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ABSTRACT 

Continuous rainfall estimates at high temporal and spatial resolution is of great importance in Numerical 

Weather Prediction (NWP) and hydrological model inputs amongst other applications. Geostationary 

satellites data are of great importance in these applications due to their high temporal (every 15 min) and 

spatial (1-4km at nadir) resolution. Precipitation Properties Visible/Near Infrared algorithm (PP-VNIR) 

was compared with Hydro-Estimator (H-E) by use of Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) of Meteosat Second Generation (MSG) rainfall retrieval over NW Europe and Kenya regions. 

They were compared with rain gauge measurements for detection of precipitating clouds and rain rate 

retrieval. Two days were selected in each region in the month of July for NW Europe and the month of 

April for Kenya which were almost free of night rainfall. Algorithms daytime total rainfall (from 0730 

UTC to 1530 UTC) within 5x5 kernel areas were compared to rain gauge day accumulated measurements. 

Maps scatter and line plot were used to describe the relationship and a linear regression of best fit line 

determined the significance of the relationship. Categorical statistics of a 2x2 contingency table were used 

for detection test while continuous statistics of Bias, Root Mean Square Error (RMSE) and correlation 

coefficients were used for retrieval test. Results showed very high POD and high FAR attributed to point 

rain gauge measurements failure to characterize the rainfall variability but high spatial resolution of satellite 

neared that of rainfall variability. They had significant detection and retrieval over NW Europe but 

retrieval correlation was low over Kenya due to poor rain gauge distribution, topography and evaporation 

below the cloud effects. The algorithms had significant relationship in retrieval over NW Europe (0.42) 

and over Kenya (0.91) hence, H-E can fill the PP-VNIR night time gap. Increasing satellite foot print 

improved the rain gauge measurements validation of the satellite estimates but over Kenya validation 

using areas of dense rain gauges only can improve the accuracy.  Recalibrating the rain /no rain in terms 

of Z and brightness temperature reduces the over estimation of the H-E non- convective rain rate and is 

therefore recommended before application.  Analyses of more events are recommended for this study.  

 

KEY WORDS: MSG-SEVIRI, Precipitation Properties-Visible /Near Infrared, Hydro-Estimator, 

detection and retrieval, rain rate, rain gauge measurements, comparison. 
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1. INTRODUCTION   

1.1. Background  

 
This section highlights the rainfall formation processes, cloud types and rainfall physics. 

 

Rainfall Formation  

A sequence of four processes must occur to produce rainfall. These are; air cooling to the dew point 

temperature, condensation of water vapour, droplet growth and importation of water vapour (Dingman, 

1994). Air containing water vapour must be cooled to its dew point through radiation, conduction or 

adiabatic processes. Condensation process requires cloud condensation nuclei (CCN) on which 

condensation occur to form clouds droplets. CCN could be aerosols, dust, volcanic materials, smoke, 

forest fires or sea salts. Cloud droplets have a diameter ranging from 0.001 to 0.2 mm. For rainfall to fall 

from clouds to earth, some of the droplets must grow so that their fall velocity exceeds the rate of uplift 

such that they survive evaporation as they fall (Ahrens, 2007). Cloud droplets grow to a size of raindrops 

which is 0.4 to 4 mm diameter or larger. The cloud droplets continue growing by condensation of water 

vapour. They can also grow when they collide with each other as fall and coalescence.  This probability 

increases fast with droplet size, so that in clouds with re > ~14μm coalescence of cloud droplets into 

raindrops leads to fast formation of rainfall. . Several million cloud droplets are required to make one 

raindrop (Gray, 1973). Satellite measurements can detect “re” which is the  cloud drop effective radius (re 

= <r3>/<r2>, where r is the radius of the cloud droplets in the measurement volume. The probability of 

collision and coalescence of drops with re < 12 μm is very small, to the extent that raindrops cannot form 

by this mechanism within the lifetime of clouds (Rosenfield & Gutman, 1994).  

 

 

Rainfall Processes 

Rainfall occurs when moist air raises, cools and condenses to form cloud droplets. Clouds form by 

condensation of water vapour that rise from the surface or is driven by wind to the atmosphere by 

evaporation, sublimation and transpiration processes as shown in figure 1. The rate at which air cools or 

warms depends on the moisture status of the air. If the air is dry, the rate of temperature change is 

1°C/100 meters and is called the dry adiabatic rate (DAR). If the air is saturated, the rate of temperature 

change is 0.6°C/100 meters and is called the saturated adiabatic rate (SAR). Unlike the DAR which is 

constant, SAR varies with moisture content in the air. The difference in the two rates is due to the 

liberation of latent heat released during condensation that reduces the rate of cooling. Processes that are 

involved in driving the water vapour to the atmosphere for condensation to occur are: convective, 

stratiform and orographic (Ahrens, 2007).  

 



RAIN RATE ESTIMATION OF NORTHWEST EUROPE AND KENYA FROM SEVIRI SENSOR RETRIEVALS: COMPARISON OF PRECIPITATION PROPERTIES-VISIBLE 

/NEAR INFRARED AND HYDRO-ESTIMATOR ALGORITHMS 

 

2 

 

Figure 1: Hydrological cycle: Source: (Ahrens, 2007). 

 

Convective systems 

Convection occurs when the Earth's surface within a moist atmosphere, becomes heated more than its 

surroundings, leading to significant upward motion. This convection occurs from convective clouds, e.g., 

cumulonimbus (Figure 2). It falls as showers with rapidly changing intensity over a certain area for a 

relatively short time, due to its limited horizontal extent. This type is common in the tropics due to the 

intense heating by the sun (Ahrens, 2007) when the Inter Tropical Convergence Zone (ITCZ) is over the 

region. The rainfall seasons in Kenya in the months of March to May and October to December are 

dominated by these convective systems.  

 

 

Figure 2: Cloud type’s base height. Source: (Ahrens, 2007). 

Figure 2 show a generalized illustration of basic cloud types based on height of the cloud base above the 

surface and vertical development. The three different types of clouds are shown. Low clouds are at the 

bottom from surface to 2000 m but Cumulonimbus cloud (right) with anvil at the top extends to the high 

clouds. Middle clouds are at the middle up to 7000 m and high clouds are at the topmost e.g. cirrus clouds. 

 

Stratiform Systems 

Stratiform rainfall is caused by frontal systems surrounding the extra tropical cyclones or lows, which form 

when warm and often tropical air meets cooler polar air. Nimbostratus (Figure 2) is an example of 

stratiform cloud. When masses of air with different density (moisture and temperature characteristics) 

meet, the interface between the two is called a front. The warmer air is forced to rise and if conditions are 

conducive becomes saturated, causing rainfall. In turn, rainfall can enhance the temperature and moisture 
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contrast along a frontal boundary. Depending on which air mass overrides each other we have different 

frontal systems e.g. cold front and warm fronts (Brutsaert, 2005). This is the weather systems found in 

temperate regions e.g. mid latitude areas where NW Europe is located. 

 

 

Figure 3: A picture of the extra tropical cyclone. Source: (Ahrens, 2007).  

Figure 3 show the tropical cyclone which results from cold polar air mass meeting warm tropical air mass. The warm 
air mass overrides the cold air mass resulting into development of clouds 

 

Orographic systems 

Orographic or relief rainfall (figure 4) occurs when masses of air pushed by wind are forced up the side of 

elevated land formations, such as large mountains. The raised air cools and condenses to form cloud 

droplets that grow and fall as rain (Ahrens, 2007). Many hydrologic and ecologic studies recognize the 

importance of characterizing the temporal and spatial variability of rainfall ,(Goodrich, Faures, 

Wooolhiser, Lane, & Sorooshian, 1995), (Bindlish & Barros, 2000) especially on mountainous  regions due 

to complex topography and orographic effect leading to more rainfall on the wind ward side, and less on 

the leeward side and more at higher elevation (Barros & Lettenmaier, 1993),(Barros & Lettenmaier, 1994) 

than lower elevation. This higher elevation is not captured by the gauges located at lower elevations 

(Huade & John, 2005). 

 

 

Figure 4: Relief rainfall formation on the wind ward side of a mountain. Source: (Ahrens, 2007). 

 

1.2. Problem Statement 

 

Continuous rainfall estimates at high temporal and spatial resolution is of great importance in climate 

variability monitoring, Numerical Weather Predictions (NWP), and in hydrological model inputs amongst 

other applications. Rain gauges network are sparse and available data are insufficient to characterize spatial 

distribution of the highly variable rainfall (Smith, Seo, Baeck, & Hudlow, 1996). Radar offers spatial 

coverage at high spatial and temporal resolution but there are difficulties both in obtaining accurate 

measures of reflectivity and in converting these reflectivity measurements into an accurate representation 

of the rainfall field at ground level. The former is the result of various phenomena including anomalous 

propagation, beam block and beam overshoot, and is especially problematic in regions of high 
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topographic relief where the range of useful radar data can be severely limited (Young et al., 1999). The 

Spinning Enhanced Visible and Infrared Imager (SEVIRI) of Meteosat Second Generation (MSG) satellite 

stationed at geostationary location has a good temporal resolution of 15 minutes and spatial resolution of 

up to 3 km at nadir view. This is quite good for most of these applications. The Precipitation Properties- 

Visible/Near Infrared (PP-VNIR) algorithm was applied in Northern Europe to detect and estimate 

rainfall intensities for application in climatological research (Roebeling & Holleman, 2009) by use of 

SEVIRI data which were retrieved using Cloud Physical Properties (CPP) algorithm (Roebeling, Feijt, & 

Stammes, 2006). There is a need to verify its validity in a larger area over Europe and over the tropics 

where convective systems are more dominantly different from extra-tropics where frontal system prevails. 

One limitation of PP-VNIR is that it can only be used during day time and most of the applications 

require continuity of rainfall estimates. Hydro-Estimator (H-E) (Scofield & Kuligowski, 2003) which is 

based on infrared cloud top temperature is being used to estimate rainfall in America every 15minutes  and 

experimentally for the rest of the world by use of geostationary data. The two have similar spatial and 

temporal resolution and their comparative rainfall estimates is hoped to yield positive results to fill the 

night rainfall estimates gap by PP-VNIR.  

 

1.3. Main Objective 

 

The main objective of this study is to estimate rain rate over part of NW Europe and over Kenya regions 

during day time by comparing the two algorithms; PP-VNIR and H-E and validate their results with rain 

gauge measurements data of the respective regions for a number of events. 

 

1.3.1. Specific objectives  

 

The specific objectives of the study are: 

1. To estimate rain rate over NW Europe and over Kenya windows using PP-VNIR algorithm and 

validate the results by use  of rain gauge measurements for each of the regions. 

2. To estimate rain rate over NW Europe and over Kenya windows using H-E algorithm and 

validate the results by use of rain gauge measurements for each of the regions. 

3. To compare the PP-VNIR and H-E rain rate estimates and test the significance of that 

relationship by use of linear regression best line.  

 

1.3.2. Research Questions 

 

1. Can the PP-VNIR algorithm be applied in NW Europe and over Kenya to estimate rainfall 

intensities? And what would be the accuracy in relation to rain gauge measurements of the corresponding 

regions? 

• Can the precipitating clouds be differentiated from non-precipitating clouds e.g. cirrus in the two 

regions using PP-VNIR algorithm and with what accuracy compared to the rain gauge measurements of 

the corresponding region? 

• Can the rain rate be quantified from precipitating clouds in the two regions using PP-VNIR 

algorithm and with what accuracy compared to the rain gauge measurements of each region? 

2. Can the H-E algorithm be applied in NW Europe and over Kenya to estimate rainfall intensities? 

And what would be the accuracy in relation to the rain gauge measurements of the corresponding regions? 
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• Can the precipitating clouds be differentiated from non-precipitating clouds e.g. cirrus in the two 

regions using H-E algorithm and with what accuracy compared to the rain gauge measurements of the 

corresponding region? 

• Can the rain rate be quantified from precipitating clouds in the two regions using H-E algorithm? 

And what would be the accuracy compared to the rain gauge measurements of the corresponding region? 

3. Is there any significant relationship between the PP-VNIR and H-E day time rain rate estimates 

over the two regions? 

 

1.4. Hypothesis 

 

• The null hypothesis (H0:    ) is that there is no significant correlation between the observed 

and estimated rain rate by PP-VNIR algorithm at 95 %( alpha=0.05) confident level. The alternative 

hypothesis (H1:    ) is that there is significant correlation between the rain rate estimates by PP-VNIR 

algorithm at 95 %( alpha=0.05) confident level with the observed measurements. 

• The null hypothesis (H0:    ) is that there is no significant correlation between the observed 

and estimated rain rate by H-E algorithm at 95 %( alpha=0.05) confident level. The alternative hypothesis 

(H1:   ) is that there is significant correlation between the rain rate estimates by H-E algorithm at 95 

%( alpha=0.05) confident level with the observed measurements. 

• The null hypothesis (H0:    ) is that there is no significant relationship between the PP-VNIR 

and H-E algorithms in rain rate retrieval during day time at 95% confident level (alpha=0.05). The 

alternative hypothesis H1: There is a significant relationship between PP-VNIR and H-E rain rate at 95 

%( alpha=0.05) confident level (alpha=0.05). 

 

1.5. Outline of the Thesis 

 

The thesis consists of 6 chapters. 

Chapter 1 is the introduction containing problem statement, objectives, research question, and hypothesis 

and outline description. Chapter 2 provides a literature review on various methodologies for rain rate 

estimates. Chapter 3 describes the data set used for the study in terms of acquisition, source and pre-

processing. Chapter 4 describes the methodology of PP-VNIR and H-E as applied for the study. Chapter 

5 provides the results of analysis and the discussion. Chapter 6 presents conclusions and 

recommendations drawn from the study and finally the list of references and appendixes are provided. 
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2. LITERATURE REVIEW 

2.1. Methods of Rain rate Estimates 

 

The primary sources of rainfall information are Insitu (e.g. rain gauges measurements) and remote sensing 

(satellites based). Several studies on these sources have been done as discussed in this section. 

 

2.1.1. Insitu Measurements 

 
This section discusses rain gauge and ground based radar rainfall measurements methods 

 

Rain gauge Measurements 

Historically rain gauges have been used for rain rate estimates. The standard way of measuring rainfall or 

snowfall is the standard rain gauge (Figure 5), which can be found in 100 mm (4 inches) plastic and 200 

mm (8 inches) metal varieties. The inner cylinder is filled by 25 mm (1 inch) of rain, with the overflow 

flowing into the outer cylinder. After the inner cylinder is filled the amount inside it is emptied, then filled 

with the remaining rainfall in the outer cylinder until all the fluid in the outer cylinder is finished, adding to 

the overall total until the outer cylinder is empty. During winter the funnel and inner cylinder are removed 

to allow snow and freezing rain to collect inside the outer cylinder. Once the snowfall/ice is finished 

accumulating, it is brought inside to melt.  The global distribution of gauges is quite variable, from 

relatively dense networks in the developed countries to sparsely distributed gauges in developing regions 

(Ahrens, 2007). 

 

     

Figure 5: An example of the rain gauges used to measure rainfall. Standard rain gauge (left) and tipping bucket rain 
gauge (right). Source: (Ahrens, 2007). 

 

Over the oceans, gauges are almost non-existent (Prigent, 2010). Rain gauges network are sparse and 

available data are insufficient to characterize spatial distribution of the highly variable rainfall. This is 

especially true for mountain areas, where the complexity of the rainfall distribution is combined with the 

measurement difficulties (Oki, Musiake, & Koike, 1991), (Sturman & Wanner, 2001) (Sotillo, Ramis, 

Romero, Alonso, & Homar, 2003). Applications in models like in Ecological analysis, Numerical Weather 

Predictions and hydrological fields require high spatial resolution rainfall distribution as input and this 

high spatial resolution cannot be achieved through rain gauges estimates. 
 

Weather Radar Estimates 

Radar (Radio Detection And Ranging) is used by Meteorological services to gather information about areal 

representation of rainfall. The radar unit consists of a transmitter and a receiver. The transmitter sends 
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small microwave pulses. When these pulses come across a target (rain drops or ice crystals) some energy is 

reflected back to the receiver and is recorded as image or echo. Radar can provide rainfall estimates for 

time intervals as small as 5 min and spatial resolution as small as 1 km2, with an effective range of 

approximately 200 km. Estimates of the reflectivity factor Z obtained from the radar equation (1-1) are 

termed equivalent reflectivity and are used to estimate rain rate from reflectivity (Maidment, 1993). 

 

                                                                                                                                                  (1-1) 

 

Where, parameters a and b are both functions of the rain type and the heights of the 0ºC isotherm and R 

is the rain rate in mm and Z is the radar reflectivity. 

 

 

Figure 6: Weather radar. Source: (COMET, 2000) 

 

Radar rainfall estimates compared with rain gauge measurements provide higher spatial and temporal 

resolutions (AghaKouchak, Habib, & Bardossy, 2010). They have been used together with rain gauges 

mostly in developed countries like Europe and America yet many places like over oceans still remain 

without these estimates. Transformation of the radar-measured reflectivity’s into rainfall rates presents 

difficulty in the accuracy of the reflectivity values which can be affected by influence from fixed targets 

(e.g., ground clutter, beam block) and calibration problem. Radar beam increases in elevation with distance 

from the radar leading to errors associated with uncertainties in the shape of the reflectivity profile 

between the beam height and the surface. This results in undetected rainfall or underestimation (Kitchen 

& Jackson, 1993). 

 

2.1.2. Satellite-based Rainfall Estimation Methods 

 

The uneven distribution of rain gauges and weather radars and the relative lack of rainfall measurements 

over the oceans have significantly limited the use of global as well local data. Rainfall is one of the most 

variable quantities in space and time. Rainfall measurements from space are based on the interpretation of 

the solar radiation that is scattered or emitted from clouds, rainfall and underlying surface, and is 

monitored by the satellite instruments at the various spectral regions. The interaction of the radiation with 

the cloud and rainfall particles strongly depends on their composition and size distribution, as described 

by the Mie theory (Brutsaert, 2005). Therefore, variability in the cloud macro-physical properties and rain 

intensity would result in substantial changes in the satellite measured radiation that comes from the rain 
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cloud and hence rainfall. (Levizzani, Amorati, & Meneguzzo, 2002) described several satellite based rainfall 

estimates methods in their research on Multiple-Sensor Rainfall Measurements, Integration, Calibration 

and Flood Forecasting (Levizzani, et al., 2002).  

 

Visible and Infrared Methods 

Several studies have been done on usage of visible (VIS) (0.4-0.7 µm) and infrared (IR) (10.5- 12.5µm) 

channel of the solar spectrum. Barrette & Martin (1981) classified rainfall estimation methods into cloud-

indexing, spectral life history, and cloud model-based. Each of the categories stresses a particular aspect of 

the sensing of cloud physics properties using satellite imagery. PP-VNIR algorithm is another algorithm 

that is based on VIS and IR data retrieval by use of CPP algorithm(Roebeling, et al., 2006) to detect and 

retrieve the rain rate(Roebeling & Holleman, 2009). It is limited to daytime estimates. The Auto-Estimator 

(A-E) technique by Vicente et al. (1998) make use of IR 11 μm Geostationary Operational Environmental 

Satellite ( GOES )data and radar data from the US network  for applications to flash flood forecasting, 

numerical modelling, and operational hydrology. The rainfall retrieval is performed through a statistical 

analysis between surface radar-derived instantaneous rainfall estimates and satellite-derived IR cloud top 

temperatures collocated in space and time. A power law regression is computed between IR cloud top 

temperature and radar-derived rainfall estimates at the ground. Rainfall estimates are then adjusted for 

different moisture regimes using Precipitable water and relative humidity fields from the National Centre 

for Environmental Predictions (NCEP) Eta Model. However, the A-E frequently assigned high rain rates 

to cold (but not raining) cirrus clouds and the high dependence on radar for detection of precipitating 

clouds led to a new algorithm, the H-E(Scofield & Kuligowski, 2003). This is a single-channel (11-µm) rain 

rate algorithm which is now compared with PP-VNIR algorithm by use of SEVIRI data retrieval in this 

study. The primary drawback of the VIS/IR techniques is that the observations relate to the characteristics 

of the cloud profile, rather than the precipitation reaching the surface. Thus, these techniques estimates 

precipitation at the cloud base, which may still (partly) evaporate between the cloud base and the surface. 

 

Cloud indexing methods 

Cloud indexing techniques assign a rain rate level to each cloud type identified in the satellite Imagery. 

Arkin (1979) provided the simplest and mostly used method named GOES Rainfall Index (GPI) during 

the Global Atmosphere Research Programme (GARP). The method screens the fraction of the area 

colder than 235K in the IR with a fixed rain rate. Arkin & Meisner (1987) assigns these areas a constant 

rain rate of 3 mm/hr. appropriate for tropical rainfall over 2.50×2.50. World Climate Research Programme 

(WCRP) uses the method for 5 days to one month (Huffman et al., 1997) to estimate global rainfall. Todd 

et al (1999) applied this approach using geostationary satellite data. They associated raining clouds to 

occurrence of IR brightness’ temperatures below a threshold defined for a given location. IR rain /no rain 

threshold temperatures, was derived from calibration against collateral rain gauge observations. The 

limiting factor to this approach is cirrus clouds which are cold but non-precipitating, resulting in lower 

optimum IR thresholds. 

 

Bi-spectral methods 

These are the method based on relationship between cold (IR) and bright (VIS) clouds and high 

probability of rainfall, which are the characteristics of cumulonimbus clouds. Cold, dull (thin Cirrus) or 

bright but warm are associated with lower probability of rainfall. An Example of this methods is Quasi-

operational real-time (nowcasting) rainfall estimating scheme in Canada (RAINSAT) (Bellon, Lovejoy, & 

Austin, 1980) that screen out cold non-reflective clouds or highly reflective with warm tops. The approach 

reduces the false alarms of pure IR techniques. This algorithm is based on a supervised classification of 

trained by radar to recognize rainfall from VIS brightness and IR cloud top temperature from GOES 

satellites. The GOES data calibrated with radar data to provide real time analysis of rain rate. It was 
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applied and optimized in the UK by Cheng et al (1993) who found a high correlation with the validation 

data when VIS and IR was used than when IR was used alone for orographically induced rainfall.  

 

Life- history Methods 

The life history technique is based on the premise that the time behavior of clouds on the satellite images 

and the corresponding radar echoes approximate the simple model, in which both clouds and radar echoes 

grow to a maximum size and then decay. The life history technique is embodied in the relationship 

between satellite cloud area and volumetric rainfall reaching the surface (Griffith et al., 1978) as shown in 

equation 2-1. 

 

   [               ∑     
 
   ]                                                                                      (2-1) 

 

where Rv. is the satellite-inferred rain volume for a given cloud on 

one image, in m3 , I is rainfall rate in mm/hr, Ae is  inferred echo area, in km2, Am is the maximum cloud 

area during the cloud's life cycle, t is the  time interval between successive satellite images in hours, i is the  

index of temperature range j is the denoted term that is a function of life cycle, a is a fraction of cloud 

covered by a specific temperature range, b is  an empirical weighting coefficient for a specific temperature 

range, N is the  number of temperature ranges, and 103 is a factor for converting the units from square 

kilometers to cubic meters. 

 

Cloud model-based 

Cloud model techniques introduces cloud physics into the retrieval process for a quantitative 

improvement based on an overall better understanding of the physical properties of the rain formation 

processes. Adler and Negri, (1984) developed a one dimensional cloud model which relates cloud top 

temperature to rain rate  and the rain area; the Convective  Stratiform Technique (CST). The technique 

was used to delineate convective as well as stratiform precipitating clouds by use of cloud properties 

derived from optical satellite data. To achieve this a slope parameter was calculated for each temperature 

minimum (Tmin) (Levizzani, et al., 2002). The parameter  is defined as:  

 

   ̅                                                                                                                                          (2-2) 

 

Where S is the slope parameter(K) 

 

  ̅    is the average temperature of the six closest pixels. If the Tmin  is located at (i,j), 

 

 ̅    (                                         )       

                                                                                                                                                             (2-3) 

  j+1,i   

J,i-2 j,i-1 i,j j,i+1 J,i+2 

  j-1,i   

 

Where i and j refer to the position of the pixel for which Adler and Negri (1988) established an empirical  

formula to discriminate thin cirrus in the temperaturature/slope plane by use of radar and visible imagery 

data. They defined a discrimination line such that if the Tmin and its slope fall to the left of the 

discrimination line, the Tmin location is classified as thin cirrus (non-raining) and a larger slope implies a 

more clearly defined minimum, that is a thunderstorm.  
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 Passive and Active Microwave Methods 

VIS and IR approach relate cloud top temperature to rain rate but at passive microwave (MW) frequencies 

are the main source of attenuation of the upwelling radiation hence they are physically more direct than 

those based on VIS/IR radiation. The emission of radiation from atmospheric particles increases the 

signal received by the satellite sensor, while at the same time the scattering due to hydrometeors reduces 

the radiation. Type and size of the detected hydrometeors depend upon the frequency of the upwelling 

radiation. Above 60 GHz ice scattering dominates and the radiometers can only sense ice while rain is not 

detected. Below about 22 GHz absorption is the primary mechanism affecting the transfer of MW 

radiation and ice above the rain layer is virtually transparent. Between 19.3 and 85.5 GHz, the common 

passive MW imagers’ frequency range, radiation interacts with the main types on hydrometeors, water 

particles or droplets (liquid or frozen). Scattering and emission happen at the same time with radiation 

undergoing multiple transformations within the cloud column in the sensor’s Field Of View (FOV). An 

ocean water body has a low emissivity of about 0.4 which is relatively constant while land surfaces have 

higher variable emissivity. For many techniques the difference between land and ocean emissivity is such 

that separate algorithms need to be used one for each surface. For land surfaces, techniques based on 

emission are not suitable due to high surface emissions effectively masking the rainfall attenuation. Land 

surfaces have to rely upon the scattering processes and this confine them to medium /high frequencies. 

Inclusion of the 85.5 GHz on the Special Sensor Microwave /Imager (SSM/I) instruments significantly 

increased the potential for mapping rainfall over land(Levizzani, et al., 2002). The biggest disadvantage is 

the poor spatial and temporal resolution, the first due to diffraction (bending of waves around small 

obstacles and the spreading out of waves past small openings), which limits the ground resolution for a 

given satellite MW antenna, and the latter to the fact that MW sensors are consequently only mounted on 

polar orbiters (Kidd, Kniveton, & Barrett, 1998). 

An example of active microwave is Precipitation Radar (PR), operating at 13.8 GHz on board the Tropical 

Rainfall Monitoring Mission (TRMM). It combines the radar, the TRMM Microwave Imager (TMI) and 

VIS/IR instruments. The radar add information not only on the intensity and spatial/temporal 

distribution of rain but also on rain type, storm structure, melting layer and latent heat release at different 

heights. Unlike the passive microwave channels which have difficulties in rainfall measurements over land 

PR does not have that problem. However the instrument has same shortcomings as ground-based weather 

radars, of calibration in terms of absolute rain rate values. The rainfall estimates are calculated from the Z 

profiles by using a power law. 

 

Blending Microwave Visible and Infrared Techniques 

Combining several sensors to improve accuracy and coverage has been done by many authors. The 

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks 

(PERSIANN) (Sorooshian et al., 2000) provide global rainfall estimates at hourly basis in a 0.250x0.250 

spatial scale It uses geostationary satellite IR data to  which is constantly adjusted to estimates of Low 

Orbital Satellite (LEO) sensors. TRMM Multi satellite Rainfall Analysis (TMPA) combines rainfall 

estimates from various satellite systems together with rain gauge measurements. It is available both after 

and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave 

Imager rainfall products, respectively. Only the after-real-time product incorporates gauge data at the 

present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Its 

coverage depends on input from passive Microwave data collected by a variety of LEO satellites that 

include the TMI on TRMM, SSM/I on Defence Meteorological Satellite Program (DMSP) satellites, 

Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) on Aqua, and the 

Advanced Microwave Sounding Unit-B (AMSU-B) on the National Oceanic and Atmospheric 

Administration (NOAA) satellite series. They all have physical interaction with the rainfall. Even when 
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they are put all together significant gaps in the current 3-hourly coverage by the passive microwave 

estimates is still there (figure 7). 

 

 

Figure 7: Combined Microwave rainfall estimate for the 3-h period centred at 0000 UTC 25 may 2004 in mm/hr 
source: (Huffman et al., 2007).. 

The Blacked –out areas (Figure 7) denote that lack of reliable estimates, while the zero values in the 

remaining areas are colour –coded to depict the coverage by the various sensors. The order of precedence 

for display and corresponding zero colour are TMI (white), SSM/I (light-grey), and AMSR-E (medium 

grey), and AMSU-B (dark grey).( In the TMPA the TMI, SSM/I, AMSR-E are averaged  where overlaps 

occur) source. 

 

2.2. Cloud Properties from solar and Thermal channels 

 

Multispectral data have long since been available both from polar orbiting and geostationary satellite 

sensors and used for retrieving cloud properties. The cloud properties have been used for rain clouds 

identifications and quantification of rainfall intensities (Levizzani, et al., 2002). 

 

2.2.1. Multispectral identification of rain clouds 

 

Cloud radiative properties at VIS, NIR and IR wavelengths have been studied and documented by many 

authors Kleespies (1995); Liou (1992); Saunders& Kriebel (1988) and Slingo& Schrecker (1982). Their 

findings were summarized as follows: 

•In the thermal IR the radiative properties are sensitive to the size distribution of the hydrometeors  

•An increase in the particle size increases the transmissivity, decreases the reflectivity and increases the 

emissivity of the cloud layer.  

•The emissivity of ice clouds is less than that of water clouds. In the NIR the emissivity of a cloud layer is 

lower than in the thermal IR window:  there is a large contribution of reflected radiation at the cloud top. 

•Clouds with small hydrometeors scatter and reflect much of the 3.9 μm radiance.  

•An increase in cloud particle size or the presence of large drops or ice crystals near the cloud top reduces 

the 3.9 μm reflectance from the cloud. 
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•Clouds containing more ice reflect less solar radiation in the 3.7 - 3.9 μm range as ice strongly absorbs at 

these wavelengths and ice crystals are generally larger than cloud droplets at cloud top. 

•NIR reflectance mostly refers to cloud particles effective radius (re). 

•VIS reflectance is primarily due to cloud optical depth (Levizzani, et al., 2002) 

Rosenfeld and Gutman (1994) used Advanced Very High Resolution Radiometer (AVHRR) channel 1 

(0.65µm), 3 (3.7 µm), 4 (10.8 µm), and 5 (12.0 µm) to develop a quantities methodology for the retrieval of 

cloud top properties that are relevant to rainfall potential of clouds. The principle behind this approach is 

that larger water droplets and ice particles reflect very little solar radiation in 3.7-3.9 µm region. They 

found the most crucial parameter to be the effective radius of cloud particles defined as: 
   

   
∫    ( )  
 

 

∫    ( )
 

 
  

                                                                                                                                    (2-4) 

 

Where, n(r) is the number of the particles of radius r. They showed that optically thick clouds with 

retrieved re >14µm correspond to well defined areas with radar echoes that indicate the existence of 

rainfall size particles. Cloud liquid water content (LWC) is also widely used to cloud microphysics  

(Slingo & Schrecker, 1982) defined as: 

 

      
    

 
∫  ( )  
 

 
                                                                                                                 (2-5) 

 

Where,    is the density of water. The cloud optical thickness they defined also as: 

 

  ∫    
  
  

                                                                                                                                          (2-6)  

 

Where z1 and z2 are the height of the cloud base and cloud top, respectively. The Liquid Water Path 

(LWP) is then given as: 
 

    ∫    ( )  
  
  

                                                                                                                       (2-7)  

 

LWP is proportional to LWC and inversely proportional to re in the visible. and re are derived from 

satellite with assumption of vertical homogeneity in the cloud column (Hu & Stamnes, 1993).  
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3. STUDY AREAS AND DATA SETS 

 

The PP-VNIR and H-E algorithms are both based on geostationary satellites data. The PP-VNIR 

algorithm based on SEVIRI retrieval has an acceptable accuracy (Bias) of about 0.1 mm h_1 and a 

precision (standard error) of about 0.8 mm h-1 in Northern Europe (Roebeling & Holleman, 2009). This is 

a good accuracy but the algorithm is limited to daylight hence night estimates are not possible. H-E uses 

IR data for detection and retrieval of rain rate. It has advantage over PP-VNIR algorithm since it 

eliminates cirrus effects and it can be used day and night (Scofield & Kuligowski, 2003). SEVIRI of MSG 

data retrieval was used for both algorithms in detection and retrieval of rain rate and the results validated 

by rain gauge measurements. PP-VNIR and H-E have similar spatial and temporal resolution, hence they 

were both comparable.  

. 

3.1. Study areas 

 

Northwest Europe window selected is within 470 N to 560 N (latitude) and 10 E to 80 E (longitudes). It 

experiences temperate climate according to Koppen’s Climate classification based on annual and monthly 

averages of temperature and rainfall of latitude range 45° N to 60° N (Europe). Climate in this zone is 

affected by tropical air-masses (same temperature and moisture characteristics) moving pole ward and 

polar air mass moving equator ward. Any of the two air masses may dominate the region. These climates 

have warm, dry summers and cool, wet winters. Seasonal changes between summer and winter are very 

large. Daily temperatures also change often. Abundant rainfall falls throughout the year. It is increased in 

the summer season by invading tropical air masses (frontal systems). Cold winters are caused by polar and 

arctic masses moving south and the region receives most of the rains in summer. The Kenyan window 

selected is within 50 S to 50 N latitude and 330 E to 420 E longitudes. By Koppen’s classification this 

region lies within 10° S to 25 ° N range which is classified as a Tropical Moist Climates. Rainfall is heavy 

in all months. The total annual rainfall is often more than 250 cm. (100 in.). There are seasonal differences 

in monthly rainfall but temperatures of 27°C (80°F) mostly stay the same. Humidity is between 77% and 

88%. High surface heat and humidity cause cumulus clouds to form early in the afternoons almost every 

day (FAO, 1997). Convective rainfall systems dominate in this region when the ITCZ passes over the 

region in March to May and October to December. These are the months of seasonal rainfall over Kenya. 

 

 

 

Figure 8: Study areas climatic locations according to Koppen’s climate classifications. Source: (FAO, 1997).  
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3.2. Data Sets 

 

Several data sets in this study are described in this section. The first selection criterion for the months of 

April and July was a choice of the months when each region receives most rainfall.  Mid-latitudes where 

NW  Europe is located receives most of the rains in summer, hence the choice of July while Kenya 

receives most of the rains when ITCZ lies over the region during the rainfall season of March, April and 

May (MAM) and October, November and December (OND). The long rainfall is in MAM season hence 

the choice of April. Second criterion was choice of the days with almost no rainfall at night. This is 

because the PP-VNIR algorithm is limited to daylight with night estimates being practically impossible. In 

this study the H-E is hoped to bridge the night time gap of the PP-VNIR algorithm hence their 

comparison. The algorithms have similar temporal and spatial resolutions since both uses geostationary 

data sets. To achieve this selection, use was made of European Organization for the Exploitation of 

Meteorological Satellites’ (EUMETSAT) Multi-sensor Precipitation Estimate (MPE)(Heinemann & 

Kerenyi, 2003). The MPE is an instantaneous rain rate product which is derived from the IR-data of the 

geostationary EUMETSAT satellites by continuous re-calibration of the algorithm with rain rate data from 

SSM /I on board DMSP Satellites. The advantages of the high temporal and comparably high spatial 

resolution of a geostationary IR sensor with the higher accuracy in rain rate retrieval of microwave sensors 

on polar orbiting satellites are utilized. The assumption made is that cold clouds are more likely to produce 

rainfall than warmer clouds, in the same synoptic system. Two days from each region were chosen based 

on those criteria. These were 3rd and 12th July for NW Europe and 2nd and 3rd April for Kenya region in 

year 2010.  

 

3.2.1. Importing Meteosat-9 image data  

 

Cloud top brightness temperature (10.8 µm) was retrieved from SEVIRI of MSG satellite through the ITC 

GEONETCast tool box (Figure 9) in High Rate Image Transmission (HRIT) format (Level 1.5). Time 

series of 10.8 µm brightness temperatures after every 15 minutes from 0730 UTC to 1530 UTC in each 

region for the respective days were retrieved. 

 

 

Figure 9: MSG data retriever window, showing the SEVIRI of MSG channels. Source: Courtesy of ITC. 
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3.2.2. Ground Measurements observation data 

  

The in-situ rain gauge data used in the validation are the accumulated 24-hour rainfall amount in mm. 

Since the days chosen were free of night rainfalls, the 24hr accumulation represented day time rainfall. The 

data is available 1-2 days after the date-time of the observations used in the daily summaries from the 

National Climatic Data Centre (NCDC) in Asheville, NC. These are Global Surface Summary of the Day 

(GSOD) data and are also available online.  By use of GEONETCast tool box rainfall measurements for 

the selected year were imported. From the yearly record, day records of corresponding months were 

selected (figure 10) for each station. In NW Europe 29 stations were considered and 31 stations over 

Kenya. These were all the stations that gave reports on rainfall for the eventful days.. More information on 

rain gauge stations measurements can be found in appendixes 16 to 19 and maps of the two regions 

showing the overall rain gauge distribution in appendix 15. 

 

 

Figure 10: GSOD from website are retrieved easily by use of ITC GEONETCast tool box. Source: Courtesy of ITC   

3.2.3. Model data retrieval 

 

The National Centre for Environmental Predictions(NCEP) 6 hour model data forecast applied in Eta 

model of H-E was retrieved from their  website (NCAR, 2010). Details on how to get to the data can be 

found in the appendix 1.  The pgb.ft00.yyyymm data was selected according to the year, month and day. 

For this study the year 2010, month of July for NW Europe window was selected and the month of April 

same year for Kenya window both for the respective days. Next selection of the variables and pressure 

levels as PW (Precipitable water) and RH (relative humidity) was done. The hours selected were 00, 06, 12 

and 18 UTC for each variable of the respective days. The pressure level for the Relative humidity (RH) 

was 500 hpa and non-pressure level for Precipitable Water (PW). The data was in gridded format and was 

downloaded in a global scale. RH data was in 2.50×2.50 spatial resolution and 6 hours temporal resolution. 

The PW spatial resolution was 1.8750×1.8750 and temporal resolution of 6 hours. Details on data pre-

processing can be found in appendix1 and 2. 

 

3.2.4.  Cloud Physical properties algorithm fields’ data  

 

The CPP algorithm of the Royal Netherlands Meteorological Institute (KNMI) developed by Roebeling et 

al (2006) retrieve Cloud thermal dynamic Phase (CPH), Cloud Optical Thickness (COT), particle sizes, 

cloud column height (cch) and Condensed Cloud water Path (CWP) from the SEVIRI on board the MSG 

by comparing SEVIRI reflectance at 0.6 µm and 1.6 µm to simulated reflectance by Doubling Adding 

KNMI (DAK) radiative transfer model of water and ice clouds for given optical thicknesses and particle 
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sizes The PP-VNIR algorithm  retrieves rainfall occurrence and intensity from CPP  based on Wentz and 

Spencer (1998) findings, that CWP together with the cloud depth can be used to retrieve rain rate. The 

principle behind the SEVIRI PP-VNIR retrieval is that, reflectance of clouds at a non-absorbing 

wavelength in the visible region (0.6μm or 0.8 μm) is strongly related to optical thickness and has little 

dependence on 1.6 μm or particle size, whereas the reflectance of clouds at an absorbing wavelength in 

the NIR (1.6 or 3.8 μm) is primarily related to particle size from SEVIRI reflectance at 0.6µm in the visible 

and 1.6 µm in the NIR of ice and water cloud. The CPP Look Up Tables (LUTs) containing these fields 

were provided by KNMI on request for the two regions in Hierarchical Data Format, version5.  More 

information on pre-processing can be found in appendix 8. Figure 11 is an example of a LUT extracted by 

iterative comparison of observed SEVIRI reflectance and the simulated cloud top reflectance by DAK 

model (Roebeling, et al., 2006) for the viewing geometry:      
 ,     ,      where    is the 

solar zenith angle,   is the satellite  zenith angle and   is the relative  azimuth angle. The retrieval of the 

COT and re are done iteratively. First the COT (µm) values corresponding to given reflectance at 0.6µm 

are extracted. Visually a line is drawn to connect the two values. Secondly re (µm) values corresponding to 

each COT (earlier extracted) value is also extracted. This is done as many times to get a combination of 

COT and re for different viewing angles and the PP-VNIR algorithm uses these values to derive CWP (gm-

2) (Stephens, Paltridge, & Platt 1978) and rain rate.(mm/hr) (Wentz & Spencer, 1998).  

 

 

Figure 11: Look up tables of simulated ice and water cloud reflectance by DAK reflectance at 1.6 μm versus 0.6 μm. 
Source: (Roebeling, et al., 2006). 

The 0.6 μm and 1.6 μm (Figure11) are for cloud with optical thickness values between 0 and 128 (solid 

vertical lines) and with effective radii between 3 and 24 μm (up to 16 μm is shown) for water clouds and 

C1 and C2 imperfect hexagonal specific columns indicated for ice clouds (dashed and dotted more or less 

horizontal lines). The results are presented for viewing geometry. The arrows indicate the impact of 11% 

and 25% difference in 0.6 μm and 1.6 μm reflectance, respectively. The arrows illustrates how a 25% 

increases in 1.6 μm reflectance results in a decrease of cloud optical thickness values, whereas the 

horizontal arrows indicate that a 11% increase in 0.6 μm reflectance results in an increase of COT values. 

Source (Roebeling, et al., 2006). 
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3.2.5. Retrieval of cloud water path 

 

Assuming a vertically homogeneous cloud, CWP was computed from COT and particle size. It was 

computed from the retrieved COT at 0.6 μm wavelength (denoted as tvis) and droplet effective radius (re) 

of NIR 1.6 μm (Stephens, et al., 1978).  They found re (3-1) to be the adequate parameter to represent the 

radiative properties of a distribution of water particles. 

 

   
∫    ( )  
 

 

∫    ( )
 

 
  

                                                                                                                                  (3-1) 

 

Where n(r) is the particle size distribution and r is the particle radius. This definition is used to retrieve the 

effective radius for water clouds between 1 and 24 μm. For ice clouds we assume a homogeneous 

distribution of C1 and C2 type imperfect hexagonal ice crystals. To derive condensed cloud water path 

from ice and water phase cloud equation 3-2 is applied.  

 

    
 

 
                                                                                                                                   (3-2) 

Where,       is COT (μm), re is droplet effective radius (μm) and    is the liquid water density. For ice 

clouds it was assumed a homogeneous distribution of 30 μm (C1) and 40 μm (C2) ice crystals (Roebeling, 

et al., 2006). 
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4. METHODOLOGY 

4.1. The Precipitation Properties-Visible / NIR algorithm  detection and retrieval of rain rate 

 

CPP algorithm as described in Roebeling et al, (2009) was used to retrieve CWP, CPH, COT, cch and 

particle size from which the PP-VNIR algorithm derived the occurrence and retrieval of rain rate 

estimates. 

 

4.1.1. Detection of precipitating clouds  

 

Detection of precipitating clouds was done using cloud properties of CWP, CPH, and re of the water and 

ice clouds retrieved by CPP algorithm. Clouds with CWP values larger than a threshold value (160 gm-2) 

were considered potentially precipitating. CPH was used to separate ice from water clouds. All ice clouds 

with CWP larger than 160 gm-2 were considered to be precipitating and all water clouds with CWP larger 

than160 gm-2 and re greater than a threshold value (15 μm) were considered precipitating. 

 

4.1.2. Retrieval of the Height of the Rain Column  

 

The height of the rain column H was determined from the difference between the warmest Cloud Top 

Temperature (CTTmax) over an area of 100 х100 SEVIRI pixels, which is assumed to represent a thin 

water cloud with a rain column height (dH), and the CTTpix of the observed pixel. Assuming that the 

vertical decrease in temperature obeys a wet adiabatic lapse rate of 6.5 K km-1, H was estimated by use of 

equation 4-1.  

 

  
(             )

   
                                                                                                                   (4-1) 

 

Where CTTmax is the maximum cloud top temperature, CTTpix the cloud top temperature of a given pixel, 

6.5 is the wet adiabatic lapse rate in Kelvin /km, and dH is the minimum height of the rain column in km. 

dH = 0.6 km (Roebeling & Holleman, 2009). 

 

4.1.3. Retrieval of the Rain Rates by PP-VNIR Algorithm 

 

The PP-VNIR algorithm is based on columnar liquid water path and the height of the rain column (Wentz 

& Spencer, 1998) as shown in equation 4-2. 

 

  
(
       

   
)
 

 
                                                                                                                                   (4-2) 

 

Where, LWP is the liquid water path in g m-2. R is the rain rate in mm h-1 and H is the height of the rain 

column in km. This equation is only for  water cloud and to make the equation more general for both ice 
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and water CWP is used instead of LWP (Roebeling & Holleman, 2009). The rain rate is retrieved on 

precipitating clouds ice or water as described in 4.1.2. Unlike the detection of precipitating clouds where 

ice and water clouds were treated separately, retrieval of rain rate (4-3) is irrespective of the phase since it 

contains water in solid and liquid form. 

 

  
 

 
*
        

    
+
 

                                                                                                                           (4-3) 

 

Where CWP0 =120 and is the CWP offset value in g m-2, above which R is calculated, α =1.6 and is a 

dimensionless constant and c=1 and is a constant in mm h-1 km (Roebeling & Holleman, 2009). 

 
 

 

Figure 12: PP-VNIR algorithm methodological flow chart  

 

4.2. Hydro-Estimator Algorithm description 

 

The H-E description according to Scofield and Kuligowski (2003)  derive rain rate from convective and 

non-convective clouds separately by use of GOES brightness temperature (10.7µm).  For regions of the 

world where GOES satellite does not cover other geostationary satellites (METEOSAT over Europe, 

Africa and western Asia and MTSAT over eastern Asia ) data are applied (Vicente, Scofield, & Menzel, 

1998). In this study SEVIRI IR 10.8 µm was used.  Figure 15 shows H-E algorithm flowchart. 
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4.2.1. Convective Rain Rate Estimates  

 

The rainfall equation derived from the relationship between rainfall rate from weather radar and GOES 

Infrared brightness temperature (10.7 µm) for Automatic Estimator (AE) by Vicente et al, (1998) was used 

in H-E to estimates convective rain rate (4-4).  In this study SEVIRI 10.8 µm was used. 

 

                (           
   )                                                                                       (4-4) 

 

Where, R is the rain rate in mm/hr. and Tb is 10.8 μm brightness temperatures in Kelvin. The constants 

1.1183×1011 and 0.036382 correspond to theoretical equivalence of 0.5mm/hr. at 240°K 

4.2.2. Convective Rain Rate Adjusted For Precipitable Water  

 

The rain rate of equation 4-13 was corrected at 240°K to correspond to 0.5mm/hr. and a rain rate at 

210°K that is related to the Eta model value of PW (Figure 13 a) was also adjusted. The brightness 

temperature was adjusted according to the available PW (Figure 14 a) before rainfall computation. A 

maximum rain rate was set (PW (inches) × 40mm/hr.) that was empirically based. Rain rate curve 

coefficients for the coldest pixel higher than this theoretical maximum was recomputed based on a rain 

rate of 0.5 mm/hr. at 240°K and the theoretical maximum value at the lowest pixel temperature in the 

vicinity. This means, pixel value larger than the maximum was assigned the maximum theoretical value. 

For the stratiform rain rate this maximum value was reduced to 20 % (Figure 13 c). Figure 13b show the 

relationship of rain rate and brightness temperature at the cloud top (10.8 µm) at different PW depth. Rain 

rate was then, adjusted in accordance to relative humidity values (Figure 14 c).  PW and RH were 

downloaded from NOAA climatological forecast website (NCAR, 2010) from their Ftp site. The curves 

(Figure 13 a; 14a and 14c) were converted into polynomial curves which were used as input for rain rate 

retrieval to have spatial variations (Appendix20) (Scofield & Kuligowski, 2003).  

 

 

 

Figure 13: Adjustment functions used in the Hydro-Estimator: (a) rainfall rate at 210K (mm/hr.) as a function of 
Eta model PW (mm) for convective and non-convective rain rate :Source (Scofield & Kuligowski, 2003) 
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4.2.3. Convective Rain Rate Adjusted For Relative Humidity  

 

Adjustment for RH (Figure 14 c) was done by subtracting convective rain rate corresponding to available 

RH. This is assumed to be the amount to be “evaporated” from the rain rate before reaching the surface. 

These adjustments have helped in handling of stratiform events with embedded convection and in winter 

time rainfall which is associated with low PW values(Scofield & Kuligowski, 2003). 

 

 

 
Figure 14: HE adjustment functions: (a) brightness temperature adjustment (K) as a function of Eta model PW 
(mm); (b) Eta RH as a function of HE rainfall rate (mm/hr.); and (c) Rain reduction in HE rainfall rate (mm/hr.) 

corresponding to the Eta relative humidity. Source (Scofield & Kuligowski, 2003). 

 

4.2.4.  Non Convective Rain rate Estimate 

 

The non-convective rain rate was computed by use of adjusted brightness temperature at 10.8 µm and 

20% of the maximum rain rate derived from PW on theoretical basis. This rainfall rate is not allowed to 

exceed 20% of the corresponding convective rain rate. Just like the convective type, adjustment for 

relative humidity follows by subtracting the rain rate corresponding to the available RH. Even after 

limiting the non-convective rain rate to 20% (4-5) of the convective rain rate, over estimation was still 

there.  

 

          
    

 
                                                                                                                              (4-5) 

Where, Tb   is the adjusted brightness temperature in Kelvin and R max is theoretical maximum of 

convective rain rate (mm/hr).  
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4.2.5. Non convective rain rate adjusted for over estimation 

 

In this study a reduction of this effect was done in two steps taking each eventful day at a time. First the 

maximum possible rain rate was determined by considering the minimum adjusted brightness temperature 

and using it to determine the maximum rain rate possible. Each 3x3 kernel area rain rate was divided by 

this maximum value, such that the kernel corresponding to the maximum rain rate becomes 20% of the 

corresponding convective rain rate. Secondly, interactively the maximum possible adjusted brightness 

temperature for each event was determined by making sure there were no outlier maximum rain rates 

from the main cloud system. In NW Europe on 3rd July which was largely of water cloud 243K was 

determined and on 12th which was largely of ice cloud 240K was determined. Over Kenya the brightness 

temperature was almost uniform and 247K was determined. It was evident from this findings that the 

lower the cloud temperature the lower the maximum adjusted brightness temperature. 

 

4.2.6. Precipitating Clouds determination 

 

This involves finding the minimum temperature (Tmin) of a 101x101 kernel centred on the pixel of interest. 

This is the original global pixel size for the H-E (Scofield & Kuligowski, 2003), but in this study a regional 

scale was determined since the areas of study (e.g. NW Europe) are very small and taking a big kernel 

would result into few pixels that would not be able to characterize the cloud systems. Since convective 

systems have many minima, a 3×3 kernel which is the highest spatial resolution was chosen. This was 

found suitable to characterize local systems which are averaged out by large systems yet cause unpredicted 

rainfall. This was done by computing the mean (µ) and standard deviation (σ) of the selected radius (3×3 

pixel box) of T10.8. The presence or absence of rainfall and the relative fraction of convective and non-

convective (stratiform) rainfall for the pixel of interest was determined depending on how its temperature 

compared to its surroundings. A negative Z (equation 4-6) implies the pixel is warmer than the 

surrounding and rain rate is set to zero, assuming that such pixels are cirrus or otherwise convectively 

inactive cloud. For positive values of Z (which are constrained to be 1.5 or less), the "core" fraction is 

related to Z and the "non-core" fraction to (1.5-Z), such that the final rain rate RR can was computed 

from the "core" rate Rc and the "non- core" rate Rn (Scofield & Kuligowski, 2003). 

 

  
       

 
                                                                                                                                         (4-6) 

Where, Z is the normalization parameter, μ is the mean value of T 10.8  of the specified radius  and σ is 

standard deviation of T 10.8  brightness temperatures in Kelvin  

 

4.2.7. Total Rain Rate by Hydro-Estimator 

 

The total H-E rain rate (4-7), convective and non-convective is summed together. 

 

    
    

    (     )
 

   (     ) 
                                                                                                                      (4-7) 

 

Where, RR is the total rain rate of the H-E in mm/hr. Rc is the convective rain rate in mm/hr. and Rn to 

non-convective or stratiform rainfall, all in mm/hr. and Z is a standardization quantity (Scofield & 

Kuligowski, 2003).  
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Figure 15: H-E algorithm methodological flow chart 

 

4.3.  Skill of detection of PP-VNIR and H-E rain rate in relation to rain gauge measurements 

 

Validation was done by comparing accumulated daily rain gauge data from 29 stations over NW Europe 

and 31 stations over Kenya to PP-VNIR and H-E day total retrieved rain rate during day time separately. 

To reduce the uncertainties of different spatial variations of the algorithms and the point measurements of 

rain gauges, the satellite foot prints was increased to 5x5 kernel area of the day total rainfall estimates of 

each algorithm. The average value of each kernel was then compared with the corresponding rain gauge 

measurements. This was done to reduce the uncertainties of different spatial resolution of the satellite and 

the rain gauges.  

 

4.3.1.  Categorical verification statistics of PP-VNIR and H-E rain rate estimates 

 

The skill of the detection of precipitating clouds from SEVIRI retrieval, of PP-VNIR and H-E algorithms 

relative to the rain gauge observations, were presented in 2 × 2 contingency tables from which various 

scores (4-8 to 4-13) to verify the quality of the categorical estimates were determined. The statistical 

indices (conditional distribution) used are: the Probability Of Detection (POD), the False Alarm Ratio 

(FAR), the Critical Success Index (CSI), the Probability of Rejection (POR), False Rejection Ratio (FRR) 

and Bias. These were applied to each algorithm separately. Table 1 shows the contingency table. For a 

rain/no-rain contingency table, R stands for correct no rain estimates, F stands for incorrect rain estimates 

(i.e., the algorithm gave rain estimates but the observation had no rain), M stands for incorrect no rain 

estimates (i.e., no rain estimate by the algorithm, but observed had rain estimate), and H stands for correct 
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rain estimates (i.e., the algorithm gave rain estimates and the observation had rain observed occurrence of 

rain). Bias indicates the tendency to underestimate (Bias<1) or to overestimate (Bias>1) (Marzban, 1998). 

 
Table 1: Contingency table of the algorithms and the observed probability 

Algorithm  Estimated rainfall 

(mm/day) 

Observed rainfall (Rain gauge) mm/day) 

 Rain No rain Total 

Rain Hits(H) False alarms(F) H+F 

No rain Miss(M) Correct non-events(R) M+R 

Total H+M F+R H+M+F+R 

 

    
 

     
                                                                                                                                     (4-8) 

 

    
 

   
                                                                                                                                        (4-9)   

 

    
 

   
                                                                                                                                        (4-10) 

 

    
 

   
                                                                                                                                       (4-11) 
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                                                                                                                                      (4-13) 

 

Where H is the correct hits, M is the missed rainfall events; F is the false rainfall alarms and R the correct 

rejection of rainfall.  

 

4.3.2. Continuous verification statistics of PP-VNIR and H-E rain rate estimates 

 

Continuous verification statistics measure the accuracy of a continuous variable such as rain amount or 

intensity. PP-VNIR and H-E day total rain rate estimate were compared to rain gauge measurements for 

each respective day. Statistical analysis was done to determine the accuracy of each algorithm with respect 

to rain gauge measurements and to each other. The Pearson’s coefficient of correlation (4-14) was used 

and the tests for significance was done using student’s t- test (4-15) (Corder & Foreman, 2009). The 

correlation coefficient r measures the degree of linear association between the values. Root Mean Square 

Error (RMSE) (4-16). RMSE puts greater influence on large errors than smaller errors despite the 

direction of deviation. Bias (4-17) measures the average difference between the compared values.  
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                                                                                                                                         (4-15) 

 

Where n is the number of data points and r is correlation coefficient. The relationship is then modelled by 

the regression best fit line (4-15)  
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                                                                                                                                 (4-17) 

 

Where x is the observed rainfall measurements (mm/day) and y is the algorithm (PP-VNIR or H-E) 

rainfall estimates (mm/day) where  ̅and  ̅ stands for the corresponding mean values and n is the number 

of observations/measurements. The same x and y relationship was used to represent PP-VNIR and H-E 

respectively when comparing their rain rate estimates.  Correlation was tested by student’s t distribution 

with n-2 degrees of freedom under the null hypothesis (      ) that at 95% confidence level, the 

correlation is not different from zero and alternative hypothesis (      ) that it will be different from 

zero (Corder & Foreman, 2009). Table showing the tabulated t-test critical values are in appendix 14. The 

results of measured t-test from this distribution were compared with the tabulated t-test two sided critical 

values at 95% confidence level. The critical values table columns show the different degree of freedom in 

% and the rows show the degree of freedom. In this study we had 33 data points (n) from 0730 UTC to 

1530 UTC. This is 33 less -2 degrees of freedom which is equal to 31. The tabulated value is 2.0441. The 

Pr (T<- 2.0441) is = 1-0.975=0.025 for one sided T distribution and so Pr (-2.0441<T<2.0441) =1-

2(0.025) =0.95 for 2 sided distribution. If the t-test computed is equal to or greater than the two limits the 

null hypothesis is rejected and the alternative hypothesis is accepted and vice versa (Corder & Foreman, 

2009). The degree of freedom depends on the data point being compared, e.g. in comparison with the rain 

gauge measurements NW Europe had 29 (n=29-2 degree of freedom) stations while Kenya had 33(n=33-

2). The t-test was computed (4-15) and compared with the tabulated values at 95% confident level .Scatter 

plots and time series lines were also used to check whether there was any association between the 

algorithms rainfall estimates, after which a linear regression (4-18) best line was fit to check significance of 

the relationship. 

 

                                                                                                                                              (4-18) 

 

Where X is the independent variable and Y is the dependent variable. The slope of the line is b, and a, is 

the intercept. In matrix notation this becomes: 

 

                                                                                                                                             (4-19) 

 

Where, Y is an n by 1 vector of y values, X is an n by p matrix of x values, B is an n by 1 vector of 

regression coefficients, and E is an n by 1 vector of the regression errors. 

With this notation the least squares estimator of the regression coefficients is given (4-20) (Silvio & Bryan, 

2006). 

 

  (   )                                                                                                                                     (4-20) 
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Figure 16: Validation flow chart 
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5. RESULTS AND DISCUSSION 

The results of the two algorithms over NW Europe and over Kenya regions are presented in this section 

in map form showing each algorithm day time total rain rate and the cloud properties average values for 

each eventful day.  False colour map composites of SEVIRI at 1315 UTC: of R (NIR16), G (VIS008) and 

B (VIS006) and R (VIS006), G (IR39) and B (IR108) were used to visualize the clouds. 1315 UTC was 

chosen to represent the convective activity hour. For easier understanding of the false colour composite 

map, a typical convective system showing stages of development is also shown. Red, Green and Blue 

(RGB) colour of VIS 006 µm, IR39 µm and IR 10.8µm. The algorithms day total rainfalls were compared 

with GSOD rain gauge measurements for detection and retrieval of rain rate accuracy.  Finally the two 

algorithms rain rate temporal variations were compared for significant relation. Categorical statistics from 

contingency tables were used in determining the skill of detection of each algorithm and continuous 

statistical analysis of correlation; Bias and RMSE were used to determine the accuracy of rainfall estimates. 

Scatter and line plot were used to describe the relationships of each comparison and a linear regression of 

best fit line was determined from which the regression statistics results of relationship significance were 

given. 

To test the detection capability the accumulated rain gauge measurements, for each station in each region 

were compared to the algorithm day total rainfall for each eventful day. Since the days were free of night 

rainfall the accumulated rain gauge total represented the day time measurements. To account for the 

uncertainties of spatial variation of satellite and rain gauge point measurements, the algorithms spatial 

resolution was increased to a 5x5 kernel from which the average values were compared with the rain gauge 

measurements 

5.1. Northwest Europe region results 

 

In this section the results of the two algorithms in detection and estimation of rain rate for North West 

Europe window are given.. The results of the day total rainfall rate for the H-E (Figure 17 and 19) and PP-

VNIR (Figure 18 and 20) algorithms and their intermediate maps are shown.  The dates of the events were 

20100703 and 20100712 from 0730 UTC to 1530 UTC in 15 minutes time step.  
 



 

32 

 

Figure 17: H-E day total rainfall, input maps and 1315 UTC false colour composite maps all in geostationary 

MSG projection over part of NW Europe on 3rd July 2010 

From figure 17, it is apparent that the higher the Z values the higher the convective activity and the lower 

the values the higher the non-convective activity. The convective activities are to the east and the non-

convective includes the central and SW side of the region.  The Z map high values (south east) correspond 

to the convective activities while the central western side of Z map corresponds to non-convective type. 

From the false colour composites map, the central western region comprises of super cooled water clouds 

and the H-E underestimates non-convective rain rate over this area. Figure 18 shows the COT and CWP 

path average values have a direct relationship and CWP is directly related to PP-VNIR rain rate hence 

COT have a positive influence on the rain rate. Ice phase relates positively with cloud height which means 

the higher the cloud the colder it becomes hence more of ice phase than water phase. From phase maps it 

is shown that the day was dominated by water cloud to the north and south and ice cloud to the east and 

west. It has agreement with false colour composite maps of ice to the west and east. The day total PP-
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VNIR rain rate was concentrated to the central region where ice and water cloud coexisted.  It is seen that 

the two algorithms in delineating precipitating clouds had spatial variation. 

 

 

Figure 18: PP-VNIR day time total rain rate and cloud properties day average values over part of NW Europe on 
3rd July 2010 all in geostationary MSG projection. 
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Figure 19: H-E day total rainfall, input maps and 1315 UTC false colour composite maps all in geostationary 

MSG projection over part of NW Europe on 12th July 2010. 

 

From Figure 19 the false colour composite maps indicate convection activities to the north east and cirrus 

clouds together with developing convective clouds to the southern part The H-E considered north east to 

be dominated by non-convective rainfall.  Figure 20 of the PP-VNIR and day total rain rate of a day 

dominated by ice cloud to the south and of water to the north. The rain rate was concentrated to the 

northeast where water clouds were dominant and scattered to the south where ice clouds were more. The 

cloud height was mainly highest to the southern part which was associated with ice clouds. The H-E and 

PP-VNIR had agreement in delineating precipitating clouds to the north which was mixed ice and water 

cloud.  
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Figure 20: PP-VNIR day time total rain rate and cloud properties day average values over part of NW Europe on 
12th July 2010 

5.1.1. PP-VNIR and H-E comparison with ground measurements over NW Europe 

 

Detection validation: 

The PP-VNIR and H-E day total rainfall estimates were compared with rain gauge measurements station 

by station. By use of contingency table the corresponding rainy and non-rain days were determined. Day 

rainfall total for each region by each algorithm was used to compare with the 29 stations (Appendix 16 

and 17) accumulated rain gauge measurements (GSOD rain gauge measurements) for each station. Tables’ 

showing the categorical analysis scores of detection of each algorithm in relation to observed values and 

the overall accuracy in percentage were determined. Bar graphs and line plot were also used to describe 

the relationship of each algorithm estimates in relation to the observed values (Figures 21 to 24). Table 2 

show the two algorithms detection capability was the same for both eventful days over NW Europe. From 

Figure 21 POD was very high and likewise the FRR was very low. On the 12th day of July the rain rate 
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reported increased and this was marked with decrease in Bias and increase of CSI as well as the percentage 

correct ratio. The FAR however increased with increase of rain rate.  

 
Table 2: Contingency table of the daily total rainfall estimates by PP-VNIR and H-E algorithms and accumulated 
rain gauge measurements over NW Europe. 

3rd July 

Estimated 

Rain rate by 

PP-VNIR 

Observed by rain gauges Estimated 

Rain rate by  

H-E 

Observed by rain gauges 

Rain No rain Total Rain No rain Total 

Rain 9 20 29 Rain 9 20 29 

No rain 0 0 0 No rain 0 0 0 

Total 9 20 29 Total 9 20 29 

12thJuly 

Estimated 

Rain rate by 

PP-VNIR 

Observed by rain gauges Estimated 

Rain rate by 

H-E   

Observed  by rain gauges 

Rain No rain Total Rain No rain Total 

Rain 13 16 29 Rain 13 16 29 

No rain 0 0 0 No rain 0 0 0 

Total 13 16 29 Total 13 16 29 

 

 

Figure 21: Skill of detection bar graphs for PP-VNIR and H-E algorithms on 3rd July  

 

 

Figure 22: Skill of detection bar graphs for PP-VNIR and H-E algorithms on 12th July  
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Retrieval validation; 

The satellite foot print was increased to 5x5 pixel box from which average values were determined. These 

average values were compared to the accumulated rain gauge measurements assuming the 5x5 pixel box 

area represented rain gauge area coverage. The results of the comparison in terms of line curves (Figure 23 

and 24) indicate high rain rate by the algorithms as compared to rain gauge measurements. The algorithms 

however showed same trend with rain gauges particularly on 12th July when the rain rate increased.  

Results of the algorithms in quantifying the rain rate was further determined by use of continuous 

statistics analysis (Table 3). The computed t-test was higher than the tabulated. It is noted that the 

accuracy of estimate increased with increase in rain rate on 12th July. This is indicated by higher correlation 

and corresponding higher computed t-test. 
 

 

Figure 23: PP-VNIR and H-E compared to observed rain gauge measurements for NW Europe region on 3rd July  

 

 

Figure 24: PP-VNIR and H-E compared to observed rain gauge measurements for NW Europe region on 12th July  
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Table 3: Statistical analysis results on 3rd and 12th July between the algorithms day total estimates and Accumulated 
rain gauge measurements over part of NW Europe 

 3rd July 12th July 

Obs/ PP-VNIR Obs/H-E Obs/ PP-VNIR Obs/H-E 

RMSE 15.70 47.54 20.67 41.65 

Bias 0.14 0.04 0.20 0.10 

Correlation 0.41 0.55 0.68 0.53 

Computed t-test 2.35 3.42 5.12 3.47 

Tabulated t-test 2.05 2.05 2.05 2.05 

 

5.1.2. Comparison of PP-VNIR and H-E rain rate estimates over NW Europe. 

 

Further qualitative comparison between the algorithms estimates of rainfall was done through time series 

line and scatter plots. Quantitative comparison was done through continuous statistical analysis of Bias, 

RMSE and correlation coefficient. 

 

Qualitative Comparison: 

To find out whether there was any association of the two algorithms in rainfall estimates, line and scatter 

plots were used of the algorithms’ rain rate and CPP cloud properties temporal variations was used for 

understanding the PP-VNIR variations. 

   

 

Figure 25: H-E and PP-VNIR day time rainfall estimates on 3rd July line plot over NW Europe from 0730 UTC to 
1530 UTC   

Results of the rain rate time series (Figures 25 and 27) indicate similar trend though PP-VNIR rain rate 

indicates fluctuations and over estimation particularly in the morning. These differences was indicated in 

the scatter plot by spatial variations being greatest in the morning hours and improved in the afternoon.( 

Figures 26 and 28) particularly on 3rd July. As can be seen from the PP-VNIR cloud properties, the COT 

on 3rd July was low in the morning and increased gradually toward afternoon (Figure 29). On 12th July it 

was the reverse. The COT was high in the morning and lowest in the afternoon (Figure 30), hence the two 

algorithms indicated a decrease in rain rate toward afternoon. The results show that, the two algorithms 

are comparable in retrieving rain rate in the afternoon.  
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Figure 26: H-E and PP-VNIR day time rainfall estimates on 3rd July scatter plot over NW Europe from 0730 UTC 
to 1530 UTC   

 

 

Figure 27: H-E and PP-VNIR day time rainfall estimates on 12th July line plot over NW Europe from 0730 UTC to 
1530 UTC   

 

 

Figure 28: H-E and PP-VNIR day time rainfall estimates on 12th July line plot over NW Europe from 0730 UTC to 
1530 UTC   

y = 1.1003x + 0.1474 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
P

-V
N

IR
  r

ai
n

 r
at

e
s 

(m
m

/h
r)

 

H-E rain rates (mm/hr) 

Regression of PP-VNIR by H-E (R²=0.320) 

Active Model Conf. interval (Mean 95%) Conf. interval (Obs. 95%)

0

0.2

0.4

0.6

0.8

1

1.2

P
P

-V
N

IR
 a

n
d

 H
-E

 r
a
in

 
ra

te
s 

(m
m

/
h

r)
 

Time (UTC) 

PP-VNIR and H-E rain rate estimates temporal variations 

CPP H-E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6

P
P

-V
N

IR
  r

ai
n

 r
at

es
 (

m
m

/
h

r)
 

H-E rain rates (mm/hr) 

Regression of PP-VNIR by H-E (R²=0.517) 

Active Model Conf. interval (Mean 95%) Conf. interval (Obs. 95%)



 

40 

 

 

Figure 29: CPP cloud properties temporal variations line curves on 3rd July over NW Europe. 

 

 

Figure 30: CPP cloud properties temporal variations line curves on 12th July over NW Europe. 

 

Quantitative comparison: 

The PP-VNIR rain rate retrieval was compared with that of H-E by use of continuous statistical analysis. 

From the scatter plot and the statistical results (Table 4), determination of the relationship of the two 

algorithms was done from which a linear regression best line was fit (Tables 5&6). The correlation was 

significant and higher on 12th July than on 3rd July. This corresponded with higher RMSE and low Bias. 
 

Table 4: Statistical analysis results for NW Europe region on comparison of PP-VNIR and H-E day rainfall 
estimates after every 15minutes 

PP-VNIR /H-E rain rate temporal 

variations comparison(0730 -1530 

UTC) 

 3rdJuly 12th July 

RMSE 0.02 2.28 

BIAS 1.47 1.89 

Correlation ( ) 0.57 0.72 

Computed t-test 3.82 5.76 

Tabulated t-test 2.04 2.04 
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A linear regression line was fit between the two algorithms values of every 15 minutes from 0730 to 11530 

UTC. The probability (P) value was used for testing the hypothesis at alpha=0.05. 
 

Table 5: Linear regression best fit line statistics on 3rd July 

Goodness of fit statistics: 

Observations Sum of 

weights 

Df R² Adjusted 

R² 

MSE RMSE 

33 33.00 31.00 0.32 0.30 0.07 0.26 

Analysis of variance: 

Source DF Sum of 

squares 

Mean 

squares 

F Pr > F  

Model 1.00 0.98 0.98 14.58 0.00  

Error 31.00 2.09 0.07    

Model parameters: 

Source Value Standard 

error 

t Pr > |t| Lower 

bound (95%) 

Upper bound 

(95%) 

Intercept 0.15 0.12 1.18 0.25 -0.11 0.40 

H-E 1.10 0.29 3.82 0.00 0.51 1.69 

Equation of the model: PP-VNIR = 0.15+1.10*H-E 

 

The p (probability) value states the confidence that one can have in the estimated values being correct. R2 

and adjusted R2 are estimates of the “goodness of fit” of the line .They represent the % variation of the 

data explained by the fitted line. p<0.05 (alpha=0.05) was used to test the hypothesis and since on both 

days the “p” value was very small hence the algorithm comparisons were statistically significant at level 

alpha. The “R” values were quite high and very low standard error. As from previous analysis of line and 

scatter plot, the regression statistics improved on 12th July. This was indicated by higher R2, adjusted R2 

and t-test while the RMSE was correspondingly low. 
 

Table 6: Linear regression best fit line statistics on 12th July 

Goodness of fit statistics: 

Observations Sum of 

weights 

Df R² Adjusted 

R² 

MSE RMSE 

33 33.00 31.00 0.52 0.50 0.03 0.17 

Analysis of variance: 

Source DF Sum of 

squares 

Mean 

squares 

F Pr > F  

Model 1.00 0.98 0.98 33.15 < 0.0001  

Error 31.00 0.92 0.03    

Model parameters: 

Source Value Standard 

error 

t Pr > |t| Lower 

bound (95%) 

Upper bound 

(95%) 

Intercept 0.30 0.08 3.89 0.00 0.15 0.46 

H-E 1.09 0.19 5.76 < 0.0001 0.70 1.48 

Equation of the model: PP-VNIR = 0.30+1.09*H-E 
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5.2. Kenya Region results 

 

Day total rainfall estimates for the H-E (Figures 31 and 33) and PP-VNIR (Figures 32 and 34) algorithms 

and their intermediate maps are shown.  The dates of the events were 20100402 and 20100403 from 0730 

UTC to 1530 UTC on 15 minutes time step. Due to PP-VNIR inability to retrieve rain rate in the morning 

and late afternoon in this region, 0730 and 1430 -1530 UTC were not included in the retrieval analysis. 

Figure 31 show the convective and non-convective rain rate coexistence with more rain rate to the 

western and eastern side of the country. The false colour composite maps agree with total H-E rain rate in 

location and area covered by the precipitating clouds. The southern and central regions of the country 

were dominated by cirrus and low water clouds.  Figure 32 shows coexistence of ice and water clouds and 

the PP-VNIR rain rate was mainly from ice cloud. The rain rate location agrees with the false colour map 

composites to the western, eastern and partially to the central region location but differed in intensities.  

Figure 32 shows the PP-VNIR rain rate was mainly from ice clouds with corresponding high cch, COT 

and correspondingly high CWP. The PP-VNIR delineation of precipitating clouds differed with the colour 

map composites in that, the central regions was mainly of cirrus clouds which were not precipitating. 

These were the only areas that the PP-VNIR differed with the H-E over this region due to its inability to 

differentiate cirrus clouds as non-precipitating clouds. 
It is clear from the algorithm and the false colour composite maps that over this region most of the rains 

comes from the western, central and eastern side of the country 

 

Detection Validation 
PP-VNIR and H-E day total rainfall estimates were compared with rain gauge measurements station by 

station. By use of contingency table the corresponding rainy and non-rain days were determined. Daytime 

rainfall total for each region by each algorithm was used to compare with the 31 stations (Appendix18 and 

19) accumulated rain gauge measurements. The choice of the stations used was based on availability of 

information on rainfall for the days of study. 

Figure33 and 34 indicates the two algorithms detection of precipitating clouds to be similar in location but 

differed in area covered. H-E was more in agreement with the false colour composites maps in location 

and area covered by rain rate. The PP-VNIR (Figure 36) shows ability to detect precipitating clouds to the 

central region where it was more of water clouds. Tables’ showing the various scores of detection by each 

algorithm in relation to observed values and the overall accuracy in percentage.  Line plot were also used 

to describe the relationship of each algorithm with the observed values. Contingency table and their 

probability scores used in determination of detection capability of each algorithm in relation to the rain 

gauge measurements (observed) are shown in table 7.  
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Figure 31: H-E day total rainfall, input maps and 1315 UTC false colour composite maps all in geostationary MSG 
projection over Kenya on 2nd April 2010. 

Retrieval validation; 

In this section results of rainfall estimates of each algorithm in relation to observed values are given. 

The satellite foot print was increased to 5x5 kernel area from which average values were determined. This 

were  compared to accumulated rain gauge measurements assuming the 5x5 pixel box represented the area 

covered by each rain gauge. The difference in detection capability by the two algorithms over this region 

was clear (Figure 35 and 36). It increased for both algorithms with increase in rain rate on 3rd April. The 

FAR and Bias were very high on 2nd for both algorithms with PP-VNIR having the highest and 

correspondingly the CSI was very low. On 3rd April when rain rate increased, this effect was reduced  The 

CSI increased from 0.04 and 0.06 for PP-VNIR and H-E consecutively to 0.33 and 0.35 with increase in 

rain rate and likewise the POR increased from 0.27 and 0.43 to 0.45 and 0.64. Comparison with the rain 

gauge measurements curves (Figure 37 and 38) show the two algorithms had a similar trend with rain 

gauge measurements with a delay which improved with increase in rain rate on 3rd April. The algorithms 
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rain rate was also higher than the rain gauges measurements. Both had low correlation with rain gauges 

measurements and RMSE decreased with increase in rain rate on 3rd April. Bias increased mostly for PP-

VNIR with increase in rain rate. The satellite estimates lag (delay ) is associated with parallax error.  

 

 

Figure 32 H-E day total rainfall and input maps in geostationary MSG projection over part Kenya on 2nd April 

2010. 
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Figure 33: H-E day total rainfall, input maps and 1315 UTC false colour composite maps all in geostationary 

MSG projection over Kenya on 3rd April 2010. 
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Figure 34: PP-VNIR day time total rain rate and cloud properties day average values over Kenya on 3rd April 2010 
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Table 7: Contingency table of the daily total rainfall estimates by PP-VNIR and H-E algorithms and accumulated 
rain gauge measurements over Kenya 

2ndApril 

Estimated 

Rain rate by 

PP-VNIR 

Observed by rain 

gauges 

 Estimated 

Rain rate 

by H-E 

Observed by rain gauges 

Rain No rain Total Rain No rain Total 

Rain 1 22 23 Rain 1 17 18 

No rain 0 8 8 No rain 0 13 13 

Total 1 30 31 Total 1 30 31 

3rdApril 

Estimated 

Rain rate by 

PP-VNIR 

Observed by rain 

gauges 

 Estimated 

Rain rate 

by H-E 

Observed by rain gauges 

Rain No rain Total Rain No rain Total 

Rain 7 12 19 Rain 6 8 14 

No rain 2 10 12 No rain 3 14 17 

Total 9 22 31 Total 9 22 31 

 

    

Figure 35: Skill of detection bar graphs for PP-VNIR and H-E algorithms on 2nd April  

 

 

Figure 36: Skill of detection bar graphs for PP-VNIR and H-E algorithms on 3rd April  
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Figure 37: PP-VNIR and H-E compared to observed rain gauge measurements for Kenya region on 2nd April  

 

 

Figure 38: PP-VNIR and H-E compared to observed rain gauge measurements for Kenya region on 3rd April  

 

Table 8: Statistical analysis results on 2nd and 3rd April between the algorithms day total estimates and Accumulated 
rain gauge measurements over Kenya. 

 2nd April 3rd April 

Obs/PP-

VNIR  

Obs/H-E Obs/PP-

VNIR  

Obs/H-E 

RMSE 30.43 43.35 21.95 35.86 

Bias 0.01 0.01 0.66 0.32 

Correlation 0.15 0.48 0.11 0.07 

Computed t-test 0.80 2.87 0.59 0.38 

Tabulated t-test 2.04 2.04 2.04 2.04 

 

5.2.1. Comparison of rain rate estimates by PP-VNIR and H-E over Kenya 

 

This section shows the analysis results of the comparison between PP-VNIR and H-E rainfall estimates 

over Kenya. Line and scatter plots were used to establish whether there was any relationship between 
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them PP while continuous statistics of Bias, RMSE and correlation were used to compare their rain rate 

rain rate. Linear regression statistics was used to determine the significance of the relationship. 

 

Qualitative Comparison: 

     

Figure 39: An image of CPP retrieval (example. of COT (µm)) of whole MSG disk retrieval at 0730 UTC on 3rd 
April  

 

 

Figure 40: PP-VNIR and H-E daylight rainfall estimates time series plot on 2nd April over Kenya region from 0745 
UTC to 1415 UTC 

 

 

Figure 41: PP-VNIR and H-E daylight rainfall estimates scatter plot on 2nd April over Kenya region from 0745 
UTC to 1415 UTC   
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Figure 42: PP-VNIR and H-E daylight rainfall estimates time series plot on 3rdApril over Kenya region from 0745 
UTC to 1415 UTC 

 

 

Figure 43: PP-VNIR and H-E daylight rainfall estimates scatter plots curves on 3rd April over Kenya region from 
0745 UTC to 1415 UTC 

 

 

Figure 44: CPP cloud properties day average temporal variations curves on 2nd April over Kenya 
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Figure 45: CPP cloud properties day average temporal variations curves on 3rd April over Kenya 

Comparison of the two algorithms in rain rate retrieval show close agreement particularly in the morning 

though PP-VNIR had higher rain rate over H-E mostly in the afternoon (Figures 40 and 42). The scatter 

plots (Figure 40 and 42) show spatial variation in the morning and close agreement in the afternoon for 

both 2nd and 3rd April. The CPP cloud properties show similar trend of increasing trend from morning 

toward afternoon and had an abrupt decrease in the late afternoon due to inability of CPP to retrieve 

cloud properties. 

  

Quantitative comparison: 

The PP-VNIR rain rate was further compared quantitatively with the H-E by use of statistical analysis. 

The relationship between the algorithms rain rate, was tested for significance by use of linear regression 

statistics. The correlation between the algorithms rain rate retrieval was very high and significant on 2nd 

April (0.94) and it increased further to 0.95 with increase in rain rate on 3rdApril. The RMSE and Bias 

however rose slightly. 
 

Table 9: Statistical analysis results for Kenya region on comparison of PP-VNIR and H-E day rainfall estimates after 
every15 minute 

 

PP-VNIR /H-E rain rate  temporal 

variations comparison(0745 -1415 UTC) 

 2ndApril 3rdApril 

RMSE 2.9 3.06 

Bias 1.43 1.57 

Correlation ( ) 0.94 0.95 

Computed t-test 15.15 15.23 

Tabulated t-test 2.06 2.06 

 

The tabulated t-test or critical value at 95% confidence level on 2nd and 3rd April were greater than the 

critical values. The null hypothesis was therefore rejected and the alternative hypothesis accepted over 

Kenya region.  

 

 Regression analysis 

The p (probability) value states the confidence that one can have in the estimated values being correct. R2 

and adjusted R2 estimate of the “goodness of fit” of the line. They represent the % variation of the data 

explained by the fitted line. If the “p” value is greater than alpha (0.05) at 95% confidence level the Null 

hypothesis, H0:  = 0 is accepted otherwise the alternative hypothesis, H1:    0 is accepted.  
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From table 10 and 11 of regression statistical results, show that at 95% confident level the probability that 

there was no significant relationship between the two estimates was very low hence the null hypothesis 

was rejected and the alternative hypothesis that there was a significant relationship was taken. The R2 and 

the adjusted R2 was very high for both days and consequently the RMSE was also very low. 
 

Table 10: Linear regression best fit line statistics on 2nd April 

Goodness of fit statistics: 

Observations Sum of 

weights 

Df R² Adjusted 

R² 

MSE RMSE 

27 27 25 0.90 0.90 0.10 0.32 

Analysis of variance: 

Source DF Sum of 

squares 

Mean 

squares 

F Pr > F  

Model 1.00 22.97 22.97 223.95 < 0.0001  

Error 25.00 2.56 0.10    

Model parameters: 

Source Value Standard 

error 

t Pr > |t| Lower bound 

(95%) 

Upper bound 

(95%) 

Intercept -0.85 0.16 -5.21 < 0.0001 -1.19 -0.51 

H-E 2.29 0.15 14.96 < 0.0001 1.98 2.61 

Equation of the model: PP-VNIR = -0.85+2.29*H-E 

 

Table 11: Linear regression best fit line statistics on 3rd April 

Goodness of fit statistics: 

Observations Sum of 

weights 

Df R² Adjusted 

R² 

MSE RMSE 

27 27 25 0.91 0.91 0.08 0.29 

Analysis of variance: 

Source DF Sum of Sq. Mean sq. 

 

F Pr > F  

Model 1 21.88 21.88 265.98 < 0.0001  

Error 25 2.057 0.082    

Model parameters: 

Source Value Std error t Pr > |t| Lower bound 

(95%) 

Upper bound 

(95%) 

Intercept -0.67 0.13 -5.08 < 0.0001 -0.94 -0.40 

H-E 2.44 0.15 16.31 < 0.0001 2.13 2.75 

Equation of the model:   PP-VNIR = -0.67+2.44*H-E 

 

 

 



 

53 

5.3. Discussion 

5.3.1. Northwest Europe region 

 

Detection validation 

H-E precipitating cloud detection was in agreement with the map composites but non-convective rain rate 

was underestimated. The under estimation was attributed to water clouds being of low temperature in 

agreement with what  Scofield & Kuligowski (2003) found, that H-E tend to underestimate warm clouds 

above -580C and over estimates below -580C. Comparison with rain gauge measurements indicates high 

POD hence low FRR which was attributed to high spatial resolution of the satellite. The POR was also 

low and correspondingly high Bias resulting from point rain gauge measurements which could not 

characterise the highly variable rainfall.  

PP-VNIR algorithm in detection of precipitating clouds considers water and ice phase separately. Due to 

its high brightness temperature of separating the two phases (265K)(Roebeling & Holleman, 2009) the 

delineation of precipitating clouds had spatial variations to that of H-E which had a limitation of 250K for 

non-convective rain rate and about 240K for convective rain rate (Scofield & Kuligowski, 2003).  It is 

noted that PP-VNIR delineation of precipitating clouds was in areas where water phase and ice phase 

coexisted. This is in line with its principle of considering large water droplets and high thick clouds to be 

associated with more rain rate. The two had agreement in detection in ice clouds due to low a temperature 

which was considered by both to be favourable for more rain rate. The POD, FRR Bias and POR were 

the same as the H-E. Increase in rain rate on 12th July, had the two algorithm CSI increase from 0.31 to 

0.45 and correspondingly a reduction of Bias from 3.22 to 2.23 on the two eventful days. This was 

associated with the rain gauges ability to capture most of the rainfall reaching the ground with increase in 

rain rate. The results of the comparison in terms of line curves (Figure 23 and 24) indicate high rain rate 

by the algorithms as compared to rain gauge measurements. The algorithms however showed same trend 

with rain gauges particularly on 12th July when the rain rate increased but with a lag which was attributed 

to parallax error in the SEVIRI images. Over this region good distribution of rain gauges were able to 

characterise the variable rainfall reasonably well. This was also attributed to increase of the satellite foot 

print to 5x5 kernel areas.  

 

Retrieval accuracy 

Statistical analysis showed that PP-VNIR retrieval capability increased with increase in rain rate but the 

opposite was true for H-E. This was attributed to the fact that the H-E considered convective and non-

convective rain rate separately and it underestimates stratiform. Depending on which rainfall type is 

dominant the H-E retrieval accuracy varies.  PP-VNIR on the other hand considers cloud microphysics 

instead of rainfall type. Of importance to note is that the rain gauges distribution coupled with increase in 

satellite foot print resulted into rain gauges been more representative of the variable rainfall hence the two 

algorithms correlation was reasonably high and significant. 

 

Comparison of the algorithms in retrieval over NW Europe 

Qualitative comparison of rain rate show the two algorithms agreed in general trend but differed in 

intensity particularly in the morning due to their differences of stratiform rain rate retrieval. This was seen 

in the time series plot. The scatter plot indicated spatial variation which was again a contribution from 

stratiform rain rate differences. The study showed COT of CPP cloud properties to have great influence 

in PP-VNIR rain rate since it is directly related to CWP and cch.  This means the higher the cloud height 

the more the rain rate. H-E considers clouds which are high to give more rain rate due to their cold 

temperatures. This agreement brings the two algorithms to have the same trend as depicted by the CWP 

and COT. The correlation between the two algorithms in retrieval was significant and increased with 

increase in rain rate from 0.57 on 3rd July to 0.72 on 12th July. 
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Regression statistics shows that the two algorithms relationship was significant at 95% confident level. 

The significance increased with increase in rain rate as indicated by R2 increase from 0.32 to 0.52.  

5.3.2. Kenya region 

 

Detection validation 

The delineation of precipitating clouds by the algorithms was well defined which was associated with 

convective systems being dominant over the region during the rainy season and reduction of stratiform 

clouds which the two algorithms differed in detection.  H-E delineation was in agreement with false map 

composites in location and area on both days in April. The PP-VNIR differed with false colour map 

composite by inclusion of cirrus clouds which are cold but not precipitating.  Comparison with the rain 

gauge measurements indicated very high Bias particularly for PP-VNIR algorithm on 2nd April which 

reduced with increase in rain rate on 3rd April.  High Bias for the algorithms was associated with rainfall 

variability which could not be characterized by the sparse rain gauge distribution (Prigent, 2010). 

Detection accuracy increased with increase in rain rate as depicted by the bar graphs (figure 35 and 36), 

and is reflected by the drop of over estimation (Bias) by the algorithms. The increase in rain rate however 

resulted into more cirrus development which coexists in deep convections as anvil.  The H-E reduces this 

cirrus effect hence the bias was less. FAR was very high on 2nd and reduced on 3rd April.  This was 

associated with the rain gauge sparse distribution which could not characterise the highly variable rainfall.  

Over Africa sparse rain gauge distribution is common (Grimes, 2008) but with increase in rain rate, this 

effect is reduced because rainfall variability is reduced. Rain gauges measurements were also affected by 

topography, wind, and gauge design (Barrret & Martin, 1981). Gauges representation of the variable rain 

fall depends upon slope, aspect, elevation, and location in relation to hills and ridges. The Kenya highlands 

are located to the central region of the country and they contributed to the discrepancy between satellite 

detection of rain rate to that of the rain gauge measurements. The POD reduced and consequently the 

POR increased. This was due to parallax effect which was also well reflected in line curves (Figure 37 and 

38) where the algorithm indicated close trend with rain gauge measurements but with a delay.   

 

Retrieval accuracy 

PP-VNIR algorithm showed closer relationship with the rain gauges which was also reflected in statistical 

analysis of RMSE being lower than that of H-E (Table 8). The correlation was however low and 

insignificant due to sparse rain gauges distribution which even on increasing the foot print of the satellite 

could not characterize rainfall variability. This shows that good rain gauge distribution is a necessity in 

improving validation. The PP-VNIR was affected by CPP retrieval of cloud properties failure in the 

morning and late afternoon due to low sun angle (Figure 39). This led to retrieval comparison of the 

algorithm to be restricted to 0745 to 1415 UTC time steps. 

 

Comparison of the algorithms in retrieval over Kenya 

Comparison of the two algorithms in retrieval of rain rate by line (Figure 40 and 42) plot show the two 

had close agreements in retrieval in the morning and differed late in the afternoon. The difference in the 

afternoon was due to PP-VNIR cirrus effect which coexists with convective systems and was considered 

to be precipitating.  Unlike the NW Europe where the spatial variation was large, over this region it was 

low ( Figure 41 and 43 ) and this was due to absence of stratiform rainfall over this region which the two 

algorithms differed in retrieval.  Convective rainfall is more dominate over the tropics due to ITCZ effect.  

The CPP cloud properties had a consistent trend. The CWP, COT and cch showed increases with time 

(figure 44 and 45). This is what was expected over this region since convective systems develop gradually 

to maximum in the late afternoon when sun angle is high. The effective radius decreased during late 

afternoon due to intense heating that led to evaporation at the cloud base hence decrease in effective 

radius. This is  in line with what McCollum& Ba (2000) found over central Africa that in satellite 
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estimates, evaporation of small rain drops is very high over the continental areas. This effect is enhanced 

more by the intense heating over the tropics. The correlation between their estimates was very high and 

significant 0.94 and 0.95 on 2nd and 3rd April consecutively. 

Regression analysis result showed the relationship of two was significant with R2 of 0.90 and 0.91 

consecutively for the two eventful days. 
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6. CONCLUSION  AND RECOMMENDATIONS 

 
This section presents the conclusions drawn from the study and the future work recommendations. 

6.1. Conclusions 

 

Geostationary satellites are especially important for their high temporal (every 15 minutes) and spatial (1-

4km at nadir) resolution. This study compared two algorithms, the PP-VNIR and H-E in detection and 

retrieval of rainfall and validated their results to rain gauge point measurements by use of SEVIRI of 

Meteosat Second Generation retrievals. Two events from each region in the year 2010 month of July (3rd 

and 12th) for NW Europe region and month of April (2nd and 3rd) for Kenya region were used for the 

study. The two algorithms differ in principle. PP-VNIR algorithm is based on use of cloud physical 

properties while H-E is based on cloud top infrared brightness temperature. The study was carried in two 

different geographical regions; NW Europe and Kenya regions. They have different weather systems; NW 

Europe being in temperate climatic zone experiences large frontal systems and convective showers while 

Kenya being in the tropics experiences deep convective systems resulting from ITCZ during the rainfall 

seasons. The study was intended to test accuracy of each method in detection in relation to rain gauge 

measurements and finally compare them to test whether there was any relationship between their 

estimates and further determine a linear regression of the best line fit. PP-VNIR  had been applied 

successfully in NW Europe (Roebeling & Holleman, 2009) but had one major limitation; it can only be 

applied during daylight. While H-E is widely used in Northern America for flood forecasting (Scofield & 

Kuligowski, 2003) and worldwide using geostationary data for rainfall forecast.  It has advantage over PP-

VNIR by being applicable day and night. Categorical statistics were used for detection test while 

continuous statistics of Bias, RMSE and correlation were used for rain rate retrieval test. The two regions 

were considered independently.  
To fulfil the main objective, three specific objectives were fulfilled: 

Each algorithm detection and retrieval of rain rate was tested in relation to rain gauge measurements at 

95% confident level (alpha=0.05) under the null hypothesis that there is no correlation between the 

compared values, and alternative one that there is correlation between the compared values. The two 

events from each region were considered together.  

  

PP-VNIR algorithm detection and retrieval capability: 

(1) PP-VNIR algorithm can be applied over NW Europe with an overall  detection capability of 38%, 

CSI of 0.38, retrieval precision of 18 mm/day and accuracy of 0.2mm/day with significant 

correlation of 55% compared to rain gauge measurements. It can be applied over Kenya with an 

overall detection accuracy of 42%, CSI of 0.2, retrieval precision of 26 mm/day and accuracy of 

0.3 mm/day with insignificant correlation of 13%. 

 

H-E algorithm detection and retrieval capability: 

(1) H-E algorithm can be applied over NW Europe with an overall  detection capability of 38%, CSI 

of 0.38, retrieval precision of 45 mm/day and accuracy of 0.1mm/day with significant correlation 

of 54% compared to rain gauge measurements. It can be applied over Kenya with an overall 
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detection accuracy of 55%, CSI of 0.2, retrieval precision of 40 mm/day and accuracy of 0.2 

mm/day with insignificant correlation of 28%. 

 

PP-VNIR and H-E rain rate retrieval comparison: 

(2) H-E and PP-VNIR rain rate are comparable over NW Europe with a precision of 0.2 mm/hr and 

significant correlation of 42%. Over Kenya the two estimates compares at a precision of 0.3 

mm/hr and significant correlation of 91%. 

Comparison of the two algorithms in rain rate retrieval was significantly good over NW Europe and 

very high over Kenya. There was close agreement in detection of rain rate between the algorithms 

hence H-E can fill the gap of PP-VNIR night time estimates. The PP-VNIR has another limitation of 

cloud physical properties from which it derives its rain rate are not retrievable in the morning and late 

afternoon over Kenya. From this study it was found that increasing satellite foot print with good rain 

gauge network can improve the usage of rain gauge measurement to validate the satellite estimates. It 

was also found that recalibrating the rain /no rain in terms of Z and brightness temperature in H-E 

algorithm, reduces the over estimation of the non-convective rain rate. 

Noteworthy, these conclusions are drawn based on analysis for limited number of days.  

6.2. Recommendations 

 

1) It is important to consider the inability of the CPP to retrieve the cloud properties in the morning and 

evening over Kenya.  Retrieval on regional basis is recommended to reduce this problem. 

2) Over Kenya it was found that the satellite estimates compared to rain gauge measurements as depicted 

by the line curves had shifts and this was considered due to parallax error by the satellites. This caused the 

point of detection of precipitating cloud to be different from the position of rainfall. It is therefore 

recommended to include weather analysis from the stations to determine this effect.  Due poor to rain 

gauge distribution, the validation is recommended only on areas with dense rain gauges over this region.  

3) The study indicates evaporation at the cloud base to be a major effect in rain gauge and satellite retrieval 

discrepancies as seen from their large differences and there is need for this correction. 

4) It is also recommended to recalibrate the H-E rain /no rain separation in terms of Z and brightness 

temperature at regional basis to avoid over estimation of non-convective rain rate before application. 

5) More events need to be analysed for this study 
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LIST OF APPENDICES 

 

 Appendix 1: Model data download 

//The model data from NOAA forecast applied in Eta model of Hydro Estimator was found in the 

NOAA model data website: http://nomad1.ncep.noaa.gov/ncep_data/index.html  

// http://nomad1.ncep.noaa.gov:9090/dods/reanalyses/reanalysis-2/6hr/pgb/  pgb.info webpage gives 

the data spatial and temporal resolution which is 2.50× 2.50 (latitude and longitude) and 6 hours temporal 

resolution. 

//From CDAS-NCEP/NCAR Reanalysis selection of Reanalysis -2 pressure levels 4x daily was done, 

then ftp2u ftp. Webpage was opened. 

//The pgb.ft00.yyyymm data was then selected according to the year, month wanted. For this study the 

year 2010, month of July for NW window was chosen and the month of April same year for Kenya 

window. 

// Selection of the variables and level was done. PW (precipitable water) and RH (relative humidity at 

500mb level) at global scale was used. 

//selection was done on corresponding days and hours. Two days from each region were selected .For 

northwest Europe 3rd and 12th day of July and Kenya 2rd and 3rd day of April. The hours selected were 

00, 06, 12 and 18 UTC for PW and RH separately for respective days and the data was sent to ftp site 

where it was downloaded into external drive.  
 

Appendix 2: Model data importation into ILWIS format 

The data was imported into ILWIS format by use of 2 scripts. 
 

Geospatial Data Abstraction Library (GDAL) information 

D:\ilwis371_52n\Extensions\Geonetcast-Toolbox\GDAL\bin\gdalinfo input map (this is grib input 

file). The input file refers to PW or RH at 00, 06, 12 or 18 UTC time. 

 

GDAL_translate 

D:\ilwis371_52n\Extensions\Geonetcast-Toolbox\GDAL\bin\gdal_translate -of Ilwis input map 

outputmap.mpr .The output file refers to the new import file name.  

The data was assigned georeference corners (90N/S and 180W/E) for each variable; PW and RH. 

The PW and RH was averaged (00, 06, 12, 18 UTC) to get the daily average map by use of map list 

function in ILWIS. 

The Eta model curves (Figure 13 and 14 were converted into polygon functions to enable spatial 

variations of temperature rain rate and relative humidity relative to precipitable water (PW) 

The study areas polygon maps were extracted from the GSOD world rain gauge polygon maps. 
 

H-E rain rate estimate Processing 

Use was made of ILWIS scripts to run algorithm processes. 

 

Appendix 3: One –time script (preparation script) 

This script was used to resample the model data (PW and RH) and recomputed spatial maps of the 

polynomial functions derived from model (Eta) adjusted brightness temperature, rain rate at 210 K and 

rainfall reduction with respect to RH. The output maps were resampled into geostationary georeference. 

The study area polygon maps of Belgium-Netherlands and Kenya were also rasterized by use of this script. 

The example given here is for Belgium-Netherlands map. 
 

 

http://nomad1.ncep.noaa.gov:9090/dods/reanalyses/reanalysis-2/6hr/pgb/
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PW and RH Averages resampled 

PWavere: =MapResample (PWave.mpr, c07300000.grf, Nearest Neighbour) 

RHavere: =MapResample (RHave.mpr, c07300000.grf, Nearest Neighbour) 

 

 

10.8µm brightness temperature adjusted polynomial curve conversion into map. See appendix 21 

Tbcorr: =2.3995694+-0.065047931*PWavere+-0.00407337*(PWavere) ^2+0.00017242466*(PWavere) 

^3+-1.7490547e-006*(PWavere) ^4 
 

Rain rate Adjustment at 210K polynomial curve conversion into map. See appendix 21 

rain210_PW:=19.001015+0.70664924*PWavere+-0.030283779*(PWavere) ^2+0.0005454345*(PWavere) 

^3+-3.2176021e-006*(PWavere) ^4 
 

Rain rate adjusted for relative humidity polynomial curve conversion into map. See appendix 21 

rain_reduc:=62.049427-52.945023*RHavere*0.01-382.87221*(RHavere*0.01) 

^2+782.46126*(RHavere*0.01) ^3-425.44012*(RHavere*0.01) ^4 
 

Northwest Europe map masking 

belguim_netherlands:=MapRasterizePolygon (belguim_netherlands.mpa, c07300000.grf) 

 

Appendix 4: Script 3 (H-E algorithm processing) 

 Script 3 processes one file of the map list (from time 0730 UTC to 1530 UTC) and then  

MS-Dos batch files were used to run the process for all the maplists 

Tbadj_%1:=%1+Tbcorr 

Rc_%1:=1.1183*10^11*exp (-0.036382*Tbadj_%1^1.2) 

Rc240_%1:=iff (Tbadj_%1=240, 0.5, Rc_%1) 

Rc210_%1:=iff (Tbadj_%1=210, rain210_PW, Rc240_%1) 

RcRh_%1:=Rc210_%1-rain_reduc 

RcRhneg_%1:=iff (RcRh_%1<0, 0, RcRh_%1) 

Rcmax: =PWavere*40/25.4 

RcRhnegmax_%1:=iff (RcRhneg_%1>Rcmax, Rcmax, RcRhneg_%1) 

Rs_%1 :=( 250-Tbadj_%1)*Rcmax*0.2 

RsRh_%1:=Rs_%1-rain_reduc 

RsRhneg_%1:=iff (RsRh_%1<0, 0, RsRh_%1) 

RsRhnegmax_%1:=iff(RsRhneg_%1>=Rcmax*0.2,Rcmax*0.2*RsRhneg_%1/333,RsRhneg_%1) 

RsRhnegmaxc_%1:=iff (Tbadj_%1>243, 0, RsRhnegmax_%1) 

Tbave_%1:=MapAggregateavg (%1.mpr, 3, No Group) 

Tbstd_%1:=MapAggregatemin (%1.mpr, 3, No Group) 

Z_%1:=(Tbave_%1-Tbadj_%1)/Tbstd_%1 

Zcore_%1:=iff (Z_%1<0, 0, Z_%1) 

Z2_%1:=iff (Zcore_%1<=1.5, Zcore_%1,0) 

RR_%1:=(RcRhnegmax_%1*Z2_%1^2+RsRhnegmaxc_%1*(1.5-Z2_%1)^2)/(Z2_%1^2+(1.5-

Z2_%1)^2) 

RRmask_%1:=iff (ISUNDEF (belguim_netherlands),?,1) 

RRmaskc_%1:=iff (RRmask_%1=1, RR_%1,0) 

RRmaskcc_%1:=iff (ISUNDEF (RRmaskc_%1), 0, RRmaskc_%1) 

Rsmaskc_%1:=iff (RRmask_%1=1, RsRhnegmaxc_%1,0) 

Rsmaskcc_%1:=iff (ISUNDEF (Rsmaskc_%1), 0, Rsmaskc_%1) 

Rcmaskc_%1:=iff (RRmask_%1=1, RcRhnegmax_%1,0) 



 

64 

Rcmaskcc_%1:=iff (ISUNDEF (Rcmaskc_%1), 0, Rcmaskc_%1) 

Zmaskc_%1:=iff (RRmask_%1=1, Z2_%1,0) 

Zmaskcc_%1:=iff (ISUNDEF (Zmaskc_%1), 0, Zmaskc_%1) 
 

Callscript3.bat:  

Callscript.bat process one file of the map list but the actual work is done by script3; this file simply 

removes the extension of the maps file name, and then calls script 3. 

(@echo off 

set filename=%1 

d:\ilwis_371\ilwis.exe -C run script3 %filename: ~0, 9%) 

 

Runall3.bat: 

@echo off 

for %%j in (c*.mpr) do callscript3.bat %%j 

 This script processes all the files of the map list (In reality this file process all files that start  with letter 

“e”,”f”,”c”and “d”( used  for different days) and end with .mpr.) for each file ,callscript.bat is called.  
 

Appendix 5: Script 4 (map list computation) 

Scripts 4 create the map list and sum them to give the day total rain rate for the H-E algorithm. 

 

crmaplist RRmaskccc RRmaskccc_c07300000.mpr RRmaskccc_c07450000.mpr 

RRmaskccc_c08000000.mpr RRmaskccc_c08150000.mpr RRmaskccc_c08300000.mpr 

RRmaskccc_c08450000.mpr RRmaskccc_c09000000.mpr RRmaskccc_c09150000.mpr 

RRmaskccc_c09300000.mpr RRmaskccc_c09450000.mpr RRmaskccc_c10000000.mpr 

RRmaskccc_c10150000.mpr RRmaskccc_c10300000.mpr RRmaskccc_c10450000.mpr 

RRmaskccc_c11000000.mpr RRmaskccc_c11150000.mpr RRmaskccc_c11300000.mpr 

RRmaskccc_c10450000.mpr RRmaskccc_c11000000.mpr RRmaskccc_c11150000.mpr 

RRmaskccc_c11300000.mpr RRmaskccc_c11450000.mpr RRmaskccc_c12000000.mpr 

RRmaskccc_c12150000.mpr RRmaskccc_c12300000.mpr RRmaskccc_c12450000.mpr 

RRmaskccc_c13000000.mpr RRmaskccc_c13150000.mpr RRmaskccc_c13300000.mpr 

RRmaskccc_c13450000.mpr RRmaskccc_c14000000.mpr RRmaskccc_c14150000.mpr 

RRmaskccc_c14300000.mpr RRmaskccc_c14450000.mpr RRmaskccc_c15000000.mpr 

RRmaskccc_c15150000.mpr RRmaskccc_c15300000.mpr  

RRmasksum:=MapMaplistStatistics(RRmaskccc.mpl, Sum, 0, 32) 
 

Appendix 6: Script 4b 

Script 7 calculates the sum of the intermediate maps (convective (Rc) and non convective (Rs) aggregated 

day rainfall maps in the H-E algorithm. 

 

Rcmaskccsum:=MapMaplistStatistics(Rcmaskcc_out.mpl, Sum, 0, 32) 

RRmasksum:=MapMaplistStatistics(RRmaskcc_out.mpl, Sum, 0, 32) 

Rsmaskccsum:=MapMaplistStatistics(Rsmaskcc_out.mpl, Sum, 0, 32) 

Zmaskccsum: =MapMaplistStatistics (Zmaskcc_out.mpl, Sum, 0, 32) 

Tbadjmin: =MapMaplistStatistics (Tbadj_out.mpl, min, 0, and 32) 
 

Appendix 7: CPP field data Import 

 The field data from KNMI in Hdf format were imported into ILWIS format.  

CPP LUTs fields were imported from hdf5 files into ILWIS raster maps by use of MS- DOS’s scripts 

(batch files). 
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Geospatial Data Abstraction Library (GDAL) information 

This script simply reads the GDAL data  

"D:\ilwis_371\Extensions\GeonetcastToolbox\GDAL\bin\gdalinfo"meteosat9_20100402_0730_00000

.fl.PP-VNIR .hdf 

NB “fl” was used for Kenya region, for Europe region “eu” was used and corresponding data and time.  

 

GDAL_translate 

This script translates GDAL data from Hdf into ILWIS format 

"D:\ilwis_371\Extensions\Geonetcast-Toolbox\GDAL\bin\gdal_translate" –of ILWIS 

hdf5:"meteosat9_20100402_0730_00000.fl.PP-VNIR .hdf"://COT COT_0730 

The field shown here is cloud optical thickness (COT), all other fields were likewise imported. 

The raster maps of all fields were given georeference of the data (Test) which was derived by use of 

submap from the whole disc MSG georeference by downloading an ILWIS image of the whole disc 

 

 Appendix 8: Script 5 (PP-VNIR algorithm processing) 

 This script was used to run the PP-VNIR algorithm processes. 

The script processes one file of the map list (from time 0730 UTC to 1530 UTC) and then  

MS-Dos batch files were used to run the process for all the maplists. 

 

cotre_%1:=MapResample (cot_%1.mpr, c07300000.grf, Nearest Neighbour) 

reffre_%1:=MapResample (reff_%1.mpr, c07300000.grf, Nearest Neighbour) 

cphre_%1:=MapResample (cph_%1.mpr, c07300000.grf, Nearest Neighbour) 

cchre_%1:=MapResample (cch_%1.mpr, c07300000.grf, Nearest Neighbour) 

cwp_%1:=2*cotre_%1*0.01*reffre_%1*0.01/3 

PP-VNIR _%1:=iff(cphre_%1=1,1,0)*iff(cwp_%1>160,1,0)*iff(reffre_%1*0.01>15,1,0)*(((cwp_%1-

120)/120)^1.6)/(cchre_%1*0.001)+iff(cphre_%1=2,1,0)*iff(cwp_%1>160,1,0)*(((cwp_%1-

120)/120)^1.6)/(cchre_%1*0.001) 

PP-VNIR max_%1:=iff(PP-VNIR _%1>40,40,PP-VNIR _%1) 

PP-VNIR maxmask_%1:=ifundef (belguim_netherlands,?, PP-VNIR max_%1) 

cotremask_%1:=ifundef (belguim_netherlands,?, cotre_%1) 

reffremask_%1:=ifundef (belguim_netherlands,?, reffre_%1) 

cphremask_%1:=ifundef (belguim_netherlands,?, cphre_%1) 

cchremask_%1:=ifundef (belguim_netherlands,?, cchre_%1) 

cwpmask_%1:=ifundef (belguim_netherlands,?, cwp_%1) 

PP-VNIR maxmaskc_%1:=ifundef (PP-VNIR maxmask_%1, 0, PP-VNIR maxmask_%1) 

cotremaskc_%1:=ifundef (cotremask_%1, 0, cotremask_%1) 

reffremaskc_%1:=ifundef (reffremask_%1, 0, reffremask_%1) 

cphremaskc_%1:=ifundef (cphremask_%1, 0, cphremask_%1) 

cchremaskc_%1:=ifundef (cchremask_%1, 0, cchremask_%1) 

cwpmaskc_%1:=ifundef (cwpmask_%1, 0, cwpmask_%1) 

 

Callscript5.bat  

@echo off 

set filename=%1 

d:\ilwis_371\ilwis.exe -C run script5 %filename:~4,4% 

 

 This script was used in this procedure to process one file of the map list (but the work was done by script 

5, and this file simply removed the extension of the maps file name, then calls script5). 
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Runall5.bat  

@echo off 

For %%j in (cot_*.mpr) do callscript5.bat %%j 

 

This script processed all the files of the map list (In reality this file processed all files (cot_*.mpr.). Then 

callscript5.bat is called. 
 

Appendix 9: Script 9 (Ice and water phase maps computation)  

 This script was used to derive the ice and water phase maps from the imported original phase maps 

(CPH).The script processes one file of the map list (from time 0730 UTC to 1530 UTC) and then  

MS-Dos batch files were used to run the process for all the maplists. 

cphW_%1:=iff (cphremaskc_%1=1, cphremaskc_%1,0) 

cphICE_%1:=iff (cphremaskc_%1=2, cphremaskc_%1,0) 

 

Callscript9.bat  

Callscript9.bat process one file of the map list but the actual work is done by script9; this file simply 

removes the extension of the maps file name, and then calls script 9. 

@echo off 

set filename=%1 

d:\ilwis_371\ilwis.exe -C run script9Phase %filename: ~4, 4% 

 

Runall9.bat  

This script processed all the files of the map list (In reality this file processed all files (cot_*.mpr.). Then 

callscript9.bat is called. 

@echo off 

For %%j in (cot_*.mpr) do callscript9.bat %%j 

 

 Appendix 10: Script 6 (map list computation) 

This script computed all the map lists of PP-VNIR cloud properties and the PP-VNIR rain rate.  

crmaplist PP-VNIR MaxMaskc_out PP-VNIR maxmaskc_0730.mpr PP-VNIR maxmaskc_0745.mpr PP-

VNIR maxmaskc_0800.mpr PP-VNIR maxmaskc_0815.mpr PP-VNIR maxmaskc_0830.mpr PP-VNIR 

maxmaskc_0845.mpr PP-VNIR maxmaskc_0900.mpr PP-VNIR maxmaskc_0915.mpr PP-VNIR 

maxmaskc_0930.mpr PP-VNIR maxmaskc_0945.mpr PP-VNIR maxmaskc_1000.mpr PP-VNIR 

maxmaskc_1015.mpr PP-VNIR maxmaskc_1030.mpr PP-VNIR maxmaskc_1045.mpr PP-VNIR 

maxmaskc_1100.mpr PP-VNIR maxmaskc_1115.mpr PP-VNIR maxmaskc_1130.mpr PP-VNIR 

maxmaskc_1145.mpr PP-VNIR maxmaskc_1200.mpr PP-VNIR maxmaskc_1215.mpr PP-VNIR 

maxmaskc_1230.mpr PP-VNIR maxmaskc_1245.mpr PP-VNIR maxmaskc_1300.mpr PP-VNIR 

maxmaskc_1315.mpr PP-VNIR maxmaskc_1330.mpr PP-VNIR maxmaskc_1345.mpr PP-VNIR 

maxmaskc_1400.mpr PP-VNIR maxmaskc_1415.mpr PP-VNIR maxmaskc_1430.mpr PP-VNIR 

maxmaskc_1445.mpr PP-VNIR maxmaskc_1500.mpr PP-VNIR maxmaskc_1515.mpr PP-VNIR 

maxmaskc_1530.mpr  

crmaplist cotremaskc_out cotremaskc_0730.mpr cotremaskc_0745.mpr cotremaskc_0800.mpr 

cotremaskc_0815.mpr cotremaskc_0830.mpr cotremaskc_0845.mpr cotremaskc_0900.mpr 

cotremaskc_0915.mpr cotremaskc_0930.mpr cotremaskc_0945.mpr cotremaskc_1000.mpr 

cotremaskc_1015.mpr cotremaskc_1030.mpr cotremaskc_1045.mpr cotremaskc_1100.mpr 

cotremaskc_1115.mpr cotremaskc_1130.mpr cotremaskc_1145.mpr cotremaskc_1200.mpr 

cotremaskc_1215.mpr cotremaskc_1230.mpr cotremaskc_1245.mpr cotremaskc_1300.mpr 

cotremaskc_1315.mpr cotremaskc_1330.mpr cotremaskc_1345.mpr cotremaskc_1400.mpr 
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cotremaskc_1415.mpr cotremaskc_1430.mpr cotremaskc_1445.mpr cotremaskc_1500.mpr 

cotremaskc_1515.mpr cotremaskc_1530.mpr  

crmaplist reffremaskc_out reffremaskc_0730.mpr reffremaskc_0745.mpr reffremaskc_0800.mpr 

reffremaskc_0815.mpr reffremaskc_0830.mpr reffremaskc_0845.mpr reffremaskc_0900.mpr 

reffremaskc_0915.mpr reffremaskc_0930.mpr reffremaskc_0945.mpr reffremaskc_1000.mpr 

reffremaskc_1015.mpr reffremaskc_1030.mpr reffremaskc_1045.mpr reffremaskc_1100.mpr 

reffremaskc_1115.mpr reffremaskc_1130.mpr  reffremaskc_1145.mpr reffremaskc_1200.mpr 

reffremaskc_1215.mpr reffremaskc_1230.mpr reffremaskc_1245.mpr reffremaskc_1300.mpr 

reffremaskc_1315.mpr reffremaskc_1330.mpr reffremaskc_1345.mpr reffremaskc_1400.mpr 

reffremaskc_1415.mpr reffremaskc_1430.mpr reffremaskc_1445.mpr reffremaskc_1500.mpr 

reffremaskc_1515.mpr reffremaskc_1530.mpr  

crmaplist cphremaskc_out cphremaskc_0730.mpr cphremaskc_0745.mpr cphremaskc_0800.mpr 

cphremaskc_0815.mpr cphremaskc_0830.mpr cphremaskc_0845.mpr cphremaskc_0900.mpr 

cphremaskc_0915.mpr cphremaskc_0930.mpr cphremaskc_0945.mpr cphremaskc_1000.mpr 

cphremaskc_1015.mpr cphremaskc_1030.mpr cphremaskc_1045.mpr cphremaskc_1100.mpr 

cphremaskc_1115.mpr cphremaskc_1130.mpr  cphremaskc_1145.mpr cphremaskc_1200.mpr 

cphremaskc_1215.mpr cphremaskc_1230.mpr cphremaskc_1245.mpr cphremaskc_1300.mpr 

cphremaskc_1315.mpr cphremaskc_1330.mpr cphremaskc_1345.mpr cphremaskc_1400.mpr 

cphremaskc_1415.mpr cphremaskc_1430.mpr cphremaskc_1445.mpr cphremaskc_1500.mpr 

cphremaskc_1515.mpr cphremaskc_1530.mpr  

crmaplist cchremaskc_out cchremaskc_0730.mpr cchremaskc_0745.mpr cchremaskc_0800.mpr 

cchremaskc_0815.mpr cchremaskc_0830.mpr cchremaskc_0845.mpr cchremaskc_0900.mpr 

cchremaskc_0915.mpr cchremaskc_0930.mpr cchremaskc_0945.mpr cchremaskc_1000.mpr 

cchremaskc_1015.mpr cchremaskc_1030.mpr cchremaskc_1045.mpr cchremaskc_1100.mpr 

cchremaskc_1115.mpr cchremaskc_1130.mpr cchremaskc_1145.mpr cchremaskc_1200.mpr 

cchremaskc_1215.mpr cchremaskc_1230.mpr cchremaskc_1245.mpr cchremaskc_1300.mpr 

cchremaskc_1315.mpr cchremaskc_1330.mpr cchremaskc_1345.mpr cchremaskc_1400.mpr 

cchremaskc_1415.mpr cchremaskc_1430.mpr cchremaskc_1445.mpr cchremaskc_1500.mpr 

cchremaskc_1515.mpr cchremaskc_1530.mpr  

crmaplist cphICE_out cphICE_0730.mpr cphICE_0745.mpr cphICE_0800.mpr cphICE_0815.mpr 

cphICE_0830.mpr cphICE_0845.mpr cphICE_0900.mpr cphICE_0915.mpr cphICE_0930.mpr 

cphICE_0945.mpr cphICE_1000.mpr cphICE_1015.mpr cphICE_1030.mpr cphICE_1045.mpr 

cphICE_1100.mpr cphICE_1115.mpr cphICE_1130.mpr cphICE_1145.mpr cphICE_1200.mpr 

cphICE_1215.mpr cphICE_1230.mpr cphICE_1245.mpr cphICE_1300.mpr cphICE_1315.mpr 

cphICE_1330.mpr cphICE_1345.mpr cphICE_1400.mpr cphICE_1415.mpr cphICE_1430.mpr 

cphICE_1445.mpr cphICE_1500.mpr cphICE_1515.mpr cphICE_1530.mpr 

crmaplist cphW_out cphW_0730.mpr cphW_0745.mpr cphW_0800.mpr cphW_0815.mpr 

cphW_0830.mpr cphW_0845.mpr cphW_0900.mpr cphW_0915.mpr cphW_0930.mpr cphW_0945.mpr 

cphW_1000.mpr cphW_1015.mpr cphW_1030.mpr cphW_1045.mpr cphW_1100.mpr cphW_1115.mpr 

cphW_1130.mpr cphW_1145.mpr cphW_1200.mpr cphW_1215.mpr cphW_1230.mpr cphW_1245.mpr 

cphW_1300.mpr cphW_1315.mpr cphW_1330.mpr cphW_1345.mpr cphW_1400.mpr cphW_1415.mpr 

cphW_1430.mpr cphW_1445.mpr cphW_1500.mpr cphW_1515.mpr cphW_1530.mpr 

crmaplist  cwpmaskc_out cwpmaskc_0730.mpr cwpmaskc_0745.mpr cwpmaskc_0800.mpr 

cwpmaskc_0815.mpr cwpmaskc_0830.mpr cwpmaskc_0845.mpr cwpmaskc_0900.mpr 

cwpmaskc_0915.mpr cwpmaskc_0930.mpr cwpmaskc_0945.mpr cwpmaskc_1000.mpr 

cwpmaskc_1015.mpr cwpmaskc_1030.mpr cwpmaskc_1045.mpr cwpmaskc_1100.mpr 

cwpmaskc_1115.mpr cwpmaskc_1130.mpr cwpmaskc_1145.mpr cwpmaskc_1200.mpr 

cwpmaskc_1215.mpr cwpmaskc_1230.mpr cwpmaskc_1245.mpr cwpmaskc_1300.mpr 
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cwpmaskc_1315.mpr cwpmaskc_1330.mpr cwpmaskc_1345.mpr cwpmaskc_1400.mpr 

cwpmaskc_1415.mpr cwpmaskc_1430.mpr cwpmaskc_1445.mpr cwpmaskc_1500.mpr 

cwpmaskc_1515.mpr cwpmaskc_1530.mpr 
 

Appendix 11: Script 7 (sum averages and aggregation computation) 

This scripts creates all the cloud properties averages and sum for PP-VNIR rain rate 

It aggregated the day total rain rate of PP-VNIR and H-E into a 5 pixel box to increase the foot print of 

the satellite .This was done to reduce uncertainties of satellite versus rain gauge different spatial variations. 

 

PP-VNIR sum.mpr:=mapmapliststatistics (PP-VNIR maxmaskc_out.mpl, Sum, 0, 32) 

cotAvg.mpr:=MapmaplistStatistics (cotremaskc_out.mpl, Avg, 0, 32) 

reffAvg.mpr:=MapmaplistStatistics (reffremaskc_out.mpl, Avg, 0, 32) 

cphAvg.mpr:=MapmaplistStatistics (cphremaskc_out.mpl, Avg, 0, 32) 

cchAvg.mpr:=MapmaplistStatistics (cchremaskc_out.mpl, Avg, 0, 32) 

cwpAvg.mpr:=MapmaplistStatistics (cwpmaskc_out.mpl, Avg, 0, 32) 

cphICEAvg.mpr:=MapmaplistStatistics (cphICE_out.mpl, Avg, 0, 32) 

cphWAvg.mpr:=MapmaplistStatistics (cphW_out.mpl, Avg, 0, 32) 

cwpAvg.mpr:=MapmaplistStatistics (cwpmaskc_out.mpl, Avg, 0, 32) 

PP-VNIR sumc: =MapAggregateavg (PP-VNIR sum.mpr, 5, No Group) 

RRmasksumc: =MapAggregateavg (RRmasksum.mpr, 5, No Group) 

 

Appendix 12: Script 8 (attribute tables computation for statistical analysis) 

 This script was used to ”cross” each PP-VNIR  cloud properties with PP-VNIR  rain rate maps and 

between the PP-VNIR  rain rate with H-E rain rate  after every 15 minutes .The tables were used to derive 

hourly  rainfall of each algorithm and 15 minutes variation of cloud properties.  For effective radius 

“reff”” was used in place of “re”. 

r%1.tbt:= TableCross (PP-VNIR maxmaskc_%1, RRmaskcc_c%10000, IgnoreUndefs) 

r_cch%1.tbt:= TableCross (PP-VNIR maxmaskc_%1, cchremaskc_%1, IgnoreUndefs) 

r_reff%1.tbt:= TableCross (PP-VNIR maxmaskc_%1, reffremaskc_%1, IgnoreUndefs) 

r_cot%1.tbt:= TableCross (PP-VNIR maxmaskc_%1, cotremaskc_%1, IgnoreUndefs) 

r_cwp%1.tbt:= TableCross (PP-VNIR maxmaskc_%1, cwpmaskc_%1, IgnoreUndefs) 

 To enable repeated action for allthe maplists, two batch files were used. The work was done by script 8 

but callscript8 and runall_script call callscript. 
 

Callscript8.bat 
Callscript8. Bat process one file of the map list but the actual work is done by script8, this file simply 
removes the extension of the maps file name, and then calls script 8. 
@echo off 
Set filename=%1 
d:\ilwis_371\ilwis.exe -C run script8_PP-VNIR _H-E %filename: ~4, 4% 
 

runall_script8.bat 

This script processed all the files of the map list (In reality this file processed all files (cot_*.mpr.). Then 

callscript8.bat is called. 

@echo off 

for %%j in (c*.mpr) do callscript3.bat %%j 

 

 Appendix 13: Script 10 

This script reduced the decimal places to 1 by assigning zeros to numbers beyond i decimal place. 
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Appendix 14: Student’s t-test tabulated values 

 

       

One 

Sided
75% 80% 85% 90% 95% 97.50% 99% 99.50% 99.75% 99.90% 99.95%

Two 

Sided
50% 60% 70% 80% 90% 95% 98% 99% 99.50% 99.80% 99.90%

1 1 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6

2 0.816 1.061 1.386 1.886 2.92 4.303 6.965 9.925 14.09 22.33 31.6

3 0.765 0.978 1.25 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92

4 0.741 0.941 1.19 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.61

5 0.727 0.92 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.718 0.906 1.134 1.44 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.706 0.889 1.108 1.397 1.86 2.306 2.896 3.355 3.833 4.501 5.041

9 0.703 0.883 1.1 1.383 1.833 2.262 2.821 3.25 3.69 4.297 4.781

10 0.7 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.93 4.318

13 0.694 0.87 1.079 1.35 1.771 2.16 2.65 3.012 3.372 3.852 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.14

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.69 0.865 1.071 1.337 1.746 2.12 2.583 2.921 3.252 3.686 4.015

17 0.689 0.863 1.069 1.333 1.74 2.11 2.567 2.898 3.222 3.646 3.965

18 0.688 0.862 1.067 1.33 1.734 2.101 2.552 2.878 3.197 3.61 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.687 0.86 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.85

21 0.686 0.859 1.063 1.323 1.721 2.08 2.518 2.831 3.135 3.527 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.685 0.858 1.06 1.319 1.714 2.069 2.5 2.807 3.104 3.485 3.767

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.684 0.856 1.058 1.316 1.708 2.06 2.485 2.787 3.078 3.45 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.69

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.683 0.854 1.055 1.31 1.697 2.042 2.457 2.75 3.03 3.385 3.646

40 0.681 0.851 1.05 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496

60 0.679 0.848 1.045 1.296 1.671 2 2.39 2.66 2.915 3.232 3.46

80 0.678 0.846 1.043 1.292 1.664 1.99 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.29 1.66 1.984 2.364 2.626 2.871 3.174 3.39

120 0.677 0.845 1.041 1.289 1.658 1.98 2.358 2.617 2.86 3.16 3.373

0.674 0.842 1.036 1.282 1.645 1.96 2.326 2.576 2.807 3.09 3.291
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Appendix 15a: Rain gauge distribution over NW Europe region 

 

 

Appendix 15b: Rain gauge distribution over Kenya region 
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Appendix 16: NW Europe Rain gauge Stations 3rd July 
 

GSOD 

stations USAF Lat_new Lon_new Observed 

PP-

VNIR  H-E Observed 

PP-

VNIR  H-E 

st2580 64000 51.083 2.65 0.508 2.5 5.1 Rain Rain Rain 

st2584 64070 51.2 2.867 3.302 7.1 12.2 Rain Rain Rain 

st 2585 64280 50.933 3.667 9.144 19.6 11.1 Rain Rain Rain 

st2582 64310 51.183 3.817 7.112 12.3 11.8 Rain Rain Rain 

st2564 64320 50.567 3.833 7.874 32.2 1.2 Rain Rain Rain 

st2571 64470 51.2 2.867 5.842 25.9 0.6 Rain Rain Rain 

st2560 64490 50.467 4.45 0 23.2 4.2 No rain Rain Rain 

st2583 64500 51.2 4.467 0 23.7 0.3 No rain Rain Rain 

st2573 64510 50.9 4.533 0 18.0 1.8 No rain Rain Rain 

st2557 64560 50.233 4.65 0 0.6 6.4 No rain Rain Rain 

st2567 64780 50.65 5.45 0 10.3 37.3 No rain Rain Rain 

st2581 64790 51.167 5.467 0 3.1 31.6 No rain Rain Rain 

st2562 64900 50.483 5.917 0 10.0 41.9 No rain Rain Rain 

st2559 64960 50.467 6.183 16.002 2.3 44.2 Rain Rain Rain 

st12127 62400 52.3 4.767 1.016 36.3 0.7 Rain Rain Rain 

st12120 62600 52.1 5.183 0 24.3 4.3 No rain Rain Rain 

st12155 62700 53.217 5.767 0 6.3 6.0 No rain Rain Rain 

st12142 62730 52.7 5.883 0 3.9 11.7 No rain Rain Rain 

st12119 62750 52.067 5.883 0 0.7 26.1 No rain Rain Rain 

st12131 62780 52.433 6.267 0 6.1 23.5 No rain Rain Rain 

st12144 62790 52.75 6.517 0 7.5 16.6 No rain Rain Rain 

st12152 62800 53.133 6.583 0 0.8 3.6 No rain Rain Rain 

st12118 62830 52.067 6.65 0 11.0 26.7 No rain Rain Rain 

st2124 62900 52.267 6.9 0 5.9 13.6 No rain Rain Rain 

st12086 63190 51.233 3.867 3.302 24.2 3.2 Rain Rain Rain 

st12112 63440 51.95 4.45 0 12.9 0.2 No rain Rain Rain 

st12100 63500 51.567 4.933 0 23.5 2.1 No rain Rain Rain 

st12107 63560 51.867 5.15 0 29.1 8.0 No rain Rain Rain 

st12089 63700 51.45 5.417 0 5.4 23.6 No rain Rain Rain 
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Appendix 17: NW Europe Rain gauge Stations 12th July 

GSOD 

station USAF Lat_new Lon_new observed 

PP-

VNIR  H-E observed 

PP-

VNIR  H-E 

st2580 64000 51.083 2.65 9.906 4.52 2.908 Rain Rain Rain 

st2584 64070 51.2 2.867 0 12.14 9.044 No rain Rain Rain 

st 2585 64280 50.933 3.667 19.05 24.156 18.728 Rain Rain Rain 

st2582 64310 51.183 3.817 10.922 42.636 18.528 Rain Rain Rain 

st2564 64320 50.567 3.833 18.034 19.292 19.652 Rain Rain Rain 

st2571 64470 51.2 2.867 3.048 12.852 22.064 Rain Rain Rain 

st2560 64490 50.467 4.45 0 14.492 22.728 No rain Rain Rain 

st2583 64500 51.2 4.467 5.08 24.656 19.232 Rain Rain Rain 

st2573 64510 50.9 4.533 0 12.24 20.2 No rain Rain Rain 

st2557 64560 50.233 4.65 7.874 19.708 22.916 Rain Rain Rain 

st2567 64780 50.65 5.45 0 11.54 16.348 No rain Rain Rain 

st2581 64790 51.167 5.467 8.89 8.104 17.544 Rain Rain Rain 

st2562 64900 50.483 5.917 0 13.072 15.332 No rain Rain Rain 

st2559 64960 50.467 6.183 0.508 7.736 12.268 Rain Rain Rain 

st12127 62400 52.3 4.767 0 4.576 19.756 No rain Rain Rain 

st12120 62600 52.1 5.183 1.778 8.216 27.2 Rain Rain Rain 

st12155 62700 53.217 5.767 0 22.256 35.684 No rain Rain Rain 

st 12142 62730 52.7 5.883 0 22.336 25.852 No rain Rain Rain 

st12119 62750 52.067 5.883 0 29.26 28.98 No rain Rain Rain 

st12131 62780 52.433 6.267 6.35 40.104 28.316 Rain Rain Rain 

st12144 62790 52.75 6.517 8.382 55.196 34.336 Rain Rain Rain 

st12152 62800 53.133 6.583 17.78 59.852 45.28 Rain Rain Rain 

st12118 62830 52.067 6.65 0 31.116 24.704 No rain Rain Rain 

st2124 62900 52.267 6.9 0 19.388 17.532 No rain Rain Rain 

st12086 63190 51.233 3.867 0 31.548 18.352 No rain Rain Rain 

st12112 63440 51.95 4.45 0 9.184 19.204 No rain Rain Rain 

st 12100 63500 51.567 4.933 0 14.776 20.864 No rain Rain Rain 

st12107 63560 51.867 5.15 0 6.888 25.14 No rain Rain Rain 

st12089 63700 51.45 5.417 0 6.652 22.896 No rain Rain Rain 
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Appendix 18: Kenya Rain gauge Stations 2nd April 

GSOD 

Stations USAF Lat_new Lon_new observed 

PP-

VNIR  H-E observed 

PP-

VNIR  H-E 

st 10732 638200 -4.033 39.617 0.0 0.0 0.0 No rain No rain No rain 

st 10733 637930 -3.4 38.567 0.0 0.0 0.0 No rain No rain No rain 

st 10734 637990 -3.233 40.1 0.0 0.0 0.0 No rain No rain No rain 

st 10735 637660 -2.283 37.833 0.0 11.5 0.0 No rain Rain No rain 

st 10736 637720 -2.267 40.9 0.0 0.0 0.0 No rain No rain No rain 

st 10737 697104 -2.267 40.9 0.0 0.3 3.0 No rain Rain Rain 

st 10738 637380 -1.883 36.283 0.0 0.5 0.2 No rain Rain Rain 

st 10739 637400 -1.317 36.917 0.0 40.4 1.1 No rain Rain Rain 

st 10740 637420 -1.317 36.817 0.0 20.7 0.2 No rain Rain Rain 

st 10742 637410 -1.3 36.75 0.0 18.6 0.1 No rain Rain Rain 

st 10743 637390 -1.267 36.867 0.0 0.6 0.1 No rain Rain Rain 

st 10744 637370 -1.133 35.833 0.0 0.1 0.0 No rain Rain No rain 

st 10745 637085 -0.683 34.7 0.0 17.1 86.7 No rain Rain Rain 

st 10746 637090 -0.667 34.783 0.0 17.1 86.7 No rain Rain Rain 

st 10747 637200 -0.5 37.45 0.0 1.4 0.0 No rain Rain No rain 

st 10748 637170 -0.5 36.967 0.0 5.8 0.0 No rain Rain No rain 

st 10749 637230 -0.467 39.633 0.0 20.5 25.5 No rain Rain Rain 

st 10750 637100 -0.367 35.35 6.9 24.9 114.4 Rain Rain Rain 

st 10751 637140 -0.267 36.1 0.0 112.3 71.2 No rain Rain Rain 

st 10752 637080 -0.1 34.75 0.0 82.8 59.5 No rain Rain Rain 

st 10754 636950 0.083 37.65 0.0 11.3 0.0 No rain Rain No rain 

st 10755 636870 0.283 34.783 0.0 3.4 109.7 No rain Rain Rain 

st 10756 636953 0.25 37.583 0.0 0.0 0.0 No rain No rain No rain 

st 10757 636880 0.4 35.233 0.0 0.0 7.6 No rain No rain Rain 

st 10758 636860 0.533 35.283 0.0 0.0 17.4 No rain No rain Rain 

st 10759 636610 1.016 35 0.0 0.9 58.6 No rain Rain Rain 

st 10760 636710 1.75 40.067 0.0 28.7 3.1 No rain Rain Rain 

st 10762 636410 2.3 37.9 0.0 3.4 0.0 No rain Rain No rain 

st 10763 636120 3.117 35.617 0.0 0.1 0.0 No rain Rain No rain 

st 10764 636190 3.533 39.033 0.0 0.0 0.0 No rain No rain No rain 

st10731 63694 0.017 37.067 0.0 50.0 52.6 No rain Rain Rain 
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Appendix 19: Kenya Rain gauge Stations 3rd April 

GSOD 

Stations USAF Lat_new Lon_new observed 

PP-

VNIR  H-E observed 

PP-

VNIR  H-E 

st 10732 638200 -4.033 39.617 0.0 0.0 0.5 No rain No rain No rain 

st 10733 637930 -3.4 38.567 0.0 0.7 2.2 No rain Rain Rain 

st 10734 637990 -3.233 40.1 0.0 0.0 0.0 No rain No rain No rain 

st 10735 637660 -2.283 37.833 0.0 0.0 0.0 No rain No rain No rain 

st 10736 637720 -2.267 40.9 0.0 0.0 0.0 No rain No rain No rain 

st 10737 697104 -2.267 40.9 6.1 38.2 41.5 Rain Rain Rain 

st 10738 637380 -1.883 36.283 0.0 0.0 0.0 No rain No rain No rain 

st 10739 637400 -1.317 36.917 6.1 0.0 0.0 Rain No rain No rain 

st 10740 637420 -1.317 36.817 0.0 0.1 0.0 No rain Rain No rain 

st 10742 637410 -1.3 36.75 0.0 0.1 0.0 No rain Rain No rain 

st 10743 637390 -1.267 36.867 0.0 0.4 0.0 No rain Rain No rain 

st 10744 637370 -1.133 35.833 0.0 0.0 0.0 No rain No rain No rain 

st 10745 637085 -0.683 34.7 54.5 60.0 27.7 Rain Rain Rain 

st 10746 637090 -0.667 34.783 0.0 15.2 86.9 No rain Rain Rain 

st 10747 637200 -0.5 37.45 0.0 1.7 0.0 No rain Rain No rain 

st 10748 637170 -0.5 36.967 33.0 1.1 0.0 Rain Rain No rain 

st 10749 637230 -0.467 39.633 39.1 4.2 0.1 Rain Rain Rain 

st 10750 637100 -0.367 35.35 0.0 27.9 92.6 No rain Rain Rain 

st 10751 637140 -0.267 36.1 20.1 15.5 29.3 Rain Rain Rain 

st 10752 637080 -0.1 34.75 0.0 0.0 51.7 No rain No rain Rain 

st 10754 636950 0.083 37.65 52.1 1.5 0.0 Rain Rain No rain 

st 10755 636870 0.283 34.783 0.0 3.0 90.5 No rain Rain Rain 

st 10756 636953 0.25 37.583 0.0 7.2 0.0 No rain Rain No rain 

st 10757 636880 0.4 35.233 2.0 0.0 43.6 Rain No rain Rain 

st 10758 636860 0.533 35.283 0.0 0.0 32.5 No rain No rain Rain 

st 10759 636610 1.016 35 8.9 3.6 10.7 Rain Rain Rain 

st 10760 636710 1.75 40.067 0.0 15.8 6.5 No rain Rain Rain 

st 10762 636410 2.3 37.9 0.0 3.3 0.0 No rain Rain No rain 

st 10763 636120 3.117 35.617 0.0 0.0 0.0 No rain No rain No rain 

st 10764 636190 3.533 39.033 0.0 0.0 0.0 No rain No rain No rain 

st10731 63694 0.017 37.067 0.0 56.0 0.1 No rain Rain Rain 
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Appendix 20: Polynomial curves 

 

 

 




