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Abstract 

The increase in global population and in demand for food and energy 

are expected to strongly lead to a raise in demand for agricultural 

outputs, which may have negative environmental impacts. It is 

therefore important to sustainably intensify agricultural production 

while reducing negative environmental impacts, by closing yield gaps 

on underperforming croplands, rather than converting new areas to 

agriculture. The collapse of the Soviet Union in 1991 led to 

widespread abandonment of agricultural lands, but the extent and 

spatial patterns of abandonment are unclear. Ukraine, one of the 

main agricultural producers in this region, has a significant unrealized 

grain production potential. A global analysis of yield gaps highlighted 

the croplands of most of Ukraine as performing at about 50% of their 

climatic potential. However, it was undertaken using data from 

around the year 2000; its spatial resolution was too coarse for 

efficient location of targeting resources; and it didn’t account for 

inter-annual variability in crop production.  

Thus, the overall aim of this thesis is to develop a procedure to map 

Yield Gaps across Ukraine using time series of satellite derived 

biophysical variables, in order to identify underperforming croplands.  

Wheat, barley, maize and sugar beet maps, were produced through 

the disaggregation of published agricultural statistics by using time 

series EVI derived from MODIS imagery. Actual crop yield was settled 

through correlation with maximum EVI, obtained with a phenology 

extraction algorithm. Potential crop yield was assessed through the 

90th percentile of yield in each previously determined homogeneous 

edapho-climatic zone. Yield Gaps across the croplands of Ukraine 

resulted from the difference between the potential yields and the 

actual yields. 

Maximum EVI cluster areas were in general significantly correlated to 

official crop areas, whereas the maximum EVI itself didn’t greatly 

correlate to official crop yield or production, except for the 

moderately significant barley results. Most of the grain yield gaps 

were concentrated in the southern east steppe zone. Future work 

require the inclusion of higher spatial resolution imagery for individual 

crop fields mapping; improve extraction and mapping of the 

phenology parameter that best fits the production; use of updated 

and relevant ground control points to allow thematic validation. 

Keywords: Time series analysis, Vegetation indices, Crop mapping, 

Crop yield gaps, Ukraine 
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Chapter 1 
This chapter introduces the background of the study, concepts on 

yield gaps, monitoring, and literature review on previous studies.  

1 Introduction 

1.1 Global background – food security and climate 

change 
According to the 2012 revision of the official United Nations 

population estimates and projections, the world population of 7.2 

billion in mid-2013 is projected to reach 9.6 billion in 2050 (United 

Nations, 2013). This population growth and increasing consumption 

of calories and meat-intensive diets are expected to roughly double 

human food demand by 2050 (FAO, 2009) 

This food demand will require an equivalent increase on food 

production, which may have important negative impacts, namely 

(Foley, 2010): 

• Land use expansion/competition: 40% of Earth's land is 

used for agriculture, which competes with urbanization, 

other industries, forestry, non-food crops, as well as use of 

land for bio energy (Smith et al., 2010). Land conversion 

or inappropriate management may lead to loss of 

biodiversity (Godfray et al., 2010). 

• Water shortage: about 70% of the planet's accessible 

freshwater is consumed by agricultural sector, which leads 

to water shortages. 

• Pollution: 30% of global Green House Emissions are due to 

agriculture. There is also soil and water pollution due to 

nutrient run-off. 

How, therefore, can the world double the availability of food while 

simultaneously cutting the environmental harm caused by 

agriculture? The Commission on Sustainable Agriculture and Climate 

Change, with representatives of all major regions of the world and a 

wide range of scientific backgrounds, made a summary for policy 

makers to achieve food security in an environmentally sustainable 

way and in the face of climate change (Beddington et al., 2011). 

Among other actions, they suggest to sustainably intensify 

agricultural production while reducing greenhouse gas emissions and 
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other negative environmental impacts of agriculture. This measure 

places emphasis on closing yield gaps on underperforming lands, 

rather than converting new areas to agriculture. 

It is thus of critical importance to know where and how best to 

increase crop yield on existing cropland area (Wart et al., 2013) by 

closing the yield gaps. Also, yield trends and variations among 

various regions should be analyzed to understand the sources of 

these variations (Makowski et al., 2013). 

1.2 Local background – Ukraine opportunity 

The collapse of the Soviet Union triggered widespread farmland 

abandonment, leading to a sharp decline of grain production during 

the past two decades (Alcantara et al., 2013) . In the context of the 

current economic and food-price crisis, Russia, Ukraine, and 

Kazakhstan might be presented with a window of opportunity to 

reemerge on the global agricultural market, if they succeed in 

increasing their productivity (Lioubimtseva & Henebry, 2012), by 

closing the yield gaps. More specifically, Ukraine, known as the 

breadbasket of Europe (Das, 2014), has huge agricultural potential 

due to its rich natural resources (soil, climate, and water) and a key 

geographical position, with access to the Black Sea and the key 

markets in the European Union (EU), Commonwealth of Independent 

States (CIS), the Middle East and North Africa (Leeuwen & et al., 

2012). So, given this agricultural potential of Ukraine, it is important 

to quantify its crop yield and production capacity. 

1.3 Concepts 

During this chapter, except for the rest of the thesis, it is assumed 

that whenever yield is referred, production is included in the concept. 

It is noteworthy that crop yield refers to the harvested production per 

unit of harvested area for crop products, expressed in 

tonnes/Hectare. Whereas crop production refers to the actual 

harvested production from the field expressed in tonnes (FAO, 

2015b).  

Crop yield capacity can be evaluated by estimating yield potential and 

water-limited yield potential levels as benchmarks for crop production 

under, respectively, irrigated and rain fed conditions (Ittersum et al., 

2013; FAO, 2015). The differences between these potential yield 

levels and actual or average farmers’ yields over some specified 

spatial and temporal scale of interest define the yield gaps (Lobell et 

al., 2009; FAO, 2015).  M. Van Ittersum et al., 2013 and Lobell et al., 
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2009 has extensive reviews about the concepts related with yield 

gaps.  

Average yield or actual yield (Ya) represent variation in time and 

space in a defined geographical region achieved by farmers in the 

region under the most widely used management practices (sowing 

date, cultivar maturity, and plant density, nutrient management and 

crop protection)(Ittersum et al., 2013). Data on average yield are 

typically based on crop statistics (Hengsdijk & Langeveld, 2009), or 

by sampling farmers’ fields, either directly or using remote sensing 

(Lobell, 2013; Hall et al., 2013). Crop data are generally summarized 

and aggregated at various levels of administrative districts 

(Schulthess et al., 2013; De Bie & Skidmore, 2010). The number of 

years utilized for estimating average yield must be a compromise 

between variability in yields and the necessity to avoid confounding 

effects of temporal yield trends due to technological or climate 

change (Ittersum et al., 2013). 

Yield potential (Yp) is defined as the maximum attainable yield per 

unit land area that can be achieved by a particular crop cultivar in an 

irrigated system environment to which it is adapted when pests and 

diseases are effectively controlled and nutrients are non-limiting 

(Evans & Fischer, 1999). Potential yield is location specific because of 

climate factors such as solar radiation, temperature, carbon dioxide 

concentration, and genetic characteristics.  

For rain fed crops, water-limited yield potential (Yw) is defined 

similarly to Yp, except crop growth is also limited by water supply, 

and hence influenced by soil type and field topography (Wart et al., 

2013). 

Yield potential estimation is based on crop models (Tuan, 2008; 

Brisson et al., 2010; Boogaard et al., 2013), field experiments and 

yield contests (Lobell & Burke, 2010) or maximum farmer yields 

within homogeneous zones (Lobell et al., 2009). Fischer et al. (2014) 

has a comprehensive list of crop specific global and local studies 

which includes the respective method of potential yield determination 

for yield gap calculation. 

Yield gap is significantly affected by a number of environmental 

constraints - pests, diseases and management - and is decomposed 

into three parts, Yield gap 1, 2 and 3 (see Figure 1) (M. K. Van 

Ittersum & Rabbinge, 1997; Lobell et al., 2009b).  

Yield gap 1 is the difference between observed best farmer yield and 

actual yield (Ya) under average farmer’s practices, and can be 
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narrowed with best practices. It has as reducing factors biological 

constraints (plant density, weeds, pests and diseases, problem soils, 

etc.) and outdated technology. 

Yield gap 2 is the difference between on-farm experiment’s maximum 

yield (attainable yield - Yt) and best farmer yield, and can be also 

narrowed with optimal existing technology.  The attainable yield 

varies from season to season and year to year depending on climate 

(Pasuquin & Witt, 2007). It has as limiting factors water availability 

and nutrients. 

Yield gap 3 is the difference between maximum yield estimated using 

crop growth models or experimentally through maximum yield trials 

(Yield potential - Yp), and an on-farm experiment’s maximum yield. 

This yield gap arises from differences in environment (available 

rainfall, crop characteristics, temperature, soil and ground-water 

and/or by macro-nutrients) and some component technologies only 

available at research stations, which cannot be managed in the 

farmer’s field (Dixon et al., 2001).  

A management objective of farmers should be to minimize the 

difference between attainable and actual yield (Yt-Ya). To narrow this 

yield gap (1+2), farmers need to evaluate promising new 

technologies (e.g., planting density, nutrient management) that offer 

improvements in yield and/or productivity against current practices 

(Pasuquin & Witt, 2007). 
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Figure 1: Types of yield gaps and related concepts (adapted from 
http://www.aglearn.net/isfmMod3.html) 

1.4 Monitoring 

To achieve these objectives, farmers and managers need to 

previously know where, when and what are the actual and potential 

yields through local or global agricultural monitoring programs, 

depending on the level of decision.  

Remote sensing can provide data that help identify and monitor crops 

(Atzberger, 2013). When these data are organized in a Geographical 

Information System along with other types of data, they become an 

important tool that helps in making decisions about crops and 

agricultural strategies. Because of the particular manner vegetation 

reflects the electromagnetic radiation, we can assess the crop status 

by using remote sensing data ( Tucker, 1979; Kalaitzidis & Manakos, 

2015).  

The vegetation spectral signature typically absorbs in the red and 

blue wavelengths, reflects in the green wavelength, strongly reflects 

in the near infrared (NIR) wavelength, and displays strong absorption 

features in wavelengths where atmospheric water is present. 

Different plant materials, water content, pigment, carbon content, 

nitrogen content, and other properties cause further variation across 

the spectrum (Silleos et al. , 2006; Elowitz, 2015). Measuring these 

http://www.aglearn.net/isfmMod3.html
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variations and studying their relationship to one another can provide 

meaningful information about plant health (Zhaoqin et al., 2014; 

Martinelli et al., 2014), water content (Yebra et al., 2013), 

environmental stress (Qiu et al., 2009), biomass (Tucker, 1980; 

Silleos et al., 2006), and other important characteristics. Adding the 

temporal dimension to the vegetation spectral signature is useful for 

distinguishing land-cover types and for mapping land-use change, 

which makes phenological metrics useful within agricultural 

monitoring systems (Almond, 2009). 

These measurements and relationships had resulted in a multitude of 

vegetation index (VI) equations that includes band ratios, normalized 

differences, linear band combinations, and optimized band 

combinations (Tucker, 1979; EXELIS, 2013). A wide review of VI can 

be found in Silleos et al. (2006), Basso et al. (2004), and textbooks 

like Jensen (2007). 

Jackson & Huete (1991), classify VI into slope-based and distance-

based vegetation indices. The slope-based VIs are simple arithmetic 

combinations that focus on the contrast between the spectral 

response patterns of vegetation in the red and near-infrared portions 

of the electromagnetic spectrum (Silleos et al., 2006). Whereas the 

distance-based group measures the degree of vegetation present by 

measuring the difference of any pixel’s reflectance from the 

reflectance of bare soil. 

Slope-based VIs indicates both the state and abundance of green 

vegetation cover and biomass. Hence, slope-based VIs are widely 

used in crop yield estimation (Taylor et al., 1997; Báez-González et 

al., 2002; Baez-Gonzalez et al., 2005; Funk & Budde, 2009). The 

slope-based VIs include the RVI (Ratio Vegetation Index), NDVI 

(Normalized Difference Vegetation Index) and EVI (Enhanced 

Vegetation Index), among many others referred in Silleos et al. 

(2006). One of the first index developed is the RVI (Jordan, 1969) 

which is the ratio between NIR and Red. The most commonly used 

index is the NDVI (Rouse, 1978), which is the ratio of the difference 

of the near-infrared and red reflectance, over the sum of those, and it 

ranges from -1 (no vegetation) to +1 (abundant vegetation).  An 

advantage of the NDVI, as a ratio, is its ability to produce stable 

values by normalizing many extraneous sources of noise. The 

disadvantages with NDVI in landscape studies are related to the 

nonlinear behavior of ratios, sensitivity to soil background, and 

saturation at moderate to high vegetation densities. The Enhanced 

Vegetation Index (EVI), which also ranges from -1 to +1, was 

developed by the MODIS Land Discipline Group for use with MODIS 
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data. It is a modified NDVI with a soil adjustment factor L and two 

coefficients C1 and C2, which describe the use of the blue band in 

correction of the red band for atmospheric aerosol scattering. This VI 

has improved sensitivity to high biomass regions and reduced 

atmospheric influence (Huete et al., 1999). Barroso & Monteiro 

(2010) further describes applications, concepts and 

advantages/disadvantages of NVDI and EVI indices. Slope-based VIs 

such as NDVI and EVI are commonly used as surrogate for crop yield 

(Bolton & Friedl, 2013; Son et al., 2014), and in crop yield gaps 

analysis (Kolotii et al., 2015). 

Yield gaps have been estimated in previous studies with either a 

global or local focus (M. Van Ittersum, et al., 2013; Justin Van Wart 

et al., 2013; Oliver & Robertson, 2013) . Local scale studies include 

field experiments, growers’ yield contests (Hochman et al., 2013), 

crop model simulations (Brisson et al. 2010) or farmers' maximum 

yields (Lobell et al. 2009). Global focus studies are based on remote 

sensing data and estimation from global crop datasets including yield 

values and climatic variables (Licker et al., 2010). Whereas global 

methods are generally coarse and provide worldwide coverage using 

a consistent method, local studies are based on location-specific 

environmental conditions and management, which give local 

relevance but are hard to compare across locations and studies 

because of inconsistent terminology, concepts and methods (M. Van 

Ittersum et al., 2013). 

There are several complicating factors involved in characterizing 

croplands at the global/country level (Pittman et al., 2010). First, the 

spatial extent of croplands is highly variable within a large nation like 

Ukraine. Depending on the historical, political, social and 

technological context of agricultural development and natural factors 

such as landscape pattern, cropland characteristics such as field size 

can be highly variable, even for the same crop type. Second, each 

crop type has a specific growth phenology and structure, with 

significant seasonal variation between and even within individual crop 

types. Third, cropland is a land use and can be confused with natural 

vegetation cover types, such as cereal grains versus tall-grass prairie. 

To overcome these limitations, high-temporal earth observation 

coverage at fine spatial scales is desired, but usually the available 

data has a compromise. For instance, to assess crop growth through 

extraction of crop phenology, high temporal resolution remote 

sensing images like MODIS (Pittman et al., 2010; Sakamoto et al., 

2013), MERIS (Dash et al, 2010), NOAA-AVHRR (Huete et al., 2006) 

or SPOT-Vegetation (Kowalik et al., 2014) may be used in the time 
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series analysis. Rembold et al.(2013), gives a further overview on 

using high temporal resolution remote sensing for crop monitoring 

and yield forecasting.  

However, the spatial resolution needed to distinguish individual field 

may be low, depending on whether there are predominantly complex 

patterns with small and heterogeneous land covers or intensive 

agricultural large fields, i.e., each pixel may contain different land 

covers. Some processing techniques that combine different 

resolutions, which are referred latter in this section, can be used to 

overcome this loss of spatial resolution. 

Another challenge of high temporal resolution imagery is to extract 

out of noisy random externalities related with cloud cover, poor 

atmospheric conditions, and unfavorable sun-sensor-surface viewing 

geometry, the crop phenological (vegetation green-up and 

senescence) data as a surrogate for yield estimation (Geng et al., 

2014). Furthermore, croplands present a more complex phenology 

than natural land cover, due to their many peaks resulting from 

multiple crops planted sequentially within a growing season. 

Consequently, several studies have identified land cover based on 

specific properties of the observed green leaf phenology, such as 

start and end of season, moment of maximum vegetation index and 

amplitude of maximums  (Dash et al., 2010; Atzberger, 2013). 

According to Beck et al. (2006), the different methods for phenology 

extraction can be grouped in two categories: 

• methods estimating the timing of single phenological 

events (Reed et al., 1994; White & Thomton, 1997; 

Badeck et al., 2004); 

• methods modeling the entire time series using a 

mathematical function (Jonsson & Eklundh, 2002; Stockli & 

Vidale, 2004). 

Approaches belonging to the first group include the use of specific VI 

thresholds (Lloyd, 1990; White & Thomton, 1997); the detection of 

the largest VI increase between two consecutive observations (Kaduk 

& Heimann, 1996; Araya et al., 2013); backward-looking moving 

averages (Reed et al., 1994; Brown, 2015); and rate of change in the 

curvature of a locally fitted logistic model to identify phenological 

transition dates (Zhang et al., 2003). Methods for analyzing entire 

time series include principle component analysis (Hirosawa et al., 

1996; Hall-Beyer, 2003); Fourier analysis (Azzali & Menenti, 2000; 

Atkinson et al., 2012); harmonic analysis (Rouse, 1978; Jakubauskas 

et al., 2001); wavelet decomposition (Li et al., 1996; Sakamoto et 

al., 2005); and curve fitting (X. Zhang et al., 2003; Jönsson & 
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Eklundh, 2004; Beck et al., 2006; Lu et al., 2013). A further overview 

on phenology extraction methods and its advantages/disadvantages 

is presented in de Beurs & Henebry (2010). 

On the other hand, field studies (Hall et al., 2013), drones (C. Zhang 

& Kovacs, 2012), medium and high spatial resolution remote sensing 

platforms (Husak et al., 2008) bring forth data with the spatial 

resolution of individual crop fields or more, but compromising time 

resolution needed to access crop phenology for yield estimation at a 

field level. In this context, techniques that combine different spatial, 

temporal and spectral resolution allow combining information from 

multiple sensors or sources such as ground data (Pervez & Brown, 

2010) to obtain image products with improved overall characteristics 

(Amorós-López et al., 2013). Thenkabail & Wu (2012) refers to 

several croplands mapping across resolutions methods, such as 

decision trees, neural network methods, etc. De Bie & Skidmore, 

(2010) suggest a crop mapping technique based on an unsupervised 

classification of the time series profiles of a vegetation index, followed 

by a stepwise linear regression between the vegetation index cluster 

areas and published agricultural statistics areas that aims to 

disaggregate those statistics (by crop, year, and administrative area), 

with the help of the vegetation index clusters product, in order to 

generate a crop-specific cropping intensity map (percentage crop per 

pixel). 

The crop productivity on regional and global scales can be estimated 

with statistical models based on remote-sensing VI data with spatially 

and temporally continuous distributions (A. Li et al., 2007; Liang et 

al., 2012). Statistical models can be classified into two categories: 

direct establishment of the correlation between a vegetation index 

and vegetation productivity, which enables regional estimation 

(Prasad et al., 2006; Santin-Janin et al., 2009), and the 

establishment of a regression parameter vector for regional 

applications, which is realized through the utilization of vegetation 

indices and other environmental factors in regression trees (Lobell et 

al., 2005), neural networks (A. Li et al., 2007), or other complex 

statistical methods. 

Thus, high temporal resolution remote sensing imagery used along 

with medium to high spatial resolution remote sensing imagery 

and/or data allows assessing crop yield temporal variation on crop 

extent areas, and further determining potential yield gaps at fine 

spatial resolution. 
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1.5 Literature review 

Agricultural monitoring is important for all countries involved in crop 

production, especially those experiencing rapid changes in the extent 

of agricultural lands. In Ukraine the agricultural sector is undergoing 

rapid transformation with associated changes in agricultural land 

ownership and practices. National agricultural monitoring is 

particularly important for planning, where there is increasing 

competition for water and land resources (Justice & Becker-Reshef, 

2007).  

Many programs have been established by agricultural agencies to 

regularly provide agricultural statistics at different spatial and 

temporal scales (Group on Earth Observations, 2010), for example: 

global monitoring such as the “Monitoring Agriculture with Remote 

Sensing” (MARS) from the Institute for Environment and 

Sustainability, European Commission (IES, 2015) or the Foreign 

Agricultural Service (FAS) of the U.S. Department of Agriculture 

(USDA) from USA (USDA FSA, 2015); early-warning systems such as 

the “Global Information and Early Warning System” (GIEWS) from 

FAO (FAO, 2015a); or national monitoring such as the “National 

Centre of Space Research, Technologies” (NCRST) from Kazakhstan 

(NCSRT, 2015) or the “Space Research Institute of Russian Academy 

of Sciences” (ИКИ) from Russia (ИКИ РАН, 2015). The GEO-GLAM 

(global agriculture monitoring) project is working to harmonize 

remote sensing-based crop monitoring systems through the Joint 

Experiment of Crop Assessment and Monitoring (JECAM) project 

(Group on Earth Observations, 2013). Framed on this initiative, 

Ukraine has three test sites, in Kiev, Lviv and Pshenychne regions. 

This Ukraine’s project aims to identify crops and estimate Crop Area; 

assess crop condition/stress; and perform yield prediction and 

forecasting (Kussul et al., 2014). 

However, the USDA FAS with its GLAM system is currently the only 

provider of regular, timely, objective crop production forecasts at a 

global scale (Atzberger, 2013). This global monitoring system uses 

NASA's Moderate Resolution Imaging Spectroradiometer Rapid 

Response (MODIS RR) to monitor agricultural production (USDA, 

2014). 

Besides these monitoring systems, there are global scale studies that 

approached: the mapping of global cropland using multiple satellite 

sensor and ancillary data (P. Thenkabail et al., 2008; Pittman et al., 

2010);and the global scale analysis of cropping intensity, crop 

duration and fallow land extent computed by using the global dataset 
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on monthly irrigated and rainfed crop areas MIRCA2000 (Siebert et 

al., 2010). Whereas some local studies in Ukraine, addressed to: map 

and analyze changes of land management regimes (Kuemmerle et 

al., 2008;Baumann et al., 2011;Hostert et al., 2011;Alcantara et al., 

2013;Stefanski et al., 2014); to assess efficiency of using satellite 

data for crop area estimation (Kravchenko & Moloshnii, 2012;Kussul 

et al., 2012; Kussul  et al., 2014);and to forecast crops (Becker-

Reshef et al., 2010;Kogan et al., 2013;Kussul et al., 2014;Kolotii et 

al., 2015;Franch et al., 2015). 

Despite this information about crop production, and global and local 

studies, there are few reliable data on yield potential or water-limited 

yield potential for most major crop-producing countries, including 

data-rich regions such as the USA and Europe (M. Van Ittersum, 

Cassman, et al., 2013). Hence, the Global Yield Gap Atlas (GYGA) 

was created to provide best available estimates of the exploitable 

yield gap (M. Van Ittersum et al., 2013). But the European countries 

involved in the Global Yield Gap Atlas don’t include all Eastern Europe 

countries, except for Poland (M. Van Ittersum, 2013).  

A global analysis of yield gaps across the world highlighted the wheat 

croplands of Eastern Europe as performing at about 50% of their 

climatic potential (Licker et al., 2010). However, this analysis was 

undertaken using data from the year 2000; its spatial resolution was 

too coarse for efficient location specific targeting of resources to 

boost yields; and it did not properly account for inter-annual 

variability in crop production (just averaged area harvested and yield 

data for the years 1997-2003). 

All this suggests that the yield gaps across Ukraine are still poorly 

studied. 
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Chapter 2 
This chapter includes general and specific objectives of the research 

and research questions. 

2 Objectives and research questions 

2.1 Objectives 

2.1.1 General 

The overall aim of this research is to develop a procedure to map 

Yield Gaps across Ukraine using time series of satellite derived 

biophysical variables, in order to identify underperforming croplands. 

2.1.2 Specific 

More specifically, this thesis aims to: 

1 Produce Ukraine’s crop maps for wheat, barley, maize and sugar 

beet, through the disaggregation of published agricultural 

statistics by using time series of satellite MODIS derived 

biophysical variables; 

2 Determine Actual crop yield or production through correlation 

with surrogate satellite derived biophysical variables, which are 

obtained with a phenology extraction algorithm; 

3 Determine the Potential crop yield or production in each 

homogeneous edapho-climatic zone through the 90th yield or 

production percentile; 

4 Quantify the yield or production Gaps across the croplands of 

Ukraine through the difference between the Potential yields or 

production and the Actual yields or production. 

2.2 Research questions  

In order to achieve these enumerated specific objectives, the 

following research questions are stated: 

Objective 1 

• What phenology parameter best represent crop productivity? 
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• What are and how many surrogate biophysical variable 

clusters represent crop distribution?  

• What is the thematic accuracy of the crop maps? 

Objective 2 

• What is the level of adjustment of the predicted surrogate 

biophysical variable to the official yield or production statistics? 

Objective 3 

• What is the thematic resolution for soils and climate needed to 

suit the minimum crop environmental requirements? 

Objective 4 

• Is it possible to identify the Yield gaps across the croplands of 

Ukraine? 
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Chapter 3 

This chapter describes the study area; the input data in terms of 

imagery, spatial thematic data and field data; the software tools 

used; and the methods for crop mapping, actual and potential yield 

calculation, yield gaps calculation and accuracy assessment. 

3 Materials and methods 

3.1 Study area 

Ukraine, which is located between latitudes 44° and 53° N, and 

longitudes 22° and 41° E, is composed of 24 oblasts (Ukraine 

administrative division that can be translated into province or region) 

and the Autonomous Republic of Crimea, with the area of oblasts 

ranging from 8097 to 33,310 km2 (average area is approximately 

24,000 km2). In general, Ukraine can be divided into the following 

agro-climatic zones (Figure 2): Plane-Polissya in the north (mixed 

forest zone, 26% of the entire Ukrainian territory), Forest-Steppe in 

the centre (34%) and Steppe in the south (the most intensive 

cultivated area, 40%) (Kogan et al., 2013). 

 

Figure 2: On left, relative location of the study area, Ukraine; on right, Agro-
climatic zones of Ukraine. 

From northwest to southeast the soils of Ukraine may be divided into 

three major aggregations: a zone of sandy podzolized soils; a central 
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belt consisting of the black, extremely fertile Ukrainian chernozems; 

and a zone of chestnut and salinized soils (Kryzhanivsky, 2015). 

Ukraine lies in a temperate climatic zone influenced by moderately 

warm, humid air from the Black sea. Winters in the west are 

considerably milder than those in the east. In summer, on the other 

hand, the east often experiences higher temperatures than the west 

(Kryzhanivsky, 2015). 

Average annual precipitation in Ukraine is approximately 600 

millimetres, including roughly 350 millimetres during the growing 

season (April through October). Amounts are typically higher in 

western and central Ukraine and lower in the south and east (WDC 

Ukraine, 2015). 

3.2 Materials 

3.2.1 Data 

Table 1 summarises the data used in this research: 

Type 
Material 

Temporal 
frame 

Spatial 
coverage

/tiles 

Spatial 
resolution/ 

scale 
Source 

Images 
MODIS MOD09A1 
8day composites 

2005-2014 

h19v03, 
h19v04, 
h20v03, 
h20v04 

500m x 500m NASA 

Spatial 
thematic 

GlobCover 2009 Global 300m x 300m ESA 

Administrative 
regions 

2015 Ukraine Oblast 
www.diva-

gis.org 

Climate data-
maximum and 

minimum 
temperature and 

precipitation 

1950-2000 16, 17 1km x 1km 
www.worldclim.

org 

SOVEUR Soil data 1988 

Central 
and 

Eastern 
Europe 

1:2.500.000 
ISRIC World 

Soil 
Information 

Field 
data 

Crop official 
statistics-area, 

production & yield 
2005-2013 Ukraine Oblasts 

State Statistical 
Committee of 

Ukraine 

Ground control 
points 

Crowd source 
updated 

Ukraine 
73km x 111km 

spacing 
www.geo-
wiki.org 

Table 1: Overview of the data used in this thesis. 
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Remote sensing imagery was MODIS MOD09A1 8-day surface 

reflectance composites, for a period ranging from March 2005 to 

December 2014, with a spatial resolution 500 meters, and provided 

by http://reverb.echo.nasa.gov/. The study area covers four MODIS 

tiles: h19v03, h19v04, h20v03 and h20v04. Each MOD09A1 pixel 

contains the best possible observation during an 8-day period as 

selected by high-observation coverage, low-view angle, the absence 

of clouds or cloud shadow, and aerosol loading. Data sets include 

reflectance values for Bands 1–7, quality assessment, and the day of 

the year for the pixel along with solar, view, and zenith angles 

(NASA, 2014).  

All MODIS tiles were mosaiced to create an overview image of 

Ukraine, reprojected, masked with high quality data based upon 

MODIS QA to eliminate the obvious error noised data, Enhanced 

Vegetation Index (EVI) was calculated, and stacked by years. EVI is 

defined by:  

      
         

                      
  Eq (1) 

Where Near-Infrared (NIR), Red, and Blue are atmospherically 

corrected (or partially atmospherically corrected) surface reflectance, 

and C1, C2, and L are coefficients to correct for atmospheric condition 

(i.e., aerosol resistance). For the standard MODIS EVI product, L=1, 

C1=6, C2=7.5 and G(gain factor)=2.5. EVI is less sensitive to soil 

and atmospheric effects than NDVI and simultaneously remain 

sensitive to increases in canopy density beyond where NDVI becomes 

saturated because it includes in the equation blue spectral 

wavelengths (Huete et al., 2002). 

Crop mask was built with GlobCover 2009 global land cover map (see 

Figure 3), which is based on observations from the 300 meters spatial 

resolution MERIS sensor on board of the ENVISAT satellite mission, 

with an overall thematic accuracy of 70% (Defourny et al., 2011), 

and was provided by http://dup.esrin.esa.it/page_globcover.php. This 

land cover map was resampled to the same spatial resolution of 

MODIS imagery (500 meters), reclassified according to "Irrigate 

crop"="Rainfed crop"="Mosaic crop"=1 and "all the rest"=0, and 

clipped with the country Ukraine shapefile. 

http://reverb.echo.nasa.gov/
http://dup.esrin.esa.it/page_globcover.php
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Figure 3: Ukraine crop mask based on reclassified and resampled GlobCover 
2009 global land cover map. "Irrigate crop"="Rainfed crop"="Mosaic crop"=1 
and "all the rest"=0. 

Ground data with oblasts spatial resolution, yearly time resolution, a 

period ranging from 2005 to 2013 and provided by the State 

Statistical Committee of Ukraine 

(http://ukrstat.org/druk/publicat/kat_r/publ7_r.htm) were crop area 

(Ha), production (tonnes) and crop yield (tonnes/Ha). The crops used 

in this study were wheat, barley, maize and sugar beet. These official 

statistics were based on farm surveys collected from all the 

agricultural enterprises (large-scale farms that produce commodities 

exclusively for sale) which account for over 75% of Ukraine's grain 

production, and from a sample of household farms (small farms and 

household plots that produce crops both sale and for personal 

consumption) which account for the remainder of the grain 

production (Becker-Reshef et al., 2010). 

Administrative regions of Ukraine, corresponding to boundaries of 

country and oblasts was a polygon shapefile provided by 

http://www.diva-gis.org/gdata (2015). 

Climate data was raster imagery with current climate conditions 

(representative of 1950-2000) for maximum temperature, minimum 

temperature and precipitation with one square kilometre spatial 

resolution, and provided by http://www.worldclim.org/ (2015).  

Soil data was a polygon shapefile dataset, scale 1:2.5 million, derived 

from the Soil and Terrain Database for Central and Eastern Europe 

http://ukrstat.org/druk/publicat/kat_r/publ7_r.htm
http://www.diva-gis.org/gdata
http://www.worldclim.org/
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(version 1.1)(SOVEUR), and provided by ISRIC World Soil 

Information (2015).  

Ground control points (see Figure 4) were shapefile validation data 

for three global land cover datasets, which contains over 58000 

features with a good spatial coverage of Ukraine, and provided by 

http://www.geo-wiki.org/ (2015). 

 

Figure 4: Location in Ukraine of the ground control points 

3.2.2  Software used 

 

The following software programs were applied within this research: 

Software Usage 

ERDAS Imagine 2014 Unsupervised classification and image 

processing 

ArcGIS 10.3 Data preparation, analysis and map 

Matlab R2013 Image pre-processing and phenology 

extraction 

SPSS Statistica 22 Stepwise linear regression analysis 

MS Excel 2007 Data preparation and statistical analysis 

Table 2: List of software used 

 

http://www.geo-wiki.org/
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3.3 Methods 

A general overview of the followed workflow is illustrated in Figure 5. 

Detailed description of all the followed steps in the methodology is 

provided in the following sections (3.3.1 - 3.3.5). 

 

Figure 5: Flowchart of methods. The column on the right illustrates the 
accuracy assessment.   

3.3.1 Phenology extraction 

Cropping season was detected within each pixel using an adapted 

version of Dash et al, 2010: first a cleaning algorithm was used to 
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remove missing data values from the original data and create a flag 

depending upon the quality of the temporal information available in 

each pixel; after, a phenology extraction algorithm was applied to 

smoothen the profile with a Fourier smoothing algorithm, search 

iteratively the phenology profile both for a peak of EVI, as well as for 

the start and end of season using first derivative, and finally perform 

cumulative sum or integrated growing season EVI. Thus, for each 

pixel, the algorithm output include start, end and maximum EVI dates 

in growing season as well as surrogate measures of ecosystem 

productivity such as maximum EVI and integrated EVI (Duncan et al., 

2014).  

To assess which phenology parameter best adjusts to crop 

productivity, a regression analysis was done between the sum of the 

phenological surrogate yield parameters (I_EVI and maximum EVI) 

for each oblast and year, and the official statistical crop data (yields 

and production), per corresponding oblast and year. 

Crop mask was multiplied with the previously choosed output of 

phenology extraction parameter in order to select just crop areas. 

3.3.2 Crop mapping 

The methodology for crops mapping was adapted from (Khan et al., 

2010). 

The surrogate biophysical variable values were reported as digital 

number (DN) values, ranging between 0 and 255, using the following 

equation:  

   
         

     
  Eq (2) 

EVI images from 2005 to 2008, 2010 and 2012 were gathered into 

one stack. The other years of the time range 2005-2013 were not 

included due to their abnormal loss of information (pixels) in relation 

to the crop mask.  

The stack was then processed in ERDAS Imagine (Intergraph, 2014) 

using the Iterative Self-Organizing Data Analysis Technique 

(ISODATA) clustering algorithm in order to reduce the amount of 

data. Many unsupervised classification runs were carried out to 

generate maps with between 8 to 100 clusters. The maximum 

number of iterations of each unsupervised classification was 50 and 

the divergence threshold was set to 1, which were proved useful for 
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optimal classification results in studies like for example’s Khan et al., 

2010; De Bie et al., 2012; Ali et al., 2013. The ISODATA algorithm 

tries to minimize the Euclidian distance to form clusters. Basically, 

this clustering method uses spectral distance and iteratively classifies 

the pixels into cluster mean vectors, redefines the criteria for each 

cluster or class, and classifies again, until the "change" between the 

iteration is small. This algorithm further performs splitting and 

merging of clusters. Clusters are merged if either the number of 

members (pixel) in a cluster is less than a certain threshold or if the 

centers of two clusters are closer than a certain threshold 

(Intergraph, 1997). In the end, the ISODATA algorithm provides by 

cluster or class an EVI-profile that contains information on past 

performance and cover changes.  

The results of the different unsupervised classification runs are 

compared using the divergence separability which is a statistical 

measure of distance between the mean cluster vectors (Landgrebe, 

2003); the ‘best’ number of clusters is the one corresponding to the 

run having the highest minimum and/or average divergence (Bie et 

al., 2010). A graphical presentation of these separability statistics 

was used to select which map produced, having ‘what’ number of 

pre-defined classes, is the map of choice. 

The output of this unsupervised classification was an EVI map and 

intermediate legend that consists only of clusters that represent EVI 

profiles showing changes in vegetation greenness over time which is 

assumed to relate to the types of land cover and land use present. 

Once the number of clusters is known, the EVI profile clusters map 

was established. 

The clusters map, was converted into a polygon shapefile. Using GIS 

spatial analysis functions from ArcGIS (ESRI, 2009), the oblasts and 

the maximum EVI profile clusters map were intersected to determine 

the respective areas (Hectares - Ha) of each EVI profile cluster per 

oblast. Weighted average for crop areas (Ha) from agricultural official 

statistics was calculated with more weight for 2013 data and 

decreasing weight in the direction of the beginning of the study time 

range, in order to adjust for trends in areas over the years.  

The cluster areas were further used as explanatory or independent 

variables, in the stepwise linear regression (Neter et al, 1996), with 

the cropped areas (Ha) from agricultural statistics by season, crop, 

and oblast as dependent variable: 

                  
 
     Eq (3) 
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With CA representing official cropped area (Ha) by oblast and 

EVIClusteri representing the area (Ha) of the ith EVI profile cluster.  

Stepwise linear regression essentially does multiple regressions a 

number of times, each time removing the weakest correlated 

variable. At the end it is selected the variables that best explain the 

distribution (IBM Corp., 2013). 

No constant was considered in the regression and the coefficients Ci 

were constrained to the 0 – 1 range in order to determine the 

estimated fraction or percentage of total area of a given EVI profile 

cluster where a given crop was grown at a specific oblast and season. 

Once the regression coefficients were estimated, the above equation 

3 was used to generate maps showing cropped fractions by map 

units. Statistical computations were done using the SPSS Statistics 22 

software (IBM Corp., 2013). 

3.3.3 Yield calculation 

3.3.3.1 Actual yield 

Crop maps generated in the previous chapter were intersected with 

the maximum EVI maps to assess Actual yield for each pixel with 

crop. 

Regression analysis for each type of crop between maximum EVI and 

official production (tonnes) and yield (tonnes/Ha) statistics, as well as 

respective level of adjustment R square were computed to assess 

which official parameter is best represented by the predicted 

surrogate biophysical variable maximum EVI. 

3.3.3.2 Potential yield 

First, the study area was divided into homogeneous climate zones. 

The stacked climate data images (maximum and minimum 

temperature, and precipitation) were classified with an unsupervised 

classification method, the ISODATA clustering algorithm. A series of 

classification runs corresponding to different number of clusters (5 to 

15) were used. The maximum number of iterations was 50 and the 

divergence threshold was 1, which were proved useful for optimal 

classification results in studies like for example’s Khan et al., 2010; 

De Bie et al., 2012; Ali et al., 2013.  A graphical presentation of the 

separability statistics was used to select which map produced, having 

‘what’ number of pre-defined classes of climatic zones, was the map 
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of choice. Then, the chosen map was converted into a polygon 

shapefile.  

The symbology of the soil map was set according to the Revised 

Legend of the Soil Map of the World (FAO, 1988) in the SOVEUR 

project. Symbology was reclassified by grouping soils with the same 

major class. After, the map was intersected with the climate zone 

polygon shapefile, giving homogeneous edapho-climatic zones. 

Finally, it was determined for each homogeneous edapho-climatic 

zone the 90th percentile value within the range of actual yield, which 

corresponds to the Potential Yield (M. Van Ittersum et al., 2013). 

Values above the 90th percentile were not used to define the 

maximum in order to avoid erroneous or over-estimated values that 

may have been included in the yield datasets (Licker et al., 2010).  

3.3.4 Yield gap calculation 

The differences between the Potential yield levels and actual farmers’ 

yield define the yield gaps (M. Van Ittersum et al., 2013). Crops yield 

gaps fraction was also calculated with the equation 4 (Licker et al., 

2010). 

                     
             

               
 Eq (4) 

The yield gap fraction (a value from 0 to 1) tells us how close to the 

edapho-climatic potential any given location may be. Those places 

with a low yield gap (close to zero) have yields at or near their 

climatic potential. 

Crop heat maps were produced for visualization of crops pattern 

distribution. 

3.3.5 Accuracy assessment 

Predicted sum of surrogate biophysical variable/crop type/oblast was 

compared to governmental production statistics/crop type/oblast 

through a regression analysis and the respective output level of 

adjustment R square.  

For overall thematic accuracy assessment, a confusion matrix (or 

error matrix) between the predicted cropland areas derived from 

remote sensing data and ground control points was done, and it was 

calculated the overall thematic accuracy, i.e., the ratio between the 
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correctly classified land cover area and the total classified land cover 

area. The level of thematic detail of the ground control points doesn't 

inform about the type of crop (wheat, barley, etc). Thus, the land 

covers related with crops (which were summed up for the calculation 

of overall thematic accuracy) from the ground control points, were: 

 Cultivated and managed areas 

 Mosaic Cropland/grass or shrub or forest 

 Rainfed croplands 

 Mosaic: Cropland/Shrub or Grass Cover 

 Mosaic: Cropland/Tree Cover/natural vegetation 

 Cropland/natural vegetation 

 Mosaic grass or shrub or forest/Cropland 

 Croplands 

In consequence, it was just assessed whether unspecific croplands 

were well located in the map. 
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Chapter 4 
This chapter describes in graphics, tables and maps the outputs for 

each step of the methods. 

4 Results 

4.1 Phenology extraction 

The phenology parameters extracted from remote sensing MODIS 

imagery were start, end and maximum EVI dates in growing season 

as well as the surrogate measures of ecosystem productivity 

maximum EVI and integrated EVI. Figure 6 and Figure 7 illustrate the 

linear regression between surrogate measures of crop productivity 

(maximum EVI and integrated EVI) and grain production. 

 

Figure 6: Regression analysis between sum of the I-EVI values for all oblast 
and years and the statistical data for the grain yields (centners (tons) per 1 
ha of the harvested area). Grains were wheat, barley and maize. 
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Figure 7: Regression analysis between sum of the  maximum EVI values for 
all oblast and years and the statistical data for the grain yields (centners 
(tons) per 1 ha of the harvested area). Grains were wheat, barley and maize. 

Maximum EVI represented slightly better grain production, with an 

adjustment R square of 0.2126.  Furthermore, maximum EVI was the 

only phenological parameter that allowed to output regression 

equations for all study crops, which results are shown in the next 

section.  Thus, maximum EVI was the phenology parameter used for 

the following step, crop mapping. 

4.2 Crop mapping  

4.2.1 Intermediate legend and cluster map 

Figure 8 illustrates the separability analysis performed for each one of 

the maps containing between 8 and 100 clusters or classes, obtained 

in the ISODATA unsupervised classification. The choice of the number 

of clusters or classes presents almost always a no-win solution 

between: (i) keep the number of classes low to gain maximum data-

reduction, and (ii) optimize separability between classes without 

information loss. Thus, the cluster map with 19 classes seemed to 

have good separability between classes because it had the highest 

average distance between clusters and the minimum separability is 

greater than 24, which is choice criteria as suggested by Erdas 

(1997) and De Bie et al.(2012). 
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Figure 8: Graph of average and minimum cluster distance between 8 and 100 
clusters. Those separability statistics indicate how different clusters or classes 
are between each other.  

The maximum EVI map (Figure 9) and intermediate legend consists 

only of maximum EVI-profiles that are indicative of the crops 

location. 

 

Figure 9: Map with 19 clusters or classes. 

 

4.2.2 Crop maps 

Table 3 shows the chosen clusters or classes; their coefficients; level 

of adjustment to the response variable; and crop regression 
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equations resulted from the stepwise linear regressions between the 

explanatory variables area of pixels with a specific maximum EVI 

profile (clusters) and the response variables area of crop from 

governmental statistics. All the regression parameters for all the 

crops are significative (p≤ 0.05). 

Crop 
Maximum EVI classes 

(cluster predictors) Coefficients 
Adjusted R 

square Crop linear regression equations 

Wheat Clt 2*; Clt 7** 0,689; 0,758 0,871 Wheat_area (ha)=clt2*0,689+clt7*0,758 

Barley Clt 7****; Clt 13*** 0,364; 0,949 0,901 Barley_area (ha)=clt7*0,364+clt13*0,949 

Maize Clt 6*** 0,874 0,722 Maize_ area(ha)=clt6*0,874 

Sugarbeet Clt 3*** 0,462 0,474 Subarbeet_area (ha)=clt3*0,462 

Table 3: Summary results of the stepwise linear regression for the different 
crops, and respective equations; each Maximum EVI class has the 
corresponding coefficient in the same writing order; * = Signifcant at P= 
0.001; ** = Signifcant at P= 0.005; *** = Signifcant at P= 0.000;**** = 
Signifcant at P= 0.015; Regression parameters were considered to be 

significant at the p ≤ 0.05 level of significance. Independent variables that 
were significant at the p ≤ 0.05 level of significance were retained in the 
model. The adjusted R square compares the explanatory power of regression 
models that contain different numbers of predictors (Frost, 2013). All linear 
Regressions are through the Origin. Dependent variables are crop_area (ha). 

The application of the crop linear regression equations resulted in the 

following maps. 
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Figure 10: Combined crop map at top, specific crop maps and respective crop 
heat maps. The heat maps were produced for the sake of easier crop density 
visualisation. The red numbers in the heat maps indicate percentage of crop 
national total each oblast contributes to national area. Oblasts not numbered 

contribute less than 1% to the national total. These numbers are based upon 
averaged oblast-level data from the year 2000, obtained from the Ukraine 
Ministry of Statistics.  

To assess the thematic accuracy of the crop maps, which is linked to 

the accuracy of crop type location, it would be necessary to have 

updated and statistically representative ground truth data of the 

studied crops to allow comparison in a matrix error, which 

unfortunately we didn’t have available.  Anyway, the result of the 

thematic accuracy for the undifferentiated crop map (that in the end 

corresponds to the crop mask), was 74.1%.  

4.3 Yield calculation 

Figure 11 illustrates the separability analysis performed for each one 

of the climate maps containing between 6 and 13 clusters or classes, 

obtained in the ISODATA unsupervised classification. 
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Figure 11:  Graph of average and minimum cluster distance between 6 and 
15 clusters. Those separability statistics indicate how different clusters or 
classes are between each other. 

The cluster climate map with 7 classes seemed to have good 

separability between classes (highest minimum distance between 

clusters, and above 24 (requirement as suggested by Erdas (1997) 

and De Bie et al.(2012)), and represented a reasonable amount of 

climate information needed for the calculation of potential yield. 

Figure 12 shows the edapho-climatic map resulted from the 

intersection of the cluster climate map with the soil map. 

 

Figure 12: Edapho-climatic map of Ukraine 

Table 4 shows that in all the studied years, except for barley in 2007, 

the governmental statistics that were best represented by the 

surrogate biophysical variable maximum EVI were the production. 

Overall, Barley has the best prediction regression models for 

production, with levels of adjustment greater than 0.42 (except for 

the year 2013). Whereas in the other crops, the prediction variable 
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maximum EVI had small correlation with production in all the study 

years, with figures bellow 0.35 (except for the Wheat weighted 

average that was 0.4383).  

 

 

R square 
Wheat Barley Maize Sugarbeet Prod.>

Yield? Prod. Yield Prod. Yield Prod. Yield Prod. Yield 

2005 0,2846 0,1029 0,688 0,1791 0,2455 0,0014 0,2114 0,0024 Yes 

2006 0,1763 0,0357 0,6046 0,0259 0,2344 0,0391 0,1928 0,0382 Yes 

2007 0,3319 0,0034 0,4919 0,5753 0,2777 0,0213 0,2334 0,0166 No 

2008 0,3033 0,2947 0,6159 0,0854 0,287 0,0888 0,1164 0,0003 Yes 

2009 0,3077 0,0051 0,4701 0,2106 0,2035 0,046 0,0936 0,0005 Yes 

2010 0,1342 0,0003 0,4235 0,198 0,2195 0,1558 0,186 0,00004 Yes 

2011 0,187 0,1016 0,4238 0,3361 0,2598 0,002 0,1702 0,0042 Yes 

2012 0,295 0,0103 0,5169 0,2979 0,2527 0,039 0,1633 0,0051 Yes 

2013 0,2667 0,0347 0,3757 0,1531 0,2691 0,0243 0,1763 0,0538 Yes 

Weighted 
average 

0,4383 0,2777 0,5222 0,02 0,267 0,0437 0,2276 0,1768 Yes 

Table 4: Correlation parameters R square resulted from the regression 
analysis between the governmental statistics crop production or crop yield, 
and the crop prediction value of Maximum EVI, for each year of the study 
time range and for the weighted average of the R square values (with more 

weight for 2013 data and decreasing weight in the direction of the beginning 

of the study time range, in order to adjust for trends in areas over the 
years). Prod. = Production. 

4.4 Yield gap maps 

Figure 13 illustrates the yield gaps fraction map for all the studied 

crops – wheat, barley, maize and sugar beet. 
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Figure 13: General crop yield gaps fraction map 

The yield gap maps and heat maps with yield gap intensity are shown 

below. The color intensity of the heat maps is the cumulative (sum of 

pixels in each patch) yield gap fraction. The yield gaps for all the 

crops tends to be higher for the grains in the steppe zone, mainly in 

the eastern part of Ukraine, except for sugar beet where the yield 

gaps are higher in the western part of the forest-steppe.   
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Figure 14: Specific crop yield gaps maps and respective heat maps with 
spatial pattern distribution of crops. The yield gaps heat maps are for the 
sake of easier visualisation. The more red it is the pixel, the greater is the 
yield gap. 
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Chapter 5 

5 Discussion 

In this thesis, four different crops were mapped in Ukraine– wheat, 

barley, maize and sugar beet - ,estimated their actual crop yield and 

the climatic potential crop yield. The difference between actual yield 

and the potential yield resulting in ‘yield gap’ was calculated for all 

the crops. 

To get this ‘yield gap’ on a large study area like Ukraine, it was 

necessary to acquire large amounts of data (big data), such as 

remote sensing time series imagery and ground statistical data, and 

follow a time and resource consuming data processing and analysis 

procedure which included organizing data in mosaic and stacks, 

cleaning, phenological information extraction from the remote 

sensing data, iterative unsupervised classification, and disaggregating 

and mapping ground statistical data using the referred remote 

sensing time series.  Furthermore, throughout this whole processing 

flow, there was the accumulation of error that may turn difficult the 

decision making process (Figure 15). 

 

Figure 15: The accumulation of error in a “typical” remote sensing 

information processing flow (adapted from Lunetta et al., 1991). 
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The initial idea in this study (see Figure 16, flowchart) was to also use 

higher spatial resolution (30 meters) Landsat imagery, in order to be 

able to locate individual crop fields. This landsat imagery would be 

used in the mega file data cube (MFDC), along with time series 

MODIS imagery and ancillary data such as precipitation, temperature 

and terrain elevation. This MFDC would be loaded in the Automated 

Cropland Classification Algorithm (ACCA), which is an iterative 

decision tree based algorithm for crop mapping (Thenkabail & Wu, 

2012). The threshold of ACCA rules (e.g., MODIS August NDVI ≥200; 

Figure 16, decision tree b) was written based on all available 

knowledge (or through trial and error), such as growing season, to 

capture as much cropland area and as many characteristics as 

possible, until 90% of the ACCA-derived cropland matched pixel-by-

pixel with the truth cropland data layer. As the algorithm is further 

developed, greater complexity in rules/codes and larger number of 

datasets are involved in further delineating pure cropland areas from 

non-croplands. According to these authors, the ACCA algorithm 

computes total cropland areas as well as irrigated cropland areas 

consistently, rapidly (less than one hour of computer processing) and 

accurately, year after year. Despite these advantages of the ACCA 

algorithm, the development of rules through trial and error may be 

an overwhelming process that requires lots of expertise and ground 

information.  
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Figure 16: Crop mapping using the Automated Cropland Classification 

Algorithm. Upper diagram shows resumed flowchart for this procedure; below 

(adapted from Thenkabail & Wu (2012)) and starting from top left, an 
example that illustrates the mega file data cube (MFDC), the decision trees 
algorithm applied to the MFDC, and the resulted cropland map. 
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The pre processing of Landsat imagery required atmospheric and 

radiance correction, as well as mosaicing of large amount of images, 

in order to have consistent land cover characteristics throughout the 

study area Ukraine, which would allow crop field classification across 

Ukraine.  Techniques for mosaicing include global colour balancing (so 

all scenes appear to be in the same colour range), feathering, cutlines 

along linear features etc. - all designed to create the illusion of one 

big seamless image. However the result of this pre processing, would 

normally be treated as a visual product and probably not suitable for 

analysis work such as the following procedure for image classification. 

Furthermore, it was resources, time and expertise consuming to 

perform such Landsat pre-processment for the short time scope of 

this study. So instead, we gave up from the ACCA algorithm that 

required as input the Landsat imagery and opted, despite the spatial 

resolution of 300 meters, to use a land cover classification map, the 

Globcover 2009, to be able to locate with an accuracy of 70% 

(Defourny et al., 2011) the crop fields. The higher spatial resolution 

Corine Land cover map doesn´t include Ukraine (Commission of the 

European Communities, 1995). Again, in this data acquisition phase, 

there was some intrinsic error due to the spatial resolution of the 

imagery in relation to the crop fields of Ukraine. 

5.1 Phenology extraction 

After locating the crop fields, the next general step was to know what 

kind of crop each field had. To achieve this general step, it was 

extracted from MODIS remote sensing imagery the crop phenology 

parameters per pixel and chosen the phenology parameter that best 

represent crop yield or production.  

The first version of phenology extraction algorithm (Dash et al, 2010) 

used in this study had a cleaning algorithm for atmospheric correction 

based on a temporal moving average window function, which 

produced a lower than expected phenology extraction retrieval in 

relation to the crop mask. Thus, instead, it was used an improved 

version with the cleaning process based on a Fourier smoothing 

algorithm, which smoothens data using a sum of weighted sine and 

cosine terms of increasing frequency. However, according to the De 

Bie et al. (2012), the use of a Fourier algorithm, assumes that 

behavior between years remains stable, averaging out changes in 

cropping patterns or heavy variability in weather patterns. 

Nevertheless, a difference analysis between the two extraction 

algorithm versions outputs showed that there was an increased 

retrieval with the Fourier algorithm.  
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Cumulative sum, or integrated vegetation index (VI) values, and 

maximum VI values are used commonly as surrogate measures of 

vegetation productivity and crop yield (Pettorelli et al., 2005; Funk & 

Budde, 2009; Vrieling et al., 2011; Rembold et al., 2013 as cited in 

Duncan et al., 2014). Integrated EVI would be the best phenology 

parameter choice, since vegetation index values post-peak growing 

season often provide more accurate predictions of crop yield as they 

correspond to the reproductive and grain-filling development stages 

of cereal crops (Funk & Budde, 2009; Rojas et al., 2011 cited in 

Duncan et al., 2014). Duncan et al. (2014) found that integrated-EVI 

was significantly correlated with district-wise wheat crop yield and 

production during their study time, with an R square value for the 

integrated-EVI crop yield model of 0.6. However, in this study, the 

regression analysis between the phenological parameters maximum 

EVI and integrated EVI, and the ground statistical crop data resulted 

in a slightly better adjustment of the maximum EVI to the ground 

statistical data.  

5.2 Crop mapping  

After extracting the phenology and choosing the surrogate VI 

maximum EVI for crop yield, the data was stacked and the pixels VI 

profiles were iteratively classified using an ISODATA clustering 

algorithm. This clustering procedure, despite being time consuming 

(about more than one day of computing)  allowed reducing the 

enormous amount of data in the stack (big data), and further 

identifying and mapping land cover gradients based on hyper 

temporal VI profiles similarities. Thereby, according to Ali et al. 

(2014), hyper-temporal imagery is also found effective at mapping 

the spatial patterns in vegetation cover that represent gradual 

changes in the form of gradients, which are originated due to the 

local vegetation seasonal trends. 

The ISODATA clustering iteration was set to produce cluster maps 

with between 8 and 100 clusters. The output analysis of separability 

didn’t have all the required results because of an undetermined 

problem in the ERDAS software. After the 38 clusters map, the 

minimum separability consistently was below 24, so we can assume 

that the cluster map can’t have more than 38 clusters (Erdas, 1997; 

De Bie et al., 2012). Before that figure, there were missing 15 cluster 

maps due to the referred software error, but with the large average 

separability peak in 19 clusters map we can assume a reasonable 

separability for this number of clusters. This uncertainty brings more 

error factor to the whole process.  
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The analysis of separability with the remaining results for Maximum 

EVI clusters typically fits a heterogeneous landscape, i.e. where very 

clear spatial partitions exist in cover and use, corresponding to clear 

peaks in the average separability graph, similarly to the results of De 

Bie et al., 2012.  This is because some zones of Ukraine, such as the 

Plane-Polissya zone, has a more complex landscape with forests, 

grasslands and abandoned fields, and less winter wheat crop area 

comparing to other zones. Furthermore, there is temporal variability 

within each pixel because farms in Ukraine employ a variety of crop-

rotation schemes, some including four or more crops, some only two 

(Rogovska, 2009).  

To improve the process of selection of clusters, decision trees with 

crop calendar criteria for crop phenology characteristics such as peak 

of EVI, and start and end of growing season, could have been tested 

in this thesis after the ISODATA unsupervised clustering classification 

and separability analysis, and in case we had more study time 

available. Thenkabail & Wu (2012) used with success decision tree 

algorithms in the ACCA process (see page 37 of this thesis) to resolve 

mixed classes derived from unsupervised classification.  

5.3 Yield calculation 

As to the separability analysis of the climate data, despite the 

number of iterations was less, the graph shows through the low 

peaks that climate data is typically characterized for smooth 

transitions and gradients. 

The regression analysis between the variable maximum EVI and the 

official crop production and yield showed that maximum EVI is 

generally better adjusted to the crop production values. These 

results, along with the good level of fit of the choosen cluster areas to 

the official crop area, suggest that the prediction variable may be well 

estimated with the adjusted R square values greater then 0.70 

(except for sugar beet), but their location based on the maximum EVI 

values are probably wrong. The only crop that may be closer to a 

correct location and area estimation is barley, which had an adjusted 

R square of 0.901 for the cluster regression, and levels of adjustment 

of the prediction maximum EVI to the explanatory variable production 

generally greater than 0.42. In other words, the barley biomass 

(production) is well represented by the surrogate biophysical variable 

maximum EVI (with a specific location) and the barley crop areas are 

also well explained by the respective clusters areas.  
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The R square results for wheat yield prediction were in overall lower 

than 0.3, which is lower than Kogan et al. (2013) results on winter 

wheat yield forecasting study in Ukraine. This study was based on a 

regression model that uses as predictor 16-day NDVI (vegetation 

index with same range and similar behavior as EVI) composites 

derived from MODIS with 250 m resolution, and ESA Global Land 

Cover map (GlobCover) with 300 m resolution for 2009 as crop mask. 

These authors predicted the winter wheat yield distribution with a 

level of adjustment R square to the observed governmental yield 

statistics of 0.69 in a regression model from 2000 to 2010. They used 

minimum root mean square error (RMSE) value as predictor in the 

regression model in order to find the day of the year for which to 

select the NDVI value that best predicts winter wheat yield.  

Another study in Ukraine that adopted a regression model derived 

from Kansas USA data to assess winter wheat production, with a time 

range from the year 2000 until 2008, and using MODIS seasonal 

maximum NDVI data as explanatory variable and governmental 

wheat yield and production statistics as response variable (Becker-

Reshef et al., 2010), had as results for the production a regression 

coefficient R of 0.88 (R square of 0.7744), and for the yield a R of 

0.94 (R square of 0.8836). These comparatively better than this 

thesis figures resulted from a method based on the assumption that 

the yield is positively and linearly correlated to the seasonal 

maximum NDVI (adjusted for background noise) at the administrative 

unit (oblast) level and to the purity of the wheat signal. The purity of 

the wheat signal was accomplished  by deriving a set of relationships 

between yield and maximum NDVI and then generalizing the slopes 

of these regressions as a function of wheat percent in order to un-mix 

the maximum NDVI for wheat signal from the maximum NDVI for 

other land covers signal. 

Franch et al. (2015) made a study on Ukraine’s winter wheat, with a 

time range from the year 2000 until 2011, and with a method based 

on the previously referred Becker-Reshef et al. (2010) study, but 

enhanced by including the growing degree day information to get an 

earlier forecast of the winter wheat production at the national scale. 

These study results had comparatively to Becker-Reshef et al., 

(2010) a lower error in the yield and a slightly higher error in the 

production. However, it can be  considered that both results are 

equivalent reasserting the good performance of the method (Franch 

et al., 2015).  

These previously referenced studies on Ukraine’s winter wheat used 

the same type of remote sensing imagery and official statistical data 
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as this thesis, except the time range and the methodology to extract 

and map crops were different, and they achieved better results. 

Therefore, maybe it would be a better and more reliable alternative 

mapping method to apply in this thesis for wheat and maybe other 

crops.  

Thus, these low R square results for the regression between the 

production and maximum EVI may be due to some problem in the 

methodology for the location of the correct surrogate biophysical  

variable, such as the phenology extraction algorithm didn’t detect the 

correct surrogate biophysical phenology signal due to the spatial 

complexity inherent to the coarse resolution MODIS imagery; to the 

temporal variability of crops related with crop rotation; to the 

structure of the vegetation (for instance, sugar beet which has a 

fleshy root with a crown of leaves lying near the soil, is a plant that 

may be difficult to assess through remote sensing); to the lack of 

responsiveness of the phenology extraction algorithm; or the crop 

mapping, mainly the analysis of separability to assess the number of 

cluster, was not accurate due to the aforementioned problems with 

the ERDAS software. 

Comparing visually the crop heat maps with the year 2000 ground 

data statistics from the Ukraine Ministry of Statistics, it can be 

noticed that the highest crop areas overlap with the oblasts with the 

highest percentage contribution to national area from the 

governmental statistics, except for Eastern Ukraine where for wheat, 

barley and sugar beet, the predicted crop area seems to be 

overestimated in relation to the official ground statistics. However, in 

a report from Ukrainian Agribusiness Club (Strohm et al., 2010), it 

shows  in a map (see Figure 17) that this eastern steppe zone of 

Ukraine has one of the largest national share of winter wheat in the 

arable land for the year 2009. 
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Figure 17: Wheat map adapted from Strohm et al., (2010) 

This is a very coarse validation of the crop maps that doesn’t allow to 

test if “what crop” and “where cropfield” is well estimated, but gives a 

broad idea of the crops location and area that can maybe be used on 

a national decision level.  

5.4 Yield gap maps 

The Licker et al. (2010) global study on maize, wheat, barley and 

other crop’s yield gaps used as input 10km spatial resolution datasets 

based on global sensus data, along with detailed remote sensing data 

of global land cover, representing conditions around the year 2000 

(to account for inter-annaul variability, averaged area harvested and 

yield data for the years 1997-2003), in order to: map crop yields into 

climate zones based on crop growing degree days and crop soil 

moisture index; determine maximum potential yield within each 

climate zone (90th yield percentile) and the actual yield; and finally 

determine the yield gap through the difference between the potential 

yield and actual yield, and yield gap fraction using equation 4. The 

maize, wheat and barley output yield gap results for Eastern Europe 

were generally high. A more specific analysis (see Figure 18) of a 

zoomed map of Europe and Ukraine, shows that the wheat yield gap 

fraction in Ukraine is widespread and more than 0.6, whereas the 

maize yield gap fraction in Ukraine are also widespread and very high 

in the western part (more than 0.8) and more than 0.6 in the rest of 

the Ukranian territory. 
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Figure 18: Yield gap fraction detail on a 5′ grid with an equirectangular 

projection for wheat (left)  and maize (right) in eastern Europe (results from 
Licker et al. (2010)). Ukraine boarder is the blue line. 

This thesis had yield gap results with higher spatial resolution, when 

compared to Licker et al. (2010) study. The majority of the grain 

yield gaps are concentrated in the southern east steppe zone (which 

is the most intensive cultivated area of Ukraine), with some minor 

yield gap patches in the forest-steppe zone; whereas in most of the 

western part, that includes the plane-polissya climatic zone, the yield 

gaps are lower, but also the area of cropland in this climate zone is 

also lower. The higher spatial resolution and the time series analysis 

of this thesis results allows to have a more spatially and thematically 

detailed view on the yield gaps of Ukraine.  

However it would be further needed updated and representative 

ground control data to assess the thematic accuracy of the crop maps 

and yield maps.  

The project Geo-wiki (Fritz et al., 2012) aims to provide through 

crowd sourcing a map validation service for land cover maps, such as 

cropland maps, currently being developed by the scientific 

community. It would be further useful to, whenever possible, add the 

crop type as attribute for each control point. 

Furthermore, the JECAM project (Kussul et al., 2014), which has as 

goal to reach a convergence of approaches, develop monitoring and 

reporting protocols and best practices for global agriculture systems, 

may be a promising platform to systematize methodology and to fill 

this knowledge gap, which is of great importance for decision making 

on agriculture at global and local level. 

With concerted initiatives such as the Geo-wiki crowd sourcing 

validation and the JECAM harmonization for crop monitoring 
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procedures, we may be heading for a more supported, accurate and 

efficient global and local crop yield forecast and management system. 
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Chapter 6 

6 Conclusion and recommendations 

A procedure to map crop yield gaps across Ukraine using time series 

of satellite derived biophysical variables was successfully developed. 

On the other hand, as a result of some processing problems that are 

next referred, the capacity to identify underperforming croplands was 

just partially achieved. 

The best separability achieved between clusters, after the 

unsupervised classification of the phenological parameter maximum 

EVI, was for the intermediate map with 19 cluster. However, due to 

inconsistent running of the ERDAS software this was based on 

somehow faulty incomplete results.   

The stepwise linear regression analysis between these 19 maximum 

EVI clusters area and official crop statistics area resulted in a 

significative fit between both variables, with an adjusted R square 

greater than 0.7. Whereas the cluster areas for sugar beet had a low 

level of fit to their official ground statistical area, with an adjusted R 

square of 0.474.  

The thematic accuracy of the crop maps was not successfully 

resolved, because the attributes of the ground control points didn’t 

specify the type of crop. 

Among all the crops, barley had the best prediction regression models 

for production, with levels of adjustment greater than 0.42 (except 

for the year 2013). All the other prediction models for crop yield and 

production had low level of fit, which suggest that crop areas were 

well estimated, but crop location based on surrogate yield or 

production data, i.e, on maximum EVI profiles, were not accurate. 

Finally, and supported by these weak foundations, it was calculated 

the potential yield in each homogeneous edapho-climatic zone, in 

order to calculate the final yield gap maps output. Despite southern 

east steppe zone being the most intensive cultivated area of Ukraine, 

it was observed that the majority of the grain yield gaps were 

concentrated in this zone. 

This was one of the first attempts to map crop yield gaps with a 

spatial resolution almost field size in Ukraine. However, despite of the 

importance of this topic, the final output is far from satisfactory, 

because the design of this resource and time consuming methodology 
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that had as input big amounts of remote sensing data and extensive 

official statistics, had large challenges, more specifically, i)phenology 

extraction, ii) classification and location of the remote sensing derived 

crop yield classes or clusters that best represents the crop, iii) 

validation of yield or production model with updated and relevant 

ground control data. 

In future Works, firstly, higher spatial resolution imagery such as 

landsat should also be used besides the time series, to allow 

identification of individual crop fields; secondly, use of decision trees 

with crop calendars criteria, and as input data the phenological 

parameters extracted previously, in order to improve the selection of 

clusters for the making of the intermediate map; finally create or find 

an updated and relevant ground control database that would allow 

thematic validation. 
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