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ABSTRACT 

Hazards are generally defined by three components: Where they occurred? When have they occurred? And 

How destructive were they? This study focuses on these components for the event of landslides. Initially, 

where the landslides have occurred is analysed, this concept is commonly termed as landslide susceptibility. 

Over the years, there had been several techniques via which the susceptibility is estimated. This study 

specifically researches the quantitative methods namely: statistical and physically-based models. While the 

physically-based is process driven, the statistical model is data driven. Statistical framework aids in a physical 

model for the interpolation and parameterisation of the physical parameters but an incorporation of these 

physical parameters into a statistical model is hardly ever done. Thus, this study aims to visualise the 

difference in the spatial patterns obtained from statistical analysis done on the different parametric datasets: 

i) the traditional parameters used in statistical framework for landslide susceptibility; ii) physical parameters 

which explains the slope instabilities and iii) combination of both in the above-mentioned. In this study the 

physically-based model is not carried out rather the inputs and the outputs of a previously executed model 

is utilised. Thereby with this regard, this initial study is done on the region of Grand Bay at Dominica. For 

this a Generalised Linear Model (GLM) with binomial probability distribution integrated with the Least 

Absolute Shrinkage and Selection Operator (LASSO) as variable selector is implemented. The traditional 

parameters were more adept in capturing the spatial characteristics of the landslide susceptibility, this was 

because of the increased spatial variability of the conditioning factors. The next phase of the study focuses 

on “When” the landslides have occurred. An attempt to examine whether a statistical framework is capable 

of recognising a spatial pattern of the temporal dependency on landslide occurrences, is undertaken. In 

order to scrutinise this, a generalised additive model (GAM) with its temporal counterpart and considering 

non-linear parameters is executed. Specifically, an autoregressive model acts upon this GAM in order to 

speculate on capturing a temporal latency effect on the landslide susceptibility. While the previous study was 

done at pixel level, this was carried out at slope unit level for the whole island of Dominica and the available 

five landslide inventories for the region was utilised. For this tropical region, no significant temporal latency 

on susceptibility was observed. This might be due to the fact that there is a spatial variability of the triggering 

events over the period of years, thus the model is dominated by the spatial trends rather than temporal ones. 

The final phase of this study was on “How”, and, explicitly approached to model a specific characteristic of 

the landslide, the percentage of landslide area per mapping unit. A GLM with Gaussian probability 

distribution was implemented for the whole island for the five time periods. These models were also 

executed at the slope unit level and though they reflected on the increase/ decrease of the percentages 

adequately, they were unable to efficiently capture the variance. This was due to the data inadequacy in terms 

of sample size (a small dimension of input dataset) and spatial invariability (a uniformity in the characteristics 

of the covariates used). While this study focuses on the components individually, a more established future 

research would be on ways to integrate all the three components and facilitate the learning ability of the 

statistical framework which in turn would increase the performance of the susceptibility model. 
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1. INTRODUCTION 

For at least three decades, predicting where landslides would occur has been a notion known as 

landslide susceptibility whereas the temporal and magnitude components of widespread landslide events has 

often been included in the landslide hazard definition (Brabb 1985; Hansen 1984; Varnes DJ 1984). Several 

approaches have been proposed through the years for  mapping  landslide susceptibility, starting from 

geomorphological mapping (Hansen et al., 1995), investigation of landslide inventories (Campbell, 1973; 

DeGraff, 1985; Galli et al., 2008), zonation of susceptibility by terrain analysis (Nilsen and Brabb, 1977; 

Abella and van Westen, 2008), statistically-based methods (Carrara, 1983;   Chacón et al., 2006) and 

physically-based numerical models (Montgomery and Dietrich, 1994; Rigon et al., 2006; Simoni et al., 2008). 

These approaches all share some common requirement:  

i)  the partition of a study area in a specific mapping unit. A mapping unit 

corresponds to the geographic entity used to subdivide the whole area and to ultimately assign the 

outcome of the susceptibility/hazard models (Reichenbach et al., 2018). Among the available 

mapping units, one can commonly find the use of grid-cells (regular squared lattices), slope units 

(irregular moderate-scale polygons encompassing ridges to the closest streamline), catchments 

(irregular small-scale polygons from the ridges to the outlets), administrative units (irregular 

polygons corresponding to counties, cities or provinces).   

 

ii)  the information on the distribution of past landslides. For instance, 

geomorphological mapping (Reichenbach et al., 2005), which essentially corresponds to the ability 

of a geomorphologist to interpret the landscape and recognize landslide-prone slopes, relies on the 

understanding of a geomorphologist due to his/her past field experience. As for statistically based 

methods, these learn from the functional relations existing between past landslides and associated 

landscape properties (Guzzetti et al., 1999; van Westen et al., 2008). Physically-based models 

implement the hydro-mechanical laws which govern the instability process, and the optimal 

parameterization is calibrated to maximize the numerical- to the real – landslide scenario (Baum et 

al., 2008; Anagnostopoulos and Burlando, 2012; Bout et al., 2018). 

 

Despite these commonalities, substantial differences also exist in the way the various approaches 

are implemented and the data they require (Glade and Crozier, 2005). For instance, physically-based models 

require the actual geotechnical and hydrological properties featured in the governing equations (Terlien et 

al., 1995; Borga et al., 1998). Conversely, statistically based models usually feature proxies (Guzzetti et al., 

2005; Goetz et al., 2015) of the geotechnical and hydrological parameters mentioned above. This context 

implies a similar predictive outcome when it comes to interpretation. But it also implies that significant 

differences exist in the respective predictive capacity.  This study initially focuses on the different level of 

information carried by the parameters mentioned above, these being tested in the context of statistically 

based susceptibility models. Specifically, checking the differences in performance and interpretability among: 

i) a model featuring terrain as well as lithological and pedological properties; ii) a model featuring 

geotechnical and hydrological parameters only; iii) a model featuring the combination of both.  

 

In addition to this, the susceptibility literature has seen the effect of pre-existing slope instabilities 

to be relevant if not dominant at times, with respect to subsequent landslide events. This effect has been 

defined as landslide path dependency (Samia et al., 2017) and it has been demonstrated that its inclusion 

improved the prediction in statistically based models. In this work, it has also been tested whether the 

landslide path-dependency can be captured via statistical models in tropical areas.   

 



 

   

And, referring to the differences between landslide susceptibility and hazard, one of the differences 

is due to the inclusion of the landslide event-magnitude. This concept describes the magnitude (a proxy for 

the destructiveness) of a population of landslides. This is traditionally included in landslide hazard models 

in terms of landslide size (area) characteristics (Malamud et al., 2004). However, when using a slope-unit 

partition (Carrara et al., 1995), one could express the magnitude of a population of landslide as the 

proportion of failed slope-units. This metric can indicate how much of a given slope unit has failed in 

response to single or multiple failures occurred inside the same slope unit polygonal extent. Here, a trial has 

been undergone to complement the susceptibility information together with the hazard information 

expressed as the percentage of the failed slopes, testing the framework mentioned above. 

1.1. Rationale of this Study 

In this study, the major focus is on the quantitative methods, as described above these could be 

grouped as either physically-based approach or statistical approach. While physically-based models are 

process-driven the statistical models are data-driven (Canli et al., 2015). The physically-based model 

simulates the physics behind the processes thus making it directly interpretable because they feature physical 

quantities that can be generally measured in laboratories or via field tests (Wu and Sidle, 1995; 

Anagnostopoulos et al., 2015; Alvioli and Baum, 2016).  However, these models are dependent on how the 

sampling is done to derive the above data. Statistical methods rely on certain properties of the landscape 

that are available at high resolution to be integrated into the model (Carrara, 1983; Chacón et al., 2006; van 

Westen et al., 2008) but the problem arises as these parameters in reality are not the contributing factors for 

the landslides but rather they are proxies for the driving characteristics. For example, geology type, which is 

one of the common parameters used in statistical frameworks, isn’t a conditional factor for landslide 

occurrences as such but instead it is the shear strength and the bulk density of the lithology that makes a 

place more susceptible to landslides. Thus, in a statistically based model even though the input data is more 

accessible, due to the non-usage of the properties that govern the physics, the interpretability of the process 

from the model output often cumbersome or less straightforward than the physically-based counterpart 

(van Westen et al., 2006). 

 

There have been numerous studies focused on understanding the differences in performances of 

the statistically based and the physically-based models (Guzzetti 2006; Yilmaz and Keskin, 2009; Canli et al., 

2015). However, there are very few studies which have incorporated physical parameters into a statistical 

framework (Goetz et al., 2011; Pradhan et al., 2019). For instance, these previous studies had included the 

factor of safety distribution map to model the landslides. But an inclusion of other geotechnical and 

hydrological parameters into a statistical framework for landslide susceptibility modelling is yet to be done. 

The initial phase of this study aids in comprehending what are the important process driven and data driven 

parameters influencing landslide susceptibility prediction and the difference in the spatial trends that can be 

captured by them. 

After this, delving into a broader perspective of the assumption that the parameters influencing the past and 

present landslides are most likely to influence the future occurrences (Furlani and Ninfo, 2015), an analysis 

on the temporal counterpart of landslide susceptibility is likely to give an understanding of the propagation 

of landslide occurrences. The ability of a statistical model to capture this temporal dependency was studied 

by Samia et al., (2018). It was observed that the previously existing landslides had an effect onto the 

subsequent landslide occurrences via a statistical analysis. An implementation of a statistical framework 

which is endowed with the capability for identifying the temporal effect for a region of high vegetation is 

yet to be done. This phase of the study would examine the capability of a statistical model to recognize the 

temporal dependence on the landslide susceptibility, if present, in the context of a tropical environment. 

While the above two study phases concentrates on the landslide initiation, the last phase of this 

study extend the analyses by considering the extent of runout area of a landslide (or a combination of 



 

landslides) per mapping unit. Certain studies have been carried out in the past where a statistical analysis is 

done on the evaluation of the landslide hazard based on the runout (Carrara et al., 1991) and analysis on the 

landslide occurrences and their runout distance (Devoli et al., 2009). This study specifically examines a 

statistical framework considering the percentage of landslide area per mapping unit, expecting to aid in 

understanding the extent of area that could be affected by a landslide.  

1.2. Research Questions and Objectives 

1. What are the differences among predictive spatial patterns provided by a purely physically-based 

model, a traditional statistical model with morphometric and thematic properties, and a hybrid 

model with a statistical algorithmic architecture but with a combination of the morphometric and 

thematic parameters together with predisposing factors obtained for/via physical simulations? 

Obj.  To test whether physically-based or statistical models or a hybrid between the two provide 

enough information to assess the landslide susceptibility in hurricane-driven disasters. 

i) What are the available data inputs with regards to morphometric and thematic 

properties? 

ii) What were the parameters that OpenLISEM had considered for the simulation of 

slope instability? 

iii) How does the inclusion of the various parameters affect the susceptibility model? 

iv) What is the performance of each model? Is there a difference in their capability to 

estimate landslide susceptibility? 

v) Why does a difference occur and what are the aspects that models lack to capture 

in comparison to each other? 

2. Is there an effect from the past to the future landslide occurrences on predictive power of 

landslide susceptibility model for a tropical region? Do landslides occur through time in the same 

location? 

Obj. To implement an autoregressive model acting on a generalized additive model with its 

temporal component 

i) Can a statistical framework identify the temporal dependency in densely forested 

areas where the regrowth of the vegetation is quite rapid? 

3. What are the spatial characteristics of the landslide areas? 

Obj. To extend a statistical framework to accommodate the prediction of percentage of     

landslide area per mapping unit 

i) How and why are the influence of the conditioning factors different for the 

initiation and the depositional regions of a landslide? 

ii) How can the landslide area model be integrated to landslide susceptibility 

models? 

In order to answer the above-mentioned research questions, the most common implementation of 

statistical framework for landslide susceptibility, Generalized Linear Model (hereafter GLM; Nelder and 

Wedderburn, 1972; Atkinson et al., 1998; Reichenbach et al., 2018) has been tested in three separate 

experiments by extending the GL1M framework in three different ways in this study. The GLM is essentially 

a multivariate statistical model that assumes that the effect of each covariate affecting the landslide 

susceptibility is linear. The first extension to the simpler GLM has been implemented by attaching to a GLM 

kernel a powerful variable selection tool called Least Absolute Shrinkage and Selection Operator (hereafter 

LASSO; Camilo et al., 2017; Lombardo et al., 2018). In the past years, for the implementation of variable 

selector in landslide susceptibility models a predominant variable selection routine corresponding to 

stepwise algorithm has been used. This stepwise algorithm has been demonstrated to be flawed and 



 

   

extremely conservative (Harrell, 2015) whereas LASSO is a more reliable selector (Amato et al., 2019). The 

second experiment was conducted by extending the GLM framework to its more flexible counterpart, the 

Generalized Additive Model (hereafter GAM, Hastie and Tibshirani 1987; Goetz et al., 2011) which is able 

to account for non-linear effects, for instance, the use of ordinal properties, and the use of tools that would 

treat differently mapping units close and far in space or time. The third experiment featured a GLM used 

for modelling the extent to which a landslide would affect a given mapping unit, thus rather than the binary 

presence/absence landslide scenario (the typical input for a landslide susceptibility model), it attempts to 

model a continuous property. A description of how these were implemented to what study area and what 

were the outcomes is further detailed in this thesis. 

1.3. Structure of this thesis 

Chapter 1 describes the background information, motivation and basic methodology and 

summarizes the main research questions and objectives of this study. The chapter 2 of the thesis describes 

the various geographical and topographical aspects of the study area. The detailed methodology for the 

study and the conditioning factors utilized in this study are presented in chapter 3. The results and 

discussions are summarized in chapter 4. Chapter 5 contains the fundamental conclusions and identifies 

both the limitations to the study as well as recommendations for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. STUDY AREA 

Dominica is one of the Caribbean islands which lies between the French islands of Guadeloupe 

and Marie-Galante in the north and Martinique in the south (Figure 2.1).  It is about 750 square kilometers 

in area with 335 streams and rivers, one of the largest boiling lakes in the world and nine active volcano 

spots (Lindsay et al., 2005). The island’s capital is Roseau and is accessible via airways and waterways. 

Dominica has a population of 71625 (as of 2018 census) and its economy is predominantly reliant on 

agriculture. Though the high variations in the weather affects the crop production. The island lies in the 

hurricane region near the equator, making it prone to face various hurricanes. Over the past years, these 

hurricanes had triggered landslides (among other disasters) over the region (“Dominica | CHARIM,” n.d.). 

 

 

Figure 2.1 The relief map of the island (Central Intelligence Agency, 1990); the region of Grand Bay has been 
highlighted which would be the area of focus for first phase of the study. 

2.1. Climatological Context of the Region  

The island usually experiences a marine tropical climate with minimal seasonal variation. But the 

rainfall patterns have been varying due to the various hurricanes that have hit the region. Over the years, 

the island has been affected by tropical storms or hurricanes once in 2.5 years. Direct hurricane hits were 

occurring once in 9.87 years and the major hurricanes once in 16.44 years and these hurricanes were 

observed to have an average wind speed of 114mph.  

Table 2.1 summarizes the various hurricanes and tropical storms that hit the island. 
 



 

   

Table 2.1 Characteristics of the hurricanes and tropical storms that had triggered landslides in the 

island (The date denotes the day it hit the island) 

Year  Date Event Characteristic 

1806 Sep 20th  Hurricane 
Triggered landslide and flooding in the capital, Roseau killing 
131 people 

1834 Sep 9th  Hurricane A severe event triggering landslides (Category 4 or 5) 

1916 Aug 28th Hurricane 
A strengthening tropical storm becomes a hurricane 85mph 
from the east 

1926 Jul 24th Hurricane 
Triggered landslides and led to damage of roadways, electric 
and phone lines 

1930 Sep 1st Hurricane 90 mph winds hit the area from the east 

1963 Sep 28th Hurricane Edith 
Winds of 80 mph triggering landslides and floods damaging the 
vegetation 

1970 Aug 20th 
Hurricane 
Dorothy 

Mostly wind damage and affected north and east regions the 
worst.  

1979 Aug 29th Hurricane David 150 mph wind speed lasting 6 hours (Category 5) 

1979 Sep 1st 
Hurricane 
Frederick 

Extended damage from the previous hurricane David 

1980  Hurricane Allen Category 1 hurricane which could have trigger landslides 

1984 Nov 6th Hurricane Klaus Landslide at Bellevue Chopin 

1987  Hurricane Emily Triggered landslides 

1988  Hurricane 
Gilbert  

Landslides Matthieu and Layou River  

1989 Sep 17th  Hurricane Hugo  Severe economic damage 

1994 Sep 10th 
Hurricane 
Debbie 

Damages to the croplands 

1995 Aug 27th Hurricane Iris Large landslides near Mathieu River. 

1995 Sep 4th 
Hurricane 
Marilyn 

Hits from the SE with 80mph winds area reports sustained 
winds of 72mph for 10 minutes  

1995 Sep 18th Hurricane Luis Large landslides near dam lake Mathieu. 

1999 Nov 18th 
Hurricane 
Lenny   

 Landslides in the north damaging the coastal infrastructures 

2007 Aug 21st Hurricane Dean 
Major debris flow from the Soufriere Sulphur Springs’ Upper 
Fumarole Area on the night of Hurricane Dean 

2009 Sep 4th Hurricane Erica 27 landslides along the roads 

2010 Oct 31st 
Hurricane 
Tomas 

20 landslides along the roads 

2011 Sep 28th 
Hurricane 
Ophelia 

84 landslides along the roads 

2015 Aug 27th 
Tropical storm 
Erika 

The majority of damages were sustained in the transport sector 
(60 percent), followed by the housing sector (11 percent) and 
agriculture sector (10 percent). Approximately 7,229 impacted 
by the event in disaster declared areas 



 

2017 Sep 18th Hurricane Maria 

Hits directly with 165 mph winds; 922mm of rain causing very 
heavy damage. According to media reports, the estimated 
damage total in Dominica is at least $1.31 billion. The 
agricultural sector was essentially eliminated. The once-lush 
tropical island was effectively reduced to an immense field of 
debris. There was extensive damage to roads. Power, phone, 
and internet service were cut off, leaving the country almost 
incommunicado with the outside world. Wind speed of 
133mph at Canefield Airport and 150mph at Douglas–Charles 
Airport. 

 

2.2. Geological and Pedological Context of the Region 

Dominica is a volcanic island with the oldest bedrocks of basalt deposits from volcanoes in the 

Miocene era. The central and southern island is mostly made up of younger Pleistocene deposits composed 

of ignimbrite and ash while the older deposits are in the eastern regions (Figure 2.2; Roobol and Smith, 

2004). The tropical climate exposes the bedrock to deep weathering (DeGraff, 1991) and this leads to 

formation of the weathered volcanic soil. This soil weaker than the bedrock causes a loss in the soil shear 

strength with the exposure to high precipitation generating zones of slope instabilities (Walsh, 1982). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 Geological map of Dominica (Roobol and Smith, 2004) 



 

   

The island of Dominica majorly has four noticeable soils: allophanoid latosolics, allophanoid 

podzolics, kandoid soils and smectoid soils. While the allophanoid soils are formed in regions of high annual 

rainfall, the kandoid soils are formed in moderate rainfall and the smectoid are formed in the regions of low 

rainfall. The region due to the active volcano spots has fertile volcanic soil thereby increasing the growth of 

vegetation. Also, the clay soils of the region are high in porosity and can affect the groundwater flow and 

runoff (Rouse et al. 1986).  The central island is made of allophanoid latosolics which is known to have a 

high permeability and low bulk density. These soils are generally stable unless there is a slopecut (Lang, 

1967). Other prevalent soils in the area is the kandoid latosolics in the north-east and the young soils in the 

south west and west. 

2.3. Landslide inventory of the Study Area 

Throughout the years, there are five landslide inventories mapped for the whole region of 

Dominica. The landslides inventory made by DeGraff (1987) recorded 896 landslides which were probably 

caused by 1979 David, 1980 Allen and 1984 Klaus. The 1990 inventory by DeGraff mapped 187 landslides 

with possible triggering events: 1987 Emily, 1988 Gilbert and 1989 Hugo. The 1987 inventory was derived 

from the interpretation of the aerial photos from 1984 and the field investigation in 1986-Jan 1987. A digital 

map was available for this inventory but for the 1990 landslide inventory it was later digitized (van Westen, 

2016). Both the inventories were mapped on a scale of 1:25000, while the 1987 map was classified the 1990 

was not. The 2014 inventory by van Westen was generated by collection all available landslide reports but 

due to the low data reliability and availability, an inventory was mapped via pre- and post-event satellite 

image interpretation. This inventory was verified, and it reports 864 landslides classified based on the type. 

UNOSAT utilizing the image analysis of satellite imagery detected the presence of landslide and had 

reported 697 landslides caused by 2015 Erika (UNITAR‐UNOSAT, 2015). However, the GIS data analysis 

shows 1554 landslide polygon, the 697 reported must have been generated automatically which probably 

merged neighbouring landslide areas (van Westen, 2016). This inventory did not have classification and was 

not verified. The 2017 inventory by van Westen mapped 10145 landslides triggered by 2017 Maria. This 

inventory had a detailed classification of the landslide type and had also mapped the parts of the landslide. 

This was the only inventory which had a proper scarp delineation. The Table 2.2 summarizes the five 

landslide inventories and the Figure 2.3 shows the maps of the landslide occurrences. 
 Table 2.2 Summary of the available landslide inventories for Dominica 

 

 

Year 

1987 1990 2014 2015 2017 Inventory 
Characteristics 

Author DeGraff DeGraff van Westen  UNOSAT van Westen  

Number of 
Landslides 896 187 864 1554 10145 

Possible 
Triggering 
Events 

1979 David 
1980 Allen 
1984 Klaus 

1987 Emily 
1988 Gilbert 
1989 Hugo 

2007 Dean 
2009 Erica 
2010 Tomas 
2011 
Ophelia 
Heavy Rains 
(2011 and 
2013) 2015 Erika 2017 Maria 

Classification 
 Type 
Classification 

No 
Classification 

Type 
Classification 

No 
Classification 

Type and Part 
Classification 



 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.3 Landslide occurrences of various years 



 

   

3. METHODOLOGY 

The present work features a series of different models applied for various purposes when predicting 

landslide characteristics over space and time in Dominica. Every analytical step has been implemented in 

the R programming language which is widely used for statistical computations (Team R, 2014). 

 

For an initial comparison of landslide susceptibility models built on the basis of terrain attributes 

and/or properties derived for and from physically-based models, a frequentist version of a binomial 

Generalized Linear Model framework (Atkinson et al., 1998; Brenning,2005; Pourghasemi and Rahmati, 

2018), implemented together with a powerful variable selection tool namely, Least Absolute Shrinkage And 

Selection Operator (hereafter LASSO; Camilo et al., 2017; Lombardo et al., 2017) has been used.   

 

A Generalized Linear Model (hereafter GLM) is a well-established multivariate statistical model that 

can handle various exponential probability distributions (e.g., Gaussian, Bernoulli, Poisson, Gamma, etc.). 

Among these, the Bernoulli case is typically used whenever the target variable takes on two possible 

outcomes, which in landslide studies corresponds to the presence and absence of landslide occurrences over 

space and time (Chung et al., 1995; Stark and Guzzetti, 2009; Lombardo et al., 2018). A binomial GLM is 

also often referred to as Binary Logistic Regression (Hosmer and Lemeshow, 2000; Lombardo and Mai, 

2018) and its formulation can be expressed as follows: 

                                                               ηP =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑛𝑋𝑛                                       (1) 

where, η is the logit link, P is the probability of landslide occurrence, 𝛽0 is the global intercept, and 𝛽𝑛𝑋𝑛 

is the product between covariates and the corresponding estimated regression coefficients. 

 

When the target variable and the outcome of a statistical model are expressed in the same scale, no 

transformation is required. However, for a binomial GLM the input is typically a series of binary instances 

whereas the output consists of a continuous probability spectrum. Because of this, a function that links the 

two input and output terms is required. Specifically, the logit link is used to move from odd-ratio to the 

probability scale.  

From the previous equation one can derive the probability, i.e., the landslide susceptibility, by 

applying the following transformation:  

   

          (2) 

 

This model can feature both continuous and categorical properties but does not allow for more 

complex non-linearities. This GLM framework is the core of the analyses carried out in this study. To test 

the contribution of covariates to the susceptibility model, coming from different sources, a variable selection 

step has been added. Any frequentist GLM features a Maximum Likelihood step which is used to converge 

to the optimal parameter set and to enable subsequent statistical inference. The likelihood is given by:  

                        𝑙(𝛽0  , 𝛽1, … . 𝛽𝑛)  =  ∑ log {(𝜋(𝑥𝑖))} + ∑ log {1 − (𝜋(𝑥𝑖))} 𝑖:𝑦𝑖 = 0  𝑖:𝑦𝑖 = 1                            (3) 

where, 𝑥𝑖 and 𝜋(𝑥𝑖) represents the covariate value and the probability that the observation corresponds to 

a landslide presence in the ith mapping unit. This model when utilized in the context of having a high number 

of covariates may exhibit complexity limiting the interpretability (Tibshirani, 1996). In order to overcome 

this, penalized logistic models are to be used and thus the integration of LASSO operator, which essentially 

penalizes the number of covariates in a model while assessing the predictive power at various covariates 

combinations (Camilo et al., 2017). LASSO penalizes the likelihood using the equation: 

                                                                       𝑙∗ = 𝑙 − 𝜆𝐻                                                                      (4) 

   𝑃 =  
𝑒𝛽0+ 𝛽1𝑋1+𝛽2𝑋2 +⋯+ 𝛽𝑛 𝑋𝑛

1 + 𝑒𝛽0+ 𝛽1𝑋1+𝛽2𝑋2 +⋯+ 𝛽𝑛 𝑋𝑛
 



 

where, 𝑙 is the likelihood that is being penalized by the inclusion of the terms 𝐻 and 𝜆. 𝐻 controls parameter 

estimation while the 𝜆 acts to make sure that the likelihood and penalty are balanced. As λ increases, the 

domain of the regression coefficient is shrunk towards 0, therefore reducing the parameter space when the 

shrinkage reaches the zero value. The LASSO implementation in the glmnet R-package (Friedman et al., 

2009; Team R, 2014), performs a 10-fold cross-validation step for each 𝜆 value. More specifically, for a given 

λ, the routine involves a random sampling scheme where 90% of the data is used for calibration and the 

complementary 10% is used for validation, thus providing a full description of the performance variability 

as the penalization increases.   

 
Depending on the exponential family (Bernoulli/binomial, Poisson, Gamma, Gaussian, etc.) one 

chooses, the performance metrics for the cross-validation scheme changes. For instance, the simplest case 

for continuous properties is a Gaussian model, for which the performance is estimated via RMSE between 

observed and predicted estimates. As for the susceptibility context, where the model assumes that landslides 

are distributed over space according to a Bernoulli probability distribution, the most common metric consist 

of the Area Under the Curve (hereafter AUC), where the curve is a Receiver Operating Characteristic 

(hereafter ROC) one (Hanley and McNeil, 1982; Hosmer and Lemeshow, 2000; Gorsevski et al., 2006; 

Fagerland and Hosmer, 2012; Goetz et al., 2015). So, the same structure is maintained in the usage of LASSO 

in this study and the AUC over the 10% of validation data, ten times for each λ is measured. This means 

that for an array of 100 λ values, a cross validation scheme is built featuring a total of 1000 replicates and 

thus informs of the mean behaviour and the associated uncertainty in model performances as the number 

of covariates decreases because of the penalty. Ultimately, one can choose the subset of the original 

covariates that offers the best performance with the minimum number of covariates. Here, this statistical 

framework is applied to three different scenarios: i) model considering the morphometric and thematic 

parameters; ii) model considering the physical parameters; iii) model that considers a combination of the 

two parametric datasets. Despite the relative complexity of this procedure, the computational times are still 

in the order of seconds to minutes for a matrix with approximately 500,000 elements (or pixels) and tens of 

covariates. In this study, the considered matrix consists of 344,973 pixels with 42 covariates for the 

combined model which considers both physically-based and the statistically based model parameters. The 

Figure 3.1 depicts the methodological flowchart for the first phase of the study. 

 

However, two weaknesses affect this procedure. Firstly, a GLM is a linear model, therefore, if the 

functional relation between the susceptibility and any of the covariates does not respect the linearity 

assumption, the model will inevitably suffer or misrepresent these relations. Secondly, no matter the cross-

validation scheme one chooses, the uncertainty is estimated by using a slightly varied version of the original 

dataset. Therefore, the uncertainty estimation is not an integral part of the model when it comes to produce 

susceptibility maps. However, a different modelling framework exist where both these weaknesses can be 

accounted for. For instance, an extension to the GLM framework is available to model relations other than 

the linear cases. This is commonly referred to as Generalized Additive Models (hereafter GAM; Brenning, 

2008; Park and Chi, 2008; Pourghasemi and Rahmati, 2018) where continuous and categorical properties 

can be modelled in addition to ordinal ones, as well as other type of effects acting over space and time, also 

at the latent level (not directly expressed as a predisposing factor in the data). A GAM formulation, in 

analogy to the GLM one shown in Eq.1, can be summarized as follows: 

                                        ηP =  𝛽
0

+ 𝛽
1

𝑋1 + 𝛽
2

𝑋2 + ⋯ + 𝛽
𝑛

𝑋𝑛 + 𝑓
1

+ 𝑓
2

+ 𝑓
𝑚

                              (5)                       

where the 𝑓 terms can be any type of nonlinear functions. For instance, for a given ordinal property, e.g., 

the Slope Steepness, a nonlinear function could consist of a random walk of the first order (Bakka et al., 

2018), which, for every class of slope, accounts for the ordinal dependency that exist between adjacent 



 

   

classes. This option contrasts with the use of categorical properties, e.g., Geology, where each class is 

modelled independently from the other.  

 
Figure 3.1 The Methodology Flowchart for First Phase of the Study 

As for a more rigorous uncertainty estimation procedure, one can opt for a Bayesian formulation 

instead of its frequentist counterpart. In a frequentist formulation the uncertainty is typically estimated as a 

separate analytical step from the actual fit. In fact, on the one end, one builds a specific model fitted to the 

entirety of the data. And on the other hand, one separately implements large number of 

resampling/bootstrapping routines to estimate the potential uncertainty of a given dataset. The Bayesian 

formulation provides the same information but obtains the model estimate and its associated uncertainties 

at the same time. For instance, in Bayesian modelling, every component of the model is estimated with a 

distribution, which is not derived from the same type of resampling schemes mentioned above for the 10-

fold cross validation routines used in the LASSO implementation. For this reason, a Bayesian GAM may 

offer a more complete overview of the susceptibility in a given area, possibly leading to better performance 

because of the higher flexibility of a GAM with respect to GLM. This greater flexibility and richness in 

information (uncertainty) comes with a toll which usually inflated the computational times. One solution in 

the literature is to use the Integrated Nested Laplacian Approximation (hereafter INLA; Bakka et al., 2018) 

instead of the most common option found in Markov Chain Monte Carlo (hereafter MCMC; Zhou et al., 

2003) studies, where a very large combination of parameters is tested. INLA is fully implemented in R and 

offers performance in the same order of MCMCs, with lower computational costs. However, it still requires 

longer computational times than the simpler frequentist GLM initially mentioned. To bypass this issue, a 

different mapping unit has been chosen in two phases of the thesis. For models that require a fine spatial 

partition (10m pixel resolution), a simpler frequentist GLM with a LASSO step for variable selection is 



 

utilized. As for the whole island of Dominica, a Slope Unit partition (Alvioli et al., 2016) has been opted in 

order to reduce the data size and execute more complex model architectures.  

 

More specifically, because Dominica has a multitemporal landslide inventory for the whole island, 

a GAM with a temporal model component has been implemented (Figure 3.2). This is commonly referred 

to as Autoregressive model, which models the whole landslide data and links each temporal inventory 

accounting for the existence of residuals between observed (presence/absence) and predicted landslides 

(susceptibility) temporally adjusting for local deviations per Slope Unit. This is done under the assumption 

that some of these residuals could be due to path-dependency effects acting at the Slope Unit level.  

 
Figure 3.2 The Methodology Flowchart for the Second Phase to investigate the Temporal Dependency on Landslide 

Susceptibility 

 

Finally, another modelling tool has been used too, this time disregarding the presence/absence 

scheme discussed before and focusing on some spatial characteristics linked to landslide areas. Specifically, 

the following were computed: 

1- The sum of all landslide areas in a given Slope Unit. 

2- Divide the sum by the extent of the Slope Unit the landslides belonged to.  

3- Express this ratio in percentage to convey how much of a given Slope Unit failed because of 

landslides in each multi-temporal case. 



 

   

As a result, the target variable obtained is a continuous one and cannot be modelled with a binomial 

GLM. Therefore, for continuity with the modelling framework explained above, the same frequentist GLM 

framework has been implemented but by using a Gaussian likelihood instead of a Bernoulli (Refice and 

Capolongo, 2002; Zhou et al., 2003; Pourghasemi and Rahmati, 2018). To measure the model performance, 

instead of the AUC, the metrics that are typical of continuous properties, namely Mean Absolute Error, 

Mean Square Error and the actual error measured as the difference between observed and predicted 

estimates, is used. The methodological flowchart for this model is given in the Figure 3.3. 

 
Figure 3.3 The Methodology Flowchart for the Final Phase of the Study where an Initial analysis is done on the 

Spatial Patterns of the Landslide Run-out Areas 

3.1. Landslide Conditioning Factors for the various Models of this Study  

As mentioned above, this study considers five models out of which the three GLM used for the 

initial phase will be executed at a pixel-level for the region of Grand Bay in Dominica. In the succeeding 

phases of the study, the statistical frameworks will be implemented at a slope unit level for the entire region 

of Dominica. The various parameters that would be an input to these models are summarized in the 

following sections based on their mapping unit (pixel or slope unit).  



 

3.1.1. Parameters for the Models at Pixel-Level 

This phase aims to understand how the spatial characteristics of the landslide susceptibility changes 

with respect to the input dataset, specifically, whether inclusion of physical parameters is relevant. In this 

study, the physical parameters are obtained from previous study in the region of Grand Bay by van den 

Bout et al., 2018. An open-source OpenLISEM hazard model considering the Saint-Vennant water flow, 

catchment surface and sub-surface hydrology, Pudasaini two-phase generalized debris flow equations and 

iterative slope failure method, was developed for the simulations of the impact of hurricane Maria. 

OpenLISEM simulates the effect of rainfall on a landscape by utilizing various spatial data like the DEM, 

soil characteristics, land use and infrastructures. The OpenLISEM model was simulated in a data 

environment of resolution 10 meters and had various hydrological and geotechnical input parameters. The 

input parameters which were utilized in the OpenLISEM model were interpolated from the data obtained 

via field observations. These field observations were coarse and other available remote sensing data was 

taken advantage of to obtain a continuous spatial pattern. From these input parameters, only certain spatially 

distributed factors were considered for the statistical framework, i.e., the data which was specific only for 

the outlet point was not taken into account. From the simulations of the OpenLISEM, relevant factors were 

utilized in the statistically based model. This model results were validated by van den Bout et al. (2018) by 

investigating the eradication, exposure and damage to the region post-Maria and scrutinize the change in 

elevation pre- and post-Maria. The specific parameters that were derived from these simulations are 

mentioned below. 

 

The statistical framework aims to model the landslide susceptibility of the region with the landslide 

initiation points, particularly, the centroid of the scarp parts of the landslides caused by the hurricane Maria 

is considered as the target variable. 822 landslides were triggered in the region of Grand Bay after the 

hurricane. The initiation of these landslides would represent the presence in the target variable in the 

binomial model. From the OpenLISEM parameters, bulk density, saturated hydraulic conductivity (hereafter 

Ksat), water porosity, Manning’s n, pore pressure, soil depth, soil moisture, land cover, normalized difference 

vegetation index, leaf area index, local drainage density, maximum flowing height and safety factor are 

integrated into the statistical model and the relevance of the physical parameters is studied.  

 

Bulk density is the volumetric density of the soil, that is, it is the weight of a soil in a given volume. 

A higher bulk density curbs the length of the roots (Blake and Hartge, 1986). Soil texture is the main factor 

which affects this parameter. Higher bulk density would generally mean sandy soils. Soil with high bulk 

density generally lead to shallow landslides. The ability of the pores of a saturated soil to transmit water and 

is the coefficient that defines the relation between hydraulic gradient of Darcy’s Law and the water 

movement speed is Ksat. Darcy’s law characterizes how a fluid would flow in a porous medium. Ksat depends 

on the various horizons of the soil (Ziegler et al., 2004, Zimmermann et al., 2006). An increase in Ksat of the 

topsoil destabilizes a slope and increases the landslide susceptibility. It is a coefficient which denotes the 

surface roughness, that is, the amount of friction a flowing water experiences in the region. It has been 

computed by Robert Manning in 1889 (Yen, 1992) and was selected based on the various guidelines 

(Arcement and Schneider, 1989). This coefficient affects the flow velocity, the higher the Manning’s n the 

lower the velocity of flowing water. This reduced velocity of the flow leads to accumulation of the debris 

resulting in extensive damage and high landslide susceptibility. Soil depth denotes the depth from the topsoil 

to the bedrock. Landslides occur when the shear stress is more than a threshold value for a slope failure 

(Terzaghi, 1962) and soil depth play a role in affecting this shear stress. The local drainage density is the 

ratio of the length of the channels to the total area of the mapping unit and it is vastly dependent on the 

physical and climatological characteristics of the catchment area. Slope instabilities are frequently caused by 



 

   

adverse ground water. A good drainage system aid in altering the ground water conditions and reduce the 

water potential of the pores, thus, stabilizing shallow translational landslides (Stanic, 1984). 

 

The vegetation parameters that were included were the vegetation cover, normalized difference 

vegetation index (hereafter NDVI) and the leaf area index. The vegetation cover represents the ratio of the 

area of the mapping unit with vegetation to the total area of the mapping unit. While this gives an 

understanding of the area covered with vegetation, NDVI gives on insight on what type of vegetation. It is 

calculated according to the work by Kogan with the National Oceanic and Atmospheric Administration 

(1994). Negative NDVI denotes water, NDVI close to zero denotes barren, low positive values (0.2 to 0.4) 

denotes grasslands and shrubs and the higher values of NDVI denotes rainforests. Leaf area index is the 

projected area of leaves per unit of surface land (Waring and Running, 2010). This is yet another way to 

represent the flora of the region. Usually leaf area index lies between 0 to higher than 6, where 0 denotes 

barren land and the higher values denote dense forests. The taller and denser forests have an increased root 

length which binds the various layers of the soil (O'Loughlin, 1984). Thus, a higher value of the vegetation 

indices means less landslide susceptibility.  

 

The above parameters are relatively uniform over time, but even certain dynamic physical 

parameters were considered in this study like the initial soil moisture, soil water potential, pore pressure and 

maximum flowing height. These parameters were derived based on the effects of the rainfall caused by the 

hurricane Maria. While the initial soil moisture denotes the water content of the soil, the soil water potential 

denotes how much more moisture could be absorbed by the soil. An increase in soil moisture increases the 

weight of the soil and thus it is proportional to the shear and normal stress. Another parameter that affects 

the soil moisture is the pore pressure which denotes the pressure of the water held between the pores of the 

soil. An increase in the pore pressure decreases the resistive shear of the soil on a slope by decreasing the 

degree of effective stress (Stanic, 1984). This decrease in the stress leads to an increase in the slope 

instabilities. The maximum flowing height denotes the vertical displacement of the water due to the 

increased precipitation caused by the hurricane.  

 

Another very relevant parameter utilized is the factor of safety. This denotes the ratio between the 

driving and the resisting forces on the surface. For a slope to be instable the driving force should be greater 

(Romani et al., 1972). This is the slope instability outcome from the OpenLISEM simulation considering 

the effects of the hurricane Maria. The simulation had considered the iterative slope failure method which 

determines the failure from the bottom to the top of the landslide iterating in the direction of upslope. 

Certain assumptions like that the failure surface is always parallel to the surface gradient and the propagation 

of the landslide can happen only in the upslope direction. This means that the OpenLISEM model is more 

compatible towards modelling transitional landslides rather than rotational. These are the physical 

parameters that are being used in this study. 

 

Respecting the data environment of the physically-based model, the morphometric parameters are 

generated at the same scale. These parameters are frequently used in statistical models for landslide 

susceptibility. These include elevation, slope, Northness and Eastness of aspect, plan curvature, profile 

curvature, relative slope position, topographic wetness index (hereafter TWI), stream power index (hereafter 

SPI) and distance to streams. With these the thematic properties of geology and soil type is also considered. 

 

The elevation is one of the frequently utilized conditioning factors as it is easily available and, in 

this study, the Lidar data is utilised. More than 80% of the area contains the lidar data only the small regions 



 

in the north west of Grand Bay. For this area, the SRTM data is used and the DEM is merged respecting 

the hydrological setting of the region. The part which does not have the lidar data contains only 60 landslide 

initiation points out of the 822 landslides that have occurred. From this elevation, a major and relevant 

conditioning factor, slope is derived. The slope has been calculated via the method proposed by 

Zevenbergen and Thorne (1987). The slope is one of the approaches to parameterize the effect of gravity, 

thus it is a predominant factor in the prediction of landslides. Another derivative of the elevation is the 

aspect which represents the direction in which the slope faces. It has been initially calculated according to 

Zevenbergen and Thorne (1987). It is generally accepted that for shallow landslides the aspect is a proxy for 

strata attitude but also of wet and dry soils because of the exposure to sunlight (Peng et al., 2014; Lombardo 

et al., 2016; Zhang et al., 2016). However, the aspect is a circular variable and therefore requires to be 

modelled non-linearly, which is traditionally done by binning the aspect [0,360) range into finite number of 

classes and considering each one of them independently i.e. assuming that there is no relationship between 

the classes. However, an alternative exists where the cyclic signal of the aspect is decomposed into two 

simpler components, to be used as linear properties. This is the case for Northness and Eastness. While 

Northness is the cosine of aspect (in radians), the Eastness is the sine of aspect. Another parameter is the 

relative slope position which is calculated as the elevation of the cell relative to the elevation of the ridge 

i.e., the cell it flows up to and the cell it flows downs to, the valley (Freeman, 1991; Böhner and Selige, 2006). 

The next parameter is the curvature which is a derivative of the slope and denotes the rate of change in the 

direction of the flow (Heerdegen and Beran, 1982). This factor is decoupled into two: the plan curvature, 

which is perpendicular to the direction of slope and the profile curvature which is parallel to the direction 

of slope. These factors help in understanding whether the flow converges or diverges on the face of the 

slope.  

 

The TWI is a steady state wetness index as a function of slope and the upstream area which 

quantifies the topographic influence on hydrological processes (Beven and Kirkby, 1979). It is given by the 

natural logarithm of the ratio between upslope area (or flow accumulation) and the tangent of slope (in 

degrees). This index is a measure of how much water is potentially retained as a function of the 

morphometric conditions of the region. Whereas the SPI quantifies the erosive power of streams (Hack, 

1973) and this is given by the product of the upslope area (or flow accumulation) and the tangent of slope 

(in degrees). It is a relevant conditioning factors as the high slopes which have moderate level of erosion are 

more susceptible to landslides i.e., the  increase in erosion increases the mass of the debris and thus intensify 

the extent of exposure due to a landslide (Bartarya and Valdiya, 1989). Another factor which would affect 

the slope stability is the proximity to the streams. The regions near to the streams are exposed to a river 

undercut due to the impact of the flow of water in the slope of the surface which in turn generates a slope 

instability (Gokceoglu and Aksoy, 1996). The topography of the region is Grand bay is flat only in the coastal 

regions thus all the channels that are considered in this study flows through uneven terrain.  

 

The thematic properties of geology type and the soil type are the categorical parameters in this 

study. These act as a proxy for many physical parameters, for example, the type of soil is a proxy for the soil 

characteristics like the saturated hydraulic conductivity, sail moisture, water potential and so on. Over the 

years, the lithological and pedological information has been passed through a statistical framework for 

modelling landslide susceptibility. The region of Grand Bay consists of 10 geology (Geo 1: Young 

Pleistocene Volcanics; Geo 2: Young Pleistocene Pelean Domes; Geo 3: Ignimbrite on Young Pleistocene; 

Geo 4: Young Pleistocene  Craters; Geo 5: Young Pleistocene  Ignimbrites; Geo 6: Pleistocene  apron of 

block and ash; Geo 7: Pleistocene Pelean Domes; Geo 8: Recent River Gravel and Aluminium; Geo 9: 

Ignimbrite on Pliocene Volcanics; and Geo 10: Pliocene Volcanics) and 6 soil type classes (Soil 1: 



 

   

Allophanoid Latosolics; Soil 2: Kandoid Latosolics; Soil 3: Protosols; Soil 4: Skeletal; Soil 5: Young Soils; 

and Soil 6: Unclassified). 

 

In order to comprehend the relevance of various factors for landslide susceptibility mapping, the 

statistical framework is executed with three different covariate sets: A) morphometric parameters, geology 

and soil type; B) physical parameters and C) combination of all the above mentioned parameters. The Table 

3.1 summarises the characteristics of the various conditioning factors utilized in this study. The maps of the 

conditioning factors are enclosed in Appendix II. 

 

Table 3.1 Characteristics of the Conditioning Factors (Median for continuous data with unique values and Mean for 
the continuous data is tabulated) 

CONDITIONING FACTORS CHARACTERISTICS MINIMUM  
MEAN/ 

MEDIAN 
MAXIMUM 

Bulk Density 

Continuous parameter 
having 11 unique 
values 1.274 1.367 1.771 

Saturated Hydraulic Conductivity 

Continuous parameter 
having 11 unique 
values 1.512 16.909 16.909 

Manning's n 
Continuous parameter 
having 9 unique values 0.050 0.150 0.204 

Soil Depth Continuous parameter 0.000 211072 860978 

Soil Moisture Continuous parameter 
having 11 unique 
values 0.310 0.424 0.467 

Water Potential 
Continuous parameter 
having 9 unique values 0.167 0.181 0.207 

Pore Pressure Continuous parameter 0.000 0.037 0.041 

Total Infiltration Continuous parameter 0.000 0.037 0.041 

Vegetation Cover 
Continuous parameter 
having 6 unique values 0.010 0.900 0.900 

NDVI 
Continuous parameter 
having 6 unique values 0.005 0.767 0.767 

Leaf Area Index 
Continuous parameter 
having 7 unique values 0.010 5.756 5.756 

Local Drainage Density 
Continuous parameter 
having 8 unique values 1.000 3.000 9.000 

Maximum Flowing Height Continuous parameter 0.000 0.169 4.638 

Factor of Safety Continuous parameter 0.819 6.987 1000.000 

Elevation Continuous parameter 0.000 376.000 1118.700 

Slope Continuous parameter 0.000 30.574 83.260 

Northness Continuous parameter -1.000 -0.205 1.000 

Eastness Continuous parameter -1.000 0.162 1.000 

Plan Curvature Continuous parameter -26.674 0.000 8.001 

Profile Curvature Continuous parameter -0.538 0.000 0.266 



 

Topographic Wetness Index  Continuous parameter -0.538 4.868 20.185 

Stream Power Index Continuous parameter 0.000 136981.613 694936.979 

Relative Slope Position Continuous parameter 0.000 0.499 1.000 

Distance to Streams Continuous parameter 0.000 128.000 813.900 

Geology Type 
Categorical parameter 
of 10 classes N/A N/A N/A 

Soil Type 
Categorical parameter 
of 6 classes N/A N/A N/A 

  

3.1.2. Parameters for the Models at Slope Unit Level 

For the investigation on temporal component, the same mapping unit is required to record repeated 

landslide occurrence over time. The simplest option at hand would be either to create a squared lattice with 

a coarser resolution although this would cut through some landscape features, hence it would not respect 

the geomorphology of the area. A different but geomorphologically-sound solution would be to compute 

Slope Units (Alvioli et al., 2016). In this study, the r.slopeunits has been used to compute the slope units of 

the area. Specifically, they were generated with the parameters, namely, minimum surface area of the slope 

units to be 100,000 m2 (the area that the slope unit partition would try to converge) the initial flow 

accumulation area threshold to be 1,000,000 m2 (the initial size of the catchment subdivision from which 

the r.slopeunits model tries to fit the above mentioned slope unit sizes) and the circular variance of terrain 

aspect as 0.35 (parameter that constraints the homogeneity of the exposition per slope units; the closer to 

0, the less the aspect variance that would be accepted; the closer to 1, the more r.slopeunits would accept a 

very large variance in the aspect). After this, the generated slope units are checked whether they respect the 

topographic setting of the region and is then edited accordingly. The whole island of Dominica is divided 

into 3318 slope units (Appendix IV shows the slope units map of the island).  

 

Thus, to accommodate the study on the temporal dependence and model a multi-temporal landslide 

susceptibility, the GAM is implemented at a slope unit level for the whole island. The presence/absence of 

the landslide initiation for every time period is the target variable for this model. As the investigation is for 

the whole island, due to the data availability, the conditioning factors used for this are elevation, slope, 

aspect, plan curvature, profile curvature, topographic wetness index, stream power index, distance to 

streams, geology and soil type. The previously mentioned methods are utilized for the derivation of these 

parameters.  

 

All these parameters except the slope and the aspect are used linearly. In order to resample the 

pixel-level continuous data, the mean and standard deviation of the factors in the particular slope unit are 

computed using zonal statistics. In the case of the categorical conditioning factors (geology and soil type), 

the ratio of the area of the specific class to the total area of the slope unit is computed.  

The GAM considered the same non-linear function with random walk of the first order (Bakka et 

al., 2018) for both the mean slope and aspect but treated aspect as a cyclic covariate. The mean slope was 

grouped into 20 classes and it was handled as a non-linear covariate because there exists a relation between 

the classes of mean slope steepness. For instance, the class 5-10 degrees contains smaller values than the 

class 10-15 degrees and it contains larger values than the class 0-5 degrees, implying a sorted structure in a 

reclassified slope factor (or any other ordinal factor). This information is of value for landslide susceptibility 

assessment because adjacent classes should behave more similarly than far away classes. For the conditioning 

factor aspect, it was classified into 16 classes of interval 22.5 degrees and the majority of the class in the 



 

   

particular slope unit was considered. This reclassified factor has been also modelled to account for adjacent-

class dependence, but in a cyclic structure where also the first (337.5-360 degrees) and last (0-22.5 degrees) 

classes are constrained to behave similarly.  

 

In the final phase of the study, where it is attempted to model the landslide area percentage per 

mapping unit, the GLM is implemented with a Gaussian probability distribution as the target variable is a 

continuous data. Similar to the previous phase, the covariate dataset is the elevation, slope, aspect, plan 

curvature, profile curvature, topographic wetness index, stream power index, distance to streams, geology, 

and soil type. This is also implemented at a slope unit level and all the parameters are handled as linear 

covariates. Since there are no non-linearity considerations, the classes of the aspect are treated 

independently. For this, all the five landslide inventories are examined and the percentages of landslide area 

per slope unit are predicted for every time period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

4. RESULTS AND DISCUSSIONS 

The statistical analysis had been carried out in order to identify the significance of the various 

conditioning factors (mentioned in the section 3.1) for modelling spatial landslide susceptibility, multi-

temporal landslide susceptibility and percentages of landslide area per mapping unit. For the spatial landslide 

susceptibility, the morphometric, thematic, and physical parameters were examined, and the results have 

been summarized in the section 4.1. By utilizing the five landslide inventories, the study attempted to model 

the multi-temporal landslide susceptibility by deliberating on the ability of a statistical model being able to 

capture the temporal dependence (Section 4.2). Finally, a model to predict the percentage of landslide area 

per mapping unit had been implemented and the results are outlined in section 4.3. 

4.1. Importance of the covariates among morphometric, thematic, and physical parameters for the 
landslide susceptibility modelling 

For this analysis, three different models are put on scrutiny in a statistical framework. The first 

model is with an input dataset, “Dataset A” that has the most frequent data driven conditioning factors that 

are utilized for prediction of landslide susceptibility. The second model regards the input dataset, “Dataset 

B”, which has the physical parameters i.e., the inputs and the intermediate outputs of the simulations from 

OpenLISEM (carried out for the region by van den Bout et el., 2018). The third model has an input dataset, 

“Dataset C”, including both the first and the second dataset. The LASSO variable selector has been utilized 

to identify the preferable conditioning factors for landslide susceptibility mapping.  

 

The Figure 4.1 shows the results of the LASSO variable selector. The lambda (λ) denotes the 

regularization parameter and the top axis of the plot denotes the number of covariates and the vertical axis 

plots the AUC values. It can be recognised that AUC value does not significantly vary as certain covariates 

are removed; this says that those covariates produce no change in the predictability thereby implying their 

role to be negligible with respect to the overall susceptibility model. The model with dataset A had an AUC 

value of 0.75 and had significant 15 conditioning factors, the model based on dataset B had an AUC value 

of 0.72 and had 13 relevant covariates and the combined model had an AUC value of 0.77 and had 33 

predictive parameters. From these AUC values, all the three models are acceptable and good (Hosmer and 

Figure 4.1 The results of the variable selector in the models with Dataset A, Dataset B and Dataset C 



 

   

Lemeshow, 2000), but it is observed that the model with dataset C has better estimations of the landslide 

susceptibility.  

In order to understand this difference in the AUC values, the regression coefficients obtained for 

the different models are observed. The Table 4.1 andTable 4.2 summarizes the different regression 

coefficients in dataset A and dataset B and its corresponding coefficient obtained in dataset C (Appendix I 

has the information of the types of soil and geology in Grand Bay). It is observed that in the scenarios 

(dataset A and dataset C), geology type 3 (Ignimbrite on Young Pleistocene); geology type 9 (Ignimbrite on 

Pliocene Volcanic); soil type 3 (Protosols) and soil type 6 (Unclassified) has no significance. This is due to 

the fact that types of geology/soil are in small areas where the recorded number of landslides is very minimal, 

that by reducing the proportion of the landslide occurrences in the particular class close to zero. 

 

Table 4.1 Regression Coefficients of the conditioning factors of Dataset A and Dataset C 

CONDITIONING FACTORS DATASET A  DATASET C 

Elevation -0.7027 -0.6708 

Slope 0.6459 0.6158 

Northness -0.3246 -0.3779 

Eastness -0.1451 -0.1682 

Plan Curvature 0.0000 0.0030 

Profile Curvature 0.1150 0.1342 

Topographic Wetness Index  0.0000 -0.0160 

Stream Power Index 0.0000 0.0038 

Relative Slope Position 0.1610 0.2408 

Distance to Streams -0.1444 -0.3041 

Geo 1 0.3290 0.2910 

Geo 2 0.1466 0.0747 

Geo 3 0.0000 0.0000 

Geo 4 0.0000 -0.1733 

Geo 5 -0.6878 -0.5826 

Geo 6 -0.2678 -0.5171 

Geo 7 0.0000 -0.0056 

Geo 8 0.0000 0.2420 

Geo 9 0.0000 0.0000 

Geo 10 0.0000 -0.5556 

Soil 1 0.0032 0.0251 

Soil 2 0.0000 -0.0507 

Soil 3 0.0000 0.0000 

Soil 4 -0.0012 -0.0455 

Soil 5 -0.3279 -0.6605 

Soil 6 0.0000 0.0000 
Table 4.2 Regression Coefficients of the conditioning factors of Dataset B and Dataset C 

CONDITIONING FACTORS DATASET B  DATASET C 

Elevation -0.5290 -0.6708 

Slope 0.3913 0.6158 



 

Bulk Density -0.3234 0.0000 

Saturated Hydraulic Conductivity 0.2708 0.3973 

Manning's n 0.7754 0.4846 

Soil Depth -0.0203 0.0824 

Soil Moisture 0.0000 0.0000 

Water Potential -0.5561 -0.3367 

Pore Pressure -0.0699 0.0636 

Total Infiltration 0.0000 0.0000 

Vegetation Cover 0.0000 -0.0310 

NDVI -0.0250 -0.0140 

Leaf Area Index -0.5686 -0.3362 

Local Drainage Density -0.2925 0.0000 

Maximum Flowing Height -0.4319 -0.2954 

Factor of Safety -0.1476 -0.0391 

 In the case of models with dataset B and dataset C, the total infiltration and soil moisture have a 

zero regression coefficient in the landslide susceptibility prediction. This observation is peculiar as it was 

expected that these two parameters have if not high but at least a moderate level of significance. When the 

spatial patterns of the above two parameters were studied, it was noticed that the region had 11 unique 

values for soil moisture which had a minimum of 0.31 and maximum 0.47 and for the parameter of total 

infiltration it was a continuous data but the changes of the values over the space was very minor (values 

differing in the 3rd and 4th decimal places). This observation of insignificant spatial variability over the 

region accounts for the non-relevance for the landslide susceptibility model of the study area. 

The other conditioning factors were identified to have a significance in either one scenario (either 

in the dataset A or C and in the dataset B or C ) or both the scenario (in the exclusive dataset A or B as well 

as the combined dataset C). The Figure 4.2 and 4.3 shows the plot of the covariates’ (excl. geology and soil 

type) regression coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The Regression Coefficients of the continuous covariates of Dataset A and Dataset C 



 

   

The elevation and slope are common factors in the dataset A and B. The elevation has a higher 

relevance in scenario A than scenario B, while in the combined dataset, the elevation coefficient is quite 

close to the average of the two coefficients obtained in the other scenarios. In all the scenarios, positive 

relevance is recognized for the slope but the importance of this factor in the dataset B is lesser. The 

combined dataset has its coefficient for slope closer to the coefficient obtained in the dataset A. It is 

observed that while the slope has a positive coefficient, the elevation has a negative coefficient, this might 

be due to the fact that the derived parameters from the elevation have a positive relevance and this affects 

its regression coefficient. Explicitly for the region of Grand Bay, the low-lying coastal regions recorded more 

landslide occurrences, hence, the negative relevance. 

 

According to the direction of watershed, most of the slopes of the region were facing the south and 

south east. Also, due to the direction of the hurricane Maria hitting the island from the direction of south 

west, in both datasets A and C it is observed that the Northness has higher negative coefficients than the 

Eastness, and, the dataset C has a slightly greater importance to the two. It is noticeable that the plan 

curvature does not a high significance, it has zero importance in the dataset A and its coefficient is closer to 

zero in dataset C. The profile curvature on the other hand is given a positive relevance in both the cases and 

is more significant in the combined dataset. The component parallel to the slope (profile) is able to capture 

the spatial patterns of the landslide susceptibility more than the perpendicular component (plan). 

 

The topographic wetness index and stream power index has zero importance in the dataset A, while 

it is observed that they are of relevance in the combined dataset but the magnitude of their coefficients 

denote that they are not of high significance for the predictive model. The relative slope position is 

recognized to have a positive influence and the distance to streams is observed to have a negative influence 

in both the scenarios. But it is noticeable that the significance of these two have almost doubled in the 

combined dataset. The distance to streams captures more of the spatial patterns rather than SPI. Also, it can 

Figure 4.3 The Regression Coefficients of the covariates of Dataset B and Dataset C 



 

be observed that the first derivatives (slope, relative slope position) and the second derivative (profile 

curvature) of elevation has a positive significant regression coefficient thus making the elevation have a 

negative influence on the susceptibility model.  

 

While the bulk density obtains a significant negative coefficient in the dataset B, it is given zero 

importance in the combined dataset. This means that certain parameters from dataset A which is included 

in the combined dataset bear the information relevant to the bulk density thereby cancelling out the 

significance of bulk density. The saturated hydraulic conductivity is observed to have a positive impact on 

the prediction of landslide susceptibility. The significance of this parameter is higher in the combined 

dataset. This positive relevance of the Ksat, which is contradicting the reality, is due to the influence of the 

soil water potential and the pore pressure. 

 

While the significance of Manning’s n in the dataset B is the highest, it reduces in relevance in the 

combined dataset as the combined dataset includes certain terrain elements which would also account for 

the characteristics of Manning’s n. This is mainly due to the allocation of Manning’s n based on various land 

uses for the OpenLISEM simulations. This factor indirectly shows the influence of the natural and manmade 

infrastructures of the region. The lower values of Manning’s n denote the barren areas thus, it has a high 

positive relevance for the susceptibility model. 

  

The soil depth shows certain relevance to the predictive ability of the model, it has been observed  

that the soil depth has a negative coefficient in the case of dataset B, but it has a positive and slightly higher 

coefficient in the combined dataset. The water potential is a significant conditioning factor in both the 

scenarios. Though its relevance is reduced in the combined dataset. The pore pressure has a similar 

magnitude of coefficient in both cases but its impact changes as in the model with dataset B it is given a 

negative coefficient, whereas, in the combined case it is given a positive coefficient. The local drainage 

density loses its significance in the combined dataset, but in the model with dataset B, it is noticed that it 

has a negative influence. The influences of these soil characteristics in the model with dataset B being 

negative is due to the high positive relevance of the Ksat. In the case of combined dataset C, the inclusion 

of the various soil and geology types is playing a role in the significance of the physical soil parameters. 

 

The vegetation cover and NDVI have no significant relevance in both the scenarios. While in 

dataset B, the vegetation cover is given zero importance, the NDVI is given a negative importance close to 

zero and in the combined dataset, the vegetation cover and NDVI is given an almost zero importance. But 

the leaf area index is highly significant in the model with dataset B. In both cases, it is noticed that the leaf 

area index has a negative coefficient, but its relevance gets reduced in the combined dataset. The vegetation 

cover and NDVI were observed to have only 5 unique values and in those 3 values were closer to each other 

whereas the leaf area index had 7 classes with varied distribution. Thus, the statistical framework selects the 

leaf area index as the most relevant. 

 

The maximum flowing height in both the scenarios endures a negative impact on the landslide 

susceptibility. Its relevance decreases in the combined dataset. This was a continuous parameter with a range 

of 0 to 4.64. The factor of safety is the slope instability parameter obtained from the OpenLISEM 

simulations. The factor of safety that was simulated from the OpenLISEM model and it was rescaled as 

every other parameter to check the relevance in the susceptibility modelling. If the factor of safety has a 

large regression coefficient means the statistical framework has failed in modelling the landslide 

susceptibility. An almost zero negative coefficient of this parameter is observed denoting that the other 



 

   

conditioning factors used in the model have captured the spatial variations of the landslide susceptibility 

and thus making the factor of safety lave less relevance.  

 

After this, the susceptibility maps were generated both in a pixel mapping unit utilizing the 

regression coefficients obtained via the variable selection (Figure 4.4; Appendix III has two (of the many) 

of the instances where the model with dataset B overestimated or underestimated). The ROC curves of the 

pixel-level susceptibility models inform on the capability of the model to predict unstable condition and it 

is recognized that the combined model performs slightly better than the model based of dataset A and this 

performs better than the model with dataset B (Figure 4.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Landslide Susceptibility obtained from the three Models 

Figure 4.5 ROC curves of the Models 



 

In order to get a clear picture of what spatial patterns of the models A and B are captured by the 

combined model C, the scatterplot between the predicted values of the models is graphed. The Figure 4.6 

show the scatterplot between the combined model and the model with dataset A; model with dataset C and 

with dataset B at pixel-level, respectively. It was observed that it has a similarity of almost 90% with the first 

model but had only a 41% with the second model. Even though that the combined model majorly illustrates 

on the relevance from dataset A, it does capture certain elements from dataset B making it have a slightly 

better performance than the model with the frequent data driven parameters (dataset A). One of possible 

reasons for the low performance of the model with the physical parameters must be due to the low spatial 

variability and the coarse sampling size from which the corresponding input parameters were interpolated. 

Thus, the combined model leans towards the morphometric parameters which had sufficient variability in 

the values over the regions with presence/absence of landslide occurrences. Hence, the increased 

performance of the susceptibility models. 

 
Figure 4.6 Scatterplot between the Predicted Values of the Model with dataset C and those of the Model with dataset 

A and B 



 

   

4.2. Attempting to capture temporal effects in the landslide susceptibility. 

For this phase of the research, the mapping unit used was slope units and multi-temporal dataset 

was created. Rather than the GLM utilized for the previous study, a GAM framework with non-linearity 

functions for slope steepness and the aspect is considered. An autoregressive model acts on this GAM, 

which also integrates the temporal aspect as a non-linear function. Initially, the significance of the 

conditioning factors on the temporal dependency was examined. This phase as mentioned in section 2.7 has 

the mean and standard deviation of the continuous covariates and the area ratio of the categorical covariates 

as the parameters for the model. 

 

The mean of topographic wetness index, stream power index and distance to streams, and, the 

standard deviation of plan curvature and stream power index have no significance i.e., their coefficient is 

zero. As the standard deviation denotes the variability of the parameter over the slope unit, it is observed to 

have some significance in the case of TWI and distance to streams. Fifteen out of twenty classes of geology 

show no significance and eight out sixteen soil types have no relevance to the temporal dependency. The 

regression coefficients of the significant covariates are plotted in Figure 4.7. 

 
Figure 4.7 The Regression Coefficients of the Significant Covariates in the Temporal Dependency Model 

(Appendix I has the geology types and soil types of Dominica) 

The mean slope grouped into 20 classes was considered as a non-linear factor. It was observed that 

the lower classes of slope had negative and a low magnitude coefficient and the higher classes had positive 

and relatively higher magnitude coefficients (Figure 4.8). Slope up to 30 degrees demonstrates a negative 

coefficient and the rate of increase in the magnitude of coefficient from slope of 0 degrees to 30 degrees is 



 

lesser than that from slope of 30 degrees to above. The standard deviation of slope is yet another significant 

parameter and it positively influences in the estimation of temporal dependency. 

 
Figure 4.8 The Regression Coefficient of the Classes of the Slope Steepness 

The aspect is another non-linear factor. The aspect ranges from 0 to 360 where both 0 and 360 

denote the north direction, therefore, the coefficient for aspect of 0 and 360 should coincide. Thus, the 

aspect is integrated into the GAM with a cyclic behaviour. From the Figure 4.9, it can be observed that there 

is a high peak in the region of 90 to 100 and a low peak in the 250 to 300. The high peak is at the aspect 

with southward direction and this is because of the hurricane Maria of 2017 affecting the major of the 

southeast regions of the island. From the landslide inventory map (Figure 2.3), it can be observed that the 

west parts of the island have been affected less over the period of time thus the low peak in the aspect of 

west direction. 

 
Figure 4.9 The Regression Coefficient of the Classes of the Aspect 



 

   

The mean and standard deviation of the elevation is having a positive coefficient and the standard 

deviation of elevation is the most relevant parameter. The mean plan curvature is of a negative coefficient 

and is of low relevance. The mean of the profile curvature has a positive coefficient while its standard 

deviation is given a negative coefficient. The profile curvature is more relevant than the plan curvature in 

this context. The standard deviation of topographic wetness index is given a coefficient close to zero and is 

not of high importance for temporal dependency. Another significant parameter is the standard deviation 

of distance to streams which has a high positive influence. The relevant classes of geology are Ignimbrite 

on Pliocene Volcanic, Miocene Volcanics, Older Pleistocene Volcanics, Pleistocene Pelean Domes and 

Young Pleistocene Craters, and the soil types are Allophanoid Latosolics, Allophanoid Podzolics, 

Hydrogenic Group, Kandoid Latosolics, Protosols, Skeletal and Young Soils.  

It is observable that the influences of the various morphometric parameters are varying in this 

model from that of the previous pixel-based model. This is due to the inclusion of the entire island as the 

study area which perpetually increases the spatial variability of the conditioning factors with respect to the 

landslide occurrences. Also, in this phase the spatial trends of all the landslide inventories are utilized unlike 

the previous where it was solely based on the landslides triggered by hurricane Maria. 

With the regression coefficients obtained above, the mean susceptibility and the uncertainty for 

every time period was generated (Figure 4.10,Figure 4.11,Figure 4.12,Figure 4.13,Figure 4.14 andFigure 

4.15). It can be recognized that the south-eastern and the western region of the island is moderately to highly 

susceptible to landslides over the years. It can be inferred that the uncertainty is quite high for these 

susceptibility models. This is because the statistical framework is highly data dependent on the number of 

presences of landslide initiations. The model for the year 2017 has a less uncertainty compared to the other 

four. Also, the dataset as such is relatively small in dimension. But, even in such a case if occurrence of 

landslides were consistent in the same spatial setting, then the model could have learnt better and the 

uncertainty would have been reduced. But it was not the scenario in the study area, thus, even though the 

model was able to capture the spatial patterns with some uniformity for the susceptibility it had a high 

uncertainty. 

 
Figure 4.10 Landslide Susceptibility and its Uncertainty Maps of the year 1987 



 

 
Figure 4.11 Landslide Susceptibility and its Uncertainty Maps of the year 1990 

 
Figure 4.12 Landslide Susceptibility and its Uncertainty Maps of the year 2014 

 

 



 

   

 
Figure 4.13 Landslide Susceptibility and its Uncertainty Maps of the year 2015 

 

 
Figure 4.14 Landslide Susceptibility and its Uncertainty Maps of the year 2017 

 



 

 
Figure 4.15 Mean and Maximum of Landslide Susceptibility over the years 

Then the latent temporal effect was analysed. Certain slope units show continuously increasing or 

decreasing susceptibility values but the rate of change of these values are very minimal incapacitating the 

model to point out a definite temporal dependency. It was recognized that no clear temporal dependence 

exists in the study area, among successive multi-temporal landslide occurrences (Figure 4.16). This might be 

due to the fact that there is a spatial variability of the triggering events over the period of years, thus the 

model is dominated by the spatial trends rather than temporal ones. 

 
Figure 4.16 The Temporal Dependencies generated for the Various Slope Units 



 

   

4.3. Spatial patterns of the percentage of landslide area per mapping unit over the years  

Since the temporal dependence coefficient does not exist rather than a GAM the statistical 

framework of a GLM will be used for the prediction of percentages of landslide area per slope unit. Unlike 

the previous two where the target variable is binary, this model will take into account the percentage of area 

of the slope unit affected by the landslide. The same conditioning factors are utilized for this and the 

regression coefficients of different factors for the different time periods is given in the Figure 4.17. 

 
Figure 4.17 The Regression Coefficients of the Covariates (excl. geology and soil type) in Models for the Landslide 

Area Percentages of the years 



 

The regression coefficient of the standard deviation of the elevation in a slope unit is higher than 

that of the mean elevation. And the mean and standard deviation of the slope steepness have an acceptable 

relevance and the coefficient of slope standard deviation is lower. This is because if the terrain is undulating 

and has a consistent decreasing slope, the landslide extent is larger. The plan and profile curvature are one 

of the most relevant parameters for this model. As these parameters aid in understanding whether the flow 

converges or diverges on the slope surface. The surfaces which have concave plan and convex profile 

curvature would increase the extent of the flow, thereby, increasing the area of landslides. The most relevant 

parameter in this model observed to be the topographic wetness index. The direction of the flow of a 

landslide is identified by the spatial patterns of TWI as it is a function of the upstream area per unit length 

perpendicular to the flow direction and the slope. Thus, while in the investigation of the scarp region of 

landslide, the TWI has no significance, for the analysis of depositional area of a landslide, it is significant. 

The stream power index and the distance to streams show no or less significance in this study.  

 

Initially, with these factors, the landslide area is predicted for the slope units which had a landslide. 

Then the model performance was examined using Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE). Finally, for the slope units which actually had zero landslides, the landslide area percentages 

were predicted. The landslide area percentage maps for the five time periods is given in the Figure 

4.18,Figure 4.19,Figure 4.20,Figure 4.21 andFigure 4.22. From the MAE and RMSE values (which is 

calculated on the slope units which had an actual landslide percentage), the models have predicted the values 

considerably.    

Figure 4.18 The Actual and the Predicted Percentages of the Landslide Areas of 1987 



 

   

 
Figure 4.19 The Actual and the Predicted Percentages of the Landslide Areas of 1990 

 
Figure 4.20 The Actual and the Predicted Percentages of the Landslide Areas of 2014 



 

 
Figure 4.21 The Actual and the Predicted Percentages of the Landslide Areas of 2015 

 
Figure 4.22 The Actual and the Predicted Percentages of the Landslide Areas of 2017 



 

   

While the above maps included the predictions for the slope units with zero percentages, the 

scatterplot between the actual and predicted was made for the slope units which had an actual landslide area 

percentage (Figure 4.23). The shown relations indicate that the r-squared of models 2017, 2015 and 1987 

had a low level of variance explained, whereas models 2014 and 1990 were able to explain the variance 

slightly better. While all the models have a satisfactory Pearson correlation coefficient, the models of 2014 

and 1990 have a significantly higher correlation.  

 
Figure 4.23 The Scatterplots between the Actual and the Predicted Percentage of Landslide Area per Slope Unit 

The Pearson correlation coefficients denote whether the increase/decrease in the actual value is 

reflected on the predicted value. Whereas the r-squared informs on how much variability can be captured. 

All the models are able to mimic the increase/decrease but when it comes to capturing the variability, they 

are still 50% on average. These moderate level of values of the r-squared could be due to the data 

dependency of the model on the spatial characteristics of the conditioning factors with respect to the 

landslide area in the particular slope unit.  



 

5. CONCLUSIONS AND RECOMMENDATIONS 

From the initial phase of the study where, a statistical analysis was carried out on the relevance of 

the different conditioning factors like the morphometric parameters, geology type, soil type and the physical 

parameters, it was observed that many physical parameters have  less influence when it comes to the 

landslide susceptibility modelling. It is observed that the morphometric data driven parameters contribute 

far more than the physically properties. It is safe to say that few process-driven factors have an equal relation 

with the geomorphological DEM-derived factors, for e.g., the slope and relative slope position of 

geomorphometric and the Manning’s n  and saturated hydraulic conductivity of physically-based seemed to 

have a relatively high positive relevance when it comes to susceptibility mapping. But the majority of the 

significant physical parameters in the exclusive model have less significance in the combined model. Though, 

certain characteristics from the physical parameters were captured by the model which considered all the 

above-mentioned conditioning factors, the performance did not increase significantly in comparison to the 

model that considered only the morphometric parameters, geology type and soil type.  

This disparity among the spatial characteristics of the estimated landslide susceptibility is likely due 

to the uniformity of the values of the physical parameters. The physical parameters as such were computed 

via empirical formulas and spatial interpolation from a very coarse sampling data. This spatial invariability 

over the region weakened the ability of the model to recognize the relationship of the conditioning factor 

on the landslide susceptibility (Belsley, 1993; Harrell, 2015). Another limitation of this study was the 

consideration of a small study area, this was done in order to accommodate the physical parameters that 

were simulated previously by van den Bout et al. (2018). But this further lessened the changes in spatial 

tendencies. This restricted the competency of the statistical framework to assess the relevance (Peduzzi et 

al., 1995; Harrell, 2015) of process-driven properties. For instance, in the dataset matrix that has been used 

for this, only the particular initiation of the landslide occurrences is considered. This means the dataset has 

only 0.24% of the pixels (822 out of 344,973) corresponding to the landslide presences. Therefore, when 

process-driven parameters are exceedingly smooth across space, the model may have little spatial variability 

to derive functional statistical relations. Conversely, the higher level of details of terrain attributes may have 

led to better estimates in the data-driven context.  

From the above study it was clear that the spatial invariability was the major concern which led to 

the moderate level of performance. In order to overcome this, in the future studies, the statistical 

frameworks could be applied to a larger extent of area which would have some recognizable changes in the 

physical setting of the region, customarily decreasing the consistency of the physical parameters which was 

observed in this study, or, to access more detailed geotechnical and hydrological survey data across space. 

Another approach for procuring a better performing susceptibility model would be to focus on an extension 

of the covariate set. In this study, the dataset does not directly apply any climatological parameters, which 

should be included in the analysis (Crozier, 2010). Also, from the lidar data that is available, a land use 

classification mapping (Dubayah and Drake, 2000; Yan et al., 2015) could have been done which might have 

shown a significance in the susceptibility modelling.  

In the second phase of this study, a statistical framework was tested for its ability to perceive the 

temporal dependency of the past landslide occurrences on the landslide susceptibility. The landslide 

susceptibility was mapped for the five time periods, but a relatively high uncertainty was observed as the 

models rely on the size of the dataset and spatial characteristics of the input parameters. When the trends 

on how the landslide susceptibility changes over time was analysed, no clear sign of temporal effects was 

identified for this region.  In the region of Dominica, it is observed that the triggering events largely vary 

over space with respect to previous of subsequent hurricane realizations. For instance, the hurricanes that 



 

   

triggered the landslides in 1987 hit the west and the south; in 1990 landslides were triggered in the central 

region; in 2014 the landslides recorded were in the coastal regions and the south; in 2015 the west of the 

island and the 2017 Maria was a severe event which affected most of the areas of the island. This spread of 

landslide occurrences made the model more sensitive to spatial trends rather than temporal effects if present 

at all. 

As mentioned above, statistical frameworks are sensitive to the data, the landslide presences hardly 

followed a regular pattern over the years. In this study, the trend of the susceptibility which was modelled 

with respect to the presence/absence was checked for the particular slope unit. Maybe an analysis on the 

number of landslides that had occurred could have given a better insight on the temporal dependence. Also, 

since Dominica as such is a tropical region with varying climatic conditions there might be significant 

changes to the terrain over the period of 30 years. This study uses the spatial characteristics of the recent 

elevation data for estimating the landslide susceptibility for all the periods.  

In the last phase of the study, a statistical framework was applied for predicting the percentage of 

landslide area per slope unit. For this the whole of the landslide was taken into consideration and some 

parameters like the topographic wetness index, plan curvature and the profile curvature, which had less 

significance in the previous landslide susceptibility model based on the landslide initiation, exhibited a high 

significance in the landslide depositional area analysis. A good accuracy had been observed via the mean 

absolute error and root mean square error, and, it can be said that the integration of the landslide area might 

increase the performance of the landslide susceptibility model. Rather than the presence/absence schema, 

the scarp delineation could be used.  

The landslide area percentage models though reflected on the increase/ decrease of the percentages 

adequately, they were unable to efficiently capture the variance. This issue may be due to the choice of the 

model. In fact, the analysis on the percentages has been implemented in a GLM framework assuming that 

the percentage distribution behaves like a Gaussian process. This model choice has inevitably brought some 

issues. In fact, a Gaussian model may predict negative values or values more than 100 for the target variable 

we considered, although they should not exist for a property whose domain is constrained between 0 and 

100. Here, we addressed this issue by converting all negative values to zero and all values greater than 100 

to 100. Nevertheless, this is an approximation and further experiments are certainly required. For instance, 

models that are constrained to produce results between 0 and 100 already exist, e.g., beta regression (Ferrari 

and Cribari-Neto, 2004; Schmid et al., 2013). These could be implemented to better model the percentage 

of failed slope units.   

Also, even if a beta regression model would perform well, a clear problem would still remain. In 

fact, the definition of hazard should contextually feature the prediction of “where”, “when” and “how 

destructive” a population of landslides may be. However, separately computing the susceptibility (be it 

purely spatial or spatio-temporal) and the percentage, will not address the requirement of contextually 

feature the information reported above. In fact, being the susceptibility and the percentage models built on 

the basis of the same covariate set, they cannot be combined (multiplied) by definition because they will not 

be independent from each other. Therefore, a valid solution to the problem could consist of running joint-

probability models, where the spatial or spatio-temporal probability of landslide occurrence is directly linked, 

within the same model architecture, to the associated landslide size characteristic or percentage per slope 

unit.  
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APPENDIX I 

 

Geology Types of Grand Bay 

 

Geo 1: Young Pleistocene Volcanics 

Geo 2: Young Pleistocene Pelean Domes 

Geo 3: Ignimbrite on Young Pleistocene 

Geo 4: Young Pleistocene Craters 

Geo 5: Young Pleistocene Ignimbrites 

Geo 6: Pleistocene apron of block and ash 

Geo 7: Pleistocene Pelean Domes 

Geo 8: Recent River Gravel and Aluminium 

Geo 9: Ignimbrite on Pliocene Volcanics 

Geo 10: Pliocene Volcanics 

 

Soil Types of Grand Bay 

 

Soil 1: Allophanoid Latosolics 

Soil 2: Kandoid Latosolics 

Soil 3: Protosols 

Soil 4: Skeletal 

Soil 5: Young Soils 

Soil 6: Unclassified 

 

Geology Types of Dominica 

 

Geo 1: Block Ash flow on Young Pleistocene 

Geo 2: Block Ash on Pliocene 

Geo 3: Conglomerate and raised limestone 

Geo 4: Ignimbrite on Old Pleistocene 

Geo 5: Ignimbrite on Pliocene volcanic 

Geo 6: Ignimbrite on Young Pleistocene material 

Geo 7: Ignimbrites Block Ash Pliocene 

Geo 8: Miocene volcanics 

Geo 9: Older Pleistocene volcanics 

Geo 10: Pleistocene apron of block and ash 

Geo 11: Pleistocene Craters 

Geo 12: Pleistocene Pelean Domes 

Geo 13: Pliocene Craters 

Geo 14: Pliocene Pelean dome 

Geo 15: Pliocene volcanics 

Geo 16: Recent River gravel and alluvium 

Geo 17: Young Pleistocene Craters 

Geo 18: Young Pleistocene Ignimbrites 

Geo 19: Young Pleistocene Pelean Dome 

Geo 20: Young Pleistocene volcanics 

 

 



 

Soil Types of Dominica 

 

Soil 1: Allophanoid Latosolics  

Soil 2: Allophanoid podzolics  

Soil 3: Beach Sand  

Soil 4: Hydrogenic Group  

Soil 5: Kandoidlatosolics  

Soil 6: Kandoidlatosols  

Soil 7: Other Clay Latosolics  

Soil 8: Phytogenic Group  

Soil 9: Pond  

Soil 10: Protosols  

Soil 11: Shingle  

Soil 12: Skeletal  

Soil 13: Smectoid Clay Soils  

Soil 14: Soufriere  

Soil 15: Unclassified  

Soil 16: Young Soils 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   

APPENDIX II 

Maps of the various conditioning factors used in the study for Grand Bay 

 

Figure 1. a) Elevation map; b) Slope map (in degrees); c) Northness map; d) Eastness map of Grand Bay 

 

 



 

 

 

Figure 2. a) Plan curvature map; b) Profile curvature map; c) Topographic wetness index map; d) Stream 

power index map of Grand Bay  



 

   

 

 

Figure 3. a) Relative slope position map; b) Distance to streams map (in meters); c) Bulk density map (in 

g/cm3); d) Saturated hydraulic conductivity map of Grand Bay 



 

 

 

Figure 4. a) Manning's n map; b) Soil depth map; c) Soil moisture map; d) Water potential map of  

Grand Bay  



 

   

 

 

Figure 5. a) Vegetation cover map; b) Normalized difference vegetation index map; c) Leaf area index 

map; d) Local drainage density map of Grand Bay  



 

 

 

Figure 6. a) Pore pressure map; b) Total infiltration map; c) Maximum flowing height map; d) Factor of 

safety map of Grand Bay 



 

   

APPENDIX III 
 

Scenarios where the model with dataset B performance was visually noticeable 

 

In certain instances, the model with the dataset B has overestimated/underestimated the susceptibility. In 
the figures above, the black points represent landslide initiation and the polygons the landslide. It can also 
be observed that only little information is captured from dataset B in the model with dataset C. 
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