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ABSTRACT 

Rockfalls cause a lot of destruction to life and property globally especially in hilly terrains. Photogrammetry 

plays an important role in monitoring of rockfalls. Both LIDAR and UAVs have been used to monitor the 

source areas of rockfalls and their trajectories since decades ago. The reduction in the price of drones on 

the market has broadened the use of the aircrafts beyond the military use. The development of discontinuity 

set extraction algorithms has also enabled automatic extraction and analyses of the discontinuities in a rock 

mass using photogrammetry data in slope stability studies. However, the existing approaches use empirical 

parameter values to collect photogrammetry data and extract the discontinuities from the rock mass whose 

results are therefore, not transferable. Hence this research aimed to develop a generic methodology of 

determining the optimal parameter requirements for a UAV flight plan and discontinuity sets extraction 

from the collected drone data. The study area comprised two slopes located within the Samaria Gorge site 

in Crete, Greece. Slope 1 is an upper slope east of the entrance to the gorge and slope 2 is road cut of one 

of the sections of the access road to the Kallergi refugee camp. The automated UAV survey was used collect 

data from slope 1 while at slope 2, the manual flight was employed. The UAV data was processed using 

pix4D to generate point clouds. The point clouds were subjected to automatic discontinuity set extraction 

using DSE. Three main discontinuity sets were successfully extracted by DSE. One of the three structures 

is horizontal and orienting in the same direction as the slope and the other two are sub vertical in both 

slopes. The recovered discontinuities were overlapped with the visually identified structures on the RGB 

point cloud to quantitatively determine the accuracy and effectiveness of the algorithm to extract the 

discontinuity sets in a point cloud via the computation of classification accuracy indices. The highest overall 

accuracy results obtained for the slope 1 data were: 40% for knn, 40% for α and 47% for β from the 

2cm_GSD_45° point cloud and 33% knn, 37% α and 40% in the β parameter experiments from the 

2.5cm_GSD_45° model. Conversely, the highest overall accuracies for the slope 2 data were: 73% for knn, 

80% for α  and 73% for the β parameter. The accuracy indices results showed that the slope 2 data 

outperformed the slope 1 data. The poor results in the slope 1 data were mainly due to noise in the data, 

insufficient exposure of the rock mass surface, too many undulations on the slope surface, occlusions and 

shadowing effect from the higher vegetation. The optimized parameters based on slope 2 accuracies were: 

knn 40, α 15 and β 50. The geometric characteristics  of the discontinuities in the two slopes were 

predominantly tiny spacing in the order of 10cm and non-persistent in the order of 0m persistence forming 

a highly fragmented discontinuity network. In addition to the fragmented geological structures, rockfall 

triggering factors that are active and frequent in the area accelerate rockfalls down the slopes. Therefore, 

rockfall mitigations guided by comprehensive hazard mapping are highly recommended. Future, studies are 

recommended to quantitatively determine the effect of roughness on the extraction of the discontinuities, 

study the vegetation removal capabilities of the canupo plugin in cloudcompare to maximize its potential in 

such research work and lastly, future studies can consider checking the influence of other parameters not 

tested in this research in other terrains with different characteristics and check how the requirements of 

flight planning and discontinuity set extraction would change or compare with the results obtained in this 

research. 

  

Key words: Rockfall, Photogrammetry, UAV, Point cloud, Discontinuities, DSE, Sensitivity, Accuracy 

indices, Slope stability. 
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1. INTRODUCTION 

1.1. Background  

Rockfalls cause a lot of damage to life and property globally (UNDRR, 2019). In the absence of adequate 

mitigation measures, rockfalls can severely ravage communities especially in hilly terrains (Gomez & Purdie, 

2016; Guzzetti et al., 2002; Jaboyedoff et al., 2005; Pellicani et al., 2016; Pradhan & Sameen, 2017). Rockfall 

is a type of mass movement that involves free fall, sliding, rolling or toppling of a detached rock block from 

the parent rock mass down its slope by gravity (Fanos & Pradhan, 2018a). Rock block detachment is caused 

by weathering, jointing, pore pressure, erosion, earthquakes and freeze-thaw cycle (Crosta & Agliardi, 2003; 

Gnyawali et al., 2016). Detachment of rock blocks occurs along the discontinuities in a rock mass (Admassu 

& Shakoor, 2012; Wyllie & Mah, 2005). A rock mass comprises the intact rock and the discontinuities. Wyllie 

and Mah (2005), define discontinuities as the naturally occurring breaks in a rock and form planes of 

weakness in a rock mass. 

Discontinuities facilitate passage of fluids in a rock mass which contribute to the reduction in shear strength 

of the rock mass. Therefore, geomechanical characterization of the rock mass is imperative so as to 

understand its properties that in turn influence the rock slope stability (Romana et al., 2003; Wyllie & Mah, 

2005). Established rock slope classifications exist that help in geomechanical characterization of the rock 

mass. These classifications include rock mass rating (RMR) by (Bieniawski, 1973, 1984, 1989 as cited by 

Romana et al., 2003 pg. 1); rock quality designation (RQD) by (Deere 1967 cited by Hoek, 2006 pg. 3); slope 

mass rating by (Romana et al., 2003) and Slope stability probability classification (SSPC) by (Hack, 1998). 

Despite some drawbacks, rock mass classifications can provide reliable information such as discontinuity 

density necessary for planning appropriate mitigation measures against rock failure based on their 

thresholds. For example, slopes with SMR values of between 75 and 100 can be regarded as stable and may 

therefore, not need support whereas slopes with SMR values of < 30 may signal serious instability and 

therefore, require mitigation measures to curtail the potential slope failure (Romana et al., 2003).   

Consequently, implementation of appropriate mitigations guided by geomechanical characterization can 

help to prevent or reduce destruction caused due to rockfalls. However, the mitigation measures can only 

be effective if the causes and sources of rockfalls are fully understood. Therefore, the study proposed to 

examine the geometrical characteristics of the discontinuities in the rock mass of the research area to 

properly inform the implementation of such measures and recommend a plausible semi-automated 

approach of carrying out such a study that generates optimal results. Lei et al. (2017), define discrete fracture 

network (DFN) as a model that represents the geometry of the fractures (discontinuities) in a rock mass. 

In earlier decades, advances in LIDAR and photogrammetry technology have enabled robust data capture 

and generation of high resolution of 3D models depicting terrains of target including slopes. Improvements 

in the photogrammetric data capture methods, have been accompanied by development of discontinuity set 

identification and extraction algorithms that are replacing the manual measurements of geomechanical 

properties of discontinuities. The use of unmanned aerial vehicle (UAV) photogrammetry is rapidly growing 

in undertaking similar works though not to the same scale as the airborne LIDAR (Bühler et al., 2016; 

Tannant, 2015). However, the existing approaches employ empirical parameterization during both data 

capture and discontinuity extraction. Therefore, this study attempted to carry out a sensitivity analysis aimed 

at assessing the principal UAV flight plan and the discontinuity set extraction parameter requirements in 

order to provide an insight of the minimum parameter requirements for a standard flight plan and 
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discontinuity set extraction from the 3D models depicting similar terrains as the study area. Ground methods 

of investigating geological structures are tedious, time consuming, limit access to steep slopes and biased 

due to individual’s preferences of what areas to examine over the others (Haneberg, 2008). Hence, the use 

of UAV photogrammetry to collect the survey data. 

1.2. Study Area 

The study area is located in the western mountain massif of the island of Crete in Greece. The research area 

comprised two slopes. Slope 1 is the upper slope located east of the entrance to the Samaria Gorge while 

slope 2 is a road cut of the access road to the Kallergi refugee camp within the gorge area. The point 

coordinates of the site are 35”18’27.52”N and 23”55’07.38”E. Samaria Gorge is located on the island of 

Crete, Sfakia Province in Greece. The gorge is bound by steep slopes. Rahl et al. (2004) described the geology 

of Crete as predominantly limestones and dolomites. The formation of the gorge dates back during the 

quaternary period (west -crete.com, 1999). The Lefka Ori (White Mountains) whose rock formations are 

mainly calcium carbonates such as platy marble, dolomites and limestones are the largest mountains in Crete. 

Most of these rocks were formed millions of years ago due to dissolution of the calcium carbonate eroded 

on land by surface runoffs and deposited in the riverine area. Due to unending deposition, compression and 

folding of the rocks impacted by the tectonic movements, as a result of the subduction zone converging the 

African plate and the European plate in the study area, the uplifting of the mountains continues todate 

reaching an altitude of 2453m above sea level at Kelf Ori and have been largely responsible for the formation 

of the gorges. However, the highest peak in Crete is at Psiloritis which is 3m higher (wordpress.com, n.d.). 

Seismic activity is prominent in the area evidenced by a 6 magnitude Richter scale earthquake that occurred 

during the field visit by the author on December 22, 2019.  

Therefore, occurrence of rockfalls at the gorge is not unusual especially during the rainy season and routine 

freeze thaw cycle. Fragments of rocks and boulders were noticed especially along the access path into the 

gorge either trapped by the wire meshes (protective nets) or came to rest on the path as shown in figure 2. 

Debris flows and flash floods running down the slope surfaces were also noticed during fieldwork. Presence 

of faults, fracturing of rock masses, steep topography and high seismic activities lead to increased rockfall 

events in Greece (Saroglou, 2019). Figure 1 shows the location of the study area.   

The gorge is a tourist attraction and therefore, of economic significance to the country. Region of Crete 

(2017) reports that between 2000 and 2008 Crete contributed about 5% to the national domestic product 

(GDP). The report further indicates that per capita GDP of the region equals that of the entire country 

whose major source of revenue is the seasonal tourism industry which contributes 30% and 25% of the total 

5 and 4 star hotels in Greece. 
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Figure 1: Location of the study area. Source: Esri 

Figure 2: Rockfall mitigation measures along the access path into the gorge 
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1.3. Problem statement 

Use of LIDAR and UAV data in geosciences has grown in popularity over the last decades. For example, 

Žabota et al. (2019), compared different spatial resolutions of the official digital elevation models (DEMs) 

for Slovenia derived from the photogrammetry data whose reference was a 1m resolution DEM in order to 

determine the potential source areas and run out of rock falls. The results showed that the low resolution 

DEMs performed better at the regional scale than the high resolution DEMs while the high resolution 

DEMs outperformed the coarser resolution DEMs at the local scale. These results are consistent with 

(Zieher et al., 2012) who also experimented the reach distance of rock falls on different resolutions of the 

digital terrain models (DTMs) derived from two datasets of airborne laser scanning. The results reviewed 

that the high resolution DTMs took into account the microtopography of the slope and produced more 

realistic results than the low resolution DTMs which overestimated the lateral extent of rock fall run out. 

Similarly, Bühler et al. (2016), observed in their simulation of the rock fall run out using unmanned aerial 

system (UAS) data that the finer resolution DEM stopped the blocks moving further down the slope 

whereas the coarser resolution DEM did not. 

Further, Riquelme et al. (2014), successfully characterized the rock mass discontinuities in the 3D point 

cloud and performed sensitivity analysis of parameter changes without changing the resolution of the data. 

Nagendran et al. (2019), also extracted two major discontinuities using cloudcompare and conducted 

sensitivity analysis on the two discontinuity sets using the orientation data to determine the probability of 

failure. However, no experiments were conducted to test the effect of changing spatial resolution of the 

data and also the terrain characteristics from which the data was collected are unknown. 

Generation of high resolution 3D models has been possible due to the technological improvements in 

LIDAR photogrammetry and recently UAV. A similar trend in the development of the discontinuity set  

identification and extraction algorithms has been observed. Traditionally, LIDAR and UAV technologies 

and joint set extraction software employ empirical parameterization during data capture and discontinuity 

set extraction. Therefore, the influence of different UAV data resolution and varying of the processing 

parameters on the DFN and requirements are not fully understood. Hence, this study attempted to fill this 

gap by developing a systematic and quantitative semi-automated approach in examining the effect of 

different spatial resolution of UAV photogrammetry data and processing parameter changes on the 

characterization of discontinuities in a rock mass in order to develop a methodology that can be applied to 

similar environments as the study area by providing an insight of the minimum parameter requirements for 

a standard flight plan and discontinuity set extraction. 
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1.4. Objectives  

1.4.1. Main objective  

To assess the effect of UAV flight plan and point cloud processing parameters on the characterization of 

the rock mass discontinuities. 

1.4.2. Specific objective 1 

Analyze the differences in the point densities of the UAV point cloud acquired according to different flight 

plan parameters. 

 

Research question 1a: 

Does georeferencing influence the quality of the point cloud? If yes, what is the effect on the data quality? 

Research question 1b: 

What is the in the influence of the camera location (distance) and tilt angle on point cloud density with 

respect to the geomechanical characterization of the rock mass? 

Research question 1c: 

Which vegetation removal method produces best quality point cloud depicting complex surfaces such as 

rocky slopes? 

1.4.3. Specific objective 2 

To examine the effect of different methods and parameters used on the characterization of the rock mass 

discontinuities in a point cloud. 

Research question 2a: 

What are the existing algorithms and their parameters used to generate the DFNs in a rock mass from a 

point cloud? 

Research question 2b: 

What is the effect of varying the processing parameters on the DFNs and how can the results be evaluated? 

Research question 2c: 

What geometric characteristics of the discontinuity sets are depicted differently at different point cloud 

density and their implication on slope stability? 
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1.5. Thesis structure  

Chapter one: Introduction 

Chapter one discusses the background of the research, study area, problem statement and objectives. 

Chapter two: Literature review 

This chapter examines the past work related to the research. 

Chapter three: UAV survey and 3D model reconstruction 

Chapter three discusses the methods used to collect UAV data, image processing, georeferencing and 3D 

model reconstruction and the results thereof.  

Chapter four: Rock mass discontinuity characterization:  sensitivity to processing parameters and 3d model spatial resolution 

The details of the methods used to automatically identify and extract the discontinuity sets and the results 

thereof are discussed in this chapter. Sensitivity analysis of different parameters during processing of the 

point clouds of different point density to facilitate extraction of geological structures is also discussed. 

Chapter five: Discussion and Conclusions 

This chapter explains the research questions and the responses to the questions, methods used to answer 

the research questions and the results obtained. Argumentation to support the responses to the research 

questions is also provided. An overview of the challenges of the research is presented in this chapter. Lastly,  

the final chapter discusses whether the objectives of the research were achieved or not and recommends 

areas of future research. 
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2. LITERATURE REVIEW 

2.1. UAV survey 

Advances in aerial photogrammetry have enabled acquisition of geospatial data from complex terrains with 

reasonably good precision and accuracy (Fanos & Pradhan, 2018b; Gomez & Purdie, 2016; Hugenholtz et 

al., 2013; Lee & Sung, 2016; Menegoni et al., 2019; Nesbit & Hugenholtz, 2019; Oniga et al., 2018; Pepe et 

al., 2018; F. Remondino et al., 2012). Aerial photogrammetry includes the use of UAVs and airborne 

LIDAR. UAVs are operated without a pilot on board but monitors and controls it from the ground (Gomez 

& Purdie, 2016). Drones provide low cost remote sensing solutions as LIDAR is expensive and therefore, 

not economical for local applications (Gomez & Purdie, 2016; Menegoni et al., 2019; Nesbit & Hugenholtz, 

2019; Remondino et al., 2012; Riquelme et al., 2014).   

The advent of UAV technology and subsequent reduction in its price on the market, has broadened its use 

for the scientific purposes beyond the traditional military use. The UAVs are increasingly being used for 

mapping of landscapes, hazards, emergency response, transporting and delivery of materials to inaccessible 

areas and secluded communities (Gomez & Purdie, 2016; Hackney & Clayton, 2015). For example, 

Nagendran et al. (2019), employed a drone in their rock slope characterization study in order to obtain the 

primary data for the rock slope stability assessment. Hackney and Clayton (2015) indicated that due to the 

coarse spatial and temporal resolution of the conventional satellite images, quick and detailed analysis of the 

topography is hampered hence, the use of UAVs, provides an immediate solution to this problem as a drone 

can quickly be deployed and landed at any location repetitively. The drone technology provides an option 

of generating a flight plan for the execution of an autonomous image acquisition mission. Further, live views 

are possible with UAVs to check what the drone sees as it hovers over the study area (Hackney & Clayton, 

2015). Data acquisition using UAV involves manual or automated flying of the drone mounted with a 

camera over the study area to scan the scene under investigation and capture images of the scene being 

studied (pix4D, 2011; SPH-Engineering, 2019). Despite the immense advantages of UAVs, there are 

limitations to the use of the drones. Some of the limitations include the inability of the UAV cameras to 

view below the leaves in a vegetated area leading to occlusions and shadowing effect in the data, limited 

payload resulting in the inability of the drone to carry large sophisticated cameras, legal restrictions and bad 

weather conditions such as wind, rain, fog and low illumination (Anders et al., 2019; pix4D, 2011; Yilmaz 

et al., 2018). 

UAV survey commences with preparation of a flight plan to establish the waypoints, route, nominal ground 

sampling distance (GSD), flight height, image overlap, camera tilt angle and the extent of the area to be 

scanned by the aircraft. Flight planning affects data acquisition and quality and therefore, its importance 

cannot be overemphasized. Environmental factors such as rain, wind, cloud cover, sun, fog, physical 

obstructions, vegetation, characteristics of the object to be scanned and the legal requirements should also 

be factored into flight planning (Jaud et al., 2019; Nesbit & Hugenholtz, 2019; Pepe et al., 2018; pix4D, 

2011; Remondino et al., 2012; SPH-Engineering, 2019). 

The aircraft is flown over the study area following the predetermined flight plan while the pilot monitors 

and controls the vehicle from the ground during data capture. The global navigation satellite system (GNSS) 

receiver onboard the drone captures the location of the images in space and the photos, therefore, the 

location of the drone at the time of image acquisition is saved in the details of the images (Gomez & Purdie, 

2016; Remondino et al., 2012; Salvini et al., 2017). However, owing to the poor quality of the GNSS receiver 

onboard the drone, the accuracy of the model is low (Manconi et al., 2019; Menegoni et al., 2019). 
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Incorporating ground control points (GCPs) during image processing improves the accuracy of the 3D 

models (ELtohamy & Hamza, 2009; Gerke & Przybilla, 2016; Oniga et al., 2018; Sanz-Ablanedo et al., 2018). 

Menegoni et al. (2019) submitted that UAVs are extensively used in rockfalls monitoring and susceptibility 

mapping. Deployment of a drone or a swarm of UAVs over the study area enables rapid collection of the 

scans and 3D reconstruction of the scene for quick decision making. Rockfalls usually occur very fast and 

therefore, do not provide sufficient lead time for immediate response. Therefore, the most reliable ways to 

prevent or control rockfalls is through implementation of active or passive mitigation measures. Effective 

implementation of mitigations are driven by accurate identification of the causes and source areas of 

rockfalls. In turn, accurate detection of the causes and sources of rockfalls requires precise and accurate 

mapping of the affected areas. Traditionally, ground methods such as site field visits, infrared thermography 

and terrestrial photogrammetry are used to map rockfall hazard prone areas by visually assessing the area 

and conducting contact or indirect measurements using field equipment. However, ground methods have 

limitations which include human errors and bias, inability to reach inaccessible areas and limited scope, etc. 

(Slob et al., 2007).  

Manconi et al. (2019) also experimented the effect of both nadir and oblique UAV image capture on the 

spatial resolution of the terrain models depicting steep slopes. The authors used an external DEM from 

Ardupilot that had better spatial accuracy than the commonly used low resolution global DEMs such as the 

shuttle radar topography mission (SRTM) and the terrain following option of the flight planning software 

to maintain a constant UAV distance to the slope in order to reduce the effect of height changes resulting 

in distortions and inaccurate results and also risk of ramming the drone into the slope. The results showed 

differences in the point density in the two experiments. In the nadir looking experiment, a 10 million points 

point cloud was obtained whereas in the oblique image acquisition experiment generated a 28 million points 

3D model. This is consistent with the findings of (Kozmus Trajkovski et al., 2020) who conducted a similar 

experiment using a national 5m resolution DTM for Slovenia. 

Wyllie and Mah (2005) state that rockfalls occur along the planes of weakness referred to as discontinuities 

in a rock. Therefore, effective control of rockfalls, requires accurate identification and characterization of 

the discontinuities through the use of robust methods such as aerial photogrammetry (Haneberg, 2008).  

2.2. Structure from Motion 

Structure from motion (SfM) is the acquisition of 2D images in motion or from different location but 

capturing the same scene and reconstructing a 3D model of the captured scene from the collected 2D images 

(Remondino et al., 2017; Tannant, 2015; Wei et al., 2013).  The 3D products from SfM include point clouds, 

texturized mesh, digital surface model (DSM) and orthoimage (Menegoni et al., 2019). 3D model 

reconstruction of the real scene is achieved by creating the 3D geometry of a scene and tracking camera 

poses. 3D modelling improves visualization of the specimen under study including the discontinuities in a 

rock mass (Wei et al., 2013). Using SfM and Multiple view stereo (MVS), a sparse and dense point cloud can 

be generated respectively. Further, advances in the image stitching algorithms incorporated in the image 

processing software like pix4D, Agisoft, Inpho, Photoscan and PhotoModeler, has immensely improved 

the processing speed, 3D model accuracy and removal of outliers during image 3D model reconstruction 

(Tannant, 2015). 

2.3. Discontinuity set identification and extraction 

Typically, manual methods are employed to collect information about the geometrical properties of the 

discontinuities in the field using the scanlines and geological compass. However, the manual methods have 

serious drawbacks such as difficulties in accessing steep slopes, human bias, limited scope, inaccurate results 
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due to knowledge gaps, exposure to rockfall hazard, etc. (Slob et al., 2007; Tannant, 2015; Wyllie & Mah, 

2005). The solution to these challenges therefore, lies in the development and use of automated methods of 

discontinuity identification and extraction.  

Recognition of discontinuity sets in a 3D model is twofold, manual and semi-automatic or automatic. The 

flexibility of the photogrammetric 3D models in being able to be measured either automatically, semi-

automatically or manually supports the two fold discontinuity set identification and extraction methods from 

such datasets. Manual identification of the fractures involves visually identifying the discontinuity sets with 

or without the help of a planar stereoscopic mirror (Menegoni et al., 2019) while the automated method 

involves the use of algorithms such as discontinuity set extractor (Riquelme et al., 2014) and qFacets (Dewez 

et al., 2016). Recognition of the joint sets in the 3D models is facilitated via segmentation of the point cloud 

using various data structures such kd, octree and Delaunay triangulation. The nearest neighbour and 

principal component analysis (PCA) are the principal methods employed during segmentation in order to 

determine the coplanar and non-coplanar surfaces by establishing different cohorts of the data points in the 

point clouds (Dewez et al., 2016; Riquelme et al., 2014; Slob et al., 2007; Vosselman & Maas, 2010). After 

the automatic identification and extraction of the discontinuity sets, the geological structures are visualized 

in software such as cloudcompare among others to provide meaningful understanding of the structures 

being studied (Dewez et al., 2016; Riquelme et al., 2014; Slob et al., 2007). The discrimination of the 

discontinuity sets in a rock mass is based on the spectral information of the scanned object derived from 

the RGB camera (Spreafico et al., 2017). 

2.4. Sensitivity analysis of discontinuity set extractor parameters  

Riquelme et al. (2014) developed a three step methodology for semi-automatic extraction of discontinuity 

sets from 3D LIDAR data using the discontinuity set extractor (DSE) algorithm developed by Riquelme. 

The three steps are: local curvature calculation which involves nearest neighbourhood points search and 

coplanarity test, the second stage being statistical analysis which involves principal pole estimation and 

normal vector calculation to generate principal orientations of the 3D points in a plane and the third being 

clustering to enable class identification of the planes. The authors conducted sensitivity analysis of the 

algorithm on two different datasets: set A comprising scanned solid objects of different shapes while set B 

consisted of LIDAR data of a real scene. The study concluded that better results in set A were obtained at 

k – nearest neighbour (knn) value of 10, tolerance of 20%, minimum angle (θ) between two principal normal 

vectors of 20° and maximum angle (φ) between the normal vector of the principal pole (central point) and 

the normal vector of the assigned poles of 30°. In the second dataset, the authors concluded that small knn 

values e.g. knn < 15 introduced a lot of noise in the computation of principal poles while larger knn values 

e.g. knn > 30 smoothed the local curvature. On tolerance, the authors established that tolerance values less 

than 15% significantly discarded a number of similar points to coplanar points while values more than 25% 

incorporated both edge points and coplanar points into the results. Therefore, in order to strike a balance 

between resolution and accuracy, the optimal knn value was defined between 15 and 30 while the tolerance 

value set to 20%. Further, since it is generally agreed that if a set of principal components have 80% or more 

of variance then the data is properly represented and the 20% tolerance is therefore, acceptable (Rencher & 

Christensen, 2012 as cited in Riquelme et al., 2014 p. 41). Like in set A, the optimal values for θ and φ were 

set to 20° and 30° respectively. The algorithm employs two parameters to cluster the subset points in a plane 

namely the maximum distance between two points to consider a point as nearest neighbour and secondly 

the minimum number of nearest neighbourhood points to a point to consider the point a core or seed or 

central point. 

However, the point density of the data used by the authors and the characteristics of their study area are 

unknown and the parameters values for the sensitivity analysis were empirically obtained. Further, the 
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geometrical characteristics of the rock mass discontinuities are not described to properly guide in parameter 

tuning in order to obtain optimal results. For example, if the rock mass consists of platy limestone and 

rough, the parameters of the discontinuity set extractor algorithm will need to be optimized so as not to 

grow the plates into one region thereby giving inaccurate results about the density and geometry of the 

discontinuities. Hence, the results obtained are not global and therefore, not transferable. 

2.5. Geometrical characteristics of discontinuities  

Wyllie and Mah (2005) define discontinuities as naturally occurring breaks in a rock mass and categorized  

them as follows: 

Faults – a fracture with a noticeable movement and occur as parallel or sub parallel sets along the extent of 

the displacement. 

Bedding – this is surface that spans parallel to the surface of deposition, a common feature in sedimentary 

rocks. 

Foliation – this is as a result of accumulation of platy or banding minerals in metamorphic rocks. 

Joints – this is a fracture in which there is no observable displacement and intersect primary surfaces such 

as bedding planes or other joints. 

Discontinuities can reduce or increase the overall strength of the rock mass and hence its stability depending 

on the type, persistence, spacing, infilling and orientation of the discontinuities (Admassu & Shakoor, 2012; 

Agliardi et al., 2013; Wyllie & Mah, 2005). Discontinuity spacing defines the size and shape of the blocks to 

be detached from the parent rock and gives an indication of a type of failure to occur such as planar, wedge 

and toppling in a rock mass. Further, spacing of discontinuities affects the strength of the rock mass, for 

example, fractures closely spaced join to form an uninterrupted zone of weakness in a rock mass. Persistence 

is another geometrical property of discontinuities that directly influences the stability of a rock mass. 

Combined with discontinuity spacing, persistence also determines the size of the detached rock blocks and 

therefore, an important factor in determining the magnitude of the rockfall hazard. Continuous persistence 

severely weakens the rock mas than the non-persistent discontinuities (Wyllie & Mah, 2005).  

Figure 3: Schematic representation of geometrical properties of the discontinuities in a rock mass. 
Source: Azarafza et al., 2018 adapted after (Hudson 1992). 
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2.6. Discrete fracture network and slope stability 

Discrete fracture network is a stochastic representation of the geometrical properties of discontinuities in a 

rock mass (Lei et al., 2017; Salvini et al., 2017). Salvini et al. (2017) used the DFN to interpret the fracture 

data collected through exposure mapping and develop a synthetic rock mass (SRM) model. The model 

eliminated the challenges of incorrectly interpreting to which set the discontinuities belonged and their 

geometrical properties due to limited or non-exposure of rock outcrops to facilitate direct observations. 

Further, the discontinuities are subject to in-situ stress fields in the subsurface resulting in the development 

of complex typologies such as cross cutting, abutting, branching, termination, bends, spacing and clustering 

that exacerbate the difficulties in collecting 2D/3D information using direct observations (Fadakar 

Alghalandis et al., 2017; Lei et al., 2017; Salvini et al., 2017).  

Fadakar Alghalandis (2017) simulated the influence of discontinuity intersections, clustering network and 

connectivity on the stability of a rock mass and observed that these typologies play an important role on 

rock slope instability leading to rock slope failure as they facilitate the passage of fluids in a mass of rock.  

 Admassu and Shakoor (2012), Agliardi et al. (2013) and Wyllie and Mah (2005) demonstrated different rock 

slope failure mechanisms based on the dip/dip direction and spacing of the discontinuities. The main failure 

types discussed are toppling, planar and wedge. 

Planar failure – planar failure occurs when the discontinuity set(s) orient parallel to the slope face and the 

dip angle of the fractures is less than the slope angle.  

Wedge failure – occurs when two discontinuities striking parallel to the slope face intersect and dip at an 

angle less than the slope angle. 

Toppling failure – toppling occurs when the discontinuities dip into the slope face and are within 10° of 

the dip direction of the face so that a series of rock blocks are formed parallel to the slope surface of a rock 

mass. 
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3. UAV SURVEY AND 3D TERRAIN MODEL 
RECONSTRUCTION  

3.1. Methodology  

Research specific objective 1 was achieved through a multi stage approach that involved field preparations, 

UAV flight planning, data capture, georeferencing, image processing and vegetation removal from the 

generated models whose outcomes were rigorously 

examined to obtain and prepare good quality 

UAV data required in the parametric processing 

and spatial resolution sensitivity analysis. Figure 4 

summarizes the workflow of the methodology 

used to achieve the research sub objective 1. 

3.1.1. Flight planning 

Two surveys were planned to scan the two target 

slopes in the study area. The two surveys were: 

automated survey  planned for slope 1 and the 

manual flight for slope 2. The automated survey 

was prepared using the universal ground control 

software (UgCS) whereas the manual flight 

simply involved the deployment of the UAV by 

the pilot over the area to be scanned without a 

predetermined flight plan. UgCS is a commercial 

flight planning software that provides three type 

of flight mission tools namely photogrammetry 

tool used for a wide range of land surveying including steep slopes, area scan mainly used for surveying flat 

terrains and lastly, the façade scan tool suitable for preparing flight missions to survey vertical structures like 

buildings. Further, UgCS provides an option of generating a flight plan for the execution of an autonomous 

image acquisition mission, live views to check what the drone sees as it hovers over the study area (Kozmus 

Trajkovski et al., 2020; Manconi et al., 2019). The most important reason for the selection of UgCS in this 

application was that it allows for the complete customization of the flight planning keeping a constant 

distance from the terrain using the default SRTM DTM or an external local scale DEM to enable preparation 

of a more accurate flight plan. Using the photogrammetry tool, six flight plans were created with pre-set 

camera angles and UAV distance to the slope in order to achieve good precision and accuracy during image 

capture (Nesbit & Hugenholtz, 2019). Flight planning was also guided by the obstacle avoidance and legal 

requirements.  

3.1.2. UAV Flight distance to slope and oblique view angle 

In studying the use of the drone to survey a coastal cliff face and selecting the best view camera angle, Jaud 

et al. (2019) concluded that in order to avoid occlusions as a result of the obstruction from the cliff off nadir 

imaging angles of 20°, 30° and 40° were used and produced satisfactory results. Nesbit and Hugenholtz 

(2019) also stated and acknowledged that the use of oblique images in digital photogrammetry significantly 

improves the spatial accuracy, precision and reduces the amount of missing data and systematic errors in 

the data. In this research, the drone perpendicular distance to the slope during data capture was manually 

computed using the flight heights of the drone automatically generated by UgCS and the slope angle 

obtained from the field measurements as depicted in figure 5.  
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Figure 4: Methodology workflow  
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However, the drone perpendicular distance to the slope computations using the slope angle from field 

measurements however, were replaced by the computations using the more accurate average slope angle 

manually obtained from the generated point cloud  in order 

to minimize the large margins of error associated with the 

inaccuracies of field measurements regarding the exact 

position of the drone in space during image capture (Slob, 

2010). The computed distances were 38.7m corresponding 

30° camera tilt angle, 36.3m corresponding to 45°, 36.6m 

corresponding to 60° under the flight height of 46.5m Under 

the flight height of 58m the calculated UAV perpendicular 

distances to the slope were: 45.3m corresponding to the 30°, 

45.6m corresponding the 45° and lastly 48.3m corresponding 

to the 60° camera tilt angle as indicated in table 1 below. 

 

 
 

Table 1: Flight plans and the number of images captured per flight 

 

3.1.3. Data capture 

After the preparation of the flight plans, the automated surveys were executed by flying the quadcopter 

drone mounted with an RGB camera over slope 1 while monitoring and controlling the vehicle from the 

ground to scan the area under investigation in accordance with the specifications of each of the individual 

six flight plans. The photos were captured using trigger by distance camera control action defined during 

flight planning. The use of the external DEM enabled the drone to maintain a perpendicular distance to the 

slope and avoid crushing the aircraft into the slope by following the terrain of the slope. Other control 

actions included stop and turn, overshoot, take-off and landing. Stop and turn enabled the drone maintain 

its flight path by slowing down its flight speed and turn when joining another route. This was necessary to 

ensure consistent image overlap. Overshoot on the other hand is simply adding extra segments to the ends 

of the survey lines to allow the UAV sufficient time to turn to another waypoint especially when the stop 

and turn control action and action to trigger were used otherwise the drone could easily ignore some 

waypoints resulting in blurred images. Lastly, the take-off and landing control action allowed deployment 

Oblique camera angle off nadir 

Flight 

height 

(m) 

UAV distance to 

slope corresponding 

to oblique angle (m) 

Flight mission using local 

scale DEM 

30° 45° 60° 

Number of images 

46.5 30° 45° 60°  88 97 97 

38.7 36.3 36.6 

58 30° 45° 60°  111 111 112 

48.3 45.6 45.6 

Figure 5: Computation of the UAV distance 
to the slope 
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and landing of the UAV with or without intervention of the operator. After the execution of the automated 

survey, the manual flight was also conducted on slope 2 to scan the area. 

3.1.4. Image processing 

The images acquired during the UAV survey were processed using the pix4D software using standard and 

high resolution parameters to generate two sets of point clouds and subsequently select the data with the 

optimal quality for further processing and analysis. The first set was produced using high point density and 

3D textured mesh parameter set to high resolution with ½ image scale. The second batch was processed 

using the standard parameters i.e. optimal point density, ½ image scale and the 3D textured mesh set to 

medium resolution. ½ image scale uses half the size of the image to compute the additional 3D points 

(pix4D, 2011).  

3.1.5. Georeferencing  

Fourteen GCPs were captured in the kinematic mode and stored as rinex files in the GNSS receiver antenna 

which were later extracted using the rinex files from the tuc base station in Greece managed by METRICA 

S.A. Correction and extraction of the GCPs was executed using the RTKlib version 2.4.2 an open source 

program package for GNSS via RTKpost for post processing of the GCPs. Navigating to the options menu 

in the RTKpost  main dialog box and pushing the setting 1 menu in the options dialog box, the frequencies/ 

filter type was set to combined keeping the other parameters unchanged and the base station was set to 

Rinex Header Position using the positions menu (Bad Elf, 2020; RTKLIB, 2011). Since the GNSS receiver 

was set in the kinematic mode, the device obtained coordinate readings every second, hence, to obtain the 

fourteen individual readings, the readings were averaged based on the time lapse between the consecutive 

points. Figure 6 shows the distribution of the fourteen GCPs on the peripherals of the study area. It is 

worthwhile to note that the GCP locations were only taken around the take-off and landing area of the 

aircraft (base of the slope) and along the northern boundary of the study area due to too steep terrain and 

forest cover of the study area that impeded accessibility to other areas of the slope. 

 

 

 

 

 

 

 

 

       

 

 

The images were directly georeferenced  using the GNSS coordinates on board the UAV platform (Salvini 

et al., 2017). However, the accuracy of the UAV GNSS sensor may be impeded by poor satellite reception 

due to for example, bad weather, cloudy condition, structural obstructions such as buildings, trees and hilly 

terrain (Manconi et al., 2019; Menegoni et al., 2019). Therefore, the fourteen GCPs were incorporated during 

the processing of the images to improve the accuracy of the 3D models (ELtohamy & Hamza, 2009; Gerke 

& Przybilla, 2016; Oniga et al., 2018; Sanz-Ablanedo et al., 2018). Due to improper location of some GCPs, 

the bad GCPs were removed retaining five good ones as shown in the right image in figure 6 because the 

negative effect of bad location of GCPs on the spatial accuracy of the model is worse than the number of 

GCPs (ELtohamy & Hamza, 2009; pix4D, 2011). Of the five, three GCPs were used as check points (CPs) 

Figure 6: Distribution of GCPs points during capture (left-red dots) and during image processing (right-
blue marks) 
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to assess the absolute accuracy of the model by independently verifying the image location error and by not 

taking part in the bundle block adjustment (pix4D, 2011; Sedorovich et al., 2010). 

3.1.6. Vegetation removal 

Unlike airborne LIDAR whose laser beam can penetrate between leaves when scanning a vegetated study 

area, UAV optical cameras lack such capabilities hence, leading to occlusions and shadowing effect in the 

data especially below the canopy and behind the obstructed areas (Anders et al., 2019; Isenburg, 2014; 

Vosselman & Maas, 2010; Yilmaz et al., 2018). Besides the traditional manual method, several automatic 

vegetation removal methods exist to enable automatic removal of vegetation from the vegetated 3D datasets. 

These algorithms include cloth simulation filter (CSF), a plugin in cloudcompare developed by Zhang et al. 

(2016), LAStools developed by Isenburg (2014) and CANUPO another plugin in cloudcompare developed 

by Brodu and Lague (2012). Vegetation removal was necessitated by the need to expose the terrain of slope 

1 to facilitate proper parametric processing.   

3.1.6.1. Area of interest segmentation  

Subsets of a representative area within the study area in the generated point clouds were segmented out to 

facilitate vegetation removal. To obtain the segments of the same size and shape, all the point clouds were 

sequentially aligned in pairs of two as 

compared and reference point clouds as 

illustrated in figure 7, via the alignment tool in 

cloudcompare and the selected subsets were 

segmented out at once. Segmentation of the 

subsets was carried out in order to narrow 

down to a specific area of interest within the 

study area and also to rid the data of excess 

vegetation and other artefacts.  

 

 

3.1.6.2. Application of vegetation removal methods 

3.1.6.2.1. Manual segmentation 

Manual removal of vegetation was executed via the segmentation tool in cloudcompare. The vegetation was 

segmented out of the point cloud either singularly or in batches convenient to the operator. Good results 

were achieved by tilting or rotating the point cloud close to 90° in order to clearly visualize the separation 

between the canopy of the vegetation and the ground. This enabled clear segmentation of the stems leaving 

the ground untouched depending on the height of the vegetation. Though tedious, this method achieved 

better results and was used as a reference to the automatic methods in this research. 

3.1.6.2.2. Cloth simulation filter (CSF)  

CSF is a plugin in cloudcompare developed by Zhang et al. (2016) and removes vegetation by classifying 

vegetation as non-ground points and the terrain as ground points based on the classification threshold. CSF 

is accessed via plugins tool. Since the study area is a slope, the general parameter was set to steep slope while 

the advanced parameters cloth resolution (grid size) and classification thresholds were set to 0.1m and 0.5m 

respectively to obtain the best results. The other parameter value combination tested were 2.0 for the grid 

size and 0.5 for the classification parameter, the third batch had 0.1 and 0.1 while in last batch the thresholds 

were set to 0.1 and 1.0 respectively. The maximum iterations parameter was maintained at 500 as it had little 

or no effect on the results.  

Figure 7: Alignment of raw point clouds 
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3.1.6.2.3. LAStools 

LAStools is a software suite created by Isenburg (2014). LAStools incorporates among others two important 

tools namely lasground and lasclassify used to separate and classify ground points and non-ground points 

respectively. The pipeline used in LAStools to filter out vegetation from the terrain models is firstly, apply 

lasgound to separate ground and non-ground points, then subject the results to lasheight to compute the 

height of each 3D points in the cloud and lastly apply lasclassify to classify the separated points into terrain 

points and non-ground points (vegetation) respectively. The optimized parameters for lasground were step 

(grid size) = 1m and 2m and offset (threshold above ground) = 0.5m while the parameters used for lasclassify 

were step (grid size) = 4m and offset (threshold above ground) = 0.1m. The results were visualized in 

cloudcompare to check the number of points left after vegetation removal.  

3.1.6.2.4. CANUPO  

CANUPO (Brodu & Lague, 2012) is a plugin in cloudcompare used for supervised classification. Two sets 

of four training samples each for vegetation and ground points (terrain) respectively were selected via 

segmentation > edit > merge tool to create a classifier. The classifier was then used to classify all the other 

point cloud subsets. The point cloud obtained from the 48.3m perpendicular distance to the slope at a tilt 

angle of 60° was selected and used for the creation of a classifier because it had the most vegetation. The 

parameter values used were ramp minimum = 0.1 while maximum was set to 1.0 and step or grid = 0.1.  

The second batch of parameters 

consisted of minimum = 0.1, step 

= 0.1 and maximum = 2.0. The last 

set had minimum set to 0.1, step to 

0.1 and maximum to 5.0. The 

dimension value used was 2 and the 

tested scales were set to 10 and 6 

respectively. 

 

 

3.1.6.3. Evaluation of the vegetation removal methods 

The pre-processed point cloud subsets were subjected to quality assessment procedure to assess the 

effectiveness and suitability of the automatic vegetation removal methods. The quality assessment process 

involved calculation of areas covered by residual vegetation retained after application of the vegetation 

removal method and results compared to the manual method (reference). The area computation was 

executed via the tools menu in cloudcompare and fitting a 2D polygon (facet) on the residual vegetation 

and automatically computed the areas covered by vegetation. The point clouds with highest point density 

were selected as candidate datasets for the computation of areas covered by the residual vegetation. Cloud-

to-cloud distance computation was also carried out to determine the effectiveness of the methods to retain 

the ground points in the point clouds. Cloud-to-cloud distance computation establishes the nearest distance 

of points in the compared point cloud to the points in the reference point cloud.  The mean distance between 

the points between the compared and reference point clouds should cluster around zero on the scaler field 

bar or histogram. If the mean distance is skewed away from zero then the margin of error in the compared 

point cloud is high and therefore, the data quality is low (Girardeau-Montaut, 2015). The C2C computation 

results are attached in appendix 2c. 

  

Figure 8: Classifier training 
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3.2. Analysis and Results 

3.2.1. Flight planning, data capture and UAV perpendicular distance to the slope 

The six flight plans were successfully executed on slope 1 and a total of 616 UAV images were collected as 

tabulated in table 2. Further, 49 images were collected using a manual flight from slope 2. The slope 1 images 

were collected in accordance with the specifications of the individual flight plans as shown in table 1 above. 

The vertical and horizontal accuracies of the image coordinates were within 5m and 10m respectively. 

Oblique drone distances to slope were used during image capture instead of the conventional nadir looking 

distance because the target terrain is a slope hence it being ruled out (Jaud et al., 2019; Kozmus Trajkovski 

et al., 2020; Manconi et al., 2019; Nesbit & Hugenholtz, 2019).  

Table 2: Number of images and number of points of the point clouds obtained against the flight plan parameters 

Analysis of the results in table 2, shows that the point cloud with the highest number of points was obtained 

at the UAV perpendicular distance to the slope of 45.6m and camera tilt angle of 60° and the lowest having 

been obtained at the perpendicular distance of 38.7m with a tilt angle of 30°. However, the number of points 

results do not necessarily represent the actual point densities of the bare earth 3D models. The differences 

in the number of points of the raw point clouds is attributed to inconsistence in the distance between the 

overlapping images with extreme slanting view angle along the slope terrain during image capture that lead 

to missing data in badly overlapped images (Manconi et al., 2019). Point densities of the models obtained 

after removing vegetation from the clouds are tabulated in table 3.   

Table 3: Densities of the point clouds after vegetation removal 

Review of the generated models after vegetation 

removal shows that flying a drone at a flight 

distance of 36.3m to the slope with a tilt camera 

angle of 45° which is coded as 2cm_GSD_45° 

model for easy reference under the flight height 

of 46.5m obtains the best point density of the 

point cloud as shown in table 3. The lowest point 

density was obtained at 48.3m with the camera 

oblique angle of 30° coded as 2.5cm_GSD_30° 

model under the flight height of 58m. Qualitative 

analysis of the datasets reveals more shadowing 

effect from the higher vegetation on the models 

generated from the data acquired from the lower 

flight distances as compared to the data obtained from the higher distances in all the experiments. This is 

attributed to the increased obstruction by the target object to the view angle of the UAV camera coupled 

with the smaller FOV of the camera at shorter distance to the target object. However, occlusions (data gaps) 

were visible in all the datasets regardless of the flight distance and tilt angles.   

Distance (m) Tilt angle Nr. images Nr. points in model with GCPs Nr. points in model without GCPs 

36.3 45° 97 7,083,802 7,107,229 

36.6 60° 97 6,968,973 6,977,138 

38.7 30° 88 6,364,464 6,363,581 

45.3 45° 111 7,834,736 7,827,949 

45.6 60° 112 8,125,031 8,117,623 

48.3 30° 111 6,667,147 6,654,033 

Density @ 50% of total number of 

points in a point cloud 

Flight 

distance 

(m) 

Tilt 

Angle 

Experiment 

with GCPs 

Experiment 

without GCPs 

Density 

(pts/m2) 

Density (pts/m2) 

38.7 30° 631 704 

36.3 45° 682 777 

36.6 60° 622 694 

48.3 30° 321 323 

45.3 45° 382 392 

45.6 60° 381 418 
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3.2.2. Image processing 

High and medium resolution point clouds were generated as shown figure 9 below. A cross check on the 

data showed that the presence of spurious artefacts is more pronounced in the high resolution data. Artefacts 

affect the accuracy of the results and therefore require removal from the data. Therefore, the high resolution 

point clouds were discarded and the medium resolution maintained as dataset to be used in the subsequent 

analyses in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The processed UAV data, comprised two datasets of point clouds corresponding to the six flight plans. One 

set consisted of point clouds precisely georeferenced using GCPs and another set without GCPs. The 

average ground sampling distances of the generated models ranged from 1.73cm to 5.73cm. Spatial accuracy 

expressed by the root mean square error (RMSE) of the georeferenced 3D models ranged from 0.001m to 

0.03m as shown in appendix 1. RMSE is the measure of deviation from the truth. The larger the RMSE the 

larger the deviation and the inaccurate the results. Conversely, the smaller the RMSE the more accurate the 

spatial accuracy of the model. The results show that georeferencing with GCPs had an effect on the spatial 

accuracy of the model by positioning the image block in the correct 

geographical position by pining it to the ground to avoid stretching 

or warping (Nelms et al., 2018) as seen by the shift of the block 

from the initial position to its final position in space after 

applying the GCPs as shown in figure 10. This is consistent 

with the trend in the results of the differences in the average 

XYZ dimensions obtained in the image processing quality 

report as shown in figure 11. The differences computed from 

the XYZ dimensions in figure 11 indicated that the model was 

displaced by 0.034m, 0.076m and 0.011m respectively in the 

XYZ directions.           

 

 

 

 

Block with GCPs 

B
lo

ck
 w

it
h

o
u
t 

G
C

P
s 

Figure 10: Shows the displacement of the 
image block 

Figure 9: Sections of the point clouds showing artefacts. 
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Spatial accuracy differences in the two models leads to a conclusion that the model without GCPs gives 

unreliable spatial accuracy, hence is not ideal for parametric processing that requires accurate definition of 

the DFN for accurate interpretation of the discontinuity characterization. Hence, the datasets without GCPs 

were discarded while the georeferenced models were retained to be used in the subsequent stages of the 

research.  

3.2.3.  Vegetation removal methods  

The three algorithms were unable to discriminate ground points from non-ground points (vegetation). The 

algorithms rely on the fixed height threshold from the terrain to separate non-ground points from ground 

points and in the process outcrops above this threshold were also removed. Similarly, low vegetation could 

not be removed due to the waviness of the slope terrain resulting in insignificant improvement in the quality 

of the data due to either presence of too much noise retained as residual vegetation or reduced point density 

due to excess removal of outcrops  (Anders et al., 2019; Isenburg, 2014; Yilmaz et al., 2018; Zhang et al., 

2016). Therefore, the data from the automated methods could not be used in the subsequent stages. Instead 

the data whose vegetation was removed manually vegetation used for further processing and analysis. 

Table 4: Results of vegetation removal by different methods 

Original cloud Manual Canupo CSF LAStools 

      

Comparison between the automated methods, reveals that LAStools outperformed the other two automated 

methods as it removed the most vegetation in the point clouds evidenced by the small area covered by the 

residual vegetation after removal in relation to the total surface area of the point cloud as shown in figure 

12 below. However, point density analysis of the 3D models after vegetation removal showed that LAStools 

significantly reduced the point density of the data by removing a substantial amount of ground points along 

with vegetation as evidenced by the results of the C2C distance computation in which the average point to 

point distance between the compared point cloud (LAStools) and the reference cloud (manual) is greater 

than the recommended zero (Girardeau-Montaut, 2015) as shown in appendix 2c while the results of CSF 

and CANUPO were satisfactory despite retaining a lot of residual vegetation in the datasets and also losing 

some terrain points especially the outcrops. Between the canupo and CSF, canupo performed relatively 

better than CSF as can be observed in table 5 and figure 12.                                                                                                

Figure 11: Quality report extract showing the differences in the XYZ dimensions between the 3D model with GCPs 
(above) and without GCPs (below) for the 2cm_GSD_45° model 
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Table 5: Total areas covered by residual vegetation in each cloud after automatic vegetation removal 

Method 2cm_Canupo 2.5cm_Canupo 2cm_CSF 2.5cm_CSF 2cm_LAStools 2.5cm_LAStools 

Vegetation (m2) 371 546 718 654 321 233 

Model (m2) 3446 3093 3418 3095 3432 3049 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The surface area computation was done via segmentation of the residual vegetation parcels and then fitting 

a 2D polygon (facet) plane on the segments in cloudcompare. The procedure was repeated on the entire 

point cloud to calculate its surface area. 

  

Figure 12: Surface areas covered by residual vegetation in a cloud (right) and plot of the area of the retained vegetation 
against the area of the cloud (left) 
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4. ROCK MASS DISCONTINUITY CHARACTERIZATION:  
SENSITIVITY TO PROCESSING PARAMETERS AND 3D 
MODEL SPATIAL RESOLUTION  

4.1. Parametric processing  

4.1.1. Methodology  

To achieve sub objective 2 of the study, parametric processing of DSE parameters and spatial resolution 

sensitivity analysis of the UAV data was carried out to check the responses of each of the tested parameters 

and the different resolution of the drone data on 

the discontinuity characterization of the rock 

mass of the study area. Figure 13 shows the 

summary of the workflow for the parametric 

processing.  

4.1.1.1. Parameter selection and data 

Parametric processing involved testing of a 

selected range of DSE parameter values during 

the processing of the data obtained from both 

the automated and manual UAV surveys on 

slope 1 & slope 2 respectively and checking the 

number of extracted discontinuities per 

discontinuity type and comparing the results 

between parameter values tested. Table 6 

shows the selected parameters and the values 

that were tested during parametric processing. 

Parameter definitions are explained in table 7 

below. The criteria for the parameter selection 

was based on ensuring that all the three steps 

of the discontinuity extraction in DSE i.e. 

curvature calculation and coplanarity test, 

statistical analysis and lastly clustering were 

represented by at least one key parameter. On the other hand, the selection of the parameter values was 

based on the pre-trial check of the parameter response range from which the parameter value baselines were 

obtained as follows: knn 30, α 10, β 30 and np 50.  The baseline parameter values were initial values for the 

parametric processing sensitivity tests. Each time a parameter value was tested, i.e. used during the extraction 

of  the discontinuity sets by DSE, the other parameters were kept constant in order to check its response in 

terms of the number, type and the orientation of the discontinuities extracted and results compared to 

determine the optimal parameter value. The optimal parameter value was determined by visually checking 

the amount of overlap of the automatically extracted discontinuities with the manually extracted structures 

verified via ground truth data and computation of classification accuracy indices to check the effectiveness 

of the DSE in extracting the discontinuities at a particular parameter value. The matches and mismatches 

were subsequently used to determine the effectiveness of DSE to identify and extract discontinuities in a 

rock mass via the computation of overall accuracy.  

Discontinuities 

Parameter 

evaluation 

Matches & 

mismatches 

Point cloud 

processing 

Discontinuity 

identification 

 

Overall accuracy 

Discontinuity 

recovery 

assessment 

Discontinuity 
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Figure 13: Methodology workflow 
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Table 6: Selected DSE parameters for parametric processing 

The GCP georeferenced data from slope 1 derived from 

the 36.3m perpendicular distance and camera tilt angle of 

45° coded as 2cm_GSD model whose average point 

density was 682 points/m2 or 5050 points/m3 and another 

dataset obtained from 45.3m perpendicular distance and 

camera tilt angle of 45° coded as 2.5cm_GSD model with 

average point density of 382 points/m2 or 2863 points/m3 representing the dataset obtained from the flight 

height of 58m of the automated surveys as indicated in table 1 and appendix 2 in addition to the dataset 

obtained from the manual flight on slope 2 whose average point density was 2018 points/m2 or 18080 

points/m3 were selected and used for this process. The selected datasets were preferred because they had 

higher relative point density necessary for the parametric processing to facilitate effective identification and 

extraction of the rock mass discontinuities in a point cloud. The extracted discontinuities were visualized in 

coudcompare. 

4.1.1.2. Field measurements  

Field measurements involved collection of onsite discontinuity data using scanline and geological compass. 

Two sections of slope 1 with some exposed outcrops were selected after a reconnaissance survey of the  

 

slope. Following the inspection, three discontinuity sets were identified and scanline measurements taken as 

shown in figure 14 above. The measurements obtained include: dip/dip direction, slope angle, joint aperture 

and spacing, persistence and Joint roughness coefficient as presented in appendix 4. 

4.1.1.3. Parametric processing parameter definitions  

Four principal parameters were selected for parametric processing namely: the k–nearest neighbour (knn) 

which denotes the number of neighbourhood points surrounding the seed or central point that DSE uses 

in conjunction with the tolerance parameter not discussed in this research to search for the coplanar or non-

coplanar points based on the k value in order to set up planes; the minimum angle (α) between two normal 

vectors of 3D points in a point cloud, the maximum angle (β) between the normal vector of an assigned 

Parameter  Values tested 

knn 5, 10, 20, 30, 40, 50, 60 

α 5°, 10°, 15°, 20°, 30°, 40°, 50° 

β 10°, 20°, 30°, 40°, 50°, 60° 

np 30, 50, 100, 500, 1000 

Figure 14: Scanline measurements 

Joint set 1 

Joint set 2 

Joint set 3 
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point and the normal vector of the principal pole (central point) are the two angles DSE uses to compute 

the principal orientations of the plane and lastly, the number of points in a cluster (np) used by DSE during 

the clustering phase to determine the size of the clusters to be visualized in a plane. Table 6 explains the 

parameters used, their role during parametric processing and how they influence the results. 

Table 7: Explains the parameters used in the parametric processing and how they influence the results 

Parameter Description Influence of parameter changes on the results 

knn k–nearest neighbour denotes the number of 

neighbourhood points surrounding the seed 

or central point. k is the fixed number of 

neighbourhood points around the seed point. 

knn searches for the nearest neighbourhood 

points with similar features or homogenous 

characteristics depending on the value of k 

used during the local curvature calculation 

and coplanarity test to facilitate the setting up 

of planes (Riquelme et al., 2014; Vosselman 

& Maas, 2010).  

Riquelme et al. (2014) concluded in their study that 

smaller knn retains a lot of noise in the data so as a 

compromise between resolution and accuracy the 

knn range of 15 – 30 was accepted. The point density 

of data the authors used however, is not stated 

therefore, not comparable to the resolution of the 

data used in this research. 

α This is the minimum angle between two 

normal vectors of 3D points in a point cloud. 

This angle is used by the algorithm statistical 

analysis method to calculate the principal 

orientation of the principal normal vectors. 

Principal orientation of the normal vectors 

determine the orientation of the planes for 

the discontinuities. 

Wang et al. (2017) state that if the fracture is uneven 

(rough) then α should be large to allow the uneven 

structure grow into one region. Visual analysis and 

field data show that the discontinuity sets are 

relatively smooth therefore, the angle should be kept 

as small as practically possible. The implication is 

therefore, that results from the α parameter are 

influenced by roughness. 

β The maximum angle between the normal 

vector of an assigned point and the normal 

vector of the principal pole (central point) for 

a joint set. This is the angle the statistical 

method uses to check if a 3D point 

represents the principal orientation of the 

principal poles before it can be assigned to 

the principal pole.  

If the local surface of the fracture has high roughness 

then β should be large to allow sufficient space for 

the small protrusions and dents in the fracture region 

(Wang et al., 2017). Visual analysis and field data 

show that the local surfaces of the discontinuity sets 

are highly undulated hence the angle should be kept 

as large as possible. 

np This is the minimum number of points in 

each cluster of a plane.  

It depends on the size of clusters in each plane the 

user wishes to visualize (Riquelme et al., 2014). The 

smaller the np the smaller the size of the clusters and 

the lager the np the larger the clusters of the planes. 

To strike a balance between over-segmentation and 

under segmentation of the planes, 𝟓𝟎 ≤ 𝒏𝒑 ≤ 𝟓𝟎𝟎 

range was adopted.  
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4.1.1.4. Discontinuity set identification and extraction in slope 1 and 2 

Three main discontinuity sets were extracted from the dataset obtained from both the automated flight and 

manual flight data using DSE and visualized in cloudcompare based on the spectral information derived 

from the RGB camera to discriminate the discontinuities from the other objects (Spreafico et al., 2017). The 

discontinuity sets in the RGB point clouds were visually assessed and verified using an orthophoto. The 

automatically extracted sets results were checked against the visually assessed joint sets in the raw images in 

order to verify the correctness of the results. Figures 15 shows the visual recognition of the joint sets in an 

orthophoto from slope 1 whereas figure 16 shows the visually identified discontinuities in the slope 2 dataset.  

 

 

        

 

 

 

 

 

 

                    

 
  

Joint set 1 

Joint set 3 

Joint set 2 

Figure 15: Visual recognition of joints in a raw image obtained from an automatic flight on slope 1 

Joint set 2 

Bedding planes Joint set 1 

Figure 16: Visual recognition of the discontinuities in a raw image obtained from a manual flight on slope 2 
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4.1.1.5. Sensitivity analysis for the DSE processing parameters for slope 1 and 2 

Grids were marked out on the RGB clouds for both automatic (2cm_GSD_45°, 2.5cm_GSD_45° models) 

and manual survey data to randomly sample the discontinuities after verification with the orthophoto. Inside 

the grid, ten (10) planar surfaces each belonging to joint set 1 (J1), joint set 2 (J2), and joint set (J3) were 

selected and labelled with the alphanumeric characters in the distinctive colours to distinguish one set from 

the other as shown in figures 17, 18 and 19. After each execution of the DSE parameter value test, the 

results of the discontinuity extraction in the classified point cloud were overlaid against the RGB cloud to 

check the overlap of the extracted discontinuities with the corresponding sets within the sampled grid to 

verify the correctness of the results. The overlap results were used to compute the accuracy indices for each 

parameter value tested to quantitatively evaluate the effectiveness of each experimental parameter value 

during the recovery of the geological structures. The accuracy indices computed include overall accuracy, 

producer accuracy (PA), user accuracy (UA), error of omission (OE) and error of commission (CE). The 

overall accuracy measured the effectiveness of the DSE to extract the discontinuities at pre-set parameter 

values while PA represented how well the discontinuity sets were identified by the software and UA 

indicated the reliability or probability of DSE to correctly predict the discontinuity sets in a rock mass. On 

the other hand, the CE showed the proportion of the discontinuities that were incorrectly predicted or false 

alarms by DSE and OE indicated the missed alarms or the proportion of the discontinuities that were not 

identified by DSE (Spreafico et al., 2017). The following equations were used to compute overall accuracy, 

PA, UA, OE and CE (Banko, 1998; Story & Congalton, 1986): 

Overall accuracy = total of all correctly identified discontinuities / total of all sampled discontinuities … (1) 

PA =  total of correctly identified discontinuity set / total of discontinuity set (column total) ……….….(2) 

UA = total of correctly predicted discontinuity set / total of predicted set (row total) ……………...……(3) 

OE = total of incorrectly identified discontinuity set / total of discontinuity set (column total) ……..….(4) 

CE = total of incorrectly predicted discontinuity set / total of predicted set (row total) ……………...…(5) 
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Figure 18: Sampled joints within the selected grid on the RGB cloud of the 2.5cm_GSD_45° data from slope 1 

Figure 17: Selected joint sets within the selected grid on the RGB cloud of the 2cm_GSD_45° data from slope 1 
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4.1.1.6. Orientation measurements for the discontinuities 

In addition, to the field measurements, the joint sets dip/dip direction values were automatically obtained 

from the stereoplots of the DSE statistical analysis results and also manually extracted from the two point 

clouds (2cm_GSD_45°) and (2.5cm_GSD_45°) via the compass tool in cloudcompare. However, due to 

too many undulations on slope 1 surface, manual extraction of the attitude of the of the discontinuity sets 

was cumbersome, hence the individual sample results were inconsistent. Therefore, ten attitude values were 

randomly obtained from each extracted set and averaged.  Manual recovery of the orientation values was 

also executed on the slope 2 data. One set of the results from each of the two point clouds was selected and 

used to plot a stereograph using an online interactive stereonet App called visiblegeology. 
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Figure 19: Location of the sampled discontinuity sets within the selected grid on the RGB cloud of slope 2 data 
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4.1.2. Analysis and Results 

4.1.2.1. Slope 1  

The automatic discontinuity extraction results from the slope 1 data were generally poor across all the four 

parameter tested. The poor results were attributed to the presence of noise in the data due to presence of 

low vegetation, residual vegetation from the 

vegetation removal process, shadowing effect 

from the higher vegetation, occlusions, lack of 

sufficient exposed rock mass surfaces and too 

many undulations on the slope surface. Figure 20 

shows an extract of poor results in a classified 

cloud. However, qualitative analysis of the results 

showed some improvement after increasing the 

number of points in each cluster of a plane (np) 

from 50 to 500 during the clustering stage in order 

to suppress some noise for each parameter run as 

illustrated in figure 21.  

 

The presence of the noise and other spurious objects in the data contributed to the over segmentation of 

the planes of the structures which included the noise itself. This is consistent with the findings of (Riquelme 

et al., 2014; Vosselman & Maas, 2010). In addition to suppressing the noise, increasing np made visualization 

of the overlap results better. However, making np too large had some drawbacks. Considering that the 

geology of the study area is predominantly platy limestones with very tiny spacing in the order of 10cm 

confirmed by measurements on the point cloud 

and scanline measurements, small joint sets could 

not be extracted due to under segmentation of the 

planes resulting in reduced number of some 

discontinuities observed especially J2 and J3 since 

they are deep seated into the rock mass and are 

fewer in number compared to J1. The reduction in 

the number of the recovered geological structures 

resulted in low classification overall accuracies as 

shown in the tables presented in appendices 3a, 3b 

and 3c. 

 

Analysis of the accuracy indices showed a fluctuating trend in the results when changing the knn values and 

keeping α, β and np fixed at 10°, 30° and 500 respectively as shown in appendix 3a and 3b. On the other 

hand, varying α and keeping knn constant at 30, β at 30° and np at 500 generally revealed a linear trend in 

the results in which better results were obtained at lower values of α while in the β experiments, better results 

were obtained at higher values of β as presented in appendix 3a and 3b when knn, α and np were fixed at 

30, 10° and 500 respectively. The accuracy indices results also showed the algorithm consistently extracted 

more J1 than any other joint sets across all the tested parameter values.  

Further, the results of the computed accuracy indices for each of the tested parameter values showed that 

the highest overall accuracies for the three parameters keeping other parameters constant on the 

2cm_GSD_45° data during each individual parameter value test, were achieved at knn 10, α 15° and β 50° 

as shown in tables 8, 9 and 10. The highest overall accuracy in the knn parameter value tests while keeping 

α fixed at 10°, β at 30° and np at 500 was observed to be 40% corresponding to knn 10. This overall accuracy 

Some residual vegetation classified as joints 

 

Figure 20: Poor results due to noise 

Figure 21: Improved results after increasing np 
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implied that the effectiveness of DSE to optimally identify and extract all the three sets of the discontinuities 

was 40%. The software however, correctly recognized individual joints with 90% for J1, 30% for J2 and 0% 

for J3 accuracy. A much improved proportionate extraction of discontinuities for all the three joint sets was 

observed at knn 40 with the following extraction distributions: 60% for J1, 20% for J2 and 10% for J3 

despite the low overall accuracy as shown in appendix 3a.  

Table 8: Confusion matrix for the discontinuity overlap classification accuracy indices at knn10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 6 0 22 59.09 10 40.91 90 

J2 1 3 2 0 6 50 70 50 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 2 0 2 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  40 

 

Further scrutiny of the computed accuracy indices, showed that the highest overall accuracy for the α tests 

of different parameter values and keeping knn, β and np fixed at 30, 30° and 500 respectively was achieved 

at 40% corresponding to α 15° as shown in table 9 below. This indicated that on average, DSE effectiveness 

to recognize and extract discontinuities in a rock mass was 40%. The algorithm however, successfully 

identified and extracted the sampled individual discontinuities with the following accuracies: 80% of the J1, 

30% for J2 and 10% for J3. 
 
Table 9: Confusion matrix for the discontinuity overlap classification accuracy indices at α15 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 5 0 20 60 20 40 80 

J2 2 3 2 0 7 57.14 70 42.86 30 

J3 0 0 1 0 1 0 90 0 10 

NO 0 0 2 0 2 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  40 

 

In the β parameter value tests while maintaining knn, α and np fixed at 30, 10° and 500 the highest overall 

accuracy achieved was 47% corresponding to β 50° as shown table 10. The overall accuracy results showed 

that the effectiveness of DSE to optimally identify and extract the three joint sets was 47%. Nonetheless, 

the software correctly identified and extracted individual discontinuities with the following accuracies: 80% 

for J1, 20% for J2 and 40% for J3. 
 
Table 10: Confusion matrix for the discontinuity overlap classification accuracy indices at β50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 5 0 20 60 20 40 80 

J2 2 2 1 0 5 60 80 40 20 

J3 0 1 4 0 5 20 60 80 40 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 46.67 
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Similarly, varying the three separate test parameters and keeping other parameters fixed during the extraction 

of the discontinuities from the 2.5cm_GSD_45° data achieved the highest overall accuracies at knn 30, α 

15° and β 40° respectively as tabulated in tables 11, 12 and 13. Varying knn parameter values and keeping 

α, β and np constant at 10°, 30° and 500 constant throughout the parameter experiments achieved the highest 

overall accuracy of 33% implying that on average, DSE only effectively identified and extracted 33% of the 

sampled three joint sets. This overall accuracy corresponded to knn 30. Also, DSE correctly identified 

individual discontinuities with up to 90% of J1, 10% of J2 and 0% of J3 accuracy.  

Table 11: Confusion matrix for the discontinuity overlap classification accuracy indices at knn30 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 9 8 0 26 65.38 10 34.62 90 

J2 1 1 1 0 3 0 90 0 10 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 1 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 33.33 

Further, changing α values and keeping knn, β and np fixed at 30, 30° and 500 respectively achieved the 

highest overall accuracy of 37% corresponding to α 15° as shown in table 12 below. This revealed that on 

average, DSE effectiveness to recognize and extract discontinuities in a rock mass was 37%. The algorithm 

however, successfully identified and extracted the sampled individual discontinuities with the following 

accuracies: 90% of the J1, 20% for J2 and 0% for J3. 

Table 12: Confusion matrix for the discontinuity overlap classification accuracy indices at α15 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 8 8 0 25 64 10 36 90 

J2 1 2 2 0 5 60 80 40 20 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 36.67 

 

Lastly, varying β values and maintaining knn, α and np fixed at 30, 10° and 500 achieved the highest overall 

accuracy of 40% corresponding to β 40°, β 50° and β 60°  as tabulated in table 13 and appendix 3b. This 

showed that the effectiveness of DSE to optimally identify and extract the three joint sets was 40%. 

Nevertheless, DSE correctly identified and extracted individual discontinuities with the following accuracies: 

90% for J1, 30% for J2 and 0% for J3. 

Table 13: Confusion matrix for the discontinuity overlap classification accuracy indices at β40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 8 0 24 62.5 10 37.5 90 

J2 1 3 2 0 6 50 70 50 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 40 
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4.1.2.2. Slope 2 

Unlike the results from slope 1, slope 2 results were generally satisfactory across the four parameters. The 

results of overlap between the extracted discontinuities in the classified cloud and the RGB cloud correlated 

well as shown in the example in figure 22. The good results were attributed to the noise free data from slope 

2, sufficient exposure of the rock mass surface and absence of extreme undulated surfaces on the slope. 

Similar to the results obtained from 

slope 1, closer inspection of the 

structures overlap results between 

the discontinuities in the classified 

and RGB point clouds generally 

showed that the bedding planes (Bs) 

were extracted more than J1 and J2. 

The np 50 produced better results 

and was therefore, maintained fixed 

at 50 in all the experiments. 

 

 

Evaluation of the tested parameters revealed a trend in the results consistent with the findings in slope 1 

where variations in the knn values and maintaining α, β and np constant at 10°, 30° and 50  respectively 

produced fluctuating results as presented in appendix 3c. 

Fluctuating results, mean that the overlap results did not 

show a linear trend across the tested knn values. Figure 23 

shows the results of overlap of the joint sets between the 

classified cloud and the RGB cloud at different knn values. 

Conversely, when α was varied and knn, β and np were kept 

constant at 30, 30° and 50 generally produced results that 

showed a linear trend in which better results were obtained 

at lower values of α while in the β experiments, better results 

were obtained at higher values of β when knn, α and np were 

fixed at 30, 10° and 50 respectively as presented in appendix 

3c. The accuracy indices also showed that the algorithm 

consistently extracted more Bs than any other discontinuity 

sets across all the tested parameter values.  

The computed accuracy indices for each of the tested 

parameter values further showed that the highest overall 

accuracies for the three parameters keeping other parameters 

constant on slope 2 data during each individual parameter 

value test, were achieved at knn 40, α 15° and β 50° as shown in tables 14, 15 and 16. The highest overall 

accuracy in the knn parameter value tests while keeping α fixed at 10°, β at 30° and np at 50 was observed 

to be 73% which implied that the effectiveness of DSE to optimally identify and extract all the three sets of 

the discontinuities was 73% if knn is set to 40 and keeping α, β and np constant at 10°, 30° and 50 

respectively. Further, the software correctly recognized individual joints with an accuracy of 70% for the Bs, 

80% for J1 and 70% for J2 as shown in table 14 below.  
 
  

Figure 22: Extract of the results of overlap between the joints in the 
classified and the RGB clouds 

knn 10 

knn 50 

Figure 23: Results of discontinuity set overlap at 
different knn values 
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Table 14: Confusion matrix for the discontinuity overlap classification accuracy indices at knn40 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 7 2 2 0 11 36.36 30 63.64 70 

J1 2 8 1 0 11 27.27 20 72.73 80 

J2 1 0 7 0 8 12.5 30 87.5 70 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 73.33 

Analysis of the computed accuracy indices for the α value tests, showed that the highest overall accuracy of 

80% was achieved when knn, β and np were fixed at 30, 30° and 50 respectively corresponding to α 15° as 

shown in table 15 below. This result indicated that on average, DSE effectiveness to recognize and extract 

discontinuities in a rock mass was 80%. The algorithm, successfully and correctly identified and extracted 

the sampled individual discontinuities with the following accuracies: 80% of the Bs, 90% for J1 and 70% 

for J2.  

Table 15: Confusion matric for the discontinuity overlap classification accuracy indices at α15 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 0 1 0 9 11.11 20 88.89 80 

J1 2 9 1 0 12 25 10 75 90 

J2 0 1 7 0 8 12.5 30 87.5 70 

NO 0 0 1 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 80 

 

Variations in the β parameter values while keeping knn, α and np fixed at 30, 10° and 50 the highest overall 

accuracy achieved was 73% corresponding to β 50° and β 60° as shown table 16 and appendix 3c. This 

result showed that the effectiveness of DSE to optimally identify and extract the three discontinuity sets 

was 73%. Further, the software correctly identified and extracted individual sampled discontinuities with 

the following accuracies: 100% for Bs, 80% for J1 and 40% for J2. 

Table 16: Confusion matrix for the discontinuity overlap classification accuracy indices at β50 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 10 0 3 0 13 23.08 0 76.92 100 

J1 0 8 0 0 8 0 20 0 80 

J2 0 2 4 0 6 33.33 60 66.67 40 

NO 0 0 3 0 3 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 73.33 
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4.1.2.3. Comparison of the overall accuracies between slope 1 & 2 

Comparison of the overall accuracies computed for the slope 1 and slope 2 data shows that slope 2 data 

outperformed the data from slope 1 in all the parameters as shown in figures 24, 25 and 26 below. As 

illustrated in figure 24, the peaks in the knn parameter tests results were: in slope 1, the 2cm_GSD_45° 

model peaks at knn 10 and the 2.5cm_GSD_45° model the knn peak is at the value of 30. On the other 

hand, slope 2 peaks at knn 40. Further comparison between the slope 1 datasets revealed that the 

2cm_GSD_45° model generally produced higher overall accuracies than the 2.5cm_GSD_45° model a 

confirmation that higher point density data performed better than the lower point density datasets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similarly, figure 25 below shows that in the α experiments, the peaks in both slope 1 and slope 2 data were 

at α 15. However, in the β parameter experiments, the peaks for the 2cm_GSD_45° and 2.5cm_GSD_45° 

models were observed at β 50°, β 60° and β 40°, β 50°, β 60° respectively whereas for slope 2 data the peak 

was observed at β 50°, β 60° as indicated in figure 26. 
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Figure 24: Overall accuracies for the knn parameter on slope 1 & 2 data 



 

34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.2.4. Orientation of the joint sets 

The analysis of the geometrical properties of the joint sets in slope 1 data depicted in the clouds generally 

showed a consistent trend in dip and dip direction. Figures 27 and 28 below show examples of the 

orientation of the discontinuities extracted from the automated flight data by varying knn parameter while 

keeping the other parameters fixed.  Tables 17 and 18 show the comparison of the dip/dip direction results 

between the automatically extracted dip/dip direction values via the stereoplot of the DSE and manual 

extraction from the classified point using a picking tool in cloudcompare. It was observed that J2 and J3 

have larger dip angles compared to J1 an indication that J2 and J3 are sub vertical structures whereas J2 is 

horizontal. Extra checks reviewed that there was slight shift in the orientation of J3 between the two models 

in the two scenarios. The trend was similar with slope 2 data. The bedding planes were observed to be 

horizontal and J1 and J2 sub vertical. 
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Figure 25: Overall accuracies for the α parameter on slope 1 & 2 data 
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Figure 26: Overall accuracies for the β parameter on slope 1 & 2 data 
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Table 17: Examples of Dip/dip direction of the joints extracted when knn values were varied while keeping others 
constant on the 2cm_GSD model with GCPs. 

Orientation 

Experiment Manual  Automatic  Comment  

knn J1 J2 J3 J1 J2 J3 Planes with smaller densities were 

discarded as noise (uncertainties) in 

the data because large differences in 

densities affect the automatic 

extraction of the joint sets (Ester et 

al., 1996; Lato et al., 2010) 

10 46/177 85/337 83/353 44/177 88/344 88/30 

20 48/166 79/329 83/354 44/177 89/342 0 

30 50/179 82/326 80/350 44/177 89/342 89/353 

40 54/179 81/332 83/355 44/177 89/342 89/353 

50 50/182 81/326 83/355 44/177 89/342 0 

60 46/177 85/337 83/353 44/177 89/342 89/359 

  

Table 18: Examples of Dip/dip direction of the joint sets recovered when knn was varied while keeping other 
parameters fixed on the 2.5cm_GSD model with GCPs 

Orientation 

Experiment Manual  Automatic  Comment  

knn J1 J2 J3 J1 J2 J3 Planes with smaller densities were 

discarded as noise (uncertainties) in 

the data because large differences in 

densities affect the automatic 

extraction of the joint sets (Ester et 

al., 1996; Lato et al., 2010) 

10 47/178 81/334 83/356 49/183 87/338 89/356 

20 54/169 82/336 81/354 49/171 89/342 89/356 

30 48/175 82/336 nil 49/183 87/338 0 

40 50/172 82/331 79/356 49/171 88/335 89/356 

50 54/165 82/333 82/356 50/165 88/335 89/356 

60 53/185 81/328 80/350 49/183 87/338 89/356 

 
 

 

 

  

                                                                                                                          

 

 

 

 

 

 Joint set 1 

 Joint set 2 

 Joint set 3 

 Joint set 1 

 Joint set 2 

 Joint set 3 

 Joint set 1 

 Joint set 2 

 Joint set 3 

 Joint set 1 

 Joint set 2 

 Joint set 3 

2.5cm_model 2cm_model 

Figure 27: Stereographic projection showing the dip/dip directions of the joint sets automatically identified 

Figure 28: Stereographic projection showing the dip/dip directions of the joints manually recognized 

2cm_model 2.5cm_model 
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4.2.    Spatial resolution sensitivity 

4.2.1. Methodology 

To further answer the research sub objective 2, spatial resolution sensitivity test was carried out on the 

downgraded point cloud that involved subsampling of the slope 2 data eight (08) times to progressively 

reduce its point density and intuitively check the response of the downgraded point density data to the 

automatic discontinuity set extraction procedure. The data was resampled at the intervals of 5cm of the 

minimum space between points beginning with the 5cm and ending with 50cm. The downgraded datasets 

were subsequently subjected to the automatic 

discontinuity set extraction in DSE using the 

optimal parameter values derived from the 

previous parametric processing procedure. The 

optimized parameter values were knn 40, α 15° 

and β 50°. After the extraction of the geological 

structures, the classified point clouds were 

overlaid on the RGB cloud in order to 

progressively fit planes to the structures and 

also point densities of the tested clouds checked 

using cloudcompare. The experiments were 

repeated until no more structures could be 

extracted by DSE in the resampled cloud at 

which it was recorded as a tipping point. 

 

 

 

4.2.2. Analysis and Results 

Analysis of the results in table 19 below revealed a proportional reduction in the point density of the 

discontinuities recovered in each of the resampled point cloud. Further scrutiny of the results showed that 

43 points/m2 flagged red was the minimum point density required to enable extraction of the discontinuity 

sets beyond which it was impossible to extract any more discontinuities and instead began to introduce some 

noise in the results as shown in the 25cm and 30cm results figure 30.   

Table 19: Densities of subsampled clouds 

 Minimum distance 

between points (cm) 

Point density 

(pts/m2) 

5 531 

10 149 

15 72 

20 43 

25 29 

30 17 

40 8 

50 5 

5cm 
15cm 

25cm 
30cm 

Figure 30: Results of joints overlap in the subsampled classified and 
RGB clouds at optimal parameter values 
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Comparison 

of results 

New 

parameter 
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Figure 29: Methodology workflow 
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Qualitative analysis, showed that changing the knn value from 40 to 50 and keeping the α, β  and np fixed 

at 15°, 50° and 50 respectively improved the amount of extracted discontinuities as illustrated in figure 31. 

Similarly, α and β values were varied from 15 and 50 respectively to α 10°, α 5° and β 40°, β 30° while knn 

was kept fixed at 40 and np at 50. The visual inspection of the structures overlap results in the classified and 

RGB clouds confirmed that there was no significant change in the results with respect to the results obtained 

from the use of the optimal values in 

the previous application suggesting that 

the knn parameter had the more 

influence on the extraction of the 

discontinuities from the point clouds 

than α and β. Further, np was increased 

from 50 to 500 and the other optimal 

parameters kept constant to check the 

responses of the resampled clouds. The 

results drastically changed as most of 

the small clusters of the planes were lost 

as shown in figure 32. The minimum 

point density required to effectively 

extract the discontinuities also 

changed from 43 pts/m2 to 149 pts/m2 which corresponded to the 10cm point spacing in the cloud beyond 

which noise began to be introduced in the data as observed in the 15cm point spacing cloud in figure 32. 

These results interestingly revealed 

that like knn, np also had a significant 

effect on recovery of the 

discontinuity sets from the point 

clouds and therefore, should be 

carefully optimized in order to 

obtain desirable results.  

 

 

 

      

5cm 

15cm 

25cm 
30cm 

Figure 31: Results of joints overlap in the subsampled classified and RGB 
clouds at knn 50 and constant α, β and np 

Figure 32: Overlap results between the resampled classified and RGB 
clouds at np 500 and other optimal parameters kept constant 

5cm 15cm 

10cm 
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5. DISCUSSION AND CONCLUSIONS  

The study aimed to investigate the effect of UAV flight plan and point cloud processing parameters on the 

characterization of the rock mass discontinuities. The drone data was acquired from the study area using 

automated and manual flights. Six UAV automated surveys were successfully conducted on slope 1 and a 

total of 616 images were captured. The average point densities of the raw point clouds generated from the 

six flights ranged from 321 points/m2 or 2444 points/m3 to 682 points/m2 or 5050 points/m3 as indicated 

in table 3 and appendix 2. On the other hand, 49 images were collected from slope 2 using a manual flight 

whose 3D model had an average point density of 2018 points/m2 or 18080 points/m3. Alongside, the UAV 

survey, fourteen GCPs were collected using a differential GNSS receiver to enable precise georeferencing 

of some point clouds during image processing in order to compare the data quality with the other 3D models 

without GCPs.  

The captured images were processed using pix4D and two sets of point clouds were generated, one set 

consisting of datasets with GCPs and the other set without GCPs. The results of precise georeferencing 

using GCPs reviewed that the models with GCPs improved the spatial accuracy evidenced by the 

displacement of the image block from the initial location (without GCPs) to its final position (with GCPs) 

as depicted by figure 10 in order to pin down the block to the correct geolocation on the ground. The model 

was displaced by 0.034m, 0.076m and 0.011m in the XYZ directions as observed in figure 11. This is because 

in the absence of GCPs, the resulting 3D model can easily stretch or warp due to the low accuracy of the 

UAV onboard GNSS and noise caused during photo stitching (Manconi et al., 2019; Menegoni et al., 2019; 

Nelms et al., 2018). The spatial accuracy differences in the two models leads to a conclusion that the model 

without GCPs cannot be relied on to provide accurate data required for the geomechanical characterization 

in order to provide correct advice to inform correct decision making regarding what type and where to 

implement rockfall mitigation measures. 

The study area is a steep slope terrain, therefore, an appropriate approach of executing the UAV survey in 

the research area required careful flight planning in order  to collect good quality data. For example, in 

studying the use of the drone to survey a coastal cliff face, Jaud et al. (2019) concluded that off nadir imaging 

angles of 20°, 30° and 40° aided in avoiding occlusions in the data due to the obstruction from the cliff. 

Further, Kozmus Trajkovski et al. (2020), Manconi et al. (2019) and Nesbit and Hugenholtz (2019) also 

submitted that the use of oblique images in digital photogrammetry significantly improved the spatial 

accuracy, precision and reduced the amount of missing data and systematic errors in the data. In this study, 

investigations to check the influence of the flight distance to the slope and the camera angle revealed 

markedly differences in the point density of the models obtained from the different perpendicular distances 

and tilt angles as shown in table 3. The model with the highest point density was obtained at the drone 

perpendicular distance of 36.3m to the slope with a camera tilt angle of 45° confirmed by its higher overall 

accuracy (47%) compared to the 33%-40% range of the other models as indicated in subsection 4.1.2.1. 

Therefore, the research concluded that flight distance and camera tilt angle had an influence on the quality 

of the UAV data, however, the camera tilt angle had more effect as it determined the perpendicular distance 

of the camera to the slope as illustrated in figure 5 and in table 3. Therefore, flight planning for similar UAV 

surveys for an area with similar average slope angle, geomechanical classification, platy limestone geological 

formation and fragmented discontinuity network should incorporate the flight distance of 36.3m and drone 

camera tilt angle of 45° in order to acquire data of the optimal point density for effective extraction and 

characterization of the discontinuities from such datasets. Additionally, visual assessment of the data showed 

differences in the scale of the observed discontinuities in the raw images obtained at different tilt angles. 
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This is an interesting observation that provides several options of visualizing the geological structures to 

better understand the geometrical properties of the discontinuities.  

The study area is heavily vegetated as shown in figure 1. Unlike airborne LIDAR whose laser beam can 

penetrate between leaves, UAV optical cameras lack such capabilities resulting in occlusions and shadowing 

effect in the data especially below the canopy and behind the obstructed areas (Anders et al., 2019; Isenburg, 

2014; Vosselman & Maas, 2010; Yilmaz et al., 2018). However, parametric processing requires a vegetation 

free 3D model for easy recognition of the geological structures and reduce inaccuracies in the results due to 

vegetation noise. Therefore, three automatic vegetation removal methods were explored to rid the datasets 

of vegetation. The traditional manual method, that involved segmenting out the vegetation via the 

segmentation tool in cloudcompare was used as a reference to the automated methods to check their 

effectiveness. The automated methods involved the use of software to remove vegetation from the messy 

point clouds. The algorithms investigated include CSF, a plugin in cloudcompare developed by Zhang et al. 

(2016), LAStools developed by Isenburg (2014) and CANUPO also a plugin in cloudcompare developed by 

Brodu and Lague (2012). By comparison, LAStools removed the most vegetation from the point clouds, its 

drawback however, was that it considerably removed part of the terrain points along with vegetation 

resulting in significant reduction in the point density of the data. The least performing algorithm was the 

CSF as shown by the large surface area covered by the residual vegetation on the cloud in relation to the 

total surface area of the cloud in figure 12. Overall, the canupo outperformed the other automatic methods 

as it removed a great deal of vegetation while retaining good amount of point density.  

Following the successful pre-processing (manual vegetation removal) of the selected datasets, the candidate 

datasets were subjected to parametric processing to extract rock mass discontinuities in the point clouds. 

Qualitative analysis of the results showed that slope 2 data outperformed slope 1 data in the number of the 

discontinuities recovered from the point clouds. In slope 2 all the three main discontinuity sets verified using 

the orthophoto shown in figure 16 subsection 4.1.1.4 were successfully identified in all the experiments 

whereas in the slope 1 data not all the three sets where recovered in every experiment. J3 was particularly 

absent in most of the parameter test results.  

Quantitatively, the overall accuracy computation results revealed that in the 2cm_GSD_45° model from 

slope 1, the highest overall accuracies for the knn, α and β were 40%, 40% and 47% respectively. This 

implied that on average, when the knn parameter was varied and the other parameters kept constant within 

the threshold values indicated in table 6 in subsection 4.1.1.1 the DSE could only effectively identify and 

extract 40% of all the thirty (30) sampled discontinuities from this data, another 40% if the α parameter was 

varied while knn, β and np were kept constant and 47% for the β if knn, α and np were kept fixed as described 

in subsection 4.1.2. These overall accuracies corresponded to the knn, α and β values of 10, 15° and 50° 

respectively. In the 2.5cm_GSD_45° model, the overall accuracies for the knn, α and β were 33%, 37% and 

40% respectively. Similarly, DSE could only recognize and extract 33%, 37% and 40% of the total sampled 

discontinuities in this model when the tested parameters were varied and others kept constant as described 

earlier. The accuracy indices in the 2.5cm_GSD_45° model corresponded to the knn value of 30, α value of 

15° and β value of 40°. The optimal parameter threshold values obtained were generally consistent with the 

findings of (Riquelme et al., 2014). However, as it be can inferred from the results of the overall accuracy 

computations, the results are not reliable because if the accuracies are below 50% then the operator is better 

off guessing empirically the parameter thresholds to predict the presence or absence of the discontinuities 

in a rock mass (Beguería, 2005; Lagomarsino et al., 2015).  

The low overall accuracies in all the three experimented parameters in the slope 1 data which include 0% 

for the β value of 10° confirmed the reasons for the poor results described earlier as being attributed to the 

low quality of the data due to the presence of noise in the data. The presence of low vegetation, residual 
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vegetation from the vegetation removal process covering an area as high as 700m2 of the total point cloud 

surface area (3400m2), shadowing effect from the higher vegetation, occlusions and lack of sufficient 

exposed rock mass surfaces on slope 1 contributed to the low quality of the data. The noise in the data 

hindered the algorithm to effectively identify and subsequently extract all the three discontinuity sets 

especially the sub vertical structures evidenced by the absence of J3 in some classified point clouds after the 

extraction process as shown in tables 8, 11, 12 and 13 in subsection 4.1.2.1 for example. In an effort to 

suppress the noise, np was increased from 50 to 500 leading to removal of the small joints (J3) during the 

clustering stage. The large np was necessitated in order to strike a balance between noise and accuracy at the 

expense of J3.  

 However, slope 2 data produced good overall accuracies as illustrated in figures 24, 25 and 26 in subsection 

4.1.2.3. The computed accuracy indices for each of the tested parameter values showed that the highest 

overall accuracies for the three parameters keeping other parameters constant during individual parameter 

value test, were achieved at knn 40, α 15° and β 50° as shown in tables 14, 15 and 16 whose overall accuracies 

were 73%, 80% and 73% respectively. These accuracies entail that DSE effectively identified and extracted 

73%, 80% and 73% of all the sampled discontinuity sets at the optimal knn, α and β values respectively. The 

good results were attributed to the good quality data of slope 2 due to the absence of occlusions, less 

shadowing effect in the data, less undulations on the slope surface and more exposure of the rock mass 

surface, good view angle of the camera and short UAV perpendicular distance to the slope.    

Spatial resolution sensitivity analysis results generally revealed that knn and np had the most influence on 

the minimum point density requirements for the discontinuity set extraction as illustrated in figures 31 and 

32. This is particularly important because the optimal recovery of the discontinuity sets from the point 

clouds in a similar research work will largely depend on these parameters. Further, the differences in the 

overall accuracies between the 2cm_GSD_45° and 2.5cm_GSD_45° models confirmed that point density 

affects the extraction of the rock mass discontinuities in a point cloud.    

Qualitative analysis on the influence of varying the parameter values on the automatic extraction of the 

discontinuities in a rock mass by DSE reviewed that reducing knn favours the extraction of more horizontal 

discontinuities while increasing the three parameters within the tested ranges favoured the extraction of 

more sub vertical structures from the point clouds than horizontal structures. This observation is important 

because it provided a clue at a glance of how the parameters should be optimized in order to obtain the 

optimal results depending on the objectives of the research. For example, if the interest is the horizontal 

discontinuities because they largely affect slope stability, then the knn value should be set to the minimum 

threshold or as close to the minimum as practically possible while keeping α, β and np constant so as to 

maximize the extraction of the horizontal structures to facilitate further analysis and properly inform the  

implementation of appropriate mitigations against rockfalls.  

The analysis of the joint sets dip/dip directions of the recovered geological structures showed a consistent 

trend in dip and dip direction as shown in figures 27 and 28 between the automatic and manually obtained 

observations. It was also observed that J2 and J3 have larger dip angles compared to J1 an indication that J2 

and J3 are sub vertical structures whereas J1 is horizontal and dip in the same direction (parallel) as the slope. 

The trend was similar in slope 2 data. Extra checks reviewed that there was a slight shift in the orientation 

of J3 between the two models in the two stereographic projection results. The geometric properties of the 

extracted discontinuities are predominantly of tiny spacing of in the order of 10cm and non-persistent in 

the order of 0m confirmed from the measurements on the point cloud via the point picking tool in 

cloudcmopare and from the scanline measurements obtained in the field as shown in appendix 4 creating a 
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fragmented discontinuity network evidenced by the small blocks of detached rocks and scree deposits along 

the trajectory of the rock falls in the study area observed during the field visit.  

With respect to the objective of the study, the following conclusions were drawn:  

Undertaking a similar research in a similar study area, using an automated UAV survey, should incorporate 

the perpendicular distance to slope of 36.3m or closer to the slope and camera tilt angle of 45° into the flight 

plan. Georeferencing significantly improved the spatial accuracy of the 3D model by pinning it to its correct 

geolocation on the ground in all the three XYZ direction. The UAV camera oblique angle had more 

influence on the point density of the drone data than the perpendicular distance  of the drone to the slope. 

This was attributed to fact that the oblique angle of the UAV camera determined the its perpendicular 

distance to the slope. Further, the different camera oblique angles impacted differently on point densities of 

the data to the worst being extreme slanting angle (30°). Therefore, UAV camera tilt angle should carefully 

be planned during flight planning to ensure that the look angle of the drone is as perpendicular to the slope 

as practically possible depending on the slope angle. The optimal parameter values in DSE to ensure 

successful extraction and characterization of the discontinuity sets in a rock mass of a study area with slope 

angle, slope rating mass, platy limestone geology and fragmented discontinuity network similar to the study 

area are: knn 40, α 15°, β 50° and np 50. Also, point density of the UAV photogrammetry data depicting 

terrains like the study area, affects the extraction of the rock mass discontinuities from such datasets. There 

are three major discontinuity sets in the study area. Two of the three namely J2 and J3 are sub vertical with 

similar geometrical characteristics while J1 is horizontal orienting in the same direction as the slope surface 

at slope 1. Similarly, on slope 2, the horizontal structures are the bedding planes whereas the sub vertical 

joints are J1 and J2.  

Further research is recommended in the following: 

Future research is recommended to quantitatively investigate the influence of roughness on the extraction 

of the discontinuities from a rock mass with high roughness. The research faced serious challenges to 

automatically remove vegetation from the collected data since most of the algorithms were still undergoing 

refinement at the time of the study. Others, like LAStools though effective, are largely meant for the LIDAR 

data and not UAV. Therefore, future research is highly recommended to fully investigate the vegetation 

removal capabilities of the canupo plugin in cloudcompare as it outperformed the other automated methods 

and therefore, has a potential of being a very useful tool in such a research work. Lastly, future studies can 

consider checking the influence of other parameters not tested in this research in other terrains with different 

characteristics and check how the requirements of flight planning and discontinuity set extraction would 

change or compare with the results obtained in this research. 
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APPENDICES  

Appendix 1: An extract of the summary of the quality report 
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Appendix 2a: Results of the point cloud quality with GCPs  
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Appendix 2b: Results of the point cloud quality without GCPs.  
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Appendix 2c: Results of the C2C distance computation 
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Appendix 3a: Classification accuracy indices for 2cm_GSD_45° model on slope 1 

 knn5 

         

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 4 0 20 55 10 45 90 

J2 0 0 0 0 0 0 100 0 0 

J3 0 0 0 0 0 0 100 0 0 

NO 1 3 6 0 10 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  30 
 

knn10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 6 0 22 59.09091 10 40.90909 90 

J2 1 3 2 0 6 50 70 50 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 2 0 2 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  40 
 

knn20 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 4 0 19 57.89474 20 42.10526 80 

J2 2 2 3 0 7 71.42857 80 28.57143 20 

J3 0 0 0 0 0 0 100 0 0 

NO 0 1 3 0 4 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  33.33 
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  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 6 4 0 17 58.82353 30 41.17647 70 

J2 2 2 1 0 5 60 80 40 20 

J3 1 1 0 0 2 100 100 0 0 

NO 0 1 5 0 6 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  30 
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knn40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 6 6 4 0 16 62.5 40 37.5 60 

J2 2 2 1 0 5 60 80 40 20 

J3 1 1 1 0 3 66.66667 90 0 10 

NO 1 1 4 0 6 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  30 

knn50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 5 0 20 60 20 40 80 

J2 2 3 2 0 7 57.14286 70 42.85714 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 3 0 3 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  36.67 

knn60 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 7 5 0 19 63.15789 30 36.84211 70 

J2 2 1 2 0 5 80 90 20 10 

J3 1 1 0 0 2 100 100 0 0 

NO 0 1 3 0 4 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  26.67 

α5 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 7 5 0 19 63.15789 30 36.84211 70 

J2 1 0 0 0 1 100 100 0 0 

J3 1 1 0 0 2 100 100 0 0 

NO 1 2 5 0 8 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  23.33 

 

α10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 7 6 0 20 65 30 35 70 

J2 2 2 1 0 5 60 80 40 20 

J3 1 1 0 0 2 100 100 0 0 

NO 0 0 3 0 3 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  30 
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α15 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 5 0 20 60 20 40 80 

J2 2 3 2 0 7 57.14286 70 42.85714 30 

J3 0 0 1 0 1 0 90 0 10 

NO 0 0 2 0 2 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  40 

α20 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 6 0 21 61.90476 20 38.09524 80 

J2 2 3 3 0 8 62.5 70 37.5 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 1 0 1 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%)  36.67 

α30 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 6 6 0 20 60 20 40 80 

J2 2 3 3 0 8 62.5 70 37.5 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 1 1 0 2 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 36.67 

α40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 0 0 0 0 0 0 100 0 0 

J2 2 3 3 0 8 62.5 70 37.5 30 

J3 0 0 0 0 0 0 100 0 0 

NO 8 7 7 0 22 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 10 

α50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 0 0 0 0 0 0 100 0 0 

J2 2 3 3 0 8 62.5 70 37.5 30 

J3 0 0 0 0 0 0 100 0 0 

NO 8 7 7 0 22 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 10 
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β10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 0 0 0 0 0 0 0 0 0 

J2 0 0 0 0 0 0 0 0 0 

J3 0 0 0 0 0 0 0 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 Overall Accuracy (%) 0 

β20 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 6 4 3 0 13 53.84615 40 46.15385 60 

J2 1 0 0 0 1 100 100 0 0 

J3 0 1 0 0 1 0 100 0 0 

NO 3 5 7 0 15 100 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 20 

β30 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 7 5 0 19 63.15789 30 36.84211 70 

J2 2 2 1 0 5 60 80 40 20 

J3 1 1 0 0 2 100 100 0 0 

NO 0 0 4 0 4 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 30 

β40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 7 5 0 19 63.15789 30 36.84211 70 

J2 2 2 1 0 5 60 80 40 20 

J3 1 1 4 0 6 33.33333 60 66.66667 40 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 43.33 

β50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 7 5 0 20 60 20 40 80 

J2 2 2 1 0 5 60 80 40 20 

J3 0 1 4 0 5 20 60 80 40 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 
Overall Accuracy 
(%) 46.67 
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β60 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 6 6 0 19 63.15789 30 36.84211 70 

J2 2 3 0 0 5 40 70 60 30 

J3 1 1 4 0 6 33.33333 60 66.66667 40 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 46.67 

Appendix 3b: Classification accuracy indices for 2.5cm_GSD_45° model on slope 1 

knn5 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 8 0 24 62.5 10 37.5 90 

J2 0 0 0 0 0 0 100 0 0 

J3 0 1 0 0 1 100 100 0 0 

NO 1 2 2 0 5 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 30 

knn10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 8 8 0 24 66.66667 20 33.33333 80 

J2 0 0 0 0 0 0 100 0 0 

J3 0 1 0 0 1 100 100 0 0 

NO 2 1 2 0 5 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 26.67 

knn20 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 8 8 0 25 64 10 36 90 

J2 0 0 0 0 0 0 100 0 0 

J3 0 1 0 0 1 100 100 0 0 

NO 1 1 2 0 4 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 30 
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knn30 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 9 8 0 26 65.38462 10 34.61538 90 

J2 1 1 1 0 3 0 90 0 10 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 1 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 33.33 

knn40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 9 9 0 27 66.66667 10 33.33333 90 

J2 0 0 0 0 0 0 100 0 0 

J3 0 1 0 0 1 0 100 0 0 

NO 1 0 1 0 2 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 30 

knn50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 5 3 4 0 12 58.33333 50 41.66667 50 

J2 3 4 3 0 10 60 60 40 40 

J3 0 1 0 0 1 100 100 0 0 

NO 2 2 3 0 7 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 30 

knn60 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 3 2 3 0 8 62.5 70 37.5 30 

J2 3 4 5 0 12 66.66667 60 33.33333 40 

J3 0 1 0 0 1 100 100 0 0 

NO 4 3 2 0 9 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 23.33 
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α5 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 2 4 4 0 10 80 80 20 20 

J2 3 2 4 0 9 77.77778 80 22.22222 20 

J3 1 2 2 0 5 60 80 40 20 

NO 4 2 0 0 6 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 20 

α10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 9 8 0 26 65.38462 10 34.61538 90 

J2 1 1 1 0 3 66.66667 90 33.33333 10 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 1 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 33.33 

α15 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 8 8 0 25 64 10 36 90 

J2 1 1 1 0 3 66.66667 90 33.33333 10 

J3 0 1 1 0 2 0 90 0 10 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 36.67 

α20 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 8 8 0 25 64 10 36 90 

J2 1 2 2 0 5 60 80 40 20 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 36.67 

α30 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 8 8 8 0 24 66.66667 20 33.33333 80 

J2 1 2 1 0 4 50 80 50 20 

J3 0 0 1 0 1 0 90 0 10 

NO 1 0 0 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 36.67 
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α40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 7 7 8 0 22 68.18182 30 31.81818 70 

J2 1 2 1 0 4 50 80 50 20 

J3 0 0 1 0 1 0 90 0 10 

NO 2 1 0 0 3 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 33.33 

α50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 1 3 2 0 6 83.33333 90 16.66667 10 

J2 0 0 0 0 0 0 100 0 0 

J3 0 0 0 0 0 0 100 0 0 

NO 9 7 8 0 24 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 3.33 

β10 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 0 0 0 0 0 0 0 0 0 

J2 0 0 0 0 0 0 0 0 0 

J3 0 0 0 0 0 0 0 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 Overall Accuracy (%) 0 

β20 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 5 7 5 0 17 70.58824 50 29.41176 50 

J2 0 0 0 0 0 0 100 0 0 

J3 0 0 0 0 0 0 100 0 0 

NO 5 3 5 0 13 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 16.67 

β30 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 9 8 0 26 65.38462 10 34.61538 90 

J2 1 1 1 0 3 66.66667 90 33.33333 10 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 1 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 33.33 
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β40 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 8 0 24 62.5 10 37.5 90 

J2 1 3 2 0 6 50 70 50 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 40 

β50 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 8 0 24 62.5 10 37.5 90 

J2 1 3 2 0 6 50 70 50 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 40 

β60 

  Actual  Accuracy indices (%) 

  J1 J2 J3 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

J1 9 7 8 0 24 62.5 10 37.5 90 

J2 1 3 2 0 6 50 70 50 30 

J3 0 0 0 0 0 0 100 0 0 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 40 

Appendix 3c: Classification accuracy indices for slope 2 

knn5 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 2 3 0 13 38.46154 20 61.53846 80 

J1 1 5 2 0 8 37.5 50 62.5 50 

J2 1 3 5 0 9 44.44444 50 55.55556 50 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 60 
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knn10 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 9 2 2 0 13 30.76923 10 69.23077 90 

J1 0 5 2 0 7 28.57143 50 71.42857 50 

J2 1 3 6 0 10 40 40 60 60 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 66.67 

knn20 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 7 3 1 0 11 36.36364 30 63.63636 70 

J1 1 5 3 0 9 44.44444 50 55.55556 50 

J2 2 2 6 0 10 40 40 60 60 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 60 

knn30 
 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 9 3 3 0 15 40 10 60 90 

J1 1 7 2 0 10 30 30 70 70 

J2 0 0 5 0 5 0 50 100 50 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 70 

knn40 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 7 2 2 0 11 36.36364 30 63.63636 70 

J1 2 8 1 0 11 27.27273 20 72.72727 80 

J2 1 0 7 0 8 12.5 30 87.5 70 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 73.33 

knn50 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 2 3 0 13 38.46154 20 61.53846 80 

J1 1 8 3 0 12 33.33333 20 66.66667 80 

J2 1 0 4 0 5 20 60 80 40 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 66.67 
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knn60 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 3 1 0 12 33.33333 20 66.66667 80 

J1 0 4 2 0 6 33.33333 60 66.66667 40 

J2 0 3 7 0 10 30 30 70 70 

NO 2 0 0 0 2 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 63.33 

α5 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 1 2 0 11 27.27273 20 72.72727 80 

J1 1 8 5 0 14 42.85714 20 57.14286 80 

J2 0 1 3 0 4 25 70 75 30 

NO 1 0 0 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 63.33 

α10 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 9 3 3 0 15 40 10 60 90 

J1 1 7 2 0 10 30 30 70 70 

J2 0 0 5 0 5 0 50 100 50 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 70 

α15 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 0 1 0 9 11.11111 20 88.88889 80 

J1 2 9 1 0 12 25 10 75 90 

J2 0 1 7 0 8 12.5 30 87.5 70 

NO 0 0 1 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 80 

α20 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 1 2 0 11 27.27273 20 72.72727 80 

J1 2 9 3 0 14 35.71429 10 64.28571 90 

J2 0 0 5 0 5 0 50 100 50 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 73.33 
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α30 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 8 2 4 0 14 42.85714 20 57.14286 80 

J1 2 8 2 0 12 33.33333 20 66.66667 80 

J2 0 0 4 0 4 0 60 100 40 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 66.67 

α40 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 7 1 4 0 12 41.66667 30 58.33333 70 

J1 2 8 2 0 12 33.33333 20 66.66667 80 

J2 0 1 4 0 5 20 60 80 40 

NO 1 0 0 0 1 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 63.33 

α50 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 2 8 5 0 15 86.66667 80 13.33333 20 

J1 0 0 0 0 0 0 100 0 0 

J2 0 0 2 0 2 0 80 100 20 

NO 8 2 3 0 13 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 13.33 

β10 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 6 4 3 0 13 53.84615 40 46.15385 60 

J1 0 2 2 0 4 0 80 0 20 

J2 0 2 0 0 2 100 100 0 0 

NO 4 2 5 0 11 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 26.67 

β20 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 7 3 4 0 14 50 30 50 70 

J1 0 6 1 0 7 0 40 0 60 

J2 0 1 4 0 5 20 60 80 40 

NO 3 0 1 0 4 0 0 0 0 

Total 10 10 10 0 30 
Overall Accuracy 
(%) 56.67 
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β30 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 9 3 3 0 15 40 10 60 90 

J1 1 7 2 0 10 0 30 0 70 

J2 0 0 5 0 5 0 50 100 50 

NO 0 0 0 0 0 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 70 

β40 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 9 3 2 0 14 35.71429 10 64.28571 90 

J1 1 6 3 0 10 0 40 0 60 

J2 0 1 3 0 4 25 70 75 30 

NO 0 0 2 0 2 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 60 

β50 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 10 0 1 0 11 9.090909 0 90.90909 100 

J1 0 10 5 0 15 0 0 0 100 

J2 0 0 2 0 2 0 80 100 20 

NO 0 0 2 0 2 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 73.33 

β60 

  Actual  Accuracy indices (%) 

  B J1 J2 NO Total CE OE UA PA 

P
re

d
ic

te
d
 

B 10 0 3 0 13 23.07692 0 76.92308 100 

J1 0 8 0 0 8 0 20 0 80 

J2 0 2 4 0 6 33.33333 60 66.66667 40 

NO 0 0 3 0 3 0 0 0 0 

Total 10 10 10 0 30 Overall Accuracy (%) 73.33 
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Appendix 4: Scanline measurements with an insert for discontinuity spacing measurement in a point cloud 

 

 

 

 

 


