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ABSTRACT 

Recently, interest in implementing projects on reducing carbon emission from deforestation and forest 
degradation (REDD) for mitigating carbon dioxide emission has been increased. Consequently, an 
accurate and precise measurement of carbon stock in cost effective ways is needed. Fine resolution 
satellite imagery, together with object based image analysis (OBIA) techniques provide new opportunities 
to improve aboveground carbon stock estimation on the basis of allometric relationship of crown 
projection area (CPA) and tree biomass. This research aimed to model carbon stock in upper-subtropical 
forests of Nepal using very high resolution Geo-Eye imagery and OBIA.  
 
Individual tree crown delineation approaches of Valley Following and Region Growing using 0.5 meter 
spatial resolution of Geo-Eye imagery were used in this research for the delineation of tree crowns in 
complex mixed forests. Valley Following approach was conducted in Individual Tree Crown delineation 
(ITC) suite in PCI-Geomatica, while Region Growing approach was done in eCognition software by 
developing specific rule-set. The best tree crown delineation of these approaches was further used for 
species and forest type classifications at individual tree crown level. Based on the field measurements of 
stem diameters, carbon stock of trees was calculated and the relationship between carbon stock of tree 
and CPA from high resolution image was analysed using simple linear regression model.  
 
The Region Growing approach resulted in better delineation of tree crown (30% error with 75% 1:1 
correspondence) than Valley following approach (40% error with 67% 1:1 correspondence). Having more 
accurate delineation, the delineated tree crowns from Region Growing approach were used for species and 
forest type classifications. Species classification resulting in 64.5% accuracy (Kappa=0.48) provided much 
lower accuracy than forest type classification (90.3% accuracy and Kappa=0.80). Modelling the 
relationship between automatically generated CPA and carbon stock of broadleaf and needle leaf trees 
resulted in R2 of 0.16 and 0.34 respectively.  
 
The results obtained in this research have agreed with previous research in tree crown delineation and 
species classification, while lower R2 from modeling can be explained by rugged topography of the area, 
low sun elevation and off-nadir view angle of image acquisition. Nevertheless, this research indicated the 
utility of high resolution satellite imagery on carbon stock estimation and other forest inventories.   
 
Key words: Aboveground carbon stock, Object based image analysis, Tree crown delineation, Region 
Growing, Valley Following, Crown projection area 
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1. INTRODUCTION 

1.1. Background 

Increase in CO2 concentration and other greenhouse gases, have raised concerns about global warming 
and climate changes. The Intergovernmental Panel on Climate Change (IPCC) reported that the amount 
of carbon dioxide in the atmosphere is increasing by 1.4 ppm per year and this will contribute to the 
increase in temperature by 1.80C to 40C by the end of the century (IPCC, 2007). Dramatic increase of CO2 
concentration is highly related to human activities. Over the past 20 years, about 75% of the 
anthropogenic emissions of CO2 to the atmosphere are due to fossil fuel burning (IPCC, 2001). The rest is 
mostly due to land use change, especially deforestation (Rohner & Staub, 2008).  
 
Reducing carbon emissions from deforestation and forest degradation in developing countries is 
important to combat global warming. A tonne of carbon in trees is the result of the removal of 3.67 
tonnes of carbon dioxide from the atmosphere, thus, the world’s forest ‘sink’ holds more carbon than the 
atmosphere (Hunt, 2009). However, tropical deforestation is estimated to have released in the order of 1–
2 billion tonnes of carbon per year during the 1990s, roughly 15–25% of annual global greenhouse gas 
emissions (Malhi & Grace, 2000). Thus, maintenance of existing forests as well as increasing forest area 
can contribute highly to the mitigation of global climate change. For this purpose, the Bali Plan Action of 
The United Nations Framework Convention on Climate Change (UNFCCC) in 2007 has introduced a 
new policy of “Reducing emissions from deforestation and forest degradation in developing countries (REDD)” to 
support the efforts to reduce emissions from deforestation and forest degradation in developing countries 
(UN-REDD, 2008).  
 
Occupying 40% of its territory, Nepal’s forests can be an important target for REDD project (Dhital, 
2009). Nepal is a developing country where deforestation and forest degradation could influence forest 
fragmentation in tropical regions, consequently, it may affect Nepalese livelihoods due to their 
dependence on forest resources (Panta et al., 2008). After facing serious deforestation issues in 1970s, 
forest resource is being supported to be used by community groups, as a result, over 25 % of the total 
forests are being managed by local communities (Dhital, 2009).  Realizing forest resource importance on 
global carbon sequestration and livelihood of the forest community groups, Nepal submitted its interest 
on implementing REDD project to UNFCCC in 2008 and was granted Forest Carbon Partnership Facility 
for implementation of REDD project (Dahal & Banskota, 2009).   
 
Aboveground biomass (AGB) estimation is a key for quantifying carbon stocks in forests. The carbon 
stored in the aboveground living biomass of trees is the largest pool and the most directly impacted by 
deforestation and forest degradation (Gibbs, 2007). Thus, estimation of the AGB with sufficient accuracy 
to analyse carbon stored in the forest is important for recently emerging policies like REDD (Basuki et al., 
2009). However, the most accurate method for the estimation of biomass is through cutting of trees and 
weighing of their parts, which is time consuming and expensive for large areas (Verwijst & Telenius, 
1999). This destructive method is often used to validate other less invasive and cheaper methods, such as 
the estimation of carbon stock using non-destructive in-situ measurements and remote sensing (Clark et 
al., 2001). 
 
Remote sensing techniques, through different sensors and methods, offer a means for estimating AGB. 
The advantage of using remote sensing data is that spatial distribution of forest biomass can be obtained 
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at reasonable cost and with acceptable accuracy. Examples of studies which have focused on forest 
biomass estimation using medium-resolution satellite imagery are e.g. Foody (2003) and Lu (2005). 
Moreover, attempts have been made to estimate forest biomass and carbon stock using different 
platforms (air-borne and space-borne) and sensors (optical, radar and LiDAR).  However, some of these 
remotely sensed images tend to be inaccurate or very costly for AGB estimation in tropical forest (Gibbs, 
2007). Furthermore, several methods have been proposed for estimating forest biomass using remote 
sensing techniques that make use of a combination of regression models, vegetation indices, and canopy 
reflectance models (Kajisa et al., 2009). These are mainly based on pixel based approaches.   
 
Fine resolution satellite imagery, together with object based image analysis (OBIA) techniques; provide 
new opportunities to improve AGB estimation analysis. OBIA and image segmentation techniques have 
been used in very high resolution (VHR) imagery as an option to overcome the drawbacks of 
conventional procedures of spectral and texture image analysis for various forestry applications (Chubey et 
al., 2006; Morales et al., 2008).  For instance, Aardt et al. (2008), Morales et al. (2008) and Kajisa et al. (2009) 
have attempted to estimate AGB using OBIA and obtained reasonably good accuracy.  
 
Relationship between stem diameter at breast height (DBH) and crown projection area (CPA) of a tree 
opens a possibility to calculate AGB using high resolution optical imagery where every tree is identifiable. 
Shimano (1997) had studied the relationship between DBH and CPA and proved that power sigmoid 
models can better explain this relationship than other models. Moreover, the relationship of DBH and 
CPA has been used to estimate aboveground carbon stock using OBIA for the delineation of CPA 
(Gonzalez et al., 2010). Hence, using OBIA to model carbon stock in upper-subtropical forests may offer a 
more efficient contribution to piloting the REDD project in Nepal.  

1.2. Application of remote sensing for biomass estimation  

Remote sensing can offer an accurate and precise estimation of AGB and carbon stock. Estimation of 
AGB is the most critical step in quantifying carbon stocks from forests (Gibbs, 2007). Providing the 
advantages such as large access area, high correlation between spectral bands and biophysical parameters 
and a digital format etc. remote sensing based AGB estimation has been increasingly studied using different 
satellite imageries (Lu, 2006). A range of satellite sensors have been explored for accurate AGB 
estimations. Recognizing and understanding the strengths and weaknesses of different types of sensors 
and data is essential for selecting suitable sensors and data for AGB estimation in a specific study (Lu, 
2006).   
 
Providing up to 40 years globally consistent records, optical remote sensing has been widely used for AGB 
estimation (Gibbs, 2007). For instance, Landsat TM satellite imageries have been used in many 
applications (Lu, 2006) including AGB estimation (Baccini et al., 2004; Foody, et al., 2003). Moreover, 
spectral signatures or vegetation indices are often used for such an application. Attempts have been made 
to estimate forest carbon stocks indirectly by developing statistical relationships between ground 
measurements and satellite based vegetation indices (Foody, et al., 2003; Lu, 2005). However, these 
methods tend to underestimate carbon stock in tropical forests where passive sensors are not effective due 
to dense canopy closure (Gibbs, 2007) and cause saturation in the spectral reflectance (Steininger, 2000). 
Furthermore, optical coarse resolution imageries are often used for biomass estimation at national, 
continental, and global scales (Baccini, et al., 2004; Clark, et al., 2001).  Nevertheless, Lu (2006) reviewed 
that the AGB estimation based on coarse spatial resolution data is limited because of the common 
occurrence of mixed pixels and results in drawbacks in the integration of sample data and remote sensing 
derived variables.  
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In many areas of the world, high frequency of cloudy conditions controls the acquisition of good quality 
remotely sensed data by optical sensors. Thus, Radar and LiDAR imageries are used for efficiency due to 
its advantage of data acquisition that is irrespective of weather and light conditions (Lu, 2006). The radar 
backscatter returned from the ground, canopies and tops of trees are used to estimate tree height, which 
are then converted to forest carbon stock estimates using allometric equations (Kasischke et al., 1997; Le 
Toan et al., 2004). However, Le Toan (2004) reported that radar backscatter tends to saturate at a low 
biomass level, also, mountainous or hilly conditions increase errors (Gibbs, 2007). Lu (2006) reviewed an 
applicability of LiDAR data in forest inventory such as biomass estimation, tree height, stand volume, 
crown diameter and canopy structure. LiDAR images can provide AGB estimation with high accuracy 
since this offers information about the vertical structure of forests (Aardt, et al., 2008; Ke et al., 2010). 
Currently, nonetheless, airplane mounted LiDAR instruments are too costly to be used for small areas and 
a satellite based LiDAR systems could provide global coverage but is not yet an option (Gibbs, 2007).    
  
Alternatively, the fine spatial resolution and associated multispectral (MSS) characteristics may become an 
important data source for AGB estimation. Many studies have been done to extract biophysical 
parameters using VHR images (Brandtberg, 2002; Coillie et al., 2008; Culvenor, 2002; Erikson, 2004; Hay 
et al., 2005). The spatial details of optical VHR images can be used to collect directly measurements of tree 
height and crown area or crown diameter. Allometric relationships between tree biophysical characteristics 
and CPA can be applied to estimate forest carbon stocks with high certainty (Gibbs, 2007). Gonzalez 
(2010) studied forest carbon densities using crown diameter estimation based on VHR Quickbird imagery 
and got results of high accuracy and low uncertainty. Moreover, biomass estimation based on a tree 
shadow fraction is also explored by Leboeuf (2007), Ozdemir (2008) and Greenberg et al. (2005) using 
VHR Quickbird imageries. 

1.3. Research conceptual framework 

Different methods for estimating AGB are being adopted by studies. Given the interest in implementing 
forestry projects for mitigating carbon dioxide emissions from deforestation and forest degradation, 
accurate and precise AGB and carbon stock estimations in a cost effective manner is largely demanded 
(Brown et al., 2005). The AGB can be directly estimated using remotely sensed data with different 
approaches such as multiple regression analysis, neural network and indirectly estimated from canopy 
parameters, such as crown diameter and crown area, which are extracted from remote sensing image 
(Foody, et al., 2003; Lu, 2006). For example, Nath et al. (2009) estimated bamboo biomass using log linear 
model. Lu (2005) studied relationship between forest stand parameter and Landsat spectral information 
and vegetation indices. Many studies about biomass estimation have been done using allometry of canopy 
parameters (Basuki, et al., 2009; Gonzalez, et al., 2010; Greenberg, et al., 2005; Verwijst & Telenius, 1999; 
Zianis & Mencuccini, 2004). 
 
The most common mathematical model in biomass studies is based on allometry of DBH, which is highly 
related to other tree parameters including tree crown size (Song et al., 2010; Zianis & Mencuccini, 2004). 
Tree crown size is also strongly related to other parameters, such as height, biomass (Song, et al., 2010). 
Kuuluvainen (1991) had studied the relationship between CPA, which is the vertical projection area of a 
tree crown on the horizontal plane, and components of biomass in Norway spruce and found a linear 
relationship between them. Similarly, Shimano (1997) studied relationship between DBH and CPA using 
different models and concluded that power sigmoid function is the most suitable one among others since 
growth rate of CPA slows down when DBH is sufficiently large due to competition from neighbouring 
trees. Moreover, Greenberg et al. (2005) analysed DBH and CPA derived from IKONOS imagery based 
on shadow allometry resulting in reasonable accuracy and then applied it to tree level biomass estimation. 
Thus, using CPA as an index of tree size may be useful for quantifying the carbon stock of a tree which is 
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proportional to biomass. However, information about tree crown area is difficult to obtain and rarely 
available from traditional forest inventory.  
 
CPA information can be obtained from high resolution imagery and OBIA. A significant amount of 
studies about delineating tree crowns based on VHR aerial photos have been done earlier due to the 
limitation in spatial resolution of remote sensing data from space (Song, et al., 2010). Recently embedded 
VHR satellite based imageries such as Quickbird and IKONOS are being used to extract tree crown 
information successfully (Gougeon & Leckie, 2006; Hirata et al., 2009; Ke, et al., 2010). However, VHR 
imageries pose challenges because the spectral response of individual pixels does not represent the 
characteristics of a target entity (e.g. forest stand and tree crowns) since a target entity is composed of 
many pixels in VHR image. Thus, traditional pixel based classification using only spectral data may not 
work successfully with such sub-metre high resolution images since it results in a salt-and-pepper noise in 
the classification output (Ke, et al., 2010). As an alternative to traditional approaches, OBIA was 
introduced and has been adapted to solve the problems related with the high spatial resolution imageries 
(Blaschke, 2010). It has been successfully applied to the delineation of CPA and species classification using 
high resolution MSS imageries (Coillie, et al., 2008; Hay, et al., 2005; Kim et al., 2009). In contrast to pixel 
based classification, the basic units of OBIA are image objects (or segments) (Ke, et al., 2010). Image 
objects are generated using an image segmentation procedure, which partitions an image into non-
intersecting regions (Chubey, et al., 2006). Object based classification can use not only spectral information 
but also other information such as shape, texture, and contextual relationships (Blaschke, 2010). 
 
Different image segmentation techniques of OBIA are being used for forest inventory, especially for 
individual tree crown delineation. For instance, image segmentation for tree crown delineation can be 
done using Individual Tree Crown delineation suite (ITC), an extension of the image processing software 
PCI Geomatica (Mora et al., 2010) and OBIA software eCognition (Kim, et al., 2009). 
 
ITC based Valley Following approach for tree crown delineation has been proven to be effective over a 
range of image types and forest conditions (Gougeon & Leckie, 2006; Leckie et al., 2003). This approach 
of tree crown delineation is based on following the valleys of shade between tree crowns  (Katoh et al., 
2009). The common phenomenon that on high resolution imagery, trees generally appear as bright objects 
surrounded by darker shaded areas is used in Valley Following approach (Gougeon, 1995). Valleys of 
shade or lower intensity areas between tree crowns are identified and remaining tree canopies are outlined 
into a crown like shapes by a rule-based system (Gougeon & Leckie, 2006; Leckie et al., 2005). The 
delineation of deciduous trees is generally not very successful, as they may not have enough shadows or 
space between tree crowns (Gougeon & Leckie, 2006). As a result of Valley Following approach, 
researchers have obtained overall accuracies of 75% to 81% (Gougeon & Leckie, 2006; Wang et al., 2004).  
 
Moreover, Region Growing approach for tree crown delineation has been adopted by many researchers 
and has succeeded in delineating tree crowns (Culvenor, 2002; Erikson & Olofsson, 2005; Ke & 
Quackenbush, 2008). Similar to Valley Following approach, Region Growing approach assumes that the 
centre of the crown is brighter than the edge of the crown (Culvenor, 2002). Thus, detecting the brightest 
point/pixel of the crown gives a chance to locate the crown centre, and growing a region from the crown 
centre based on illumination image helps to delineate tree crowns (Ke & Quackenbush, 2008). Culvenor 
(2002) and Ke & Quackenbush (2008) have applied Region Growing approach from local maxima and 
resulted in up to 77% of agreement between segmented tree crowns and digitized tree crowns. 
Furthermore, Erikson and Olofsson (2005) compared applicability of different tree crown delineation 
methods such as template matching (Olofsson et al., 2006), two Region Growing algorithms based on 
fuzzy rules (Brandtberg, 2002) and Brownian motion. Overall accuracy of around 80% for all three 
approaches was obtained as a result (Erikson & Olofsson, 2005).  
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Providing different image segmentation algorithms and advanced image object algorithms, eCognition 
attracts research interests on delineating individual tree crown and classifying tree species. One of the 
most widely used image segmentation methods for tree crown delineation is multi-resolution segmentation 
embedded within the commercial software eCognition. This segmentation is based on Region Growing 
approach starting at the level of pixel and neighbouring pixels having similar spectral values are grouped 
into the same objects (Platt & Schoennagel, 2009). Unlike, the Region Growing from local maxima (tree 
top), multi-resolution segmentation uses a user specified parameters such as the scale parameter, from 
which size and shape of resulting object is determined (Hay, et al., 2005; Kim, et al., 2009). Several studies 
have been done to optimize the scale parameter for individual tree crown delineation such as Kim et al. 
(2009) using spatial autocorrelation and Ke et al. (2010) calibrating the scale parameter. Moreover, Collie et 
al. (2008) presented automatic stand delineation method integrating wavelet analysis into the image 
segmentation process and proved that this method is better than traditional segmentation. Image 
segmentation based on eCognition can result in promising outcomes. For example, Ke et al. (2010) 
classified tree species based on multi-resolution segmentation using Quickbird and LiDAR imageries and 
resulted in 0.84 and 0.92 kappa accuracy respectively. Similarly, Tiede (2008) segmented individual tree 
crown area and succeeded 86% accurate classification for coniferous forest.  

1.4. Problem Statement 
 

Individual tree crown delineation using high resolution image is being studied by many researchers 
(Brandtberg & Walter, 1998; Chubey, et al., 2006; Erikson, 2004; Erikson & Olofsson, 2005; Gougeon, 
1995; Leckie, et al., 2003). Crown delineation process has been using different approaches such as ITC 
based Valley Following (Gougeon, 1995), Region Growing (Ke & Quackenbush, 2008), Watershed 
transformation (Wang, et al., 2004)), Multi-resolution segmentation (Kim, et al., 2009), Wavelet 
segmentation (Coillie, et al., 2008) and Multi-scale object specific segmentation (Hay, et al., 2005). 
However, studies to compare these approaches, which could provide information of better tree crown 
delineation, have been few.  
 
There are few studies about CPA and DBH/biomass relationship (Hirata, et al., 2009; Shimano, 1997) and 
estimating biomass and carbon stock with this relationship using CPA from remotely sensed imagery 
(Gonzalez, et al., 2010; Leboeuf, et al., 2007). Thus, this research is devoted to address these issues.  

1.5. Research objectives 
 

The main objective of this research is to model aboveground carbon stock of upper-subtropical forests 
using VHR satellite images (Geo-Eye) and OBIA. 
 
The specific objectives: 

 To delineate individual tree crowns using ITC based Valley Following approach and eCognition 
based Region Growing approach and compare the two approaches.  

 To classify tree species and forest type at a tree crown level using OBIA. 
 To determine the relationship between CPA and carbon stock of trees of different species 
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1.6. Research Questions and Hypothesis 

 
Objectives Research Questions Research Hypothesis 

1. 

 

 

 

1. What are the accuracies of tree crown 

delineation of ITC based approach Valley 
Following and eCognition based Region 
Growing approach?  

2. Which tree crown delineation approach, 
Valley Following or Region Growing, is 
better? 

H1: There is significant difference between accuracies 

of Valley Following approach and Region Growing 
approach on delineating tree crown. 

2. 
3. What are the accuracies of tree species 
and forest type classification? 

H1: Accuracies of tree species and forest type 

classification are more than 80 %.  

3. 
4. How strong is the relationship 

between the CPA and carbon stock of tree 
species? 

H1: There is a strong significant relationship between 

CPA and carbon stock of tree species. 

1.7. Thesis outline 

In Chapter 1, the conceptual framework for use of VHR satellite image and OBIA for carbon stock 
modelling has been introduced along with a background of application of remote sensing for biomass and 
carbon stock estimation. Thereafter, the research problem and research interest of this thesis have been 
described.  
 
Chapter 2 will go on to briefly describe the relevant topographic, climate and vegetation characteristics of 
the study area.  
 
Methods used in this research to answer research questions and achieve the research objectives are 
described briefly in Chapter 3. The chapter also provides information about data and materials used in this 
research.  
 
Chapter 4 consists of the results of tree crown delineation approaches and its quantitative comparisons, 
outcomes of species classification and regression modelling.  
 
The results are discussed in Chapter 5 and conclusions from the discussion linked to research objective 
and questions are drawn in Chapter 6. 
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2. DESCRIPTION OF THE STUDY AREA 

2.1. Geographic location  

The study area is situated in Charnawati watershed, located in Dolakha district of the Central 
Development Region, Nepal (Figure1) which is 1 of the 20 mountain districts of Nepal. It lies between 
85°55′ E to 86°05′ E longitudes and 27°35′ N to 27°45′ N latitudes. The altitude ranges from 800-3500 m 
and the forest types span from upper tropical to sub alpine lower. This is a unique watershed having 
community forest user groups (CFUGs) practicing Forest Stewardship Council (FSC) Certification 
processes. There are 58 CFUGs within the Charnawati Watershed. The area of REDD project, which is 
one the main supporter of this research, is 14016 hectares out of which 5726.35 ha is forest area, 7033.37 
ha is cultivation and the rest is barren land, bushes and grasslands (ANSAB, 2009).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Due to the large size of Geo-Eye high resolution image of Charnawati watershed, eCognition software 
faced difficulty to process the whole image. Thus, a subset area of Charnawati watershed was selected for 
this research. The subset area is located in central eastern part of Charnawati watershed having an area of 
342,9 ha consisting of 11 CFUGs areas (Figure 2).  The ortho-rectified image had abnormal distorted areas 
in some parts and they were digitized and masked out from the subset study area.   
 
 
 
 

Figure 1. Location map of the Charnawati Watershed, Dolakha, Nepal 
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2.2. Topography 

More than 61% of the Dolakha district’s total area consists of land with a slope of higher than 30% 
(Shrestha & Dhillion, 2003).  In the subset study area of Charnawati watershed, elevation ranges from 
1200m to 2000m and up to more than 500 steep slopes can be found (Figure 3). In the south-western side, 
it connects to river valleys. Moreover, south, south-west, west, north-west, and northern aspects are the 
most dominant aspects in this area (Figure 4).  
  

Figure 3. Elevation and slope map of the subset study area in Charnawati watershed 

 
 
 
 
 
 

Figure 2.The subset area of Charnawati watershed
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Figure 4. Aspect map of the subset study area in Charnawati watershed 

 

2.3. Climate 

Dolakha district is ranged from sub-tropical to alpine climate. Average rainfall of the district is 2044 mm 
and the maximum temperature recorded in the district is 35 °C and the minimum is 8°C (Shrestha & 
Dhillion, 2003). The monsoon season ranges from June to September, and it accounts for about 80% of 
the total annual rainfall (Shrestha & Dhillion, 2003). 50 year average (1950-2000) monthly air temperature 
and monthly precipitation of Charikot, Dolakha are shown Figure 5 (Hijmans et al., 2005).  
 
 

 
Figure 5. Monthly mean air temperature and monthly precipitation of Charikot, Dolakha, Nepal 
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2.4. Vegetation cover 

Vegetation ranges from hardwood forests in the low land through coniferous and mixed broad-leaved 
forests at the mid to upper elevations and high altitude coniferous forest to alpine conditions above the 
tree line, which lies at about 4000 m (ANSAB, 2009). For needle leaved forests, Pinus roxburghii, Pinus 
wallichiana and Pinus patula are the most common species, while; Alnus nepalensis, Schima wallichiana, and 
Quercus semecarpifolia are the dominant species in broad leaved forests. Moreover, Rodhodendron families 
having slow growth rate such as R. arboretum, R campanulatum, and Lyonia ovalifolia are common in upper 
temperate regions (Shrestha & Dhillion, 2003). 
 
In the subset study area of Charnawati watershed, upper-subtropical forest is dominant. Pinus roxburghii, 
Alnus nepalensis, and Schima wallichiana are the most common species and they occur in 1000-2000 m 
elevation (Bajracharya, 2010; Mohns, 1988).  
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3. DESCRIPTION OF METHOD AND DATA USED 

3.1. Material description 

3.1.1.  Data set 

Geo-Eye1 data 

Geo-Eye1 satellite was launched by Geo Eye on 6th September 2008 in the U.S. Geo-Eye1 has the highest 
resolution of any commercial imaging system and can collect images with a ground resolution of 0.41 
meters in the panchromatic and it collects MSS at 1.65 meter resolution. However, the satellite collects 
imagery at 0.41 meters, Geo-Eye's operating license from the U.S. Government requires re-sampling the 
imagery to 0.5 meter for all customers who are not explicitly granted a waiver by the U.S. Government. 
 
In this research, Geo-Eye1 imagery that has an acquisition date of 2nd November 2009 was used and the 
image specifications are shown in Table 1. Ortho-rectification was done by ICIMOD project in Nepal.   
 

Table 1. Satellite image characteristics 

Sensor name Geo-Eye1 

Spatial resolution Panchromatic : 0.5 m 
Multispectral:   2 m 

Dynamic range 11 bits

Band Wavelength (µm)  Blue   0,45- 0,51      
Green  0,51- 0,58      

Red     0,655 - 0,69      
NIR     0,78 - 0,92     

PAN    0,45 -0,8  

Orbit height  684 kilo meters

Orbit type Sun-synchronous 

Swath width 15.2 km

Processing Level Geometrically and Radiometrical 

correction 

Projection 

       

Universal Transverse Mercator  UTM  

Specific Parameters Hemisphere: N 
 Zone Number: 45 

Datum WGS84 

Nominal collection azimuth 315.3 degree

Nominal collection elevation 64.6 degree

Sun angle azimuth 163,5  degree 

Sun angle elevation 46.0 degree

Acquisition time 05:12 GMT;  10:57 Katmandu 
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Other reference dataset 

 

 Other reference data provided by ICIMOD were used in this research, including: 

 Topographic Maps at 1:25000 scale (Source: Survey Department of Government of Nepal, 2786-
05A, 2786-05C, 2785-08B and 2785-08D) 

 Digital Elevation Model (DEM) 20 m resolution (generated from contour lines of topographic 
maps ) 

 Dolakha geo-database, which consists of land cover, CFUG areas, road, rivers, village centres etc. 
(digitized from topographical maps with 1:25000 scale) 
 

3.1.2. Other materials 

 
In addition to the dataset, other materials were used including: 

 Instruments used in the field work (Table 2) 
 Software required for data analysis and thesis writing (Table 3).  

 
Table 2. List of instruments used for field work 

Instruments Purpose of usage

iPAQ and GPS Navigation 

Suunto compass Orientation 

Diameter tape 5 meters Diameter measurement 

Measuring tape 30 meters Length measurement

Spherical densiometer Crown cover measurement 

Slope meter Slope measurement 

Haga altimeter Tree height measurement

Fieldwork datasheet Field data record

 
Table 3. List of software used in this reserach 

Software Purpose of usage 

ArcGIS 10 GIS analysing

Erdas Imagine 10 

ENVI 4.7.2. 

Image processing 

 

eCognition 8 Tree crown delineation and classification 

ITC, PCI-Geomatica 

R software Statistical analysis 

SPSS 

Adobe Acrobat Professional Thesis writing and editing 

Microsoft Office 

End note 
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3.2. Methods 

MSS and panchromatic image of Geo-Eye were fused to create pan-sharpened MSS image and this pan-
sharpened image was smoothed by applying median filters to remove the noise of high resolution image. 
Individual tree crown delineation was done based on two approaches namely Region Growing using 
eCognition software and Valley Following using ITC suite in PCI-Geomatica. Using delineated tree 
crowns as objects, tree species classification was conducted based on the spectral information of pan-
sharpened MSS image. Area of delineated tree crowns was calculated and used as an explanatory variable 
to predict the amount of carbon stock per tree. The method to carry out this research is described in the 
flowchart of Figure 6. Detailed explanation is described in the following subsections.   
 

 
Figure 6. Flowchart of research method 
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3.2.1. Image fusion 

Image fusion is a technique to enhance MSS images with high radiometric resolution geometrically by 
merging it with a panchromatic image (Neteler & Mitasova, 2008). Several image fusion methods like 
Intensity, Hue and Saturation (IHS), principal components (PC), and watershed transformations are 
commonly used for image processing.  
 
The IHS fusion method can effectively separate RGB (red, green, blue) image into spatial (I) and spectral 
(H, S) information. Intensity (I) refers to the total colour brightness. Hue (H) refers to the dominant or 
average wavelength contributing to a colour and saturation (S) refers to the purity of a colour relative to 
grey (Junli et al., 2005). The general idea of IHS fusion is to replace the intensity channel with a high 
resolution panchromatic image for the back-transformation from the IHS to RGB colour model (Neteler 
& Mitasova, 2008). As a result, the spectral information in lower resolution is merged with the high spatial 
resolution of the panchromatic image.  
 
The principle of PC fusion is similar to that of IHS method since PC1 of MSS image is replaced by 
panchromatic data before the image is transformed back to the original image space (Pande et al., 2009). 
The main advantage of this fusion is that more than three bands can be used for image analysis after the 
fusion process. Similarly, High Pass Filtering (HPF) based resolution-merge algorithm merges different 
resolution images and creates a fine spatial and spectral resolution image containing 3 or more bands. HPF 
resolution-merge algorithm introduces HPF to high spatial resolution image in order to get high frequency 
information that is mostly related to spatial information (Chavez et al., 1991). Then, HPF results are added, 
pixel by pixel, to lower spatial resolution and higher spectral resolution data set. This allows us not to 
distort the spectral balance of MSS image and gives very close spectral information to that of original MSS 
image (Ahmad & Singh, 2002). This HPF resolution-merge algorithm has been proven to be useful in a 
spectral analysis, specially spectral classifications (Ahmad & Singh, 2002).  
 
HPF resolution-merge fusion process was carried out using Geo-Eye MSS image (2 m spatial resolution) 
and Geo-Eye panchromatic image (0.5m spatial resolution). As a result, a MSS pan-sharpened image that 
has 0.5 meter resolution was created for further image analysis.   

3.2.2. Low pass (median) filter 

 

Image processing technique called filtering is used to enhance images. Filtering techniques can be divided 
into two main types such as low pass filters and high pass filters (Clark & Rilee, 2010). Low pass filters are 
used to remove small random spatial variations, typically noise, through averaging or smoothing process 
(Neteler & Mitasova, 2004). Noise will be removed, but some high frequency signal as well. On the other 
hand, a series of high pass filters with carefully selected thresholds can be used to detect edges or shapes 
on the image (Clark & Rilee, 2010). 
 
Prior to segmentation, a median filter is applied to avoid over-segmentation (Platt & Schoennagel, 2009).  
A median filter is used since it produces more homogeneous image segments and may reduce the amount 
of convolutions in the final segmented polygons as a consequence of the VHR images (Mora, et al., 2010). 
Depending on homogeneity of the images, researchers have used different window sized median filters for 
individual tree crown delineation, but window size of 3-by-3, 5-by-5, and 7-by-7 are the most commonly 
used (Erikson & Olofsson, 2005; Gougeon & Leckie, 2006; Mora, et al., 2010; Platt & Schoennagel, 2009). 
In this study, 3-by-3 and 5-by-5 median filters were used.  
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3.2.3. Tree crown delineation 

 

OBIA takes groups of pixels or “objects” instead of individual pixels as the unit of classification (Chubey, 
et al., 2006). Each object is composed of spatially adjacent pixels based on homogeneity criteria (Ke, et al., 
2010). Image segmentation procedures are used to generate image objects by partitioning an image into 
non intersecting regions (Blaschke, 2010). Similarly, for the delineation of individual tree crowns, OBIA is 
used to create objects that roughly approximated the size and shape of the individual tree crown area 
(Kim, et al., 2009).  

Tree crown delineation using Region Growing approach in eCognition 

eCognition provides several different approaches of segmentation, ranging from very simple algorithms, 
such as chessboard and quad-tree segmentation, to highly sophisticated methods such as multi-resolution 
segmentation and contrast filter segmentation (Definiens 2009). Moreover, this software provides 
advanced image classification algorithms such as finding local maxima and minima, and advanced object 
reshaping algorithms namely ‘grow region’ and ‘morphology’ etc. (Definiens 2009). These algorithms also 
can be applied to tree crown delineation.   
 
One of the most commonly used image segmentation methods is the multi-resolution. This is a bottom-
up region growing algorithm, which starts with one pixel objects and subsequently merges pairs of 
adjacent objects into larger objects based on the smallest growth of heterogeneity, which is defined 
through both spectral variance and geometry of the object (Definiens 2009). Region growing also can be 
done using specified seed points using rule based algorithms in eCognition.  
 
Starting at potential seed pixels, neighbouring pixels are examined sequentially and added to the growing 
region if they are sufficiently similar to the seed pixels (Ke & Quackenbush, 2008). In the studies of tree 
crown delineation, local maxima are used to provide position of each seed. In VHR illumination images, it 
is assumed that the centre of a crown is brighter than the edge of the crown (Culvenor, 2002; Ke & 
Quackenbush, 2008). At the scale of individual tree crowns, crown peaks correspond brighter in the image 
because of higher level solar illumination (Culvenor, 2002). Moreover, a radiometric tree crown profile 
derived from remotely sensed imagery may be considered similar in shape to the geometrical profile of it, 
thus high resolution remote sensing image provides a useful clue for automatic tree top detection.  
 
The three dimensional analogy is useful for describing this principle in tree crown delineation process. The 
spatial information in the image is represented in x and y dimension, while brightness value of the image is 
shown in vertical (z) axis, which results in a radiometric topography of individual tree (Figure 7) 
(Culvenor, 2002). Local maxima in an illumination image are assumed as tree tops and can be seen as the 
pick of a mountain in radiometric topography of individual trees. On the other hands, local minima are 
assumed to be shadow or space between tree crowns, thus seems as valleys in radiometric topography.  
 
In Region Growing approach, local radiometric maxima are used as seeds for growing and local minima 
are used as a restriction for growing region (Culvenor, 2002).  
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Figure 7. Radiometric 'topography' of subset of VHR imagery (Culvenor, 2002) 

Tree crown delineation using Region Growing approach in eCognition was based on panchromatic image. 
To increase the processing time of eCognition, large shadow areas were masked in Erdas Imagine and 
imported to eCognition. Areas that have less than 460 DN values were masked out.  
Tree crown delineation using eCognition has been done with following three main steps:  

a. Delineation of valleys between trees using local minima and growing from it 
b. Delineation of tree crowns based on tree top detection using local maxima and growing from it 
c. Refining the shape of tree crowns. 

 

a. Delineation of valleys between trees using local minima and growing from it 

The purpose of delineating valleys is to prevent the region growing of tree crowns to be too big, especially 
in dense forest areas. To find the valleys (shadow) between trees, chessboard segmentation was used to 
create identical sized objects and 2X2 pixel sized objects found to be appropriate based on processing 
capability of eCognition. Using these objects, local minima with search range of 3 objects (6 pixels) was 
calculated. Moreover, Conditional Quad Tree segmentation (eCognition Community, 2008) was applied to 
the objects neighbouring to local minima to create objects of one pixel size. Local minima seeds (objects) 
were grown with respect to neighbouring objects that have the least mean difference to the darker objects 
in panchromatic image. Darker objects, here, are assumed to be local minima. Thus, objects that have the 
least difference to local minima were merged and grown to delineate valleys between trees. False valleys 
were found in dense forest areas and they were classified as trees. Steps related to delineating shadow areas 
between tree crowns and its corresponding rule-set are shown in Figure 8.  

Chess board 
segmentation

Find local minima

Grow from local 
minima

Delete false shadow 
area

.  
Figure 8. Steps related to delineating valleys (shadow areas) and its corresponding rule-set  
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b. Delineation of tree crowns based on tree top detection using local maxima and growing 
from it 

Image objects except valleys between trees were segmented again using Chessboard segmentation to 
create identical sized (2 by 2 pixels) objects since false valleys from valley delineation were merged with 
tree objects. Afterwards, local maxima (tree tops) were detected with search range of 5 objects (to detect 
smaller tree crown recorded in the field). Conditional Quad Tree segmentation (eCognition Community, 
2008) was also applied to the neighbouring objects of local maxima to create objects of one pixel size. 
Neighbouring objects to tree top were examined in terms of their similarities using parameter of mean 
difference to brighter neighbours and added to the growing region if they are sufficiently similar to the 
seed object. To remove false local maxima (tree top), grown tree tops which neighbours to one another 
were merged in first two steps of region growing. Region growing from tree tops was continued until 
significant boundaries of tree crowns found. Growing region was stopped based on visual examination. 
Figure 9 shows the steps of tree crown delineation and its corresponding rule-set.  

 
Figure 9. Tree crown delineation steps and it’s corresponding rule-set 

c. Refining the shape of tree crowns 
 

After growing regions from tree tops, the shape of the tree crown was smoothed using ‘morphology’ 
algorithm. Moreover, tree crowns that cover a smaller area than 6 pixels were identified as non-tree to 
remove noise from crown delineation. In addition, some temporary classes except tree crowns were 
merged to shadow class. Steps followed to refine the shape of tree crowns are presented in Figure 10.  

  

Figure 10. Steps followed to refine the shape of tree crowns and its corresponding 
rule-set. 
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Tree crown delineation using ITC based Valley Following approach 

 
ITC software uses “Valley Following” approach, which is based on a premise that there are high intensity 
values on tree crowns and low intensity shaded pixels between crowns, thus forming peaks of brightness 
and valleys of lower intensity on the imagery (Leckie, et al., 2005). This algorithm was originally developed 
by Gougeon (1995) for automated delineation of trees in a mature coniferous forest stand in Canada.  
 
This approach first finds local minima in an illumination image and follows all possible valleys of shade in 
the image pixel-by-pixel until the valley ends or reaches a specified maximum illumination value (Gougeon 
& Leckie, 2006). This results in a preliminary separation of potential tree crowns. In Valley Following 
process several parameters should be specified by the user.  

 Lower threshold: to eliminate small areas of shade 
 Upper threshold: to limit valley progression into high radiance values for preventing crowns from 

being over-broken  
 A valley noise to compensate for radiometric noise.  

 

The Valley Following process is followed by a rule-based crown delineation process, which follows the 
crown boundaries favouring clockwise motions trying to close the loop to end at the starting pixel (Katoh, 
et al., 2009). Higher-level rules identify small indentations in the potential crown boundary and permit the 
boundary to jump across the indentation if there are other valley pixels within a specified direction and 
distance (jump factor) from the indentation (Leckie, et al., 2005). As a result, individual objects 
representing possible tree crowns are outlined. These are referred to as isols (Gougeon, 1995). Prior to the 
process of individual tree crown delineation, masking out non forest areas is advised (Figure 11).  
 

 
Figure 11. Processes related to individual tree crown delineation using Valley Following approach 

In this research, non-forest areas were masked using pan sharpened MSS image in ITC suite. Valleys 
between tree crowns were delineated using smoothed pan-chromatic image with kernel size of 5 by 5 
pixels and default lower threshold 358, upper threshold 774, valley noise 2. Different combinations of 
these parameters were checked but did not make a significant improvement on delineated valleys. 
Moreover, “mature” tree jump factor option was used for isolating tree crowns, since it works better for 
big tree crowns.  
 
Basic concepts of these two tree crown delineation approaches are shown in Figure 12. Both the 
approaches are based on the same concept of radiometric topography of trees in VHR image (Figure 7.) 
Difference of these two approaches is that Region Growing uses local maxima and local minima, while 
Valley Following approach uses local minima for tree crown delineation.   
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Figure 12. Basic concepts of two crown delineation approaches (adapted from Culvenor, 2002) 

3.2.4. Validation of tree crown delineation 

Validation of tree crown delineation used accuracy measures of checking the quality of segmentation 
which are commonly used for OBIA.  
The quality of segmentation is related to quality of data (noise, spatial and spectral resolution) and the 
optimal customization of parameter settings, which enables the adaptation of segmentation results on 
target objects (Möller et al., 2007). Validation of segmentation can be interpreted as ‘an issue of matching 
objects’ (Zhan et al., 2005) where at least two hierarchical object-levels have to be considered in terms of 
their topological and geometrical relationships (Möller, et al., 2007). Topological relationships of interests 
are ‘containment’ and ‘overlap’, whereas; geometric relationships can be determined by the comparison of 
object positions.  
 
For segmentation validation, both relationships are considered. Especially: 

 Relative area of intersection between segmented objects and reference objects (Möller, et al., 2007) 
 Distance between the centroids (Ke, et al., 2010) 
 1:1 spatial correspondence  (Gougeon & Leckie, 2006; Z Li et al., 2009) 
 Total number of pixel that segmented correctly (Coillie, et al., 2008; Wang, et al., 2004) are 

commonly used for validation of segmentation of tree crowns.  
 

Clinton et al. (2010) summarized different segmentation accuracy measures by many researchers and 
modified relative area metrics by Möller et al. (2007). Over segmentation and under segmentation as 
defined by Clinton et al. (2010)  are described as follows (Equation 1 and 2): 
 

݊݅ݐܽݐ݊݁݉݃݁ݏ	ݎ݁ݒܱ ൌ 1 െ
ሺ௫∩௬ೕሻ

ሺ௫ሻ
                  …1 

݊݅ݐܽݐ݊݁݉݃݁ݏ	ݎܷ݁݀݊ ൌ 1 െ
ሺ௫∩௬ೕሻ

ሺ௬ೕሻ
                ….2 

 
Where ݔ is reference objects and ݕ is corresponding segmented objects. 
 

The value range of over segmentation and under segmentation is between 0 and 1, where over 
segmentation is equal to 0 and under segmentation is equal to 0 define a perfect segmentation, meaning 
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the segments match the reference objects perfectly. Combination of over segmentation and under 
segmentation, D is interpreted as the ‘closeness’ measure to an ideal segmentation result, in relation to a 
predefined reference set (Clinton, et al., 2010)(see Equation 3).  
 

ܦ ൌ ට௩	௦௧మା	௨ௗ	௦௧మ

ଶ
              ….3 

 

Value of D ranges from 0 and 1 and D equals to 0 implies a perfect segmentation.  
 
For the purpose of detecting better tree crown delineation in this case, relative area measures modified by 
Clinton et al. (2010) and 1:1 spatial correspondence were selected for measure of accuracy. These accuracy 
measures were calculated for delineated tree crowns of each CFUGs. For 1:1 spatial correspondence 
accuracy measure, overall accuracy was calculated by comparing the number of 1:1 corresponding tree 
crowns of the reference and delineated tree crowns and total number of reference tree crowns.  
 
Moreover, reference objects were manually delineated on the image as adapted in many tree crown 
delineation studies (Erikson & Olofsson, 2005; Gougeon & Leckie, 2006; Leckie, et al., 2005; Wang, et al., 
2004). Manual delineation of tree crowns was done using Geo-Eye panchromatic image and MSS image 
with the same scale of 1:250 and crown width information for some trees.  
 
To check the significant difference between the performance of Region Growing and Valley Following 
approaches, t-test was applied to the overall accuracies of tree crown delineation of these two approaches 
for each CFUGs.  
 

3.2.5. Object based image classification 

 
Classification consists in labelling the various components visible in an image (Martin et al., 2006). 
According to the operators involved into the classification process, classification can be separated into 
unsupervised classification and supervised classification; according to classification element, it can be 
divided into pixel based and object based classification. 
 
Pixel based classification assigns every individual pixel to a class based on reflectance variations across the 
spectral bands, or spectral signatures (Morales, et al., 2008). Pixels with similar spectral reflectance are 
assigned to the same class. On the other hand, object based classification method uses not only spectral 
information, also, co-occurrence measures of texture (mean, variance, contrast, homogeneity and 
dissimilarity), spatial, contextual and semantic information can be used in the classification (Definiens 
2009). Contextual and semantic information, for instance, spatial relationship between two objects, can be 
applied during the classification.  
 
In object based classification, each class can be described by fuzzy rules, which base either on one-
dimensional membership functions or on a nearest neighbour classifier. Both are supervised classification 
methods. While the first can be edited directly and enable the user to formulate knowledge about the 
image content, the latter needs appropriate sample objects to determine the desired class’ properties. 
Samples can be selected manually (click and classify) or based on training area masks (Definiens, 2004).  
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Rule based classification 

Each class of a classification scheme contains a class description, a set of fuzzy expressions allowing the 
evaluation of specific features and their logical operation. A fuzzy rule can have one condition or can 
contain a combination of some conditions, which have to be fulfilled for an object to be assigned to a 
class (Jacquin et al., 2008). In eCognition the conditions are defined by expressions, which are inserted into 
the class descriptions. Expressions can be membership functions, similarities to classes or a nearest 
neighbour (Definiens, 2004).  
 

Nearest neighbour classification 

The nearest neighbour classification is applied to selected object features and is trained by samples. In 
comparison to pixel based training, the object based approach of the nearest neighbour requires fewer 
training samples. Samples are image objects which are the result of the segmentation process. After a 
representative set of sample objects has been declared for each class, the algorithm looks for the closest 
sample object in the feature space for each image object (Figure 13). If an image object's closest sample 
object belongs to Class A, the object will be assigned to Class A (Definiens, 2004). 
 
 

 
 

 

 

 

Figure 13. Nearest neighbour classification (Definiens, 2004) 

Nearest neighbour classification was applied for species classification. Tree species, dominant in field 
collection data, were classified based on the segmented tree crowns having the highest accuracy and MSS 
image. Dominant species that are Pinus roxburghii, Alnus nepalensis and Schima wallichiana and other species 
were classified for the purpose of obtaining individual tree information. 70 % of the field sample data was 
used for training classification and the rest is used for validating the classification result. Classification was 
also done for forest type as broadleaf and needle leaf species.  
 
To overcome the effect of shadow, shaded part was defined using aspect image from DEM and used for 
classification as one of the image layers. Based on the visualization of MSS image, north, north-west, west, 
and north-eastern aspects were classified as shadow affected area and the rest was classified as non-
shadow area. Each class was classified both in the shadow affected area and non-shadow area and recoded 
into one class after classification.  
 
Mean and maximum layer value of each MSS bands, panchromatic image, and aspect map for each object 
(delineated crown) were selected for feature space of nearest neighbour classification. Feature space of 
maximum layer value of an object was selected since it can represent the brighter sunlit pixel of a tree 
crown. This increases the separation of different classes, since mean layer value of a tree crown 
incorporates different proportions of the shaded side of a crown (Gougeon & Leckie, 2006; Leckie, et al., 
2005).  
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3.2.6. Field work 

 
The purpose of fieldwork was to measure the AGB and identify trees that are recognizable in the image 
from the study area. This data was later used as the ground truth data for individual tree crown 
delineation, species classification, and validation of modelling the relationship of CPA and carbon stock of 
trees as well. Since some forest stand parameters such as volume and biomass are impossible to be 
measured directly in the field, relationships between directly measurable stand parameters (e.g. DBH, 
height) and biomass has to be established (Husch et al., 2003). Thus, forest stand parameters, such as DBH 
and height were measured from the field and used for biomass estimation by applying allometric 
equations.  
 

Pre-field work 

Before collecting data from the field, reference data were prepared based on secondary data collection 
provided by ICIMOD project, Nepal. The stratified random sampling approach was applied to design the 
sampling for the fieldwork. Stratified random sampling helps to ensure that the sample is spread out over 
the whole study area (Thompson, 2002) and also aims at dividing a population into a number of parts 
which are homogeneous causing less sampling error and coefficient of variation (Cochran, 1977; Köhl et 
al., 2006). Secondary data of local community forestry areas was used to facilitate the stratification. In total 
116 sampling plot data were intended to be obtained from 58 stratums (CFUGs in Charnawati watershed 
area) by taking two samples in each (least number of sample unit in each strata (Cochran, 1977) in field 
work). Considering the difficulties of sample data collecting in a mountainous area, 50 sampling plots that 
have been collected by ICIMOD project in Nepal in July 2010 were added to the total ground truth data 
and the rest had to be collected during field work.  
 

Moreover, a routine and navigation facilities (Ipaq and GPS), measuring tools for forest stand parameters 
were prepared for the field trip. For the identification of the recognizable trees on the map in the field, 
Geo-Eye enlarged maps of every plot with its surrounding areas were also printed before fieldwork.  
 

Field data collection  

Circular shape of plots having the smallest periphery in relation to the area and consequently, the lowest 
number of borderline trees was employed in the field. Plot size was 0.5 ha. Radius of the plots was 
depended on the slope of the plot. In the field, each tree having DBH larger than 10 cm was measured in 
each plot and information of other biophysical parameter such as the tree height and crown cover were 
collected. Moreover, 10 or more trees in each plot, that were recognizable in the Geo-Eye satellite image, 
were recorded. Recording sheet used in the field is shown in Appendix 2.  
75 plots were intended to be collected during the fieldwork phase. However, due to time and budget 
limitations, and also the accessibility of the plots, 64 plot data were collected during the fieldwork.  
 

Fieldwork data analysis 

Species wise allometric equations were not available for the tree species in the study area, thus, for Pinus 
roxburghii allometric equations developed by Chaturvedi (1982) in Central Himalayan chir pine forest in 
Nainital, Uttarakhand, India (29° 24' N lat and 79° 28' E long) and for other species general allometric 
equation developed by Chave (2005) for tropical moist forest were used to calculate AGB (see equation 4 
and 5).  
Allometric equation for calculating biomass using DBH for Pinus roxburghii is shown below.  

 

Ln W= a+b Ln CBH                ….4 
 

Where W: aboveground tree biomass [kg] 
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CBH: measured tree circumference at breast height [cm] (equals to DBH*π) 
a and b (Table4 ) are parameters, specific to each different parts of tree (Pinus roxburghii).  

 
Table 4. Allometric relationship between the biomass of tree components and circumference to breast 

height [cm] (Chaturvedi & Singh, 1982) 

Biomass (kg per 
tree) a b S y x r2 

Correction 
factor 

Bole -6.418 2.598 0.064 0.985 0.0067 
First order branch -9.833 2.978 0.089 0.979 0.0129 
Other branch -9.338 2.63 0.105 0.963 0.018 
Foliage -6.111 1.872 0.086 0.952 0.012 
 All equations are significant at P > 0001. n = 26. 

 

Biomass allometric equation for other species is shown below.  
AGTB = 0.0509 * pD2 H            …5 

Where, 
AGTB = aboveground tree biomass [kg] 
p = wood specific gravity [kgm-3] 
D= tree diameter at breast height (DBH) [cm] and 
H = tree height [m]. 
Wood specific gravity equals to 0.594 for mixed hardwood forests in Charnawati watershed, Dolakha, 
Nepal (ICIMOD et al., 2010).  
Furthermore, carbon stock of tree was calculated from AGB using 0.47 conversion coefficient (IPCC, 
2006).   

3.2.7. Regression analysis 

 

The objective of regression analysis is to quantify the relationship between response variable and one or 
more explanatory variables. Quantitative relationship is expressed by an equation and its graphic 
representation (Husch, et al., 2003). Coefficient of determination, the square value of the correlation 
coefficients (R2) shows the percentage of variation in one variable that is associated with other variables 
which can be explained by the given equation.  
 
Regression analysis is commonly used for biomass estimation studies (Lu, 2006). After calculating 
aboveground carbon stock using DBH information and allometric equations, relationship of aboveground 
carbon stock and CPA was analysed using regression analysis. Regression analysis was employed using the 
data of aboveground carbon stock as response variables and CPA as an explanatory variable.  
 
Tree crowns that have 1:1 spatial correspondence with reference and delineated tree crowns having less 
error in terms of the relative area (less than 10 m2) and correctly classified were used for modelling. The 
significance and the strength of this relationship was determined using evaluation dataset, which was 30 % 
of field dataset.  
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4. RESULTS 

4.1. Descriptive analysis of field data  

In total, forest stand parameter data of 4450 trees was collected from 114 plots in the Charikot watershed, 
Dolakha, Nepal. Out of these trees, 1240 trees were located on the image and digitized to the geo-
information system. A total of 64 species were recorded (Appendix 3), 10 of which were the most 
common being 83% of the total trees in the field data (Figure 14).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Frequency of the main species in the Charnawati watershed 

Among these common species Pinus roxburghii, Pinus patula and Alnus nepalensis have the largest frequency 
(677, 504 and 481 respectively). DBH and height of the main species were analysed and presented by box-
plot shown in Figure 15 for each species.  

  

Figure 15. Box plots of DBH and height of the main species  

(AN-Alnus nepalensis, LO-Lyonia ovalifolia, PP-Pinus patula, PR-Pinus roxburghii, PW- Pinus wallichiana, QS-Quercus 
semicarpifolia, RA- Rhododendron arboretum, RC- Rhododendron campanulatum, SP- Symplocos pyrifolia, SW- Schima Wallichiana) 

On average, Pinus patula had the largest DBH and was the tallest followed by Pinus roxburghii and Alnus 
nepalensis. Moreover, these species have the highest variability in terms of DBH and height as well. On the 
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other hand, Rhododendron family species such as R.aboretum, R, camanulatum and Lyonia ovalifolia had the least 
DBH and were the shortest in height. In particularly, heights of these species were not more than 6 m in 
average and also the variation of the height was less compared to DBH.  
 
As mentioned in Chapter 3, the main analysis was done in central eastern part of Charnawati watershed 
due to the limitations of eCognition software. 21 plot data having measurement data of 601 trees and 209 
trees identified on image were available from the field data in subset area of Charnawati watershed.  
Subset area of Charnawati watershed covered 11 CFUGs and 9 species were recorded in this area. The 
most common species identified on image were Pinus roxburghii, Alnus Nepalensis, Schima Wallichiana, and 
Engelhardicta spicata (Figure 16).  
 
 
 
 
 
 
 
 

Figure 16. Frequency of main species identified on image in subset area of Charnawati watershed 

The most frequent species in this area were Pinus roxburghii and Alnus nepalensis being 78% of total trees. 
Whereas, Euriya cerasifolia, Gravelia robusta, Myrsine semiserrata, Berberis asiatica and Sapium insigne had the least 
frequency having only 1-2 records.  Figure17 presents the percentage of the main tree species identified in 
the image in each CFUGs.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Percentage of the main tree species in each CFUGs 

Pinus roxburghii was dominant in Simpani, Kupri Salleri, Dhande, and Devithan CFUGs, while, Alnus 
nepalensis was common in Shivajan Bhumestan, Chuchhe Dhunga, Amlekharka, and Mathani. According to 
the data collected in the field, almost all the CFUGs had mixed forest except in Simpani and Kupri Salleri.  

0 20 40 60 80 100

Pinus roxburghii

Alnus Nepalensis

Schima Wallichiana

Engelhardicta spicata

0% 20% 40% 60% 80% 100%

Amlekharka
Chuchhe Dhunga
Chyase Bhagbati

Devithan
Dhande

Gahate Baghkhor
Kupri Salleri

Mahankal
Mathani

Shivajan Bhumestan
Simpani

Pinus roxburghii Alnus nepalensis Schima  wallichiana

Engelhardicta spicata others



OBJECT BASED IMAGE ANALYSYS OF GEO-EYE VHR DATA TO MODEL ABOVEGROUND CARBON STOCK IN HIMALAYAN MID-HILL FORESTS, NEPAL 
 

27 

a. DBH of trees identified on the image b. Height of trees identified on the image 

c. Carbon stock of trees identified on image d. Digitized CPA of trees identified on image 
Figure 18. Box-plots of measured parameter in subset study area  

DBH, height, carbon stock and reference CPA of the main species were analysed and shown Figure 18. 
Pinus roxburghii had largest DBH, carbon stock and CPA (38 cm, 250kg/tree, and 25 m2 respectively) and 
was the tallest (22 m) on average. Moreover, it had the biggest variability for all the parameters.  
 
On the other hand, Alnus nepalensis, Schima wallichiana, and Engelhardicta spicata were more or less similar in 
terms of DBH (20-24 cm), carbon stock (80-120 kg/tree), and reference CPA (14-19m2) in average. 
Among these broadleaf species, Alnus nepalensis had the biggest variability for all the parameters.  
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4.2. Tree crown delineation 

4.2.1. Tree crown delineation using Region Growing approach in eCognition 

 
As a result of individual tree crown delineation using Region Growing approach, delineation of individual 
tree crowns of study area was done. Figure 19 shows the result of Region Growing approach on individual 
tree crown delineation in Mathani CFUG.  
 

a. Subset of  pan-sharpened MSS image 

 

b. Delineated shadow area 

 

c. Local maxima in red  

 

d. Region grown tree crown in blue  

Figure 19. Tree crown delineation using Region Growing approach (scale 1: 3500).  

Accuracy assessment of tree crown delineation of Region Growing approach was analysed using accuracy 
measures of D and 1:1 correspondence for 209 manually delineated reference tree crowns. Figure 20 
shows accuracy measures of D of delineated crowns for each CFUGs. Overall for the whole study area, 
over segmentation was 0.28, under segmentation was 0.32, and D was 0.30. In other words, over 
segmentation error was 28 %, under segmentation error was 32 % and total delineation of tree crowns was 
70 % accurate (30 % error). For the accuracy measure of 1:1 correspondence, 75 % of the total reference 
crowns were matching to the Region Growing crown delineation with 1:1 correspondence. In 
Amlekharka, D value was the lowest (0.20), where as in Shivajan Bhumestan, D value was the highest 
(0.38). Moreover, in Chyase Bhagabate and Amlekharka, where there was the dominance of broad leaf 
forest, D value was lower. On the other hand, D value was greater in Gahate Bhagabati, and Kupri Salleri, 
where there was the dominance of needle leaf forest.  
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Figure 20. Accuracy measures of D of delineated crowns and reference crowns using Region Growing approach 

1:1 correspondence of reference tree crowns and delineated tree crowns using Region Growing approach 
is shown in Table 5. In Amlekharkha, Chyase Bhagabati, Chuchhe Dhungha, and Mathani, more than 80% 
of trees have 1:1 correspondence to the delineated and reference crowns while, 1:1 correspondence was 
the least in Gahate Bhagabati and Kupri Salleri.  
 

Table 5. 1:1 correspondence of reference and delineated crowns from Region Growing approach 

  
CFUG name Reference Delineated 1:1 correspondence 

Percentage of 1:1 
correspondence to 
reference crown 

1 Amlekharka 9 9 9 100

2 Chuchhe Dhungha 16 17 13 81

3 Chyase Bhagabati 20 20 17 85

4 Devithan 21 26 16 76

5 Dhande 33 35 24 73

6 Gahate Bhagabati 20 20 13 65

7 Kupri Salleri 21 25 11 52

8 Mahankal 19 19 15 79

9 Mathani 18 17 16 89

10 Shivajan Bhumesthan 21 18 14 67

11 Simpani 11 14 8 73

  Overall 209 220 156 75
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4.2.2. Tree crown delineation using Valley Following approach in ITC 

The result of individual tree crown delineation using Valley-Following approach in some parts of Mathani 
CFUG is shown in Figure 21.    
 

a. Subset of  pan-sharpened MSS image 

 

b. Non vegetated area masked 

 

c. Valleys between tree crowns 

 

d.  Isolated tree crowns 

Figure 21. Tree crown delineation using Valley Following approach (scale 1: 3500)  

 

Figure 22 shows accuracy measures of D of segmented crowns from Valley Following approach for each 
CFUGs. Overall for the whole study area, over segmentation was 0.41, under segmentation was 0.39, and 
D was 0.40. In other words, over segmentation error was 41%, under segmentation error was 39 % and 
overall accuracy was 60 % (40 % error). Table 6 shows the accuracy measure of 1:1 correspondence and 
67 % of the total reference crown were matching spatially to the Valley Following crown delineation.  
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Figure 22. Accuracy measures of D of delineated crowns and reference crowns using Valley Following approach 

 
In Amlekharka and Mathani,  D value was the lowest (0.33), where as in Kupri Salleri, D value was the 
highest 0.48. Moreover, in Chyase Bhagabate, Mathani, and Amlekharka, where there was the dominance 
of broad leaf forest, D value was lower (0.33-0.35). On the other hand, D value was higher (up to 0.48) in 
Dhande, Gahate Bhagabati, Kupri Salleri, and Simpani, where there was the dominance of needle leaf 
forest.  
 

Table 6. 1:1 correspondence of reference and delineated crowns from Valley Following approach 

 
CFUG name Reference Delineated

1:1 
correspondence

Percentage of 1:1 
correspondence 

to reference 
crown 

1 Amlekharka 9 10 6 67
2 Chuchhe Dhungha 16 20 13 81
3 Chyase Bhagabati 20 24 15 75
4 Devithan 21 29 15 71
5 Dhande 33 44 24 73
6 Gahate Bhagabati 20 30 12 60
7 Kupri Salleri 21 34 11 52
8 Mahankal 19 16 12 63
9 Mathani 18 21 14 78

10 Shivajan Bhumesthan 21 21 13 62
11 Simpani 11 15 6 55
  Overall 209 264 141 67

In Chyase Bhagabati, Chuchhe Dhungha, and Mathani, more than 75% of delineated tree crowns had 1:1 

correspondence to the reference crowns. Whereas, 1:1 correspondence was the less than 60% in Kupri 

Salleri and Simpani.  
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4.2.3. Comparison of delineated crowns from Region Growing and Valley Following approaches 

Figure 23 shows delineated crowns of Region Growing and Valley Following approaches (reference tree 
crowns in blue and delineated tree crowns in red).  
  

a. Region Growing b. Valley Following 

Figure 23. Delineated crowns of Region Growing and Valley Following approaches.  

Figure 24 shows accuracy assessment of tree crown delineation of Region Growing and Valley Following 
approaches. Overall D value of Region Growing approach was 0.30 (max 0.37, min 0.2), while for the tree 
crown delineation of Valley Following approach, overall D was 0.40 (max 0.48, min 0.33). This result 
implies that tree crown delineation from Region Growing has less error and is more accurate than that of 
Valley Following approach. For 1:1 correspondence, also, delineated crowns from Region Growing were 
more accurate than Valley Following approach. Both the approaches resulted in lower accuracy of tree 
crown delineation in Kupri Salleri, where forest type was needle leaf.  
 

Figure 24. Accuracy assessment of tree crown delineation of Region Growing and Valley Following approaches. 

To prove the hypothesis of research question two, t-test was used for the accuracy assessment of two tree 
crown delineation approaches. In both the accuracy measure (D and 1:1 correspondence), t-calculated 
value was higher than t-critical value with p value less than 0.05 when degree of freedom is 11.  
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This implies that there is a significant difference between the accuracies of tree crown delineation of 
Region Growing and Valley Following approaches. Thus, H1 hypothesis of a significant difference 
between the tree crown delineation of Region Growing and Valley Following approaches was accepted. In 
other words, tree crown delineation of Region Growing was significantly more accurate than that of Valley 
Following approach.  

4.3. Object based image classification 

Delienated tree crowns of Region Growing approach were classified into four main species types such as 
Pinus roxburghii, Alnus nepalensis, Schima wallichiana, and others (Engelhardicta spicata and others) with the help 
of MSS image, panchromatic image, and aspect image using nearest neighbour classification (Figure 25).  

 
Figure 25. Tree species map of study area in Charnawati watershed, Dolakha, Nepal 

From the classification result, the area and counts of each species class were calculated and presented in 
Table 7. In total 182 ha out of 343 ha was covered by trees and its crowns and others were non tree covers 
such as shadow and croplands etc.  Pinus roxburghii was covering the largest area of total tree crown area 
followed by Alnus nepalensis.  

Table 7. Area of each species class and their counts 

Class name Counts Area (ha) 

Alnus nepalensis 27547 55.71

Pinus roxburghii 29815 85.11

Schima wallichiana 13505 32.73

others 5387 8.50

Total 76254 182

 

The classification result was validated using 62 trees (20 Alnus nepalensis, 24 Pinus roxburghii, 11 Schima 
wallichiana, and 7 Engelhardicta spicata and others). Confusion matrix of errors and accuracies are shown in 
Tables 8 and 9. 
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Table 8. Confusion matrix of errors of tree species classification 

Classification 
Reference  

Alnus nepalensis Pinus roxburghii Schima wallichiana Others Total  

Alnus nepalensis 11 1 4 2 18 

Pinus roxburghii 3 23 1 2 29 

Schima wallichiana 6 0 5 2 13 

Others 0 0 1 1 2 

Total  20 24 11 7 62 

 

Overall classification accuracy was 64.52% and kappa was 0.48. Pinus roxburghii was classified the most 
correctly with producer’s accuracy of 95.8% and user’s accuracy of 79.3%. Among for the broadleaf tree 
species, Alnus nepalensis was classified correctly with 55% producer’s accuracy and 61.1% user’s accuracy 
and other two classes were classified with poor classification accuracy. In general broadleaf tree species 
(Alnus nepalensis, Schima wallichiana, Engelhardicta spicata etc.,) were classified with poor accuracy and were 
overlapped more in feature spaces (Appendix 4). From the confusion matrix of errors, this was also clear 
that there was more classification error within those broadleaf species than Pinus roxburghii.  
 

Table 9. Accuracy assessment of tree species classification 

          Class 
 Reference    
Total 

Classification   
Total 

Correct 
Total 

Producer's  
Accuracy 

User's 
Accuracy 

Kappa 

Alnus Nepalensis 20 18 11 55.00% 61.11% 0.42
Pinus roxburghii 24 29 23 95.83% 79.31% 0.66
Schima wallichiana 11 13 5 45.45% 38.46% 0.25
Others 7 2 1 14.29% 50.00% 0.44

Total  62 62 40    
Overall Classification Accuracy =     64.52% 0.48 

 

Overall accuracy of species classification was not satisfactory as hypothesized and there was more 
confusion (error) between broadleaf tree species for classification.  
  
Classification of forest type was also conducted by generalizing some species as broadleaf species (Alnus 
nepalensis, Schima wallichiana, and others species) and needle leaf species (Pinus roxbhurghii) and it was done 
using the same procedure as in species classification (Figure 26).  
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Figure 26. Forest type map of study area in Charnawati watershed, Dolakha, Nepal 

 

Areas and counts of each forest type were calculated from the forest type classification (Table 10).  
 

Table 10. Area of each forest type class and their counts 

Class name Count Area (ha)

Broadleaf species 46629 97.45

Needle leaf species 29625 84.60

Total 76254 182

 

Classification result was validated using 62 trees (38 broadleaf and 24 needle leaf trees) and confusion 
matrix of errors is shown in Table 11. 
 

Table 11. Confusion matrix of errors of forest type classification 

Classification 
Reference  

Broadleaf species Needle leaf species Total  

Broadleaf species 33 1 34 

Needle leaf species 5 23 28 

Total  38 24 62 

 

Compared to tree species classification, the error of the classification was less for forest type classification. 
Overall classification accuracy also increased to 90.32% (kappa 0.80) and producer’s and user’s accuracy 
were more than 80 % for both classes (Table 12).  
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Table 12. Accuracy assessment of forest type classification 

Class 
Reference    

Total 
Classification   

Total 
Correct 
Total 

Producer's  
Accuracy 

User's 
Accuracy 

Kappa 

Broad leaf species 38 34 33 86.84% 97.06% 0.92

Needle leaf species 24 28 23 95.83% 82.14% 0.70

Total  62 62 56     

Overall Classification Accuracy =     90.32% 0.80

 

Species and forest type classification used separate classes in shaded and non-shaded areas. To determine 
the effectiveness of having these separate classes in classification, classification of species and forest type 
was also done without the separation of shaded and non-shaded. The results of these classifications are 
shown Tables 13 and 14 for comparison.  

 
Table 13. Error matrix and accuracy assessment of species classification when there is no separation of 

shaded and non-shaded classes 

  

Reference Data 

Total 
classified Correct 

Users' 
accuracy Kappa 

Alnus 
Nepalensis 

Pinus 
roxburghii 

Schima 
wallichiana Others 

C
la

ss
ifi

ed
  Alnus Nepalensis 9 1 3 2 15 9 60.00% 0.45

Pinus roxburghii 4 23 2 3 32 23 71.88% 0.54

Schima wallichiana 7 0 5 1 13 5 38.46% 0.29

Others 0 0 1 1 2 1 50.00% 0.44

 Total Reference 20 24 11 7 62 38    

Correct 9 23 5 1 38      

Producers accuracy 45.00% 95.83% 45.45% 14.29%        

Overall Classification Accuracy =     61.29% 0.45
 

From Table 13 and 14, it is clear that use of separate shaded and non-shaded classes for each of the 
forest/species class was effective since the classification accuracy was decreased by 3-5% (Kappa 3-10%) 
when the separate shaded and non-shaded classes were not used for the classification.  
 
Table 14. Error matrix and accuracy assessment of forest type classification when there is no separation of 

shaded and non-shaded classes  

  

Reference Total 
classified Correct 

Users' 
accuracy Kappa Broadleaf Needle leaf 

Classified  
    Broadleaf 33 4 37 33 89.19% 0.72 

   Needle leaf 5 20 25 20 80.00% 0.67 

38 24 62 53     

Correct 33 20 53       

Producer's accuracy 86.84% 83.33%         

         Overall Classification Accuracy =     85.48%       0.69 
 

 
 
 



OBJECT BASED IMAGE ANALYSYS OF GEO-EYE VHR DATA TO MODEL ABOVEGROUND CARBON STOCK IN HIMALAYAN MID-HILL FORESTS, NEPAL 
 

37 

4.4. Regression analysis 

Descriptive statistics of the variables used for the carbon stock modelling are shown in Table 15.  
 

Table 15. Descriptive statistics of the variables used for modelling 

  

Broadleaf  Needle leaf 
Reference 

CPA 
Segmented 

CPA 
Tree carbon  

stock 
Reference 

CPA 
Segmented 

CPA 
Tree carbon 

stock 

Mean 16.89 16.76 227.18 26.67 26.27 305.48

Standard Deviation 8.15 10.34 165.65 10.19 7.66 151.49

Minimum 7.63 2.75 24.56 10.51 13.50 35.52

Maximum 48.59 46.50 791.45 45.66 44.75 605.86

Count 60 44 
 

Linear regression model was used to test whether segmented and reference CPA could explain the amount 
of carbon stock per tree for broadleaf species and needle leaf species since the classification result for 
single species was not satisfactory.  
 
The result of a linear regression model explaining carbon stock of broadleaf and needle leaf (Pinus 
roxburghii) trees using reference CPA and segmented CPA from Region Growing approach is shown in 
Table 16.  
 

Table 16. Linear regression analysis for carbon stock of trees 

Broadleaf trees Needle leaf (Pinus roxburghii) trees
Regression 
 Statistics 

Reference
CPA 

Segmented
CPA 

Multiple R 0.443312 0.349914

R Square 0.196525 0.12244

Adjusted R Square 0.176439 0.100501

Standard Error 125.157 130.8

Observations 42 42

Coefficients 

Intercept 70.41992 121.004

slope 7.97212 5.002599

P-value 

Intercept 0.129867 0.003394

slope 0.003278 0.02311
 

Regression Statistics 
Reference 

CPA 
Segmented

CPA 

Multiple R 0.729781 0.577688

R Square 0.532581 0.333723

Adjusted R Square 0.516463 0.310748

Standard Error 110.7804 132.2625

Observations 31 31

Coefficients 

Intercept 15.11297 -9.31496

slope 11.10373 11.93296

P-value 

Intercept 0.779059 0.912992

slope 3.18E-06 0.000666
 

 

One way Analysis of Variance (ANOVA) test was employed to test the significance of the models and the 
result shown in Table 17 indicated that explanation of carbon stock by reference and segmented CPA was 
statistically significant at 95% confidence level.  
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Table 17. ANOVA test of linear regression analysis for carbon stock of trees 

Broadleaf trees Needle leaf trees

Carbon stock explained by reference CPA 

df SS MS F 
F

Significance 

Regression 1 153255.9 153255.9 9.78 0.003 

Residual 40 626571.4 15664.29 

Total 41 779827.4 

Carbon stock explained by segmented CPA 

df SS MS F 
F 

Significance 

Regression 1 95481.95 95481.95 5.58 0.02 

Residual 40 684345.4 17108.64 

Total 41 779827.4 
 

Carbon stock explained by reference CPA 

df SS MS F 
F 

Significance  

1 1210.9 1210.9 61.2 1.25E-08 

29 573.4 19.7 

30 1784.4 

Carbon stock explained by segmented CPA 

df SS MS F 
F 

Significance  

1 254099.3 254099.3 14.5 0.0006 

29 507308 17493.38 

30 761407.3 

 
For all four models, explanation of carbon stock using reference/segmented CPA was significant. For 
broadleaf trees, the linear regression model resulted in R2 of 0.196 for carbon stock and reference CPA 
relationship and R2 of 0.122 for carbon stock and segmented CPA. On the other hand, for needle leaf 
trees (Pinus roxburghii), linear regression model resulted in higher R2 (0.53) for carbon stock and reference 
CPA relationship than carbon stock and segmented CPA (0.33).  Relationship between CPA and carbon 
stock of broadleaf and need leaf trees are shown as scatter-plots (Figure 27).  
 

a. Broadleaf trees b. Needle leaf trees 

  
c. Broadleaf trees d. Needle leaf trees 

  
Figure 27. Scatter-plot graph showing the relationship between CPA and carbon stock of trees  

 

R² = 0.1965

0

100

200

300

400

500

600

0 20 40 60

C
ar

bo
n 

st
oc

k 
of

 tr
ee

 (k
g/

tr
ee

)

Reference CPA m2

R² = 0.5326

0

100

200

300

400

500

600

700

0 20 40 60

C
ar

bo
n 

st
oc

k 
of

 tr
ee

 (k
g/

tr
ee

)

Reference CPA m2

R² = 0.1224

0

100

200

300

400

500

600

0 20 40 60C
ar

bo
n 

st
oc

k 
of

 tr
ee

 (k
g/

tr
ee

)

Segmented CPA m2

R² = 0.3337

0

100

200

300

400

500

600

700

0 20 40 60C
ar

bo
n 

st
oc

k 
of

 tr
ee

 (k
g/

tr
ee

)

Segmented CPA m2



OBJECT BASED IMAGE ANALYSYS OF GEO-EYE VHR DATA TO MODEL ABOVEGROUND CARBON STOCK IN HIMALAYAN MID-HILL FORESTS, NEPAL 
 

39 

 
Model validation 

Linear regression models were applied to validate the relationship using evaluation data set. Observed and 
predicted carbon stock from linear regression models using reference and segmented CPA were plotted 
against each other and the co-efficient of determination was calculated as shown in Figure 28.  
 
Similar R2 values were found from model validation to model training. As mentioned above, R2 of model 
validation of relationship between carbon stock of needle leaf trees and reference CPA was the highest 
(0.56), while, model validation of relationship between carbon stock of broadleaf trees and segmented 
CPA was the least (0.16).  
 
In general, all models explaining the relationship of carbon stock of trees and CPA resulted in low R2. 
Modelling carbon stock of needle leaf trees using reference and segmented CPA as an explanatory variable 
resulted in higher R2 (0.56 and 0.34) and less RMSE (27.7% and 32.8%) respectively. On the other hand, 
modelling carbon stock of broadleaf trees using reference and segmented CPA resulted in less R2 (0.26 
and 0.16) and higher RMSE (65.2% and 68.5%) respectively.  
 

a. Broadleaf trees b. Needle leaf trees

  
c. Broadleaf trees d. Needle leaf trees 

  
Figure 28. Scatter plot graph of predicted and observed values of validation trees.  

 

R² = 0.2669

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400

P
re

di
ct

ed
 c

ar
bo

n 
st

oc
k 

(k
g/

tr
ee

)

Observed carbon stock (kg/tree)

R² = 0.5647

0

100

200

300

400

500

600

0 200 400 600

P
re

di
ct

ed
 c

ar
bo

n 
st

oc
k 

(k
g/

tr
ee

)

Observed carbon stock (kg/tree)

R² = 0.1641

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400

Pr
ed

ic
te

d 
ca

rb
on

 s
to

ck
 (k

g/
tr

ee
)

Observed carbon stock (kg/tree)

R² = 0.3477

0

100

200

300

400

500

600

0 100 200 300 400 500

Pr
ed

ic
te

d 
ca

rb
on

 s
to

ck
 (k

g/
tr

ee
)

Observed carbon stock (kg/tree)



OBJECT BASED IMAGE ANALYSYS OF GEO-EYE VHR DATA TO MODEL ABOVEGROUND CARBON STOCK IN HIMALAYAN MID-HILL FORESTS, NEPAL 
 

40 

 



OBJECT BASED IMAGE ANALYSYS OF GEO-EYE VHR DATA TO MODEL ABOVEGROUND CARBON STOCK IN HIMALAYAN MID-HILL FORESTS, NEPAL 
 

41 

5. DISCUSSION 

5.1. Delineation of tree crowns 

In this research, tree crown delineation was done using Region Growing and Valley Following approaches 
described in Section 3.1.3 and results are shown in Section 4.2.  
 
Tree crown delineation using Region Growing approach resulted in accuracy of D of 0.30 (70 % accurate) 
with 75 % of 1:1 correspondence with reference tree crown in this study, whereas, tree crown delineation 
using ITC based Valley Following approach resulted in lower accuracy (D=0.40 or 60 % accuracy with 
67% of 1:1 correspondence). The t-test proved that there is a significant difference between the accuracies 
of tree crown delineation of Region Growing and Valley Following approaches. This implies that tree 
crown delineation of Region Growing approach is significantly more accurate than that of Valley 
Following approach in this study. Examples of visually assessed well delineated tree crowns of both two 
approaches are shown in Figure 29 (reference crown in red, delineated crown in blue).   
 
Valley 
Following 

     

Region 
Growing 

     

Figure 29. Examples of well delineated tree crowns. 

ITC based Valley Following approach for tree crown delineation has been applied for different studies and 
effectiveness of this approach has been proven especially for plantation forests. For example, Gougeon 
(1995) first developed this approach and delineated tree crowns with 81% 1:1 correspondence with field 
data in coniferous plantation forest in Canada using MEIS-II image having 31 cm spatial resolution. 
Similar accuracy of delineation was also obtained by Gougeon & Leckie (2006) using IKONOS image of 
83 cm spatial resolution with 7.40 off-nadir view angle in softwood plantation forest. This approach also 
had been tested by Katoh et al. (2009) in Japanese plantation forests and resulted in 11.2% error. In this 
research, delineation of tree crown using Valley Following approach resulted in lower accuracy compared 
to previous studies. Unlike this study, previous studies were mostly done in plantation forest, while, when  
Valley Following approach was applied in old growth native coniferous forests, tree crown delineation 
accuracy was less (50-60%) (Leckie, et al., 2005).  
 
Region Growing approach using local maxima has also been intensively studied in different types of 
forests and has shown its usefulness. Tree crown delineation in naturally regenerated forest using aerial 
images captured almost at nadir achieved 70- 73% correct 1:1 correspondence by Brandtberg & Walter 
(1998) and Erikson (2003) respectively. Bunting & Lucas (2006) have achieved reasonable accuracy of 
crown delineation (72% correct when trees were well isolated) using CASI 14-band image in Australia. 
This study found similar accuracy of crown delineation (77% correct 1:1 correspondence) using Region 
Growing approach because naturally regenerated mixed forest was also studied in this research.  
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Moreover, techniques (developing rule-set in eCognition) used for Region Growing approach was similar 
to the study of Bunting&Lucas (2006).  
 
Both the Valley Following and Region Growing approach for tree crown delineation have succeeded in 
different conditions, but comparison of the performance of these approaches has rarely been done. Ke & 
Quackenbush (2008) have compared the ability of three tree crown delineation approaches in deciduous 
and coniferous plantation sites using natural colour aerial image having 60 cm resolution and reported that 
Region Growing approach gives the best delineation with an accuracy of up to 78% 1:1 correspondence, 
whereas, Valley Following approach gives an accuracy of up to 66% 1:1 correspondence. This study also 
proved that Region Growing approach is better than Valley Following approach for tree crown 
delineation in mixed forest. This is because Valley Following approach is more favourable to coniferous 
plantation trees having conical crowns (Gougeon, 1995) and Region Growing approach has proven to be 
effective for the more complex forest structure of naturally regenerating forests as mentioned above.  
 
Limitations of Valley Following approach such as an existence of shadow in between the trees and high 
view angle of image capture (Gougeon, 2010) could be the reason for results of lower accuracy when 
compared with Region Growing approach since shadows between trees are less common in naturally 
regenerated mixed forests and broadleaf forest stands. Gougeon & Leckie (2006) have also noted that 
Valley Following approach gives less success rate for broadleaf forests compared to coniferous, as their 
complex crown shapes make the presence of sufficient shade between them less common. Moreover, 
Leckie et al. (2005) discussed the difficulty of good tree crown delineation on sites with variable tree sizes 
with Valley Following approach since it was observed that when good delineation was achieved on smaller 
crowns, very large crowns tend to be severely broken up into several crowns. In this study, splitting of 
bigger crowns was also observed. Due to the less shadows in broadleaf forests, clusters of tree crowns 
were delineated instead of individual tree crowns in some areas when Valley Following approach was used 
(Figure 23 b).  
 
On the other hand, Region Growing is more flexible in detecting tree crowns with varying sizes (as in this 
case) since this approach uses both features of local maxima as seeds for growing and local minima as 
restriction of the crown growing expansion (Ke & Quackenbush, 2008). However, Region Growing 
approach is most suited to crown delineation in pre-mature forest canopies where trees have a well-
defined crown shape, but it will give less accuracy for complex forest types (Culvenor, 2002). Bunting & 
Lucas (2006) also stated that crowns of some trees could not be separated simply due to close proximity 
of their crowns or high density in the understory.  
 
Most of the studies on tree crown delineation (Gougeon & Leckie, 2006; Katoh, et al., 2009) have been 
done in plantation forest where thinning process is practiced regularly thus, having regular distances 
between the trees unlike the study area in this research. Moreover, most delineation algorithms have been 
developed for a specific forest type and species composition of stands, and therefore, are less likely to be 
applicable to natural forests (Bunting & Lucas, 2006). The performance of these algorithms may reduce, 
especially in sites having photo-synthetically active understory and ground surface vegetation, multi-
layered forests of high density and presence of intermingled crowns (Bunting & Lucas, 2006; Erikson, 
2003; Gougeon & Leckie, 2006). In this research, high density understory and multi-layered forests were 
also observed in the field and this could explain lower accuracy of tree crown delineation in some CFUGs. 
This trend agrees with other studies. For example, Bunting & Lucas (2006) observed that accuracy of 
crown delineation was greater than 72% when trees were well isolated, while it decreases (48-71%) when 
trees occurred in multiple strata having dense understory. Palace et al. (2008), moreover, has done tree 
crown delineation in Amazon tropical forests, but accuracy of delineation couldn’t be checked due to 
difficulties in geo-locating trees under the dense multiple layers. This suggests that delineations are less 
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successful as the structural complexity of forest increases. Thus, considering the complexity of natural 
mixed forest, accuracy of tree crown delineation obtained this study was satisfactory. 
 
In this study, over segmentation was 0.28 and 0.41 for delineation of Region Growing and Valley 
Following approaches respectively; while under segmentation was 0.32 and 0.39 for the delineation of two 
approaches respectively. Over segmentation represents smaller or missing crown delineation than the 
reference - similar to omission error, and under segmentation represents bigger or new crown delineation - 
similar to commission error. Both over segmentation and under segmentation of crown delineation of 
Region Growing was less than that of Valley Following approach, thus meaning less error compared to 
Valley Following. Table 18 shows examples of errors of commission and omission for the crown 
delineation of Region Growing and Valley Following approaches based on visual assessment (reference 
crowns in red and delineated crowns in blue).  

 
Table 18. Examples of crown delineation errors 

Error of omission Valley 
Following

Region 
Growing 

a  small isolated crowns with a signal too weak to be 
detected 

  

b two proximal crowns delineated as one   
 

 

c crowns with weak signal are further reduced by 
delineation 

 

 
Error of commission   
d big branch clusters in crown detected and delineated 

as two crowns 
  

e crowns delineated as bigger than they are due to low 
lying vegetation or understory or close proximity to 
smaller crowns 

 

 
The largest source of omission error of delineation was small trees not being delineated due to weak 
signals and selected smoothing factor in the shadow affected areas (Figure 23). This trend was also 
observed by Pouliot (2005). Moreover, close proximities of multiple crowns causing a joint crown after 
delineation was also common, especially for Valley Following approach due to insufficient shadows 
between trees. This error of omission has been commonly observed by other researchers (Bunting & 
Lucas, 2006; Pouliot, et al., 2005). In addition, errors of commission have been identified by researchers as 
larger crown often split up due to their irregular crown shapes (Katoh, et al., 2009) and the larger crowns 
may enclose a smaller one, causing bigger single crowns (Erikson, 2003). This could explain errors of over 
segmentation and under segmentation found in this study. However, crown delineation errors related to 
crowns overtopped by taller trees and intermingled crowns remains uncertain, since those are obscured 
from the view of satellite image (Bunting & Lucas, 2006; Katoh, et al., 2009; Palace, et al., 2008)  
 
In contrast to the findings of Gougeon (1995) that Valley Following approach is more favourable in 
condition of needle leaf forest than hardwood crowns, D value (error) in this research was higher (Figure 
18 and 20) in some CFUGs where there was a dominance of broad leaf trees (Figure 15) for both the 
approaches. The reason could be that these crown delineation approaches result in more error in bigger 
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crowns such as splitting up or enclosing a smaller crown as discussed above. As pine trees are much bigger 
than other broadleaf trees in terms of DBH, carbon stock and CPA in this study area (Figure 16).  
 
Delineation of tree crowns in this study was comparable with other researchers in respect of 1:1 
correspondence of delineated and reference tree crowns. Even though most of the studies on tree crown 
delineation have used 1:1 correspondence as an accuracy measure for the performance of crown 
delineation approach, in this study accuracy measure of D focusing on relative area of the delineated tree 
crown and reference tree crown was also used since delineated CPA was intended to be used for 
modelling carbon stock of a tree. Similarly, Ke et al. (2010) used relative area of intersection of reference 
and segmentation as an accuracy measure for delineation of forest stand.  

5.2. Object based image classification 

Delineated tree crowns were further used for species and forest type classification described in Section 
3.1.5 and results are shown in Section 4.3.  
 
Species classification using Geo-Eye MSS image and delineated tree crowns resulted in overall accuracy of 
64.5% and Kappa 0.48 for four species classes of Alnus Nepalensis, Pinus roxburghii, Schima wallichiana, and 
Engelhardicta spicata and others. Classification accuracy increased (overall accuracy 90.3% and Kappa 0.80) 
when species were generalized into broadleaf and needle leaf species.  
 
Tree species classifications using high resolution imagery have been conducted by many researchers and 
satisfactory results have been found.  For instance, Katoh (2009) and  Gougeon & Leckie (2006) classified 
five needle leaf classes and one broadleaf class on the individual tree level with 78 % and 59% accuracy 
respectively using four band VHR image. Classification accuracy increased considerably (92.8% for six 
species) when CASI hyper-spectral image was used on the forest stand level (Leckie, et al., 2003). 
Moreover, this research obtained higher classification accuracy for forest type with only two classes. This 
trend is commonly observed by other researchers. For example, Erikson (2004) has done species and 
forest type classification in naturally regenerated forests using aerial image of 3 cm resolution and obtained 
77%  accuracy for four species and 91% accurate classification for broadleaf and needle leaf two classes. 
Similarly, Brandtberg (2002) got 67% classification accuracy with a priori information and 87% for 
broadleaf and needle leaf classes using 10 cm resolution aerial image of naturally regenerated forests. 
These accuracy values reported in the literature cannot be compared to the results in this research. The 
reason is that the datasets are acquired from various forest types with different degrees of spectral overlap 
between the species, and with varying amount of automatic or manual delineation errors in the input data. 
Nevertheless, the range of previously reported accuracy value suggests that the species and forest type 
classification in this study is comparatively successful.  
 
The main issue of species classification reported by literatures was spectral overlap between different 
species which creates confusion in classification (Brandtberg & Walter, 1998; Leckie, et al., 2003). In this 
research, this trend was also observed specially, broadleaf species of Alnus nepalensis and Schima wallichiana 
and other species were spectrally overlapped. While, there was less overlap between Pinus roxburghii and 
other broadleaf species (Appendix 4a). Leckie et al. (2004) and Gougeon & Leckie (2006) observed 
considerable spectral overlap between the signatures of the different species, especially white pines and 
spruce, whereas less spectral overlapping was recorded between broadleaf and needle leaf species 
(Brandtberg, 2002). On the other hand, when CASI hyper-spectral image was used there was less spectral 
overlap thus, resulting in high classification accuracy since it provides better spectral resolution (Leckie, et 
al., 2003).  
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Considering spectral variability of tree crown level in high resolution images, the usage of signature of lit 
side of the tree crown is proven to be an effective classification method (Gougeon, 1995). Lit side is the 
brighter side of the tree crown. Compared to using a mean spectral signature of a full crown, using lit side 
reduces spectral variability of a crown influenced by different proportions of shaded side, thus gives more 
separation of spectra (Leckie, et al., 2004). In this research, brightest pixel of the tree crown was also used 
for classification. Compared to the mean spectral value of the tree crown, this can help for the spectral 
separation of the species, in particular, in NIR band (Appendix 4 a and b). Studies have also reported that 
using lit side signature helps to improve classification (Gougeon, 1995; Gougeon & Leckie, 2006; Leckie, 
et al., 2003).  
 
Effect of shadow on remotely sensed image at both the tree level and landscape level has been identified 
as an issue affecting species classification results. Effect of shadow on the tree level and how to overcome 
this issue has been discussed above. Leckie et al. (2005) discussed that the effect of shadow on remotely 
sensed image in landscape level due to topography and low sun elevation during acquisition time 
influences the spectral information of species and thus, affects classification. To accommodate this issue, 
classification of separate shaded classes was suggested and its efficiency was proven by Leckie et al. (2005). 
In this research, thus, separate classes of the shaded area were added to the each species class and it helped 
to improve the classification. Classification accuracy was improved by 3-5% (Kappa 3 to 10%) (Table 13 
and 14) when shaded classes were added. Shaded area was determined by aspect data from DEM. Usage 
of topographic data such as elevation, slope and aspect is also recognized to be an effective way of 
improving classification. For instance, Ke et al. (2010) noted that classification accuracy increases by up to 
20% when LiDAR derived topographic information including slope and aspect used for classification.  
 
Quality of tree crown delineation also affects species classification results. Especially, when there are 
omission and commission errors of tree crowns, mean pixel value or lit pixel values of tree crowns are 
influenced. Erikson (2004) and Brandtberg (2002) discussed that delineation error of tree crowns can 
affect the classification system and with better segmentation, the classification can most probably be 
better. Leckie (2005) investigated the influence of quality of tree crown delineation and noted that 
classification accuracy was higher (40-70%) for well delineated tree crowns, while classification accuracy 
was much lower for all crowns when poorly delineated ones are included. Furthermore, the poor 
resolution of MSS images e.g. IKONOS (4m) can affect species classification on the individual tree level 
(Gougeon, 1995; Pouliot et al., 2002).  

5.3. Modelling the CPA and carbon stock relationship 

 
Delineated CPA was further used for modelling the relationship of CPA and carbon stock of tree species 
as an explanatory variable (described in Section 3.1.7.) and the outcome of the models is shown in Section 
4.4.  
 
Modelling the relationship of carbon stock of trees and CPA was done and validated for broadleaf and 
needle leaf species (Pinus roxburghii). The model validation result shows that there is a poor relationship 
between carbon stock of trees and delineated CPA for both broadleaf and needle leaf species (R2 is 0.16 
and 0.35 respectively). When the reference CPA was used for modelling, R2 was relatively higher (0.27 and 
0.56 respectively), but strong relationship of CPA and carbon stock of trees has not found. Simple linear 
regression was applied for modelling the relationship of CPA and carbon stock of trees since mostly 
sparse forest cover was observed by ICIMOD (2010) in Charnawati watershed. The reason is that DBH 
and CPA has linear relation in sparse forest since competition from neighbouring trees is less (Foli et al., 
2003; Shimano, 1997).  
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Studies about the relationship between CPA and carbon stock or biomass of tree species, studied in this 
research, have been rarely done. Sharma (1999) studied the relationship between crown diameter and 
DBH of Alnus Nepalensis which were subjectively selected in the field measurement and stated non-linear 
model can explain this relationship with 78% of a coefficient of determination, yet the mechanistic 
meaning of the non-linear model was not explicitly explained. Hemery et al. (2005) studied the crown 
diameter and stem diameter relationship for different species of broadleaved trees in UK and obtained 
more than 0.8 R2 of linear relationship in plantation forest. Moreover, allometric equation of DBH and 
crown diameter was developed for Amazon forest with R2 of 0.57 (Palace, et al., 2008). For needle leaf 
trees, Kuuluvainen (1991) modelled the relationship between CPA and AGB of Norway spruce plantation 
and obtained R2 of 0.79. Furthermore, Avsar (2004) obtained R2 of 0.74 from a non-linear relationship 
between crown diameter and DBH for Pinus brutia. In this study, the relationship of the reference CPA 
digitized from VHR image and carbon stock of both needle leaf and broadleaf trees resulted in weaker 
relationship than compared to previous studies.  
 
Modelling biomass and carbon stock using CPA or crown diameter from VHR image gives relatively less 
accuracy compared to the field measured CPA or crown diameter. Robustness of modelling biomass and 
carbon stock density using Quickbird and LiDAR imageries have been proven by Gonzalez (2010). 
However, many studies resulted in lower accuracy of modelling the relationship of crown width or CPA 
and DBH or biomass. For example, Song et al. (2010) used crown diameter from Quickbird and IKONOS 
image with up to 180 of off-nadir view angle to predict DBH estimates and obtained R2 of 0.5-0.6 for all 
species. Moreover, Zhang et al. (2010) and Wulder et al. (2000) achieved R2 of 0.3-0.35 from the linear 
relationship of DBH and automatically delineated crown diameter in naturally regenerated forests, while 
Brandtberg and Walter (1998) did not find a significant relationship from field and image measured crown 
diameters. The strength of the relationship of carbon stock of tree and automatically delineated CPA 
found in this research was also comparatively lower than previous studies. The following paragraph will 
show more explanations.  
 
R2 of models using delineated CPA were lower than that of models when the reference CPA used and this 
can be explained by the error of the tree crown delineation. Song et al. (2010) suggested that error from 
the delineation of tree crowns can affect the result of modelling DBH and CPA relationship. However, a 
good relationship of carbon stock of trees and CPA were not found even when the reference CPA used in 
this research. Because, both of reference CPA and delineated CPA variables were derived from satellite 
images since reference CPA was digitized from Geo-Eye image. There can be a good relationship between 
CPA and carbon stock of a tree in study area, but it was not found from this study using VHR Geo-Eye 
imagery. The reason could be that the effect of topography, sun elevation angle and off-nadir viewing 
angle of image change the real tree crown size on remotely sensed image. Song et al. (2010) stated that 
although trees are always vertical regardless of whether they grow on a slope or on a flat surface, 
topography and off-nadir viewing angles can make the apparent tree size in the image different from the 
real tree size. Detailed explanation of these effects can be found in following section.  
 
Model  R2 of the relationship between carbon stock of tree and CPA of needle leaf species was higher 
compared to that of broadleaf species. Similarly, Song et al. (2010) also observed stronger relationship for 
needle leaf species from the modelling of crown diameter from the field measurement and VHR image. 
However, in this case effect of shadow influenced on the relationship of carbon stock of broadleaf tree 
and CPA. The reason is that Pinus roxburghii mostly grows in southern and eastern aspects which are not 
affected by shadow on the image (Applegate et al., 1988), whereas 60 % of broadleaf trees used for 
modelling were located in shaded area (Appendix 5). It was clear that these trees in the shaded areas were 
affecting the result of modelling carbon stock of broadleaf tree and CPA relationship since the correlation 
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of CPA and carbon stock was much higher for broadleaf trees that are located in non-shaded areas 
(Appendix 5).  

5.4. Source of errors related to analysis 

Factors such as sensor view angle, sun elevation and topography have a significant effect on the 
radiometric and geometric properties of the tree crowns on VHR image. This can affect the allometric 
relationship of tree crown and other forest stand parameters such as biomass and DBH (Pouliot, et al., 
2005). Culvenor (2002) suggested that real geometric and radiometric properties of tree crowns can be 
detected best with small off- nadir view angles (less than 15 degree) and higher solar zenith angles. Source 
of errors related to the detection of real geometric and radiometric properties of tree crowns are discussed 
in the following sub sections.   

5.4.1. Effect of shadow 

Shadow at tree crown level (sun angle and height) 
Effect of shadow influences the geometry of tree 
crowns and the magnitude of this effect depends on 
the sun azimuth and elevation angle at the time of the 
imagery (Leckie, et al., 2005). Presumably, tree crowns 
would have a regular circle shape at the nadir view and 
solar zenith angle but such ideal situation can be rarely 
found (Pollock & Woodham, 1996). Based on the way 
that how the tree crown looks on satellite images with 
different sun elevation angle and view angle, 
researchers have developed the template matching 
algorithm for detecting tree crowns (Olofsson, 2002; 
Pollock & Woodham, 1996). In this study, Geo-Eye 
imagery having sun angle azimuth 163.50 and elevation 
450 captured at 10:57 local time was used. Low sun elevation angle resulted in a shaded side for the tree 
crowns which makes it difficult to be distinguished on remotely sensed image. This was also observed by 
Erikson (2004). Culvenor (2002) showed that better tree crown delineation can be done with higher sun 
elevation. Figure 30a shows templates of different tree crowns from the nadir view angle when the sun 
angle is not at the zenith (Erikson & Olofsson, 2005) and Figure 30b shows examples of irregular shaped 
tree crowns similar to Figure 30a in which both low sun elevation angles and off-nadir view angle have 
influenced.  
 
Shadow at landscape level  
Shadow at the landscape level affects both the radiometric and geometric properties of the tree crown and 
this can happen due to steep topographic slope and aspect. At the landscape level, differences in 
illumination due to topography cause shaded and sunlit slopes that make it hard to effectively extract an 
accurate CPA (Culvenor, 2002). In shaded part, it affects not only the brightness value of tree crowns, also 
it influences to the size and shape of the crown since low brightness values cannot be separated accurately 
from the background (Culvenor, 2002; Leckie, et al., 2005). Due to steep topography, effect of shadow was 
considerable and mostly occurred in western, north-western, northern, north-eastern aspects since the sun 
angle was 1630 (south-south-eastern SSE). Besides, in shaded sides it seems that there was more space 
between the trees than in non-shaded sides in Geo-Eye image (Figure 31). However, dense forest was 
observed by ICIMOD (2010) especially in this part. This means that due to shadow effect small tree 
crowns cannot be observed or tree crowns look smaller thus creating more space in the image. This can 
explain why there was a very poor relationship between carbon stock of trees and CPA in shaded areas for 
broadleaf species.  

Figure 30. Examples of irregular shaped tree crowns 
and templates. 
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Culvenor (2002) also discussed that the effect of shadow can be even more complex and unsystematic in 
mixed stands due to the size or trees, mix in heights and uneven stem and gap distribution. Tiede et al. 
(2008) also observed hindering of tree crowns in steep and shaded condition.  
 

a.Quick-bird image of Google-Earth of the study area in 3D b. Corresponding subset 
images of Geo-Eye 

 
Figure 31. Screenshot showing shadow effect at landscape level and apparent increased tree spacing from the ridge 

due to the shadow effect  

5.4.2. Effect of inclination angle of image acquisition  

View angle during image collection also influences the shape of tree crowns on the image and the quality 
better delineation (Leckie, et al., 2005). View angle nearer to the nadir result in circular crown shape on the 
image when the solar elevation angle is high, whereas, tree crown display crescent shape in off-nadir 
images (Leboeuf, et al., 2007). In this study, Geo-Eye image having 25.40 off-nadir view angles was used 
and together with steep slopes (up to 560 degrees) it complicated the projection of tree crowns on the 
image even more. This resulted in irregular shapes of tree crowns in VHR image (Figure 32).  
 
 
 
 
 
 

 

Figure 32. Screen shot of examples of irregular shaped tree crowns due to off-nadir view angle. 

These irregular shapes of crowns could result in a disproportionate allometric relationship of CPA and 
other parameters such as biomass and carbon stock.   
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5.4.3. Effect of topography  

Effect of topography on tree crown 
delineation and crown allometric 
relationship with other parameters of trees 
has not been studied commonly. Pouliot 
(2005) discussed that topography also 
affects pixel size, which in turn can impact 
the crown size estimates and suggested that 
this effect could be minimized through 
ortho-rectification of a suitable digital 
elevation model. Even though, ortho-
rectification of the image was suggested for 
the solution of topographic related issues 
on crown size estimates, in this research 
ortho-rectified image was causing abnormal distorted areas on the image (Figure 33).  This distorted area 
occurred in small patches and its distribution was not systematic. For example, in some places where there 
is a very steep slope (up to 400), distorted part does not occur. Thus, very severely distorted parts were 
digitized and clipped out from the image analysis. Besides, rugged topography together with off-nadir view 
angle were influencing on projection of the crown differently. For example, in some parts the stems of 
trees were visible in the image while, it was not visible in some parts (Figure 32).    

5.4.4. Other effects 

As mentioned before, effect of understory and dense overlapping crowns can impact the delineated tree 
crowns. Moreover, errors related to field measurements such as measurement of tree stem diameter and 
height, sampling error and errors related to allometric equation may be propagated and influence the 
relationship between CPA and carbon stock of trees. Gonzalez et al. (2010) analysed the uncertainty of 
field measurement related errors and obtained high uncertainty on these measurements. In this research 
general allometric equation for broadleaf trees of moist tropical forest was used to calculate biomass and 
carbon stock since species specific allometric equations and general equation for broadleaf trees in mid-
hills of Himalaya were not found through extensive literature search. This could introduce errors to the 
relationship of CPA and carbon stock of trees.   

5.4.5. Magnitude of errors in analysis 

Abovementioned source of errors can differently influence each analysis step of this research. Source of 
errors and their influence on each step is shown in Table 19. 
 

Table 19. Source of errors and their influence on different analysis steps in this research 

Source of errors Tree crown 
delineation 

Object based 
classification 

Modelling CPA and carbon 
stock of tree 

Shadow at tree crown level   X 

Shadow at landscape level X X X 

Inclination angle    X 

Topography   X 

Understory and overlapping 
crowns 

X X X 

Field measurement and 
sampling error 

  X 

Allometric equation   X 

 

Figure 33. Screen shot showing the effect of ortho-rectification. 

Before ortho-rectification on left side, after ortho-rectification on 
right side. 
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Exact estimation of magnitude of these errors of the study is beyond the scope of this research; however, 
understanding of it is crucial. From the source of errors, shadow at the landscape level and understory and 
overlapping tree crowns influenced to each step of analysis. While other sources of errors influence only 
modelling stage thus, finally resulting in lower R2 on the relationship between CPA and carbon stock of 
trees.   
 
Influence of inclination angle and topography cannot be shown on the accuracies of the tree crown 
delineation since the delineation of tree crowns was validated using reference tree crowns, which were 
digitized from the same image in this research.  

5.5. Limitation of the research  

The main limitations of this research were: 
 High off-nadir view angle and less sun elevation of Geo-Eye image was the main limitation of 

this method. This is an important factor that determines the projection of the tree crown, 
especially when modelling has used image derived CPA.  

 Processing capability of eCognition software limited the area used for the analysis, thus only 
subset area of Charnawati watershed was analysed and it resulted in fewer samples for the 
analysis.  

 From the remotely sensed optical image, only top layer of the forest is visible in the image. In 
case of dense multi-layered forests and the presence of intermingled crowns, it is difficult to 
delineate tree crowns correctly.   

 Reference tree crowns based on visual interpretation carry an error of subjectivity even though 
the crown diameter of some trees was used to reduce the subjectivity.  
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusion 

The main objective of this study was to model carbon stock of trees using VHR Geo-Eye image and 
OBIA in case of central eastern part of Charnawati watershed, Dolakha district, Nepal. With respect to 
this, following conclusions were drawn for each research question.  
 
What are the accuracies of tree crown delineation of ITC based approach Valley Following and eCognition 
based Region Growing approach?  

In this research, the performances of two tree crown delineation approaches were compared. The result 
indicated that both the approaches provided useful results in delineating tree crowns in mixed forest. The 
Region Growing approach resulted in delineation accuracy of tree crown 30% error with 75% 1:1 
correspondence while, Valley following approach delineated tree crowns having 40% error with 67% 1:1 
correspondence.  
Which tree crown delineation approach, Valley Following or Region Growing, is better? 

As a result of T-test, it was concluded that Region Growing approach provides more accurate tree crown 
delineation than Valley Following approach in mixed forest. Analysis of the approaches indicated that 
each approaches has advantages and limitations.  
What is the accuracy of tree species classification? 

The accuracy of species classification at the tree crown level was 64.5% accuracy (Kappa=0.48) while 
more accurate classification was obtained from forest type classification (90.3% accuracy and 
Kappa=0.80). Use of separate classes in shaded area and non-shaded area improved the classification 
accuracy.  
How strong is the relationship between the CPA and carbon stock of tree species 
Weak relationship was found from the relationship of delineated CPA and carbon stock of broadleaf and 
needle leaf trees (R2 of 0.16 and 0.34 respectively). Effects of shadow, sun elevation and off-nadir view 
angles of the image acquisition etc., could have influenced to the relationship of CPA and carbon stock of 
trees.  
 
This research indicated the utility of remote sensing based techniques, specifically VHR satellite imagery 
and OBIA in carbon stock estimation and other forest inventories.  
 

6.2. Recommendation 

VHR image and OBIA based automatic delineation and detection of tree crowns provides useful 
information about forest cover and its carbon content. This information can be further used for the 
projects of mitigating carbon dioxide in the atmosphere like REDD. More and more VHR sensors are 
being introduced in the world. This can make VHR images cost effective and can contribute to REDD 
project implementation in developing countries.   
 
The effectiveness of tree crown delineation in mixed forest of Mid-hills of Nepal was tested in this 
research and this approach is recommended to be used in other natural mixed forests and plantation 
forests as well.  
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This research found that effect of shadow, sun elevation angle, off-nadir viewing angle were the main 
issues related to image and thus, use of image having a high sun elevation angle and low off-nadir viewing 
angle is recommended.  
 
Moreover, it would be effective to use active remote sensing techniques to overcome issues of shadow 
effects, especially in this case of hilly terrain. LiDAR image can be a solution for shadow effects since it 
provides data regardless of the illumination condition and also height information of this can be applied 
for delineation of tree crowns. Despite the cost issue of LiDAR, combined use of high resolution optical 
imagery and LiDAR images is also suggested for effective delineation of tree crown and classification of 
them.  
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APPENDICES 

Appendix 1. Locations of total collected sample plots 

 
 

Appendix 2. Recording sheet used in the field 

  Name of the recorder: Date:
Map Scale: Map No.: 
Sampling 
Plot No. 

Grid ref. Land Mark Dist. To 
centre of 

plot 

Bearing to 
centre of 

plot 

Elevation Slope 
(%) 

Aspect 

X Y

    

 
Forest characteristics 
Land cover Forest use type Crown 

cover (%) 
Stand 

composition 
Type of 
Stand 

Undergrowth

F N G M P N R Pr 
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Tree 
No. 

Species DBH 
(cm) 

Height 
(m) 

Crown 
diam (n) 

Tree class

1     1 2 3 4 d 
2          
3    
.          
.    
.          

30          
Remarks: 
 
 
 
Legend/ Abbreviations  
Landcover - F- Forest, N-Non-Forest, G- Grassland Forest use type  - M- Managed forest, P- Protection 

Forest, N- Natural Reserve, Pr- Production forest, R- 
Recreation 

 
Tree 
No. 

Species DBH 
(cm) 

Height 
(m) 

Crown 
diam (n) 

Tree class

A  1 2 3 4 d
B          
C    
.          
.          
.    

N          
 

Appendix 3. List of local tree species 

  Local name Scientific name 
1 Aakhatura   
2 Aarupate Prunus cornuta 
3 Amala Emblica efficinalis 
4 Amala Phyllanthus emblica 
5 Amsi   
6 Angeri  Lyonia ovalifolia 
7 Arupatti Prunus napaulensis 
8 Baanjh Quercus incana 2 
9 Badkule   

10 Balkal Pate Symplocos theaefelia 
11 Bhalayo Rus succedanea 

12 Chhotro Berberis asiatica 
13 Chilaune Schima Wallichiana 
14 Dhudilo Hedera helix 
15 Falant Quercus glauca 
16 Ghingane Euriya accuminata 
17 Ghingane Euriya cerasifolia 
18 Ghurmiso   

19 Gineri Pieris formosa 
20 Gobliso   

21 Gobre Salla Abies spectabilis 
22 Guenli Elaeagnus latifolia 
23 Guras Rhododendron arboreum 
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24 Jamuna Syzygium cumini 
25 Kafal Myrica esculenta 
26 Kainyo Gravelia robusta 
27 Kalikath Myrsine semiserrata 
28 Khamali Ficus roxburghii 
29 Kharane Sympleces ramesissima 
30 Kharsu Quercus semicarpifolia 
31 Khirro Sapium insigne 
32 Kholme Symplocos pyrifolia 
33 Khorsani Capsicum annuum 
34 Khote Salla Pinus roxburghii 
35 Kutmero Litsea polyantha 
36 Kwanle   
37 Lankuri Frazinus floribunda 
38 Lapsi Choerospondias axillaris 
39 Mahalo Viburnum cerdifelium 
40 Male Pyrus pashia 
41 Masala Eucalyptus sp. 
42 Mauwa Engelhardicta spicata 

43 Nilo chimal 
Rhododendendron  
campanulatum 

44 Omsisi   
45 Paati Eurya japonica 
46 Pahele Benthamedia capitata 
47 Pate Salla Pinus patula 
48 Patpate Leycesterin formosa 
49 Pipire Bucklandia 
50 Priya ghans Persicaria nepalensis 
51 Prunus Prunus ceracoides 

52 Ragchan Daphniphyllum himalense 
53 Raktachandan Pterocarpus santalinus 
54 Rani Salla Pinus wallichiana 
55 Rato kangio Wedlandia coreacea 
56 Sal Shorea Robusta 
57 Sauer Betula alnoides 
58 Setikath Myrsine capitellata 
59 Shilinge   
60 Sissoo Dalbergia sissoo 
61 Thingre salla Tsugadomusa 
62 Thulo bhalayo Rhus wallichii 
63 Thulo dhaire   
64 Uttis Alnus nepalensis 
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Appendix 4. Comparison of spectral mean and maximum value of tree crown of different species using a line chart 

a. Spectral mean value of tree crown of different species; b. Spectral maximum value of tree crown of 
different species 

a. b.

 
 

Appendix 5. Correlation of CPA and Carbon stock of trees in shaded and non-shaded areas 

  

  

Needle leaf  Broadleaf 

Shaded Non shaded Total Shaded Non Shaded total 

Count 6 39 45 36 24 60 

C
or

re
la

tio
n 

  Reference  
CPA 0.83 0.73 0.73 0.19 0.73 0.49 

Delineated 
CPA 0.60 0.53 0.52 0.15 0.65 0.40 
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Appendix 6. Photos from the field 
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