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ABSTRACT 

The mangrove forests of the Mahakam Delta in East Kalimantan, Indonesia are being subjected to high 

nutrient levels due to the environmental impacts of the prevailing human activities, particularly shrimp 

farming. The need to create space for construction of shrimp ponds facilitates deforestation process that 

accelerates downstream sedimentation and eutrophication. The effluent form existing shrimp ponds have 

high ammonia and organic matter content that contribute to nutrient enrichment in the system. In this 

study we apply advanced remote sensing techniques to retrieve mangrove leaf chlorophyll and link the 

spatial variation to nutrient regime within the mangrove system. 

 

A physical method of leaf chlorophyll retrieval was used. The method involved simulating canopy 

reflectance followed by model inversion to obtain leaf chlorophyll estimates. The Soil Leaf Canopy (SLC) 

model was parameterized to suite canopy characteristics of the mangrove for reflectance simulation. 

Model inversion using a look-up table (LUT) approach was applied to a Hymap hyperspectral image. 

Sensitivity of the top of canopy reflectance to variation in canopy parameters was ascertained prior to the 

inversion. Two inversion strategies were used based on spectral band to obtain chlorophyll estimates. 

Initially only bands within the VIS domain were used followed by bands ranging from VIS domain up to 

NIR region. Statistical relationship between the estimated and measured chlorophyll was done using 

RMSE and R2 values. All available data was used for the validation regardless of species. In a second 

approach data was portioned based on leaf structural differences during validation. A map with leaf 

chlorophyll values was finally generated. 

 

The match between simulated and measured reflectance of pixels with field sample points used in 

validation was good. Sensitivity analysis indicated variations in leaf chlorophyll, brown pigment, water, dry 

matter content and leaf mesophyll structure, LAI and fraction of brown leaves influenced reflectance at 

the top of canopy. Inversion using bands in the VIS regions gave better estimation of chlorophyll. Data 

partition based on species improved the strength of the relationship between estimated and measured 

chlorophyll. The chlorophyll map displayed distinct variation in leaf chlorophyll within the delta. This 

could be taken as an indication of nutrient enrichment in mangrove system among other factors.  

 

Key words: SLC model, Hyperspectral image, LUT, Inversion, Chlorophyll map. 
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1. INTRODUCTION 

1.1. Mangroves 

Mangroves are forest communities found in tropical and subtropical coastal and/or estuarine tidal or 

intertidal zones (Macnae, 1969). The mangroves trees adapt well to freshly silted up sandy beaches and salt 

marshes within the sheltered intertidal flat deltaic plains, broad estuarine mouths and shallow coastlines 

(Thom, 1982). Effective growth and natural regeneration of mangrove tress is favoured by atmospheric 

temperatures ranging between 200C and350C, humidity conditions between 60%-90% and annual rainfall 

of between 1000mm and 3000mm (Naskar & Mandel, 1999). Mangroves are intolerable to frosty 

conditions (Tomlinson, 1994).  Hence their  zones are restricted within 300 N-300 S (Macnae, 1969).The 

current global coverage of mangrove forest is reported to be at 15.2 million hectare, distributed over the 

continents Africa 20.7%, Asia 38.4%, North and Central America 14.8%, Oceania 13.0% and South 

America 12.9% .East Asia harbours 35% of the world total of which 59.8% is taken up by Indonesia 

(FAO, 2007).  

Mangrove forest have been classified using different schemes that include coastal settings where they 

occur,  physical processes taking place in their ecosystem and species. Based on coastal settings mangrove 

forests have been categorized into ; large deltaic systems mangroves; tidal plains mangroves; composite 

plains mangroves; fringing barriers with lagoons mangroves; drowned bedrock valleys mangroves and 

coral coasts mangroves (Thom, 1982). In terms of species, mangroves have been classified into two broad 

categories; true mangroves and associate mangrove. True mangroves occur exclusively within typical 

mangrove habitat (Tomlinson, 1994). The latest report on global mangrove taxonomy distinguishes 90 

mangrove species with majority of the species falling under the class of true mangroves (Spalding et al., 

2010).  

Mangroves plants exhibit distinct characteristics in terms of their anatomy, morphology, physiology and 

succession mechanism governed by their habitat conditions (Naskar & Mandel, 1999). Their canopy 

usually displays a zonation pattern based on species as a result of succession along salinity gradient 

(Macnae, 1969).The zonation pattern implies variation in sets of environmental conditions experienced by 

different sections of the forest stands because of natural differences in topography. However these 

variations could also be as a result of proximity to anthropogenic activities taking place within. In terms of 

ecosystem productivity mangrove forests have been ranked highly by forming the base of food chain in 

sea and coastal waters (Macnae, 1969). Mangrove forests are source of fuel wood, building material, and 

also act as fishing grounds to the local communities. In terms of ecology, mangrove forests provide 

habitat, food, and breeding ground to animals while at the same time protecting the coastal ecological 

communities from sedimentation, strong winds, waves, and water currents.  

 

The Mangrove forest of the Mahakam Deltas along the East coast of Kalimantan is the focus of this 

research. They are river dominated in terms of physical processes taking place in their ecosystem 

(Woodroffe, 1992). The dominant species include Nypa fruiticanas and Rhizophora mucronata. The mangrove 

area in the Mahakam Delta has been reported to have declined in coverage from 96,288 ha to 78,799 ha 

between the years 1982 and 1996 (Mahfud et al., 2001). The decline is as a result of creating room 
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development for other land uses particularly shrimp pond construction (Dahuri, 2001). Presently the 

situation in this mangrove forest is that the environmental impacts of the surrounding land uses are 

overwhelming and in turn posing a serious threat to the mangrove survival. Having a better understanding 

of mangrove forest current state is essential if effective management and conservation strategy have to be 

put into place. But in order to achieve this, appropriate bio-indicators have to be identified that can be 

directly linked to the mangrove condition. 

1.1.1. Nutrients in mangrove systems 

Nutrients availability in mangrove environment is an  important factor that defines their anatomy, 

morphology and physiology (Reef et al., 2010). Phosphorous and Nitrogen are the key nutrients limiting 

mangrove growth (Lovelock & Feller, 2003; Naidoo, 2009). The Natural sources of nutrient in mangrove 

are sediments and water during tidal inundation and in more special circumstances during cyclone and 

hurricanes (Lugo & Snedaker, 1974; Naskar & Mandel, 1999). Decomposition of litter from mangrove has 

been found to contribute towards nutrient supply in their ecosystem (Reef et al., 2010). However, supply 

of nutrients from these natural sources is limited and dependent on other factors like topography and 

frequency of tidal inundation. The naturally low nutrient availability in mangrove ecosystems has 

facilitated development of nutrient conservation strategies in mangrove plants that guarantees their 

survival in their habitat while at the same time maintaining high productivity e.g. evergreenness, high ratio 

of root to shoot, nutrient resorption from leaves before being shed, propping roots (Reef et al., 2010). 

 

The ultimate implication of increased nutrient supply to the mangrove ecosystem is that it compromises 

their resilience to environmental variability for instance elevated salinity levels or lower rainfall amounts 

(Lovelock et al., 2009; Naidoo, 2009; Reef et al., 2010). Under optimal nutrient conditions in mangrove 

systems, their leaves life span is higher hence less nutrients is used in regular leaf tissue formation 

especially for the broad leaves species and also the leaves retain more water, a key adaptation to high 

salinity (Komiyama et al., 2008). In addition mangrove biomass partition ratio between roots and shoots is 

higher for roots. Roots are important for mechanical support in areas with poorly consolidated and 

frequently inundated soils (Komiyama et al., 2000; Reef et al., 2010). the roots also aid in respiration and in 

nutrient absorption from frequently tidal inundated saline sea water (Naskar & Mandel, 1999; Tomlinson, 

1994). Processes that alter the shoot-root biomass partition ratio are considered threatening to mangrove 

survival under undesirable environmental changes like drought and low atmospheric humidity (Komiyama 

et al., 2000; Komiyama et al., 2008; Lovelock et al., 2009).  

 

Studies have been conducted to demonstrate effect of nutrient enrichment in mangrove ecosystem. In an 

experimental study by Naidoo (2009) the results revealed changes in resource allocation between roots and 

shoots of mangrove seedling upon enrichment with Nitrogen. In the works of Lovelock et al.(2009), it was 

established that mortality rate of mangrove trees under hypersaline conditions increased upon fertilization 

with Nitrogen. The same study showed that no mangrove tree mortality was experienced in areas of 

moderate salinities upon being subjected to fertilization with Nitrogen. A consistent finding to the two 

studies , Naidoo (2009) and  Lovelock et al. (2009) was that introduction of Phosphorous as nutrient to 

the mangrove resulted in canopy loss of mangrove trees.  

 

This is to say that, mangrove trees are sensitive to increase in nutrients in their system. In order to 

understand how well the mangrove trees can withstand unforeseen changes in environmental conditions, 

information on nutrient regime within their system is needed, most importantly Nitrogen. In a study by 

Lovelock & Feller, (2003), they established that mangrove fertilization using Nitrogen increased their 

foliar Nitrogen and photosynthetic capacity concurrently. In a different study based on remote sensing 
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application by Mutanga et al. (2003) they demonstrated that increased fertilization by nitrogen in a grass 

enhanced chlorophyll absorption feature , this is a desirable in when using remote sensing application for 

vegetation study. In general leaf chlorophyll concentration could be used to infer on nutrient variation in 

mangrove systems. 

1.1.2. Remote sensing of foliar biochemical 

The foliar biochemical are made up of pigment and non pigment elements whose characteristics are well 

represented in optical image reflectance (Kokaly et al., 2009). The foliar biochemical include chlorophyll, 

water, leaf structure, nitrogen, cellulose and lignin (Curran, 1989). Estimates of foliar biochemical using 

remote sensing techniques have often been used to understand ecosystem functions (Peterson  et al., 

1988).  This is because most biochemical processes taking place within the terrestrial ecosystems are 

related to foliar biochemical for instance photosynthesis, nutrient cycling and decomposition (Curran, 

2001; Vitousek, 1982). Various studies have been able to link leaf reflectance to leaf biochemical content 

(Daughtry et al., 2000; Delegido et al., 2010; Yoder & Pettigrew-Crosby, 1995). However, the ability to 

link reflectance to plant biochemical within ecosystem depends on sensitivity of reflectance to variation in 

leaf biochemical within and across systems (Kokaly et al., 2009).  

 

Retrieval of plant biochemical has mostly been carried as an application related to monitoring state of 

vegetation speculated to be experiencing stress arising from environmental conditions like pollution, 

drought, and diseases since the effect of environmental changes on vegetation can easily be detected from 

the pattern of leaf reflectance (Carter & Knapp, 2001; Lorenzen & Jensen, 1989). Among the leaf 

biochemical retrievable by remote sensing, Nitrogen, leaf water and chlorophyll have commonly been 

used to monitor vegetation conditions. Chlorophyll has already been used in precision agriculture to keep 

an eye on crops net primary production(Haboudane et al., 2002). Chlorophyll has also been used to 

establish the optimum fertilizer application rates in crop fields so as to minimize on nutrients loss through 

run off and sippage (Blackmer & Schaepers, 1995; Hawkins et al., 2007). This implies that chlorophyll can 

be indirectly used to study soil nutrient dynamics (Carter & Knapp, 2001; Curran, 2001; Zarco-Tejada et 

al., 2004). In the case of forest canopies and grassland, chlorophyll has often been quantified in an attempt 

to comprehend ecosystem properties (Ustin et al., 2004). In the climate change scenario, leaf chlorophyll 

has been indirectly linked to amount of carbon dioxide emitted into the atmosphere as chlorophyll forms 

the base where carbon dioxide is absorbed by plants and converted into useful forms (Piao et al., 2006). 

 

Using remote sensing application in ecological study introduces the issue of appropriate image choice. For 

identification and quantifying size of various land cover land use types, conventional multi-spectral images 

could be used effectively (Curran, 2001). However, for studies that require detailed information of canopy 

biochemical properties for instance detecting water stress in vegetation, using finer spectral resolution 

images is essential. Presently Hyperspectral images have been recommended in retrieval of leaf 

biochemical like chlorophyll in ecosystem studies (Curran, 2001; Kokaly et al., 2009; Schut & Ketelaars, 

2003). Hyperspectral images are associated with better quality data in vegetation studies because they allow 

characterisation of vegetation in different wavelength regions since different vegetation characteristics 

influence specific parts of the electromagnetic spectrum (Blackburn, 1998; Curran, 1989; Curran et al., 

1992; Kokaly et al., 2009). When multispectral sensors are used instead of hyperspectral sensors to acquire 

data on vegetation, there is often loss of information because multispectral sensors have limited number 

of channels and as a result data on plant reflectance is lost due to the averaging (Kumar et al., 2001).  A 

demonstration of  differences in information intensity between hyperspectral and multispectral images in 

remote sensing of plant biochemical  is shown in the figure 1 adopted from  Kumar et al. (2001). The 

multispectral image is represented by LANDSAT TM bands. 
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Advancement in technology usually demands better methods to go with it. This has also been the case 

with hyperspectral remote sensing techniques which requires algorithms capable of synthesising 

information from the numerous numbers of bands efficiently. There has been development in empirical 

methods to accommodate hyperspectral data based on different multivariate approach e.g. Parti

Square regression (PLSR) and Stepwise

et al., 2010). Physical methods have also been used to generate information from hyperspectral images 

(Schlerf & Atzberger, 2006; Zarco-Tejada et al., 2004)

empirical and physical method to retrieve vegetation characteristics from hyperspectral images 

et al., 2000; Houborg et al., 2007). However on standalone basis among the two methods, physical 

approach is a more robust method. 

 

In statistical approach, a relationship is established

mainly through regression equations. The regression equations are either univariate e.g. for the case of 

spectral indices like Normalised Difference Vegetation Index (NDVI) or 

multivariate. Multivariate equations are more a

wider wavelength range e.g. Partial Least Square Regression (PLSR). Nevertheless, statistical models have 

a downside especially the spectral indices. In most cases you will find that relating the 

specific plant parameter like chlorophyll might be biased because the information they provide is often 

related to multiple canopy properties. 

information obtained from image da

include Chlorophyll Absorption Ration Index (CARI) and Soil Adjusted Vegetation Index (SAVI). For the 

multivariate methods there usually exists a

used to predict a single dependent variable 

method a major drawback still lies in the inability to transfer the findings to other similar ecosystems 

(Colombo et al., 2003; Houborg et al., 2009)

ideal conditions which rarely exist in multiple places. 

specific since they apply universal laws of 

Figure 1Vegetation reflectance from a hyperspectral and multispectral sensors
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g techniques which requires algorithms capable of synthesising 

information from the numerous numbers of bands efficiently. There has been development in empirical 

methods to accommodate hyperspectral data based on different multivariate approach e.g. Parti

Square regression (PLSR) and Stepwise Multiple Linear Regression (SMLR) (Mutanga et al., 2004; Schlerf 

. Physical methods have also been used to generate information from hyperspectral images 

Tejada et al., 2004). Moreover, some studies opt to combine both 

empirical and physical method to retrieve vegetation characteristics from hyperspectral images 

. However on standalone basis among the two methods, physical 

In statistical approach, a relationship is established between image reflectance and canopy 

mainly through regression equations. The regression equations are either univariate e.g. for the case of 

spectral indices like Normalised Difference Vegetation Index (NDVI) or the equation may be a 

multivariate. Multivariate equations are more advanced and they involve use of spectral information over a 

wider wavelength range e.g. Partial Least Square Regression (PLSR). Nevertheless, statistical models have 

a downside especially the spectral indices. In most cases you will find that relating the spectral indices to a 

specific plant parameter like chlorophyll might be biased because the information they provide is often 

related to multiple canopy properties. Currently narrow band indices are used 

information obtained from image data to specific canopy properties. Examples of narrow band indices 

Chlorophyll Absorption Ration Index (CARI) and Soil Adjusted Vegetation Index (SAVI). For the 

multivariate methods there usually exists an overfitting problem since many independent 

used to predict a single dependent variable (Kokaly et al., 2009). But generally, when it come to statistical 

ies in the inability to transfer the findings to other similar ecosystems 

(Colombo et al., 2003; Houborg et al., 2009). This is because most statistical methods are

st in multiple places. Physical methods on the other hands

since they apply universal laws of solar energy transfer within  a canopy (Liang, 2004

Vegetation reflectance from a hyperspectral and multispectral sensors 

CH APPLIED TO HYPERSPECTRAL IMAGERY 

Advancement in technology usually demands better methods to go with it. This has also been the case 

g techniques which requires algorithms capable of synthesising 
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methods to accommodate hyperspectral data based on different multivariate approach e.g. Partial Least 

(Mutanga et al., 2004; Schlerf 
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. Moreover, some studies opt to combine both 

empirical and physical method to retrieve vegetation characteristics from hyperspectral images (Daughtry 

. However on standalone basis among the two methods, physical 

between image reflectance and canopy properties 

mainly through regression equations. The regression equations are either univariate e.g. for the case of 

the equation may be a 

dvanced and they involve use of spectral information over a 
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spectral indices to a 
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Chlorophyll Absorption Ration Index (CARI) and Soil Adjusted Vegetation Index (SAVI). For the 

n overfitting problem since many independent variables are 

enerally, when it come to statistical 
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are developed under 

on the other hands are not area 

Liang, 2004). This implies 
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that findings from one research could be easily applied to a different area with similar ecosystem 

properties. Studies have been successful in applying physical methods to estimate plant chlorophyll e.g. 

Houborg et al.,  (2009) for a corn field, Darvishzadeh et al.,(2008) on a grassland and Daughtry et al. 

(2000)also on corn field. In forest canopies, there has been successful studies done using physical method 

e.g. Verrelst et al. (2010) Schlerf & Atzberger,(2006) and Zarco-Tejada et al.(2004). In this study we apply 

a physical method of forest parameter retrieval to map chlorophyll of the mangrove forest based on a 

hyperspectral image. 

 

1.1.3. Canopy Modelling and Inversion 

 

Inference of canopy characteristics using remote sensing requires information on surface reflectance. 

Models using bidirectional data have been developed to simulate surface reflectance (Liang, 2004).The 

importance of bidirectional reflectance data is that it enhances accurate retrieval of land surface 

information especially when coupled with robust radiative transfer models (Jones & Vaughan, 2010). The 

radiative transfer models factor in anisotropy of radiation field in canopies by treating radiation in 

canopies as sum of different components making extraction of specific land surface characteristic 

convenient (Liang, 2004). The radiative transfer models used range from basic ones which either do not 

include or they simplify higher order scattering in canopies to complex models applying sophisticated 

techniques (Jones & Vaughan, 2010).  

 

Radiative transfer models are categorized into four classes based on the concept under which they operate, 

turbid medium models, geometrical-optical models, Monte-Carlo ray tracing and radiosity models and 

kernel-driven and empirical models (Jones & Vaughan, 2010). But currently there exists unclassified 

variety of hybrid models that integrates components of the four conceptual model classes. Applications of 

these models have been done on both virtual and real canopies. In virtual canopies, ray tracers are 

commonly used since they are theoretical and cannot be inverted to retrieve canopy parameter (Kumar et 

al., 2001). For the case of real canopies, radiosity models have been employed because they hold the ability 

of being inverted to extract real canopy characteristics (Kumar et al., 2001).  

 

A review on canopy reflectance models compiled by Goel & Thompson (2000) give an account of canopy 

reflectance models being used. From the review, we find that, the canopy reflectance  models vary from 

simple linear 1D models e.g. Scattering by Arbitrarily Inclined Leaves (SAIL) model (Verhoef 1984) to 

complex 3D hybrid models e.g. Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-

Etchegorry  et al., 1996). 1D models are best suited for horizontally homogenous closed canopies and are 

relatively less complex to invert as compared to 3D models (Gastellu-Etchegorry, Zagolski et al. (1996). 

the  3D models are designed to model reflectance for complex heterogeneous discontinuous canopies 

(Gastellu-Etchegorry  et al., 1996).  Successful use of physical models in chlorophyll retrieval has been the 

case recently (Darvishzadeh et al., 2008; Houborg et al., 2009; Zarco-Tejada et al., 2004). In studies where 

physical models have been used, the model performance have been enhanced by coupling more than one 

model in order to maximise on the information of the canopy structure that is necessary for accurate 

inference of specific canopy property. An example of the so called hybrid models is the Soil Leaf Canopy 

(SLC) model (Verhoef & Bach, 2007). This model integrates soil background, canopy structure and leaf 

properties in order to retrieve specific vegetation parameter.  

 

Retrieving canopy characteristics using reflectance models requires an inversion process since the 

simulated reflectance properties are a function of canopy structure (Jones & Vaughan, 2010; Kimes et al., 
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2000). The aim of inversion process is to find best set of model parameters that 

observed bidirectional reflectance. However according to 

model inversion process depends on

approach applied and the calibration of reflectance upon whic

conditions do not guarantee eliminating the problem of having multiple solution referred to as ill

posedness which is a key problem in model inversion 

minimising on ill-posedness have often been in

Houborg et al.(2009)combined a merit 

minimized between the observed and simulated reflectance values 

Prior knowledge of canopy structure also helps limit the solutions of the inversion process and making the 

inversion process more robust (Atzberger et al., 2003)

a better cost function in that not only is the difference between residuals is minimized but also difference

in estimated and prior known input values are minimized 

 

There are various methods of model inversion. Conventionally, a numerical function was applied to the 

model output in order to minimise residuals between measured and simulated reflectance in a process 

called optimization (Bicheron & Leroy, 1999; Jacquemoud et al., 1995)

it is computationally demanding and it presents a challenge to find optimum minima for the solution  

(Kimes et al., 2000). Look-up Table (LUT) approach 

become a common method of model inversion d

reflectance generated by running the model numerous times in a forward mode with predefined set of 

parameter covering the potential range of canopy characteristics 

the bidirectional data stored in the image in an inversion process. An alternative to LUT approach in 

model inversion are machine intelligence methods which include the Artificial Neural Networks (ANN), 

genetic algorithms (GA) and Support Vector Ma

applying ANN for model inversion (Atzberger et al., 2003; Schlerf & Atzberger, 2006)

requires training using numerous forward mode model runs in ord

canopy reflectance and the canopy parameters.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 2 Process of canopy reflectance modelling and inversion
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The aim of inversion process is to find best set of model parameters that closely

. However according to Jacquemoud et al.(2000) the performance of 

on; choice of model used to simulate canopy reflectance, the 

calibration of reflectance upon which the inversion is applied.

conditions do not guarantee eliminating the problem of having multiple solution referred to as ill

which is a key problem in model inversion (Combal  et al., 2003). Techniques known to 

often been in-cooperated in studies where model inversion was used.  

a merit and penalty function which ensured that not only residuals were 

and simulated reflectance values but also eliminated non

Prior knowledge of canopy structure also helps limit the solutions of the inversion process and making the 

(Atzberger et al., 2003). In addition the prior information could be

a better cost function in that not only is the difference between residuals is minimized but also difference

estimated and prior known input values are minimized (Combal  et al., 2003). 

There are various methods of model inversion. Conventionally, a numerical function was applied to the 

model output in order to minimise residuals between measured and simulated reflectance in a process 

(Bicheron & Leroy, 1999; Jacquemoud et al., 1995).A downside of this method is that 

it is computationally demanding and it presents a challenge to find optimum minima for the solution  

up Table (LUT) approach (Combal  et al., 2003; Houborg et al., 2009)

become a common method of model inversion due to its simplicity. A LUT is a database of simulated 

reflectance generated by running the model numerous times in a forward mode with predefined set of 

covering the potential range of canopy characteristics which is later searched to find best 

ional data stored in the image in an inversion process. An alternative to LUT approach in 

model inversion are machine intelligence methods which include the Artificial Neural Networks (ANN), 

genetic algorithms (GA) and Support Vector Machine (SVM). So far studies have been successful in 

(Atzberger et al., 2003; Schlerf & Atzberger, 2006)

requires training using numerous forward mode model runs in order to establish relationship 

canopy reflectance and the canopy parameters. 

Process of canopy reflectance modelling and inversion 

CH APPLIED TO HYPERSPECTRAL IMAGERY 

closely describes the 

the performance of 

canopy reflectance, the inversion 

h the inversion is applied. But still these 

conditions do not guarantee eliminating the problem of having multiple solution referred to as ill-

Techniques known to 

cooperated in studies where model inversion was used.  

which ensured that not only residuals were 

but also eliminated non-physical values. 

Prior knowledge of canopy structure also helps limit the solutions of the inversion process and making the 

In addition the prior information could be used as 

a better cost function in that not only is the difference between residuals is minimized but also difference 

There are various methods of model inversion. Conventionally, a numerical function was applied to the 

model output in order to minimise residuals between measured and simulated reflectance in a process 

nside of this method is that 

it is computationally demanding and it presents a challenge to find optimum minima for the solution  

(Combal  et al., 2003; Houborg et al., 2009) has 

ue to its simplicity. A LUT is a database of simulated 

reflectance generated by running the model numerous times in a forward mode with predefined set of 

er searched to find best fit for 

ional data stored in the image in an inversion process. An alternative to LUT approach in 

model inversion are machine intelligence methods which include the Artificial Neural Networks (ANN), 

So far studies have been successful in 

(Atzberger et al., 2003; Schlerf & Atzberger, 2006). ANN approach 

er to establish relationship between 
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1.2. Problem Statement 

Increase of human activities within mangrove ecosystem is a current global trend (FAO, 2007). In the case 

of the Mahakam Delta, there is increased deforestation rate as a result of creating room for development 

of shrimp ponds and also to supply raw material in pulp industry (Dutrieux et al., 1990). The process of 

deforestation in turn accelerates sedimentation and eutrophication in the mangrove surrounding by 

washing nutrients and soils downstream. Consequently, discharge from existing shrimp ponds load the 

mangrove environment with ammonia and organic matter which are a direct result of management 

practices associated with shrimp farming.  

 

The motivation behind this study is that, human activity forms a big subsystem of the Mahakam Delta 

whose integral output tends to involve increase in nutrient as one of the bi products. Therefore it is 

justifiable to claim that the impact of elevated nutrient amounts in the system might have an effect on the 

growth and survival of the mangroves forest. This speculation of negative effect of nutrients on the 

mangrove trees is derived from the pre-established fact that ideal mangrove environment generally has low 

nutrient (Lovelock et al., 2009; Reef et al., 2010). Over the years, there have been debates about nutrient 

enrichment not presenting a problem to the growth of mangroves in proposals related to using mangrove 

ecosystem for treatment of sewage and aquaculture effluent. However in mangrove study by Lovelock et 

al  (2009) they show that nutrient enrichment actually threatens mangrove survival . In the study the 

authors hypothesise that increase in nutrients leads to poor investment in their root system which is key 

factor in their survival and in turn they become susceptible to environmental changes for instance 

development of hypersaline conditions, low rainfall amounts and humidity. Vaiphasa et al. (2007) also 

shows that shrimp pond effluent affected growth of mangroves and increased their mortality rate in a 

study based in Thailand. Although from the work of Trott & Alongi (2000) their finding imply that 

mangrove have some capacity, at least over short spatial and temporal scales, to process intermittent 

inputs of pond-derived nutrients, this is arguable in the case of mangrove forest of the Mahakam Delta 

since they have been exposed to shrimp pond discharge for long periods of time. 

 

In order to be able to make solid conclusions regarding the effect of nutrient enrichment on the mangrove 

forest of the Mahakam Delta, a reliable indicator of nutrient enrichment in an ecosystem is required. Foliar 

biochemical in general have often been linked to processes taking place within ecosystems using remote 

sensing techniques (Peterson  et al., 1988). Among the leaf biochemical,  leaf nitrogen and chlorophyll 

have been widely used leaf biochemical in ecosystem studies (Ollinger et al., 2002; Ustin et al., 2004). In 

this work chlorophyll is chosen to be used as an indicator of nutrient enrichment based on the fact that 

other similar studies were successful in using chlorophyll to understand nutrient dynamics although in 

different types of ecosystem (Blackmer & Schaepers, 1995; Hawkins et al., 2007; Mutanga et al., 2004). We 

are optimistic to establish a spatial variation trend in the mangrove leaf chlorophyll concentration that can 

be linked to nutrient dynamics in the mangrove system.  

 

Mapping chlorophyll concentrations of the mangroves forest will enable provide first hand information on 

nutrient variation. The information is essential for developing and enforcing effective management and 

conservation measures aimed at safeguarding the resilience of the mangrove to unforeseen changes in 

environmental conditions since elevated nutrients quantities in mangrove systems only becomes a problem 

when the mangrove are exposed to extreme environmental conditions as a result of compromised survival 

mechanism. Also the findings from this study are expected to contribute towards bridging the information 

gap that exist based on available literature on methods of monitoring state of mangrove ecosystem. In 

addition, the method used in mapping chlorophyll in this study is transferable to other similar mangrove 

ecosystems making monitoring of mangrove a cost effective process.  
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1.3. Objectives 

The main objective of this study is to apply advanced remote sensing techniques, in terms of image 

attributes (hyperspectral) and method (physical) to map chlorophyll concentration in the mangrove forest 

to provide an inference on nutrient regime within the system. 

 

1.3.1. Specific objectives 

 

• To simulate mangrove canopy reflectance and perform model inversion by LUT approach in 

order to retrieve chlorophyll concetration estimates at leaf level. 

• To assess the accuracy of the inversion process by correlating estimated chlorophyll against field 

measurements. 

• To generate a map of chlorophyll concentration for the mangrove forest and use the information 

to understand spatial variation of nutrients 

 

1.3.2. Research questions 

• Are the simulated and measured reflectances comparable enough to give realistic chlorophyll 

values? 

• Which mangrove canopy parameters influence the reflectance at the top of canopy that need to 

be varied during LUT generation process? 

• What is the statistical relationship between the measured and estimated chlorophyll values? 

• Can we link the chlorophyll distribution trend displayed on the map to nutrient regime within the 

system 

 

 

1.3.3. Hypothesis 

• The input parameters specification in the SLC model will help minimize mismatch between 

simulated and measured reflectance hence estimated values will be reliable 

• Cab, Cdm, Cs,  N, LAI, and fB have significant influence on the visible part of TOC reflectance 

and need to be varied during LUT process 

• The predicted chlorophyll will have a significant correlation with the field measurements 

• Chlorophyll will vary with proximity to shrimp ponds and areas prone to frequent tidal 

inundation. 
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2. MATERIALS AND

2.1. Study area  

The mangrove forests under study occur

117028΄΄E and longitude 0029΄S) .The Mahakam 

can be divided into three systems

conditions within the Mahakam Delta are mostly tropic

energy with large fluvial input.

within the delta plain. The delta plain is located in an intertidal zone with water level variation of abo

2.5m. The topography of the delta plain is flat with about 0.1% slope. 

two channel types; distributaries channels linked to River Mahakam and tidal channels for water 

evacuation during high tide. Nypa fruiticans

whose distribution is distinct. 

fruiticans is found in the central areas of the delta plain.

forest within the delta. Recent fishery development in this area has converted a vast area of mangrove

forest into shrimp ponds (tambak).

 

The delta also supports a number of human activities e.g. salt production, coal mining, fishing and 

aquaculture. However, the natural structure of the Mahakam Delta has greatly been altered to 

accommodate human activities. A great portion of the mangrove habitat has been converted into human 

settlements areas and agricultural developments. There has been int

to suite human activities and also pollution has been the case from oil spills and industrial waste.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 3 Study area 
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MATERIALS AND METHODS 

forests under study occur in a river delta called the Mahakam located on (latitude 

29΄S) .The Mahakam Delta is an active delta system whose general morphology 

systems: the delta plain, the delta front, and the prodelta.

conditions within the Mahakam Delta are mostly tropical humid, tidal action are

. The delta covers an area of about 1800 km2. The mangrove forest occurs 

The delta plain is located in an intertidal zone with water level variation of abo

2.5m. The topography of the delta plain is flat with about 0.1% slope. The delta plain has a network of 

two channel types; distributaries channels linked to River Mahakam and tidal channels for water 

Nypa fruiticans and Rhizophora mucronata are the dominant mangrove species 

whose distribution is distinct. Rhizophora mucronata is found near the shore of the delta plain while 

is found in the central areas of the delta plain. Other than mangrove forest

Recent fishery development in this area has converted a vast area of mangrove

into shrimp ponds (tambak). 

a number of human activities e.g. salt production, coal mining, fishing and 

However, the natural structure of the Mahakam Delta has greatly been altered to 

accommodate human activities. A great portion of the mangrove habitat has been converted into human 

settlements areas and agricultural developments. There has been interference with the hydrological regime 

to suite human activities and also pollution has been the case from oil spills and industrial waste.
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in a river delta called the Mahakam located on (latitude 

n active delta system whose general morphology 

prodelta. The environmental 

al humid, tidal action are high with low wave-

The mangrove forest occurs 

The delta plain is located in an intertidal zone with water level variation of about 

The delta plain has a network of 

two channel types; distributaries channels linked to River Mahakam and tidal channels for water 

e the dominant mangrove species 

of the delta plain while Nypa 

forest, there is also lowland 

Recent fishery development in this area has converted a vast area of mangrove 

a number of human activities e.g. salt production, coal mining, fishing and 

However, the natural structure of the Mahakam Delta has greatly been altered to 

accommodate human activities. A great portion of the mangrove habitat has been converted into human 

erference with the hydrological regime 

to suite human activities and also pollution has been the case from oil spills and industrial waste. 
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2.2. Image data 

An airborne Hymap image was used in this study provided by HyVista Cooperation, Sydney, Australia. 

The image was acquired on the 16th of August 2009 between 0623 and 0705hours (UTC) from a Hymap 

campaign as a prerequisite of an ongoing project. The sensor was mounted on a plane flown at an altitude 

of 1.45km at nadir over the study area in eight flight lines in the W-E direction. The full scene was 

covering an area of about 11km by 11km.  However, there were cloudy conditions and hence parts of the 

scene were covered with clouds. The data had a ground resolution of 3.1m and was captured using 126 

channels of the Hymap sensor with an average spectral resolution of 10 nm between the 450nm and 

2500nm wavelength.  

 

2.2.1. Image processing and pre-processing 

Image processing was carried out by the provider, HyVista Cooperation, which included image geocoding, 

atmospheric correction and radiometric calibration. The geocoding was done using 48 ground control 

points obtained from the study area along roads, bridges and ponds followed by the radiometric and 

atmospheric correction using Hycorr programme. First the radiances in the image were converted to 

apparent surface reflectance then atmospheric correction was based on ATREM3 processing whose 

specifications are listed in Table 5. 

 

Image pre-processing included testing accuracy of the geocoding and radiometric correction carried out as 

shown on Appendix 1. The results were acceptable. This was followed by image mosaic since the full 

scene had been acquired in eight flight lines. During mosaicking, image data from 12 Hymap channels 

were eliminated because they considered being noisy leaving with bad bands leaving 114 bands of the 

image dataset to be used in the analysis. As mentioned earlier, the image was acquired when there were 

moments of cloudy conditions and a few areas in the image suffered cloud patches.  The areas with clouds 

and cloud shadows in the image were removed by manually digitizing over the regions and masking them 

out. ENVI 4.5 image software was mainly used in the image pre-processing.  

 

 

 

MODULE SPECTRAL RANGE BANDWIDTH CHANNELS 

AVERAGE 

SPECTRAL 

    ACROSS CHANNELS   INTERVAL 

  (um) (nm)   (nm) 

VIS 0.42-0.88 15-16 32 16 

NIR 0.881-1.335 12-14 42 13 

SWIR 1.40-1.81 11-13 13 12 

SWIR 1.95-2.49 15-18 18 16 

Courtesy of the Hyvista Cooperation products 

 

Table 1 Hymap hyperspectral instrument specifications 
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2.3. Ground data 

The ides for field data collection was to obtain measurement of mangrove leaf chlorophyll concentration 

that was required for validation of the model estimates of chlorophyll concentration. But also prior 

knowledge of the general mangrove canopy structure was necessary in the SLC model parametization 

process 

2.3.1. Chlorophyll measurements 

The ground data was collected between August 2009 and August 2010.  Sampling strategy was random 

representative sampling limited to accessible areas which were identified from the image because 

mangrove forests are highly inaccessible (Green et al., 1998). In the field, predefined sampling points were 

located with the assistance of a Global Positioning System (GPS) which was linked to a mini computer 

(IPAQ) that allowed reading the image interactively and recording data on the same IPAQ. Sampling was 

conducted from river banks towards inland.  A 350m transect was used constituting 7 sample points in 

between. For each sample point, a tree of the dominant species was randomly identified. Relative total 

Chlorophyll of the leaves was measured without destruction using a SPAD -502 Leaf Chlorophyll Meter 

(Minolta, Inc). SPAD gives relative unitless values which are highly correlated with chlorophyll 

concentration (Haboudane et al., 2002). Branches were cut off the upper part of the tree crown. From the 

branches, leaves were collected upon which 10 individual SPAD readings were taken and the average 

calculated was used. The SPAD values ranged between 30 and 75.  

 

Appropriate calibration equations were applied on the SPAD values to obtain values of chlorophyll 

concentration. An equation by Markwell et al. (1995) was used in the case of  Nypa fruiticanas  given by, 

Chl(µmol m-2)= (M^0.264) where Chl is chlorophyll concentration and M is the SPAD value. The equation 

was seen appropriate for the species because the relationship between M and chlorophyll concentration 

was developed using Zea mays (corn) as one of the species. This is relevant because leaf structure has been 

found to play a major role when establishing relationship between SPAD values and chlorophyll 

concentration therefore Nypa fruiticanas and Zea mays both being monocots was the theoretical rationale for 

using the equation due to some similarity in leaf structure. The Nypa fruiticanas chlorophyll concentration 

values obtained from the equation were converted from molarity per square meter to grams per square 

centimetre. In the case of Rhizophora mucronata, an equation by Richardson et al. (2002)was used. The 

relationship between leaf chlorophyll concentration and SPAD values found in the equation was 

established based on the species Betula papyrifera (paper birch) given by; Chl (mg cm-2) =5.52-04+4.04-04 

M+1.25-05M2. The rationale for using the equation was based on close similarity of leaf structure for the 

two species, Rhizophora mucronata and Betula papyrifera in addition to both species being forest trees. 

However the rationale for using the two equations was not substantiated in depth. 

 

Species 

Measured 

variable Min Mean Max Stdev Var_coeff 

Nypa SPAD(unitless) 44.4 52.3 59.4 4.1 0.08 

n=35 Cab(μg/cm2) 48.6 64.5 80.4 8.7 0.13 

Rhizophora 

&others SPAD(unitless) 34.9 54.7 69.2 7.6 0.14 

n=46 Cab(μg/cm2) 29.9 60.8 88.3 13.2 0.22 

 

Table 2 Statistics on measured chlorophyll concentration based on mangrove leaves SPAD values 
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2.3.2. LAI measurements 

 

Leaf Area Index (LAI), defined here as total one sided leaf area per unit ground area, was measured using 

LAI-2000 Plant Canopy analyser (LI

initially a one sensor mode was used. However, the method was challenging since LAI computation 

requires above canopy and below canopy measurements. Obtaining 

with the LAI 2000 needed open spaces within the canopy

sensor mode method was an alternative where one of the LAI

outside the canopy to continuously take above canopy measurements in a remote mode. An assumption 

that both devices were observing the 

were only 350m maximum distance away from 

synchronised to compute an LAI measurement for each sample point. How

was subject to prevailing sky conditions. The LAI ranged between 1 and 5.

 

2.3.3. Ancillary ground data 

Observations relevant for the model parametization were also made in the field. 

was estimated at all sample points in addition to 

dominant species identified was measured. Images

distribution function.  Canopy background observations related to soil and 

made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 4 Leaves of dominant mangrove species found in the study area
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Leaf Area Index (LAI), defined here as total one sided leaf area per unit ground area, was measured using 

(LI-COR, 1992). Two methods of LAI measurements wer

initially a one sensor mode was used. However, the method was challenging since LAI computation 

requires above canopy and below canopy measurements. Obtaining pseudo above canopy measurement 

with the LAI 2000 needed open spaces within the canopy which proved to be quite hard to find. A two 

sensor mode method was an alternative where one of the LAI-2000 devices was left in an open space 

outside the canopy to continuously take above canopy measurements in a remote mode. An assumption 

the same sky conditions had to be adapted which was practical since 

were only 350m maximum distance away from each other. Latter the output from both 

synchronised to compute an LAI measurement for each sample point. However taking LAI measurements 

was subject to prevailing sky conditions. The LAI ranged between 1 and 5.  

bservations relevant for the model parametization were also made in the field. Percentage c

in addition to tree crown height and crown diameter. 

measured. Images of the trees were taken to establish their leaf 

distribution function.  Canopy background observations related to soil and brown materials were also 

Leaves of dominant mangrove species found in the study area 
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Leaf Area Index (LAI), defined here as total one sided leaf area per unit ground area, was measured using 

. Two methods of LAI measurements were applied; 

initially a one sensor mode was used. However, the method was challenging since LAI computation 

above canopy measurement 

which proved to be quite hard to find. A two 

left in an open space 

outside the canopy to continuously take above canopy measurements in a remote mode. An assumption 

same sky conditions had to be adapted which was practical since they 

. Latter the output from both devices were 

ever taking LAI measurements 

Percentage canopy cover 

crown height and crown diameter. Tree height of 

of the trees were taken to establish their leaf angle 

brown materials were also 
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2.4. The model 

This study uses the Soil Leaf Canopy (SLC) model, Verhoef & Bach (2007). The SLC is an integration of 

three reflectance sub models, for soil, for leaves and the canopy with parameter shown on Table 3.  

 

4SOIL(SOIL) PROSPECT PROSPECT 4SAIL2(CANOPY) External 

  (Green leaf) (Brown leaf)   (Geometry) 

BRDF(B0,c,h) 

Chlorophyll 

(Cab_g) 

Chlorophyll 

(Cab_b) Leaf Area Index (LAI) 

Solar Zenith 

angle(sza) 

All 

Reflectance  

(b,SM) Water (Cw_g) Water (Cw_b) 

Leaf inclination 

distribution function 

(LIDF) 

Viewing Zenith 

angle(vza) 

  

Dry matter 

(Cdm_g) 

Dry matter 

(Cdm_b) Hot spot(hot) Azimuth angle(azi) 

  Senescence(Cs_g) Senescence(Cs_b) 

Fraction brown 

leaves(fB)   

  Structure(N_g) Structure(N_b) 

Canopy dissociation 

factor(Diss)   

      Crown clumping(Cv)   

      

Crown diameter to 

height(zeta)   

 

Table 3 The SLC input parameters 

The model functions in the spectral region between 400 -2500nm at 1nm resolution. The Soil sub model 

called 4SOIL is a bi-directional reflectance (BRDF) model modified from the earliest version of Hapke 

(1981). It includes the soil moisture effect. However in this study we assume a lambertian soil background 

upon which only soil moisture effect has been applied due to the soil characteristics of mangrove forest. A 

reference mangrove soil spectrum background is shown in figure 5. The reflectance patterns were 

consistent with differences in soil moisture content. 

 

 

 
Figure 5 Mangrove soil background reflectance extracted from different regions in the image 
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For the Leaf model, a modified version of PROSPECT by Jacquemoud & Baret (1990) is applied. It 

factors the brown pigment in leaves as one of the parameters in-cooperated. 4SAIL2 model Verhoef & 

Bach (2007) is used to simulate the canopy reflectance. This is a hybrid canopy reflectance model with two 

layers for different leaf colour, green and brown. The different layers allows combining of green and 

brown material  within a canopy through defining fraction of brown element (fB) and specifying the 

dissociation factor (Diss) which indicates the manner in which  green leaves and brown material have been 

vertically distributed within the canopy.  In a situation where Diss tends towards 1, it implies majority of 

green material within the canopy is at the top layer. The 4SAIL2 model in-corporate crown clumping 

effect which is very important for modelling the reflectance of a discontinuous canopy (Gastellu-

Etchegorry  et al., 1996). Moreover, Leaf Inclination Distribution Function (LIDF) and hot spot 

parameter are also included in the canopy model. 

 

In order to predetermine how well the SLC model could simulate mangrove canopy to match the 

measured reflectance, a test was carried out based on three mangrove species Rhizophora mucronata, 

Bruguiera gymnorrhiza and Nypa fruiticanas. This was achieved by: 

 

1. Identifying homogenous areas in the image with species of interest, Rhizophora mucronata, Bruguiera 

gymnorrhiza and Nypa fruiticanas. 

2. Delineating region of interest within the respective homogenous areas made up of 5 pixels upon 

which average reflectance were extracted. 

3. The three extracted reflectance were independently input into the SLC model to act as the 

reference spectrum. 

4. Manual adjustment of SLC parameters were done independently to simulate the three extracted 

reflectance. 

5. The values of the simulated reflectance obtained for the three different species were plotted 

against the respective measured reflectance for comparison. 

The process of predetermining capability of the SLC model to simulate mangrove canopy also played an 

important role in establishing the potential range for some of the mangrove canopy parameter which are 

required as input in the SLC model but had not been measured in the field. The parameters included leaf 

mesophyll structure, leaf water content, brown pigment in leaves and the leaf dry matter content. 

 

2.4.1. Sensitivity analysis 

The response of the Top of Canopy (TOC) reflectance to variation in mangrove canopy parameter was 

carried out prior to canopy modelling and inversion. The input reflectance for the sensitivity analysis were 

the three extracted reflectance (r) that had been used to test performance of the SLC model in simulating 

the mangrove canopy with reference to three species Rhizophora mucronata, Bruguiera gymnorrhiza and Nypa 

fruiticanas .The input parameters used in the sensitivity analysis included, Cab, Cdm, Cs, N, LAI, Cv and 

fB. The sensitivity analysis was expressed in the Jacobian Matrix (J). This is a matrix of partial derivatives 

of the model’s relative reflectance (rrel) upon change of input parameter by 1% of their maximum potential 

range and is a function of change in reflectance for wavelength 1< � <n for the input parameter 1< � <m.  
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                                                J = [jik] 1<i<n,1<k<m, with jik=Δr(λi)/Δpk    
 

 

 

Input parameters(p) Min value Max value Range 1% of range 

Cab 20 80 60 0.6 

Cw 0.01 0.2 0.19 0.002 

Cdm 0.001 0.03 0.029 0.0003 

Cs 0.1 0.5 0.4 0.004 

N 1.5 2.5 1 0.01 

LAI 1.5 5 3.5 0.035 

Cv 70 90 20 0.2 

fB 0.01 0.4 0.39 0.004 

 

Table 4 1% parameter change used in the sensitivity analysis 

 

2.4.2. Forward modelling of mangrove canopy 

A combination of inputs variables shown in Table 5 were used to generate mangrove canopy simulated 

reflectance. In the PROSPECT model the green leaf parameters range were derived from the solution of 

the reference spectrum that were used to test the performance of the SLC model to simulate mangrove 

canopy apart from Cab_g which was derived from fields measurements range. Since there was a possibility 

of having more than one solution that would have matched the same reference spectra; the parameters 

were varied within the neighbourhood of the chosen solutions. For the brown leaf, values of 10, 0 0.5,15 

and 10 were used for Cab_b, Cw_b, Cdm_b, Cs_b and N_b respectively. In the 4SAIL2 model, LAI was 

varied between values of 1 and 5 based on field measurements. From field observations, the Cv was 

generally high, hence a fixed value of 80% was used. Fb value were assigned low values due to high Cv as 
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suggested in the work Verrelst et al. (2010). The hot spot parameter was fixed at a value of 0.05. For the 

soil model, a background soil spectrum was obtained from the image upon which only soil moisture effect 

was applied at an average value of 25%. 

 

 

 

Parameters Units Symbol Min Max Steps Fixed 

Canopy parameters 
      

Leaf area index m2m-2 LAI 1.5 5 5 
 

Leaf distribution function Degree LIDF 
   

Spherical 

Hot spot m m-1 hot 
   

0.05 

Fraction of brown leaves 
 

Fb 0.03 0.05 2 
 Vertical distribution of brown and green 

leaves % Diss 
   

80 

Clumping parameter % Cv 
   

80 

  crown diameter to height 
 

zeta 0.3 0.8 3 
 

Leaf Parameters 
      

Chlorophyll a+b content µg/cm2 Cab 20 80 7 
 

Leaf water thickness g/cm-2 Cdm 0.05 0.09 3 
 

Leaf dry matter g/cm-2 Cw 0.005 0.009 3 
 

Leaf brown pigment 
 

Cs 0.3 0.5 2 
 

Leaf mesophyll structure 
 

N 1.4 2.2 3 
 

Soil 
      

Soil moisture % H_SM 
   

25 

External/atmospheric parameters 
      

Aerosol model  
     

Continental 

Atmospheric model  
     

Tropical 

Total ozone cm-atm 
    

0.34 

Visibility km 
    

50 

Sun Zenith angle Degree tts 
   

42 

Relative azimuth angle Degree psi 
   

157 

View zenith angle Degree tto       0 

 

 

Table 5 Set of input parameter used in LUT generation 

 

 

 

The SLC model generated a total of 11,341 elements based on varying 8 parameters each with the values 

5*2*3*7*3*3*2*2 respectively as shown in Table 5. The elements generated were stored in a LUT which 

was later used for the inversion process. The variation in the input parameters used in the forward 

modelling factored in structural differences of the mangrove tree species found within the study area; 

hence the LUT generated was seen fit for the inversion regardless of the species. 

 

 



MAPPING CHLOROPHYLL CONCENTRATION IN A MANGROVE FOREST BY MODEL INVERSION APPROACH APPLIED TO HYPERSPECTRAL IMAGERY 

17 

The best match between the measured reflectance (Rmeas) and simulated reflectance (rLUT) used to 

provide the solution for the chlorophyll concentration estimates was picked based on cost function 

Weighted Root Mean Square relative Error (WRMSErel) with the least distance between rLUT and Rmeas. 

Relative error was used to give more weight to visible part which has low reflectance as compared to the 

NIR. Error was calculated by 

 

 

�������� = ��  �!"# − ���%&�!"# '� ∗ ) 

 

 

Two approaches were used to search for the best fit between simulated and measured reflectance based 

on weight function (w) assigned to spectral bands. In the first approach, chlorophyll concentration 

estimation was based on assigning weight value of 1 to the visible part of the spectra, band 1-33, with the 

rest of spectra having 0 weights. In the second approach, the weight value of 1 was assigned up to the 

NIR part of the spectra, bands 1-61.  

 

 

2.4.3. Validation 

 

The PROSPECT model which is used to retrieve chlorophyll concentration estimates in this study has 

been validated a number of times although the studies were not based on canopy structure similar to 

mangrove forest. Validation of the chlorophyll concentration estimates retrieved in this study was done 

against field measurements based on SPAD readings. Accuracy of predications was based on coefficient of 

determination (r2), root mean square error (rmse) and distribution around the 1:1 line. 

 

2.4.4. Chlorophyll map generation 

To come up with the chlorophyll map, forested regions within the study area were initially delineated. The 

LUT generated was then applied to the pixels within the forested areas. Best fit between LUT reflectance 

and image reflectance used to develop the map was based on minimum WRMSErel. Upon completion 

mapped regions were overlay over the image of entire study area. 
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3. RESULTS 

3.1. Image reflectance simulation 

The selected measured reflectance obtained from the Hymap ima

respective species displayed on fig 6

domain, Bruguiera gymnorrhiza and Rhizophora mucronata

fruiticanas which has distinct different values. This region is associated with chlorophyll content with higher 

values representing low chlorophyll concentration. Another significant difference was in the 0.65

interval. This spectrum region shows variations in b

reflectance indicated lower brown leaf pigment. The near infrared (NIR) generally indicated differences in 

the leaf structure of the three species. There was variation in leaf water content observed in the 

1.9µm wavelength. Nypa fruiticanas and 

adjustment of the variables in the SLC model to match the spectra, 

three representative reflectance as shown in figure 

for all the three species. 

 

 

Figure 6 A display of m

Figure 7 Comparison between measured and simulated reflectance for the species Nypa fruiticanas
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The selected measured reflectance obtained from the Hymap image within homogenous pixels of the 

6, showed differences in their spectral characteristics. In the 

Rhizophora mucronata had almost similar values as opposed to 

hich has distinct different values. This region is associated with chlorophyll content with higher 

values representing low chlorophyll concentration. Another significant difference was in the 0.65

interval. This spectrum region shows variations in brown pigment in the leaves. Bruguiera gymnorrhiza

reflectance indicated lower brown leaf pigment. The near infrared (NIR) generally indicated differences in 

structure of the three species. There was variation in leaf water content observed in the 

and Bruguiera gymnorrhiza had almost similar water content.

adjustment of the variables in the SLC model to match the spectra, a good fit was obtained for all the 

hown in figure 7, 8 and 9. Mismatch was observed in the SWIR region 

 
 

A display of measured reflectance for the 3 different mangrove species

 
 

 

tween measured and simulated reflectance for the species Nypa fruiticanas
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ge within homogenous pixels of the 

, showed differences in their spectral characteristics. In the visible 

had almost similar values as opposed to Nypa 

hich has distinct different values. This region is associated with chlorophyll content with higher 

values representing low chlorophyll concentration. Another significant difference was in the 0.65-0.8 µm 

Bruguiera gymnorrhiza 

reflectance indicated lower brown leaf pigment. The near infrared (NIR) generally indicated differences in 

structure of the three species. There was variation in leaf water content observed in the 1.45 and 

had almost similar water content. Upon manual 

fit was obtained for all the 

in the SWIR region 

 

mangrove species 

 

tween measured and simulated reflectance for the species Nypa fruiticanas 
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Figure 8 Comparison between measured and simulated reflectance for the species 

 

 

Figure 9 Comparison between measured and simulated reflectance for the species 

3.2. Sensitivity analysis 

The results from the sensitivity analysis were consistent with published literature on influence of different 

vegetation parameter on specific region of the T

Jacquemoud et al., 1996; Verrelst et al., 2010)

greater influence at the TOC that was essential to 

their influence to the TOC reflectance was significant that required consideration during model 

parametization. 

 

The sensitivity results also showed that 

differentiate species for instance sensitivity to

brown leaves (fB) and mesophyll structure (N) 

distinctively different among the three species a
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Comparison between measured and simulated reflectance for the species 

ween measured and simulated reflectance for the species 

The results from the sensitivity analysis were consistent with published literature on influence of different 

vegetation parameter on specific region of the TOC reflectance (Botha et al., 2007; Houborg et al., 2007; 

Jacquemoud et al., 1996; Verrelst et al., 2010). The analysis helped in identifying parameters which had 

greater influence at the TOC that was essential to include in the LUT. All parameters tested showed that 

their influence to the TOC reflectance was significant that required consideration during model 

showed that some mangrove leaf optical properties

differentiate species for instance sensitivity to dry matter (Cdm), leaf water thickness (Cw), 

mesophyll structure (N) . The results on the mentioned parameters were 

distinctively different among the three species as shown in figure 11, 13, 14 and 16.
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Comparison between measured and simulated reflectance for the species Bruguiera gymnorrhiza 

 
ween measured and simulated reflectance for the species Rhizophora mucronata 

The results from the sensitivity analysis were consistent with published literature on influence of different 

(Botha et al., 2007; Houborg et al., 2007; 

in identifying parameters which had 

All parameters tested showed that 

their influence to the TOC reflectance was significant that required consideration during model 

some mangrove leaf optical properties could be used to 

, leaf water thickness (Cw), fraction of 

. The results on the mentioned parameters were 

and 16. 
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Figure 10 Sensitivity of mangrove canopy 

 

 

Figure 11 Sensitivity of mangrove canopy 

 

Figure 12 Sensitivity of mangrove canopy 
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of mangrove canopy to variation in chlorophyll in 3 different species

 

of mangrove canopy to variation in dry matter content in 3 different species

 

 

of mangrove canopy to variation in leaf brown pigment in 3 different species
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to variation in chlorophyll in 3 different species 

 

content in 3 different species 

 

to variation in leaf brown pigment in 3 different species 
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Figure 13 Sensitivity 

 

Figure 14 Sensitivity of mangrove canopy 

Figure 15 Sensitivity 

Figure 16 Sensitivity of mangrove canopy 
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Sensitivity of mangrove canopy to variation in leaf water in 3 different species

of mangrove canopy to variation in fraction of brown leaves in 3 different species

 

 

Sensitivity of mangrove canopy to variation in LAI in 3 different species

 

 

of mangrove canopy to variation in leaf mesophyll structure in 3 different 
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ter in 3 different species 

 

to variation in fraction of brown leaves in 3 different species 

 

ifferent species 

 

to variation in leaf mesophyll structure in 3 different species 
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3.3. Validation of model estimates for leaf chlorophyll cocnentration

Various ways of determining model perfor

In the first method both VIS and from VIS up to the NIR region were

inversion process with data set comprised of all the species

results obtained when estimated and measured chlorophyll were compared had an 

and 14.8µg/cm2 as shown in figure 7

were independently used but this time 

with one data set containing the species

Rhizophora mucronata and other minor species with similar leaf structure

shown in figure 9 and 10. 
 

Determining the relationship between the estimated and measur

determination (r2) showed differences in the result especially when the data was stratified based on species 

leaf structural differences displayed in figures 7, 8, 9 and 10

around the 1:1 line. 
                 

 

Figure 17 Correlation between estimated and measured chlorophyll 
used for all the species. 
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of model estimates for leaf chlorophyll cocnentration 

Various ways of determining model performance were tried out based on species leaf structural difference. 

VIS and from VIS up to the NIR region were independently

inversion process with data set comprised of all the species regardless of leaf structural diffe

results obtained when estimated and measured chlorophyll were compared had an rmse was 14.3

7 and 8. In the second method where also the two spectrum regions 

were independently used but this time the data partitioned into two sets based on leaf structural difference 

with one data set containing the species Nypa fruiticanas while the second data set was made up of

and other minor species with similar leaf structure, the rmse was 14.4 and 15µg/cm

Determining the relationship between the estimated and measured chlorophyll based on coefficient of 

) showed differences in the result especially when the data was stratified based on species 

displayed in figures 7, 8, 9 and 10. All the data set showed a good distribution

 

Correlation between estimated and measured chlorophyll when VIS up to NIR part of the spectrum

CH APPLIED TO HYPERSPECTRAL IMAGERY 

mance were tried out based on species leaf structural difference. 

independently used in the 

regardless of leaf structural differences. The 

rmse was 14.3µg/cm2 

two spectrum regions 

data partitioned into two sets based on leaf structural difference 

while the second data set was made up of 

the rmse was 14.4 and 15µg/cm2     

ed chlorophyll based on coefficient of 

) showed differences in the result especially when the data was stratified based on species 

data set showed a good distribution 

 

VIS up to NIR part of the spectrum was 
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Figure 18 Correlation between estimated and measured chlorophyll when 
all the species 

 

 

Figure 19 Correlation between estimated and measured chlorophyll when only VIS part of the spectrum was used 
the species Nypa fruiticanas 

 

 

 

 

 

Figure 20 Correlation between estimated and measured chlorophyll when only VIS pa
the species Rhizophora mucronata
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tween estimated and measured chlorophyll when only VIS part of the spectrum was used

Correlation between estimated and measured chlorophyll when only VIS part of the spectrum was used 

 

Correlation between estimated and measured chlorophyll when only VIS part of the spectrum was used for 
Rhizophora mucronata 

CH APPLIED TO HYPERSPECTRAL IMAGERY 

23 

part of the spectrum was used for 

 

Correlation between estimated and measured chlorophyll when only VIS part of the spectrum was used for 

 

rt of the spectrum was used for 
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3.4. Spatial variaition in leaf chlorophyll concentration 

 
The result from mapping leaf chlorophyll concentration within the forested regions of the study area 

displayed variations. The south-west and central-west region had relatively lower values ranging between 

20 and 50µg/cm2.  .  The north-east part region had generally high values ranging between 60 and 80 

µg/cm2.  The differences could imply a variation in sets of environmental processes they are exposed to 

and that included differences in nutrient levels. 

 

 

 
 

Figure 21 Chlorophyll map of forested areas overlay on background of entire study area 
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4. DISCUSSION 

The method applied to retrieve leaf chlorophyll concentration in this study required an understanding of 

the radiative properties of mangrove canopy as whole as well as its components like leaf structure, brown 

material and soil background. From observation, the mangrove trees displayed a wide variation in their 

structural characteristics and the variation was expected to extend to the chemical characteristics as a result 

of intrinsic properties of natural forest e.g. tree age differences, succession along environmental gradient 

and also species physiology  . Apart from the wavelength, the variations in canopy structural and chemical 

characteristics have been known to be significant in determining the interaction of radiation in a canopy 

and hence the magnitude of spectral reflectance (Asner & Martin, 2008). The choice of model to simulate 

the spectral reflectance of the mangrove canopy was a crucial aspect for successful retrieval of leaf 

chlorophyll concentration (Jacquemoud et al., 2000). A robust model that factored in possible variations 

within the canopy was needed .Using the SLC model in this study gave the confidence in proper 

simulation of mangrove canopy spectral reflectance because the components of the SLC model account 

for radiative properties of individual elements of a vegetation system, as well as detailed canopy 

architecture related to angular distribution of incident radiation (Verhoef & Bach, 2007). 

 

From observing a number of measured vegetation reflectance curve of the mangrove which were obtained 

from the image, there was an indication of variation in spectral characteristics of the reflectance which 

implied differences in leaf biochemical content. The VIS domain of the spectrum was an area of interest 

in this study since the intensity of reflectance in this region is primarily influenced by quantity of 

chlorophyll (Fourty et al., 1996). But since the main leaf biochemical being studied was chlorophyll, the 

SLC model played a role in ensuring that the simulated mangrove canopy reflectance in-cooperated 

important factors that contributed to the overall reflectance in the VIS domain apart from chlorophyll  as 

would be the case in measured reflectance at the top of canopy for instance soil background (Verrelst et 

al., 2010). For the soil background, the soils was wet and had an implication on the overall reflectance 

because the soil moisture in the soil does not only decrease reflectance within bands with water absorption 

features but also in the other bands as a result of internal reflections of water film covering the soil(Bach 

& Mauser, 1994; Baret & Jacquemoud, 1994). Misrepresentation of reflectance in the VIS part was an 

aspect that had to be avoided for instance simulations that would result in low reflectance in the VIS 

domain would imply high chlorophyll content but if in reality the low reflectance was an effect of high soil 

moisture, then the results would be invalid. Hence using the SLC model helped minimise such 

uncertainties. Atzberger et al. (2003) also demonstrates how important it is to include soil background 

when using an inversion approach to retrieve vegetation properties.  

 

Including the effect of woody elements within a canopy has been found to improve simulations in 

retrieval of chlorophyll (Verrelst et al., 2010). The SLC model gives an allowance to include woody 

elements through the canopy sub-model 4SAIL2 and to specify how the distribution of green and woody 

elements occurs within the canopy. Generally the model caters for heterogeneity in the canopy as a result 

of having multiple leaf layers with different optical characteristics and the turbid layer assumption is not 

violated, therefore chlorophyll estimates given are close to what we would observe in reality (Liang, 2004). 

Furthermore, the leaf reflectance sub-model PROSPECT has been modified to include brown leaf 

pigment which eliminated the influence of other leaf pigments other than chlorophyll on the reflectance 

the VIS domain. In addition the PROSPECT model has widely been validated by many other studies 

using it gave us confidence in the chlorophyll estimates. 
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Chlorophyll estimates in this study was done at leaf level. According to some previous studies, relating 

measured chlorophyll and estimated chlorophyll from reflectance at leaf level introduces uncertainties as 

compared when estimating at canopy level especially when using model inversion because of obvious 

variations within pixel (Baret & Jacquemoud, 1994; Curran et al., 1992). However there are practical 

suggestions from other studies that helped minimise uncertainties related to chlorophyll retrieval at leaf 

level (Atzberger et al., 2003; Combal et al., 2002; Jacquemoud et al., 1995). Having a prior knowledge of 

canopy properties upon which vegetation parameter is being retrieved, has proved to help improve 

vegetation parameter retrieval at leaf level. The mangrove trees observed during the field survey revealed 

differences in leaf structural characteristics. The species Nypa fruiticanas was a monocotyledon among the 

species present with the rest of the species being dicotyledon. This difference was expected to have an 

influence on the measured spectral characteristics in image areas where the two species occurred since 

according to Allen et al. (1969) in optical remote sensing, great variations  arise from difference in 

arrangement of the layers  inside the leaf. Monocotyledon leaves have compact mesophyll tissue with few 

airspace as compared to dicotyledon hence less scattering of light (Jones & Vaughan, 2010). The aspect 

was considered during model parameterization. In addition information on the mangrove general canopy 

structure for instance LIDF, LAI fB which influence a canopy reflectance were based on field observation 

were also used in the parameterization. The other factor that enhanced estimating chlorophyll at leaf level 

in this study was mangrove physiology. Majority of the species found in the study area are evergreen and 

this implies that senescence which has been established to lower model performance was not a very 

influential issue (Bacour et al., 2002; Verhoef & Bach, 2003). Also the bands selected for use during the 

inversion were related to leaf chlorophyll .The concept of band selection with specific information on 

variable of interest has been successfully applied in other studies although with the aid of statistical 

methods (Darvishzadeh et al., 2008; Knox et al., 2010). 

 

The chlorophyll map generated as an end product of the model inversion process displayed variations in 

leaf chlorophyll concentration within the mangrove forest. Based on previous ecosystem studies, variation 

in chlorophyll within a vegetation system is a clear indication of differences in their ecosystem structure 

and rates of processes taking place within the ecosystem (Turner et al., 2004; Ustin et al., 2004). Mangrove 

forest are usually affected by a number of ecological factors which include wave action, rainfall amount, 

freshwater runoff, erosion and sedimentation rates, nutrient inputs and soil quality (Lugo & Snedaker, 

1974). The effect of these ecological processes on the mangroves trees are in turn facilitated by 

geomorphology of the surrounding for instance topography, and species succession along salinity gradient 

(Kathiresan & Bingham, 2001). However in this study area the effect of topography is not pronounced 

because in the delta plain where the mangrove forest occur, the topography is mostly flat (Dutrieux, 1991).  

The lack of topography effect within the delta leaves effect of salinity gradient on species distribution as 

the probable explanation to the spatial differences in leaf chlorophyll concentration displayed in the map 

and also reflects on the process that might be taking place within the mangrove environment, particularly 

nutrient enrichment which is the key issue in this study. 

 

The species Nypa fruiticanas is distributed in the South West and central west forested region of the study 

area which according to the map has generally low leaf chlorophyll concentration. According to Siddiqi 

(1995)Nypa fruiticanas colonizes zones with low tidal inundation. This could mean that excess nutrients 

regularly brought in by the tides would not be available. Another implication of low tidal inundation 

would be that soils are prone to develop hypersaline conditions due to lack of regular tidal inundation 

which usually helps to maintain salinity balance (Lovelock et al., 2009). When the mangrove ecosystem 

conditions are hypersaline, mangroves trees have been found to spend more energy in maintaining water 
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balance and ion concentration rather than primary production (Clough, 1984). This concept might explain 

the low chlorophyll levels within the Nypa fruiticanas zones. In a study of mangroves carried by Diop et al. 

(1997) the results showed that hypersaline conditions favoured growth of salt marshes which compete for 

resources with the mangroves. If that was the case in the south west and central west regions of the study 

area, the impact of nutrient enrichment would not be pronouncedly indicated by high leaf chlorophyll 

concentration.  

 

The north east part of the map that displayed high levels of leaf chlorophyll concentration is composed of 

mainly Rhizophora mucronata. The proximity of this region to the sea as compared to the Nypa fruiticanas 

zones is higher. This means that their level of salinity is expected to be relatively lower because the regular 

tidal inundation buffers the zone from developing hypersaline conditions. Low salinity conditions favour  

primary production in mangroves (Kathiresan et al., 1996). This concept would partly explain the high 

chlorophyll values in the north east zone. But also the frequency of tidal inundation indicates high regular 

nutrient supply by the tidal action. The high chlorophyll region is surrounded by shrimp ponds whose 

effluent may also be causing elevation of nutrients levels within the zone when released to the tidal and 

distributary channels. These channel cover the mangrove zone extensively compared to the Nypa zone. 

 

 

Studies done on mangrove to establish the effect of nutrient enrichment in their ecosystem have had 

consistent conclusion(Komiyama et al., 2000; Lovelock et al., 2009; Naidoo, 2009; Reef et al., 2010) 

However, one lacking factor to accompany these studies are methods of monitoring nutrient changes 

within the mangrove ecosystems for effective management, especially where the cause of nutrient increase 

is associated with human activities which could easily be controlled. This study demonstrates the potential 

of putting effective monitoring systems in place. From the derived chlorophyll map in this study, we see 

obvious differences in leaf chlorophyll concentration within the forested area. Although we cannot limit 

the cause of the chlorophyll variations to only nutrient enrichment, it is one of the most probable causes. 

A comparison between chlorophyll distribution maps against other intrinsic mangrove canopy properties 

for instance species distribution, topography, prevailing climate condition during image acquisition and 

tidal regime would reduce uncertainty of relating variation in chlorophyll to increased nutrient in 

mangrove ecosystem. Also having pre existing information on optimum chlorophyll concentration values 

for mangroves would be an asset in interpretation of the chlorophyll distribution map.  
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5. CONCLUSION 

 

Mapping chlorophyll as a potential indicator of nutrient enrichment in mangrove forest is possible using 

advanced remote sensing application. However to be able to link the variation to specifically nutrient 

enrichment, we require additional information on other intrinsic mangrove canopy characteristic. The 

variation in leaf chlorophyll concentration in the mangrove forest of the Mahakam Delta is very elaborate 

and certainly indicates difference is ecosystem characteristics which would include nutrient among other 

unknown factors. The variation are clearly displayed along species distribution zones with low levels in 

areas prone to low tidal inundation and surrounded by less shrimp farms. Mapping chlorophyll as a 

potential indicator of nutrient enrichment in mangrove forest is possible using advanced remote sensing 

application. However to be able to link the variation to specifically nutrient enrichment, we require 

additional information on other intrinsic mangrove canopy characteristic. The SLC model demonstrated 

the capability of using hybrid radiative transfer models to simulate canopy reflectance of a vegetation 

system with variation in species structural characteristics. The inversion process by LUT approach was a 

simple and efficient method of chlorophyll retrieval.  

 

For future study it is recommended that retrieval of more than one parameter could be done concurrently 

to have more information on the vegetation characteristics that would enhance inference of the ecosystem 

properties since the SLC model provides that allowance. Also the efficiency of the retrieval could be 

enhanced by coupling the SLC model with atmospheric model that applying similar concept of energy 

transfer for instance MODTRAN.  Finally applying statistical techniques in band selection would improve 

quality of retrieved information since other bands that are rendered irrelevant and introduce noise to the 

data are eliminated. In addition when using hyperspectral bands, identifying specific bands holding 

information on parameter to be retrieved reduces computation time.  
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Plate 1 Hyperspectral image of false (TM4, TM5, TM3) and true colour, TM3, TM2

 

 

 

 

 

 

 

Plate 2 Geocoding accuracy 

       

 

 

 

 

 

   

Hyperspectral image of false (TM4, TM5, TM3) and true colour, TM3, TM2, TM3) 

 

 



 

 

 

 

 
Plate 3 Taking LAI measurements using two devices for below and above canopy readings

 

 

 

Plate 4 Different mangrove soil   background in terms of moisture content
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