
From SNMP to Web services-based
network management.

Jeroen van Sloten

Thesis for a Master of Science degree in

Computer Science from the University of

Twente, Enschede, the Netherlands

Graduation committee:

Dr.ir. A. Pras

Dr.ir. M.J. van Sinderen

Enschede, the Netherlands

4th June 2004

i

Abstract

One of the emerging standards for application to application inter-
action and therefore for the interconnection of (distributed) systems
is Web services. It is an open, generic and standardised XML-based
technology and has recently received a wide industry attention. Con-
sidering the current interest of network management research groups
in XML-based technologies, Web services need investigation for its
suitability for network management. This is therefore the main ob-
jective of this thesis.

This thesis presents some of the characteristics of Web services that
make it useful to use for network management. Furthermore, an
overview of additional Web service standards that are expected to
be of interest for network management is presented.

Standardisation plays an important role in the adoption of a net-
work management technology. This thesis distinguishes which parts
of a Web service are suitable for standardisation. Within these parts
there is room for variation, and therefore the merits of various alter-
natives are discussed.

The Model-Driven Architecture (MDA) is an approach that pro-
motes the usage of modelling for the design of (software) systems.
Models should be used at different levels of abstraction, thus creat-
ing a clear separation between the specification of the functionality
of a system and the implementation of this functionality on a spe-
cific platform. Since Web services can be implemented on a variety
of platforms, this thesis explains why MDA can play an important
role for the development of Web services in general and network
management in particular.

ii

iii

Acknowledgements

From September 2003 to June 2004 I have carried out the final stage of my
Computer Science study at the University of Twente. I have spent these nine
months performing research on the use of Web services for network management,
the result of which is presented in this Master’s thesis.

My thanks and gratitude go to all the people from whom I have received
enormous amounts of help and support while performing my research project.
First and foremost I would like to thank my supervisors Aiko Pras and Marten
van Sinderen, who have provided me with all the necessary help that proved
valuable for this project. They have pointed me in the right direction when
needed and especially they made the conversations we have had very pleasant
and interesting.

Thanks also go to all my colleagues and fellow students from the ARCH group
who have provided me with new insights, the necessary distraction from time
to time and most of all a pleasant working environment.

Also I wish to thank my family and friends who have all been very supportive
and highly inspiring, not only during my Master’s project, but throughout my
entire study.

And last but not least my deepest gratitude goes to Yongjun, my partner
for life. She has been a great help for me, for her expertise, but especially for
showing her heartfelt encouragement and continuous support. She has shown
great patience while waiting for me to finish this thesis. Above all she has given
me her endless love which is the greatest support of all.

Jeroen van Sloten

Enschede
June, 2004

iv

v

Contents

Acknowledgements iv

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Background . 1
1.1.1 Towards XML-based network management 1
1.1.2 Web services-based network management 2
1.1.3 Model-Driven Architecture 2

1.2 Problem description . 3
1.3 Scope and objectives . 3
1.4 Approach . 4
1.5 Related work . 5

1.5.1 Network Management Research Group 5
1.5.2 NetConf . 5
1.5.3 Web-Based Enterprise Management 6
1.5.4 Web Services Management Framework 6
1.5.5 Other . 6

1.6 Intended audience . 7
1.7 Structure . 8

2 State of the art 9

2.1 Simple Network Management Protocol 9
2.1.1 Foundation . 9
2.1.2 Architecture . 10
2.1.3 Management Information Base 11
2.1.4 SNMP protocol operations 13

2.2 Web Services . 16
2.2.1 Basic concepts . 16
2.2.2 Web Service Description Language 19

2.3 Model-Driven Architecture . 21
2.3.1 Introduction . 21
2.3.2 Basic concepts . 22
2.3.3 Model transformation . 24

vi

3 Web services for network management 26

3.1 Performing network management with Web services 26
3.2 Message exchange patterns . 29
3.3 Interface extensibility . 32
3.4 Additional Web service standards 33

3.4.1 Security . 33
3.4.2 Transactions . 34
3.4.3 Reliability . 34
3.4.4 Summary . 34

4 Standardisation 36

4.1 WSDL modularisation . 36
4.2 Management operations . 38

4.2.1 Operation definition extremes 38
4.2.2 Parameter transparency 39
4.2.3 Operation granularity . 42
4.2.4 Summary . 44

4.3 Management information definition 45
4.3.1 Data models and information models 45
4.3.2 Management information models 46
4.3.3 Data-oriented information model 47
4.3.4 Object-oriented information model 51
4.3.5 Summary . 52

5 Case study: host-resources 53

5.1 Host-Resources MIB . 53
5.2 Data-oriented approach . 54

5.2.1 Information model . 55
5.2.2 Protocol . 55
5.2.3 Summary . 57

5.3 Object-oriented approach . 57
5.3.1 Information model . 58
5.3.2 Protocol . 59
5.3.3 Summary . 62

6 Conclusions 64

6.1 Main contributions . 64
6.2 Future work . 67

A SNMPv2-PDU definitions 69

B Host-resources database model diagram 72

C SNMP-WS abstract interface definition 74

D SNMP-WS binding definition 76

E snmp-simple.xsd 78

F Generated Host-Resources UML class diagram 80

vii

G Revised Host-Resources UML class diagram 82

H Generated WSDL for hrDeviceEntry 84

Bibliography 87

viii

List of Figures

1.1 Thesis structure . 8

2.1 SNMP basic operation . 10
2.2 SNMP network stack . 11
2.3 SNMP naming tree . 12
2.4 Conceptual table: ifTable (Interfaces MIB) 13
2.5 SNMP message and PDU formats (taken from [1]). 14
2.6 SNMPv2 PDU sequences (taken from [1]). 15
2.7 Web service: weather service . 17
2.8 Web services communication . 17
2.9 SOAP message structure . 18
2.10 Web services architecture . 19
2.11 Modelling abstraction levels . 23
2.12 MDA model transformation . 24

3.1 Principle operation of WS-based network management 27
3.2 Simplified network layer stack . 28
3.3 WSDL message exchange patterns. 30
3.4 Web service related standards . 35

4.1 WSDL import mechanism . 38
4.2 Operation extremes . 39
4.3 Containment diagram . 42
4.4 Containment tree . 43
4.5 Management IM and DMs . 46
4.6 System information ER diagram 50
4.7 IfTable ER diagram . 51

5.1 Simplified Host-resources UML class diagram 59
5.2 hrDeviceEntry class definition. 60

ix

List of Tables

2.1 Model level hierarchy (taken from [2]). 22

3.1 WSDL 2.0 message exchange patterns. 29
3.2 Interface extension. 32

4.1 Interfaces relation. 48
4.2 Query: SELECT * FROM Interfaces. 49
4.3 Query: SELECT Description FROM Interfaces. 49
4.4 Query: SELECT * FROM Interfaces WHERE Speed=10. 49

x

Listings

2.1 WSDL example . 20
2.2 Endpoints . 20
3.1 MEP: In-Only . 31
3.2 MEP: Robust In-Only . 31
3.3 MEP: In-Out . 32
3.4 Interface extension . 33
4.1 Import of interface WSDL . 37
4.2 Multiple message parts with simple types 40
4.3 Single message parts with opaque types 40
4.4 Single message parts with complex types 41
4.5 Multiple message parts with simple and complex types 42
5.1 SNMPv2-style operations . 56
5.2 SNMPv2-style messages . 56
5.3 VarBindList type definition (SMI) 57
5.4 VarBindList type definition (XML Schema) 58
5.5 hrDeviceEntry WSDL: operations 61
5.6 hrDeviceEntry WSDL: messages 62

xi

Chapter 1

Introduction

This chapter provides an insight in the background of this research project and
a detailed description of the problems that will be tackled. This is followed by
an overview of the approach, related work and intended audience.

1.1 Background

Ever since the introduction of computer networks, there has been an interest
in management functionality. In the early days of computer networks simple
applications such as ping and traceroute were sufficient to find congestions in
the network for instance. But as the complexity of networks rises and networks
become more and more interconnected, the need for more complex management
functionality is also growing. By the end of the eighties the development of
networks and simple management tools eventually led to management standards
such as the Simple Network Management Protocol (SNMP).

Since then, SNMP, in its different versions [3], has grown to be the most com-
monly used network management platform in IP networks. However, while orig-
inally developed in an environment where networks were small, bandwidth was
scarce and processing power on networked devices was low, the design choices
made then are nowadays becoming apparent limitations in the network man-
agement area.

1.1.1 Towards XML-based network management

SNMP is based on the manager-agent paradigm. For the exchange of messages
SNMP relies on UDP [4], which is, according to many, a cause of great concern
[5, 6]. Originally agents were meant to be as simple as possible, with most of
the processing and control done at the manager-side. But times have changed
and current devices are powerful enough to perform more complex management
operations also at the agent side [7]. Furthermore, SNMP is a domain-specific
protocol that, despite its name, is not easy to use. Integration with existing soft-
ware is difficult and only a limited number of experts have sufficient knowledge
to develop new management applications [7]. Because of these limitations there
is nowadays a trend towards more generic technologies to be used for network
management. One of the main technologies being investigated is the eXten-

1

CHAPTER 1. INTRODUCTION 2

sible Markup Language (XML) [8]. Current efforts in improving IP network
management are mostly based on dedicated XML formats [9, 10].

These problems have also been the topic of discussion within the Internet
Engineering Task Force (IETF) [11], the Network Management Research Group
(NMRG) [12] of the Internet Research Task Force (IRTF) [13] and the Inter-
net Architecture Board (IAB) [14]. The IAB, for example, organised a special
workshop in June 2002 to discuss the future of network management (RFC3535
[15]). Many attendees at that meeting expected that the so-called evolution-
ary approaches would fail and that more focus should be put on revolutionary
approaches, most notably approaches that are XML-based [7]. This outcome,
combined with the fact that there has not been substantial output yet, has
made for ongoing IETF workgroups such as Evolution of SNMP (EoS) [16] and
SMING [17] to be discontinued. Meanwhile, there are even those who state that
standardisation of network management protocols should move from the IETF
to the World Wide Web Consortium (W3C) [18], partly because of this focus
shift towards XML [19] which is a W3C standard itself.

1.1.2 Web services-based network management

An emerging standard based upon XML is Web services [20]: an open, generic
and standardised technology for the interconnection of computer systems. Be-
cause it is XML-based it is in principle platform and programming language
independent. One can currently notice an industry-wide interest in Web ser-
vices, supported by the growing availability of various related application servers
and development tools. Web services are expected to become a standard part of
future operating systems and application servers, which will result in a growing
familiarity among many users and developers. All these characteristics make it
to be a very promising technology for (distributed) computer systems.

The availability, combined with being a generic technology and an open
standard, makes it easier for people to develop applications using Web services.
Apart from dedicated management applications, one can also think of presenting
management information in a spreadsheet or storing management information in
databases simply by calling a Web service for which support is already present in
the operation system. SNMP also makes clear that availability of applications is
a key factor for the market acceptance of a technology [7]. But these advantages
of Web services are very general and not only relevant to network management.
What is very important for network management is that there is a standardised
form in which management information is defined and how this information
is accessed [19]. It remains hard to develop a management application when
management information and its accessor operation are not standardised.

1.1.3 Model-Driven Architecture

When legacy technologies and systems are concerned, one can think of a new
concept that is rapidly evolving in the software engineering field: Model-Driven
Architecture. It is proposed by the Object Management Group (OMG) [21]
to bring the design of (software) systems to a higher level of abstraction than
design at programming code level, by making more active use of modelling and
transformations between models. MDA makes a clear separation between the

CHAPTER 1. INTRODUCTION 3

specification of a system’s functionality and its implementation on a particular
platform [22].

The reason why this can be interesting for legacy systems is that it enables a
software engineer to capture the functionality of such a system in a higher-level
model. This creates an abstraction from the legacy technologies that a system
is usually built on. Furthermore, with MDA it should then be possible to
deploy a system with similar functionality and behaviour on a platform based
on a different technology. More concretely, in case of SNMP-based network
management it can be highly interesting to capture its functionality in a model
that is not dependent on SNMP-based technologies.

Web services can be implemented on a variety of platforms, however some
basic design issues could possibly be very similar for each platform. This is a
typical area where MDA is expected to be useful.

1.2 Problem description

Since Web services is a relatively new standard, little is known about applying
it for network management. There is already an interest by standardisation
organisations and research groups [7] in XML-based approaches, but research
thusfar focussed on dedicated XML-based approaches [9, 10], rather than generic
approaches like Web services. This is why it is of great importance to acquire
more knowledge on how Web services can be applied for this specific task.

Currently, XML-based Web service standards are appearing as a more generic
approach towards systems interconnection. They can already be used on a
wide variety of platforms (Microsoft .NET, Java platforms, etc.). Web ser-
vices offer quite similar concepts as SNMP, such as invoking operations on re-
mote systems, communication through message exchange and implementation-
independent service descriptions.

Sceptics often use the argument of poor performance compared to existing
SNMP implementations, when discussing Web service-based (or other XML-
based) protocols [23]. It is quite obvious that XML documents can get very
verbose and most certainly it is a reason for concern. However important steps
in comparing SNMP and Web service performance have already been made and
the results look very promising (see section 1.5.5) and are certainly reasons for
doing more research in this area.

1.3 Scope and objectives

The main objective of this thesis is to investigate how Web services can be
applied for network management. This makes it important to first identify a
possible Web services-based management architecture and to get feeling with
the concepts. The characteristics of Web services that are of particular interest
for network management need to be described.

In order for a network management approach to be adopted widely, stan-
dardisation needs to take place. For Web services this means that those parts
that are suitable for standardisation need to be identified. An issue related to
standardisation is the definition of management operations and corresponding
messages. There can be a wide variety of operations, so it is important to recog-

CHAPTER 1. INTRODUCTION 4

nise which forms there possibly are and what the merits of each of those forms
are.

Finally, applying MDA tools to aid in the development of network manage-
ment Web services will be discussed. Given the fact that network management
data models are standardised (for instance SNMP’s data model) and the model-
oriented nature of MDA, MDA could be a very useful methodology for easily de-
veloping management applications for different types of Web service-platforms.

These objectives lead to the following research questions:

• Why are Web services suitable to use for management of IP networks?

• Which parts of Web services need to be standardised for Web services-
based network management?

• What possible forms can management operations take and what are their
merits?

• Which role can MDA tools play for developing Web Services-based man-
agement applications?

It is not the intention of this thesis to do another performance comparison
between SNMP and Web services, nor will it propose a gateway or dual stack
solution. As mentioned before, research is already being performed in these
areas. It is also not the intention to propose a new standard for network man-
agement based on Web services. Furthermore, the goal is also not to discuss
the management information itself. This thesis will be based upon SNMP and
therefore also the management information comprised in SNMP data models.
The reader who is interested in the different data models is referred to the study
presented by López de Vergara et. al. [24], which gives an interesting discus-
sion on which management information should be available and what the best
definition language is.

1.4 Approach

The following approach will be adopted in this thesis:

1. give a state of the art of SNMP, Web services and MDA. This includes
the SNMP management architecture, the protocol and the data definition
language. Furthermore, the concept of Web services shall be explained
with a focus on the Web Services Description Language. And finally, the
main concepts of the Model-Driven Architecture will be introduced.
The goal of this step is to make the reader acquainted with the technologies
that are being discussed in this thesis as well as the related terminology.

2. describe the characteristics of Web services and explain why they are suit-
able to perform network management.
The goal is to understand how Web services can be applied for network
management.

3. determine which parts of Web services can and need to be standardised.
This will focus mainly on the description of Web services, by introducing
an explanation on the modularity of WSDL documents, followed by an

CHAPTER 1. INTRODUCTION 5

elucidation on management operations.
The goal of this step is to understand which parts of a Web service can
be used for network management standardisation and what variations are
possible within these parts.

4. illustrate the discussed topics by means of a case study where the SNMP
Host-resources MIB shall be migrated to a Web service environment. This
work will be carried out by means of an MDA development tool.
The goal is to show how Web services-based network management could
work in practice and to gain experience with the suitability of MDA tools
in the development of Web services.

1.5 Related work

There are several initiatives in the field of network management that focus on
Web services or provide very similar functionality. They will be discussed in
this section.

1.5.1 Network Management Research Group

The Network Management Research Group is a small group of researchers for
"exploring new technologies for the management of the Internet" [12]. The
NMRG is a research group of the IRTF [13] and is responsible for the advances
made with SNMP, SMI and other related topics after its installation in 1999.

The NMRG needs mentioning here, because of its contribution to SNMP
and its current interest in investigating XML related technologies, most notably
in Web services.

1.5.2 NetConf

NetConf [25] is a Working Group of the IETF [11] and chartered to produce
a protocol suitable for network configuration. Configuration typically entails
relatively simple tasks such as up- or downloading whole configurations. It
therefore needs only a few basic operations to transfer large amounts of data.
The NetConf protocol offers a small set of coarse operations to manage de-
vice configurations and retrieve device state information. However, these set of
coarse operations is meant to be extensible with finer operations when specific
functionality is required. But considering the expected usage of coarse oper-
ations, there is no need for standardising finer operations. Communication is
performed through the exchange of NetConf-specific XML messages. Due to
the wide interest in the more generic SOAP messaging (SOAP is explained in
section 2.2) the NetConf WG has acknowledged that it is definitely interest-
ing to investigate its usability for NetConf [26]. SOAP offers the functionality
that is required, but more important it is widely supported on many platforms
and used, almost without exception, as the message standard for Web services.
NetConf could therefore possibly be used as a Web service.

CHAPTER 1. INTRODUCTION 6

1.5.3 Web-Based Enterprise Management

For the last several years, the Distributed Management Task Force [27] has been
developing an information model for a managed environment, called Common
Information Model [28]. CIM is an object-oriented conceptual view of the man-
aged environment, unlike SNMP, which is a data-oriented model and protocol.
The CIM does not include only some generic properties of networked devices,
like many standardised SNMP MIBs, but it attempts to provide a very compre-
hensive and detailed view of a managed system. Naturally this results in a large
collection of objects. These objects are defined textually in the Managed Object
Format (MOF) [29], but are also presented in a (non-normative) graphical form.

The CIM is part of the Web-Based Enterprise Management (WBEM) initia-
tive. WBEM is "a set of management and Internet standard technologies devel-
oped to unify the management of enterprise computing environments". Apart
from the CIM, it also includes a protocol for transporting management data
(CIM Operations over HTTP) and an encoding specification (xmlCIM Encod-
ing Specification) that is used to represent CIM classes and instances.

1.5.4 Web Services Management Framework

Hewlett Packard [30] has developed a logical architecture for managing com-
puting resources through Web services. This is called The Web Services Man-
agement Framework (WSMF) which is now adopted by OASIS [31]). It has
been developed to address the growing need of businesses to integrate their sys-
tems, and more specifically the management of those systems. The framework
provides a collection of interfaces that expose a certain type of management
information for so-called managed objects. Each interface has operations that
are related to a specific task, such as monitoring, discovery or configuration.
The WSMF allows for interfaces to be extended and new interfaces to be added
for managed objects.

The aim of the WSMF is to provide a generic, platform independent interface
to management information. The operations provided by the interfaces that are
standardised, are generally very fine operations which serve a specific task. The
idea is to use the extensibility of Web services to specify more non-standardised
operations when needed. Another idea is that, since common interfaces provide
common operations, one single interface (and thus its operations) can also be
used for a collection of managed objects.

1.5.5 Other

Gateway solutions

Some groups try to find solutions to incorporate SNMP with dedicated XML
solutions and even already a Web services-based management approach: so-
called gateway solutions. These architectures mostly consist of SNMP agents,
XML-based managers and an XML to SNMP request translator. Because they
are not Web service-based they will not be further discussed here, but since
they cover a similar area of research they are worth mentioning as related work.
Main research in this area takes place on the Pohang University of Science and
Technology in South-Korea [9], the Technical University of Braunschweig in
Germany [10] and the Federal University of Rio Grande do Sul in Brazil [32].

CHAPTER 1. INTRODUCTION 7

Performance

Poor performance is a commonly heard argument by critics of Web service-based
network management. One important reason is that Web services are based on
XML and XML documents have the tendency to get rather verbose. Currently
undergoing research on the comparison of SNMP and Web services seems very
promising for Web services though.

First of all, work carried out at the University of Twente [33] has focussed
on comparing bandwidth and resource usage of SNMP and Web services with
regard to network monitoring (management data retrieval). SNMP and Web
services have been tested both with and without using data compression. The
results of these comparisons are very promising as they show that Web services
do not perform much worse than SNMP. In fact, in some cases it performs even
better, like when large amounts of data are concerned. With small amounts
of data (which is the typical usage of SNMP), SNMP does generally perform
better than Web services.

Ricardo Neisse et al. [32] introduce the idea of defining operations on differ-
ent levels of granularity instead of merely copying the SNMP primitives. In this
SNMP to Web services gateway, operations are defined on a so-called protocol-
level or on an object-level. Operations on protocol-level are translations of
SNMP primitives: Get, GetNext and Set, whereas on the object-level there is
a specific Get method for each scalar and table object, such as GetSysLocation
or GetIfTable. A Set method is created for each writable object, i.e. SetSysLo-
cation or SetIfAdminStatus. So the protocol-level gateway has a few operations
with very coarse granularity, whereas the object-level gateway supports only
operations with very fine granularity. The incentive of this research project was
to conduct a bandwidth comparison between the gateway fine coarse operations
and the gateway with fine operations. The result of this comparison was that
protocol-level gateways are only interesting when just a few SNMP objects are
concerned. This type of gateway uses SNMP object identifiers and the SNMP
style of communication: a response message for each single value. The object-
level gateway reduces network traffic, because it can send collected management
information back to the manager in one SOAP message. This turns out to be
more efficient with a high number of instances (this number varies for com-
pressed or uncompressed messages and for SOAP over HTTP or over HTTPS).
Therefore an object-level gateway is of particular interest for configuration man-
agement, where typically large amounts of information is transferred.

1.6 Intended audience

This report is written for computer scientists, network specialists and other
people with a background in network management and more specifically SNMP.
The reader is expected to have some basic understanding with concepts such as
Web Services, WSDL and MDA and more profound knowledge on SNMP, MIBs
and possibly SMI. These standards will be explained here rather briefly.

CHAPTER 1. INTRODUCTION 8

1.7 Structure

This report is structured according to the steps defined in the approach (section
1.4). Step 1 relates to chapter 2 that presents the state of the art of SNMP,
Web services and MDA. The next step relates to chapter 3 that describes how
Web services can be applied for network management. Chapter 4 identifies
which parts of a Web service can be used for network management standardis-
ation and what variations are possible within these parts. Chapter 5 illustrates
several Web service concepts with a case study on the migration of the Host-
resources MIB to Web services-based network management. Finally, conclusions
are drawn and recommendations are given in chapter 6. This structure is de-
picted in figure 1.1.

Chapter 2

State of the art

Chapter 6

Conclusions

Chapter 5

Case study: host-

resources

Chapter 4

Standardisation

Chapter 3

Web services for

network

management

Chapter 1

Introduction

Approach

step 1

Approach

step 2

Approach

step 3

Approach

step 4

Figure 1.1: Thesis structure

Chapter 2

State of the art

This chapter presents the state of the art of the main technologies that are
relevant to the research questions. Firstly, section 2.1 provides an introduction
to the Simple Network Management Protocol and describes its basic concepts.
Section 2.2 explains what Web services actually are and gives a detailed overview
of the Web Service Description Language. This chapter concludes with section
2.3 on the Model-Driven Architecture.

2.1 Simple Network Management Protocol

2.1.1 Foundation

In the early years of small networks (roughly until the mid-eighties), small ap-
plications as ping and traceroute were powerful enough to provide basic man-
agement functionality. But with the exponential growth of networks since the
late eighties, the need arose for a management protocol with much more func-
tionality. Several approaches were evaluated and finally SNMP was selected as
a short-term solution, because of its simplicity. In the long-term it was thought
to make way for a different, more elaborate management protocol which was to
be part of the OSI model [34].

Being a part of the TCP/IP suite, SNMP followed a similar development
as TCP/IP. Both were thought to be simple and short-term solutions, as they
would in the future be replaced by the OSI standards. However, since they
experienced a vast deployment in rapid growing networks, both protocols out-
lasted their lifetimes by far. In fact, they are still widely used nowadays and the
OSI models remain reference models. To date, almost all vendors of computers,
bridges, routers, etc. offer SNMP support for their products.

SNMPv1 was released in 1989 followed by a proposal for version SNMPv2 in
1993 and a revision of this version in 1995. Then in 1998 SNMPv3 was issued,
which experienced a big focus shift to security. It extends both SNMPv1 and
SNMPv2. All of these versions are extensions of the following three foundation
specifications [1, p.75]:

• Structure and Identification of Management Information for TCP/IP-
based networks (RFC 1155 [35]).

9

CHAPTER 2. STATE OF THE ART 10

• Management Information Base for Network Management of TCP/IP-based
Internets: MIB-II (RFC 1213 [36]).

• Simple Network Management Protocol (RFC 1157 [37]).

2.1.2 Architecture

The SNMP network management architecture makes a clear distinction between
the roles of SNMP-enabled networked devices and systems. A management
agent is a device or system that is being managed and a management station is
a system from which agents are managed. A management station is sometimes
also referred to as a manager.

The architecture also defines a management protocol, that provides the link
between the managers and agents. Management information itself is standard-
ised and defined in the form of Management Information Bases (MIB). If an
agent is said to support a certain MIB, the manager consequently knows how
to address the agent in order to access information defined in this MIB. The
overall SNMP network management architecture is depicted in figure 2.1.

Many networked devices, such as PC’s, routers, printers, hubs, switches,
etc. can contain an SNMP agent. A manager is the interface for a human
network operator to monitor and configure these networked devices. Therefore
mostly a PC or workstation contains a manager, since these are able to present a
(graphical) user interface to the operator. These systems itself can also contain
an agent, allowing a management application to also manage the system it is
running on. Typical applications on a manager include data analysis and fault
recovery. A manager could for instance also be connected to a database system,
in order to periodically store management information for statistical purposes.

A management agent in its turn, is able to retrieve the actual data from
the device it is running on. An agent either waits for requests from a manager,
or it can initiate action by sending a so-called trap to the manager. Agents
and managers are able to communicate with each other by means of SNMP
primitives, as defined by the SNMP protocol. The key capabilities that these
primitives offer are to get and set management information from an agent by a
manager, and to send trap notifications from an agent to a manager. Traps are
used to inform a manager of unusual events that have occurred on the agent-

Manager

SNMP

Trap

SNMP Request

SNMP Response

SNMP Agent

MIB
MIB

SNMP Agent

3 Com

MIBMIB

SNMP Agent

MIB
MIB

Figure 2.1: SNMP basic operation

CHAPTER 2. STATE OF THE ART 11

Network-dependent protocol

IP

UDP

SNMP

Manager / agent

process

Figure 2.2: SNMP network stack

side, such as a reboot after a crash of the system, a link that is down or some
pre-defined condition that is fulfilled. For instance, if the agent notices that the
percentage of TCP error packets of the total amount of TCP packets is above
a certain level, it can notify the manager by means of a trap.

SNMP is designed to be a part of the TCP/IP protocol suite. Its intended
use is on top of the User Datagram Protocol (UDP) [4], because UDP is con-
nectionless. This would allow a management application to be in full control
of retransmission strategies, in case connections are lost or congestions have
occurred [7]. Also it does not have a lot of protocol overhead. The datagram
headers that need to be created are very small, compared to TCP for instance,
which limits the size of the datagrams [5]. Within the IETF, there has been an
attempt to use SNMP on top of TCP [38], but this is still experimental. Figure
2.2 shows examples of the SNMP protocol stack which should be existent on
both a manager and an agent.

Each manager and each agent must at least implement IP, UDP and SNMP.
This excludes any networked device that does not implement the TCP/IP stack
from being managed by SNMP. There are provisions however, to create so-called
proxy agents in order to translate SNMP requests to a different management
protocol and vice versa. The SNMP agent in this case maintains the manage-
ment information on behalf of one or more non-SNMP devices.

2.1.3 Management Information Base

Resources in a networked device are defined as managed objects. This concept
of an object should not be confused with the concept that is commonly known
from object-oriented programming. These are not the same. In fact, a managed
object is merely a data variable representing one aspect of a resource. For
example, suppose a router is a resource, then the system uptime would be one
aspect of the router. Thus "system uptime" could be called a managed object
in SNMP terminology.

A collection of managed objects that are in some way related to each other
are grouped together in a structured format called a Management Information
Base, also called a MIB module or a MIB. A formal definition of a MIB module
is the following [39]:

"MIBs are specifications containing definitions of management in-
formation so that networked systems can be remotely monitored, con-
figured and controlled."

CHAPTER 2. STATE OF THE ART 12

ccitt (0) iso (1) joint-iso-ccitt (2)

standard (0) registration-

authority (1)

member-

body (2)

identified-

organization (3)

dod (6)

internet (1)

directory (1) mgmt (2) experimental (3) private (4) security (5) snmpv2 (6)

mib-2 (1)

system (1) interface (2) ip (4)

sysObjectID (2)

sysUpTime (3)sysDescr (1)

...

...

...

......

...

...

...

Figure 2.3: SNMP naming tree

The main objective of a MIB is to enhance interoperability across networked
devices. One way this is accomplished is to have managed objects representing
a particular resource the same at each system. For instance, a managed object
representing the system uptime on one system, should have the same name and
function on another system. It would be a great cause of confusion when, for
example, one system would regard it as the time elapsed since the last reboot,
and another system regards it as the time elapsed since the operating system
was installed regardless of any reboots. Such a situation is not feasible of course.

A second way to enhance interoperability is to have a common definition
language for the representation of MIBs: the Structure of Management Infor-
mation (SMI) [35]. SMI is based on the ASN.1 notation, but uses only a very
small subset of it for the sake of simplicity. SMI identifies only several basic data
types and specifies how resources are represented and named. New types can
be defined based on the basic types, but they can only be either scalars (based
on integer, octet string, null or object identifier) or two-dimensional arrays of
scalars (with sequence and sequence of). This rules out all possibilities for more
complex data structures.

Managed objects are arranged hierarchically in a tree structure, where each
leaf represents a managed object. All nodes and leafs in the tree are given a
permanent number, so that each managed object can be uniquely identified on
a single networked device by a sequence of these numbers: the object identifier
(OID). This OID is defined in a MIB where the corresponding managed object
is also defined. An example of (a part of) the SNMP naming tree is given in
figure 2.3.

If for instance someone wants to retrieve the system uptime of a certain
networked device, it has to provide the corresponding OID to the get primitive.
The OID represents the place of the system uptime variable in the naming
tree. Starting from the root, the following path should be followed to reach this

CHAPTER 2. STATE OF THE ART 13

ifTable

ifEntry

ifEntry

ifEntry

...

ifIndex ifDescr ifType ifMtu ifSpeed ...

Figure 2.4: Conceptual table: ifTable (Interfaces MIB)

variable:

iso → org → dod → internet → mgmt → mib-2 →

system → sysUpTime

When the names of the nodes are replaced by the node number, the following
OID is retrieved:

1.3.6.1.2.1.1.3

If this OID is provided with the SNMP get primitive, the addressed agent re-
trieves this value from the system it is running on and sends it to the manager
in a response message.

Two-dimensional arrays are a very simple way (in fact the only way in SMI)
of structuring data. It allows for the creation of conceptual tables: they appear
as tables, but they can only be addressed cell by cell. Such a table consists
of instances of a certain row object-type. For example, the Interfaces MIB [40]
defines an ifEntry object-type. ifEntry itself is a sequence of scalar values, which
are in essence instances of simple object-types. In pseudo-code:

IfEntry ::= SEQUENCE {ifIndex, ifDescr, ifType,

ifMtu, ifSpeed, ...}

The ifTable then is a sequence of instances of ifEntry. In pseudo-code:

ifTable ::= SEQUENCE OF IfEntry

This creates a conceptual table, as depicted in figure 2.4. Nesting of tables is
not allowed, i.e. an element of a table (or of ifEntry in the example) can itself
not be another table. This would make a MIB overly complex and thus is chosen
to allow restrictions of this kind in SMI.

2.1.4 SNMP protocol operations

In section 2.1.2 is already briefly mentioned that agents and managers commu-
nicate with each other by means of SNMP primitives. These primitives are also
referred to as protocol operations. Each operation has a corresponding message
structure to comprise any parameters necessary to fulfill the operation’s goal.

This section will discuss the message structure of the operations defined for
SNMPv2 (and SNMPv3), which is a superset of SNMPv1. The original specifi-
cation can be found in RFC 3416 [41] and the corresponding SMI definitions in
appendix A. SNMPv2 distinguishes several operations: get, get-next, get-bulk
and set are used to retrieve or modify management information on an agent
by a manager. This is done by exchanging request and response messages.

CHAPTER 2. STATE OF THE ART 14

version community SNMP PDU

(a) SNMPv2 message structure

PDU type request-id 0 0 variable-bindings

(b) GetRequest-PDU, GetNextRequest-PDU, SetRequest-PDU, SNMPv2-
Trap-PDU, InformRequest-PDU

PDU type request-id non-repeaters
max-

repetitions
variable-bindings

(c) GetBulkRequest-PDU

PDU type request-id error-status error-index variable-bindings

(d) Response-PDU

name_1 value_1 name_2 value_2 ... name_n value_n

(e) Structure of variable-bindings

Figure 2.5: SNMP message and PDU formats (taken from [1]).

Furthermore, there is an operation trap that is used for agent to manager com-
munication, usually in case some serious problem has occurred. And finally
there is an operation inform for manager to manager communication, usually
to exchange information between higher level applications.

Interaction between managers and agents takes place by the exchange of
messages. Each SNMP message has a general structure. It consists of a version
field (to denote the SNMP version), a community field (used for access control)
and a PDU field. This is shown in figure 2.5(a). A PDU stands for a Protocol
Data Unit and its internal structure is dependent on which operation is com-
prised in the SNMP message. In other words, each operation defines a PDU,
that holds the operation name and its parameters and/or values.

Figure 2.6 shows the message interaction for each operation and shows the
PDUs involved in each exchange. Even though PDUs can have different in-
ternal structures, they all share a PDU type field and a request-id field. The
PDU type field is used to denote what kind of PDU structure follows, e.g. the
Response-PDU. In case there are multiple outstanding requests, there should
be a mechanism to distinguish to which request an incoming response belongs.
This is done by putting a uniquely defined request-id in the corresponding field
of both a request PDU and its Response-PDU. This value should be the same
for each request-response pair.

It is clear from figure 2.6 that operations that require a response message all
use the same PDU for it. The structure of a Response-PDU is shown in figure
2.5(d). Besides the already mentioned PDU type and request-id fields, it has an
error-status and an error-index field. A non-zero value for error-status, means
that an error has occurred and the value denotes the specific error, while the
error-index contains the index of the variable in the variable-bindings list that
caused the error. This will be explained later.

Most PDUs involved in a request also share a similar structure. Figure

CHAPTER 2. STATE OF THE ART 15

Manager Agent

GetRequest-PDU

Response-PDU

(a) GetRequest

Manager Agent

GetNextRequest-PDU

Response-PDU

(b) GetNextRequest

Manager Agent

GetBulkRequest-PDU

Response-PDU

(c) GetBulkRequest

Manager Agent

SetRequest-PDU

Response-PDU

(d) SetRequest

Manager Agent

SNMPv2-Trap-PDU

(e) SNMPv2-Trap

Manager Manager

InformRequest-PDU

Response-PDU

(f) InformRequest

Figure 2.6: SNMPv2 PDU sequences (taken from [1]).

2.5(b) shows the PDU format of the GetRequest-PDU, GetNextRequest-PDU,
SetRequest-PDU, SNMPv2-Trap-PDU and the InformRequest-PDU. The fields
that are used in the Response-PDU for error-status and error-index have a
value of 0 in a request PDU. The one exception is the GetBulkRequest-PDU.
Instead of the two error fields, it has a non-repeaters and a max-repetitions
field. The GetBulkRequest-PDU is added to SNMP to enhance the efficiency of
the GetRequest-PDU in the way it retrieves large amounts of variables. More
information on this can be found in [1].

The main difference between the PDUs used for a certain operation can
be found in the contents of variable-bindings. Its structure is depicted in figure
2.5(e). The variable-bindings field is a list of name-value pairs, where each name
is an object identifier. Depending on the type of PDU, the value is an object
instance value, unspecified, noSuchObject, noSuchInstance or endOfMibView.

For example, a get request will only hold the names of the variables and
each value field should in all cases be set to unspecified. The value fields should
contain the values for each requested variable in the response (unless some
error has occurred, then it is replaced by noSuchObject, noSuchInstance or
endOfMibView). However, the set operation will contain the values already in
its request PDU, since they will be used for modifying the values in an agent.
The result of this operation is then put in the Response-PDU.

Finally, it is worth mentioning that the Protocol Operations for SNMPv2
specification (RFC 3416 [41]) defines one more operation: report. The corre-
sponding PDU would be the Report-PDU, however the usage and semantics
of this operation are not defined and therefore it will not be discussed in this
thesis.

CHAPTER 2. STATE OF THE ART 16

2.2 Web Services

2.2.1 Basic concepts

Many people will nowadays regard the Web as a large collection of web sites,
web portals and all other kinds of information displays. Most certainly this is
and will remain a very important aspect of the Internet. However, the machine-
aware part of the Internet is becoming increasingly important, for it is currently
under heavy development and the technologies look promising. The machine-
aware part referred to is called Web services for which the World Wide Web
Consortium gives the following definition [42]:

"A Web service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed
by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialisation in conjunction with other Web-
related standards".

Simply said, Web services make it possible for machines to communicate with
each other regardless of specific hardware or software that a machine uses. Of
course, the only requirement is that a machine is able to process Web service
requests and responses.

The idea behind a Web service is that an application can easily make use of
operations that are not implemented on the system where it is running on. This
could be useful in case functionality is offered that can not easily be implemented
on each system, such as access to specific information or from a certain company.
Figure 2.7 shows an example of a Weather service that is provided through a
Web service interface. In principle all PC’s, mobile phones and other platforms
that can send Web service requests are able to communicate with this Weather
service and are therefore able to use weather information in their applications.
A possible request could for instance be:

tempRequest("Amsterdam")

This would return the current temperature in degrees Celsius in Amsterdam by
means of the following response:

tempResponse("26")

The possible kinds of requests are of course dependent on what is implemented
on the server-side.

Web services commonly communicate through the exchange of Simple Ob-
ject Access Protocol (SOAP) messages [43]. SOAP is a standardised form of
XML messages, language and platform independent and it allows programs to
communicate through standard application protocols, such as HTTP [44], FTP
[45] or SMTP [46]. However, Web service communication is not limited to
SOAP only. One can for instance also use HTTP-GET or HTTP-POST mes-
sages, instead of SOAP messages. Figure 2.8 depicts a Web service that exposes
two endpoints. Each endpoint can define a different way of accessing the same
service (e.g. SOAP or HTTP-GET).

CHAPTER 2. STATE OF THE ART 17

Server

Other device /

platform

Weather

service

tempRequest("Amsterdam")

tempResponse("26")

Internet

Weather

data

Figure 2.7: Web service: weather service

Service
requester

Web service
provider

endpoint

endpoint

SOAP/HTTP request

SOAP/HTTP response

HTTP GET request

HTTP response

Figure 2.8: Web services communication

There are several characteristics of Web services that make them particularly
interesting to use in a distributed environment: they are standardised, extensible
and discoverable. Standardisation is mainly concerned with the parts of a Web
service that the "outside world" can have a notion of, such as the interface
and the messages. The interfaces are described in a WSDL document, which
shall be explained in more detail in section 2.2.2. SOAP messages are the
most commonly used message format for Web services and subject to continuing
standardisation as well. Having open standards such as these, make it relatively
easy to develop Web service tools and applications.

Web services are by design highly extensible. WSDL documents can be very
simple, using basic elements and data-types (most commonly XML Schema
[47] types), but they can also be defined in a modular manner, distributed to
any extend and using self-defined data-types of any complexity. SOAP also
defines a basic message structure, which can be extended with (extra) headers,
attachments and fault messages. An example of the SOAP message structure
can be found in figure 2.9, which also shows the optional (thus extensible) parts.

An interesting feature and necessary of Web services is the discovery service.
Before a Web service can be used it needs to be discovered, either at design time
or at runtime. Also it is easy to imagine that, with a vast amount of available
Web services, it is difficult to find a particular Web service that serves one’s
needs. One way to tackle this problem, is the definition of a discovery service.

CHAPTER 2. STATE OF THE ART 18

SOAPMessage

SOAPPart

SOAPEnvelope

SOAPBody

XML-content (if any)

SOAPFault (if any)

SOAPHeader (optional)

headers (if any)

AttachmentPart (optional)

MIME Headers

Content (XML or non-XML)

...

source: The Java Web Services Tutorial 1.0

Figure 2.9: SOAP message structure

One approach that is tightly linked to Web services is Universal Description,
Discovery and Integration (UDDI). The OASIS UDDI Technical Committee [48]
gives the following goal of UDDI:

"UDDI specifications form the necessary technical foundation for
publication and discovery of Web services implementations both within
and between enterprises".

Discovery forms a very important part of the Web services architecture. Figure
2.10 provides a schematic overview of the architecture and the relations between
a service provider, a service requester and the UDDI server.

In the past there have been similar approaches to provide coupling between
applications, such as XML-RPC [49], CORBA [50], Java RMI [51] and simi-
lar technologies. But these are either very extensive in functionality (CORBA)
having only few people familiar with it, not standardised by industry agreement
(RMI) or rather ad hoc by nature. Web services seem to gain a lot of industry
support, according to the involvement of companies such as Microsoft (.NET
Web services) [52], IBM (Websphere Application Server) [53], HP (Web Services
Management Framework) [30], SUN (Java Web Services Developer Pack) [54],
Novell (Novell exteNd) [55], BEA Systems (WebLogic Server) [56] and organi-
sations such as Apache (Axis and the Jakarta Tomcat server) [57].

CHAPTER 2. STATE OF THE ART 19

Web service

requester
UDDI

Web service

provider

Publish WSDL

Find Web service

Retrieve WSDL

SOAP/HTTP response

SOAP/HTTP request

Figure 2.10: Web services architecture

2.2.2 Web Service Description Language

A Web service is described in a Web Service Description Language (WSDL)
definition [58], which is an XML-based standard. A WSDL document defines
the operations, which messages are used for an operations , via which protocols
(SOAP, HTTP, etc.) an operation can be accessed and on which location (i.e.
the IP number or domainname) the Web service resides.

For the explanation of the most important WSDL elements, definitions from
WSDL version 2.0 will be used. The main differences with the previous version
(1.1) is that operation overloading has been removed, the element <porttype>
is now called <interface> and <port> is now called <endpoint>. An example
of a WSDL document is shown in listing 2.1. This lists the main elements and
shows the relation between them.

A WSDL document has <definitions> as root element. Namespaces can
be defined as attributes of this element. Each Web service is defined by means of
a <service> element and can be accessed through endpoints. An <endpoint>

specifies at which address this particular service can be accessed and which
protocol should be used for that. Suppose a Web service can be accessed us-
ing both HTTP GET messages and SOAP messages over HTTP, the locations
of both endpoints need not necessarily be the same. Listing 2.1 shows that
the connectionManagementService can be accessed only with SOAP at location
"http://example.com/cms". If this service can also be accessed with HTTP
GET messages, it should have a second endpoint such as in listing 2.2 which
also shows how the location of each endpoint can be different.

An interface exposes the operations of the Web service. This can be com-
pared to a function library or a class in a common programming language.
Within an operation one can define what the input and output messages are
with the <input> and <output> elements. Each of these elements corresponds
to a (SOAP) message exchanged between the client and the service. The struc-
ture of such a message is defined in a <message> element to which the input
or output refers. A message can be split up in several parts, each described by
a <part> element. Each part has a certain data-type (most commonly XML
Schema types). However, types can also be described at WSDL level by means
of the <types> element.

An <interface> contains abstract descriptions of the Web service opera-

CHAPTER 2. STATE OF THE ART 20

<definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

<types />

<message name="getNumberOfTcpConnsRequest">
<part name="index" type="xs:int"/>

</message>

<message name="getNumberOfTcpConnsResponse">
<part name="tcpconns" type="xs:int"/>

</message>

<interface name="cmsStatistics">
<operation name="getNumberOfTcpConns">
<input message="getNumberOfTcpConnsRequest"/>
<output message="getNumberOfTcpConnsResponse"/>

</operation>
</interface>

<binding name="cmsSoapBinding" type="cmsStatistics">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getNumberOfTcpConns">
<soap:operation soapAction="http://example.com/cms/getNumberOfTcpConns"/>
<input>
<soap:body use="literal"/>

</input>
<output>
<soap:body use="encoded" namespace="http://example.com/cms/message/"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
</binding>

<service name="connectionManagementService">
<endpoint name="cmsSOAP" binding="cmsSoapBinding">
<soap:address location="http://example.com/cms"/>

</endpoint>
</service>

</definitions>

Listing 2.1: WSDL example

<service name="connectionManagementService">
<endpoint name="cmsSOAP" binding="cmsSoapBinding">
<soap:address location="http://example.com/cms"/>

</endpoint>
<endpoint name="cmsHTTP" binding="cmsHttpGetBinding">
<http:address location="http://example2.com/cms"/>

</endpoint>
</service>

Listing 2.2: Endpoints

CHAPTER 2. STATE OF THE ART 21

tions while a <service> element more concretely describes where this interface
is located, i.e. the server address is defined here. Listing 2.2 shows how two
endpoints reside on two different servers.

The mapping of the interface to a location is done with a binding. A binding
specifies what kind of messages are exchanged and in which style. In the example
SOAP messages are used over HTTP, which is defined in the <soap:binding/>

element. For each message that is defined in the interface, the binding specifies
how the contents should be interpreted: the encoding.

2.3 Model-Driven Architecture

2.3.1 Introduction

Over the last decade the Object Management Group (OMG) [21] has been
involved in developing specifications and standards in order to support the de-
velopment of (distributed) systems. Two of their main achievements are the
standardisation of an Object Request Broker as part of the Common ORB Ar-
chitecture (CORBA) [50] and later the development and standardisation of the
object modelling language UML (Unified Modelling Language) [59].

Unfortunately, to date UML is mostly used for informal modelling: describ-
ing some basic functionality or concepts of the system under development [60].
The reason for using UML is that it is by now widely understood by many
software engineers and UML notations have very specific meanings that should
leave no room for different interpretations. Informal models, be it in (partial)
UML or in a natural language (English), can not be used for code generation
or dynamic execution models. This requires precise (computational complete)
models, which then requires more time and effort be put in (UML) modelling.

Sometimes modelling a system or application is not even always done before
implementation starts [61]. Therefore, to promote the usage of modelling, and
mostly formal modelling, the OMG has adopted a new framework for software
engineering: Model-Driven Architecture (MDA), which they call "just another
evolutionary step in the development of the software field" [62]. Unlike for in-
stance CORBA, MDA is not a framework for the implementation of distributed
systems, but rather an approach to using models in software engineering in or-
der to ensure interoperability, portability and reusability. In an increasingly
integrated environment where technologies keep evolving and new "hot" tech-
nologies arrive each 18 months or so, it is ever more important to develop
applications that outlast the technologies they are based on.

Nowadays, technologies typically evolve much faster than applications that
make use of them. Therefore either new technologies have to be concerned with
being backwards compatible, or applications need to be altered and fit for an
updated or new technology. This last part is the most interesting part and a
focus area of MDA technology. Even though the logic of an application does
not change, it may still need to be adjusted to adhere to a new technology. All
together, this stresses the need for fully-specified platform-independent models,
including their behaviour.

CHAPTER 2. STATE OF THE ART 22

2.3.2 Basic concepts

Modelling

The two basic concepts of MDA are models and metamodels. A model is a
representation of a part of the function, structure and/or behaviour of a system
[63]. If the system is a house, a model can be its architectural blueprint, if
it is a software application, a model can be a collection of UML diagrams. A
metamodel can be explained as being a set of the constructs/rules for creating
a model.

With the use of metamodels, 3 levels of model abstraction can be distin-
guished: the model itself (level M1), instances of the model (level M0) and the
metamodel level (level M2). For example, suppose a system is modelled us-
ing UML diagrams, then level M1 represents these diagrams. Level M0 is the
implementation of these diagrams, i.e. the objects/classes written in a certain
programming language. Level M2 should then be seen as a language that de-
fines the constructs of UML diagrams and the rules that can be applied in each
diagram.

M3 MOF (meta-metamodel)
M2 UML, IDL, etc. (MOF metamodels)
M1 UML models, IDL interfaces, etc. (models/metadata)
M0 Objects (instance data)

Table 2.1: Model level hierarchy (taken from [2]).

The Meta-Object Facility (MOF) [64] defines (using its own constructs) a
small set of constructs, which can be extended by composition and inheritance
in order to define a model that contains richer constructs and rules. In other
words, MOF constructs can be used to define metamodels such as the UML
metamodel. That means that MOF is in fact a meta-metamodel and can be
referred to as level M3. Level M0 to M3 with examples of possible models are
depicted in table 2.1.

System design

The basic idea of MDA is to model a complete system, by comprising different
aspects of that system in separate models. The set of all models should then
describe the complete system. The design of a system is usually split up in parts
using certain abstraction criteria, such as viewpoints or abstraction levels [22].

When a system is decomposed in different abstraction levels, the concepts of
abstraction and refinement are used. Abstraction is the act of omitting irrelevant
details in a model in order to obtain a simpler view on the system. Refinement
is exactly the opposite: adding more detail to a model in order to obtain a more
complex, yet concrete, view on the system. Figure 2.11 gives an idea of a model
hierarchy that is created this way.

Furthermore, MDA identifies three main viewpoints on a system, all of which
focus on distinguishing specific issues that are of concern for that system. The
Computation Independent Viewpoint focuses on the environment of a system
and its requirements, regarding the inner structure as transparent and keep-

CHAPTER 2. STATE OF THE ART 23

refinement

refinement

refinement

abstraction

abstraction

abstraction

Figure 2.11: Modelling abstraction levels

ing the detail hidden. The Platform Independent Viewpoint does focus on the
inner structure of a system, but in a platform-independent manner. This view-
point shows the operation of the system in details that will not change from
one platform to another. Finally, the Platform Specific Viewpoint combines the
platform-independent view with platform-specific details. Examples of plat-
forms include operating systems (Microsoft Windows, Linux, MacOS, etc.) and
middleware platforms (CORBA, Web services, .NET, etc.) [22]. For complete-
ness should be mentioned that MDA is not limited to these three viewpoints
only, and where necessary other viewpoints can and should be used.

These three viewpoints have corresponding models: the Computation Inde-
pendent Model (CIM), the Platform Independent Model (PIM) and the Plat-
form Specific Model (PSM). All of them can be specified or defined in their own
specific modelling language, be it a formal (graphical) modelling language like
UML or plain natural language.

A CIM does not show any details of the internal structure or implementation
of systems. It can be regarded as a requirements specification of a system. It
should also show how the system will behave in its environment, i.e. what the
system is expected to do. Typically, a CIM does not expose any platform specific
details. A PIM gives a view on the internals of a system, without going into
detail on the implementation issues for a particular system. Of course, generally
a model can not be kept independent from all platforms that exist now and will
be developed in the future. So normally a PIM will be developed with a number
of platforms of a similar type in mind. Abstraction is then realised by specifying
the system’s internal structure in, for these platforms, general terms. Finally a
PSM combines this PIM with detail of a specific platform, thereby making it
clear how the system will make use of this particular platform.

CHAPTER 2. STATE OF THE ART 24

Source

metamodel

Target model

Target

metamodel

Source model

Transformation
instance ofinstance of

apply transformation

define transformation

can influence

Figure 2.12: MDA model transformation

2.3.3 Model transformation

One of the main ideas of MDA is model transformation: "the process of convert-
ing one model to another model of the same system" [62]. Model transformation
shows the real strength of MDA, namely the ability to support a system through-
out its entire lifetime and not throughout the lifetime of the platform(s) it is
based on [22]. Suppose new platforms arrive in the future on which systems are
required to work as well. All that needs to be done is defining a suitable map-
ping for the system onto that new platform and each model can be transformed
to those as well. Apart from reducing cost and effort of deploying a system on
multiple existing platforms, it eventually should also reduce the cost of porting
software to future platforms.

This is an example of a PIM to PSM transformation, sometimes also re-
ferred to as a mapping. But model transformation is not limited to this kind
of mapping alone. A PIM can be transformed to another PIM, to refine certain
aspects of a model without introducing platform specific details. Conversely, it
can also be used to abstract from certain details. PSM to PSM transformations
can be used in a similar manner, namely to abstract or refine models targeted
for a specific platform. Finally it can also be interesting to have PSM to PIM
transformations, for instance in case of reverse engineering. It is an effort to
abstract from platform specific details, resulting in a PIM, which could then
be deployed on different platforms using some mapping. The idea of model
transformation is depicted in figure 2.12.

Depending on the transformation model that is used, it may be necessary to
provide additional information to aid the process of generating a target model.
The transformation process can be influenced by defining model markings or
specifying transformation parameters. Model marking is the act of applying
marks to the source model, which describe how certain model elements should be
translated to elements in the target model. Therefore marks may contain certain
platform specific details. Transformation parameterisation is a possibility for
a user to influence a particular transformation, for instance to make certain
design decisions explicit in the target model. These parameters generally apply
to a certain transformation only and could be different for transformation of a

CHAPTER 2. STATE OF THE ART 25

different source model.
Model transformations can prove to be highly useful when the transforma-

tion process is automated, using a certain MDA tool. An MDA tool should
therefore allow models to be marked or transformations to be parameterised.
For very common transformations, tools could already be provided with generic
transformation models, like code generators.

Chapter 3

Web services for network

management

One of the incentives of this thesis is the expectancy of the Web services infras-
tructure to become widely available in future operating systems and developing
platforms. Currently, this trend can already be noticed in the software develop-
ment area where many tools are already prepared for the design of Web services.
This means that many people will become acquainted with Web services and
its applications. This is a big contrast with the domain specific SNMP protocol
and architecture. Of course network management will remain a rather spe-
cific domain, but with applying generic technologies it will hopefully be easier
understood and increasingly used.

Section 3.1 will describe how Web services can be applied to perform net-
work management. Pre-defined message exchange patterns seem very helpful in
defining an operation’s messages. Interface extensibility may prove its useful-
ness when additional operations need to be exposed in standardised interfaces.
These topics are discussed in section 3.2 and 3.3 respectively. Finally, apart
from the Web services basic standards, there are many efforts to offer addi-
tional features on top of Web services. Some interesting additional efforts will
be mentioned in section 3.4.

3.1 Performing network management with Web

services

Web services and SNMP share very similar concepts with regard to the way com-
munication between entities is done. Messages containing request or response
information are exchanged, they are of a certain pre-defined format, operations
are invoked on one side of the communication line, and performed on the other
side. But whereas SNMP is solely used for network management, Web services
can be used for any kind of message exchange, or remote operation invocation.
This very difference is a key incentive in performing research in the usefulness
of Web services for network management.

SNMP network management is based on the manager-agent paradigm: net-
worked devices that are being managed all have an SNMP agent running,

26

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 27

Manager

SOAP
Request

SOAP Request

SOAP Response

3Co m

Web service

Web service
Web service

Web service

Figure 3.1: Principle operation of WS-based network management

whereas a manager is usually installed on one or more workstations, having
a user interface to allow a network administrator to perform network manage-
ment. The manager is able to send requests to and handle responses from these
SNMP agents. When Web services are applied, the agent-side will be referred
to as the service provider and the manager-side as the service requester. This
entails that each networked device will contain a certain web server, capable of
handling Web services. The principle operation is depicted in figure 3.1.

SNMP agents are commonly able to send traps or notifications to a manager.
For Web services this would result in a situation where a service provider should
also be able to play the role of service requester, and invoke operations on
the manager-side. The manager will then act as a service provider instead of
requester. This leads to the situation where both the agent and the manager
can be a service requester or provider, and that both should contain a Web
service (HTTP) server and a Web service (HTTP) client. This situation has
also been distinguished in [7].

As explained in section 2.2 Web services most commonly make use of SOAP
messages for its message exchange, although SOAP is not mandatory. For clar-
ity purposes, SOAP messages are used as the preferred message standard in this
thesis. The structure of the body of a SOAP message is defined in a WSDL doc-
ument and the operations define which particular SOAP messages are involved
in the communication process. This message structure does not necessarily need
to match the SNMP messages, especially since SOAP and WSDL could make
way for richer message structures. For instance, compound structures could be
defined to easily transfer complete tables, or perhaps even whole configurations.

With regard to operations, it is explained in section 2.1 that for SNMP a
small set of generic operations was standardised. It is possible to map these
operations directly onto WSDL operations, but Web services may provide a
richer set of operations. Whether this is feasible or not remains to be seen and
could likely be the topic of more research. Section 4.2 provides an overview
of possible forms of operations in case of operation standardisation. WSDL
provides a mechanism for the extension of interfaces with operations, that may
provide valuable when standardised operations do not fulfill particular needs.

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 28

Network-dependent protocol

IP

UDP

SNMP

TCP

HTTP, SMTP, FTP, ...

SOAP

UDDIWSDL

Figure 3.2: Simplified network layer stack

More on this in section 3.3.
The fact that SNMP relies on UDP for its message exchange is a cause of

some concern [5, 6]. UDP is a connectionless and unacknowledged transport
protocol, meaning that messages are sent to a receiver in a best-effort way. It
has no way of verifying that a packet has reached its destination, nor can a
sender guarantee that packets will arrive in the right order. It is therefore also
known as an unreliable protocol. Any verification or retransmission should be
done in applications that are using UDP.

Web services are meant to be used on top of higher-layer (application layer in
the TCP/IP stack) protocols, such as HTTP, SMTP or FTP. Figure 3.2 depicts
a simple network layer stack, which shows the position of both WSDL/UDDI
towards SNMP. It shows that eventually Web services use TCP [65] for packet
transportation. In contrast with UDP, TCP is a reliable and connection-oriented
protocol. It has mechanisms for retransmission and makes sure data arrives
undamaged and in the right order. Therefore when Web services are used over
TCP, in principle one can be sure that messages arrive at its destination without
errors. There are exceptions, for instance when a message is transferred over
multi-hop networks, including intermediaries that can inspect and process SOAP
headers.

What remains a question is which kind of functionality is required or feasible
for network management. For SNMP the choice for UDP was deliberate: when
management messages are sent in a best-effort way while there is a network
congestion, it is likely that at least some messages will arrive. This makes at
least some form of management possible, be it rather difficult. With TCP on the
other hand, the connection needs to be set up first and packets need confirmation
to keep the protocol reliable. This results in sending more packets over a network
for the same management message (request-response), making management even
more difficult and less likely to be possible in case of congestion. On the other
hand, when transferring large amounts of data TCP could be more efficient. In
case much data is transferred with TCP, it is divided over a number of packets.
If an error occurs in a single packet, TCP is able to detect that, takes care of
retransmission of this packet and puts all packets together in the right order.
With UDP this is not possible. If one datagram is damaged, all other datagrams
also need to be retransmitted. Probably experience with Web services needs to
show whether TCP is suitable for network management or not. It could prove

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 29

to be useful to test the performance of Web service in a congested network, or
with heavy noise on the cable resulting in a high error-rate.

3.2 Message exchange patterns

An interesting part of the WSDL standard is that it provides an accompanying
standard for the definition of so-called message exchange patterns (MEP) or
simply message patterns. These patterns may be applied to operations exposed
by Web service interfaces. For each particular operation they define which
message interactions can take place between a Web service provider and a service
requester. A pattern also defines the type of messages (normal or fault) and in
which direction these messages are sent (from or to the service provider).

As mentioned in section 2.1 SNMP distinguishes two types of interaction
patterns: request-response and trap/notification. These patterns explain how
interaction between an SNMP manager and an SNMP agent can take place: a
manager sends a request message to an agent and receives a response message
in return (two-way), or an agent sends a trap message to the manager (one-
way). SNMPv2 also defines manager to manager interaction by means of the
notification primitive, which works like a confirmed trap (two-way, but service
provider initiated).

With regard to Web services, such patterns can be defined in a WSDL docu-
ment. WSDL version 2.0 part 2 [66] provides the definition of so-called message
patterns, which extend the simple request-response and notification patterns
known from SNMP as well as the SNMP-like patterns from WSDL 1.1 (one-way,
request-response, solicit-response, notification). These WSDL message patterns
also include fault generation rules: for each message pattern is defined whether
or not it can trigger any fault messages, and the kind of fault message.

Message pattern Interaction pattern Fault rule

In-Only Figure 3.3(a) No Faults
Robust In-Only Figure 3.3(b) Message Triggers Faults
In-Out Figure 3.3(c) Fault Replaces Message
In-Optional-Out Figure 3.3(d) Message Triggers Fault
Out-Only Figure 3.3(e) No Faults
Robust Out-Only Figure 3.3(f) Message Triggers Faults
Out-In Figure 3.3(g) Fault Replaces Message
Out-Optional-In Figure 3.3(h) Message Triggers Faults

Table 3.1: WSDL 2.0 message exchange patterns.

Table 3.1 gives an overview of the nine message patterns, each referring to
figure 3.3 which shows how interaction takes place for each message pattern. The
fault rules of the last column specify how fault messages relate to the message
pattern. There are three types of fault rules distinguished: No Faults, Message
Triggers Faults and Fault Replaces Message. As its name already implies, No
Faults means that no fault messages may be generated. Suppose the message
pattern of an operation from a service provider is defined as In-Only, such as in
listing 3.1. If this operation is called and an error occurs on the service provider

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 30

Service

requester

Service

provider

1

(a) In-Only

Service
requester

Service
provider

1

(b) Robust In-Only

Service
requester

Service
provider

1

2

(c) In-Out

Service
requester

Service
provider

1

optional

(d) In-Optional-Out

Service

requester

Service

provider

1

(e) Out-Only

Service

requester

Service

provider

1

(f) Robust Out-Only

Service
requester

Service
provider

1

2

(g) Out-In

Service
requester

Service
provider

1

optional

(h) Out-Optional-In

Figure 3.3: WSDL message exchange patterns.

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 31

<interface name="fooInterface">
<operation name="fooOperation" pattern="http://www.w3.org/2004/03/wsdl/in−only">
<input message="fooInput"/>

</operation>
</interface>

Listing 3.1: MEP: In-Only

<interface name="fooInterface">
<operation name="fooOperation" pattern="http://www.w3.org/2004/03/wsdl/robust−in−

only">
<input message="fooInput"/>
<outfault messageLabel="fooOutFault"/>

</operation>
</interface>

Listing 3.2: MEP: Robust In-Only

side, the service requester should not be notified of this in a fault message.
If delivering of fault messages is feasible, a Robust In-Only message pattern
should be used, which has the fault rule Message Triggers Faults. This message
pattern is similar to In-Only with the difference being the ability to return a
fault message to the originator, as shown in listing 3.2.

The following definition for Message Triggers Faults is provided by the
WSDL 2.0 specification [58]:

"For the pattern message-triggers-fault, the message that the fault
relates to identifies the message after which the indicated fault may
occur, in the opposite direction of the referred to message. That is,
the fault message will travel in the opposite direction of the message
it comes after in the pattern.".

It also provides the following definition of Fault Replaces Message:

"For the pattern fault-replaces-message, the message that the
fault relates to identifies the message in place of which the de-
clared fault message will occur. Thus, the fault message will travel
in the same direction as the message it replaces in the pattern.".

An example of this last fault generation rule is the In-Out message pattern.
Using this pattern, the normal way of interaction would be that upon receiving
a message from the requester, the service provider would return a message to
it. However, in case of an error at the provider side, the output message will
not be returned. Instead, a fault message is generated and replaces the normal
output message. An example of this is shown in listing 3.3.

Message patterns that start with an initiating message from a service provider
to a requester, are variants of what sometimes is also called the publish-subscribe
paradigm. Service requesters subscribe to a certain service from a provider, en-
abling this provider to send each requester a message whenever a certain event
has occurred, like for instance when new information has become available [67].
WSDL even allows for the requester to send response or fault messages back to
the service provider.

The above message patterns provides a greater variety of interaction patterns
compared to SNMP . The request-response and trap interaction patterns from

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 32

<interface name="fooInterface">
<operation name="fooOperation" pattern="http://www.w3.org/2004/03/wsdl/in−out">
<input message="fooInput"/>
<output message="fooOutput"/>
<outfault messageLabel="fooOutFault"/>

</operation>
</interface>

Listing 3.3: MEP: In-Out

SNMP can best be compared with the message patterns In-Out and Out-Only
from WSDL. In normal operation an SNMP manager sends a request to an
SNMP agent and receives a response message. If an error has occurred on the
agent with processing the request, this is send to the manager as response. This
is an example of Fault Replaces Message and thus the In-Out pattern. Traps
are sent from an agent to a manager, which clearly corresponds to the Out-Only
pattern, since the manager can not be triggered to return a fault message to the
agent.

3.3 Interface extensibility

In the following chapter issues with regard to standardisation of WSDL inter-
faces, operations, messages, etc. for network management are being discussed
in detail. This section will explain how WSDL interfaces can be extended with
more operations. This can prove to be very useful, for instance when certain
Web service operations have been standardised, but a vendor would like to pro-
vide extra, proprietary management operations. Both NetConf and the WSMF
provide this functionality as well (see section 1.5).

Extensibility of an interface is the possibility for an interface to extend one
or more other interfaces. In that case an interface exposes all operations of the
interfaces it extends, along with any operations it defines. The only restriction
is that the extended interfaces themselves can not extend the interface that is
used for extending, because that would create a loop. For example, interface A
can extend interface B, but then interface B is prohibited to extend interface A.

interface exposed operations

intf1 op1, ...
intf2 op2, ...
intf3 op1, op3, ...
intf4 op1, op2, op4, ...

Table 3.2: Interface extension.

Interface extension can be achieved in WSDL by using the attribute extends
for the <interface> element, with its value pointing to one or more other
interfaces. To illustrate this mechanism, consider the interfaces intf1 and intf2
that expose the operations op1 and op2 respectively from listing 3.4. Interface
intf3 shows how interface intf3 is extended and thus exposes the operations op1
and op3, as is also shown in table 3.2. Furthermore intf4 extends both intf1
and intf2, thereby exposing the operations op1, op2 and op4.

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 33

<interface name="intf1">
<operation name="op1" ... />
...

</interface>

<interface name="intf2">
<operation name="op2" ... />
...

</interface>

<interface name="intf3" extends="intf1">
<operation name="op3" ... />
...

</interface>

<interface name="intf4" extends="intf1␣intf2">
<operation name="op4" ... />
...

</interface>

Listing 3.4: Interface extension

3.4 Additional Web service standards

Apart from SOAP and WSDL, which can be considered the basic standards,
there are many additional efforts, proposals and standards that offer some spe-
cific functionality, such as for transactions, security, reliability, etc. These efforts
tackle many common issues with regard to distributed systems, and therefore
inherently also for issues with network management. Since they are quite large
in number and generally rapidly evolving, they will be mentioned briefly with
references to the responsible company/standardisation body.

3.4.1 Security

Even though SNMP defines security provisions (in version 3), for certain reasons
this is not always used [68]. One reason could be that security is self-contained
and kept as independent as possible from other network services [7]. Something
that would make it much easier for developers is when existing security standards
and implementations can be reused, which is exactly that Web service-based
security efforts attempt to accomplish.

WS-Security (version 1.0) [69, 70] and the Security Assertion Markup Lan-
guage (SAML version 1.0) [71], both adopted by OASIS, are some of the im-
portant efforts currently underway for securing Web services. In essence, WS-
Security defines how to construct secure SOAP messages. One core definition of
WS-Security is about how to use XML-Signature [72] and XML-Encryption [73]
with SOAP messaging. Another important definition is concerned with passing
security tokens in SOAP messages. This type of security is thus focussed at
encryption of the communicated messages.

SAML is a markup language that gives a specification for exchanging autho-
risation and authentication information. It includes bindings for WSDL/SOAP
and could therefore be used in conjunction with Web services. It is very im-
portant for Web services security to have it integrate well with existing key
and credential management infrastructure. A related standard is the XML Key
Management Specification (XKMS) [74] which defines a protocol for distributing
and registering public keys used in encrypting and decrypting messages.

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 34

Apart from Web services-related security measures, secure application pro-
tocols such as HTTPS [75] and S/MIME [76] could also be used. These can
most certainly also be used for establishing secure connections to be used for
SOAP message transport.

3.4.2 Transactions

Important initiatives that offer transactional functionalities are Web Services
Choreography (WSCI version 1.0) [77], Business Process Execution Language
for Web services (BPEL4WS version 1.0) [78] and the WS-Transaction Frame-
work [79, 80, 81]. These initiatives are more or less overlapping, so it is just a
matter of time to wait and see which kind of model will be implemented and
used. A more extensive description and comparison of these initiatives can be
found in an online article [82].

3.4.3 Reliability

In section 3.1 it was said that using TCP could make sure that SOAP messages
are delivered correctly, once and in the right order. However, it could be possible
that the SOAP messages need to travel over different networks (for example
from internet onto the intranet) and thus several hops all using a different
application protocol. Consider the case that SOAP is transported over HTTP
on one hop and SMTP on another. Sometimes it is feasible to still support
end-to-end reliable messaging, like in business operations such as the placement
or cancellation of an order. These messages need to be reliably delivered and
acknowledged [83]. To tackle this problem, WS-Reliability (version 1.0) [84]
has been proposed by a number of companies and adopted by OASIS as WS
Reliable Messaging [85] for further development. WS-reliability defines extra
SOAP headers to ensure reliable messaging.

3.4.4 Summary

The list of Web service additions seems almost ever growing. The most im-
portant ones for network management have been discussed in this section, but
many more exist, like: WS-Inspection, WS-Routing, WS-Referral, Web Ser-
vices Flow Language (WSFL) and the WS-Notification family of specifications
(WS-BaseNotification, WS-BrokeredNotification, WS-Topics).

Web services are relatively new and its base standards (WSDL and SOAP)
are still in their very early versions and constantly evolving. This holds even
more for the additional "standards", most of which have just reached a version
1.0 and only recently been handed over to a standardisation body like the W3C
or OASIS.

For completeness, an overview of the main Web service standards as well as
several additional standards is provided in figure 3.4. It is an attempt to place
them in relation with SOAP and WSDL, as well as with each other.

CHAPTER 3. WEB SERVICES FOR NETWORK MANAGEMENT 35

S

E

C

U
R

I

T

Y

M

A

N

A

G
E

M

E

N

T

XML-SIG,

XML-

Encryption,

SAML,

XKMS,

WS-Security,

WS-License

COMMUNICATIONS
HTTP, SMTP, FTP, ...

B
 a

 s
 e
 T

 e
 c
 h

 n
 o

 lo
 g

 ie
 s
 : X

 M
 L
 , S

 c
 h
 e

 m
 a

Descriptions
WSDL

Messages

SOAP

SOAP Extensions
WS-Reliability, WS-Routing, WS-Referral

B
a

s
e
 T

e
c
h

n
o

lo
g

ie
s
:

X
M

L
,

S
c

h
e

m
a

Extensions

Discovery
UDDI, WS-

Inspection

Transactions
BTP, BPEL4WS,

WS-Transaction

Process Flow
WS-Choreography,

XLANG, WSFL

Figure 3.4: Web service related standards

Chapter 4

Standardisation

The previous two chapters have presented the basic concepts of Web services
and given an approach of how to apply Web services to network management
respectively. But as with other management approaches, standardisation is a
very important issue for the acceptance and usability of a particular approach.

This chapter will focus on the important parts of Web services that can
be used for standardisation. As the previous chapter 3 has shown, there are
many standards or other proposals related to Web services. Most of these focus
on certain aspects of the Web services architecture and thus specify SOAP or
WSDL extensions. This thesis regards network management as an application
that can make use of the Web services architecture, hence standardisation for
network management should also be based on the already existing Web service
standards.

Therefore section 4.1 will discuss the modular capabilities of WSDL and ex-
plain why only a part of a WSDL definition can and should be standardised
for network management. This part of a WSDL document contains operation
and message definitions, both of which can have forms that vary significantly
depending on the envisioned users and applications. This thesis considers a
solution space with regard to standardisation of operations and messages in sec-
tion 4.2. This will also include a discussion on the merits of extremes in the
solution space. Finally this chapter concludes with an overview of possible mod-
elling approaches for a management information model in section 4.3. This is
accompanied by an explanation on the difference between data and information
models.

4.1 WSDL modularisation

WSDL provides a mechanism to describe a Web service in a modular manner.
This means that a WSDL document can be split up in parts and each part
can be stored in a separate document, even at separate locations. For example,
messages and interfaces could be defined in a single document, enabling another
WSDL document to omit messages and interfaces by importing them instead.
This enhances the reusability of the first document in such a way, that it can
also be used for the definition of messages and interfaces of a WSDL document
with a different service and/or binding component.

36

CHAPTER 4. STANDARDISATION 37

<definitions>
<import location="http://example.com/wsdl/foo_interface.wsdl"/>

<binding>...</binding>

<service>...</service>
</definitions>

Listing 4.1: Import of interface WSDL

This functionality is achieved by the elements <import> and <include>.
Both elements provide the same functionality of separating different components
of a WSDL description, but <include> does this for components from the same
target namespace, whereas <import> is used for different target namespaces
[58]. Listing 4.1 gives an idea of how interfaces are imported from a separate
WSDL document, having only the binding and service elements defined in
the main WSDL document.

The UDDI Technical Committee (see section 2.2.1) recommends a division of
WSDL documents into two separate WSDL definitions. One is the "service in-
terface definition" part, which should contain the <types> (if any), <message>,
<interface> and <binding> elements. The other WSDL definition is the "ser-
vice implementation definition" part, which should contain the <service> ele-
ment. Like the names suggest, it is an attempt to split up a WSDL definition
in an interface part and an implementation part.

The above recommendation is an attempt to provide a best practice in mod-
ularising WSDL documents. However, it can be argued that bindings are better
defined separate from the service interface definition. In principle, a binding
bounds an interface to a certain message protocol (SOAP). But for standard-
isation it is more interesting to focus on the abstract definition, regardless of
any protocol. On the other hand, bindings could possibly also be standardised
separately, thereby making operations available through a default protocol and
defining a standard encoding of the message parts. But it should not be part of
a standardised abstract interface definition. Figure 4.1 shows how a WSDL doc-
ument is built up, when a modular approach is used. This shows how a WSDL
document can be separated into an abstract part containing the messages and
interfaces (the what part), and two concrete parts: a binding (the how part)
and a service (the where part).

For standardisation, the abstract part of a WSDL document is the most
important, since the operations and messages are defined here. When standar-
dising the abstract part of a WSDL definition, the need for a modular approach
is again stressed by the fact that standards should be defined independent from
each other and for different purposes, whilst running on the same management
agent and offering a similar means of access. Much like SNMP, where for exam-
ple the IF-MIB [86] and Host-resources MIB [87] are also defined by different
persons, each standardising a disjoint set of management information, while all
information from both MIBs can be accessed in a similar manner.

CHAPTER 4. STANDARDISATION 38

WSDL document

<binding name="foobar"
 type=”foo”>

 <operation name=”get”>

 <input>...</input>

 <output>...</output>

 ...

 </operation>

</binding>

<types />

<message name="getRequest">...</message>

<message name="getResponse">…</message>

<interface name="foo">

 <operation name="get">

 <input message="getRequest"/>

 <output message="getResponse"/>

 </operation>

</interface>

 <service name="foobarService">

 <endpoint name="foobarEndpoint"

 binding="foobar">

 ...

 </endpoint>

 </service>

</definitions>

Import

Import

<definitions>

Figure 4.1: WSDL import mechanism

4.2 Management operations

The modularity of WSDL documents show how it is possible to define (and
standardise) operations, messages and types irrespective of binding and service.
The question remains what form operations, messages and types should take in
order to provide feasible functionality. This section will provide an overview of
the solution space.

4.2.1 Operation definition extremes

Now that is made clear how messages can be exchanged and what the corre-
sponding interaction patterns are, it is time to have a closer look at the op-
erations where these messages take part in. Messages and message exchange
patterns are merely a means of structuring the parameters that an operation
expects, their order and the possible fault messages. But it does not specify the
functionality of an operation or what the result is after calling the operation.

Just as with SNMP, that uses a few generic operations, there needs to be
agreement on which operations are to be supported for Web services. Of course,
a very simple way is to translate SNMP operations directly to corresponding
Web service operations, but Web services can provide more flexibility without
necessarily increasing the complexity. Two extreme approaches are distinguished
in [7]. One approach has basic operations on WSDL level, such as get and set,
with parameters passed as opaque types. This means that parameters are not
defined at WSDL level, although it is possible to specify them on a higher-
level XML schema. Another approach is to define separate operations for each
managed object, such as getIfInOctets or changeIfoperationalStatus that both
provide management functionality for a part of a network interface. These

CHAPTER 4. STANDARDISATION 39

operations only expect one parameter which is the index of the interface, to
distinguish it from other interfaces in the same system.

This thesis states that in theory there are four different extreme approaches
for the definition of management operations. As the example above already
mentions, there can be a difference in the granularity of operations: coarse
grained such as get and fine grained such as getIfInOctets. But for each form of
granularity the parameters of operations can be either defined at WSDL level,
or be kept opaque and possibly defined in a higher-level (XML) schema. This
will be referred to as operations that have either transparent or non-transparent
parameters at WSDL level. These extreme forms are summarised in figure 4.2.

P
a

ra
m

e
te

r
tr

a
n

s
p

a
re

n
c
y

Operation granularity

coarse fine

full

none

Get(param) GetIfInOctets(param)

Get(oid, index,

filter, ...)

GetIfInOctets(index,

filter, ...)

Figure 4.2: Operation extremes

4.2.2 Parameter transparency

The messages that are defined in a WSDL document and referred to from the op-
eration definition can consist of several parts, each defined by a <part> element.
The parts are used to actually comprise the parameters that an operation ex-
pects. However each parameter does not necessarily need to be directly mapped
to a message part. There are several ways to do this.

The extreme forms have already been mentioned: parameters can be defined
at WSDL level or be completely transparent from it. An example of non-
transparent parameters where each parameter is also mapped at a single message
part is given in listing 4.2. In this case there is only one input parameter of the
getIfTable operation, but quite a number of output parameters.

On the other hand, parameters can also be combined and/or serialised in
such a way, that the parameters are not described at WSDL level anymore.
Merely their serialisation is described in a message part. This is called param-
eter transparency. In that case, serialising should be done upon composing a
message and de-serialisation upon receiving it. This means that besides aware-
ness of the operation parameters, a management application (and agent) should
also offer (de-)serialisation capabilities. Listing 4.3 shows what the messages of

CHAPTER 4. STANDARDISATION 40

<message name="getIfTableRequest">
<part name="community" type="xsd:string"/>

</message>

<message name="getIfTableResponse">
<part name="ifIndex" type="xsd:unsignedInt" />
<part name="ifDescr" type="xsd:string" />
<part name="ifType" type="xsd:unsignedInt" />
<part name="ifMtu" type="xsd:unsignedInt" />
<part name="ifSpeed" type="xsd:unsignedInt" />
<part name="ifPhysAddress" type="xsd:string" />
<part name="ifAdminStatus" type="xsd:unsignedInt" />
<part name="ifOperStatus" type="xsd:unsignedInt" />
<part name="ifLastChange" type="xsd:unsignedInt" />
<part name="ifInOctets" type="xsd:unsignedInt" />
<part name="ifInUcastPkts" type="xsd:unsignedInt" />
<part name="ifInDiscards" type="xsd:unsignedInt" />
<part name="ifInErrors" type="xsd:unsignedInt" />
<part name="ifInUnknownProtos" type="xsd:unsignedInt" />
<part name="ifOutOctets" type="xsd:unsignedInt" />
<part name="ifOutUcastPkts" type="xsd:unsignedInt" />
<part name="ifOutErrors" type="xsd:unsignedInt" />

</message>

<interface>
<operation name="getIfTable" pattern="http://www.w3.org/2004/03/wsdl/in−out">
<input message="getIfTableRequest"/>
<output message="getIfTableResponse"/>

</operation>
</interface>

Listing 4.2: Multiple message parts with simple types

<message name="getIfTableRequest">
<part name="requestPart" type="xsd:string"/>

</message>

<message name="getIfTableResponse">
<part name="responsePart" type="xsd:string"/>

</message>

Listing 4.3: Single message parts with opaque types

the getIfTable operation would look like when operation parameters are made
transparent at WSDL level.

An advantage of transparency is that management information is abstracted
from protocol level, so the structure of information can change without having
to modify the operation messages. Suppose a Web service supports an operation
with full transparent parameters, such as in the bottom half of the graph of figure
4.2, then all parameters are serialised into one message part (called param in
the example). In case the parameters are serialised in an XML structure, it can
be contained in a message where the part has (XML-)string type. On both the
manager and agent side, a generic XML parser can then be used to extract the
parameters from the message.

Parameter transparency is not the only way to abstract management infor-
mation from protocol level. Note that Web services are much more flexible with
regard to data-types. It is possible at WSDL-level to define complex types, that
also comprise all parameters for an operation. But since they are not defined
in a message definition but as a type, the structure of the type can still change
without having to modify the message structure. Using the modularity of WSDL

CHAPTER 4. STANDARDISATION 41

<types>
<complexType name="ifEntry">
<sequence>
<element name="ifIndex" type="xsd:unsignedInt"/>
<element name="ifDescr" type="xsd:string"/>
<element name="ifType" type="xsd:unsignedInt"/>
<element name="ifMtu" type="xsd:unsignedInt"/>
<element name="ifSpeed" type="xsd:unsignedInt"/>
<element name="ifPhysAddress" type="xsd:string"/>
<element name="ifAdminStatus" type="xsd:unsignedInt"/>
<element name="ifOperStatus" type="xsd:unsignedInt"/>
<element name="ifLastChange" type="xsd:unsignedInt"/>
<element name="ifInOctets" type="xsd:unsignedInt"/>
<element name="ifInUcastPkts" type="xsd:unsignedInt"/>
<element name="ifInDiscards" type="xsd:unsignedInt"/>
<element name="ifInErrors" type="xsd:unsignedInt"/>
<element name="ifInUnknownProtos" type="xsd:unsignedInt"/>
<element name="ifOutOctets" type="xsd:unsignedInt"/>
<element name="ifOutUcastPkts" type="xsd:unsignedInt"/>
<element name="ifOutErrors" type="xsd:unsignedInt"/>

</sequence>
</complexType>

</types>

<message name="getIfTableRequest">
<part name="requestPart" type="xsd:string"/>

</message>

<message name="getIfTableResponse">
<part name="responsePart" type="xsd:ifEntry"/>

</message>

Listing 4.4: Single message parts with complex types

documents, these types can even be defined in a different WSDL document or
other XML schema definition and imported when needed.

Listing 4.4 shows how operation parameters are comprised in a single mes-
sage part, but still known at WSDL-level. Note that this approach does resemble
complete transparency with an XML structure defined at application level, just
the main difference is the explicit link between message part and part type. In
both cases there is a need to define a higher-level XML schema. Examples of
XML schemas for SNMP management information can be found in [10, 88].

On the service requester side using a higher-level XML schema means that
there should be functionality to firstly create such an XML data structure before
the Web service can be called. Also it should have provisions to handle incoming
messages with complex XML data structures. This entails that it can only be
used in either more specific network management applications or by more expe-
rienced users/developers. In other words, parameter transparency offers a very
flexible and expressive use of operations, but this is only useful for professional
users who need this kind of flexibility. For a PC user in his home environment
who wants to include some management information in his spreadsheet, this
will probably be too complicated. In that case, a simple operation is required
where a user does not need to create complicated parameter structures in order
to compose the messages in a correct form.

Thus only if expressiveness is wanted and the use of (XML) parsers is ac-
cepted, it is interesting to have operations with transparent parameters. Non-
transparent parameters make operations easy to understand for users and easy
to develop for developers.

For completeness it should be mentioned that it is also possible to have

CHAPTER 4. STANDARDISATION 42

<message name="getIfTableResponse">
<part name="sizeTable" type="xsd:int"/>
<part name="responsePart" type="xsd:ifEntry"/>

</message>

Listing 4.5: Multiple message parts with simple and complex types

All

Interface (index = n)

Interface (index = 2)

System

SysLocation

SysUptime

Interface (index = 1)

IfInOctets

IfOutOctets

IfInErrors

IfIOutErrors

getAll()

getSystem()

getSysUptime()

getInterface(index)

getIfOutOctets(index)

Figure 4.3: Containment diagram

messages with combinations of the above mentioned approaches (they are meant
to denote the extreme forms). As listing 4.5 shows, a message can have a part
with a simple type and a part with complex type at the same time. It can
even have a part with transparent and a part with non-transparent parameters,
however the usability of such a message structure remains questionable.

4.2.3 Operation granularity

The other degree of freedom is operation granularity: the level of variation
between very coarse and very fine operations. In order to illustrate this, we will
assume to have a managed system of which system information and network
interface information can be requested. The variables for system information
are rather straightforward, namely its location and uptime: SysLocation and
SysUptime. The network interface information is a bit more complex, since a
system can have more than one interface. Therefore the same variables can be
retrieved for each single network interface: IfInOctets, IfOutOctets, IfInErrors
and IfOutErrors. Figure 4.3 shows a containment diagram, which depicts these
several types of information we can retrieve from a system.

In order to retrieve this information from the system, we can define oper-
ations that request the managed system for this information. If we consider
using very fine operations we would get operations such as getSysUptime or

CHAPTER 4. STANDARDISATION 43

getInterface(index)getSystem()

getSysLocation()

getAll()

getSysUptime() getIfInOctets(index)

getIfOutOctets(index)

getIfInErrors(index)

getIfOutErrors(index)

Figure 4.4: Containment tree

getIfOutOctets as is also shown in figure 4.3. So a fine granularity of operations
means that for each variable a single operation is defined. Operations for net-
work interface information need to have a parameter supplied to identify the
interface.

Suppose one wants to request all information from one network interface.
This would result in calling an operation for each single variable. Therefore, a
bit coarser operations can also be defined, such as getSystem, getInterface(index)
or perhaps even all information contained in the managed system. In that case,
there is not only a single operation for each variable, but also for each container
where All is the container that contains ’everything’.

An advantage of this approach is that if the naming of the operations pre-
cisely defines the functionality, it is very clear to a user which operation to
call to retrieve the information he wants. Generally speaking, the parameters
passed to an operation, be it transparent or not, can be simpler since selecting
an object is already done by choosing the corresponding operation. In case of
more than one instance of an object (such as the network interface example),
an instance identifier (index) has to be provided.

Suppose someone wants to select different types of variables, such as all
System variables and the IfInErrors of an interface with index = 2, then one is
forced to call two separate operations. If we consider the containment hierarchy
as a tree of fine operations (figure 4.4), then we can state that one fine operation
does not allow selection in separate branches of the tree, e.g. one operation can
not retrieve both System and IfInErrors. Only the operation corresponding to
the node where these branches meet (getAll) would make it possible to retrieve
this information. However, getAll does not only retrieve System and IfInErrors,
but much more information that in this case would be redundant.

Suppose filtering the result would be possible on the agent side. This makes it
possible to get all information that satisfies some criteria, or get all information
with some exceptions or up until a certain depth of the tree. We will use the
term filtering for any of these kinds of criteria. Theoretically filtering would
make it possible to retrieve any single variable or container only using getAll
together with a filter. This leads to the concept of a very generic operation,
for instance get. When provided with a container-name or variable-name, a
possible index and perhaps a (simpler) filter, get can be used to retrieve any
kind of information on any level in the containment tree. In that case, get is an
example of an extreme coarse operation, having a very generic name and used
for more than a single task.

CHAPTER 4. STANDARDISATION 44

This behaviour would make get a very expressive operation, because with
one single operation one can get any type of information from the managed
system. It does make the parameters that should be passed to the operation
more complex, whether they are transparent or not. It also poses a more com-
plex naming problem. With fine operations, the network manager only needs to
know which index to provide when it requests information from an object that
can have more than one instance. On the other side, with coarse operations a
network manager needs to know how to address any objects or instances on the
agent side.

In an online MSDN article [89] there is a short discussion on granularity
of interfaces of distributed systems in general. It states that a fine-grained in-
terface is very likely to impede application performance, because it generally
requires many method calls to achieve certain functionality, since each method
encapsulates just a very small piece of functionality. It further states that there-
fore remote objects should define a coarse-grained interface that exposes only a
small set of methods. Each method should typically offer high-level functional-
ity, like Place Order or Update Customer (compare with get or set operations)
and all the data that a method needs should be passed as a parameter.

This view is also supported by the IONA [60] in a white paper on using MDA
to develop Web services. It states that Web services should also provide coarse-
grained operations that are compositions of more primitive functionality. It
envisions that objects (in the object-oriented sense) defined on a service provider
should not expose all their specific, fine-grained operations as a Web service,
because they are not likely to provide the needed service to a service requester.
It should rather provide operations that provide much more application logic,
thereby most likely reducing network traffic since less interactions are needed
compared to fine-grained operations, to provide a similar level of functionality.

4.2.4 Summary

We have distinguished four extreme forms of management operations, all of
which have some advantages and disadvantages. Operation with non-transparent
parameters are more likely to be used easily, since parameters are defined at
WSDL level. When types are kept simple, it is very easy for a simple user
in a home environment to include management information in for instance a
spreadsheet or word processing document. The disadvantage of specifying man-
agement information at WSDL level is that in case the management information
changes, the WSDL also needs to be modified and possibly also management
applications.

This in contrast to transparent parameters, where management information
is abstracted from protocol-level. This does pose the need for a higher-level
(XML) schema for the definition of management information. The result is that
even though this approach seems more flexible and expressive, it is more likely to
be used by professional operators. It can be more complicated to create a higher
level message structure in "simple", generic applications such as spreadsheets.

An advantage of having very coarse-grained operations is that the Web ser-
vice definition can be kept rather simple, with regard to the number of available
operations. The implementation of such an operation however, is likely to be
more complicated than fine-grained operation, same as for the structure of pa-
rameters. Users of these operations also need to know less operations, although

CHAPTER 4. STANDARDISATION 45

they are possibly more complex. Fine operations can be easily understood, since
it does not require extensive knowledge on an underlying data model (no need
to provide parameters referring to variables, except indices). This could prove
to be useful in generic applications. However, it also makes way for an ever-
growing number of operations. With regard to this discussion it is interesting
to see general statements on distributed systems/Web services, claiming that
coarse-grained operations are the best solution for invoking remote operations.

The choice for a certain granularity will be a trade-off between simplicity and
expressiveness. However, with the extensibility of Web service interfaces it is
possible to have, for instance, both a standardised interface with coarse-grained
operations, as well as a (proprietary) extended interface with fine-grained oper-
ations.

4.3 Management information definition

4.3.1 Data models and information models

Management information in current standards is typically comprised in data
models, such as SNMP MIBs and the DMTF CIM (see also section 1.5). The
usefulness of standardised data models is ensured by keeping the objects that
represent a particular resource the same at each managed system and by using
a common scheme for representation of management data to support interoper-
ability.

But a distinction can be made between data and information models. In
RFC3444 [90] is explained how models can be described at different abstraction
levels. An information model (IM) is defined on a higher abstraction level than
a data model (DM). An IM can be considered to have easier to grasp concepts
behind it, since it should hide all protocol and implementation details. A formal
definition of an IM can be found in RFC 3198 [91]:

"An abstraction and representation of the entities in a managed en-
vironment, their properties, attributes and operations, and the way
that they relate to each other. It is independent of any specific repos-
itory, software usage, protocol, or platform.".

The same RFC gives the following definition for a DM:

"A mapping of the contents of an information model into a form that
is specific to a particular type of data store or repository. A "data
model" is basically the rendering of an information model according
to a specific set of mechanisms for representing, organising, storing
and handling data.".

In other words, a DM is an "implementation" of an IM. The availability of a
number of different implementation platforms entails that a single IM can result
in several DMs. Suppose a general management IM exists, one can state that
both the SNMP MIBs defined in SMI, and the DMTF CIM defined in Managed
Object Format (MOF) (not to be confused with the MOF as is known from
MDA: the Meta-Object Facility) are the DMs. This is depicted in figure 4.5.

However, to date merely the DMs of management information exist. These
models generally contain lots of details and are therefore not always easily un-
derstood. The CIM has an accompanying set of non-normative UML class

CHAPTER 4. STANDARDISATION 46

Management

information model

SNMP MIB

(SMI)

CIM schema

(MOF)
...

IM

DM

Figure 4.5: Management IM and DMs

diagrams based on the MOF definitions, but they do not contain all aspects
since some of that is not possible to model in UML.

Based on this observation, as well as remembering the typical usage of MDA
techniques, it can be of interest to define an abstraction of the existing man-
agement DMs, thereby creating a management IM (or a platform independent
model, in MDA terminology). Theoretically one could define a transformation
that could map this IM to MIBs or CIM schema definitions and thus creating a
platform specific model. This management IM could be defined in a variety of
languages, like UML class diagrams or Entity-Relationship (ER) diagrams. Of
course, natural (English) language is also an option, however this is not useful
for MDA and can hardly be used for (automatic) model transformation.

RFC 3444 mentions that UML has an advantage above other modelling
techniques, especially because it is being widely adopted in the industry and
taught in universities. Also, UML is standardised (by the OMG) and many tools
for editing UML diagrams are now available. And even though MDA does not
impose the use of UML, current MDA tools (like ArcStyler and Objecteering)
are commonly based on UML modelling.

Furthermore RFC 3444 finds it advisable that in general object-oriented
techniques should be used to describe an IM. Important advantages of object-
oriented techniques are the notions of abstraction and encapsulation, as well as
the possibility of object definitions to include operations. So even though ER
diagrams could be very useful to describe management information and relation-
ships in a more abstract level, they do lack these object-oriented characteristics.

4.3.2 Management information models

As mentioned before, an IM can be defined in a variety of modelling techniques.
But different modelling techniques impose different kinds of models, in which
management information can be defined in different ways. This section makes a
distinction between various types of models, namely data-oriented, task-oriented
and object-oriented. These are based on [92], where a similar distinction is made
between approaches for network management protocols. Although, instead of
the terms data-oriented and task-oriented, it uses the terms variable-oriented
and command-oriented respectively.

A data-oriented model focuses mainly on management information itself,
where each piece of information is comprised in a variable (hence variable-
oriented in [92]). Generally, such a model does not contain operations. For
example, ER diagrams can be considered data-oriented by nature, since it fo-
cusses on the data modelling and the relationships between related groups of

CHAPTER 4. STANDARDISATION 47

data (entities). It is not possible to model operations in this type of diagram.
An example of a data-oriented DM is a MIB defined in SMI.

IMs can also be task-oriented. This kind of model defines tasks that typically
have well-defined semantics. Examples of commands are: reset, reboot or close
all connections. In other words, management functionality is divided in a num-
ber of tasks that can be performed on the managed system. Natural language
(English) is very suitable for describing task-oriented models. An example of
a DM that could be considered task-oriented is WSDL, which abstracts from
underlying data structures by only defining operations.

Finally object-oriented models can be distinguished. They can be seen as
a combination of variable-oriented and command-oriented models, since they
define objects that can expose both attributes (variables) and operations. A
manager then invokes operations on these objects and receives notifications with
the result. UML diagrams are highly suitable for modelling an object-oriented
management IM. CIM can be regarded as an example of an object-oriented
management DM, even though they are probably closer to IMs than for instance
the SMI MIB DMs [90].

The following two sections will focus on data-oriented ER diagrams and
object-oriented UML class diagrams and discuss their suitability for modelling
an IM. Task-oriented models will not be discussed here, because of the preas-
sumption that they should be modelled in natural language. This is not very
suitable for usage in an MDA tool, although it could be a topic for further
research.

4.3.3 Data-oriented information model

Database analogy

Before explaining how ER diagrams can be used to define a data-oriented IM,
firstly it is interesting to recognise the analogy of MIBs with databases. Man-
agement information defined in MIBs is data-oriented by nature. In [1] we can
find the following description of a MIB: "In essence a Management Informa-
tion Base is a database structure in the form of a tree". Such a description
of a MIB makes an analogy with traditional Database Management Systems
(DBMS) valid. In fact, the SNMP architecture and data definition can easily be
compared with a so-called multi-database system (MDBS) architecture. In [93,
p.87] a classification schema of distributed databases is given, with variations
along three axes: the autonomy of local systems, their distribution and their
heterogeneity. An MDBS is a homogenous collection of autonomous databases
without distribution.

We consider the analogy of a local DBMS that is part of a distributed
database with an SNMP agent that is part of a network management system.
Suppose an SNMP agent is regarded as a DBMS containing management infor-
mation of that particular device, then all agents in a certain network in principle
have the same DBMS, each having identical functionality and interface. This is
an example of homogeneity. Agents can be regarded as being autonomous, since
each agent does not know the presence of other agents, nor the concept of coop-
eration with them. Finally, management information is not really distributed.
Each agent has, in principle, the same database structure, but containing its
own information. The architecture is not meant to be distributed and transpar-

CHAPTER 4. STANDARDISATION 48

ent to a manager anyway, since the location of information plays a vital role in
network management.

A network manager in its turn can then be compared to some sort of global
database manager that has control over each individual DBMS. In DBMSs it
is also common to have a few generic operations, that can be used to query
any database. The most commonly used query language for databases is the
Structured Query Language (SQL) and even though it is standardised by both
ANSI and ISO [94], many variations exist across implementations of different
vendors. The SQL standard offers four basic operations that together form the
SQL data-manipulation language (DML) [95, p.1]:

• SELECT - retrieves data from a database by providing a description of the
desired result set

• UPDATE - modifies existing data in a database table, but does not remove
it

• INSERT INTO - inserts a new row in a database table

• DELETE - removes rows from a database table

SQL offers much more functionality than will be discussed here, such as
creation/deletion of databases and tables, indexing, definition of views, trans-
actions, locking and access control. The focus here will be on the data definition
and relations. SQL is a set-based programming language that allows for the ma-
nipulation of data stored in two-dimensional tables, also referred to as a relation.
The name of a particular relation and the corresponding set of attributes is called
a schema. Suppose a relation named Interface has the following schema:

Interface(Description, Speed, PhysicalAddress)

then Interface is the name of the relation and Description, Speed and Physical-
Address are its attributes. The attributes depict the structure of the table, thus
a valid row in this table would be:

(eth0, 100, 0:0:b4:a9:1:5a)

A row in a table is formally called a tuple and its attributes are called com-
ponents of a tuple. The relational database model requires each component to
be of some sort of atomic type, i.e. they can’t be tables, sets, arrays or other
structures.

Description Speed PhysicalAddress

eth0 100 0:0:b4:a9:1:5a
eth1 100 0:5:c6:c1:4d:6c
eth2 10 0:5:8d:8:7a:4b

Table 4.1: Interfaces relation.

The operations from the SQL DML are set- or tuple-based and are designed
to retrieve, modify, insert or delete one or more tuples from a table. SELECT

and UPDATE can also work on components of a tuple. For example, consider

CHAPTER 4. STANDARDISATION 49

Description Speed PhysicalAddress

eth0 100 0:0:b4:a9:1:5a
eth1 100 0:5:c6:c1:4d:6c
eth2 10 0:5:8d:8:7a:4b

Table 4.2: Query: SELECT * FROM Interfaces.

Description

eth0
eth1
eth2

Table 4.3: Query: SELECT Description FROM Interfaces.

the table of 4.1 then tables 4.2, 4.3 and 4.4 give the result sets of three simple
SELECT queries. It shows a little how powerful SQL queries can be.

With SQL much more powerful queries are possible by joining relationships,
creating unions or intersections of result sets, etc. This shows that SQL is a
language that can be used and understood very easily, like the simple examples
in this section show, but also be used in a very powerful way by creating very
complex queries. SQL has proven itself to be a language understood and used
by many people, varying from simple home users to very professional users, and
yet it only offers very few operations to the user.

A feature of databases is also that they can contain triggers. A trigger is an
action that can take place after a certain defined event has occurred. Usually
this happens after a table has been accessed in a certain way. When an event
occurs, some operation can be performed, which is defined in a database specific
programming language. One can think once again of the analogy with network
management and more specific: SNMP traps. A trap can be compared with a
database trigger, albeit that they usually do not take place after data access,
but after some error has occurred at the agent side.

Entity-Relationship diagram

Databases can be modelled in various ways. There is not a single definition
language. Some use natural language, others a formal language or even graphical
tools, but all focus on data relationships. A very common modelling technique
for databases is the Entity-Relationship diagram. This diagram can be used for
describing the tables in a database and the relationships between them. This
kind of diagram abstracts from any database specific definitions, and thus a
database model can be regarded as an IM.

Description Speed PhysicalAddress

eth2 10 0:5:8d:8:7a:4b

Table 4.4: Query: SELECT * FROM Interfaces WHERE Speed=10.

CHAPTER 4. STANDARDISATION 50

system

sysDescr

sysObjectID
sysUpTime

sysContact

sysName

sysLocation

sysServices

sysORLastChange

Figure 4.6: System information ER diagram

Recalling the analogy of DBMS’s with network management, we can regard
a MIB as database model for a particular kind of data. The difference is that
in MIBs data is not only comprised in a table, but also as scalars that appear
not to have any relationship with other scalars. However, MIBs are collections
of related managed objects, i.e. there appears to be some sort of conceptual
relationship after all. One way this can be explained, is by describing the
system information defined in the SNMPv2-MIB. It consists of the following
scalars: sysDescr, sysObjectID, sysUpTime, sysContact, sysName, sysLocation,
sysServices and sysORLastChange as well as a table called sysOrTable.

Figure 4.6 could be a possible ER diagram to comprise this kind of infor-
mation. It has the scalars with system information contained in a table called
system. Of course it is clear that this is not a real table, since it may only
contain one single row.

This can have a large influence on the naming of objects, or cells. MIBs
(and thus SNMP) rely heavily on object identifiers and their ordering in the
SNMP naming tree. But database-style models are very much focussed on
data and relationships, resulting in a more expressive, but not necessarily more
complicated (as the widespread usage of SQL shows) way of accessing data.

Another advantage of focussing more on relationships is that modelling re-
dundant data can easily be avoided. For example, consider parts of the IF-MIB
and the Host-Resources MIB. The first defines information on network inter-
faces and the latter on the software and hardware running on host computers
connected to the internet directly used by human beings. The Host-Resources
MIB therefore also contains a table with network interfaces available on the
host. The only column in this table contains indexes which should correspond
to the indexes in the network interface table from the IF-MIB. The way this
relationship is modelled in the Host-Resources MIB definition [87] is by natural
language. In an ER diagram, this can be explicitly modelled by using primary
and foreign keys, as figure 4.7 shows. A primary key in a table should uniquely
identify each table entry, whereas a foreign key points to a primary key in a
different table.

For instance, the hrDeviceTable can contain devices that are network inter-
faces. Specific information for network interfaces is contained in the hrNetwork-
Table table. Each device has a unique index, also called primary key, namely
hrDeviceIndex. This is used as a primary key in both the hrDeviceTable and

CHAPTER 4. STANDARDISATION 51

IfTable

PK ifIndex

ifDescr

ifType

ifMtu

ifSpeed

ifPhysAddress

ifAdminStatus
ifOperStatus

ifLastChange

ifInOctets

ifInUcastPkts

ifInDiscards

ifInErrors

ifInUnknownProtos

ifOutOctets

ifOutUcastPkts

ifOutErrors

hrNetworkTable

PK,FK1 hrDeviceIndex

FK2 hrNetworkIfIndex

hrDeviceTable

PK hrDeviceIndex

hrDeviceType

hrDeviceDescr

hrDeviceID

hrDeviceStatus

hrDeviceErrors

Figure 4.7: IfTable ER diagram

the hrNetworkTable. Moreover, the hrDeviceIndex should be the same in both
tables, which is ensured by defining hrDeviceIndex as a foreign key of the hr-
NetworkTable as well. Anytime an entry is added in the hrNetworkTable, the
database should check if the index already exists in the hrDeviceTable. The
Host-Resources MIB defines by natural language that each entry in the hrNet-
workTable should also be contained in the IfTable. This is ensured by defining
another foreign key that relates the hrNetworkIfIndex to the IfIndex of the
IfTable.

In fact, modelling in such a way makes immediately clear that there is a
redundant table, namely the hrNetworkTable. This table has a one-to-one rela-
tion with the IfTable and better design practice would be to have the IfTable
contain a field called hrDeviceIndex, which functions as a foreign key to the
hrDeviceTable.

4.3.4 Object-oriented information model

Modelling IMs can also be done using an object-oriented approach. This section
will regard a managed object in the traditional object-oriented sense. This
means that a managed object represents a "tangible" entity, that is part of a
managed system. Examples of "tangible" entities are: CPU, network interface,
hard disk, but also running software, TCP protocol, SNMP protocol, etc. Each
object has an interface that abstracts from its internal structure by providing
operations to other objects. Attributes of an object can not directly be retrieved,
this needs to be done by accessor operations. For a more elaborate and detailed
description of object-oriented design, the reader is referred to [96].

There has been an attempt to comprise SNMP management information
in an IM, based on UML class diagrams [97]. In [98] a heuristic algorithm
is presented to automatically translate MIB modules to UML class diagrams.
However this algorithm has a number of limitations, because it depends on
many "unwritten" rules for writing MIB modules, varying from the naming of

CHAPTER 4. STANDARDISATION 52

managed objects to the introduction of new data types. The algorithm expects
related objects to have a similar prefix in their names, but this is not mandatory
in SMI. Also it is said that good MIB authors should define their own data types,
which the algorithm can then use to recognise references between tables. This
algorithm is an integrated part of the smidump program which is part of the
libsmi SMI compiler package [99].

Chapter 5 explains in more detail how object-oriented IMs can be used to
derive Web services (or rather a framework that needs more implementation)
by making use of an MDA tool.

4.3.5 Summary

A distinction between a data-oriented, a task-oriented and an object oriented IM
for the definition of management information. A data-oriented IM can typically
be modelled as an ER diagram, a task-oriented IM in natural language and
on object-oriented IM in UML. Since both data-oriented and object-oriented
IMs can be modelled in a rather formal modelling language, it is interesting to
investigate these for use with MDA tools.

Since the concepts are rather similar, ER diagrams can be relatively easily
derived from SNMP MIBs, but this is only based on the examples given. This
is an issue for further research.

An attempt has been made to reverse engineer MIBs to object-oriented UML
class diagrams, but still a lot needs to be done by hand. An advantage of
this approach is that current MDA tools (like Objecteering and ArcStyler) are
commonly UML based. UML is much more elaborate than ER diagrams, already
because it is able to model behaviour.

Chapter 5

Case study: host-resources

In this chapter the theory and ideas from the previous chapters shall be applied
to create a Web service using an MDA tool. The tool of choice is ArcStyler
(version 4.0.108) [100], since it provides good documentation in order to quickly
and easily get to know the tool and make use of it.

The Web service that will be created will be based on the management
information stored in the Host-resources MIB. This can be regarded as a MIB
with easy to grasp concepts behind it, plus it contains both single variables
and conceptual tables. Firstly the purpose of the Host-resources MIB shall be
explained in section 5.1. After this, a Web service will be created based on a
data-oriented approach (explained in terms of an EM diagram) in section 5.2.
This will be a Web service that resembles SNMPv2 functionality, to explain how
SNMP resembles Web services and to explain how coarse-grained operations
will have its influence on the WSDL definition. Finally, section 5.3 presents
how an object-oriented information model could be generated from the MIB
definition and how this information can be accessed through many very fine-
grained operations.

5.1 Host-Resources MIB

Before creating a Web service based on the Host-Resources MIB, the purpose of
this MIB module shall firstly be explained. The Host-Resources MIB specifies
which information is managed on a host. A host is defined as [87]:

"The term "host" is construed to mean any computer that communi-
cates with other similar computers attached to the internet and that
is directly used by one or more human beings.".

Generally, a host is a computer connected to the internet and used by one or
more persons. It can be argued how a general definition of a host can lead to a
formal specification, therefore some descriptions shall be given firstly.

A general idea of a host is a computer system consisting of a CPU, (logical)
disk and a network interface (since the definition requires it to be connected
to the internet). Many systems will also have devices such as printers, sound
cards, cd-rom drives and keyboards attached. A host also has one or more
operating systems installed and software running on it. It is clear that this list

53

CHAPTER 5. CASE STUDY: HOST-RESOURCES 54

is not exhaustive, since new devices and software are developed all the time.
Furthermore, a host can change its configuration over time. Despite these facts,
there is a core set of items that are consistent across all systems, even if they
are given different names. The components in this core set can be classified in
two categories:

• a hardware device

• a software package (such as a program or a collection of programs)

As mentioned before, the list of hardware devices is open-ended. Every distinct
piece of hardware on a host is a device. At least 3 characteristics are mentioned
by [101] which are common to all devices, regardless of their function:

• an indication of the manufacturer and product model

• a current status

• the number of errors that the device has reported

Of course more specific information can be managed for a certain device, but
this highly depends on the type of device. A short and simple idea of this more
specific information is given in the following list:

• processors: processor load, firmware version

• printers: status (such as: printing, idle or error has occurred), detected
error, paper left

• disks: media access (RO or RW), type (such as: floppy, HD, cd-rom),
capacity, partitions, file-systems, the partitions that comprise a given file
system

There are 3 general categories of software packages [101]:

• operating system

• device driver

• user application

This clear distinction between software categories has been made for manage-
ment purposes. For any program it is useful to know where it is installed, if
it is running and what its status is (for instance waiting for an event or re-
source). It could also be useful to know how many system resources a program
is consuming.

5.2 Data-oriented approach

Now that the purpose of the Host-Resources MIB is clear, a Web service will be
constructed following the data-oriented approach. This part of the case study
will be based on the operations defined in the SNMPv2 protocol. This is to show
how SNMP and Web service could offer very similar functionality, but also to
give an idea of a situation with coarse-grained operations.

CHAPTER 5. CASE STUDY: HOST-RESOURCES 55

5.2.1 Information model

In section 4.3 a data-oriented approach for the definition of an information
model of management information was discussed. An analogy with databases
was recognised and it was shown that it was relatively easy to define an ER
diagram with management information.

However, for the sake of simplicity a new naming scheme for objects in an
ER diagram will not be given here. Instead, the naming as defined in the
Host-resources MIB will be used, to simplify the explanation of coarse-grained
operations based on SNMP. In other words, this example will be using SNMP’s
data model instead of an information model. Another reason is that ArcStyler
is based on the use of UML diagrams and therefore it can not use ER diagrams
for automatic model transformation. This could be an interesting topic to in-
vestigate in the future though. But most probably model transformation then
needs to be done manually.

It is nevertheless worth mentioning how the Host-resources MIB could be
mapped to an ER diagram and thus this is included in appendix B.

5.2.2 Protocol

Management operations

Section 2.1.4 explains the operations that are used in SNMPv2 and depicts the
corresponding message structures. These operations are: Get, Get-next, Get-
Bulk, Set, Inform, SNMPv2-Trap. This section will give a simple translation of
these operations to WSDL definitions.

These operations together with their corresponding sequence diagrams, lead
to the design of WSDL operations as shown in listing 5.1.

The PDU type and the request-id fields are omitted, since they have no
meaning on WSDL level. The "PDU type" of a WSDL message is in fact
comprised in the operation name. And the request-id is not useful since a
mechanism to differentiate which response belongs to which request is already
available.

Message structure

Section 2.1.4 also explained the PDU formats that are used for a certain opera-
tion. These PDU formats can directly be related to WSDL message descriptions.
This example does not attempt to provide the most accurate transformation of
the SNMP PDUs to WSDL messages possible, but it should give a clear idea of
how SNMP functionality can be achieved in WSDL.

It makes use of several types that are defined in an XML Schema-based
structure. The complete type definition can be found in appendix E. This
example makes use of non-transparent parameters, but with several message
parts that have a type defined in an external schema. Of course, these types
could just as well be defined in the WSDL definition, but it is kept separate for
readability.

Recall from SNMP that the variable-binding part of a PDU, is a list of name-
value parts. However, the length of the list (i.e. the number of pairs) is not
known at definition time. Therefore it needs to be defined recursively. In SMI
this is done by defining a VarBindList type, such as in listing 5.3 and in WSDL

CHAPTER 5. CASE STUDY: HOST-RESOURCES 56

<operation name="get">
<input message="tns:requestMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>

<operation name="get−next">
<input message="tns:requestMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>

<operation name="set">
<input message="tns:requestMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>

<operation name="get−bulk" parameterOrder="non−repeaters␣max−repetitions␣variable−
binding">

<input message="tns:get−bulkRequest"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>

<operation name="trap">
<output message="tns:trapMessage"/>

</operation>

<operation name="inform">
<input message="tns:trapMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>

Listing 5.1: SNMPv2-style operations

<message name="requestMessage">
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>

<message name="responseMessage">
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>

<message name="get−bulkRequest">
<part name="non−repeaters" type="xsd:int"/>
<part name="max−repetitions" type="xsd:int"/>
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>

<message name="trapMessage">
<part name="sysUpTime" type="xsd1:ObjectName"/>
<part name="snmpTrapOID" type="xsd1:ObjectName"/>
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>

<message name="errorMessage">
<part name="error−status" type="xsd1:error−status"/>

</message>

Listing 5.2: SNMPv2-style messages

CHAPTER 5. CASE STUDY: HOST-RESOURCES 57

−− variable binding

VarBind ::= SEQUENCE {
name ObjectName,

CHOICE {
value ObjectSyntax,
unSpecified NULL, −− in retrieval requests

−− exceptions in responses
noSuchObject [0] IMPLICIT NULL,
noSuchInstance [1] IMPLICIT NULL,
endOfMibView [2] IMPLICIT NULL

}
}

−− variable−binding list

VarBindList ::= SEQUENCE (SIZE (0..max−bindings)) OF VarBind

Listing 5.3: VarBindList type definition (SMI)

this should be done in a very similar way: defining a VarBindList type. The
XML Schema definition for this type is listed in 5.4. The similarities between
these two definitions are rather clear: in SMI the VarBindList type is a sequence
of Varbind types with minimum number of occurrences is 0 and the maximum
number of occurrences is max-bindings. In XML Schema this is the same, only
with the maximum number of Varbind occurrences unbounded. The complete
XML Schema for SNMP-based types can be found in appendix E.

5.2.3 Summary

SNMP can be modelled as a Web service as well. In that case it is possible
to use SNMP-like operations and addressing, while at the same time one can
make use of the provisions that Web services (will) offer, such as security and
transactions.

The abstract interface definition as discussed in this section is not meant to
be an accurate specification of SNMP functionality in WSDL. Especially with
regard to data types, there is a lot to improve since mostly generic XML Schema
string types are used. The complete WSDL abstract interface definition for a
simple SNMP-like Web service is listed in appendix C. For completeness, a
binding definition is also provided for this Web service in appendix D. This is
once again an example of WSDL modularity: the binding definition imports the
abstract interface definition. The abstract interface definition in its turn uses
the XML Schema import mechanism to import special data types that need to
be used for this particular Web service.

5.3 Object-oriented approach

This section will describe how a network management Web service can be de-
veloped using an object-oriented approach. Where the data-oriented approach
focussed on coarse-grained (SNMP-based) operations to access them, this ap-
proach will focus on deriving an object-oriented information model (UML class
diagram) from the MIB definition and defining fine-grained operations. Consid-

CHAPTER 5. CASE STUDY: HOST-RESOURCES 58

<xsd:complexType name="VarBindList">
<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0" name="varbind" type="
xsd1:VarBind"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="VarBind">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="name" type="xsd1:ObjectName"/
>

<xsd:choice>
<xsd:element name="value" type="xsd:string"/>
<xsd:element name="unspecified" type="xsd:string"/>
<xsd:element name="noSuchObject" type="xsd:string"/>
<xsd:element name="noSuchInstance" type="xsd:string"/>
<xsd:element name="endOfMibView" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ObjectName">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

Listing 5.4: VarBindList type definition (XML Schema)

ering that management information as defined in the Host-resources MIB shall
be modelled, it is logical to use the smidump program which is described in
section 4.3.4 as it provides an algorithm for reverse engineering MIB modules
to UML diagrams.

5.3.1 Information model

The first step is to let smidump convert the Host-resources MIB module defini-
tion to a UML class diagram. The generated diagram is stored in the internal
format of DIA, which is an open source UML editor [102]. This editor can then
be used to display the result, which is included in appendix F.

Because of the limitations of smidump the generated model is not completely
correct. Certain relationships have been generated that do not exist, most prob-
ably because of some confusion with indexes. Also a hrStorage class has been
generated with only one attribute hrMemorySize that could easily be combined
with the hrSystem class. The hrMemorySize variable contains "the amount of
physical read-write main memory, typically RAM, contained by the host" and
can also be seen as an attribute of the system. This simplifies the model by
reducing it with one class.

Summarising, some modifications on the generated model had to be made
manually, resulting in a revised UML class diagram. A simplified diagram is
depicted in figure 5.1 that shows a few less relations between objects than the
generated diagram. The full diagram (including attributes) is presented in ap-
pendix G.

CHAPTER 5. CASE STUDY: HOST-RESOURCES 59

hrDiskStorageEntry

hrSWInstalledEntry

hrSWRunPerfEntry

hrProcessorEntry

hrPartitionEntry

hrNetworkEntry

hrStorageEntry

hrSWRunEntry

hrPrinterEntry

hrDeviceEntry

hrSystem

hrFSEntry

sparse augments1

sparse augments

sparse augments2

sparse augments3

exists on

<<association>>

1

<<association>>

0..*

Figure 5.1: Simplified Host-resources UML class diagram

5.3.2 Protocol

Management operations

The revised UML class diagram forms the basis for creating the management
Web service. This shall be done with ArcStyler that can use the UML class
diagram to generate the Web service. ArcStyler contains a built-in UML editor,
thus the DIA UML class diagram is easily inserted in ArcStyler. In fact, figure
5.1 is the UML diagram drawn in ArcStyler.

The next step is the modelling of the Web service operations, which should
show what a situation with very fine-grained operations looks like. Similar
to the approach that has been adopted in [32], where operations are defined
at protocol- and object-level, this example will have operations that can be
regarded to be at object-level. For each attribute of each class an accessor will
be created. Each attribute will have at least a read operation, though sometimes
it may also have a write operation. The choice for having read-only or read-write
attributes are made depending on the way this is defined in the Host-resources
MIB. This form of accessibility is unfortunately not depicted in the generated
class diagram.

Unlike MIBs, where each value has a certain fixed number assigned to it,
objects in a UML class diagram pose a naming problem: some objects can have
only one instance (like hrSystem) and some can have more than one (hrDevic-
eTable). This distinction is typically made for objects that are derived from
table entries (each entry can represent an object instance) and for objects that
are derived from (combinations of) related variables not part of a table. An
object that can have only one instance is called singular. Given the fact that an

CHAPTER 5. CASE STUDY: HOST-RESOURCES 60

+getHrDeviceStatus()

+getHrDeviceErrors()
+getHrDeviceDescr()

+getHrDeviceIndex()

+getHrDeviceType()

+getHrDeviceID()

hrDeviceEntry

+hrDeviceStatus : string

+hrDeviceDescr : string
+hrDeviceErrors : long

+hrDeviceType : string

+hrDeviceID : string
+hrDeviceIndex : int

(a) Non-indexed operations

+getHrDeviceStatus(index)

+getHrDeviceErrors(index)
+getHrDeviceDescr(index)

+getHrDeviceType(index)

+getHrDeviceID(index)

hrDeviceEntry

+hrDeviceStatus : string

+hrDeviceDescr : string
+hrDeviceErrors : long

+hrDeviceType : string

+hrDeviceID : string
+hrDeviceIndex : int

(b) Indexed operations

Figure 5.2: hrDeviceEntry class definition.

object is called remotely, the Web service should provide a way of referring to
a particular instance of that object, followed by invoking an operation on that
instance.

In principle Web services provide ways of accessing operations from objects,
but not from particular instances. In other words, by exposing only operations
from objects, a Web service can normally not differentiate between instances.
Therefore an instance reference should be provided when invoking a Web service
operation, so the Web service can invoke that same operation on the referenced
instance. Recall from MIBs that table entries are all identified by a certain
index, thus objects that can have multiple instances, will have this index as an
attribute. This index will thus be different for each instance and can therefore
be used to differentiate between them. This index should be provided when
calling an operation through a Web service.

For example, the hrDeviceEntry object (figure 5.2(a)) can have multiple in-
stances. Each attribute is read-only according to the MIB definition, therefore
only get-operations are defined for each attribute. For any normal object this
would suffice, but since all operations are exposed as Web service operations,
they should expect the instance index as parameter. This results in the opera-
tions definitions from figure 5.2(b).

Note that the operation getDeviceIndex() is omitted in figure 5.2(b), since
it would make no sense. The index needs to be known before calling any oper-
ation which in itself could be a problem. How does a user know the index on
forehand? One way to tackle this problem is given by WBEM, which defines
operations that are not related to the defined objects. Although WBEM (see
section 1.5.3) is not based on Web services, this idea can be applied to Web
services as well. WBEM includes operation such as GetClass, GetInstance,
DeleteClass, DeleteInstance, CreateClass, CreateInstance, ModifyClass, Modi-
fyInstance, EnumerateClasses, etc. In principle, these operations enable a user
to choose certain objects, request references to all its instances and then in-
voke an operation on a particular instance. Summarising, in order for a Web
service with very fine-grained operations (like accessors for each attribute) to

CHAPTER 5. CASE STUDY: HOST-RESOURCES 61

<portType name="com.io_software.catools.cmod.cmod.foundationJMIImpl.
CAClassImpl@1d39c94Port">

<operation name="getHrDeviceErrors" parameterOrder="index">
<input message="getHrDeviceErrorsRequest"/>
<output message="getHrDeviceErrorsResponse"/>

</operation>
<operation name="getHrDeviceID" parameterOrder="index">

<input message="getHrDeviceIDRequest"/>
<output message="getHrDeviceIDResponse"/>

</operation>
<operation name="getHrDeviceStatus" parameterOrder="index">

<input message="getHrDeviceStatusRequest"/>
<output message="getHrDeviceStatusResponse"/>

</operation>
<operation name="getHrDeviceType" parameterOrder="index">

<input message="getHrDeviceTypeRequest"/>
<output message="getHrDeviceTypeResponse"/>

</operation>
<operation name="getHrDeviceDescr" parameterOrder="index">

<input message="getHrDeviceDescrRequest"/>
<output message="getHrDeviceDescrResponse"/>

</operation>

</portType>

Listing 5.5: hrDeviceEntry WSDL: operations

be useful, some generic operations need to be provided for object and instance
management.

The principle of defining accessor operations for each attribute in the class
diagram, is a standard option in ArcStyler. For each attribute can be specified
whether they should be "Web service enabled" and accessors can automatically
be generated for a certain target platform. This is specified by adding marks
to the model. In this case, marks are added for deployment on a Java-based
platform, thus setting the mark "GenAccessors" (generate accessors) to true
works only when Java code is generated. "Web service enabled" is part of the
"Web service" marks pane and this results in the accessors being added to a
generated WSDL definition.

When these steps are taken for each class, ArcStyler can generate Java classes
and a WSDL definition for it. The generated Java classes need further imple-
mentation of the defined operations, before they can be tested in the built-in
Jakarta Tomcat web server [103]. One first problem is already that the gen-
erated WSDL definition is not always readable and not always correct. First
of all, it contains very obscure names for bindings and porttypes (interfaces in
WSDL 2.0) like:

com.io_software.catools.cmod.cmod.foundationJMIImpl.

CAClassImpl1d39c94Binding

Second, syntax errors are present (twice "http://"), although in this example it
is the only syntax error found.

xmlns:soap="http://http://schemas.xmlsoap.org/wsdl/soap/"

And there are several occurrences of "TODO" comments as well. Listing 5.5
presents the generated WSDL definition of the operations of the hrDeviceEntry
class are given.

CHAPTER 5. CASE STUDY: HOST-RESOURCES 62

<message name="getHrDeviceErrorsRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceErrorsResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceIDRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceIDResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceStatusRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceStatusResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceTypeRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceTypeResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceDescrRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceDescrResponse">
<part name="index" type="int"/>

</message>

</portType>

Listing 5.6: hrDeviceEntry WSDL: messages

Message structure

For describing the message structure, the example of the hrDeviceEntry class
will also be used here. It reveals a more serious problem of the way ArcStyler
generates WSDL messages: it does not differentiate between request and re-
sponse message parts for a certain operation. This means that a request mes-
sage contains the same parts as a response message for an operation, regardless
of whether operation parameters are defined as in, out, or in-out. It also does
not reuse existing messages with a same structure for different operations. This
can be seen in listing 5.6 where the WSDL definition of the messages in the
hrDeviceEntry class are given.

The complete WSDL definition for the hrDeviceEntry can be found in ap-
pendix H.

5.3.3 Summary

ArcStyler appears quite useful for creating a Web service based on a UML class
diagram. There are many possibilities for marking the model and it has built-in
support to create Web services for the Java and .NET platforms. However, it
does not generate clean WSDL files, so they need manual modification. But
the creation of the Web service itself is very easy. Apart from the fact that
functionality of operations need to be implemented manually, the generated

CHAPTER 5. CASE STUDY: HOST-RESOURCES 63

Web service can directly be used. It has a built-in Jakarta Tomcat web server
which makes it very easy to test a Web service under development.

Of course, this presents a limited view of MDA tool usage, since only Arc-
Styler is tested. Even though ArcStyler currently regards itself as being the
most advanced MDA tool available, Objecteering is an interesting candidate
as well. It could prove to be useful to also test this tool for its usability with
generating Web services. A comparison of these two tools can be found in [22].

Chapter 6

Conclusions

The conclusions of this thesis are divided into two parts. Firstly, section 6.1
presents the main contributions of this thesis with answers to the research ques-
tions. Finally, section 6.2 presents several ideas for future work.

6.1 Main contributions

This section gives the main contribution of the thesis. The research questions
from section 1.3 are repeated here (in bold), and for each question an answer
will be given. These answers will contain references to the previous chapters
where they are explained.

Why are Web services suitable to use for management of IP networks?

This thesis has shown how Web services can be applied for network management,
based on ideas from SNMP. The following list shows several similarities they
share (section 3.1):

• SNMP is based on the manager/agent paradigm and Web service uses the
very similar concepts service provider and service requester.

• The SNMP protocol defines the operations and message structure. With
Web service this can be achieved in a WSDL definition.

• Operations are invoked and the results are returned through the exchange
of pre-defined messages.

• With Web services it is possible to provide the same type of operations as
SNMP, though it provides possibilities for much richer operations.

There are also a number of differences that can be distinguished:

• Web services is a generic technology and not defined specifically for net-
work management like SNMP. Therefore it is expected that more devel-
opers and users will be familiar with Web service concepts and be able to
easily apply them for network management (section 3.1).

64

CHAPTER 6. CONCLUSIONS 65

• SNMP uses UDP as its underlying transport protocol, whereas Web ser-
vices uses TCP (with HTTP, SMTP, FTP, etc. in between). UDP is con-
sidered to perform better in case of network congestion and TCP when
large amounts of data need to be transported. More experience with
TCP-based network management should point out which protocol is more
valuable for network management (section 3.1).

• Basically SNMP distinguishes three message exchange patterns (request-
response, trap, notification), where Web services does not impose a certain
pattern. WSDL does define message exchange patterns that may be used
in the definition of operation, though it is not mandatory to adhere to
them (section 3.2).

• In contrast with SNMP, a Web service exposes its operations through
interfaces and provides a possibility for extending them. This idea has
also been recognised in the WSMF (see section). Suppose a vendor has
implemented a Web service interface on a networked device with standard-
ised operations. It is possible for this vendor to provide another interface
that extends the standardised interface, making it possible to offer spe-
cific operations on a particular networked device while still adhering to
the network management standard (section 3.3).

• Security (authentication, authorisation, encryption) is an inherent part of
SNMP (version 3) and with Web services this requires the use of additional
standards. However, Web services (will) provide many more additional
standards covering transactions, choreography, reliability of messaging,
etc. Some of these (most notably transactions) are in principle not possible
with SNMP at all. The main disadvantage right now is that most of these
additional standards are rather immature and developing rapidly, which
does not make it easy to develop applications unless they are updated
frequently. Furthermore there are several additional standards that try
to solve a similar problem, like both WS-transactions and BPEL offer
transactional functionality. It remains a matter of time to know which
initiative is most viable (section 3.4).

Summarising, Web services provide some very similar characteristics compared
to SNMP and therefore they can be considered to be suitable to use for net-
work management. Web services have some distinct differences with SNMP as
well, some of which can be regarded as an advantage for Web service, like the
expectance that Web services will be widely used and additional standards that
Web services (will) provide (mainly transactions, since this is just not possible
with SNMP).

What needs to be standardised for Web services-based network man-

agement?

This thesis proposes that standardisation of Web services for network manage-
ment should take place by standardising only the abstract interface definition
(section 4.1). This includes the interfaces, operations, message structure and
types, but not the binding. The binding could possibly be standardised sep-
arately, thus providing a default messaging protocol and encoding. All these

CHAPTER 6. CONCLUSIONS 66

parts can be separated (stored in separate WSDL documents) from the service
definition, making use of the modularity of WSDL.

What possible forms can management operations take and what are

their merits?

Two degrees of freedom are distinguished when discussing management oper-
ations: operation granularity and parameter transparency (section 4.2). For
standardisation one can vary between very coarse-grained to very fine-grained
operations, as well as transparent and non-transparent parameters.

Non-transparent parameters:

• are defined at WSDL level. If the (structure of) management information
changes, the WSDL definition has to change accordingly.

• require no higher level data definition schema. This can make opera-
tions be easily used in generic applications such as spreadsheets or word-
processors.

Transparent parameters:

• are abstracted from protocol level, which could be more flexible with re-
gard to modifications to management information.

• need a higher-level (XML) schema for the definition of data. This also
requires an XML-parser or other kind of data-parser.

• are probably most interesting for more skilled users or specific management
applications. For instance, passing XML schema’s to an operation and
validating it, is harder to accomplish in a generic tool.

Coarse-grained operations:

• are limited in number. There should be very few coarse-grained operations
to provide management services, which can keep WSDL definitions simple
and small. Users only need to understand a few operations, but possibly
more complicated parameters.

• are likely to be more difficult to implementation.

• are expected to be used for Web services by main players in the industry.
Standard objects in programming language can offer many operations with
limited functionality, while distributed objects are more likely to offer
higher-level, complex functionality.

Fine-grained operations:

• could result in many operations with limited functionality. One can ques-
tion its usefulness in a distributed environment.

• can be easier understood and used in generic tools and home users. For
instance, specific operations for each type of management information can
very easily be used in a spreadsheet.

CHAPTER 6. CONCLUSIONS 67

It is expected that choices between all these alternatives will most likely be a
trade-off between simplicity and expressiveness. It is very much dependent on
how future usage of management operations are envisioned. One should defi-
nitely keep in mind that it is very easy to standardise a few operations, where
proprietary extensions can be made using the interface extensibility.

Which role can MDA tools play for developing Web Services-based

management applications?

MDA seems very promising in the field of software engineering and Web services
in particular. When management information is comprised in models and both
management applications and servers need to be implemented on a wide variety
of platforms (each networked device can theoretically be a different platform),
the usage of MDA is evident.

The problem is that MDA seems to be just in the beginning stages of its
development. One of the most elaborate MDA tools (ArcStyler) was used to
gain experience with this and for now, it remains not much more than a code
generation tool that can create a skeleton of the application for a certain plat-
form (section 5.3). In order for tools to be really useful, there should be models
for many types of platforms where management applications are intended to run
on. It also requires the definitions for model transformation, that can translate
the management information models and operation definitions to platform spe-
cific models. When tools allow this, it should certainly be an area of further
research. Of course, model transformation can also be done by hand, but that
undermines the added value of an MDA tool.

6.2 Future work

This thesis presents some approaches of how Web services can be created and
deployed, but there is no experience gained with working implementations of
them. This is a very important topic of further research. Furthermore, based
on the discussion on operation granularity and parameter transparency (section
4.2) there needs to be more clarity on which kind of operations are really useful
and who the intended users of network management Web services are. Therefore
it is important to gain experience with implementations that offer a variety of
operations (coarse-grained to fine-grained) and parameters (transparent to non-
transparent).

Also the usefulness of a certain information model should be recognised.
Since it seems fairly simple to create an ER diagram of MIB definitions (al-
though it is worth to check this with more existing MIBs), it remains to be seen
whether this is a suitable information model, compared to object-oriented UML
class diagrams. And although ER diagrams are presented here, they have not
been used for implementation purposes and moreover, they are also not used in
ArcStyler.

WSDL documents can be regarded as a task-oriented data model 4.3.2 and
it could therefore be interesting to see if and how a WSDL definition can lead to
a task-oriented information model. If this is possible using an MDA tool (PSM
to PIM transformation, if WSDL is regarded as a PSM), a WSDL version-

CHAPTER 6. CONCLUSIONS 68

independent could possibly be standardised. And whenever the WSDL stan-
dards change (including additional standards), only the PIM to PSM transfor-
mation needs to be changed once.

Appendix A

SNMPv2-PDU definitions

SNMPv2−PDU DEFINITIONS ::= BEGIN

ObjectName ::= OBJECT IDENTIFIER

ObjectSyntax ::= CHOICE {
simple SimpleSyntax,
application−wide ApplicationSyntax }

SimpleSyntax ::= CHOICE {
integer−value INTEGER (−2147483648..2147483647),
string−value OCTET STRING (SIZE (0..65535)),
objectID−value OBJECT IDENTIFIER }

ApplicationSyntax ::= CHOICE {
ipAddress−value IpAddress,
counter−value Counter32,
timeticks−value TimeTicks,
arbitrary−value Opaque,
big−counter−value Counter64,
unsigned−integer−value Unsigned32 }

IpAddress ::= [APPLICATION 0] IMPLICIT OCTET STRING (SIZE (4))

Counter32 ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295)

Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

Gauge32 ::= Unsigned32

TimeTicks ::= [APPLICATION 3] IMPLICIT INTEGER (0..4294967295)

Opaque ::= [APPLICATION 4] IMPLICIT OCTET STRING

Counter64 ::= [APPLICATION 6]
IMPLICIT INTEGER (0..18446744073709551615)

−− protocol data units

PDUs ::= CHOICE {
get−request GetRequest−PDU,
get−next−request GetNextRequest−PDU,
get−bulk−request GetBulkRequest−PDU,
response Response−PDU,
set−request SetRequest−PDU,
inform−request InformRequest−PDU,
snmpV2−trap SNMPv2−Trap−PDU,
report Report−PDU }

−− PDUs

GetRequest−PDU ::= [0] IMPLICIT PDU

69

APPENDIX A. SNMPV2-PDU DEFINITIONS 70

GetNextRequest−PDU ::= [1] IMPLICIT PDU

Response−PDU ::= [2] IMPLICIT PDU

SetRequest−PDU ::= [3] IMPLICIT PDU

−− [4] is obsolete

GetBulkRequest−PDU ::= [5] IMPLICIT BulkPDU

InformRequest−PDU ::= [6] IMPLICIT PDU

SNMPv2−Trap−PDU ::= [7] IMPLICIT PDU

−− Usage and precise semantics of Report−PDU are not defined
−− in this document. Any SNMP administrative framework making
−− use of this PDU must define its usage and semantics.

Report−PDU ::= [8] IMPLICIT PDU

max−bindings INTEGER ::= 2147483647

PDU ::= SEQUENCE {
request−id INTEGER (−214783648..214783647),

error−status −− sometimes ignored
INTEGER {

noError(0),
tooBig(1),
noSuchName(2), −− for proxy compatibility
badValue(3), −− for proxy compatibility
readOnly(4), −− for proxy compatibility
genErr(5),
noAccess(6),
wrongType(7),
wrongLength(8),
wrongEncoding(9),
wrongValue(10),
noCreation(11),
inconsistentValue(12),
resourceUnavailable(13),
commitFailed(14),
undoFailed(15),
authorizationError(16),
notWritable(17),
inconsistentName(18)

},

error−index −− sometimes ignored
INTEGER (0..max−bindings),

variable−bindings −− values are sometimes ignored
VarBindList

}

BulkPDU ::= −− must be identical in
SEQUENCE { −− structure to PDU

request−id INTEGER (−214783648..214783647),
non−repeaters INTEGER (0..max−bindings),
max−repetitions INTEGER (0..max−bindings),

variable−bindings −− values are ignored
VarBindList

}

−− variable binding

VarBind ::= SEQUENCE {
name ObjectName,

CHOICE {
value ObjectSyntax,
unSpecified NULL, −− in retrieval requests

APPENDIX A. SNMPV2-PDU DEFINITIONS 71

−− exceptions in responses
noSuchObject [0] IMPLICIT NULL,
noSuchInstance [1] IMPLICIT NULL,
endOfMibView [2] IMPLICIT NULL

}
}

−− variable−binding list

VarBindList ::= SEQUENCE (SIZE (0..max−bindings)) OF VarBind

END

Appendix B

Host-resources database

model diagram

72

APPENDIX B. HOST-RESOURCES DATABASE MODEL DIAGRAM 73

hrNetworkTable

PK,FK1 hrDeviceIndex

hrNetworkIfIndex

hrPrinterTable

PK,FK1 hrDeviceIndex

hrPrinterStatus

hrPrinterDetectedErrorState

hrDiskStorageTable

PK,FK1 hrDeviceIndex

hrDiskStorageAccess

hrDiskStorageMedia

hrDiskStorageRemovable

hrDiskStorageCapacity

hrPartitionTable

PK,FK1 hrDeviceIndex

hrPartitionIndex

hrPartitionLabel

hrPartitionID

hrPartitionSize

hrPartitionFSIndex

hrFSTable

PK hrFSIndex

hrFSMountPoint

hrFSRemoteMountPoint

hrFSType

hrFSAccess

hrFSBootable

hrFSStorageIndex

hrFSLastFullBackupDate

hrFSLastPartialBackupDate

FK1 hrDeviceIndex

hrStorageTable

PK hrStorageIndex

hrStorageType

hrStorageDescr

hrStorageAllocationUnits

hrStorageSize

hrStorageUsed

hrStorageAllocationFailures

FK1 hrFSIndex

hrSWRunTable

PK hrSWRunIndex

hrSWOSIndex

hrSWRunName

hrSWRunID

hrSWRunPath

hrSWRunParameters

hrSWRunType

hrSWRunStatus

hrSWRunPerfTable

PK,FK1 hrSWRunIndex

hrSWRunPerfCPU

hrSWRunPerfMem

hrSystem

hrSystemUptime

hrSystemDate

hrSystemInitialLoadDevice

hrSystemInitialLoadParameters

hrSystemNumUsers

hrSystemProcesses

hrSystemMaxProcesses

hrMemorySize

hrSWInstalledTable

PK hrSWInstalledIndex

hrSWInstalledName

hrSWInstalledID

hrSWInstalledType

hrSWInstalledDate

hrSWInstalledLastChange

hrSWInstalledLastUpdateTime

hrProcessorTable

PK,FK1 hrDeviceIndex

hrProcessorFrwID

hrProcessorLoad

hrDeviceTable

PK hrDeviceIndex

hrDeviceType

hrDeviceDescr

hrDeviceID

hrDeviceStatus

hrDeviceErrors

*

Appendix C

SNMP-WS abstract interface

definition

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="snmp−simple"

targetNamespace="http://www.example.org/snmp−simple.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/snmp−simple.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.example.org/snmp−simple.xsd">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
SNMP simplified messages and operations

</documentation>

<types>
<xsd:schema targetNamespace="http://www.example.org/snmp−simple.xsd"

xmlns:SOAP−ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.example.org/snmp−simple.xsd">

<xsd:import namespace="http://www.example.org/snmp−simple.xsd"
schemaLocation="snmp−simple.xsd"/>

</xsd:schema>
</types>

<message name="requestMessage">
<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">SNMPv2 request

message</documentation>
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>
<message name="responseMessage">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">SNMPv2 response
message</documentation>

<part name="variable−binding" type="xsd1:VarBindList"/>
</message>
<message name="get−bulkRequest">

<part name="non−repeaters" type="xsd:int"/>
<part name="max−repetitions" type="xsd:int"/>
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>
<message name="trapMessage">

<part name="sysUpTime" type="xsd1:ObjectName"/>
<part name="snmpTrapOID" type="xsd1:ObjectName"/>
<part name="variable−binding" type="xsd1:VarBindList"/>

</message>
<message name="errorMessage">

<part name="error−status" type="xsd1:error−status"/>

74

APPENDIX C. SNMP-WS ABSTRACT INTERFACE DEFINITION 75

</message>

<portType name="snmp−simplePortType">
<operation name="get">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">manager to agent
communication</documentation>

<input message="tns:requestMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>
<operation name="get−next">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">manager to agent
communication</documentation>

<input message="tns:requestMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>
<operation name="set">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">manager to agent
communication</documentation>

<input message="tns:requestMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>
<operation

name="get−bulk"
parameterOrder="non−repeaters␣max−repetitions␣variable−binding">
<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">manager to agent

communication</documentation>
<input message="tns:get−bulkRequest"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>
<operation name="trap">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">agent to manager
communication</documentation>

<output message="tns:trapMessage"/>
</operation>
<operation name="inform">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">manager to
manager communication</documentation>

<input message="tns:trapMessage"/>
<output message="tns:responseMessage"/>
<fault message="tns:errorMessage" name="error−status"/>

</operation>
</portType>

</definitions>

Appendix D

SNMP-WS binding definition

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="snmp−simple"

targetNamespace="http://www.example.org/snmp−simple.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.example.org/snmp−simple.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.example.org/snmp−simple.xsd">

<documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
SOAP binding to SNMP abstract interface definition (SNMPv2 operations)

</documentation>

<import location="snmp−simple_abstract−interface.wsdl"
namespace="http://www.example.org/snmp−simple.wsdl"/>

<binding name="snmp−simpleBinding" type="tns:snmp−simplePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="get">

<soap:operation soapAction="snmp−simple:snmp−simplePortType#get"/>
<input>

<soap:body parts="variable−binding" use="literal"/>
</input>
<output>

<soap:body parts="variable−binding" use="literal"/>
</output>
<fault name="error−status">

<soap:fault name="error−status" use="literal"/>
</fault>

</operation>
<operation name="get−next">

<soap:operation soapAction="snmp−simple:snmp−simplePortType#get−next"/>
<input>

<soap:body parts="variable−binding" use="literal"/>
</input>
<output>

<soap:body parts="variable−binding" use="literal"/>
</output>
<fault name="error−status">

<soap:fault name="error−status" use="literal"/>
</fault>

</operation>
<operation name="set">

<soap:operation soapAction="snmp−simple:snmp−simplePortType#set"/>
<input>

<soap:body parts="variable−binding" use="literal"/>
</input>
<output>

<soap:body parts="variable−binding" use="literal"/>
</output>

76

APPENDIX D. SNMP-WS BINDING DEFINITION 77

<fault name="error−status">
<soap:fault name="error−status" use="literal"/>

</fault>
</operation>
<operation name="get−bulk">

<soap:operation soapAction="snmp−simple:snmp−simplePortType#get−bulk"/>
<input>

<soap:body parts="max−repetitions␣non−repeaters␣variable−binding" use="
literal"/>

</input>
<output>

<soap:body parts="variable−binding" use="literal"/>
</output>
<fault name="error−status">

<soap:fault name="error−status" use="literal"/>
</fault>

</operation>
<operation name="trap">

<soap:operation soapAction="snmp−simple:snmp−simplePortType#trap"/>
<output>

<soap:body parts="snmpTrapOID␣sysUpTime␣variable−binding" use="literal"/
>

</output>
</operation>
<operation name="inform">

<soap:operation soapAction="snmp−simple:snmp−simplePortType#inform"/>
<input>

<soap:body parts="snmpTrapOID␣sysUpTime␣variable−binding" use="literal"/
>

</input>
<output>

<soap:body parts="variable−binding" use="literal"/>
</output>
<fault name="error−status">

<soap:fault name="error−status" use="literal"/>
</fault>

</operation>
</binding>

</definitions>

Appendix E

snmp-simple.xsd

<?xml version="1.0" encoding="UTF−8"?>
<!DOCTYPE schema SYSTEM "http://www.w3.org/2001/XMLSchema.dtd">

<xsd:schema targetNamespace="http://www.example.org/snmp−simple.xsd"
xmlns:SOAP−ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.example.org/snmp−simple.xsd">

<xsd:simpleType name="error−status">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="noError"/>
<xsd:enumeration value="tooBig"/>
<xsd:enumeration value="noSuchName"/>
<xsd:enumeration value="badValue"/>
<xsd:enumeration value="readOnly"/>
<xsd:enumeration value="genError"/>
<xsd:enumeration value="noAccess"/>
<xsd:enumeration value="wrongType"/>
<xsd:enumeration value="wrongLength"/>
<xsd:enumeration value="wrongEncoding"/>
<xsd:enumeration value="wrongValue"/>
<xsd:enumeration value="noCreation"/>
<xsd:enumeration value="inconsistentValue"/>
<xsd:enumeration value="resourceUnavailable"/>
<xsd:enumeration value="commitFailed"/>
<xsd:enumeration value="undoFailed"/>
<xsd:enumeration value="authorizationError"/>
<xsd:enumeration value="notWritable"/>
<xsd:enumeration value="inconsistentName"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="VarBindList">
<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0" name="varbind" type="
xsd1:VarBind"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="VarBind">
<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="name" type="
xsd1:ObjectName"/>

<xsd:choice>
<xsd:element name="value" type="xsd:string"/>
<xsd:element name="unspecified" type="xsd:string"/>
<xsd:element name="noSuchObject" type="xsd:string"/>
<xsd:element name="noSuchInstance" type="xsd:string"/>
<xsd:element name="endOfMibView" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>

78

APPENDIX E. SNMP-SIMPLE.XSD 79

</xsd:complexType>

<xsd:simpleType name="ObjectName">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:schema>

Appendix F

Generated Host-Resources

UML class diagram

80

APPENDIX F. GENERATED HOST-RESOURCES UML CLASS DIAGRAM81

Conceptual model of HOST-RESOURCES-MIB - generated by smidump 0.4.1

<<smi mib class>>

hrDeviceEntry

+hrDeviceIndex: Integer32 {index}

+hrDeviceIndex: Integer32

+hrDeviceType: AutonomousType

+hrDeviceDescr: DisplayString

+hrDeviceID: ProductID

+hrDeviceStatus: Enumeration

+hrDeviceErrors: Counter32

<<smi mib class>>

hrProcessorEntry

+hrDeviceIndex: Integer32 {index}

+hrProcessorFrwID: ProductID

+hrProcessorLoad: Integer32sparses

1

0..1

<<smi mib class>>

hrNetworkEntry

+hrDeviceIndex: Integer32 {index}

+hrNetworkIfIndex: InterfaceIndexOrZero

sparses
1 0..1

<<smi mib class>>

hrPrinterEntry

+hrDeviceIndex: Integer32 {index}

+hrPrinterStatus: Enumeration

+hrPrinterDetectedErrorState: OctetString

sparses

1

0..1

<<smi mib class>>

hrDiskStorageEntry

+hrDeviceIndex: Integer32 {index}

+hrDiskStorageAccess: Enumeration

+hrDiskStorageMedia: Enumeration

+hrDiskStorageRemoveble: TruthValue

+hrDiskStorageCapacity: KBytes

sparses

1

0..1

<<smi mib class>>

hrPartitionEntry

+hrDeviceIndex: Integer32 {index}

+hrPartitionIndex: Integer32 {index}

+hrPartitionIndex: Integer32

+hrPartitionLabel: InternationalDisplayString

+hrPartitionID: OctetString

+hrPartitionSize: KBytes

+hrPartitionFSIndex: Integer32

expands

<<smi mib class>>

hrSWRunEntry

+hrSWOSIndex: Integer32

+hrSWRunIndex: Integer32 {index}

+hrSWRunIndex: Integer32

+hrSWRunName: InternationalDisplayString

+hrSWRunID: ProductID

+hrSWRunPath: InternationalDisplayString

+hrSWRunParameters: InternationalDisplayString

+hrSWRunType: Enumeration

+hrSWRunStatus: Enumeration

<<smi mib class>>

hrSWRunPerfEntry

+hrSWRunIndex: Integer32 {index}

+hrSWRunPerfCPU: Integer32

+hrSWRunPerfMem: KBytes

augments

1

1

<<smi mib class>>

hrSWInstalledEntry

+hrSWInstalledLastChange: TimeTicks

+hrSWInstalledLastUpdateTime: TimeTicks

+hrSWInstalledIndex: Integer32 {index}

+hrSWInstalledIndex: Integer32

+hrSWInstalledName: InternationalDisplayString

+hrSWInstalledID: ProductID

+hrSWInstalledType: Enumeration

+hrSWInstalledDate: DateAndTime

<<smi mib class>>

hrStorageEntry

+hrStorageIndex: Integer32 {index}

+hrStorageIndex: Integer32

+hrStorageType: AutonomousType

+hrStorageDescr: DisplayString

+hrStorageAllocationUnits: Integer32

+hrStorageSize: Integer32

+hrStorageUsed: Integer32

+hrStorageAllocationFailures: Counter32

<<smi mib class>>

hrFSEntry

+hrFSIndex: Integer32 {index}

+hrFSIndex: Integer32

+hrFSMountPoint: InternationalDisplayString

+hrFSRemoteMountPoint: InternationalDisplayString

+hrFSType: AutonomousType

+hrFSAccess: Enumeration

+hrFSBootable: TruthValue

+hrFSStorageIndex: Integer32

+hrFSLastFullBackupDate: DateAndTime

+hrFSLastPartialBackupDate: DateAndTime

<<smi mib class>>

hrSystem

+hrSystemUptime: TimeTicks

+hrSystemDate: DateAndTime

+hrSystemInitialLoadDevice: Integer32

+hrSystemInitialLoadParameters: InternationalDisplayString

+hrSystemNumUsers: Gauge32

+hrSystemProcesses: Gauge32

+hrSystemMaxProcesses: Integer32

<<smi mib class>>

hrStorage

+hrMemorySize: KBytes

Appendix G

Revised Host-Resources UML

class diagram

82

APPENDIX G. REVISED HOST-RESOURCES UML CLASS DIAGRAM 83

Conceptual model of HOST-RESOURCES-MIB - generated by smidump 0.4.1

<<smi mib class>>

hrDeviceEntry

+hrDeviceIndex: Integer32 {index}

+hrDeviceType: AutonomousType

+hrDeviceDescr: DisplayString

+hrDeviceID: ProductID

+hrDeviceStatus: Enumeration

+hrDeviceErrors: Counter32

<<smi mib class>>

hrProcessorEntry

+hrDeviceIndex: Integer32 {index}

+hrProcessorFrwID: ProductID

+hrProcessorLoad: Integer32

sparses

1

0..1

<<smi mib class>>

hrNetworkEntry

+hrDeviceIndex: Integer32 {index}

+hrNetworkIfIndex: InterfaceIndexOrZero

sparses1

0..1

<<smi mib class>>

hrPrinterEntry

+hrDeviceIndex: Integer32 {index}

+hrPrinterStatus: Enumeration

+hrPrinterDetectedErrorState: OctetString

sparses

1

0..1

<<smi mib class>>

hrDiskStorageEntry

+hrDeviceIndex: Integer32 {index}

+hrDiskStorageAccess: Enumeration

+hrDiskStorageMedia: Enumeration

+hrDiskStorageRemoveble: TruthValue

+hrDiskStorageCapacity: KBytes

sparses

1

0..1

<<smi mib class>>

hrPartitionEntry

+hrDeviceIndex: Integer32 {index}

+hrPartitionIndex: Integer32 {index}

+hrPartitionLabel: InternationalDisplayString

+hrPartitionID: OctetString

+hrPartitionSize: KBytes

+hrPartitionFSIndex: Integer32

expands

<<smi mib class>>

hrSWRunEntry

+hrSWOSIndex: Integer32

+hrSWRunIndex: Integer32 {index}

+hrSWRunName: InternationalDisplayString

+hrSWRunID: ProductID

+hrSWRunPath: InternationalDisplayString

+hrSWRunParameters: InternationalDisplayString

+hrSWRunType: Enumeration

+hrSWRunStatus: Enumeration

<<smi mib class>>

hrSWRunPerfEntry

+hrSWRunIndex: Integer32 {index}

+hrSWRunPerfCPU: Integer32

+hrSWRunPerfMem: KBytes

augments

1

1

<<smi mib class>>

hrSWInstalledEntry

+hrSWInstalledLastChange: TimeTicks

+hrSWInstalledLastUpdateTime: TimeTicks

+hrSWInstalledIndex: Integer32 {index}

+hrSWInstalledName: InternationalDisplayString

+hrSWInstalledID: ProductID

+hrSWInstalledType: Enumeration

+hrSWInstalledDate: DateAndTime

<<smi mib class>>

hrStorageEntry

+hrStorageIndex: Integer32 {index}

+hrStorageType: AutonomousType

+hrStorageDescr: DisplayString

+hrStorageAllocationUnits: Integer32

+hrStorageSize: Integer32

+hrStorageUsed: Integer32

+hrStorageAllocationFailures: Counter32

<<smi mib class>>

hrFSEntry

+hrFSIndex: Integer32 {index}

+hrFSMountPoint: InternationalDisplayString

+hrFSRemoteMountPoint: InternationalDisplayString

+hrFSType: AutonomousType

+hrFSAccess: Enumeration

+hrFSBootable: TruthValue

+hrFSStorageIndex: Integer32

+hrFSLastFullBackupDate: DateAndTime

+hrFSLastPartialBackupDate: DateAndTime

<<smi mib class>>

hrSystem

+hrSystemUptime: TimeTicks

+hrSystemDate: DateAndTime

+hrSystemInitialLoadDevice: Integer32

+hrSystemInitialLoadParameters: InternationalDisplayString

+hrSystemNumUsers: Gauge32

+hrSystemProcesses: Gauge32

+hrSystemMaxProcesses: Integer32

+hrMemorySize: KBytes

Appendix H

Generated WSDL for

hrDeviceEntry

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="com.io_software.catools.cmod.cmod.foundationJMIImpl.

CAClassImpl@1d39c94"
targetNamespace="␣"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3c.org/2001/XMLSchema">

<documentation>
<!−−

! Generated by ArcStyler.
!
! ArcStyler is copyrighted 1999−2003 by Interactive Objects
! Software GmbH. All rights reserved.
! http://www.ArcStyler.com/ http://www.io−software.com/
−−>
</documentation>

<message name="getHrDeviceErrorsRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceErrorsResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceIDRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceIDResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceStatusRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceStatusResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceTypeRequest">
<part name="index" type="int"/>

</message>
<message name="getHrDeviceTypeResponse">
<part name="index" type="int"/>

</message>

<message name="getHrDeviceDescrRequest">
<part name="index" type="int"/>

84

APPENDIX H. GENERATED WSDL FOR HRDEVICEENTRY 85

</message>
<message name="getHrDeviceDescrResponse">
<part name="index" type="int"/>

</message>

<portType name="com.io_software.catools.cmod.cmod.foundationJMIImpl.
CAClassImpl@1d39c94Port">

<operation name="getHrDeviceErrors" parameterOrder="index">
<input message="getHrDeviceErrorsRequest"/>
<output message="getHrDeviceErrorsResponse"/>

</operation>
<operation name="getHrDeviceID" parameterOrder="index">

<input message="getHrDeviceIDRequest"/>
<output message="getHrDeviceIDResponse"/>

</operation>
<operation name="getHrDeviceStatus" parameterOrder="index">

<input message="getHrDeviceStatusRequest"/>
<output message="getHrDeviceStatusResponse"/>

</operation>
<operation name="getHrDeviceType" parameterOrder="index">

<input message="getHrDeviceTypeRequest"/>
<output message="getHrDeviceTypeResponse"/>

</operation>
<operation name="getHrDeviceDescr" parameterOrder="indexaap">

<input message="getHrDeviceDescrRequest"/>
<output message="getHrDeviceDescrResponse"/>

</operation>

</portType>

<binding name="com.io_software.catools.cmod.cmod.foundationJMIImpl.
CAClassImpl@1d39c94Binding" type="tns:com.io_software.catools.cmod.cmod.
foundationJMIImpl.CAClassImpl@1d39c94Service">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getHrDeviceErrors">
<soap:operation soapAction="urn:host−resources−mgmt" />
<input name="getHrDeviceErrorsRequest">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output name="getHrDeviceErrorsResponse">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
<operation name="getHrDeviceID">
<soap:operation soapAction="urn:host−resources−mgmt" />
<input name="getHrDeviceIDRequest">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output name="getHrDeviceIDResponse">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
<operation name="getHrDeviceStatus">
<soap:operation soapAction="urn:host−resources−mgmt" />
<input name="getHrDeviceStatusRequest">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output name="getHrDeviceStatusResponse">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
<operation name="getHrDeviceType">
<soap:operation soapAction="urn:host−resources−mgmt" />
<input name="getHrDeviceTypeRequest">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output name="getHrDeviceTypeResponse">

APPENDIX H. GENERATED WSDL FOR HRDEVICEENTRY 86

<soap:body namespace="urn:host−resources−mgmt" use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
<operation name="getHrDeviceDescr">
<soap:operation soapAction="urn:host−resources−mgmt" />
<input name="getHrDeviceDescrRequest">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output name="getHrDeviceDescrResponse">
<soap:body namespace="urn:host−resources−mgmt" use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>

</binding>
<service>
<documentation> </documentation>
<port binding="com.io_software.catools.cmod.cmod.foundationJMIImpl.

CAClassImpl@1d39c94Binding" name="TODO">
<soap:adress location="http://localhost:8080/soap/servlet/rpcrouter"/>

</port>
</service>

</definitions>

Bibliography

[1] William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Ad-
dison-Wesley, Reading, MA, USA, third edition, 1999.

[2] J.P. Paulo Almeida. Web Services Development with OMG/MDA
Standards.
<url:https://doc.telin.nl/dscgi/ds.py/ViewProps/File-30227>,
February 2003. WASP presentation (WASP/PM3.7).

[3] R. Frye, D. Levi, S. Routhier, and B. Wijnen. Coexistence between Version
1, Version 2, and Version 3 of the Internet-standard Network Management
Framework, RFC3584. RFC 3584, Internet Engineering Task Force, Au-
gust 2003.

[4] J. B. Postel. User datagram protocol. RFC 768, Internet Engineering
Task Force, August 1980.

[5] Jean-Philippe Martin-Flatin. Web-Based Management of IP Networks and
Systems. John Wiley & Sons, Ltd., Chichester, West Sussex, PO19 8SQ,
England, 2003.

[6] Chris Wellens and Karl Auerbach. Towards useful management. The
Simple Times, 4(3):1–6, July 1996.

[7] J. Schönwälder, A. Pras, and J.P. Martin-Flatin. On the future of internet
management technologies. IEEE Communications Magazine, 41(10):90–
97, October 2003.

[8] W3C: Extensible Markup Language.
<url:http://www.w3.org/XML/>.

[9] Mi-Jung Choi, James W. Hong, and Hong-Taek Ju. XML-based Network
Management for IP Networks. ETRI Journal, 25(6):445–463, December
2003.

[10] F. Strauß and T. Klie. Towards XML oriented internet management.
In Proc. 8th IFIP/IEEE International Symposium on Integrated Network
Management, pages 505–518, Colorado Springs, March 2003.

[11] The Internet Engineering Task Force (IETF).
<url:http://www.ietf.org>.

[12] Network Management Research Group.
<url:http://www.ibr.cs.tu-bs.de/projects/nmrg/>.

87

BIBLIOGRAPHY 88

[13] Internet Research Task Force.
<url:http://www.irtf.org>.

[14] Internet Architecture Board.
<url:http://www.iab.org>.

[15] J. Schönwälder. Overview of the 2002 IAB Network Management Work-
shop, RFC3535. RFC 3535, Internet Engineering Task Force, May 2003.

[16] IETF: Evolution of SNMP Working Group.
<url:http://www.ietf.org/ietf/eos/>.

[17] IETF: Next Generation Structure of Management Information Working
Group.
<url:http://www.ietf.org/ietf/sming/>.

[18] W3C: World Wide Web Consortium.
<url:http://www.w3.org>.

[19] Frank Dzubeck. Is it time to re-engineer SNMP?
<url:http://www.nwfusion.com/columnists/2004/0322dzubeck.

html>, March 2004.

[20] W3C: Web Services Activity.
<url:http://www.w3.org/2002/ws/>.

[21] Object Management Group.
<url:http://www.omg.org>.

[22] Jan Willem Janssen. Evaluation of current tool support for the Model-
Driven Architecture. Master’s thesis, University of Twente, Enschede, The
Netherlands, January 2004.

[23] Minutes of the 11th NMRG meeting, Schloss Osnabrueck, Germany.
<url:http://www.ibr.cs.tu-bs.de/projects/nmrg/minutes/

minutes-011.txt>, September 2002.

[24] Jorge E. López de Vergara, Víctor A. Villagrá, Juan I. Asensio, and Julio
Berrocal. Ontologies: giving semantics to network management models.
Network, IEEE, 17(3):15– 21, 2003.

[25] IETF: NETCONF Working Group.
<url:http://www.ops.ietf.org/netconf/>.

[26] T. Goddard. NETCONF over SOAP. Internet-Draft, feb 2004.
<url:http://www.ietf.org/internet-drafts/

draft-ietf-netconf-soap-01.txt>.

[27] Distributed Management Task Force, Inc.
<url:http://www.dmtf.org>.

[28] Common Information Model standards.
<url:http://www.dmtf.org/standards/cim/>.

BIBLIOGRAPHY 89

[29] CIM Managed Object Format (MOF).
<url:http://www.wbemsolutions.com/tutorials/CIM/cim-mof.

html>.

[30] HP - Web Services Management Framework.
<url:http://devresource.hp.com/drc/specifications/wsmf/>.

[31] OASIS Web Services Distributed Management TC.
<url:http://www.oasis-open.org/committees/wsdm/>.

[32] R. Neisse, R. L. Vianna, L. Z. Granville, M. J. B. Almeida, and L. M. R.
Tarouco. Implementation and Bandwidth Consumption Evaluation of
SNMP to Web Services Gateways. IEEE/IFIP Network Operations &
Management Symposium, April 2004.

[33] Thomas Drevers. Performance of web services based network monitor-
ing. Master’s thesis, University of Twente, Enschede, The Netherlands,
January 2004.

[34] Information technology – Open Systems Interconnection – Basic Reference
Model. ISO/IEC 7498-*.

[35] Marshall T. Rose and K. McCloghrie. Structure and identification of
management information for TCP/IP-based internets. RFC 1155, Internet
Engineering Task Force, May 1990.

[36] K. McCloghrie and Marshall T. Rose. Management information base for
network management of TCP/IP-based internets:MIB-II. RFC 1213, In-
ternet Engineering Task Force, March 1991.

[37] J. D. Case, M. S. Fedor, M. L. Schoffstall, and C. Davin. Simple network
management protocol (SNMP). RFC 1157, Internet Engineering Task
Force, May 1990.

[38] J. Schönwälder. Simple network management protocol over transmission
control protocol transport mapping. RFC 3430, Internet Engineering Task
Force, December 2002.

[39] D. Perkins and E. McGinnis. Understanding SNMP MIBs. Prentice-Hall,
Upper Saddle River, NJ, USA, 1997.

[40] K. McCloghrie and F. Kastenholz. The interfaces group MIB. RFC 2863,
Internet Engineering Task Force, June 2000.

[41] Version 2 of the protocol operations for the simple network management
protocol (SNMP). RFC 3416, Internet Engineering Task Force, December
2002.

[42] W3C: Web Services Architecture.
<url:http://www.w3.org/TR/ws-arch/\#whatis>, August 2003.

[43] W3C: XML Protocol Working Group.
<url:http://www.w3.org/2000/xp/Group/>.

BIBLIOGRAPHY 90

[44] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. J. Leach,
and T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2616,
Internet Engineering Task Force, June 1999.

[45] J. B. Postel and J. F. Reynolds. File transfer protocol. RFC 959, Internet
Engineering Task Force, October 1985.

[46] Simple mail transfer protocol. RFC 2821, Internet Engineering Task Force,
April 2001.

[47] W3C: XML Schema Part 0: Primer.
<url:http://www.w3.org/TR/xmlschema-0/>, May 2001.

[48] OASIS Universal Description, Discovery and Integration TC.
<url:http://www.uddi.org/>.

[49] XML-RPC Home Page.
<url:http://www.xmlrpc.com/>.

[50] OMG: Common Object Request Broker Architecture.
<url:http://www.corba.org>.

[51] Sun: Java Remote Method Invocation (Java RMI).
<url:http://java.sun.com/products/jdk/rmi/>.

[52] Microsoft: Web Services Development Center.
<url:http://msdn.microsoft.com/webservices/>.

[53] IBM: SOA and Web services.
<url:http://www.ibm.com/developerworks/webservices/>.

[54] Sun: Java Technology and Web Services.
<url:http://java.sun.com/webservices/>.

[55] Novell: Novell exteNd.
<url:http://www.novell.com/webservices/>.

[56] BEA: Web services and WebLogic.
<url:http://dev2dev.bea.com/technologies/webservices/>.

[57] Web Services Project @ Apache.
<url:http://ws.apache.org>.

[58] W3C: Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language.
<url:http://www.w3.org/TR/wsdl20/>, March 2004.

[59] OMG: Unified Modelling Language.
<url:http://www.omg.org/uml/>.

[60] David Frankel. Using Model-Driven Architecture to Develop Web Services
(White Paper).
<url:http://www.iona.com/archwebservice/WSMDA.pdf>, April 2002.

[61] OMG: Model-Driven Architecture.
<url:http://www.omg.org/mda/>.

BIBLIOGRAPHY 91

[62] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1.
<url:http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf>,
June 2003.

[63] Joaquin Miller and Jishnu Mukerji. Model Driven Architecture (MDA).
<url:http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01>, July
2001. Document number ormsc/2001-07-01.

[64] Meta-Object Facility (MOF) Specification, version 1.4.
<url:http://www.omg.org/cgi-bin/doc?formal/2002-04-03>, April
2002.

[65] J. B. Postel. Transmission control protocol. RFC 793, Internet Engineer-
ing Task Force, September 1981.

[66] W3C: Web Services Description Language (WSDL) Version 2.0 Part 2:
Message Patterns.
<url:http://www.w3.org/TR/wsdl20-patterns>, March 2004.

[67] Publish/subscribe networking.
<url:http://www.nwfusion.com/details/6165.html>, May 2003.

[68] Drew Bird. SNMP - Anything But Simple.
<url:http://networking.earthweb.com/netsp/article.php/

979991>, February 2002.

[69] OASIS Web Services Security TC.
<url:http://www.oasis-open.org/committees/wss/>.

[70] Microsoft: Web Services Security (WS-Security).
<url:http://msdn.microsoft.com/ws/2002/04/Security/>.

[71] OASIS Security Assertion Markup Language (SAML) v1.1.
<url:http://www.oasis-open.org/committees/download.php/3400/

>.

[72] W3C: XML Signature WG.
<url:http://www.w3.org/Signature/>.

[73] W3C: XML Encryption WG.
<url:http://www.w3.org/Encryption/>.

[74] W3C: XML Key Management Specification (XKMS).
<url:http://www.w3.org/TR/xkms/>, March 2001.

[75] E. Rescorla. HTTP over TLS. RFC 2818, Internet Engineering Task
Force, May 2000.

[76] S/MIME version 3 message specification. RFC 2633, Internet Engineering
Task Force, June 1999.

[77] W3C Note: Web Service Choreography Interface (WSCI) 1.0.
<url:http://www.w3.org/TR/wsci/>, August 2002.

[78] OASIS Web Services Business Process Execution Language TC.
<url:http://www.oasis-open.org/committees/wsbpel/>.

BIBLIOGRAPHY 92

[79] BEA/IBM/Microsoft: Web Services Transaction (WS-Transaction).
<url:http://msdn.microsoft.com/ws/2002/08/wstx/>.

[80] Web Services Atomic Transaction (WS-AtomicTransaction).
<url:http://msdn.microsoft.com/ws/2003/09/wsat/>.

[81] BEA/IBM/Microsoft: Web Services Coordination (WSCoordination).
<url:http://ftpna2.bea.com/pub/downloads/

ws-standards-coordination.pdf>.

[82] Standards for Business Process Modeling, Collaboration, and Choreogra-
phy.
<url:http://xml.coverpages.org/bpm.html>.

[83] Mike Champion. Proposed text on reliability in the web services archi-
tecture.
<url:http://lists.w3.org/Archives/Public/www-ws-arch/

2003Jan/0256.html>, January 2003. Personal contribution on W3C WS
architecture mailing list.

[84] Web Services Reliability (WS-Reliability) Version 1.0.
<url:http://developers.sun.com/sw/platform/technologies/

ws-reliability.html>.

[85] OASIS Web Services Reliable Messaging TC.
<url:http://www.oasis-open.org/committees/wsrm/>.

[86] K. McCloghrie and F. Kastenholz. The interfaces group MIB using SMIv2.
RFC 2233, Internet Engineering Task Force, November 1997.

[87] P. Grillo and S. Waldbusser. Host resources MIB. RFC 2790, Internet
Engineering Task Force, March 2000.

[88] Avaya Labs Research - XML based Mgmt Interface.
<url:http://www.research.avayalabs.com/user/mazum/Projects/

XML/>.

[89] Microsoft: Distributed Systems Patterns.
<url:http://msdn.microsoft.com/library/en-us/dnpatterns/

html/EspDistributedSystemsPatternsCluster.asp>.

[90] Aiko Pras and Juergen Schönwälder. On the difference between informa-
tion models and data models. RFC 3444, Internet Engineering Task Force,
January 2003.

[91] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Her-
zog, A. Huynh, and M. Carlson. Terminology for policy-based manage-
ment. RFC 3198, Internet Engineering Task Force, November 2001.

[92] Aiko Pras. Network management architectures. PhD thesis, University of
Twente, Enschede, The Netherlands, February 1995.

[93] M. Tamer Özsu and Patrick Valduriez. Principles of distributed database
systems. Prentice-Hall, Upper Saddle River, NJ 07458, USA, second edi-
tion, 1999.

BIBLIOGRAPHY 93

[94] Information technology – Database languages – SQL. ISO/IEC 9075-
*:2003, 2003.

[95] Jeffrey D. Ullman and Jennifer Widon. A first course in database systems.
Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1997.

[96] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, London, fourth edition, 1997. European Adaptation.
Adapted by Darrel Ince.

[97] NMRG Views of an IETF Information Model.
<url:http://www.ibr.cs.tu-bs.de/projects/nmrg/infomodel/>.

[98] J. Schönwälder and A. Müller. Reverse engineering internet MIBs.
<url:http://www.ibr.cs.tu-bs.de/vs/papers/im-2001.pdf>.

[99] libsmi - A Library to Access SMI MIB Information.
<url:http://www.ibr.cs.tu-bs.de/projects/libsmi/>.

[100] Interactive Objects Software: ArcStyler.
<url:http://www.arcstyler.com>.

[101] Marshall T. Rose and Keith McCloghrie. How to Manage Your Network
Using SNMP: The Networking Management Practicum. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, January 1995.

[102] Dia: a drawing program.
<url:http://www.gnome.org/projects/dia/>.

[103] The Apache Jakarta Project.
<url:http://jakarta.apache.org>.

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.1.1 Towards XML-based network management
	1.1.2 Web services-based network management
	1.1.3 Model-Driven Architecture

	1.2 Problem description
	1.3 Scope and objectives
	1.4 Approach
	1.5 Related work
	1.5.1 Network Management Research Group
	1.5.2 NetConf
	1.5.3 Web-Based Enterprise Management
	1.5.4 Web Services Management Framework
	1.5.5 Other

	1.6 Intended audience
	1.7 Structure

	2 State of the art
	2.1 Simple Network Management Protocol
	2.1.1 Foundation
	2.1.2 Architecture
	2.1.3 Management Information Base
	2.1.4 SNMP protocol operations

	2.2 Web Services
	2.2.1 Basic concepts
	2.2.2 Web Service Description Language

	2.3 Model-Driven Architecture
	2.3.1 Introduction
	2.3.2 Basic concepts
	2.3.3 Model transformation

	3 Web services for network management
	3.1 Performing network management with Web services
	3.2 Message exchange patterns
	3.3 Interface extensibility
	3.4 Additional Web service standards
	3.4.1 Security
	3.4.2 Transactions
	3.4.3 Reliability
	3.4.4 Summary

	4 Standardisation
	4.1 WSDL modularisation
	4.2 Management operations
	4.2.1 Operation definition extremes
	4.2.2 Parameter transparency
	4.2.3 Operation granularity
	4.2.4 Summary

	4.3 Management information definition
	4.3.1 Data models and information models
	4.3.2 Management information models
	4.3.3 Data-oriented information model
	4.3.4 Object-oriented information model
	4.3.5 Summary

	5 Case study: host-resources
	5.1 Host-Resources MIB
	5.2 Data-oriented approach
	5.2.1 Information model
	5.2.2 Protocol
	5.2.3 Summary

	5.3 Object-oriented approach
	5.3.1 Information model
	5.3.2 Protocol
	5.3.3 Summary

	6 Conclusions
	6.1 Main contributions
	6.2 Future work

	A SNMPv2-PDU definitions
	B Host-resources database model diagram
	C SNMP-WS abstract interface definition
	D SNMP-WS binding definition
	E snmp-simple.xsd
	F Generated Host-Resources UML class diagram
	G Revised Host-Resources UML class diagram
	H Generated WSDL for hrDeviceEntry
	Bibliography

