mixed coarse pixels. Algorithm for mixture model with SVM is based 

on the distances of data from separating hyperplane (section 4.2.1). Therefore when SVM classification is 

used in MRF-SRM instead of value of   its distance from separating hyperplane should be used. So the 

equations 4.1 for SRM would be changed to: 

  (  )  
 

  
∑   (     )

  

                                                            5.4 

Where    is distance of pixel   from the separating hyperplane and   (     ) is distance of  th fine pixel in 

 th coarse pixel from the separating hyperplane. Conditional probability also is changed from   ( |  ) to 

 (  |  ). So likelihood energy for MRF-SRM incorporated with SVM is: 

 

 (  | )  ∑  .  (  )| (    )/                                                      5.5 

5.3.3. Posterior energy 

Posterior energy is related to prior and likelihood energy, according to change likelihood energy to 

equation 5-5, the equation 4-29 for posterior energy would be rewritten as: 

  ( (    )|  (  ))    ( (    ))  (   )∑  .  (  )| (    )/                            5.6 

Smoothness parameter   is between 0 and 1, if it is assigned as 0 the prior model is completely ignored. 

To optimize     the method is applied on synthetic images with different combination of scale factor and 

smoothness parameter. Appropriate label for each pixel is assigned with maximum a posterior algorithm. 

5.3.4. Simulated annealing  

To find the appropriate class for pixels in SR map, simulated annealing is used to find maximum a 

posterior (section 4.1.3). In this algorithm after each iteration the proportion of classes for coarse pixel 

would be changed. However the DN value for coarse pixel remains the same, so the distance of that pixel 

from separating hyperplane is the same during iterations. It means that the conditional probability 

 (        |     ) is different during the iteration. 

In order to update the conditional probability, from the histograms of pure training set,      and      is 

computed for new proportions. With the method that explained in 5.2.1 the mixture probability is 

updated with new proportion for after each iteration. 
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5.4. Accuracy assement 

The last step for implementation is to validate the results of the SVM mixture probability and SRM-SVM 

application. Accuracy is defined as the level of agreement between observed data and reference data. 

For mixture probability accuracy assessment is done by finding root mean square error (RMSE). RMSE 

calculates the distance between estimated and real data.  
In term of classification, accuracy assessment is to compare the class labels assigned with current method 

and label of pixels in reference data, usually reference data is from a ground truth labelling. By comparing 

the labels percentage of pixels that labelled correctly can be estimated. The result of accuracy is shown 

with error matrix or confusion matrix. Dimension of this matrix is nc×nc, where nc is the number of 

classes. The row of matrix is for observed labels and the column is reference data labels (Richards & Jia, 

2006). From error matrix overall accuracy defined as the number of pixels with correct label divided by 

total number of test pixels. Kappa coefficient is another accuracy value which is defined from error 

matrix. It is observed with sum of overall columns for each raw and sum of overall rows for each columns  

(Richards & Jia, 2006). 

In this research accuracy assessment for SRM was done by overall accuracy, RMSE and kappa coefficient.  
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6. RESULTS 

This chapter presents the obtained results from the process of SRM-SVM. Section 6.1 explains the results 

from application of SVM classification, methods that are going to use in SVM classification and SVM 

mixture probability. Section 6.2 is about the results obtained from applying SRM-SVM method on 

synthetic images and remote sensing mage.  

6.1. Exprimental results from SVM mixture probability 

To understand and illustrate the capability of SVM classification before apply the SRM-SVM method on 

the images, some parameters of SVM classification are studied in section 6.1.1 and results of the 

application on mixture probability studied in section 6.1.2 

6.1.1. SVM classification  

Training set is a sample of pure pixels from the user defined classes. Training set is used in supervised 

classification method before digital processing to identify how is the structure of each class (Schott, 2007). 

Since SVM is a supervised classification, it is necessary to select appropriate training set before applying 

classification method on the data.  

According to the researches that have been done before in SVM classification method, just the support 

vectors in the training samples are needed and the other training samples do not affect classification 

results. Therefore SVM method has the ability to give accurate results even with small number of training 

samples, but there is a positive relation between the number of training samples and accuracy of 

classification (Foody & Mathur, 2004b). If the boundary of training samples is small, the obtained 

accuracy would be low and selecting huge training set is time consuming for SVM classification 

(Goumehei, 2010).  According to (Goumehei, 2010) the number of training set in this research selected in 

the range of 30 to 1000 training samples.  

After defining number of training data the pixel size of training in SRM should be known, as discussed 

before SRM is a method that produce fine resolution pixels from coarser pixel images, preparing fine 

resolution pixels does not  change the number and kind of classes in the image. Training set is usually 

selected from pure pixels of input image, but in SRM after generating initial SRM there is possibility to 

choose the training set either from initial SRM with fine resolution pixels or from the original image with 

coarse resolution pixels. After applying SRM mean value for coarse and fine resolution will remain the 

same but related to scale the covariance is different in fine and coarse data. SVM is a non-parametric 

classification method and does not use class parameter so either of course or fine training sets that obtain 

SVM separating hyperplane with higher accuracy can be used as training set. 

In order to find more accurate SVM hyperplanes two set of training data from coarse and fine resolution 

are generated with class parameter of synthetic image1. The first training data is contain 1000 samples of fine 

resolution data for each class, DN value of these pixels is prepared with the random generation then SVM 

classification is done on this fine data set and the separating hyperplane from the result of this 

classification is obtained which is called SHF (separating hyperplane of fine resolution). 

To define coarse training dataset the scale factor set as two, thus each coarse pixel has four fine pixels 

coarse resolution pixels are generated by degradation of four fine pixels. SVM classification also is done 

on coarse training data and the obtained separating hyperplane for this set of data is called SHC 

(separating hyperplane of coarse resolution). In all classifications the linear kernel chose for application of 

SVM. Figure 6-1 shows the position of SHC and SHF in feature space related to each other. SHC is 

shown as the blue line and SHF is shown with the green line. The distance between norms of the lines is 

0.584 and as it observed from the results of weight and bias for SHC and SHF in table 6-1, both lines are 
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in the same direction. Difference between marginal distances in two SVM applications is because the 

spectral variance in coarse and fine resolution data is different.  

 
Table 6-1 Wight and bias for the separating hyperplanes of fine resolution and coarse resolution data sets 

 

 

 

In SRM-SVM algorithm separating line is important in mixture modelling so in order to find more 

accurate separating hyperplane, different numbers of training data with S=6 were prepared, by degrading 

fine resolution data, furthermore classification of coarse pixels was done by SHF and classification of fine 

pixels was done by SHC for each set of those data. Accuracy of this practice was obtained by overall 

accuracy and the results shown in Table 6-2.   

 
Table 6-2 Experimental results of comparing coarse pixels training set and fine resolution training set with normal 
distribution classes, S=6 

Number of samples for each Overall accuracy 

fine resolution Coarse resolution fine pixels with SHC coarse pixels with SHF 

720 20 100% 100% 

1800 50 99.97% 100% 

2160 60 99.97% 100% 

 

To apply the method on non-normal distribution classes, fine resolution data prepared with the same 

parameter as synthetic omage2. Coarse resolution pixels are generated with scale factor 6 by degradation of 

fine pixels.  SVM classification applied on both set of data in the same way as described for normal 

 Weight  Bias Marginal distance 

Coarse resolution  (7.272e-3, 2.725e-2) 5.22 85.89 

Fine resolution (1.752e-2, 7.742e-2) 13.37 24.57 

Figure 6-1 Feature space that compare SHC and SHF, in this plot coarse data and SHC present with blue 
color and fine data and SHF are green 
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distribution classes in last paragraph.  The SVM hyperplanes obtained for both training data and the 

results of SVM classification for coarse resolution training data obtained from SHF of exponential and the 

results of SVM classification for fine resolution training data obtained from SHC of exponential, the result 

of these applications is shown in Table 6-3. 

 
Table 6-3 Experimental results of comparing coarse pixels training set and fine resolution training set of exponential 
distribution S= 6 

Number of samples for each Overall accuracy 

fine resolution Coarse resolution fine pixels with SHC coarse pixels with SHF 

720 20 93.61% 100% 

1800 50 96.86% 100% 

2160 60 95.92% 100% 

 

Table 6-2 and table 6-3 show that classifying coarse pixels with SHF has small error, because the 

difference in variance of coarse and fine data. Since the hyperplanes are in the same direction coarse data 

are always in the correct side of SHF. Overall accuracy for classifying fine pixel as data with SHC is high 

therefore the training set can be either of coarse resolution pixels or fine resolution pixels. In this research 

training set selected from coarse resolution data. 

6.1.2. Experimental result of application SVM mixture probability 

Mixture probability is used in likelihood energy (discussed in section 4.1.3). The appropriate method for 

SVM mixture probability was determined by histograms and interpolation methods (see section 5.2.1). To 

improve the method and validate its results, training set of pure coarse pixels with scale factors,  

         were generated by degradation from same classes in fine resolution. 

Additionally a set of mixed pixels for each scale were prepared from fine resolution data. If scale factor is 

S, each coarse pixel can have (    )  different proportions of two classes, so for each scale there is 

(    ) sets of mixed pixels. For each of these sets with the equation 4-59 distances from separating 

hyperplane obtained from their relevant training set were computed, so (    ) sets of distances are 

obtained from mixed pixels in each scale. These set of distances are considered as reference data and from 

their histograms reference probability and their mids extracted. 

Furthermore the mixture SVM model that was explained in section 5.2.1 applied on the distances of pure 

training data in each scale and the set of mids and density are obtained. The mixture probabilities for the 

mids of the reference histogram is calculated and assigned as observed probabilities. 
The above method applied on classes of both synthetic images and in different scales for each image, and 

the RMSE for observed data and referenced data calculated. Figure 6-2 (a),(c),(e) shows the results of 

RMSE for normal distribution classes in scales 2, 3 and 6, and Figure 6-2 (b),(d),(f) is the results for classes 

with exponential distribution in scales 2, 3 and 6. As it shown in the results the RMSE in both cases is 

acceptable and the variety of RMSE is low, in the plots    is the proportion of class1 in the mixed pixels 

(the proportion of class2 is 1-   ). The results show that the method is accurate to use in likelihood energy 

of MRF-SRM. 
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(a) (b) 

(c) 

   
   

      

(d) 

      

(e) (f) 

Figure 6-2 RMSE of mixture probability (a)S=2,classes are normally distributed  (b)S=2,classes are exponentially 
distributed (c)S=3,classes are normally distributed (d)S=3,classes are exponentially distributed (e)S=6,classes are normally 
distributed (f)S=6,classes are exponentially distributed 
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6.2. Application of SRM-SVM 

This section presents the results of incorporation SVM mixture model in MRF-SRM and analyse the 

results. First the result of applying the method on synthetic images and optimising the smoothness 

parameter is discussed and analysed in section 6.2.1. Furthermore the results from applying the method on 

real remote sensing data are presented in section 6.2.2. 

6.2.1. Results from synthetic image 

To implement SRM-SVM method several synthetic images in different scales and different class 

distributions were generated. For all of this images reference image prepared in fine resolution and with 

degradation of    fine pixels (S is scale factor) as discussed in 5.1.1 the coarse resolution synthetic images 

are generated. 

Label of pixels for the initial SRM is assigned randomly so the image is noisy, but by applying smoothness 

parameter,   that discussed in section 5.3.3, the final SRM will appear smoother. This parameter controls 

relation between the values of prior and likelihood energy. As the accuracy for likelihood energy is 

different in each scale related to the scale of SRM (see the results of section 6.2.1) appropriate smoothness 

parameter is not the same in all scales. To optimise the appropriate value for smoothness parameter in the 

implementation value of   changed in nine values 0.1, 0.2,…,0.9. When the value of   is bigger the 

neighbourhood pixels has more effect on the class label so the final image will be smoother. The accuracy 

of the results is obtained by the kappa coefficient (see section 5.4).  

To find the label of pixels simulated annealing (section 4.1.3) is used so the iterations continue until the 

system gets the freezing point. Number of iterations depends on the images, scale factor and smoothness 

parameter thus it is different in each application. The parameter for simulating annealing is initial 

temperature (  ) that is optimized with values 0, 3 and the parameter for updating temperature (    ), If 

the initial temperature set as      then it reduces after each iteration and select the SRM randomly, and 

By selecting       the initial SRM is not selected randomly. In the following the results of 

implementation the method on synthetic image1 and synthetic image2 is discussed. 

6.2.1.1. Synthetic image1 

As mentioned in section 5.1.1 Synthetic image1 has classes with normal distribution. The application of 

SRM-SVM on synthetic image1 is in four scales 2, 4, 6 and 10. First the smoothness parameter in each scale 

was optimised. In this experiment the initial value of temperature is set as 3 and the effect of smoothness 

parameter on SRM-SVM is studied. The results are shown in Figure 6-3. 

It can be obtained from the results that the value of kappa coefficient has negative relation with scale 

factor, and the reason is in higher scale the number of pixels are less, so the image does not  have enough 

contextual information and the accuracy is lower.  

As the application was done for identification of initial temperature for two values 0 and 3, the 

implementation of SRM-SVM is done again with combination of different smoothness parameter and 

different scale factors and      . The result of this experiment is shown in Figure 6-4. 
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Figure 6-4 kappa coefficient of SRM results for normally distributed classes when T0=0 

Figure 6-3 kappa coefficient of SRM results for normally distributed classes when T0=3 

 

Figure 6-5 Compare the results of k max with different initial temperature 
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As it is obtained from the results, the range of k for different smoothing parameter is very close to the 

maximum obtained kappa coefficient so change the value of   does not  affect the accuracy of SRM-SVM. 

In Figure 6-4 the maximum kappa coefficient in each scale for different initial temperature compared to 

each other. From the results can be obtained that the better accuracy is optimised for     .   

6.2.1.2. Synthetic image2 

The main objective of this research is to apply SRM-SVM on images with non-normally distribution 

classes, therefore next step is to apply the method on synthetic image2 with exponential distribution classes. 

From this image four coarse images were generated with scale 2, 4, 6 and 10 with. To apply SRM-SVM on 

synthetic image2 the experimental results from application of method on synthetic image1 were used, so the 

initial temperature for this synthetic set as zero. The results of implementation of SRM-SVM on synthetic 

image2 with different smoothing parameters (0.1, 0.2,..., 0.9) is shown in Figure 6-6. The results show that 

the accuracy of application SRM-SVM on the exponential distribution data is acceptable accuracy.  

 

To compare the accuracy of SRM-SVM method with the MRF-SRM, MRF-SRM applied on synthetic 

image2. For this application coarse resolution images that is prepared in scale factor 2 is used. Figure 6-7 

compares the results of MRF-SRM and SRM-SVM. As it observed from the results for the same value of 

λ the accuracy of SRM-SVM is higher than MRF-SRM. 

  

Figure 6-6 kappa coefficient value for SRM-SVM for exponential distribution classes 
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Figure 6-7 Results of SRM-SVM compare to the results of SRM-MLC for exponentially 
distributed classes with S= 2 
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The maximum kappa coefficient for MRF-SRM observed at       and for SRM-SVM maximum kappa 

is for       the result of application of SRM for these smoothness parameter is shown in Figure 6-8. In 

both image the classes are exponentially distributed but the classification method is different. The result of 

classifying image with SVM is smoother than results from application of MLC classification.   

The results from synthetic image2 show that the proposed method of SRM classification cooperated with 

SVM mixture probability is more appropriate for classes that are non-normally distributed. In the next 

section the results of application of the method on real image is discussed.   

6.2.2. Results from real image 

To test the ability of the proposed method on real data, the remote sensing data are prepared from radar 

image and optical image as discussed in section 3.1. The SRM method that is going to be used on this 

image is corporate with boundary sub-pixel which is used to show the smoother boundary of an object in 

finer spatial resolution.  

The subsets are chosen from an area with a water body that is continued with canals in both sides (Figure 

6-9). The aim is to find the boundary of the area that covers with water, therefore the water selected as 

one class and the other objects such as, urban area, vegetation, trees... selected as another class. Training 

set for both classes are selected from outside of these subsets. 

For the ERS image from multi-looking is used to help for visualise and interpret the image. But still the 

values for the pixels are very big, so all the values from radar images contain training sets and values in the 

subset are divided by 1000. The ERS image set as band1 and spot image is band2. The two classes in 

band1 have exponential distributions but in band2 the class for water has normal distribution and the class 

for the other objects has multimodal distribution.  

Figure 6-8 The results of SRM for S=2, (a) final SRM-SVM (b)final MRF-SRM 

(a) (b) 
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To apply SRM-SVM the scale factor four is selected, with this scale the pixel size in final SRM is 5×5. The 

experimental results from last sections are used to set the parameter of SVM classification, smoothness 

parameter and initial temperature. SVM classification is done by linear kernel, smoothness parameter set 

as 0.7 and the initial temperature is zero.  The numbers of iterations for SRM-SVM is 10. The result of 

application of SRM-SVM is shown in Figure 6-10. As it is observed in the image the boundaries are very 

smooth and the method classified subset accurate.  

Figure 6-11 is shown the SRM-SVM results compare to the shape file of the area, it shows that the 

method estimate the boundaries smooth and accurate. Figure 6-12 shows the result of implementation of 

SRM-MRF with assumption of normal distribution. The image compare to SRM-SVM has low quality and 

did not estimate the boundaries accurate.  

 

 

Figure 6-9 subsets (a) ERS subset (band1) (b) spot 
subset (band2) 

(a) (b) 

Figure 6-10 The results for SRM-SVM, S=4 
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Figure 6-11Compare the results with the shape file 

Figure 6-12 the results of SRM-MLC on the remote sensing image 
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7. DISCUSSION 

This chapter discuss about the obtained results from chapter 5. In the first part the applicability of the 

SVM mixture probability method and its results is discussed in detail. Furthermore the results of 

implementing SVM mixture probability in MRF-SRM on different data are discussed. 

The application is started by study on capability of selecting training set for super resolution mapping with 

SVM. From the results of applying SVM on two training sets of the same class but different spatial 

resolution it is observed that classifying coarser pixels with separating hyperplane of fine pixels (SHF) has 

small error. Additionally the results has very high accuracy for classifying fine pixels with separating 

hyperplane of coarse pixels (SHC) as shown in the Tables 6-2 and 6-3 of Chapter 6 for normally 

distributed classes and exponentially distributed classes. Both training sets have high classification 

accuracy but for classification coarse pixels with SHF this accuracy is identical because variance of coarse 

pixels is always smaller than finer resolution pixel and the mean for both of them is the same. Since the 

SHC and SHF are in the same direction (illustrated in Figure 5-1 of chapter 5) coarser data are always in 

the correct side of SHF. The results show that in the SRM-SVM the training set can be selected either 

from fine spatial resolution or from coarse spatial resolution data.  

Figure 5-2 and Figure 5-3 shows the results of comparing the estimated SVM mixture probability with the 

same value from reference data, the accuracy is presented with RMSE. As it is obtained from the plots the 

accuracy for the set of data with normal distribution classes is higher than the data with exponentially 

distributed classes. The reason of this difference is that in the datasets that is used for this application, the 

histograms of distance for exponentially distributed classes have higher variance, when the variance of 

data is higher the width for the bins are larger and the distance between mids of bins is bigger, so the error 

in linear interpolation is higher. The results in the application for this research are accurate, but if for some 

classes the variance is big then with non-linear interpolation method better results will be obtained for 

estimation of mixture probability.  

The applicability of proposed method is tested on two synthetic images with different class distributions 

and remote sensing image from different sources. The results of application SRM-SVM on both synthetic 

images show acceptable accuracy for the SRM-SVM method. The accuracy of classification is decreased 

for higher scale factor. This result is expected for MRF-SRM technique according to previous studies 

(Tolpekin & Stein, 2009). In SRM-SVM method the range of changing the kappa coefficient with different 

  is not very different from maximum accuracy. It is observed from the results that the accuracy of final 

SRM is higher when initial temperature set as zero, with this value initial SRM does not select randomly 

and iteration starts with local minimum energy, it also has less number of iteration than higher 

temperatures.  

In the similar way the application is repeated for synthetic image2. The effect of lower accuracy for 

mixture probability and also the small class separability for exponential distribution (Tolpekin & Stein, 

2009) is the reason that the accuracy of SRM-SVM for each   with exponential distribution is smaller than 

the accuracy the same   for normal distribution. The sum of data with exponential distribution is not 

exponentially distributed and it will become Gamma distribution, by increasing the number of exponential 

data the distribution of data become normal distribution so by increasing the scale factor in synthetic imag2 

that is generated by degradation the accuracy is become the same as accuracy of normal distribution. 

Comparing the application of SRM-SVM method with another MRF-SRM method that use maximum 
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likelihood in its assumption shows that the value of accuracy is higher for all   in SRM-SVM classification 

method, this is a good reason for suitably of SRM-SVM for the non-normal classes.  

Figure 6-10 shows the performance of SRM-SVM on remote sensing image from different sources, radar 

and optical data. Comparing the result of this application with the results from MRF-SRM in figure 6-12 

the improvement of accuracy and smoothness in the result from SRM-SVM is observed. This 

performance shows the capability of method for real data. 
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8. CONCLUSION AND RECOMMENDATIONS 

8.1. Conclusion 

The main objective of this study is to improve MRF-based SRM technique by incorporating SVM 

classification method to archive an SRM method that is suitable for all kinds of distributions. In order to 

address the research objective four research questions are posted and answered during the research. The 

mixture model estimate with SVM classification and then incorporate in MRF-SRM algorithm. In addition 

the parameter for this new algorithm estimate and the results accuracy assessment is done on the obtained 

results. Furthermore the application is done on two synthetic images with different distributions and one 

remote sensing image. 

Before apply the method on the data capability of SVM to choose training set of different spatial 

resolution images from one class consider. This study is done on two sets of training samples with the 

same parameters as synthetic image1 and synthetic image2. The accuracy is identical for classification of 

data from one class with the training set of the same class in different resolution. 
Additionally mixture probability with SVM classification estimated and tested. To propose the method 

distance of pixels from hyperplane in feature space is used. The results show that however the accuracy is 

lower for bigger scale factor, the method can estimate mixture probability of a mixed pixel with very high 

accuracy for any kind of class distribution. It is observed that the training data set for SRM incorporated 

with SVM can be selected either from coarse resolution or fine resolution pixels. 

The method is tested on synthetic image1 with normal distribution and synthetic image2 with exponential 

distribution. Optimal parameter of SRM-SVM is observed for each synthetic image in different scales. 

Maximum accuracy is not the same for two synthetic images, but in both images it is more than 0.7 so the 

result is acceptable for both images. The results compared with the result of application MRF-SRM with 

MLC classification on synthetic image2. The observed results for SRM-SVM in the same scale factor has 

better accuracy than MRF-SRM with MLC classification. The maximum value for kappa coefficient for 

image with SRM-SVM application observed in       and for image with MRF-SRM with MLC 

classification observed in      . Comparing the two final SRM maps from these applications in 

maximum kappa shows that the final SRM with SVM classification is smoother. 

The SRM-SVM method is also applied on a real image from different sources, one radar image and one 

optical image so the data has two bands with different distributions. This application was done to estimate 

the boundary of an object in larger scale. The result of SRM-SVM shows very smooth boundary for the 

final map. 

In conclusion the SRM-SVM method does not make the assumption of class distribution and can be 

applied in any kinds of image with normal or non-normal distributed classes. It converts the multiband 

data to single band size by using distance from hyperplane that makes the process faster, and as it uses 

contextual method in classification the SRM result is smooth with high classification accuracy.  

8.2. Recommendation 

The SRM-SVM method is a new and accurate technique, but there is more that can be done on this study, 

the following are recommended for further research: 

 

1. Since SVM classification originally is binary classification method, there are some methods that 

improve SVM classification to a multiclass classification method. In this research the original 
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SVM was used and data is selected with two classes. Therefore it recommended that improve 

the research for multiclass classification.  

 

2. During the study the influence of some parameters of MRF-SRM on the accuracy of the results 

was studied, it is necessary to consider the user-defined parameter of SVM such as parameter C 

and ν after incorporation with MRF-SRM.  

 

3. The SRM-SVM method that applied for real image considered sub-pixel boundary, so it is 

recommended to apply the method for other type of sub-pixels. 
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APPENDIX1 

Preparing SVM mixture model in R 

 

#Path 

rm(list = ls()) 

require(MASS) 

require(mvtnorm) 

require(pixmap) 

require(scatterplot3d) 

require(kernlab) 

require(GLDEX) 

Path <- 'D:\\Data_Prepration\\' 

# 

# Read the training set data: determine class means and covariances 

# 

# Path to training set files 

Path_ts <- paste(Path,'Statistical_Report_2classes_2bands_test\\',sep='') 

Filename <- 'Mean.txt' 

Inputfile <- paste(Path_ts,Filename,sep='') 

temp <- read.table(Inputfile, skip = 1) 

d <- dim(temp) 

#Scale Factor 

S<-2 

# File dimensions 

# Number of bands 

Nb <- d[1] 

# Number of classes 

Ncl <- d[2] 

mu   <- array(rep(0,Ncl*Nb),c(Ncl,Nb)) 

Cov  <- array(rep(0,Ncl*Nb*Nb),c(Ncl,Nb,Nb)) 

Cinv <- array(rep(0,Ncl*Nb*Nb),c(Ncl,Nb,Nb)) 

mut <- data.matrix(temp) 

mu[,] <- t(mut) 

# Read covariance matrices 

for(k in 1:Ncl) 

{ 

   Inputfile <- paste(Path_ts, 'Cov_',k,'.txt', sep='') 

   temp <- read.table(Inputfile, skip = 0) 

   Cov[k,,] <- as.matrix(temp) 

   for(i in 1:(Nb-1)) 

   { 

      for(j in (i+1):Nb) 

      Cov[k,i,j]<-Cov[k,j,i] 

   } 

} 
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#******************************************************************************************** 

# generate random numbers from exponential distribution 

#******************************************************************************************** 

rand_exp <- function(n,sigma) 

{ 

   xt <- rnorm(n,0,sqrt(0.5*sigma)) 

   yt <- rnorm(n,0,sqrt(0.5*sigma)) 

   I <- xt^2 + yt^2 

   return(I) 

} 

#************************************************************************************** 

#Preparing DN value for Fine resolution, Dx and Coarse resolution, Dy Images 

#************************************************************************************** 

#Normal classes 

#number of Samples 

Nsample<-1000 

Dx<-array(0,c(0,Nb)) 

Dy<-array(0,c(0,Nb)) 

 

for(k in 1:Ncl) 

{ 

 DN<-array(0,c((S^2),Nb)) 

 Dxc<-array(0,c(0,Nb)) 

 Dyc<-array(0,c(0,Nb)) 

 for(i in 1:Nsample) 

 { 

  for(j in 1:(S^2))DN[j,] <- rmvnorm(1, mu[k,], Cov[k,,]) 

  Dxc<-rbind(Dxc,DN) 

  Dyc<-rbind(Dyc,c(sum(DN[,1])/(S^2),sum(DN[,2])/(S^2))) 

 } 

 Dx<-rbind(Dx,Dxc) 

 Dy<-rbind(Dy,Dyc) 

} 

#Non-normal classes 

Nsamplex<-Nsample/4 

NDx<-array(0,c(0,Nb)) 

NDy<-array(0,c(0,Nb)) 

for(k in 1:Ncl) 

{ 

 NDN<-array(0,c((S^2),Nb)) 

 NDxc<-array(0,c(0,Nb)) 

 NDyc<-array(0,c(0,Nb)) 

 for(i in 1:Nsample) 

 { 

  NDN[,1] <-rand_exp((S^2),mu[k,1]) 

  NDN[,2] <-rand_exp((S^2),mu[k,2]) 
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  NDxc<-rbind(NDxc,NDN) 

  NDyc<-rbind(NDyc,c(sum(NDN[,1])/(S^2),sum(NDN[,2])/(S^2))) 

 } 

 NDx<-rbind(NDx,NDxc) 

 NDy<-rbind(NDy,NDyc) 

} 

 

#************************************************************************************** 

# SVM classification of the image Dy (Coarse resolution image) 

#************************************************************************************** 

# SVM training 

# SVM parameters 

sigma_SVM <-1 

C_SVM <- 10 

nu_SVM <- 0.9 

 

Trainingsety<- data.frame(B1=Dy[,1],B3=Dy[,2],class=c(rep(-1,Nsample),rep(1,Nsample))) 

#NTrainingsety<- data.frame(B1=NDy[,1],B3=NDy[,2],class=c(rep(-1,Nsample),rep(1,Nsample))) 

# Linear kernel 

svm_modely<- ksvm(class~.,data=Trainingsety,scaled=FALSE,type="C-

svc",kernel="vanilladot",C=C_SVM,prob.model=TRUE) 

#Radial Basis kernel "Gaissian" 

#svm_modely <- ksvm(class~.,data=NTrainingsety,scaled=TRUE,type="C-svc",cache = 

2000,kernel="rbfdot",kpar=list(sigma=sigma_SVM),C=C_SVM,prob.model=TRUE) 

 

#*********************** 

#Calculate W & B for Dy  

#*********************** 

#Number of SVMs 

LenIy<-nSV(svm_modely) 

 

#Value of alpha   

alphaiy<-alpha(svm_modely)[[1]]  

 

#Index of SVMs 

SViy<-alphaindex(svm_modely)[[1]]  

 

#The value of the SVMs 

DSVMy<-as.vector(Trainingsety[SViy,,]) 

 

#Class label of each SVMs 

yy<-DSVMy[3][[1]] 

 

#Value fo SVMs in trainingset 

xy<-array(0,c(LenIy,Nb)) 

for(k in 1:LenIy) 
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xy[k,]<-c(DSVMy[k,1],DSVMy[k,2]) 

 

#Biased for hyperplane 

By<-b(svm_modely) 

 

#Objective value of SVM classification 

OB<-obj(svm_modely) 

 

#weight for hyperplane 

W<-sqrt(2*(OB+sum(alphaiy))) 

 

#Function for RBF kernel 

RBFK<-rbfdot(sigma=sigma_SVM) 

 

#Function for linear kernel 

LIK<-vanilladot() 

 

#Kernel value 

FK<-array(0,c(2*Nsample,LenIy)) 

 

#Desicion function for each data 

Fst<-array(0,c(2*Nsample,LenIy)) 

 

#Distance from hyperplane(for pure training set) 

Dist<-array(0,2*Nsample) 

Dist1<-array(0,2*Nsample) 

 

#the LIK should change for RBF kernel if the kernel change 

for(i in 1:LenIy) 

{ 

 for(j in 1:(2*Nsample)) 

 { 

  FK[j,i]<-LIK(xy[i,],Dy[j,]) 

  Fst[j,i]<-yy[i]*alphaiy[i]*FK[j,i] 

 } 

 Dist1<-Dist1+Fst[,i] 

} 

 

Dist<-(Dist1-By)/W 

 

 

Distance<-function(D){ 

    #Kernel value 

    F<-array(0,LenIy) 

 

    #Desicion function for each data 
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    Fs<-array(0,LenIy) 

 

    for(k in 1:LenIy) 

    { 

     F[k]<-LIK(xy[k,],D) 

     Fs[k]<-yy[k]*alphaiy[k]*F[k] 

    } 

 

     Dist<-(sum(Fs)-By)/W 

     return(Dist) 

    } 

 

#************************************************************** 

#Mixed pixels 

#Array for Distances 

Disty<-array(0,c(Nsample,(1+S^2))) 

#Mean of Deistances 

MDisty<-array(0,(1+S^2)) 

#Fractions 

NPc <- array(0,c(Ncl,(1+S^2)))  

for(ep in 1:(1+S^2)) 

{ 

#Number of pixels of each class in one coarse pixel 

NPc[1,ep]<- ep-1 

NPc[2,ep]<- (S^2)-NPc[1,ep] 

Arr1 <- array(0,c(NPc[1,ep],Nb)) 

Arr2 <- array(0,c(NPc[2,ep],Nb)) 

Dmix  <- array(0,c(0,Nb)) 

Sum <- array(0,c(1,Nb)) 

for(k in 1:Nsample) 

{ 

 if(NPc[1,ep]!=0){ 

  Arr1 <- rmvnorm(NPc[1,ep],mu[1,],Cov[1,,])} 

 if(NPc[2,ep]!=0){ 

  Arr2 <- rmvnorm(NPc[2,ep],mu[2,],Cov[2,,])} 

 for(j in 1:Nb)Sum[,j]<-(sum(Arr1[,j])+sum(Arr2[,j]))/(S^2) 

 Dmix<-rbind(Dmix,Sum) 

} 

#********************************************************************** 

#Distance from Coarse SVM line 

#********************************************************************** 

#Distance of mixed pixels from SVM line 

xFm<-as.vector(Dmix[,1]) 

yFm<-as.vector(Dmix[,2]) 

for(i in 1:Nsample)Disty[i,ep]<-Distance(Dmix[i,]) 

MDisty[ep]<-mean(Disty[i,ep]) 
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} 

#********************************************************************* 

#Codes for mixing probabilities 

#********************************************************************* 

#The number of breaks(for ploting histograms) 

bmin<-floor(min(min(Dist[1:Nsample]),min(Dist[(Nsample+1):(2*Nsample)]))) 

bmax<-ceiling(max(max(Dist[1:Nsample]),max(Dist[(Nsample+1):(2*Nsample)]))) 

Bin<-(bmin:bmax) 

xlimy<-c(bmin,bmax) 

#Error 

RMSE<-array(0,(1+S^2)) 

#Number of bins 

NBin=10 

#porbability for each proportions 

P1<-array(0,c(NBin,(1+S^2))) 

P2<-array(0,c(NBin,(1+S^2))) 

P<-array(0,c(NBin,(1+S^2))) 

Pm<-array(0,c(NBin,(1+S^2))) 

#set mids of histograms as x axis for approximation 

M1<-array(0,c(NBin,(1+S^2))) 

M2<-array(0,c(NBin,(1+S^2))) 

M<-array(0,c(NBin,(1+S^2))) 

Mm<-array(0,c(NBin,(1+S^2))) 

#approximate probability 

PA<-array(0,c(NBin,(1+S^2))) 

for(i in 1:(1+S^2)) 

{ 

 H1<-hist.su(Disty[,(1+S^2)],col=2,prob=TRUE,nclass=NBin,plot=FALSE) 

 H2<-hist.su(Disty[,1],col=3, prob=TRUE,nclass=NBin,plot=FALSE) 

 H3<-hist.su(Disty[,i],col=4, prob=TRUE,nclass=NBin,plot=FALSE) 

 Bin1<-(H1$breaks[2]-H1$breaks[1]) 

 Bin2<-(H2$breaks[2]-H2$breaks[1]) 

 Bin3<-(H3$breaks[2]-H3$breaks[1]) 

 P1[,i]<-(H1$density)*Bin1 

 P2[,i]<-(H2$density)*Bin2 

 P[,i]<-(H3$density)*Bin3 

 M1[,i]<-H1$mids 

 M2[,i]<-H2$mids 

 M[,i]<-H3$mids 

 Pm[,i]<-frac[1,i]*P1[,i]+frac[2,i]*P2[,i] 

 Mm[,i]<-frac[1,i]*M1[,i]+frac[2,i]*M2[,i] 

 PA[,i]<-approx(Mm[,i],Pm[,i], xout=M[,i])$y 

 PA[is.na(PA)] <- 0  

 RMSE[i]<-sqrt(((sum(P[,i]-PA[,i]))^2)/NBin) 

} 
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APPENDIX2 

The codes for SRM-SVM in R 
(These codes only include the likelihood energy with SVM) 
# 

# Mixing distributions 

# 

Nmix <- 1+S^2 

#Histograms for pure classes  

H1<-hist.su(Distc1,col=2,prob=TRUE,nclass=100,plot=FALSE) 

H2<-hist.su(Distc2,col=3, prob=TRUE,nclass=100,plot=FALSE) 

#Bins of the histograms 

Bin1<-(H1$breaks[2]-H1$breaks[1]) 

Bin2<-(H2$breaks[2]-H2$breaks[1]) 

P1<-(H1$density)#*Bin1 

P2<-(H2$density)#*Bin2 

#mids of each bin 

M1 <- H1$mids 

M2 <- H2$mids 

Nbins <- length(P1) 

P_mix <- array(0,c(Nmix,Nbins)) 

M_mix <- array(0,c(Nmix,Nbins)) 

for(k_mix in 1:Nmix) 

{ 

   frac_k <- (k_mix-1)/(S^2) 

 

   P_mix[k_mix,] <- P1*frac_k+P2*(1-frac_k) 

   M_mix[k_mix,] <- M1*frac_k+M2*(1-frac_k) 

} 

################################################# 

# Energy functions 

#Prior Energy 

I <- function(x,y){ 

 val <- 1 

 if(x==y) val <- 0 

 return(val) 

} 

xS <- function(x){ 

 val <- ceiling(x/S) 

 return(val) 

} 

Frac_update <- function(i,j) 

{ 

 val <- array(rep(0,Ncl),Ncl) 

 for(ki in 1:S) 

 for(kj in 1:S) 
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 { 

    cln <- F[(i-1)*S+ki,(j-1)*S+kj] 

    val[cln] <- val[cln] + 1 

 } 

 val <- val / (S^2) 

 return(val) 

} 

Uprior <- function(i,j){ 

 F1 <- F[(Neigh_Coord[i,j,1]):(Neigh_Coord[i,j,2]),(Neigh_Coord[i,j,3]):(Neigh_Coord[i,j,4])] 

W1 <- Weight[(Neigh_Coord[i,j,1]-i+1+WSize):(Neigh_Coord[i,j,2]-    

i+1+WSize),(Neigh_Coord[i,j,3]-j+1+WSize):(Neigh_Coord[i,j,4]-j+1+WSize)] 

 F0 <- F1 - F[i,j] 

 F0[F0!=0] <- 1 

 val <-  sum(W1 * F0) 

 return(val) 

} 

Ulikelihood <- function(i,j){ 

 CProbB[xS(i),xS(j),] <- Frac_update(xS(i),xS(j)) 

 y0 <- Ddeg[xS(i),xS(j),] 

 Distan<-Distance(y0) 

 frac_k <- 1 + CProbB[xS(i),xS(j),1]*(S^2) 

 

 if( (Distan >= min(M_mix[frac_k,]))&&(Distan <= max(M_mix[frac_k,])) ) 

 { 

 

 

    val<-approx(M_mix[frac_k,],P_mix[frac_k,], xout=Distan)$y 

 }else val <- 0 

    

 if(val<1e-6) val <- 1e-6 

 val <- -log(val) 

# New: normalize the conditional energy 

 val <- val / Norm_like 

 return(val) 

} 
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