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Abstract 

 

In this paper, the effect of fire frequency and drought on forest 

recovery period after fire disturbance was analysed by means of 

remote sensing imagery and a fire history dataset in Northern Jarrah 

Forest (NJF). Fourteen years of 10-daily SPOT NDVI images from 

mid-1998 to mid-2013 were employed to detect fire signals, to 

estimate the forest recovery period and to assess the relationship 

between recovery period and both fire frequency and relative 

drought. Fire signals were detected by comparing the NDVI temporal 

profile of a pixel to unburned neighbouring control sites. The spatial 

fire history dataset were used for site selection and to compare the 

NDVI-derived fire signals to the recorded fires. The ratio between the 

NDVI values with the NDVI of its neighbours is referred here as the 

forest state index (RE). Significant declines in RE were interpreted as 

a signal of fire. Moreover, the RE value served to evaluate post-fire 

recovery times. Results show different patterns of recovery for each 

selected burned site based on time of occurrence. The user‟s accuracy 

of this prediction was about 41%, which is relatively good given the 

uncertainty in the input data. For all cases, a non-significant 

correlation was found between recovery period and fire frequency. 

This suggests, recovery period was not affected by the fire frequency 

in NJF. It can be concluded that this system may be adapted to the 

fire. Also the results showed a longer recovery period for burned sites 

with high amount of precipitation in the month of fire and during the 

recovery period. Critical slowing down may not happen in this system 

as a result of fire frequency, but high uncertainty in the results may 

also account for the absence of evidence in this regard.  
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1. Introduction  

1.1 Background information 
Forest collapse and degradation is one of the ecologists concerns, 

because forests play an important role in human‟s economic and 

social life. Forests secure environmental functions such as providing 

clean water, sequestering carbon and controlling erosion, and play an 

essential role in providing habitats for fauna and flora. According to 

FAO (2006), forests are major reservoirs of terrestrial biodiversity 

and include over 50% of the global terrestrial biomass carbon stocks. 

However, continued degradation and deforestation has contributed to 

increasing concentrations of CO2 and other greenhouse gases into the 

atmosphere (Beerling, 1993). The increased emissions of greenhouse 

gases have resulted in recent increases of global mean temperature 

(about 0.5 °C since 1970) (IPCC, 2007). Climatic incidents ranging 

from ice storms to typhoons can destruct forests, but  it has been 

identified that forest mortality has increased due to climate-induced 

stress such as drought and raised temperatures around the globe 

(Allen et al., 2010). Understanding and forecasting the effects of 

these climatic changes on ecosystems is an ongoing challenge for 

scientists. 

 

Different ecosystems respond differently to gradually changing 

environmental conditions. Climate, groundwater reduction and loss of 

species diversity are some examples of conditions within ecosystems, 

which change gradually and smoothly with time (Tilman et al., 2001). 
Besides smooth changes (Figure 1-1. a), the response of ecosystems 

to changing conditions (e.g. drought) may be quite intense when 
conditions reach a critical point (Figure 1-1. b). Sometimes, an 

ecosystem may respond completely differently to changing conditions 

when its equilibrium state bends backwards under the assumption 

that such an ecosystem has two alternative stable states for the 
same environmental conditions (i.e. drought here) (Figure 1-1. c). 

When the state of an ecosystem is on the upper equilibrium, it cannot 

switch to the lower equilibrium smoothly but when there is a 

sufficient change in conditions, a „catastrophic‟ shift to the lower 

branch takes place after passing a threshold (F2) which is often 

referred to as the tipping point (Scheffer et al., 2001).  

 

 

 

 

 

 

http://wwf.panda.org/about_our_earth/aboutcc/cause/
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Figure 1-1. This figure illustrates the possible responses of ecosystem equilibrium 

states which can vary due to conditions. In (a) and (b) there is only one equilibrium for 
each condition but in (c) the equilibrium curve bended backward and in given condition 

three equilibria exist. The dashed equilibrium is unstable and displays the border 
between two alternative stables. 

Sudden shifts in ecosystem states, caused by changing environmental 

conditions, have been shown in different ecosystems (Scheffer et al., 

2001). Shifts from one state to another alternative stable state can 

occur in lakes also (Carpenter et al., 1999). One example of drastic 

shift in this ecosystem is an abrupt loss of water clarity and 

vegetation in shallow lakes due to nutrient concentrations (Scheffer 

et al., 1993). Remarkably, water transparency can be hardly affected 

by nutrient loading, unless it passes a critical transition, at which a 

sudden shift from clear to turbid state occurs. This increased turbidity 

causes the loss of vegetation and consequently loss of algal biomass 

and animal diversity which makes this state undesired. Shifts from 

savannahs (sparse tree with grass layer) to a dense woody state as 

an alternative stable state is another example which can occur due to 

a combination of fire and grazing regimes change (Ludwig et al., 

1997). Extreme grazing decreases the grass and also fuel for fire 

while natural fires decrease the woody plant cover and increase the 

grass layer. In the fire absence, shrubs growth starts during the wet 

period and can overwhelm the grass cover, so fire spread is 

prevented. The system stays in this state until trees begin to die and 

allow the grass layer to make fuel for an effective fire. These 

processes of shifting from one state to another contrasting state are 

known as „critical transitions‟, where critical means that the shift is 

irreversible or costly to reverse (Folke et al., 2004). As explained 

before, critical transitions can occur when the system approaches a 

tipping point (Dakos et al., 2008). Although critical transitions cannot 

be easily predicted, especially for complex systems, certain generic 

signals known as “early warning signals” may occur in the 

ecosystems when approaching a tipping point. 
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An important early warning signal is a phenomenon known as „critical 

slowing down‟ (Van Nes and Scheffer, 2007, Wissel, 1984). When a 

system approaches a tipping point, it needs increasingly more time to 

recover from regular common disturbances. There are some statistics 

that can indicate the „critical slowing down‟ process such as an 

increase in variance, skewedness, and autocorrelation of the rate of 

recovery of a repeatedly disturbed system compared to an 

undisturbed stable system (Dakos et al., 2012). According to Scheffer 

et al. (2001), resilience lost in a system makes it easier for a system 

to switch to an alternative state. Following Van Nes and Scheffer 

(2007), in this study, resilience is considered as the ability of the 

system to return to the equilibrium that existed before perturbation. 

A reduction of a system‟s resilience can thus be inferred from a 

declining ability to recover, for example, for Mediterranean 

ecosystems after increased fire disturbance by Diaz-Delgado et al. 

(2002). The use of recovery rates after a disturbance as a general 

indicator provides a chance to study the resilience of forest 

ecosystems and possibly predict the approach of a catastrophic shift  

(Scheffer et al., 2009).  

 

Time series of remotely-sensed data could provide a useful input to 

monitor disturbances and recovery rates in ecosystems. For regional 

and global monitoring of terrestrial ecosystems, regular and 

consistent records of remote sensing images offer spatial information 

on the temporal dynamics (Tarnavsky et al., 2008). An example of 

remotely-sensed data is the frequent (daily) information on green 

vegetation cover offered by coarse-resolution optical satellite sensors 

such as AVHRR (Advanced Very High Resolution Radiometer), SPOT 

(Système Pour l‟Observation de la Terre) VEGETATION, and MODIS 

(Moderate Resolution Imaging Spectroradiometer). A common index 

that can be extracted from these sensors is the Normalized Difference 

Vegetation Index (NDVI), which combines information from reflection 

measured by a sensor in red and near infrared (NIR) wavelength 

bands. It uses the high absorbance of radiation by healthy green 

vegetation in the red band and the high reflectance of vegetation in 

the NIR band of the electromagnetic spectrum and is computed from 

reflectance images (Equation 1).  

 

            –                                                Equation (1) 

 

The NDVI relates to the amount of green biomass, and has been used 

as a proxy indicator for the total amount of biomass (Anderson et al., 

1993), and vegetation density and health (Lotsch et al., 2003). When 

evaluating NDVI over time, information on how greenness changes 

was obtained within a year, and between years. For forest 
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ecosystems, for example, NDVI time series may help to identify 

disturbances, and to assess the recovery to normal conditions of the 

ecosystem. 

 

Catastrophic forest loss caused by extreme weather conditions such 

as drought and heat is increasingly being reported (Granzow-de la 

Cerda et al., 2012). A good example is the abrupt and unprecedented 

forest collapse in Mediterranean-type forest (MTF) in western 

Australia, which likely relates to drought and heat conditions in 

2010/2011, despite the fact that forests here are considered to be 

drought-resilient (Matusick et al., 2013). This event brings concern 

that more abrupt and catastrophic forest collapses may occur in the 

future, and illustrates the necessity for aiming at better predicting, 

and hopefully preventing, future forest collapses. One possible 

avenue towards improved prediction is to follow the critical slowing 

down theory, and assess how recovery currently takes place after 

perturbations to the system. 

 

Most studies that examined the critical slowing down theory were 

model-based, while only a few studies found signals of slowing down 

in real ecosystems with natural perturbations (Dakos et al., 2010, 

Scheffer et al., 2009). This study is an attempt to contribute real 

evidence for the theory using a case study of the Australian Jarrah 

forest system that is regularly disturbed due to natural fires. In this 

research, spatial and temporal variability in the recovery period after 

fires for the Northern Jarrah Forest system in the Southwest 

Australian Floristic Region (SWAFR) was studied. This region was 

suitable for this research project because it is increasingly being 

affected by a drying and warming climate (CSIRO and BOM, 2007), 

and because forest collapses have been observed as a result of 

drought and heat condition (Matusick et al., 2013)  

 

To gain a better understanding of the fire impacts on forests, it is 

important to know how fire affects the forest vegetation. The effect of 

fire on plant communities depends on the species present (e.g., 

resprouter vs. non-resprouting species) and their life cycle stage (i.e., 

maturity level, carrying seed or not). Long-term effects of fire on 

plants are considered within fire regime components which are fire 

intensity, fire frequency and season of fire occurrence (Gill, 1975).  

Fire impact on vegetation differs based on its intensity level. A 'low 

intensity fire' burns understorey and scorches overstorey trees, trunk 

and crown while a 'high intensity fire' burns understorey and 

overstorey. Fires occurring in the spring with low intensity disturb 

grass-shrub understory and go out at night due to increased relative 

humidity and cooler air. Early dry season fires occur when fuel 
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moisture is high from winter rainfall. This moist in the fuels has an 

effect on fire behaviour which results in less intense fires with low 

speed and flame height (Government Of Western Australia, 2013). In 

contrast, in summer (late in the dry season), fuels get drier because 

of sun and wind, the fires get more flammable, and fire intensity 

increases. These fires eliminate grassy fuels and continue overnight 

(Government Of Western Australia, 2013). If fuels are extensive, 

mostly overstory trees are damaged (Goldammer, 1990). Similar to 

spring, autumn fires occur with increased moisture in the dry summer 

fuels due to opening seasonal rains. Fire intensity and behaviour is 

modified by moist fuels and cool weather after the first rains in 

autumn. However in comparison to spring, the landscape is much 

drier, thereby, uniform burn of canopies is more common in autumn. 

According to Gill (1975), in the forests of southwest and southeast 

Australia, fires are less frequent but more severe.  

 

The overall effect of fire on the different forest components depends 

on fire type as well. Ground fires only have a strong impact on soil, 

which has organic matter and can have a very negative consequence 

for trees due to their damage on root systems. However, surface fires 

burn grass, dead plant and twig material lying on the ground and 

scorch tree trunks and crowns. Crown fires mostly affect tops of 

shrubs and trees.  Ecosystems may experience one or a mixture of 

these fire types (Bond and Keeley, 2005).   

 

In tropical forests, except from burning by humans, there can be a 

climatic explanation for more fires as result of, for example, increased 

drought, increased evapotranspiration, and decreased summer 

rainfall. Increased evapotranspiration and decreased summer rainfall 

will cause more severe and longer-lasting droughts. Through 

prolonged and frequent droughts, vegetation loses its moisture and 

becomes more flammable, consequently drought frequency has the 

potential to raise the probability of wildfires (UOC, 2003). Rainfall 

during the growing season increases the vegetation moisture and 

decreases their flammability. This moisture in the vegetation reduces 

the fire intensity and speeds the recovery process. High amount of 

rainfall during the fire event cools down the fire and causes highly 

wet vegetation and less intense fire with a little damage to forest 

which takes shorter for the forest to recover. A lot of rain after fire 

(during the recovery period) would shorten the recovery period due 

to a lot of water availability, which helps the vegetation to green-up 

quickly. As mentioned before, the recovery and green-up after fire is 

highly dependent on the season the fire took place. Summer burns 

(Dec-Feb) are more intense and often wildfires. With a little water 

availability, the vegetation will take much longer to green-up again to 
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the original level (6-12 months). For spring fires, (September -

November) green-up occurs gradually over a period of 2-3 months. 

1.2 Research objectives 
The aim of this research is to assess whether forest fire signals and 

post-fire recovery time can be accurately determined with NDVI time 

series for selected locations of the Northern Jarrah Forest (NJF) in 

order to evaluate if critical slowing down is occurring in this 

ecosystem. Our assumption is that NDVI is a good indicator to detect 

fire signals in the NJF, which can then be verified by the fire history 

dataset. Based on this hypothesis the following objectives were 

formulated: 

 

1. To evaluate if NDVI time series can unambiguously detect 

fire signals in the study area. 

2. To estimate the time that a fire-affected forest area needs 

to recover to the normal seasonal NDVI cycle.  

3. To test whether the recovery period increases for higher 

levels of drought and fire frequency. 

1.3 Research questions 
1. Can the fire signals be detect in the study area using NDVI 

time series based on the fire occurrence in a specific 

period? 

2. Is it possible to observe forest recovery after fire from 

NDVI time series and estimate time to recover to normal 

seasonal cycle?  

3. Is forest recovery period increasing when fire frequency is 

increasing?  

4. Is forest recovery period increasing when drought is 

increasing? 

1.4  Research hypothesis 
1. Hypothesis 1: Main fire events in the observational fire 

dataset will cause a significant decline in NDVI values for 

locations where this fire occurred. 

2. Hypothesis 2: After a clear drop in NDVI, it is increased to 

normal state which will represent the recovery period.  

3. Hypothesis 3: An increase in fire frequency will increase 

the recovery time of forest after fire. 

4. Hypothesis 4: Dry conditions (before, during and/or after) 

will increase the recovery time of forest after fire.
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2. Description and background of 

dataset 

2.1 Description of dataset 
For this research, SPOT VEGETATION 10-daily Normalized Difference 

Vegetation Index (NDVI) images, from mid-1998 to mid-2013 were 

used. These images are freely available through http://www.vito-

eodata.be/PDF/portal/Application.html#Home. Although other 

vegetation metrics can be used, NDVI was selected due to its 

availability at a good spatial (1 km by 1 km) and temporal (every 10 

days) resolution compared to the extents and timing of burned areas. 

This data set is constructed based on daily radiance information 

recorded by the VEGETATION sensor on-board the SPOT 4 platform 

(launched in March 1998), and the SPOT 5 platform (launched in May 

2002). Based on the daily observations, 10-daily temporal NDVI 

composites are produced using the maximum-value compositing 

technique to reduce atmospheric effects in the series. For each pixel, 

the daily recording with the highest NDVI (and a close-to-nadir view 

angle) is retained in the dataset. This product is referred to as S10 

and is available in three different spatial resolutions: 1, 4 and 8 km. 

In this study, the 1-km resolution dataset was used. This data is in 8-

bit unsigned binary format and can be converted to valid NDVI values 

with the following equation: 

 

NDVI = (RAW*0.004) - 0.1                          Equation (2) 

 

The second dataset with the name of (AWAP\Run26h), which was 

used for assessing the effect of climate condition (drought), is 

monthly historical meteorological data at 5x5km resolution. This 

dataset includes precipitation (m/day), maximum temperature (°C) 

and minimum temperature (°C), and is freely available through the 

Australian Water Availability Project (AWAP) 

(www.eoc.csiro.au/awap/). Rainfall data are available from 1900 to 

2012 and temperature from 1911 up to 2012. The dataset is provided 

by the Australian Bureau of Meteorology (BoM) and is generated by 

spatial interpolation of the BoM's network of rain gauges and weather 

stations. This product is generated by rescaling daily rainfall at the 

end of each month so that the sum of daily rainfalls matches the 

subsequent monthly reanalysis. From this dataset, meteorological 

data from 1998 to 2012 were used to match the available NDVI 

dataset.  

 

The third dataset used for this study was an accurate digital fire 

history dataset in a shapfile format, which is generated on an annual 

http://www.vito-eodata.be/PDF/portal/Application.html#Home
http://www.vito-eodata.be/PDF/portal/Application.html#Home
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basis by the Department of Parks and Wildlife (DPaW), Western 

Australia, and includes data on the timing and extent of the fires that 

have occurred. This dataset contains a collection of records of fire 

events (prescribed burns and wildfires) of which the earliest records 

date back to 1937. Since NDVI images are available from 1998 in this 

study the focus was more on fires occurring after 1997. A world 

imagery group layer provided by ArcGIS online service was used for 

better investigation of site selection. This group layers present 

satellite imagery and aerial imagery for the world 

(http://goto.arcgisonline.com/maps/World_Imagery). 

2.2 Background of dataset 
The Jarrah Forest system is situated in the Southwest Australian 

Floristic Region (SWAFR). The Jarrah Forest is split into two regions, 

the Northern Jarrah Forest and the Southern Jarrah Forest. The study 

area for this research is the Northern Jarrah Forest (between Latitude 
30°45´-33°30´S and Longitude 115°52´-117°5´E; Figure 2-1). The 

SWAFR region occupies 302,627 km2, on a relatively wet continental 

region, surrounded on two sides by ocean, and isolated by arid lands 

to the north, northeast, and east (Hopper and Gioia, 2004). This 

region is one of the 34 global biodiversity hotspots, i.e., a region that 

is rich in endemic species and under threat due to anthropogenic and 

environmental pressures (Myers et al., 2000). This region contains 

nutrient-deficient landscapes which is rich in species, with 7,380 

native vascular plants of which 2,500 are of conservation concern 

(Hopper and Gioia, 2004). The SWAFR is recognized as one of 10 

Australian ecosystems that is highly vulnerable to climate shifts 

(temperature and rainfall), with the most sensitive habitats 

considered to be the dry sclerophyll (e.g. Jarrah) forests, woodlands 

and heathlands (Laurance et al., 2011). As in many parts of Australia, 

regular burning and wildfires occur in the SWAFR.  

 

http://goto.arcgisonline.com/maps/World_Imagery
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Figure 2-1. Study area in the Northern Jarrah Forest in southwest Australia 

2.2.1 Climate 

This region is among the Mediterranean climate regions, with warm to 

hot dry summers and mild to cool wet winters (Peel et al., 2007). The 

majority of rain falls from April to October (Bates et al., 2008) and 

dry season occurrence is from October to April, continuing for 2 to 7 

months (Gentilli, 1989). Rainfall amount ranges between ~1,100 mm 

in the west to ~700mm in the east and north (Gentilli, 1989). Annual 

mean temperatures of this region have risen at a rate of +0.15°C per 

decade, and mean annual rainfall was approximately 14% lower in 

1975-2004 as compared to pre-1975, with the main reduction in the 
May to July rainfall (Bates et al., 2008) (Figure 2-2). The majority of 

recent climate change models agree on the persistence of this trend, 

projecting a decrease in rainfall of up to 40% and an increase in 

temperature of up to 5 °C by 2070 (CSIRO and BOM, 2007). 

Mediterranean ecosystems is extremely sensitive to climate driven 

shifts (Klausmeyer and Shaw, 2009). SWWA is one of the regions, 

most likely to be affected, making it a priority for biodiversity 

conservations. Given the recent large-scale forest collapse in 

Mediterranean-type forest  (MTF) in western Australia corresponding 

with dry and heat conditions in 2010/2011 (Matusick et al., 2013), it 

can be expected that these climatic shifts will result in more forest 

collapses. This strongly suggests that the resilience of these forest 

systems is increasingly being affected by the changes in climate, 
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which makes this study area a suitable site to evaluate the 

phenomenon of critical slowing down of forest recovery after 

disturbance.  

 

 
Figure 2-2. Average monthly rainfall (mm) for the southwest corner of Australia 

(Bates et al., 2008) 

2.2.2 Vegetation species 

The Northern Jarrah Forest (NJF) is an evergreen dry-sclerophyll 

broad-leaved forest, dominated by Eucalyptus marginata (jarrah) and 

commonly found with other Eucalyptus spp. species including 

Eucalyptus wandoo (wandoo), Eucalyptus patens (blackbutt) and 

Corymbia calophylla (marri). Banksia grandis, Allocasuarina fraserani 

Persoonia spp, and Halkea spp.  are components of mixed midstory of 

this region (Heddle et al., 1980).  

2.2.3 Forest structure 

This forest is among those open forests in north and tall forest in 

south, in terms of canopy density. Moving from west to east and from 

south to north, as the rainfall decreases, forest decreases in density 

to woodland or low forests. Jarrah forms trees with 30-40 meter 

height and 2 meter diameter. This forest is among slow growing 

forest, averaging 1-2 cm increments in diameter decade. Large trees 

may be about 300 to 400 years old (Dell and Havel, 1989). 

2.2.4 Fire adaptation  

Jarrah forest has leached soils and accordingly has one of the most 

nutrient impoverished forest soils in the world (Dell and Havel, 1989).  
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In NJF the dominant species (i.e. Eucalyptus marginata) are very 

adapted to soil and climatic conditions. These species are adapted to 

fire with their capacity to resprout after fire from the seedling stage 

to maturity. They use their extensive root system to utilize the water 

from deep layer during the drought period, so other species barely 

can compete with them within the rainfall range 600–1300 mm on 

deep infertile soils (Dell and Havel, 1989).  
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3. Methods 
In this research, sites with differences in fire history, and potentially 

in the recovery period, were compared. The identification of suitable 

sites was an important prerequisite for the subsequent steps of the 

analysis.  Sites were grouped into two different classes: 

 

1. Undisturbed sites (reference): Areas with no fire occurrence 

from mid-1997 to mid- 2013 were selected as reference sites. 

This was done by selecting the areas which did not exist in the 

fire history map. 

 

2. Disturbed sites: Areas with one or more fire occurrences were 
selected using the steps explained in section 3.2. 

3.1 Data preparation 
SPOT VEGETATION 10-daily Normalized Difference Vegetation Index 

files were unzipped and stacked. Data for the ten day period covering 

21 to 31 July 1999 were missing in the dataset and were filled up by 

interpolating between the previous and subsequent time steps. 

Similarly, the climatic data was unzipped and stacked for monthly 

5x5km resolution images. 

3.2 Site selection 
For site selection, vector points were obtained from Raster NDVI by 

raster conversion. From the fire history dataset, areas which 

experienced the fire from 1997 onwards were subset, in order to have 

the history of fires corresponding to NDVI values. Following (Diaz-

Delgado et al., 2002), calculation of the forest state index (RE) was 

needed for each site (both burned and unburned sites, Equation 3).  

 

   
 

  
                                                       Equation (3) 

 

where b is NDVI of burned sites and ub is NDVI of unburned sites.  

 

For this purpose, each RE is estimated by dividing of the NDVI values 

of two pixels, burned and unburned pixel which is as close as possible 

to the former. This was termed as pairwise selection. By the use of 

fire history map and imagery layer, unburned sites with their 

unburned neighbouring pixel (as reference pairs) and also burned and 

their nearby unburned sites were selected. It is worth to mention that 

among the characteristics of the pair, the date in which the fire 

occurred is known. In the next step, the following variables were 



Methods 

 14 

determined for each pair: fire frequency, time since last fire, and 

distance between the two pairs. These variables were filled in the 

attribute table while selecting the pairwise burned and adjacent 

unburned sites. In some cases, it was difficult or impossible to find 

areas which had not experienced fire as unburned sites. According to 

Dr. Niels Brouwers (personal communication, September 10, 2013) 

NDVI values recover in general 2-3 years after a Jarrah forest had 

burned,  therefore areas which did not burn for 10 years or more 

were selected as an ‟unburned‟ neighbouring sites. In some cases, 

even unburned sites with a fire history of 10 years since last fire 

could not be found, so only areas with a „time since last fire age‟ of 

more than 5 years were considered in this site selection. All over, 30 
pairs of unburned and 47 of burned sites were selected (Figure 3-1).  

 

 
Figure 3-1. Selected burned and unburned sites in the Northern Jarrah Forest 
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3.3 Extracting time series 
After site selection, NDVI values were assigned for all the defined 

locations. Having opened the file, some gaps or zero values were 

recognized. Zero indicates a land pixel with no NDVI by cause of 

quality control flagging (i.e. cloud/snow/ice). These zero values were 

filled out by interpolation in time (taking the average value of before 

and after). This approach was done because the NDVI values for 

missed pixels didn‟t show a significant difference in a temporal time 

of 10 days. Also missed data belong only to 1999/7/21 which, as 

mentioned before, was filled up by interpolating between the previous 

and subsequent time step as well. Then, the whole table was sorted 

out in a way that the burned pixel of pairwise sites was located in the 

upper row for calculating the ratio of each pair (burned/unburned). 

There were some noises in the data when it was plotted, and some 

outliers, which were consist only for a scene and appeared as “spikes 

or drops”. These spikes and drops occur due to atmospheric 

problems. In order to keep the original data as much as possible, 

these outliers were kept in the data because it was expected these 

short fluctuations would not influence long term time series. 

3.4 Effect of distance between pairwise 
sites on RE values 

It was difficult and sometimes impossible to find a neighbouring 

unburned pixel for burned sites, so some unburned pixels were 

selected from longer distances. To assess whether their RE values are 

influenced by the effect of distance between them, neighbouring 

pixels were selected from different distances for reference sites. To 

examine the effect of distance between pairwise points on RE values, 

min, max, median, first quartile and third quartile of RE values for the 

whole period of the reference sites were calculated. Regression 

analysis was applied for median, first, and third quartile of RE values 

of 30 reference sites over distance to see the impact of distance on 

these values. Additionally, to be more precise in the estimation, 

regression was also applied for distance between paired points as an 

explanatory variable and the 95% confidence boundaries (both upper 

and lower) as response variables. Since we selected some burned 

sites far from their neighbouring unburned sites, we want to see 

whether these confidence intervals of RE values are increasing as a 
result of distance between them. Figure 3-2 shows some paired 

reference sites and the distance between each pair.  
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Figure 3-2. Unburned reference sites with different distances between each pair 

3.5 RE variability in the absence of fire 
To estimate possible effect of time and background noise on RE 

values in the absence of fire, regression with time as an explanatory 

variable and the 95% confidence boundaries (both upper and lower) 

of RE values was applied. We assume that RE values would not be 

consistent over time. Since for fire detection the threshold is set to 

the lower bound of the 95% confidence interval, we want to know 

whether this threshold is influenced by temporal fluctuations (since 

climate changes gradually). 

3.6 Detection of fire signals 
Wildfires may produce a clear drop in NDVI values (Diaz-Delgado et 

al., 2002). To assess if we can detect fire signals from NDVI time 

series (first research question); RE for each site (both burned and 

unburned sites) was computed. For this study, 30 unburned pairwise 

and 47 burned pairwise sites were selected. A reference dataset that 

compared 30 pairs of undisturbed sites with each other was created 

to see what the variability for this indicator is. The average of RE 

values of the 30 paired reference sites and their confidence interval of 

95% and 99% were computed to obtain a lower threshold for this 
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indicator. In this case, it is hypothesized that when there is a sharp 

drop in the RE value of burned sites below this threshold, it indicates 

that a fire event took place. 

3.7 Determination of the recovery period 
By the use of time series of satellite images, it is feasible to study and 

gain further insights in post-fire vegetation dynamics over large 

regions and long time periods (Diaz-Delgado et al., 2002). Several 

authors have used NDVI time series to analyse plant regeneration 

after fire (Diaz-Delgado et al., 2002 ; Viedma, et al., 1997). To 

estimate the recovery of vegetation (i.e., level of resilience) following 
detection of fires in section 3.6, forest state index (RE) was 

calculated. This was done by computing the ratio of the NDVI values 

for each date in the burned area over the NDVI value for the 

unburned neighbouring pixel (for each available NDVI in the time-

series). RE of disturbed sites was compared with the RE of control 

(undisturbed) sites to estimate the recovery time to normal seasonal 
cycle (See Figure 3-3).  

 

 
Figure 3-3. Recovery period of detected burned site (in red) through lower boundary 

of RE values of reference sites (in green). Blue arrow indicates date of fire occurrence 
and brown arrow shows its recovery date to normal cycle. 
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3.7.1 Sensitivity analysis 

There were some drops in the data, detected as fires which were not 

real fires. The characteristic of a fire is that there is a drop followed 

by recovery period, but not all the drops were fires. So detected fires 

and their recovery period to normal seasonal cycle through the 

defined method, was required to check for its accuracy by sensitivity 

analysis. An IDL script written by Willem Nieuwenhuis was used which 

recorded moments in which RE values dropped below the lower 

confidence level of 95% and 99% of RE values of reference sites. To 

estimate the accuracy of this method, we increased the period that a 

signal should be below the threshold (i.e. an increasing time-window) 

to be identified as a fire, and compared the identified fire dates with 

the records from the fire history database.  For every time-window 

size, the user‟s and producer‟s accuracy were computed. The user‟s 

accuracy refers to the probability that a detected fire corresponds to 

an actual fire on the ground while the producer‟s accuracy represents 

the probability that an actual fire is not detected. By these definitions, 

the time window size and confidence level which gives the highest 

user‟s accuracy was selected for further analysis.  

3.8 Fire frequency and precipitation effect 
on recovery period 

To assess the effect of climate factors on recovery period, first, 

monthly precipitation values of each pixel were assigned to the 

selected sites. Then, the unit of the pixel values was converted from 

m/day to mm/month in the corresponding dbf file. Annual 

precipitation and mean annual precipitation was computed for each 

selected burned site. A simple regression model with mean annual 

precipitation as an explanatory variable was applied to test the effect 

of precipitation on recovery period of burned sites. For more precise 

exploration, rainfall (mm) was calculated for three different periods: 

  

(i) Growing season (i.e., winter, June-August) before the fire event  

(ii) During the month of the fire. Since RE values are 10 daily (1st, 

11th, 21th ) and precipitation is a monthly dataset, to compute the 

rainfall in the fire month, a weighted equation for the fires which 

occurred on 11th or 21th, depending on the time of the fire event was 

applied. 

(iii) After the fire, during the normal recovery period (2 years) for the 

correctly detected burned sites only (n =20) 

 

Rainfall for growing season was selected based on the data 
observation of Figure 3-4 which was consistent with the data from  

Bates et al. (2008)(See Figure 2-2). 
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Figure 3-4. Average monthly rainfall (mm) for the selected sites of study area 

Additionally, time since last fire up to current fire was computed for 

all correctly detected burned sites to assess the effect of fire 

frequency on recovery period.  

3.8.1 Collinearity and regression analysis 

Collinearity analysis was undertaken for the variables that were 

included in the regression analysis. Collinearity analysis was done by 

computing the Variance Inflation Factor (VIF) values for four 
explanatory variables mentioned in section 3.8. By the VIF values, 

the level of collinearity between the continuous explanatory variables 

was checked to see if the collinearity between variables reached the 

acceptable level. See equation (4) below: 

 

VIF=1 / (1-R2)                                             Equation (4) 

 

R2 is the coefficient of determination calculated from linear regression 

of each explanatory variable against the response variable (recovery 

period). As R2 approaches 1, VIF value results in an indefinite 

number. Therefore, VIF larger than 10 shows strong influence of 

collinearity. The VIF of the variable were computed using linear 

regression and in the last phase, stepwise regression analysis of 

Equation (5) was undertaken to omit the most unimportant predictors 

(explanatory variables). These predictors were: rainfall in growing 

season, rainfall during the month of fire, rainfall during the recovery 
period and time since last fire which mentioned in section 3.8 . All 

0

20

40

60

80

100

120

140
m

m
 

Month 



Methods 

 20 

statistical analyses for this section were undertaken using R (Version 

3.0.1). 

 

Y= a +b*(P1) +c*(P2) +d*(P3) + e* (P4)               Equation (5) 

 

Where a is the intercept and b, c, d and e are the slope coefficients of 

the model.  
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4. Results 

4.1 Distance and time effect on of RE values 
Figure 4-1 shows the RE values of 30 reference sites that were 

plotted against the distance between each pair. The regression line of 

distance between paired points as an explanatory variable and 99% 

confidence boundaries (both upper and lower) added to the plot, 
based on Table 4-1. 

 

 
 
Figure 4-1. 99% Confidence interval of RE values over distance (m) of pairwise sites 

 
Figure 4-1 illustrates that there is a positive non-significant slope in 

both upper and lower band of 99% of the confidence interval of RE 

values over distance. It means that there is a very slight slope in 

upper and lower band as a result of increased distance, indicating 

non-significant effect of distance on RE values. 

 
Table 4-1. Regression of 99% confidence interval of RE values over distance (m) 

  Coefficients Standard Error P-value 

Upper band  Intercept 0.99 0.01 8.5 10-39 

Distance 3.73 10-06 2.3 10-06 0.11 

Lower Band 
Intercept 0.99 0.01 4.31 10-39 

Distance 3.55 10-06 2.23 10-06 0.12 
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Above mentioned table is the summary of the linear regression 

analysis which was applied for the 99% interval upper and lower band 

of RE values against distance. Results is robust to the specification of 

the dependant variable (the results are equivalent for both the upper 

band and the lower band of the RE values). The estimated slope is 

almost equal to zero, even when accounting for the units of the 

distance. 

 

 
Figure 4-2. Histogram of RE values for reference sites 

Figure 4-2 represents the distribution of RE values for reference sites. 

This histogram shows that RE values of reference sites are 

symmetrically distributed. Most of the values are between 0.97 and 

1.09 which logically was expected for reference sites (since the 

reference sites are not disturbed so they should have similar NDVI 

values). 

 

For more examinations, regression analysis of pairwise distance as an 

explanatory variable and the first quartile, median and third quartile 

as the response variables was undertaken. The summary of these 
regressions is presented in Table 4-2. 
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Table 4-2. Regression of First quartile, second quartile and Median of RE against 

distance 

  Coefficients Standard Error P-value 

First quartile  Intercept 0.97 0.01 2.45 10 -38 

Distance 3.3 10-06 2.31 10-06 0.16 

Median 
Intercept 0.99 0.99 1.25 10-38 

Distance 3.55 10-06 3.558 10-06 0.14 

Second quartile Intercept 1.02 0.01 7.42 10-36 

Distance 4.02 10-06 3 10-06 0.19 

 

These models did not show any significant effect of distance on the 
variability or mean value of RE (Table 4-2). Therefore, the distances 

between burned sites and their control sites that were used in our 

dataset were assumed to have non-significant effect on the signal or 

the quality of the data that was used in the subsequent steps. 

 
Similar to Figure 4-1, RE values of the unburned 30 reference sites 

was plotted over time. Figure 4-3 represents the regression of 99% 

of the confidence interval (both upper and lower) of RE values against 
time (through Table 4-3).  

 

 
Figure 4-3. 99% Confidence interval of RE values over time 

 
Table 4-3. Regression of 99% confidence interval of RE values over time 

  Coefficients Standard Error P-value 

Upper band  Intercept 1.09 0.01 0 

Time -1.9 10-06 3.19 10-07 3.09 10-09 

Lower Band 
Intercept 1.0 0.08 0 

Time 5.43 10-07 2.07 10-07 0.01 
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Based on the finding through regression analysis (Table 4-3), RE 

values of reference sites are varying around one over time. According 

to the 99% confidence interval, we can claim that there is not a 

significant effect on RE values as a result of time (the estimated 
slopes in Table 4-3 are strongly significant and almost equivalent to 

zero).  

4.2 Sensitivity analysis 
Table 4-4 displays the user‟s and producer‟s accuracy of the fire 

detection approach using either a 95% or 99% confidence interval of 

reference values and then applying different time window sizes.  

 
Table 4-4. Sensitivity analysis for detected fires through increased time window size 

within 95% and 99% confidence interval of reference RE values 

95% confidence interval 99% confidence interval 

Window 
Size(day) 

User‟s 
accuracy 

Producer‟s 
accuracy 

Window 
Size(day) 

User‟s 
accuracy 

Producer‟s  
accuracy 

60 0.15 0.78 60 0.18 0.76 

120 0.23 0.66 120 0.26 0.60 

180 0.32 0.54 180 0.35 0.49 

240 0.35 0.45 240 0.40 0.43 

300 0.36 0.36 300 0.39 0.32 

360 0.38 0.28 360 0.41 0.26 

420 0.40 0.25 420 0.37 0.21 

480 0.39 0.22 480 0.38 0.18 

540 0.36 0.18 540 0.37 0.16 

600 0.13 0.34 600 0.38 0.15 

660 0.10 0.32 660 0.35 0.11 

720 0.27 0.07 720 0.33 0.09 

 

Above mentioned table reveals that by the 99% confidence interval 

and the 360 days as an optimal time window size, we can get highest 

correctly detected fires with, user‟s accuracy of 0.41 (a bit higher 

than the 95% confidence interval and 420 days of time window size, 

which have a user‟s accuracy of 0.40). 

4.3 Fire signal detection 
Corresponding to the first research objective, fire signals were 

detected by the use of lower confidence interval of RE values of 

reference sites.  Of a total of 47 burned sites, 20 fires were correctly 
detected. Figure 4-4 illustrates the location of the detected fire 

signals based on fire history map. Figure 4-5 and Figure 4-6 are two 

examples of these detections with the illustration of occurrence date 

and detected fire signal. This method responds better for big fires 

with substantial deviation from the threshold than small fires. 
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Figure 4-4. Correctly detected fires from actual burned sites  
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Figure 4-5. Detected fires by comparing their RE values (red) with lower confidence 

interval of reference values (green). Blue arrows indicate the date of the fire in the fire 
history map and brown arrows show estimated fire date. 

 

 
Figure 4-6. Detected fires by comparing their RE values (red) with lower confidence 

interval of reference values (green). Blue arrow indicates the date of the fire in the fire 
history map and brown arrow shows estimated fire date. 
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Figure 4-5 and Figure 4-6 illustrate detected fires which compares 

their occurrence dates with the date of occurrence indicated in the 

fire history map.  

4.4 Fire recovery period to normal cycle 
The script used for fire detection was applied to detect the fire 
recovery period with 95% and 99% confidence interval. Table 4-5 

shows the result for correctly detected fires with 99% of confidence 

interval as an optimal confidence level. The recovery period of 20 

correctly detected fires to the normal cycle of unburned sites is 
showed in Table 4-5. In this table the start date indicates the time of 

occurrence and end date indicates the time to back to normal cycle.  

 
Table 4-5. Correctly detected fire signals and their recovery period to normal cycle 

Start date End date Recovery period(days) 

11/7/2009 11/6/2010 335 

21/12/2002 1/12/2003 345 

21/1/2005 1/1/2006 345 

11/1/2003 11/1/2004 365 

1/12/2004 11/12/2005 375 

1/2/2007 11/2/2008 375 

11/4/1998 1/6/1999 416 

11/1/2005 1/4/2006 445 

21/11/2002 21/2/2004 457 

11/12/2002 21/4/2004 497 

11/10/2002 11/5/2004 578 

11/10/2004 1/7/2006 628 

1/4/1998 21/2/2000 691 

21/2/2000 21/11/2001 639 

21/5/2006 1/6/2008 742 

21/1/2005 1/3/2007 769 

21/12/2001 1/5/2004 862 

11/11/2006 1/4/2009 872 

11/8/2000 11/1/2004 1248 

11/7/2009 11/3/2013 1339 

 
Figure 4-7 presents the above mentioned fires location with their 

recovery period to the normal cycle.  



Results 

 28 

 

 
Figure 4-7.  Map of detected fire signals and their recovery period to normal cycle 
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4.5 Collinearity analysis 
Collinearity analysis was performed by VIF computation for 20 

correctly detected fire signals. The results of VIF calculation have 
been represented in Table 4-6.  

 
Table 4-6. VIF values for collinearity analysis 

Variable VIF 

P1  1.219 

P2  1.161 

P3  1.151 

P4  1.036 

 

P1 = precipitation during the growing season 

P2 = precipitation in the fire month 

P3 = precipitation during the recovery period 

P4 = Time since last fire (fire frequency) 

 
According to Table 4-6, VIF values were all less than two. This 

indicates that there is no serious collinearity between the four 

explanatory variables, which can adversely affect the regression 

analysis. 

4.6 Rainfall and fire frequency effects on 
recovery time 

Stepwise regression was performed to estimate the best fit model. 

The model was developed through multiple regressions. In the 

stepwise regression, the fire frequency variable was omitted from the 

model. This means that, apparently, the frequency of fire does not 

have a significant effect on recovery period of burned sites and it 

does not contribute to explain the overall variation of the recovery 

period (the goodness of fit for the full model is worse than the 
reduced version model reported in the Table 4-7). Table 4-7 and 

Table 4-8 shows the summary of the best fit model with only three 

variables.  

  
Table 4-7. Summary of multiple regressions for prediction of recovery period 

           Estimate  Std. Error  t value  Pr(>|t|)     

Intercept 300.2170    171.6229    1.749 0.099395 

P1        -0.819 0.4164   -1.968 0.066616 

P2    2.9097      0.9128    3.188 0.005724 

P3          0.4961      0.1002    4.950 0.000145 



Results 

 30 

Table 4-8. Summary of goodness of fit 

Test 

statistic/Parameters Value 

R2 0.6953 

Adjusted R2 0.6382 

F_statistics 12.17 

P_value 0.0002118 

 

Though R2 value is not great but the model is quite good in the sense 

that all coefficients are significant (at a 90% significance level) 

despite the relatively small number of data points. Further, the F-

statistic strongly supports that the model is correctly specified 

(significance over 99%). 

 

According to the stepwise regression, rainfall during the wet season 

shows a non-significant and negative relationship with recovery 

period (or time). Rainfall during the fire event and during the 

recovery period showed a significant positive relationship with 
recovery period which contradicts the hypothesis (Table 4-7).This 

means that with high amount of precipitation during the growing 

season, the recovery period decreases, while with high amount of 

precipitation during the fire event, recovery time grows longer. 

Precipitation during the recovery period has the same effect on 

recovery time as precipitation during the fire month does. 
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5. Discussion 
This research investigated whether SPOT NDVI time series could 

detect fire signals. Moreover NDVI was used to estimate post-fire 

recovery period by the use of forest state index (RE). Because NDVI 

is sensitive to seasonal variation of green biomass (Huete et al., 

2002), the RE was used, as it minimizes the effect of seasonal and 

inter-annual variation in phenology (Diaz-Delgado et al., 2002). Only 

less than half of selected burned sites from the fire history map could 

be detected. This could be due to uncertainty in the data model (the 

fire history map). 

 

Probably, only big fires which had substantial drop in RE values were 

detected. Most of these detected fires occurred in the dry season 

(i.e., summer, December-February). To evaluate the size and 

intensity of the detected fires, it would be possible to examine burned 

areas on Landsat-type imagery. The limitations in detecting fires 

seem to be related to the smaller wet season fires which in turn 

might be related with the opposite signs that were found between 

rainfall and recovery period than anticipated. 

 

Despite the compositing technique used by the data provider to 

construct the 10-daily SPOT NDVI dataset, which reduces 

atmospheric effects, persistent cloud cover or otherwise moist 

atmospheric conditions may cause poor (i.e. low) NDVI values in the 

dataset that do not well relate to the vegetation condition on the 

ground (Pettorelli et al., 2005). A possible solution is the temporal 

filtering of the NDVI dataset. Moreover, these noises (false high and 

low NDVI values) which breaks the hypothesis of some standard 

statistical methods, cause more complexity when errors vary in time 

and space (Pettorelli et al., 2005). In this study, the data was not 

smoothed to maintain short-term variation in NDVI which can in fact 

represent changes in vegetation. Nonetheless, given the larger 

recovery times (of several 10-day periods) filtering would most likely 

not have a negative effect on fire detection potential, and by reducing 

noise, even improve it. 

 

It is remarkable that different species including Eucalyptus marginata 

in SWA are not sensitive to fire, although their response is different 

within and between species (Wardell-Johnson, 2000). The 

regeneration of Eucalyptus marginata is well adapted to variable and 

seasonal climate. These species can grow rapidly in response to 

favourable periods (Wardell-Johnson, 2000).  

 

Following Wardell-Johnson (2000), the result of this research did not 

show any significant effect of fire frequency on the recovery period by 
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the regression analysis which was done against time since last fire 

(as fire frequency). However, Diaz-Delgado et al. (2002) found in 

Catalonia (north-eastern Spain) that NDVI derived recovery slows 

down after the second of two successive fires with less than 11 years 

separation. Their studies showed vegetation regeneration after 70 

months was slower after the second fire than after the first fire. Not 

finding an effect of fire frequency on recovery in this study indicates, 

either the NJF system works differently from how we expected it to 

work or fire intensity might be much more important than fire 

frequency for explaining recovery times. In other words, sites with 

high intensity fires and lower fire frequency might be affected more 

than areas with low intense fires and high fire frequency. Information 

on fire intensity was not available in the fire history dataset. 

However, fire intensity perhaps could be a better explanatory variable 

for post-fire recovery time.  

 

The results of this study indicate a weak negative correlation between 

recovery period and precipitation during the growing season. It was 

expected to find a stronger negative correlation but the absence of a 

strong correlation could be partially due to ignoring the intensity of 

rainfall which might be more important than total amount of rainfall. 

Perhaps forests do become more resilient when there is plenty of rain 

during the growing season, while the effect on the total fuel load (and 

through that the intensity of the fire, what we initially thought might 

be the logic) is negligible.  

 

Also, a positive correlation between recovery and precipitation during 

the fire occurrence was found. As mentioned in the Introduction, high 

amounts of rainfall during the fire event were expected to cause 

highly wet vegetation and less intense fires, which should take 

shorter for forest to recover. But the results contradict this 

hypothesis. I suspect that, similarly to the previous one, light rain or 

drizzle will not have a strong effect on the vegetation during the fire 

event and, consequently, on their recovery period. 

 

Lastly, a positive (significant) correlation between precipitation during 

the recovery period and the recovery period itself was found. We 

assume that high amounts of rainfall affect both reference sites and 

burned sites. The assumption is that the response of the vegetation 

to rainfall in burned and unburned sites is similar, while the response 

in an unburned site might be much faster/stronger than in an burned 

site  

 

In addition, coarse resolution (1x1 km) of the pixels in this research 

itself has some potential limitation. If an entire pixel is affected by an 
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intense fire, it is more likely to be picked up. But some of the fires 

were not that large. Then, it is suggested that a higher-resolution 

NDVI series, such as MODIS could be used instead.  

 

It is notable that simply SPOT NDVI was applied to estimate recovery 

periods. Although, the recovery period which was extracted from RE 

times series, we did not verify whether these "recovery periods" were 

matching recovery as observed on the ground.  In order to evaluate if 

NDVI could estimate recovery times, ground reference data on 

recovery times would be needed to compare these estimates.  
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6. Conclusions and recommendations 

6.1 Conclusions 
Fire signals and their recovery to normal cycle were detected by 

comparison between RE values of burned sites and reference sites. 

Forest recovery period and its relation with fire frequency and amount 

of precipitation was examined to see if critical slowing down occurs in 

this ecosystem as a result of drought and fire frequency. Based on 

the obtained results, it is concluded that:   

 

 Critical slowing down may not be happening in this system 

based on the achieved results and adaptability of the system 

to fire. 

 

 Fire frequency does not seem to be a significant factor, which 

limits the model ability to explore critical slowing down.  There 

is no clear indication that the phenomenon is occurring but 

this might be also due to the discussed limitations of the data. 
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6.2 Recommendations 
 

The analysis of fire detection showed mixed results; some fires (big 

fires occurring in the summer period) were adequately identified but 

others were not. A critical assessment and improvement of both the 

detection method (in terms of the rules used but also of the input 

data) and the calibration data (the independent fire map used to 

verify if the model accurately predicted the fires) may contribute to 

improve the results of this research. 

 

In order to investigate the forest recovery period and possible 

explanatory variables, it is important to consider the most influencing 

factors on the recovery period. It is recommended that more 

variables such as fire intensity and rainfall intensity, be included to 

explain the length of the recovery period after fire by investigation 

NDVI dataset. 

 

This work did not consider the fire intensity as a major fire regime 

parameter, nor its influence on plant regeneration. Perhaps an 

alternative hypothesis of intensity affecting recovery time could be 

tested, which requires further research. By introducing some ancillary 

information like fuel accumulation or wind speed, the intensity level 

of each fire may be approximated. A better understanding of this 

issue may aid to estimate forest recovery period of burned areas 

under different fire intensity levels. Hence, to gain a better 

understanding of the ecosystem response to fire, it is recommended 

to incorporate levels of fire intensity into the analysis.  

 

Additionally, ground reference data on recovery time of burned areas 

in study area can be collected for estimated recovery period 

evaluation.  

 

Future research need to link the improved results using more 

complex statistical models to variables that explain the critical 

slowing down in the study area. However, this is only possible with 

bigger data samples and generally improved input data.
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