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Abstract

We consider the issue of solving inverse problems with a convolutional neural network (CNN).
We introduce a left preconditioning method that lowers the mutual coherence of the precondi-
tioned forward mapping as much as possible and examine whether this is beneficial when the
inverse problem is solved with a CNN. We consider a CNN because this network contains less
trainable parameters, which makes it a popular option for learning the inverse mapping. This
type of network, however, can only be used when the forward mapping is a local mapping. If
this is not the case, e.g. when the Radon transform is used, then preconditioners can be used in
order to transform the forward mapping to one that is close to the identity matrix. These map-
pings can have a low mutual coherence, which can be beneficial when solving inverse problems
with neural networks. Besides that, we propose a framework based on information theory that
connects inverse problems, compressed sensing and preconditioning via the Bayesian perspective
on inverse problems. This framework enables us to analyze the effects of our preconditioning
method. We show that the mutual coherence depends on the amount of regularization applied
to the inverse problem, where a low mutual coherence implies small amounts of regularization.
This has a big effect on the noise present in the inverse problem, leading to less detailed recon-
structions. We show that when only left preconditioners are used, lowering the mutual coherence
as much as possible is therefore not beneficial. In the discussion, we explain that lowering the
mutual coherence can be beneficial when right preconditioners are also taken into account.

Keywords. Inverse problems, mutual coherence, preconditioning, information theory, Bayesian

view, Radon transform
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Chapter 1

Introduction

The emergence of neural networks pushed the boundaries of performance in many fields of appli-
cation [60, 92], where development of better hardware enabled researchers to use bigger networks
with more expressive power. The network architecture choice is decisive for the performance
and depends on the problem at hand. One of the factors that is important for that choice is
the amount of available training samples. When a limited amount is available, the preferred
network architecture is one with a limited number of trainable parameters in order to reduce
the chance of overfitting [3]. A popular option is the so-called convolutional neural network
(CNN). This type of network extracts the spatial features and dependencies of local areas in an
input layer by applying a weighted sum between the pixels of that neighbourhood and a sliding
kernel. Since CNNs contain limited trainable parameters, training is less time consuming.

Solving an inverse problem with a CNN means that the network learns the inverse mapping
of the forward mapping. Since CNNs extract the features of local regions, it is preferable to have
a forward mapping that acts somewhat locally on the data. If not, then the inverse problem can
be transformed to a different problem which is better solvable with a CNN. For discrete inverse
problems preconditioning methods [9] can help to transform the forward mapping of the inverse
problem to a mapping that is close to the identity matrix by means of a matrix multiplication.
For ill-posed inverse problems it is still an open question what type of preconditioner is best
and what parameters are able to give valuable insight in the quality of the preconditioner.

Forward mappings close to the identity matrix play an important role in the field of com-
pressed sensing [27]. These matrices can have a low mutual coherence, which then result in
better [55] and faster [75] recovery of the input by iterative solvers. It is also shown that a
low mutual coherence of the forward mapping can be beneficial for the recovery of inputs when
solved with neural networks [91]. In [91] the authors showed that a low mutual coherence was
beneficial for the classification accuracy of a neural network.

In this thesis the effect of a low mutual coherence of the forward mapping on the recon-
struction quality is investigated in case when the inverse problem is solved with a CNN and
limited number of training samples. The mutual coherence of the forward mapping is lowered
by the use of preconditioning. The discrete ill-posed limited-angle Radon transform is the for-
ward mapping, where the use of a limited number of measurement angles makes the problem
more challenging to solve. Research on better methods for solving problems with this forward
mapping is practically relevant since measurements of an X-ray computed tomography (CT)
scanner are obtained by using the Radon transform. The case of limited measurement angles is
of particular interest due to the concerns on the exposure of high amounts of X-ray radiation
[63].
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6 CHAPTER 1. INTRODUCTION

1.1 Contribution

The contribution of this thesis consists of two parts. First, we introduce a preconditioning
approach that is unique to an inverse problem with the Radon transform forward mapping
and CNN as solution method. This approach aims at lowering the mutual coherence of the
preconditioned forward mapping as much as possible and examines if this is beneficial for the
reconstructions of the CNN. To the best of our knowledge, this is the first time the role of
the mutual coherence is examined in this manner. The preconditioning method can be seen
as a first reconstruction phase and its outcome will form the input for the CNN. A similar
approach is done by Jin et al. in [52], where the authors used the filtered backprojection as
their first reconstruction phase. Our approach differs from that method in the sense that our
first reconstruction method is based on compressed sensing rather than the analytical solution
of the Radon transform. Another difference is the fact that we give a thorough analysis on the
effects of our preconditioning method, which is not done in [52].

The analysis is part of our second contribution, in which we present a framework that
connects the fields of well-posed inverse problems, preconditioning and compressed sensing
via information theory. This framework shows that the mutual coherence can give insight
on how much information an inverse problem contains and on how preconditioning can affect
this amount of information. Besides that, it is discussed that the connection does not hold for
ill-posed inverse problems. It is demonstrated that the general treatment of ill-posed inverse
problems, i.e. regularization, does not fit into the theory. This gives ideas for further theoretical
research on connecting these fields for ill-posed problems, which then can possibly be used for
the development of new preconditioning methods.

1.2 Thesis outline

First, in Chapter 2, background information is given on inverse problems, neural networks,
compressed sensing and preconditioning, after which the connecting framework is presented.
Chapter 3 proposes our method and starts with a general idea of the method before explaining
the different parts of the method in detail. Chapter 4 provides details on the experimental setup
of our thesis. It starts with a brief introduction of the Radon transform and the analytical way of
reconstructing the input. Next, the details are given on the used data sets and how the different
parameters are tuned. Then, two different reconstruction methods are explained, including
their implementation details. Finally, the quality measures are given that are used to assess
the quality of the reconstructions. Chapter 5 contains the results of the estimated parameters
and the two reconstruction methods. The contribution of each part of our proposed method is
subsequently examined and an analysis of our proposed method is given. Finally, in Chapter 6
a conclusion of our research is given and ideas for further research are formulated.



Chapter 2

Theoretical background

This chapter contains the necessary background information for our proposed method. First a
brief introduction to inverse problems is given. These inverse problem can be solved via iterative
solvers and neural networks. Background information on the latter is given in the second section.
Afterwards, the topics of compressed sensing and preconditioning are introduced. Finally, the
connecting framework is presented, which is used for the analysis of our proposed method.

2.1 Inverse problems

This section contains some background information on inverse problems. It starts with a brief
introduction on the definition of inverse problems and some problems one may encounter when
handling these problems. Afterwards, the variational view on inverse problems is discussed.

2.1.1 Introduction to inverse problems

Inverse problems is a field in applied mathematics that aims to recover an unknown object from
the observed measurements that are induced by this object. These inverse problems appear in
many field of applications, like geophysics, image processing, computed tomography (CT) and
non-destructive testing [44]. We can mathematically describe an inverse problem as recovering
unknown x ∈ X that is a solution of the equation

Ax = y (2.1)

where y ∈ Y are the given measurements and A : X → Y is the forward mapping that maps
elements from X to Y, often both Banach spaces. The mapping A captures the (physical)
system that replicates the measurements for a given object x. In this thesis we consider the
finite dimensional case, in which the forward mapping is a matrix A ∈ Rm×n, x ∈ Rn and
y ∈ Rm. The object that we want to recover can for instance be a vector or image, and it can be
recovered by inverting the forward mapping. For many applications this inversion is not trivial
due to the ill-posedness of the inverse problem. An inverse problem is labeled as ill-posed if it
is not well-posed, which in Hadamard’s sense is [41]:

7



8 CHAPTER 2. THEORETICAL BACKGROUND

Definition 1 (Well-posedness). Let A : X → Y be the forward mapping, then the inverse
problem Ax = y is called well-posed if holds:

1. There exists at least one solution.

2. The solution is unique.

3. The solution depends continuously on the data.

In many cases the third rule of Hadamard is violated, which means that the problem at
hand is unstable under slight perturbations. The perturbations are in general embedded in the
problem in the form of measurement noise η, i.e.

Ax+ η = y or Ax = yη, (IP )

where η ∈ Rm and ‖yη − y‖ ≤ η. The instability is due to the clustering of very small singular
values of A [43], which could lead to instability in recovering the object x. By including details
about the solution into the problem one might make the solution useful and stable, which is
called regularization [34].

2.1.2 Variational view on inverse problems

A popular way of treating inverse problems is by treating an optimization problem on a func-
tional [81], where the following functional is minimized

x̂α = arg min
x

F(x) = arg min
x

D(Ax, yη) + αR(x), (2.2)

where the data fidelity term is denoted by D(Ax, yδ), R(x) is called the regularizer and α
is the regularization parameter. The data fidelity term needs to ensure that Ax ≈ yη while
the regularizer adds a-priori information about the solution x to problem. The regularization
parameter α controls to which extent the minimizer of the functional will obey the data or the
a-priori information. Higher noise levels in the data require more regularization, thus a higher
α. The higher regularization parameter stabilizes the solution, but can be at the cost of the
accuracy of the solution.

We consider an imaging inverse problem where both x and y are two dimensional images.
Choosing the right data fidelity term and regularizer for this problem can be hard. The data
fidelity term is dependent on the nature of the noise whereas the regularization term is dependent
on a-priori information about the solution x. If for example the additive noise is Gaussian then
often the least-squares data fidelity term is chosen, i.e. 1

2‖Ax− y
η‖2 [7]. For the regularization

term it is important to have knowledge about the solution. If it is known that the solution is
smooth then a successful regularized inverse problem is the Tikhonov regularized inverse problem

x̂α = arg min
x
‖Ax− yη‖22 + α‖x‖22 , (2.3)

where the solution can be approximated via direct inversion with the regularized Moore-Penrose
inverse:

x̂α =
(
ATA+ αI

)−1

AT yη. (2.4)

When the images x contain sharp edges, Tikhonov regularization is not ideal due to its smoothing
effect. An example of a regularizer that allows sharp edges in the solution is the total variation
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(TV) regularizer, where the regularizer is equal to [18]:

R(x) = TV(x) =

n∑
j=1

√
v2
j + h2

j , (2.5)

where v = L1x and h = L2x. The L1 and L2 matrices are the horizontal and vertical first-order
finite difference matrices, respectively, defined as

L1 = In×n ⊗ L, L2 = L⊗ In×n,

where ⊗ is the Kronecker product and

L =


1
−1 1

. . .
. . .

−1 1

 . (2.6)

By minimizing the optimization problem (2.2) with this regularizer, one enforces sparsity in
the gradient of solution x. This leads to a solution with piecewise constant parts, thus edges-
preserving. The total variation regularizer is often used for image reconstruction problems and
is introduced by Rudin et al. [79] in their famous work on noise removal with their designed
ROF -model. For the analysis on the TV regularizer we refer to [14] and for more background
information on different types of regularizers we refer to [7, 44].

For direct inversion of regularized inverse problems, like in (2.4), it is important to select
an appropriate value of the regularization parameter α. Background information on methods
that can determine an appropriate value of α can be found in [6]. Direct inversion is, however,
not always applicable. Many inverse problems contain large matrices, which makes direct inver-
sion seldom practically due to its computational efficiency and/or infeasible storage [44]. Then,
iterative solvers can be used in order to approximate the solution of the inverse problem. Back-
ground information on iterative solvers for inverse problems can be found in [22, 68]. Another
option for solving inverse problems is the use of neural networks, which is discussed next.
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2.2 Neural networks

Instead of solving inverse problems via the traditional way, one can also use a neural network.
This section contains the basics of neural networks. The section starts with a brief history
and also discusses some of the basic architectures. Later the core of deep neural networks is
explained and afterwards our network of choice is discussed in more detail.

2.2.1 Introduction to neural networks

Brief history

Neural networks are based on the learning process that occurs in the brain of a human being.
The brain contains cells (neurons) and are connected to other cells by axons and synapses,
which is illustrated in Figure 2.1a. This connected network of cells is artificially represented in
a network of computational unit, represented by neurons. Weights connect the different neurons
and represent the strength of the synaptic connections in the biological model [3]. This artificial
representation of a biological neural network is illustrated in 2.1b.

(a) Biological neural network

Neuron
Axon

(b) Artificial neural network

Figure 2.1: Illustration of connections between neurons via axons: biological versus artificial.

The input of a neural network is formed by pairs, e.g. images and their labels or ground
truth. The output values of a neuron are calculated by computing a function of the input. The
output is compared to the ground truth and the corresponding error is the feedback for the
network. Based on this error, weights will be adjusted such that the function can make a better
prediction. The adjustment of weights is called learning or training.

One of the first neural networks that was capable of training was introduced by Rosenblatt
in 1957 [77] and is the foundation of modern artificial intelligence [3, 40]. His work was the
extension of an early brain model made by McCulloch and Pitts [65]. Rosenblatt’s model, the
perceptron, used inputs that where either on (1) or off (-1) and the output was a weighted sum of
these inputs followed by a thresholding. This single layer perceptron caused a lot of excitement
in the world of neural networks. This excitement lasted until Minsky and Papert [67] published
a book on the perceptron, proving that the expressive power of single layer perceptrons was
limited [3].
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The interest in this field was revived when Werbos introduced the backpropagation algorithm
[89]. It is a dynamic programming method that enables the possibility to train the weights
automatically, which made training of a neural network much more efficient. At this stage,
the quality of these models was still fairly confined due to the lack of data and computational
power. The growth of the computational power and the emergence of GPU computing has led
to a growing interest in the field of neural networks, which even brought about competitions in
designing better architectures for image classification tasks [3]. Due to these better resources,
researchers were able to go beyond the shallow networks and build deeper networks, which led
to the area of ‘deep learning’.

A milestone in the development of newer deeper networks was LeNet-5 created by LeCun
et al. in 1998 [56]. Their work is considered to be one of the first convolutional neural networks
(CNN). Nowadays there are many different architectures in the field of artificial intelligence,
e.g. recurrent neural networks (RNN), generative adversarial network (GAN), autoencoders,
all designed for beating human performances. Still, there are many human achievements that
cannot be beaten by these learned models, but some of them are outperformed, e.g. image
recognition [48] and games [11]. For further reading on different neural network architectures
we refer to [3, 40].

Basic architectures

The perceptron

Rosenblatt’s perceptron is a linear classifier that calculates a weighted sum of the input, followed
by an activation function. In Figure 2.2 the architecture of the perceptron is given. In this
example we consider an input with 3 nodes x = [x1, x2, x3], for each node a weight wi, i.e.
w = [w1, w2, w3]; and an added bias term b. These weights are multiplied with its input and a
bias is added. Subsequently it is summed before entering the activation function

σ(x) = sign(x) =

{
1, x ≥ 0

−1, x < 0.

x2 w2 Σ σ

Activation
function

y

Output

x1 w1

Weights

x3 w3

Bias
+b

Inputs

Figure 2.2: Architecture of a perceptron with bias.
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This activation function is called the sign function. Therefore, a prediction ŷ is defined as:

ŷ = σ (w · x+ b) = σ

 3∑
i=1

wixi + b

 =

{
1,

∑3
i=1 wixi + b ≥ 0

−1,
∑3
i=1 wixi + b < 0.

(2.7)

Due to its binary output, one can see this perceptron as a linear classifier. The idea is to
minimize the distance of misclassified points to a linear separating hyperplane. For example: if
output yi = 1 is misclassified, then

∑3
i=1 wixi+b < 0 and vice versa. When trained, the weights

and bias form the hyperplane that separates the two classes where vector w is perpendicular to
the hyperplane. An example of the construction of the hyperplane is given in Figure 2.3. Later
in this section it is explained how the parameters like weights and biases are trained.

0 2 4 6
0

2

4

6

w

Figure 2.3: Illustration of a linear separating hyperplane determined by a perceptron. The two
different colored geometries represent the two classes to separate.

The multilayer perceptron

It is discussed that a perceptron consists of an input layer and an output layer that is con-
structed by performing only one computation. By adding several computational layers before
calculating the output, one designs a multilayer perceptron (MLP). An example of such a net-
work is illustrated in Figure 2.4, in which two hidden layers are present. This type of network
is referred to as a feed-forward network since every layer feeds the data towards the next layer
until the output is determined. Besides that, this type of network is also called a fully connected
network since every neuron in a specific layer is connected to all neurons in the previous and
successive layer. These MLPs are characterized by its hidden layers and represent the layers
between the input and output. They are called ‘hidden’ since the user of these networks only
has the input and output to their disposal. In this example only one output is generated, but
this is not generally the case.
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x1

x2

x3

x4

x5

y

Output

Hidden layers

+b(1) +b(2)

+b(3)

W (2) W (3)

W (1)

Figure 2.4: Illustration of a fully connected multilayer perceptron with two hidden layers and
one output.

Values of each neuron can be calculated by using simple linear algebra. To demonstrate
how this works, we use the network illustrated in Figure 2.4. Hidden layer 1 consists of three

different neurons, i.e. h(1) =

h
(1)
1

h
(1)
2

h
(1)
3

, and each neuron in that layer is connected to all neurons

from the previous layer. The value of the first neuron h
(1)
1 in layer h(1) is calculated by

σ
(
w

(1)
1,1x1 + . . .+ w

(1)
1,5x5 + b

(1)
1

)
(2.8)

where σ(·) is the nonlinear activation function and w
(1)
ij is the weight of the connection between

the i-th neuron in layer h(1) and the j-th neuron in the input layer. This means that

h(1) =

h
(1)
1

h
(1)
2

h
(1)
3

 = σ


w

(1)
1,1 w

(1)
1,2 w

(1)
1,3 w

(1)
1,4 w

(1)
1,5

w
(1)
2,1 w

(1)
2,2 w

(1)
2,3 w

(1)
2,4 w

(1)
2,5

w
(1)
3,1 w

(1)
3,2 w

(1)
3,3 w

(1)
3,4 w

(1)
3,5



x1

x2

x3

x4

x5

+

b
(1)
1

b
(1)
2

b
(1)
3


 , (2.9)

thus h(1) = σ
(
W (1)x+ b(1)

)
. (2.10)

In a similar way it can be stated that

h(2) = σ
(
W (2)h(1) + b(2)

)
(2.11)

and ŷ = σ
(
W (3)h(2) + b(3)

)
. (2.12)

The adjustment of the weights and biases in this network is based on the error of the prediction
ŷ. The training of the weights and biases is discussed later. The weights and biases form the
parameters to be trained and are denoted by the set Φ. In order to give a generalization of
the above example, we assume that a network has L + 1 different layers, where x = a(0) and
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ŷ = a(L). Each layer can be described as

a(l) =M(l)
Φ(l)

(
a(l−1)

)
= σ

(
W (l)a(l−1) + b(l)

)
(2.13)

and the prediction as

ŷ = a(L) =M(L)
Φ(L)

(
a(L−1)

)
(2.14)

=
(
M(L)

Φ(L) ◦ · · · ◦M
(1)
Φ(1)

)
(x), (2.15)

where ◦ represents a composition.
The perceptron can at most linearly separate a data set, while a wider network with non-

linear activation function can do this in a nonlinear manner. It is strictly necessary to use a
nonlinear activation function since linear activation functions result in an affine mapping. By
increasing the width of the network one has more neurons (parameters) to construct a good
prediction. More parameters lead to more ways to describe or to separate the data, which is
beneficial if one wants an accurate prediction on a specific data set [3, 40].

2.2.2 Training a neural network

In order to form a meaningful prediction of the data, the network is trained and therefore the
parameters are adjusted. How much a parameter is changed depends on the partial derivative
with respect to that parameter. The calculation of the partial derivative is done via the so-
called backpropagation. The actual adjustment of the weights is done via optimizers of which
stochastic gradient descent is a popular method. Both backpropagation and optimizers are
dependent on the prediction error and therefore on the loss function. Thus, below we will
start with the explanation of the loss function before addressing the backpropagation and the
optimizers. Afterwards, the activation function will be discussed and some practical issues that
can occur while training a deep neural network.

The loss function

The goal of the neural network is to train the parameters Φ in such a manner that the predictions
ŷ ∈ Rm are close to the ground truth y ∈ Rm, in which the predictions are based on the input
x ∈ Rn. To determine how close the predictions are to the ground truth one needs to use a
measure, which is called the loss function. A popular loss function is the so-called mean squared
error (MSE), in which the error is the mean of the squared error of the N input samples. Then,
the optimization of the parameters over all input samples, can be described as

min
Φ
L(Φ) = min

Φ

1

N

N∑
j=1

(
ŷ(xj ,Φ)j − yj

)2
. (2.16)

The choice of loss function always depends on the problem at hand. For many application the
MSE is used because it is differentiable and convex [94]. It is beyond the scope of this thesis to
investigate different loss functions. For further reading on loss functions in general we refer to
[3] and for loss functions used for image reconstruction tasks we refer to [94].
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Backpropagation

The reason that the calculation of the partial derivatives is called backpropagation is the fact
that the direction of computation is reversed compared to that of a feed-forward network. It
basically feeds the error backwards through the network. The value of the partial derivatives
with respect to the weights and biases depends on the used loss function. To illustrate this, we
consider a fully connected network with L+ 1 layers of which a(0) is the input x and ŷ = a(L) is
the output. Due to equations (2.13) and (2.14) the output of the neural network is formulated
as

a(L) = σ
(
z(L)

)
, (2.17)

where z(L) = W (L)a(L−1) + b(L), (2.18)

and based on this prediction a loss is calculated. Since the prediction is calculated by a com-
position of prior layers, one can use the chain rule for differentiation for the calculation of the
derivatives with respect to the weights and biases of a specific layer l, i.e. ∂L

∂w(l) and ∂L
∂b(l)

,
respectively.

These derivatives give the sensitivity of the loss function when changing a certain weight
or bias. If, for example, the partial derivative of the loss function with respect to w1,2 and
w1,5 have the values 4.5 and 0.1, respectively. Then, it can be stated that the loss function
is 45 times more sensitive to changes in w1,2 rather than w1,5. When all partial derivatives
are calculated, one can optimize the network by adjusting the parameters. The optimization
process is discussed in the next subsection. The adjusted neural network subsequently makes a
new prediction by feeding the data through the adjusted network. Then, based on the new loss
of the prediction, the partial derivatives are calculated and the different parameters are again
optimized. This process repeats itself until it is converged or a certain amount of epochs are
completed.

Optimizers

One can train the parameters by updating them according to a specific update rule. An easy
way of updating is the usage of the gradient descent update rule:

Φ := Φ− η ∂L
∂Φ

(2.19)

where η is called the learning rate and Φ is the vector with all the trainable parameters, i.e.
weights and biases. When a large data set is used for training the network, the calculation of
the partial derivative in (2.19) is very slow. Furthermore, the optimization of the loss function
is highly nonconvex with many local minima, which makes it very likely that the loss function
ends up in a local minimum due to the decline of the gradient when it approaches the minimum.

In order to improve the speed of the derivation of the partial derivative, one can use only
one randomly chosen input sample for the prediction ŷ. Based on this prediction the partial
derivative is calculated. Due to the randomness the name of this method is stochastic gradient
descent. By taking only one training sample instead of all N training samples, one approximates
the derivative defined in the gradient descent update rule. Due to this approximation it is
possible that the optimization of the loss function does not converge to a local minimum. A
method that is more often used is the mini batch stochastic gradient descent, which gives better
approximations of the derivative since it is based on a batch of k samples rather than one. These
stochastic methods enormously speed up the process when large data sets are considered, albeit
less accurate [3]. Many other update rules are extensions of the stochastic gradient descent and
are therefore not discussed here. For further reading on different optimizers we refer to [78].
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Practical issues in training

Exploding and vanishing gradients

So far, it is not discussed what type of activation function is used. The choice of activation
function can be of great importance for the overall performance of the network. If one calculates
the derivative with respect to the weights in one of the layers close to the input, then the
derivative of the activation function is taken into account many times. This is due to the fact
that the output is a composition of prior layers. When the derivative of the activation function
is always between zero and one then the gradient decreases exponentially. This can lead to
extremely small gradients of those weights. A small gradient means that the corresponding
weight does not contribute much to the loss function and is therefore hardly updated, leading
to bad predictions of the neural network. This anomaly is called vanishing gradients. On the
contrary, if the derivative of the activation function is always bigger than one then the gradients
will grow exponentially. This blow up of the gradient is called exploding gradients [3].

A solution to this problem is to only consider activation functions with gradients equal to
one for positive values. Often used activation functions are the ReLU and the leaky ReLU.
These can be formulated as

ReLU: σ(x) =

{
0, x ≤ 0

x, x > 0
(2.20)

leaky ReLU: σ(x) =

{
α · x, x ≤ 0

x, x > 0
(2.21)

where α ∈ (0, 1).

Overfitting

It is stated that a neural network is trained on a specific data set, often called the training data
set. If trained properly, the neural network is able to make good predictions on this specific data
set. Overfitting means that it is not able to make good reconstruction on an unseen test data
set, albeit accurate on the training data set. This means that the trained network is not able to
generalize well on unseen data sets. This problem often occurs when the network is too complex
and therefore has too many parameters to fit the training data. Reducing the complexity or
increasing the amount of training data helps to improve the predictive power for unseen data
sets. It depends on the nature of the data how complex the network needs to be in order to
capture all the features of the data. A good criterion for preferable amount of training data is
to use an amount that is at least two to three times the size of the parameters [3]. Pretraining
[40] can also improve the generalization of the network. This method improves the initial guess
of the weights by training a shallow network on the training data set.
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2.2.3 Convolutional neural network

Convolutional neural networks (CNNs) are biological inspired feedforward networks based on
the research on the visual cortex of a cat by Hubel and Wiesel [49]. Their work describes
the different layers that contribute to the vision of a cat, in which each layer picks up certain
information. The first neural network that mimics pattern recognition is the neocognitron [37],
which was the building block for the famous CNN architect LeNet-5 by LeCun et al. [56]. The
different layers in a CNN network mimic the layers present in the visual cortex of human beings.
By training the network correctly, one can pick up the spatial structure of the input. In many
cases the input of a CNN is an image, either colored or gray-scale. This type of network has
proven to be better than human beings in image recognition tasks [48]. In this section we discuss
the main building blocks of the CNN, of which the convolutional layer is the most important.

Convolutional layer

CNNs are build for discovering the spatial features on grid-structured inputs, almost always
images. All layers in the network are considered to be three dimensional tensors, in which the
l-th layer has a width of W (l), a height of H(l) and a depth of D(l). If the input layer is a colored
image, then its depth is equal to 3 since a colored image has three color channels: red, green and
blue (RGB). Therefore, the depth is in many cases referred to as channels. The CNN extracts
the spatial features and dependencies of local areas in the input layer by applying a weighted
sum between the pixels in that neighbourhood and a kernel. It is important that the kernel has
the same depth as its input and that the size is kept constant in a specific layer. Furthermore,
the kernel is in general square and of odd length, which is very convenient since those kernels
have a clear center. Afterwards one bias per channel is added and finally an activation function
is used in order to formulate the successive layer. This successive layer is often called the feature
map since it captures the different spatial features of the input layer. By sliding the kernel along
the width and height of the input layer, one can extract the local spatial features of the entire
layer. The calculation of the weighed sum between the pixels and the sliding kernel is called a
convolution, thus the convolutional layer. In Figure 2.5 it is illustrated how the feature map is
constructed by using two different 3 × 3 × 3 kernels. It is clear that every pixel in the feature
map is a convolution of the kernel with a local 3 × 3 neighbourhood in the previous layer. In
addition, each applied kernel produces a feature map and each one of them are stacked together
to form the entire feature map. Furthermore, it is also illustrated that the size of the feature
map changes when applying the convolution with the kernel. If the input size in layer l is

H(l)×W (l)×D(l) and N
(l)
k kernels of size K

(l)
W ×K

(l)
H ×D(l) are used, then the feature map has

the dimension
(
H(l) −K(l)

H + 1
)
×
(
W (l) −K(l)

W + 1
)
×N (l)

k . By adding zero padding, i.e. zeros

on the boundaries along the width and height of the input, one can ensure that the feature map
has the same dimension. This leads to a larger H(l) and W (l) and therefore to a larger feature
map.

So far it is explained that a successive layer in a CNN is constructed by first applying
convolutions with a specific amount of kernels, then adding a bias and finally applying an
activation function. In order to generalize this mathematically it is assumed that the input

layer l− 1 is a(l−1) and is of size H(l−1) ×W (l−1) ×D(l−1). The output layer is a(l) and N
(l−1)
K

kernels are used of size K
(l−1)
H ×K(l−1)

W ×D(l−1). Then the expression for a(l) is equal to:
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Figure 2.5: Illustration of a convolutional operation with two 3× 3× 3 kernels, which lead to
two different feature maps. In this example a stride of 1 is used.

a(l)(u, v, z) = σ

b(l−1) +

K
(l−1)
W∑
m=1

K
(l−1)
H∑
n=1

N
(l−1)
K∑
d=1

a(l−1) (m+ u− 1, n+ v − 1, d) ·K(l−1) (m,n, d)


∀u ∈ {1, 2, . . . ,W (l−1)} (2.22)

∀v ∈ {1, 2, . . . ,H(l−1)}

where both a(l−1) and a(l) are 3D tensors, K is the kernel, b(l−1) is the bias and the activation
function is denoted by σ(·). In this thesis it is assumed that the step size of the kernel in both
directions is equal to 1. This step size is called stride.

The number of trainable parameters is greatly reduced by using a CNN. This is because
each pixel in an layer is only connected to a local region in the previous layer. The amount of
parameters is further decreased by using shared weights. This means that a kernel uses the same
weights for all pixels in that specific layer instead of learning weights for each entry separately
[40]. Therefore, a CNN is much less demanding in terms of its computational burden and
memory.

Pooling layer

Just like convolutions, pooling layers are one of the building blocks of CNNs. A pooling layer
treats each channel separately and considers a region p× p at the time. If max-pooling is used
then the maximum value of that p×p window is passed through to the next layer. When pooling
is applied to layer l together with a stride s, then the dimension of the output layer is:(

(H(l) − p)/s+ 1
)
×
(

(W (l) − p)/s+ 1
)
×D(l). (2.23)

Pooling is frequently used in combination with a stride 2 and a 2× 2 window in order to reduce
the spatial footprint of the input, which is illustrated in Figure 2.6. This reduces the size
of a layer by a factor 2 and introduces a non-linearity into the network. An alternative for
max-pooling is the average pooling, but is in general less used [3].
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Figure 2.6: Example of max-pooling performed on a 4 × 4 grid with a 2 × 2 window and a
stride 2.

Due to this reduction in dimension one can study the larger components present in the
input. Besides that, downscaling of the dimensions reduces the computational burden of the
successive layers. Furthermore, this operation does not have any trainable parameters and it
increases the so-called receptive field, which is explained in the next subsection.

Receptive field

In the previous subsection it is explained that one pixel in the feature map is determined by a
convolution between a kernel and a local region in the previous layer. If the network is larger
than two layers, one can still determine which pixels in the input layer contribute to the final
output layer. The region that contributes to a certain pixel in the output is called receptive
field. To illustrate this concept we consider one input layer and two feature map, of which the
second feature map is considered to be the output. The different layers are illustrated in Figure
2.7 where the colors blue, green and yellow resemble the different layers. In this example a
convolution with a 3×3 kernel and no zero padding is used. This figure illustrates the receptive
field of the red pixel in the output layer. Since the kernel size is 3×3 the red pixel is determined
by a 3 × 3 region in feature map 1. Every pixel in that layer again depends on a 3 × 3 region
in the input layer. Due to the overlap of the convolutions one can conclude that the receptive
field in the input layer is a 5× 5 region.

If the amount of convolutional layers gets larger then the receptive field will grow linearly.
The receptive field in layer l is then defined as:

r(l) = r(l−1) + ((k(l) − 1) ·
l−1∏
i

si) (2.24)

where sl is the stride in layer l and k(l) is the kernel size in layer l. The receptive field will
grow faster if pooling is inserted in the network. In that case the receptive field will grow
exponentially. Not all pixels in the receptive field contribute equally to an output pixel. This
concept of unequal contribution is demonstrated by Luo et al. [61] and is called the effective
receptive field. Since the convolutions are sliding along the dimensions of the height and width,
some pixels will contribute more to the next feature map. This means that pixels closer to the
center of the receptive field contribute more than pixels on the boundary. These contributions
scale exponentially.
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Figure 2.7: The corresponding feature map of a pixel in the output layer.

Skip connections

Another building block of a CNN is the skip connection, which adds the input of a certain layer
to the output of a layer further into the network. This means that the output of the network
is connected to the input by different pathways of different lengths, in which shorter pathways
have higher learning capabilities [3]. When having more pathways to the output, the optimizer
has the ability to choose the relevant pathway for a certain input. An example of the use of a
skip connection is given in Figure 2.8.

Figure 2.8: Illustration of a skip connection.
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2.3 Compressed sensing

Below the field of compressed sensing is shortly introduced, along with its main aim and its
implication for solving inverse problems with the help of machine learning.

2.3.1 Origin of compressed sensing

The mathematical description of the recovery of signals goes back to the middle of the 19th

century where C. Shannon published his work on the recoverability of a continuous signal by
a discrete sequence of samples. His finding is summarized in the famous Nyquist-Shannon
sampling theorem:

Theorem 1 (Nyquist-Shannon sampling theorem [83]). If a function x(t) contains no frequen-
cies higher than B hertz, it is completely determined by giving its ordinates at a series of points
spaced 1/(2B) seconds apart.

For the discrete case it holds that the amount of measurements should at least be as
large as the length of the signal [36, 70]. However, for many applications this leads to a large
measuring time and huge data storage. The theory of compressed sensing is build to analyze
the reconstruction quality of recovered signals when less measurements are taken. The theory
is based on the idea that many high-dimensional signals have a sparse representation/basis and
can be recovered even though a few measurements are taken [10, 36, 70]. It was introduced by
Donoho [27] and by Tao & Candès [19]. They showed that under certain conditions a sparse
input x ∈ Rn can be fully recovered from noisy measurements y = Ax + η, where A ∈ Rm×n,
m ≤ n and η ∈ Rm. These conditions are based on the properties of the forward mapping A and
will be verified later. Due to its success it is widely used in fields like imaging, optics, statistical
learning and machine learning. An example is the efficient compression technique JPEG, where
its success is due to the fact that natural images have a sparse basis [35].

Recovering sparse signals from measurements can be summarized as the optimization prob-
lem

min
x
‖x‖0 subject to y = Ax (P0)

where it is clear from the definition of the `0-norm that this problem promotes sparsity. The
issue is that solving equation (P0) is an NP-hard problem [10, 19], where NP stands for “nonde-
terministic polynomial time”. It roughly means that the amount of operations needed in order
to solve it, can not by bound by a polynomial. Therefore, there is no polynomial time algorithm
that solves this problem.

Researchers searched for another convex objective function that approximates the opti-
mization problem (P0). The `p-norms are capable of adequate approximations of the defined
problem, where the `p-norm is defined as

‖x‖p =


(

n∑
i=1

|xi|p
) 1
p

for p ∈ [1,∞)

max
i=1,...,n

|xi| for p =∞.
(2.25)

Chen et al. [23] proved that the `1-norm is the closest norm to `0 and therefore optimization
problem (P0) was replaced by

min
x
‖x‖1 subject to y = Ax (P1)
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and goes under the name basic pursuit. The only difference between optimization problems (P0)
and (P1) is the use of norm. The goal is to recover sparse signals so the question is whether the
`1-norm promotes sparsity. In Figure 2.9 it is illustrated that the subspace of solutions y = Ax
intersects the `1-ball in one of the coordinate axis, which is not the case for the `2-ball. This
means that one of the coordinates of the solution is zero and therefore it promotes sparsity.
Then there is one remaining question, which is the core of compressed sensing [55]: when do
the solutions of (P0) and (P1) coincide? In other words: when is ‘`0 = `1’? The answer to this
question will be discussed later.

y = Ax y = Ax

x

x̂

x

x̂

`1 `2

Figure 2.9: Solution of optimization problem with two different norms: `1- and `2-norm.

When measurements are corrupted with noise, the minimization problem (P1) can be mod-
ified to

min
x
‖x‖1 subject to ‖Ax− y‖22 ≤ ε (2.26)

and for a specific regularization parameter λ > 0 the solution to (2.26) is equal to the uncon-
strained optimization problem

min
x

1

2
‖Ax− y‖22 + λ‖x‖1 . (2.27)

Popular methods for solving (2.27) are interior-point methods and iterative thresholding meth-
ods [55]. These convex optimization methods tend to give the best accuracy but with a high
computational cost [70]. On the other hand, greedy algorithms likes Orthogonal Matching Pur-
suit do not consider the unconstrained optimization problem (2.27) but iteratively approximate
the coefficients and the basis of the input signal such that (P1) holds. Theoretically they are as
accurate as the convex optimization methods but are faster and easier to implement [55, 70].
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2.3.2 ‘`0 = `1’

Candès and Tao [20] developed a condition on the forward mapping A that is sufficient for (P1)
to coincide with (P0). This condition is called the Restricted Isometry Property (RIP) and is
summarized in Theorem 2.

Theorem 2 (RIP [19]). The forward mapping A is said to satisfy the restricted isometry prop-
erty of order s ∈ N with parameter δs ∈ (0, 1) if

(1− δs)‖x‖2`2 ≤‖Ax‖
2
`2
≤ (1 + δs)‖x‖2`2 . (2.28)

Lemma 1 (Restricted isometry constant (RIC) [86]). Assume that the forward mapping A ∈
Rm×n satisfies RIP of order s ∈ N with parameter δs ∈ (0, 1), then the s-th restricted isometry
constant δs is given by

δs = max
S⊂{1,...,n}, |S|≤s

∥∥∥ATSAS − I∥∥∥
2
. (2.29)

If the RIP is satisfied up to order s then all submatrices of A containing s-columns are
well conditioned and therefore stable recovery of the signal x is ensured [5]. The smaller the
restricted isometry constant δs is, the better the reconstruction capabilities are and the closer
the mapping is to an isometry, i.e. a distance preserving mapping. RIP also implies that any
set of s columns of A is nearly orthonormal [2] and that the Gram matrix ATSAS is positive
definite [25] with all its eigenvalues laying in the interval [1− δs, 1 + δs] [45]. These eigenvalues
lie in this interval if the diagonal elements of the Gram matrix ATSAS are close to one and if
the off-diagonals are very small. To show this, the concept of Geršgorin circles is used.

Theorem 3 (Geršgorin circle theorem [85]). The eigenvalues of an m×m matrix M all lie in
the union of m discs di = di(ci, ri), i = 1, 2, . . . ,m, centered at ci = Mii and with radius

ri =

n∑
j=1
j 6=i

∣∣Mij

∣∣ .
Now consider a subset of column indices S ⊂ {1, . . . , n} where |S| ≤ s and the Gram matrix

ATSAS . Suppose that for s ≥ 1 there are positive values δd and δO such that δd+δO = δs ∈ (0, 1)
and that holds:

|Gii − 1| < δd ∀i (2.30)∣∣Gij∣∣ < δO/s ∀i 6= j. (2.31)

Then the Geršgorin circle theorem states that the center of the disc does not deviate more than
δd from 1 and the radius of each disc is not bigger than (s− 1)δO/s < δO. This means that all
the eigenvalues are in the range (1− δd − δO, 1 + δd + δO) = (1− δs, 1 + δs).

The off-diagonal elements of the Gram matrix are closely related to another important
property of the forward mapping A: mutual coherence.

Definition 2 (Mutual coherence [33]). Let A = (ai)
n
i=1 be an m × n matrix. Then its mutual

coherence µ(A) is defined as

µ(A) = max
i 6=j

∣∣〈ai, aj〉∣∣
‖ai‖2

∥∥aj∥∥2

. (2.32)
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This property characterizes the dependency between the columns of the forward mapping
and is summarized in Definition 3.

Definition 3 (Spark [28]). Given forward mapping A ∈ Rm×n, then spark(A) is the minimal
number sp such that there is a set of sp columns of A that is linearly dependent. If A has
normalized columns then

spark(A) ≥ 1 +
1

µ(A)
. (2.33)

Matrices with highly correlated columns are generally ill-conditioned [51]. The maximal
mutual coherence for a matrix A ∈ Rm×n is 1, which is the case when A contains mutual linear
dependent columns. The minimal mutual coherence can only be zero when m = n and when the
columns of A form an orthogonal basis. If m < n then the minimal mutual coherence can not be
equal to zero since this would mean that n m-dimensional columns are orthogonal. Therefore,
the lower bound of the mutual coherence of underdetermined systems is unequal to zero. This
lower bound is the so-called Welch bound [29, 33].

Lemma 2 (Welch bound [55]). Let A be an m× n matrix. Then we have that

µ(A) ∈

[√
n−m
m(n− 1)

, 1

]
(2.34)

The relationship between the off-diagonal elements of the Gram matrix and the mutual
coherence can be shown easily when A has orthonormal columns, i.e. ‖ai‖2 = 1 ∀i = 1, . . . , n.
Then µ(A) is equal to the biggest off-diagonal of G = ATA in absolute sense. This is shown in
Lemma 3.

Lemma 3. Let A ∈ Rm×n with `2-normalized columns then µ(A) is equal to the largest off-
diagonal of the Gram matrix G = ATA in absolute value. Furthermore, the eigenvalues of the
Gram matrix G = ATSAS lie in the interval

[
1− µ(s− 1), 1 + µ(s− 1)

]
.

Proof. Let A = (ai)
n
i=1 be an m×n with `2-normalized columns, then the corresponding Gram

matrix is defined as:

G = ATA (2.35)

=


1 〈a1, a2〉 . . . 〈a1, an〉

〈a2, a1〉 1 . . . 〈a2, an〉
·
··

·
··

···
·
··

〈an, a1〉 〈an, a2〉 . . . 1

 ∈ Rn×n . (2.36)

Due to the `2-normalized columns of A we know

µ(A) = max
i 6=j

∣∣〈ai, aj〉∣∣ (2.37)

we can conclude that the biggest off-diagonal element of G in absolute sense is equal to the
mutual coherence of A.

Now, if one considers S ⊂ {1, . . . , n} with |S| = s and AS ∈ Rm×s, then the corresponding
Gram matrix G = ATSAS ∈ Rs×s. Due to the Geršgorin circle theorem we know that the
eigenvalues of the Gram matrix lie in the interval[

1−max
j
Rj , 1 + max

j
Rj

]
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where Rj is the radius in column 1 ≤ j ≤ s. The radius is defined as

Rj =
∑

1≤k≤s, k 6=j

∣∣〈ak, aj〉∣∣
≤ (s− 1) · µ.

Due to Lemma 3 we know that δs ≤ µ(s−1) and this shows the connection between mutual
coherence and RIP. Therefore, for a sparse solution to meet the condition ‘`0 = `1’, is directly
related to the mutual coherence of the forward mapping A. This means that we can formulate
a sufficient condition on the solution x in order to meet ‘`0 = `1’. This sufficient condition is
summarized in the following theorem.

Theorem 4 (from [55]). Given forward mapping A ∈ Rm×n and solution x ∈ Rn \{0} of (P0).
If

‖x‖0 <
1

2

(
1 +

1

µ(A)

)
then x is a unique solution of (P0) and (P1).

This shows that the mutual coherence of A has a direct effect on the degree of sparsity
of the unique solution. The mutual coherence is of great importance since it is very hard for
general matrices to check whether RIP is satisfied because of the high computational complexity
[10, 64]. In these cases it is much easier to check the mutual coherence of the matrix. This
property can give good insight in whether good sparse recovery is guaranteed, albeit weaker
than RIP [69]. From theorem 4 it is clear that it is desirable to have a small mutual coherence
[21].

2.3.3 Learned approach to compressed sensing

The standard iterative reconstruction algorithms used in compressed sensing, tend to give un-
wanted results when applied to medical imaging. The algorithms have the propensity to remove
detailed structures in the reconstruction phase. These details can be of extreme importance for
physicians in order to make a good diagnosis. Furthermore, these algorithms are time consum-
ing and are very sensitive to changes of the regularization parameter. Combining compressed
sensing with machine learning could fill this void [50]. Calderbank et al. [15] where among the
first researchers to combine these fields. Their proposed method is called compressed learning.
In their work they showed that a support vector machine derived from compressed data and
an RIP fulfilling forward mapping, has the same accuracy as the best linear classifier that is
based on the full data. Recently many researchers analyzed the effect of compressed sensing
properties on the reconstruction quality of a neural network. Xuan et al. [91] showed that a
lower mutual coherence has positive effects on the reconstruction quality and their approach
demonstrated its robustness to noise. In their approach they added the mutual coherence as
a penalty to the loss function of the deep neural network (DNN). Besides that, in [50] it was
proposed that when adding data in the frequency domain k, the neural network was better
in learning the inversion due the fact that this addition made the forward mapping satisfying
RIP. Including the extra line in k-space is the same as adding supplementary information to the
neural network by attaching additional nodes to the neural network [13]. Their explanation is
a consequence of Cover’s theorem [26]. It states that if training data is not linearly separable
in a low-dimensional space, it is more likely to be separable when a higher dimensional space is
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considered [13, 46]. Figure 2.10 illustrates this principle.
These examples show that certain compressed sensing properties can be beneficial for the re-
construction quality of the neural network. Later in this thesis it will be clear which property
is used and how we used it.

Figure 2.10: The figure states that in 2D five linear hyperplanes are we needed to separate the
data. In 3D only one linear hyperplane is needed. See [13] for more details.
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2.4 Preconditioning

This section contains background information about preconditioning. First it is explained what
the traditional aim is and afterwards its connection with regularized inverse problems is given.
Finally, we describe two important methods that can be used for the construction of precondi-
tioners.

2.4.1 Origin of preconditioning

Popular methods for solving problem y = Ax are direct methods and iterative methods. Direct
methods, based on factorizations of the forward mapping A into easy invertible matrices, are
widely used because of their robustness and predictability in terms of storage and time [9]. If
the forward mapping is not too large a direct solver can be used to efficiently solve the inverse
problem in an appropriate amount of time. Nowadays, many problems are multidimensional or
either too large (e.g. most PDE related problems [88]), causing the direct solver to solve billions
or more equations. Since direct solvers scale poorly with the problem size, iterative solvers
are required for solving these large-scale problems. There are situations where even iterative
methods fail to converge. Then, preconditioners can be used in order to (possibly) solve the
inverse problem in a reasonable amount of time [9, 80]. A good preconditioner transforms system
y = Ax into another system that possesses better properties for solving it iteratively [9]. The
origin of the term preconditioning is associated with the observation that lowering the condition
number κ guarantees faster convergence of the solver [88]. To illustrate this, we assume that
the conjugate gradient method is used for solving y = Ax. The convergence bounds can be
summarized as follows.

Theorem 5 (Convergence conjugate gradient method [75]). Let A ∈ Rn×n be a symmetric and
positive definite matrix. The conjugate gradient method for solving y = Ax converges after at
most n steps. Moreover the error x̄ − x(k) ath the k-th iteration (k < n) is orthogonal to the
search direction p(j) for j = 0, . . . , k − 1 and∥∥∥x̄− x(k)

∥∥∥
A∥∥x̄− x(0)
∥∥
A

≤ 2ck

1 + c2k
, with c =

√
κ(A)− 1√
κ(A) + 1

. (2.38)

This means that a higher condition number κ gives a slow convergence, while a condition
number close to one gives a fast convergence. When an Euclidean 2-norm is used, the condition
number κ(A) is equal to

κ(A) =
λmax(A)

λmin(A)
, (2.39)

which means that iterative algorithms converge fast when the eigenvalues are close to one.
Bringing these eigenvalues close to one is exactly the goal of using preconditioners [9, 88].
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There are three different ways of using preconditioners, i.e. left, right and split [9, 75]. If
a nonsingular left preconditioner P is used then then the linear system

P−1Ax = P−1b (2.40)

has the same solution as system y = Ax. In case when P approximates A then this system
might be less challenging to solve. One can also use a right preconditioner :

AP−1y = b, x = P−1y. (2.41)

Additionally, a split preconditioner can also be used, i.e,

P−1
1 AP−1

2 y = P−1
1 b, x = P−1

2 y, (2.42)

where the preconditioner is P = P1P2. The use of these preconditioners either depend on the
PDEs that describe the physics of the problem or on the forward mapping A [9, 75]. PDE based
preconditioning is often not successful since it might be necessary to have complete knowledge
of the problem or it might be that the knowledge is too hard to get and to use [9]. Consequently,
preconditioners have been developed that can be applied universally and are purely based on
the forward mapping A. Since in our inverse problem the forward mapping is given, we only
consider this type of preconditioner.

2.4.2 Preconditioning and regularized inverse problems

Due to the ill-posedness of many discretized inverse problem, a certain amount of regularization
is needed in order to stabilize the process of calculating the solution [17]. In section 2.1 it is
explained that Tikhonov regularization is a popular regularization method. In order to verify the
connection between solving preconditioned systems and Tikhonov regularization, an explanation
via the Bayesian view on inverse problems is very convenient. From this perspective, all the
variables of inverse problem (IP ) are regarded as random. Thus, the stochastic version of (IP )
is formulated as

Y = AX + E (2.43)

where Y, E ∈ Rm, X ∈ Rn and it is assumed that X ∼ N (x0, C0) and E ∼ N (e0, C1). Since
all variables are considered to be stochastic, the solution to this problem is in fact a probability
density function. The probability density of X without knowing Y is called the prior density and
is denoted by πprior(x). The likelihood density is the probability density of Y given that X = x
and stands for πlikelihood(y|x). The solution to an inverse problem is always dependent on the
measurement and therefore πposterior(x|y) is the probability density that belongs to the solution.
This probability density is called the posterior [16]. Using Bayes’ Theorem, the solution to the
inverse problem (2.43) is denoted by

πposterior(x|y) =
πprior(x)πlikelihood(y|x)

π(y)

∝ πprior(x)π(y|x). (2.44)

Due to the assumption that X is normally distributed and the neglection of the normalization,
it can be stated that that the prior density is proportional to

πprior(x) ∝ exp

(
−1

2
(x− x0)TC−1

0 (x− x0)

)
. (2.45)
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A similar expression can also be found for π(y|x), in which x is fixed and therefore the only
randomness in y is due to e. This means that

π(y|x) = πnoise(e)

∝ exp

(
−1

2
(e− e0)TC−1

1 (e− e0)

)
e = y −Ax

= exp

(
−1

2
(y −Ax− e0)TC−1

1 (y −Ax− e0)

)
, (2.46)

and due to (2.44) this implies that

π(x|y) ∝ exp

(
−1

2
(y −Ax− e0)TC−1

1 (y −Ax− e0)− 1

2
(x− x0)TC−1

0 (x− x0)

)
. (2.47)

Since the covariance matrices C0 and C1 are symmetric and positive semi-definite, their Cholesky
decomposition can be used in order to find an expression for their inverse. Due to the Cholesky
decomposition it is known that C0 = LLT whereby L is a lower triangular matrix. This means
that C−1

0 = (L−1)TL−1 = PT2 P2. In a similar fashion we can state that C−1
1 = PT1 P1. This

leads to a new expression for (2.47):

π(x|y) ∝ exp

(
−1

2
(y −Ax− e0)TPT1 P1(y −Ax− e0)− 1

2
(x− x0)TPT2 P2(x− x0)

)
= exp

(
−1

2

∥∥P1(y −Ax− e0)
∥∥2 − 1

2

∥∥P2(x− x0)
∥∥2
)
. (2.48)

Since all variables are stochastic, the desired solution to the inverse problem (2.43) is the most
likely solution of the conditional probability density π(x|y). This solution, if exists, is equal to
the maximum a posteriori (MAP) estimate:

xmap = arg max
x

π(x|y)

= arg min
x

∥∥P1(y −Ax− e0)
∥∥2

+
∥∥P2(x− x0)

∥∥2
. (2.49)

Equation (2.49) shows the direct relationship between the MAP estimator and Tikhonov regu-
larization in case when e0 = 0, P1 = I and P2 = L. The solution to the Tikhonov regularized
inverse problem of y = Ax+ e is indeed the minimizer of the functional

Fα(x) =‖Ax− b‖2 + α
∥∥L(x− x0)

∥∥2
.

This functional seeks for a solution x that fits the data but the additional second term prohibits
disproportionate gain of the solution. The connection between this problem and a precondi-
tioned system that is solved iteratively, is not obvious at this stage. In order to demonstrate that,
another random variable W = P2(X − x0) is introduced. Due to the fact that X ∼ N (x0, C0),
it is clear that

E(W ) = 0 and

E(WWT ) = E(P2(X − x0)(X − x0)TPT2 )

= P2 E((X − x0)(X − x0)T )PT2

= P2C0P
T
2 C0 =

(
PT2 P2

)−1

= P−1
2 P−T2

= I
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and therefore W is Gaussian white noise. The introduction of the random variable W changes
(2.49) to

arg min
x

∥∥P1(y −Ax− e0)
∥∥2

+
∥∥P2(x− x0)

∥∥2

= arg min
w

∥∥∥P1(y −AP−1
2 w −Ax0 − e0)

∥∥∥2

+‖w‖2

= arg min
w

∥∥∥P1(y −Ax0 − e0)− P1AP
−1
2 w

∥∥∥2

+‖w‖2

= arg min
w

∥∥∥∥∥∥
[
P1(y −Ax0 − e0)

0

]
−

[
P1AP

−1
2

I

]
w

∥∥∥∥∥∥
2

. (2.50)

This means that xmap is the solution in the least-squares sense of the linear system[
P1AP

−1
2

I

]
w =

[
P1(y −Ax0 − e0)

0

]
, w = P2(x− x0)

and therefore solving this linear system is equal to solving iteratively the preconditioned linear
system

P1AP
−1
2 w = P1(y −Ax0 − e0), w = P2(x− x0) or equivalently

P1AP
−1
2 w = P1(y −Ax0 − e0), x = P−1

2 w + x0. (2.51)

This equation is similar to the one presented in (2.42). Therefore, we know that preconditioning
and a regularized inverse problem are closely related to each other. The right preconditioner P2

in (2.51) acts on the solution and can be of great value when prior information of x is known.
On the other hand, the left preconditioner acts on the data fidelity term. Since data is often
noisy, a good left preconditioner has to make sure that the noise is somewhat controlled after
applying it.

2.4.3 Methods of preconditioning

Two preconditioning methods that construct approximations of the inverse of the forward map-
ping are incomplete factorizations and (sparse) approximated inverse methods. These two meth-
ods are briefly discussed below.

(Incomplete) factorizations

A factorization method first factorizes the forward mapping A into an easier form to invert, of
which Cholesky factorizations and LU factorizations are popular [9]. The part on Cholesky is
omitted since it is roughly similar. The LU factorization is based on Gaussian elimination and
can only be applied to a square forward mapping A, where all leading principal submatrices
A(1:k)×(1:k) are nonsingular for k = 1, . . . , n−1 [39]. The idea is to factorize A into a product of
a lower triangular matrix L and an upper triangular matrix U , i.e. A = LU , before constructing
the inverse of the matrix. The factorization process often constructs factors L and U that are
more dense than A itself due to the fill-in of entries in the Gaussian elimination process, which
can lead to a large memory usage. Rejecting parts of the fill-in leads to an approximate LU
factorization A ≈ L̄Ū , where L̄ and Ū are the incomplete factors. This method is called the
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incomplete LU (ILU). Discarding the fill-in can depend on the position, value or both of them
[9, 80]. Other factorization methods include the singular value decomposition (SVD) and the
QR decomposition. The QR decomposition factorizes A into an upper triangular matrix R
and an orthogonal matrix Q, i.e. QTQ = QQT = I. For more background information on
factorizations we refer to [9, 39].

Approximated inverse

A poplar method for computing the approximate inverse of a forward mapping A is the Frobe-
nius norm minimization method [9], which was introduced in the 1970s by Benson [8]. For
constructing a left preconditioner one solves

min
P
‖I − PA‖F (2.52)

and for the right preconditioner

min
P
‖I −AP‖F , (2.53)

where ‖·‖F is the Frobenius norm. Due to the definition of the Frobenius norm, i.e. ‖A‖F =√
tr(ATA), we know that

min
P
‖I −AP‖2F = min

P=[p1,...,pm]

∥∥∥∥(Ap1 − e1, . . . , Apm − em
)∥∥∥∥2

F

, ‖A‖F =
√

tr(ATA)

= min
P=[p1,...,pm]

m∑
i=1

‖Ap− ei‖22 , every term is independent

=

m∑
i=1

min
p
‖Ap− ei‖22 . (2.54)

Thus, solving the minimization problem with the Frobenius norm is equal to solving m least-
squares problems, which can be solved by using gradient-based methods [68]. Then, the solution
to (2.52) is equal to P = (p∗1, . . . , p

∗
m), where each p∗i is the optimal solution to (2.54).
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2.5 Connecting framework based on information theory

Traditionally, a left preconditioner P1 is designed to transform the system (IP ) such that
it is faster to solve. The left preconditioner transforms the forward mapping A such that the
preconditioned forward mapping P1A is close to the identity matrix, where the eigenvalues of the
preconditioned forward mapping are close to one. Solving a preconditioned system iteratively
with the eigenvalues close to one has a tremendous advantage in terms of speed [9]. This
means that a preconditioned forward mapping close to an orthonormal system/isometry is
faster solvable by iterative methods. Section 2.3 discusses that exactly these forward mappings
play a key role in compressed sensing because of their low mutual coherence. Therefore, both
preconditioning and compressed sensing want to obtain a forward mapping that has a low
mutual coherence.

Matrices with a low mutual coherence give valuable insight in the nature of the inverse
problem. The Bayesian view on inverse problems and aspects from information theory give us
the opportunity to connect the field of inverse problems with compressed sensing and precondi-
tioning via the mutual coherence. Recall from equation (2.49) that the most likely solution of
a Bayesian inverse problem, when only left preconditioners are considered, is:

xmap = arg max
x

πposterior(x|y)

= arg min
x

∥∥P1(y −Ax− e0)
∥∥2
, (2.55)

where P1 is the left preconditioner. The optimal value for x is obtained when

∇x
∥∥P1(y −Ax− e0)

∥∥2
= 0, meaning that

xmap =
(
ATPT1 P1A

)−1

ATPT1 P1(y − e0).

The Hessian of the inverse problem is defined as

∇2
x

∥∥P1(y −Ax− e0)
∥∥2

= ATPT1 P1A. (2.56)

Since the inverse of the Hessian is the covariance matrix of Gaussian random variables, the
following posterior distribution is obtained:

πposterior(x|y) ∼ N
(
xmap,

(
ATPT1 P1A

)−1
)
, (2.57)

which only holds under the assumption that A is non-singular. The ATPT1 P1A in (2.56) is called
the Fisher information matrix, which is defined as [62]:

I(x) := −Ex

[
d2

dx2
lnπ(y|x)

]
= ATPT1 P1A. (2.58)

This Fisher information matrix gives the curvature of the log likelihood. If there is no curvature
then the measurements generated from x are not very informative, since it would be harder to
pick an optimal value from the posterior distribution. High curvature, thus more information,
leads to a clearer optimal value of the posterior distribution. This is why a high informative
system has a posterior distribution with a low variance. Therefore, the Fisher information matrix
evaluates the bulk of information about x from the measurements y. A forward mappings A with
a low mutual coherence is close to an orthonormal matrix, which means that the measurements
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y = Ax+e are close to the unknown x if the noise is not large. This means that the measurements
are already very informative, meaning that knowing y gives a lot of information about the
unknown x. Therefore, the information present in the inverse problem is connected to the
mutual coherence of the forward mapping and thus to compressed sensing. The connection
between the information in the system and preconditioning is described in equation (2.57),
where it is clear that preconditioning can affect the information in the system.



Chapter 3

Proposed combined method

In this chapter the proposed method is discussed. The general idea of our proposed method is
explained in the first section of this chapter. This method consists of two different precondi-
tioners. Each of these preconditioners is explained in detail in the following two sections.

3.1 The composition

The application of preconditioning such that the preconditioned inverse problem can be solved
with a CNN, is not a novel approach. Since the preconditioner approximates the inverse of the
forward mapping, its use can be seen as a first reconstruction phase. An example of its use
is presented by Jin et al. in [52], where they use a limited-angle Radon transform as forward
mapping, the filtered backprojection (FBP) as first reconstruction phase and afterwards the
problem is solved with a CNN. Due to the computational efficiency of the FBP it is the most
used type of first reconstruction phase for inverse problems with the Radon transform as forward
mapping [71, 76]. Since the reconstruction quality of the FBP can be poor when noise is present
and a limited amount of measurement angles are used [76], it is useful to explore what type of
preconditioner can make better reconstructions in these circumstances. What parameters give
valuable insight in the quality of the preconditioner is still a loose end.

A low mutual coherence of the forward mapping showed to be beneficial for the classification
accuracy of the neural network in [91]. Thus, it is examined if a low mutual coherence is also
useful in case when an ill-posed inverse problem is solved by a CNN with the limited-angle Radon
transform as forward mapping. As far as we are aware, this is the first time this is examined
for this type of problem. Our preconditioning method lowers the mutual coherence of the
preconditioned forward mapping as much as possible by means of matrix multiplications. Since
the preconditioners lower the mutual coherence, our method is based on compressed sensing,
whereas the FBP is based on the analytical solution of the Radon transform. The preconditioners
are easy to construct and their contribution to the inverse problem is easy to analyze since the
method consists of matrix multiplications. Furthermore, by using matrix multiplications we
can connect the fields of inverse problems, compressed sensing and preconditioning via the
information theory based framework presented in section 2.5. This framework enables us to
give a detailed analysis of the contribution of our preconditioning method. Analysis of the
effect of the preconditioner is not given in [52].

34
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The proposed method consists of two parts. First, the preconditioner Pα from [4] is used to
create the preconditioned inverse problem Pα (Ax+ η) = Pαy, where PαA has a lower mutual
coherence. Afterwards a second preconditioner is used, which is the truncated regularized
pseudo-inverse Pλ. The truncated regularized pseudo-inverse is chosen for the inverse because
of its speed to construct and it is as successful in lowering the mutual coherence in comparison
to iteratively derived preconditioners [84]. This results in the preconditioned version of inverse
problem (IP ):

PλPα (Ax+ η) ≈ Ix+ PλPαη

= PλPαy. (PIP )

Using two preconditioners instead of one, enables us to lower the mutual coherence even further.

3.2 Preconditioner Pα

A method that lowers the mutual coherence is presented by Alemazkoor et al. in [4]. By
designing a proper minimization problem for the construction of the preconditioner for the
inverse problem y = Ax + η, they can ensure that the mutual coherence is lowered. In section
2.3 it is explained that the minimal possible mutual coherence is bounded by the Welch bound.
Furthermore, it is discussed that the mutual coherence is the biggest off-diagonal (in absolute
sense) of the corresponding Gram matrix in case when the forward mapping has unit norm
columns. Due to the normalization this Gram matrix has ones on the diagonal. By enforcing
the Gram matrix of the preconditioned forward mapping PαA to be close to a matrix with ones
on the diagonal and off-diagonals smaller (in absolute sense) than the Welch bound, one can
ensure that the mutual coherence is lowered when Pα is multiplied with A. A matrix with ones
on the diagonal and off-diagonals that are not bigger (in absolute sense) than the Welch bound,
is called an equiangular tight frame (ETF) matrix and belongs to the space [4]

HµE =

{
G ∈ Rm×m : G = GT , Gii = 1, max

i 6=j

∣∣Gij∣∣ < µE

}
, (3.1)

where µE is equal to the Welch bound given by

µE =

√
n−m
m(n− 1)

.

Furthermore, by enforcing the preconditioner to be close to the identity matrix, one can control
the extent to which the noise is amplified or reduced. Assuring that the preconditioner is close
to these two matrices gives the following minimization problem for the construction of the
preconditioner Pα:

min
Pα∈Rm×m, G∈HµE

f(G,Pα) = min
Pα∈Rm×m, G∈HµE

∥∥∥G−ATPTα PαA∥∥∥2

F
+ α‖I − Pα‖2F , (3.2)

where the parameter α ≥ 0 controls how close the preconditioner is to the identity matrix.
The optimal solution to (3.2) can be found by using a gradient-based method, e.g. conjugate
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gradient method. The gradient of the function in (3.2) with respect to Pα is defined as

∂

∂Pα
f(G,Pα) =

∂

∂Pα

[∥∥∥G−ATPTα PαA∥∥∥2

F
+ α‖I − Pα‖2F

]
def ‖·‖F=

∂

∂Pα

tr

{(
G−ATPTα PαA

)T (
G−ATPTα PαA

)}
+ α tr

{
(I − Pα)

T
(I − Pα)

}
= 4PαA

(
ATPTα PαA−G

)
AT + 2α (Pα − I) . (3.3)

For the details of the calculation of this partial derivative we refer to Appendix A. The algorithm
for creating the preconditioner is given in Algorithm 1.

Algorithm 1 Alternating derivation of the solution to minimization problem (3.2) [4].

1: Input: random matrix P 0
α, identity matrix G0, threshold δthr and Welch bound µE

2: while δt < δthr do
3: Form D = P t−1

α A
4: Normalize the columns of D to derive D̃
5: Form G̃ = D̃T D̃

6: Form Gt(i, j) =


1 i = j,

G̃ij i 6= j,
∣∣∣G̃ij∣∣∣ ≤ µE

sign
(
G̃ij

)
· µE i 6= j,

∣∣∣G̃ij∣∣∣ > µE

7: Solve P tα = arg min
Pα∈Rm×m

f(Gt, P
t−1
α ) using conjugate gradient method and derivative (3.3)

8: Calculate δt =
[
f(Gt, P

t
α)− f(Gt−1, P

t−1
α )

]
/f(Gt−1, P

t−1
α )

9: end while

This algorithm indicates that Pα is adjusted every iteration, which leads to changes in G̃.
By iteratively adjusting the entries of G̃ that are bigger than the Welch, one gets the adjusted
Gram matrix G. This matrix G will be used for minimizing f(·), which forces the updated
Pα to be of such a form that the Gram matrix G = ATPTα PαA is close to an ETF matrix.
The objective function is solved by using the conjugate gradient method and the optimization
toolbox MinFunc [82]. This toolbox is specifically build for optimization problems with matrices
as input.

3.3 Preconditioner Pλ

In section 2.4.3 two different preconditioning methods are discussed, where it is explained that
the factorization method is based on Gaussian elimination. The LU factorization can only be
applied to a square forward mapping A when all leading principal submatrices are nonsingular,
whereas the ILU factorization is originally made for M -matrices and diagonally dominant ma-
trices [66]. A matrix A is an M -matrix if aij ≤ 0 for i 6= j, A nonsingular and all entries of A−1

are bigger or equal to zero. Discretizations of one variable elliptical PDEs are characterized by
this type of matrix [80]. A diagonally dominant matrix A satisfies

|aii| ≥
∑
i 6=j

∣∣aij∣∣ ∀i.
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For many inverse problems the forward mapping A is not even close to one of these discussed
matrices, leading to a forward mapping A that often contains zero pivots. This causes the
Gaussian elimination process to break down due to the division by zero. One can add a constant
ε to the diagonal of the forward mapping but this gives no guarantee that the factorization is
accurate [9]. Break down also takes place when a QR decomposition is made from a rank
deficient forward mapping A [39]. A method that is unaffected by these breakdowns, is the
approximated inverse preconditioning method and will therefore be the preconditioning method
for inversion of the forward mapping. A simple method that approximates the inverse of a
matrix is the application of the pseudo-inverse as a preconditioner. Examples of its use as
preconditioner can be found in [31, 59, 84]. The pseudo-inverse is the minimizer to:

P = arg min
P

‖I − PA‖F (3.4)

and the closed form solution is summarized in the following proposition.

Proposition 1 (from [84]). Given A ∈ Rm×n, let UΣV T be the singular value decomposition
of A and σ1, . . . , σr the nonzero singular value of A in descending order. Then the minimizer
of (3.4) is given by

P =



AT
(
AAT

)−1
r = m(

ATA
)−1

AT r = n

V diag

[1/σ1, . . . , 1/σr︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n-r

]

UT r < min{m,n}.
(3.5)

The use of preconditioners like the pseudo-inverse can severely amplify the noise [4]. There-
fore, the minimization problem (3.4) needs to be regularized and leads to a regularized pseudo-
inverse that minimizes

Pλ = arg min
P

‖I − PA‖F + λ‖P‖F (3.6)

where λ > 0. The closed form solution is equal to:

Pλ =


AT
(
AAT + λI

)−1
r = m(

ATA+ λ
)−1

AT r = n

Vr̂Ψr̂U
T
r̂ r < min{m,n},

(3.7)

where r̂ ≤ r = rank(A), A = UΣV T , Vr̂ consists of the first r̂ columns of V , Ur̂ consists of

the first r̂ columns of U , and Ψr̂ = diag
(

σ1

σ2
1+λ

, . . . , σr̂
σ2
r̂+λ

)
. The derivation of the regularized

pseudo-inverse is given in Appendix B.



Chapter 4

Experimental setup

This chapter explains the details of the experimental setup of this thesis and starts with a brief
background of the application. In this part the corresponding forward mapping is examined
and its reconstruction method. Subsequently it is explained to which data sets the forward
mapping is applied in order to create the data and how the parameters of our proposed method
are optimized. Afterwards, the different reconstruction methods are discussed, including their
implementation details. Finally, the quality measures are discussed that are used to assess the
quality of the reconstructions.

4.1 Radon transform

In the section a brief introduction is given on the Radon transform and its application to medical
imaging. Afterwards an analytical reconstruction method of the Radon transform is discussed
and is denoted by the filtered backprojection.

4.1.1 The forward mapping

The discovery of X-rays was a milestone in the development of the field of medical imaging. For
a specific projection angle θ, the X-ray beams travel along a line x cos θ + y sin θ = t whereby
t varies for each beam. The measured intensity M(t, θ) at the receiver, the attenuated initial
X-ray intensity, is the line integral along line x cos θ + y sin θ = t, denoted by [54]:

M(t, θ) =

∫ ∞
−∞

∫ ∞
−∞

O(x, y)δ(x cos θ + y sin θ − t) dx dy, (4.1)

where the measured intensity depends on the structure inside the object and δ(·) is the Dirac
delta function. The expression (4.1) is referred to as the Radon transform of the object O(x, y).
The complete measured signal for a specific θ, is composed by a sequence of line integrals.

Due to the use of X-rays in computerized tomography (CT), the study on inverting the
Radon transform is very important. A CT scanner obtains X-ray images of the object O inside
the scanner while the X-ray transmitter and receiver rotate around the object. The received X-
ray images are referred to as measurements or projections and are obtained for a certain amount
of projection angles θ. An illustration of a CT setup is given in Figure 4.1. How the Radon
transform can be inverted, is explained in the next section. For more background information
on CT, we refer to [76]. For the creation of data a discretized version of the Radon transform
[58] is used and will be the forward mapping A in (IP ).

38
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Figure 4.1: Illustration of 2D CT, where a rotating transmitter irradiates the object with
X-rays and the receiver collects the attenuated signals along the travel pathways of the X-rays.

4.1.2 Reconstructing the object

Since the measured intensities M(t, θ) are line integrals, one way of reconstructing the intensity
profile of the object is by smearing back those intensities over that specific line, which is called
backprojection. By smearing back the intensities for all different lines and projection angles, a
blurry reconstruction of the object O is obtained. In order to sharpen the reconstruction a high-
pass filter is applied before backprojecting the measured intensities, in which low frequencies are
suppressed in comparison to high frequencies [54]. The filtering and backprojection together
is called the filtered backprojection (FBP) and is considered to be the standard method for
reconstructing the object inside the scanner. Since the filter is applied on the frequencies of the
measured signal, the measurements for a specific projection angle θ first need to be transformed
to the Fourier domain:

F (w, θ) =

∫ ∞
−∞

M(t, θ)e−i2πwtdt. (4.2)

Then, the filtering |w| is applied and afterwards the inverse Fourier transform, which leads to:

Q(t, θ) =

∫ ∞
−∞

F (w, θ)|w| ei2πwtdw. (4.3)

By backprojecting the filtered projections for every projection angle θ along the line x cos θ +
y sin θ = t, one completes the FBP and obtains the reconstruction of the object:

O(x, y) =

∫ π

0

Q(t, θ) dθ

thus O(x, y) =

∫ π

0

Q(x cos θ + y sin θ, θ) dθ. (4.4)

The choice of filter can also play an important role when one recovers the object. The used
filter |w| in (4.3) is called the Ram-Lak filter. For more details on the FBP and other filters, we
refer to [54, 72, 76].
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4.2 Data

The data is generated by applying the Radon transform to two different data sets, of which the
MNIST data set [56] is the first. These images are normalized, scaled to 64× 64 pixels and for
the Radon transform only 4 measurement angles are used. Each angular view is discretized into√

2 · 64 ≈ 91 components such that each angle has the same resolution. To the measurements
a Gaussian noise with noise level δ = 0.05 is added, where the average maximum value of the
measurements is 2.1. The second data set is the Low-Dose Parallel Beam (LoDoPaB) CT data
set [57]. The images are scaled to 128× 128 pixels and for the Radon transform only 36 angles
are used. All angular views are discretized into 1.5 · 128 = 192 components such that they have
the same resolution. To each measurement Gaussian noise is added such that the noisy image
has a signal-to-noise ratio (SNR) of 40 dB. Examples of both data sets are given in Figure 4.2.

(a) Example MNIST. (b) Example LoDoPaB.

Figure 4.2: Example of a sample of each data set.

4.3 Parameter estimation

Our proposed method consists of a product of two matrices, both with one parameter, where
λ is the parameter for the pseudo-inverse and α for the other preconditioner. We aim to
lower the mutual coherence of the preconditioned forward mapping as much as possible. For
the optimization of these parameters we use a dataset of three figures of 48 × 48 pixels that
mimic certain features from the MNIST and LoDoPaB data sets and are illustrated in Figure
4.3. These figures contain sharp edges, smooth parts or a combination of both. The forward
mapping A is the Radon transform with 24 measurement angles. It is applied to all images and
subsequently Gaussian noise is added such that the image has an SNR of 40 dB. Afterwards
our proposed method is applied to these noisy measurements. For each α the parameter λ is
chosen that minimizes the average mean squared error (MSE) of the images in Figure 4.3 and
their preconditioned counterpart. Then, the combination of parameters (α, λ) is chosen that
gives the lowest mutual coherence of the preconditioned forward mapping PλPαA. If different
parameter combinations give the same mutual coherence then the combination with the lowest
average MSE is chosen.
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Figure 4.3: The three used figures for parameter estimation of our proposed method.

The application of the preconditioner will be the first part of the total reconstruction
process. Due to the fact that a limited angle Radon transform is used, severe artifacts will be
present after the first reconstruction phase. The general treatment is then the addition of a
second reconstruction method that can eliminate the artifacts. This is discussed in the next
section.

4.4 Reconstruction methods

For the second reconstruction phase, two different reconstruction methods are applied to the
results of our first reconstruction phase, i.e. the preconditioned data. For comparison purposes,
these two second phase reconstruction methods are also applied to the standard reconstruc-
tion/preconditioning method of the Radon transform, i.e. the FBP with Ram-Lak filter. The
quality of our proposed method will be judged based on the outcomes of the two second phase
reconstruction methods.

4.4.1 Reconstruction method 1: residual network

In order to give a valid comparison between the FBP and our proposed network, two different
CNNs are used. For image reconstruction problems the U-Net is the standard reconstruction
method. This network is so powerful that it can be hard to judge how much the first recon-
struction phase contributes to the total reconstruction process. Therefore, also a smaller less
powerful network is used as second phase reconstruction method. This small-scale neural net-
work is illustrated in Figure 4.16 and due to the skip connection this network will be referred
to as residual network. In this network the skip connection connects the input with the output.
This means that the network learns the residual between the input and groundtruth, which is
proven to be easier to learn [42]. Only 6 convolutional layers without max pooling are considered
since this leads to a network with a limited receptive field. Together with the ground truth, the
preconditioned data will form the input pairs for the neural network.
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I 64 64 64 64 64 1 O

+

+

3× 3 conv.

+ ReLu
1× 1 conv. Output Skip connection

Figure 4.16: Illustration of a small residual network, where the numbers indicate how many
filters are used, where I is the input and O is the output.

4.4.2 Reconstruction method 2: U-Net

The U-Net is known for its expressive power, which is due to its large receptive field. A large
receptive field means that many pixels in the input layer contribute to the a pixel in the output
layer. Therefore, more dependencies between pixels can be explored which makes the network
more powerful. This big receptive field is due to the use of multiple max pooling layers and many
convolutional layers. Due to the many convolutional layers, it is prone to vanishing gradients,
which is prevented by the use of the skip connections. Also in this network a skip connection is
used that connects the input with the output. The U-Net is illustrated in Figure 4.52.

I 64 128 256 512 1024

+

512

512

256

+

256

128

+

128

64

+

64

1 O

+

+ +

3× 3 conv.

+ ReLu

2× 2 max pool 3× 3 conv.

Upsamp. + ReLU
1× 1 conv. Output Skip connection (s.c)

/ s.c + concatenation

/

Figure 4.52: Illustration of a U-Net, where the numbers underneath the layers represent the
used filters per convolutional layer, where I is the input and O is the output.
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4.5 Implementation

The small-scale residual network only uses convolutional layers and one skip connection. The
U-Net is the same as presented in [52], except that batch normalization is omitted. Both neural
networks make use of biases, the `2 loss function (MSE) and the leaky ReLU activation function
with parameter γ = 0.1. The networks make use of the uniform Xavier initializer, in which the

weights in each layer Wij ∼ U
[
−

√
6√

nin+nout
,

√
6√

nin+nout

]
, where nin and nout represent the size

of the previous and next layer, respectively. The neural networks are trained in Tensorflow with
only 100 training samples. In order to obtain a good validation, more validation samples are
considered. This also gives the opportunity to examine the case where more training samples
are given. The networks are applied to images in the test set. Based on the reconstructions of
the test data, we can determine the quality of the first reconstruction phase. For our proposed
method we make use of the discretized version of the Radon transform, while for the FBP the
Radon transform from the ‘scikit-image’ toolbox in Python is used. Due to the large number
of parameters in the U-Net network, the stopping criterion is based on the moving average.
Every epoch the average validation loss of the last 5 epochs is calculated and the training is
stopped when this moving average is increasing for three consecutive epochs. The optimization
is done with the ADAM optimizer with an exponential weight decay of the learning rate. Other
necessary information is given in Table 4.1.

Table 4.1: Description of the parameters for each second phase reconstruction method (RM).

Parameters RM 1 RM 2

# conv. layers 6 20
# training samples 100 100
# validation samples 250 250
# test samples 250 250
# epochs 500 moving average
# kernels per conv. layer 64 varies from 64 to 1024
kernel size 5× 5 5× 5
batch size 8 8
activation function lReLUγ=0.1 lReLUγ=0.1

start learning rate 10−3 5 · 10−4

final learning rate 10−4 10−4

4.6 Quality measures

Besides visual interpretation, quantitative measures for examining the reconstruction quality are
considered. In this thesis we consider the peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM). The PSNR is defined as

PSNR = 10 · log10

(
MAXGT

MSE

)
, (4.5)

where MAXGT is the maximum value of the ground truth and MSE is the mean squared error
between the ground truth and its reconstruction. The PSNR is a ratio between the maximal
power of the signal and the corruption present in the reconstruction. From (4.5) it is clear that
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in general the higher the PSNR, the better the reconstruction is. Since this is just an absolute
error, it does not take into account the structural similarities between the reconstruction and the
ground truth. Structural similarities can give good insight in the quality of the reconstruction
(RS), which is why the SSIM is used. The SSIM is defined as [87]:

SSIM =
(2µRS · µGT + c1)(2CRS,GT + c2)

(µ2
RS + µ2

GT + c1)(σ2
RS + σ2

GT + c2)
, (4.6)

where the constants c stabilize the fraction, µx is the average of x, σ2
x is the variance of x and

Cx,y is the covariance of x and y.



Chapter 5

Results

This chapter summarizes the results of both reconstruction phases and the analysis on the re-
sults. First, the results are given of the first reconstruction phase. Secondly, the reconstructions
are given of the residual network and U-Net. Afterwards the individual contribution of Pα and
Pλ is discussed and finally an analysis on the effects of our proposed method is given.

5.1 Parameter estimation

For each α the corresponding λ is chosen that minimizes the average MSE of the reconstructions.
Then, the parameter pair (α, λ) is picked that minimizes the mutual coherence of PλPαA. If
different pairs result in the same mutual coherence, then the one with the smallest average MSE
is selected. Due to the ill-posedness of A, some regularization is needed. The minimal value for
λ is considered to be 0.0001, since lower values of λ resulted in low quality reconstructions of
other data sets. Figure 5.1 summarizes for different α the resulting λ, average MSE and mutual
coherence, which states that (α, λ) = (5, 0.0001) is the optimized parameter pair.

Figure 5.1: Mutual coherence of PλPαA and average MSE for different parameter pairs (α, λ).

45



46 CHAPTER 5. RESULTS

The reconstructions of the figures in Figure 4.3 are given in Figure 5.2 and 5.3. They show
that there is almost no difference between these reconstructions.

Figure 5.2: Reconstructions of the images in Figure 4.3 using FBP.

Figure 5.3: Reconstructions of the images (preconditioned images) in Figure 4.3 using the
proposed method.

The difference is more clear when we consider horizontal cross-sections from the middle of
the reconstructions. The cross-sections of the reconstructions in Figure 5.2 and 5.3 are given
in Figure 5.4. Figure 5.4 shows that our proposed method leads to more overshooting near the
edges and to bigger oscillations in flat regions. This leads to a bigger error of the reconstructions.
An explanation for this behavior is given in section 5.5.
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Figure 5.4: Horizontal cross-sections from the reconstructions of the images in Figure 4.3.

The optimized parameter pair (α, λ) is used to construct the preconditioners Pα and Pλ.
These preconditioners are used to precondition the inverse problem y = Ax+ η, which leads to
the preconditioned inverse problem

PλPα (Ax+ η) = PλPαy. (5.1)

Our proposed preconditioning method lowers the mutual coherence from 0.732 to 0.576 in case
when A is applied to the MNIST data set. For the LoDOPaB a bigger matrix A is used, where
our preconditioning method lowers the mutual coherence from 0.908 to 0.60.

For both the FBP and our proposed method and for both data sets, examples of the results
of the first reconstruction phase are given in Figure 5.5 and Figure 5.6.

Figure 5.5: MNIST inputs after first reconstruction phase, with in (a) the ground truth, (b)
FBP and (c) proposed method.
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Figure 5.6: LoDoPaB inputs after first reconstruction phase, with in (a) the ground truth,
(b) FBP and (c) proposed method.

The visual quality of the first reconstruction phase is similar for the FBP and our proposed
method if the MNIST data set is considered. The number of used angles is so small that both
methods struggle to reconstruct the data, leading to outcomes that are not close to the ground
truth. When the LoDoPaB data set is considered, the outcome belonging to our proposed
method contains less details. This is either due to the error of the approximation of the inverse
of A or due to the magnification of noise. This is discussed in section 5.5.

5.2 Reconstruction method 1: residual network

Together with the ground truth, the outcome of the first reconstruction phase will form the
input pair for the neural networks. Both the residual network and U-Net are considered to
be a second phase reconstruction method. The outcomes of the residual network are given in
Figure 5.7 and Figure 5.8, for MNIST and LoDoPaB, respectively. In the Appendices C and D
more results of the residual network are given. From the results it can be concluded that this
network has difficulty in reconstructing the MNIST data set, which is due to the use of very
few measurement angles. However, the outcome of the LoDoPaB data set in Figure 5.8 gives
more clarity on the difference in quality between FBP and our proposed method. When the
FBP is used as first reconstruction phase, the residual network is able to give a more detailed
reconstruction. This is probably due to the fact that the input of the residual network, generated
by the FBP, contains more details.

Figure 5.7: Reconstruction by the residual network of digit 3, with in (a) the ground truth,
(b) FBP and (c) proposed method.
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Figure 5.8: Reconstruction by the residual network of an LoDoPaB image, with in (a) the
ground truth, (b) FBP and (c) proposed method.

Since less parameters are present in this network, it is less prone to overfitting. Therefore
a fixed number of epochs is used rather than a moving average. In case when the LoDoPaB
data set is considered, Figure 5.9 gives the train and validation loss for both the FBP and our
proposed method. This figure clearly validates the observation that the FBP results in a better
reconstruction of the residual network. It shows that the reconstruction loss is significantly
lower when the FBP is used instead of our proposed method.

Figure 5.9: Train and validation loss for the residual network applied to the LoDoPaB data
set.

In Table 5.1 the average and standard deviation of both the PSNR and SSIM are given.
These values are based on the reconstructions of the images in the test set. The table shows that
the reconstructions of the MNIST data set for the FBP and our proposed method are similar
in quality, which is due to the fact that the inputs for the residual network do not differ a lot in
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terms of their visual quality. There is a clear difference in quality, though, when the LoDoPaB
data set is reconstructed. From section 5.1 it is clear that the FBP results in a more detailed
output of the first reconstruction phase. The extra details lead to a much better reconstruction
of the residual network in terms of visual quality, PSNR and SSIM.

Table 5.1: Average and standard deviation of PSNR and SSIM for the reconstructions of the
residual network.

Data set First reconstruction method PSNR SSIM

MNIST FBP 18.8± 1.76 0.63± 0.06
MNIST Proposed method 18.53± 2.19 0.66± 0.06
LoDoPaB FBP 39.39± 3.34 0.97± 8.8 · 10−3

LoDoPaB Proposed method 35.27± 3.36 0.93± 14.8 · 10−3

5.3 Reconstruction method 2: U-Net

The reconstructions of the MNIST data set by the U-Net are given in Figure 5.10 and in the
Appendices C and D. These reconstructions show that the U-Net gives more detailed reconstruc-
tions compared to the residual network. It makes sense that the U-Net is able to give better
reconstructions since the U-Net has more expressive power, due to the use of more trainable
parameters and the use of max pooling. Despite its expressive power, the network is not able to
exactly recover the test images of the MNIST data set. This is partly due to the fact that the
inputs of the U-Net are not close to the ground truth, meaning that the network needs to learn
a difficult mapping from input to ground truth. Another explanation is that the use of only
limited number of training samples makes it harder to make good reconstructions of unseen
data, i.e. the test data.

Figure 5.10: Reconstruction by U-Net of digit 3, with in (a) the ground truth, (b) FBP and
(c) proposed method.
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The difference between the FBP and our proposed method is more profound when the
LoDoPaB data set is considered. The main reason for this difference is the fact that the input
generated by the FBP contains more details than the one generated by our proposed method.
This means that the U-Net needs to learn an easier mapping from input to ground truth when
the FBP is used as first reconstruction phase.

Figure 5.11: Reconstruction by U-Net of an LoDoPaB image, with in (a) the ground truth,
(b) FBP and (c) proposed method.

For the U-Net the number of epochs is determined by the moving average, due to the chance
of overfitting. Figure 5.12 details the train and validation loss per epoch for the LoDoPaB data
set. The figure validates the claim that the reconstruction of the U-Net is better when the FBP
is used as first reconstruction phase.

Figure 5.12: Train and validation loss for the U-Net applied to the LoDoPaB data set.
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Table 5.2 summarizes the average and standard deviation of both the PSNR and SSIM.
These values are derived from the reconstructions of the test set by the U-Net. Interestingly, in
case when the MNIST data set is considered, switching from the residual network to the U-Net
gives the biggest gain in SSIM rather than PSNR. It makes sense that the PSNR roughly stays
the same since both the residual network and the U-Net struggle with the reconstructions of
the digits. These errors contribute to the MSE, leading to a lower PSNR for both networks.
On the other hand, switching to the U-Net gives a clearer digit as a result, leading to a more
structured digit and therefore leading to a big gain in SSIM. Another interesting finding is the
fact that switching from the residual network to the U-Net gives the biggest gain in PSNR
when our proposed method is considered. An explanation for this finding is given in section 5.5.
Besides that, the PSNR and SSIM show that the FBP is the superior first reconstruction phase
in case of the LoDoPaB data set, which is expected because of the more detailed input for the
networks. Finally, it shows that the reconstructions of the MNIST data set are roughly similar
for the FBP and our proposed method.

Table 5.2: Average and standard deviation of PSNR and SSIM for the reconstructions of the
U-Net.

Data set First reconstruction method PSNR SSIM

MNIST FBP 20.4± 2.63 0.8± 0.05
MNIST Proposed method 19.68± 2.72 0.83± 0.06
LoDoPaB FBP 40.61± 3.36 0.98± 0.01
LoDoPaB Proposed method 37.21± 3.23 0.95± 0.01

5.4 Contribution Pα and Pλ

In section 3.1 it is explained that the use of the two preconditioners Pα and Pλ can lower the
mutual coherence more than when only Pλ is used. The effect of the second preconditioner
Pα on the mutual coherence is, however, rather small. Depending on α and λ, the difference
between the mutual coherence of PλA and PλPαA was at most roughly 0.02, in favor of PλPαA.
The question is whether this small decrease in mutual coherence makes a difference for the
quality of the preconditioner. The mutual coherence should have a bound when more than one
preconditioner is used. If not, an infinite number of preconditioners could be used in order to
reduce the mutual coherence to zero, which is not possible since the preconditioners are non-
singular and the forward mapping is ill-posed. But, it is not clear what that theoretical bound
is when more than one preconditioner is used. Thus, it is questionable whether it is useful to
use more than one preconditioner. This small decrease in mutual coherence suggests that the
mutual coherence can not be lowered significantly by a second preconditioner. More research
on this topic is needed.
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5.5 Analysis proposed method

From section 5.1 it is clear that, compared to the FBP, our proposed method result in different
inputs for the CNNs. From Figure 5.6 it can be concluded that the input belonging to our
proposed method contains less details than that of the FBP. From (PIP ) it is clear that the use
of left preconditioners affects the noise present in the system. The effect on the noise is clear
from the box plots in Figure 5.13, where it is shown that the variance of the noise substantially
increases after preconditioning with PλPα.
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Figure 5.13: Box plots of the added noise in (IP ) and (PIP ), with in (a) noise e and in (b)
noise PλPαe, respectively. Note the difference in axis.

From an information theory perspective, the noise can be detrimental for the information
in the system. This can be shown via the Bayesian view on inverse problem, which assumes
that all variables of the inverse problem (IP ) are random. When no preconditioning is used
and E ∼ N (e0, σ

2I), then the Fisher information matrix is defined as [62]:

I(x) =
1

σ2
ATA. (5.2)

From (5.2) it is clear that a lower variance of the noise is beneficial for the information present in
the system, which intuitively makes sense. As explained in section 2.5, the inverse of the Fisher
information matrix is the covariance matrix of the posterior, which means that a lower variance
of the noise implies a smaller variance of the posterior πposterior(x|y). Since our proposed method
magnifies the noise substantially, there is less information present in the system, which leads to
a bigger variance of the posterior.

The magnification of the noise is due to the choice of lowering the mutual coherence as much
as possible. This choice implies that the regularization parameter λ can not be big, resulting
in less regularization of the noise. In Figure 5.14 it is illustrated how the mutual coherence of
the preconditioned forward mapping PλPαA changes by an increasing regularization parameter
λ. It shows that regularization of the noise implies a growth in the mutual coherence. The
low regularization also explains why the cross-sections of our proposed method in Figure 5.4,
contain bigger oscillations and tend to overshoot near edges.
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Figure 5.14: Effect of regularization on the mutual coherence of the preconditioned forward
mapping PλPαA.

This effect of regularization is algebraically verified for 2 × 2 full rank matrices in section
E.1 of Appendix E. There, the following proposition is proved:

Proposition 2. Given a 2×2 full rank matrix A = UΣV T , σ1 > σ2 and the regularized pseudo-
inverse Pλ defined in (3.7), then the mutual coherence of the preconditioned forward mapping
PλA increases when λ goes up.

For larger matrices the derivation is too involved. Therefore, a geometrical perspective
on the effect of regularization of 2 × 2 matrices is given in section E.3, where it is shown that
regularization decreases the angle between the column vectors. When column vectors get more
aligned, the mutual coherence increases. For bigger n×n or m×n matrices the column vectors
of PλA are n-dimensional. Due to linearity it is expected that the effect of regularization is the
same as in the case of a 2× 2 matrix. For a rank deficient A, where r < min{m,n}, PλA gives
an r-dimensional subspace. Due to linearity it is expected that the regularization has the same
effect on the column vectors as in the case when A is full rank. This means that also in this
case the mutual coherence increases when more regularization is applied.

This observation contradicts the conclusions made in section 2.5, where it is stated that
forward mappings with a lower mutual coherence indicate that the inverse problem is more
informative. One would suggest that regularization makes the inverse problem more informative
due to the regularization of noise. An example is given in Figure 5.15. This figure shows that
the use of more regularization leads to images with clearer details, where the regularization
parameter is increased to λ = 2.5. Important is that this is not the optimal value for λ.
But, as the above result indicates, higher regularization leads to a higher mutual coherence of the
preconditioned forward mapping and therefore to a less informative system. This contradiction
is due to the ill-posedness of the forward mapping. For well-posed problems the pseudo-inverse
preconditioner can almost perfectly approximate its inverse, leading to a preconditioned forward
mapping that is close to the identity matrix. Then, when applying regularization, the mutual
coherence of the preconditioned forward mapping increases since it is less close to the identity
matrix. Clearly more understanding on regularization, mutual coherence, ill-posedness and
informativeness is needed.
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(a) Outcome proposed method. (b) Outcome proposed method with
more regularization.

Figure 5.15: Outcome differences of the first reconstruction when the amount of regularization
changes.

Besides their effect on the information in the inverse problem, the preconditioners also
affect the type of noise present in the inverse problem. Before preconditioning Gaussian noise
E ∼ N (e0, σ

2I) is present, which has the corresponding correlation matrix [53]:

corr(E) =

(
diag

(
σ2I
))− 1

2

σ2I

(
diag

(
σ2I
))− 1

2

= I, (5.3)

where diag(Z) is a diagonal matrix with on the diagonal the diagonal elements of Z. Since
the off-diagonal elements of the correlation matrix are zero, this type of noise is regarded as
uncorrelated. By using left preconditioners, i.e. left multiplying the noise with the invertible
matrices Pλ and Pα, the covariance matrix of the preconditioned noise is σ2PλPαP

T
α P

T
λ . This

gives the following correlation matrix:

corr(PλPαE) =

(
diag

(
σ2PλPαP

T
α P

T
λ

))− 1
2

σ2PλPαP
T
α P

T
λ

(
diag

(
σ2PλPαP

T
α P

T
λ

))− 1
2

.

(5.4)

Since the off-diagonal elements of this correlation matrix are not equal to zeros, the precon-
ditioned inverse problem contains correlated noise. A box plot of these off-diagonals is given
in Figure 5.16, where it is clear that some of the off-diagonal elements are bigger than zero.
Furthermore, considering the fact that the off-diagonals of (5.4) are always between −1 and 1,
we can conclude that some entries are moderately high. Roughly 0.12% of the entries have an
absolute value above 0.2, which concerns more than 321000 entries. It is stated that correlated
noise is harder to remove [30, 93]. In [30] the authors use a 3-layer neural network that is a
mixture of a CNN and a fully connected network, while in [93] a 12-layer CNN is used for the
removal of the noise. The nature of the preconditioned noise and the bigger receptive field of
the U-Net might explain why switching from the residual network to the U-Net gives the biggest
gain in PSNR when our preconditioning method is used.
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Figure 5.16: Box plot of the off-diagonal elements of (5.4).



Chapter 6

Conclusion and Outlook

6.1 Conclusion

It was shown that the LoDoPaB data set was informative for the comparison between the fil-
tered backprojection and our proposed method. The outcomes of the first reconstruction phase
showed that our proposed method lost more details compared to the filtered backprojection.
It was shown that this was due to the magnification of noise, which was detrimental for the
informativeness of the system. Furthermore, we showed that the mutual coherence was highly
linked to the amount of regularization applied to our proposed method. We proved for small
2× 2 matrices that the mutual coherence increased when regularization expanded. A geometri-
cal perspective on regularization was given that gave insight into why this also holds for larger
rank deficient matrices, which were of particular interest in our thesis. We showed that a low
mutual coherence was only obtained when little regularization was applied. Furthermore, we
demonstrated that for ill-posed problems the connection between the fields of inverse problems,
preconditioning and compressed sensing was not trivial. It was concluded that more regulariza-
tion suppresses the noise but leads to a less informative system.

The final conclusion is that a lower mutual coherence is not beneficial when only left pre-
conditioners are considered. Lowering the mutual coherence as much as possible excludes the
use of high amounts of regularization, leading to magnification of noise. Since right precondi-
tioners were not considered in this research, it is still too early to conclude that a lower mutual
coherence is not beneficial.

6.2 Outlook

In section 5.5 it is discussed that for ill-posed problems regularization is leading to a less in-
formative system. It might be expected that more regularization can give a more informative
system since it suppresses noise and it is beneficial for the showing the details of the image. The
latter is shown in Figure 5.15 in section 5.5. It would be interesting to build an information
theory based framework that incorporates regularization for ill-posed inverse problems. It might
be that the mutual coherence is not suitable for this framework, since it is the worst-case sce-
nario of the coherences between the columns of the forward mapping. One could instead use the
average coherence [32]. The new developed framework could provide ideas for the development
of new preconditioners.
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From the results it is clear that a low mutual coherence of the forward mapping is not a
good predictor for success when only left preconditioners are considered. It might be beneficial
to lower the mutual coherence as much as possible when also a right preconditioner P2 is taken
into account. The effect of adding a right preconditioner is explained in Appendix F. Due to
the positive semi-definiteness of PT2 P2, it is clear that the addition of P2 lowers the variance
of the posterior. But, when P2 adds information that is not valid, it might happen that the
correct solution of the inverse problem is not contained in the posterior distribution

N
(
x∗2,
(
ATPT1 P1A+ PT2 P2

)−1
)

. From the Bayesian view it is not clear which preconditioner P2

is valid. It is interesting to research which type of preconditioners can add valuable information
to the inverse problem. Since edges need to be preserved and the images in both data sets
contain smooth parts, priors like total generalized variation [12] or Perona-Malik [74] could be
good options for P2.

Instead of using the mutual coherence to optimize the preconditioner, one could also use the
mutual coherence to improve the reconstruction quality of the CNN. A low coherence between
the filters in the CNN proved to be beneficial for classification problems [38] and feature learning
[47], i.e. representation of the necessary features of an image. Low coherence is guaranteed when
the CNN uses non-learned Gaussian random filters, i.e. filters with entries that are i.i.d Gaussian
random variables. It could be interesting to examine whether it is possible to build a CNN that
simultaneously learns the inverse mapping and the features of the images. These features can
be added to layers deep in the CNN, i.e. layers close to the output, which possibly can have a
regularizing effect. How to build a CNN that learns the features of an image is given in [47].
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Appendix A

Derivation partial derivative w.r.t
preconditioner Pα

This chapter contains the detailed calculation of the partial derivative given in (3.3). The
derivation of the solution is based on derivatives with respect to matrices and trace operators.
For further reading on how to calculate the derivatives with respect to matrices and trace
operators, we refer to [73, 90].

The task at hand is the following partial derivative:

∂

∂Pα
f(G,Pα) =

∂

∂Pα

tr

{(
G−ATPTα PαA

)T (
G−ATPTα PαA

)}
+ α tr

{
(I − Pα)

T
(I − Pα)

} ,
where G ∈ HµE with

HµE =

{
G ∈ Rm×m : G = GT , Gii = 1, max

i 6=j

∣∣Gij∣∣ < µE

}
. (A.1)

Then the partial derivative can be rewritten to

∂

∂Pα
f(G,Pα) =

∂

∂Pα

tr

{(
GTG−ATPTα PαAG−GTATPTα PαA+ATPTα PαAA

TPTα PαA
)}

+ α tr

{
(I − Pα)

T
(I − Pα)

}]

=
∂

∂Pα

[
tr
{
GTG

}
− tr

{
ATPTα PαAG

}
− tr

{
GTATPTα PαA

}
+ tr

{
ATPTα PαAA

TPTα PαA
}

+ α tr
{

(I − Pα)
T

(I − Pα)
}]
.

Below it is only demonstrated how to calculate ∂
∂Pα

tr
{
ATPTα PαAG

}
, since the other terms

are calculated in the same manner. For the derivation we follow the same procedure presented
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in [90]. The following two equations are used in the calculation of the derivative of the trace
operator with respect to matrix Pα:

tr (A) = tr
(
AT
)

(A.2)

tr (ABCD) = tr (BCDA) = tr (CDAB) = tr (DABC) . (A.3)

First we define

d tr
{
ATPTα PαAG

}
= tr

{
d
(
ATαP

TPαAG
)}

due to (A.3)

= tr
{
d
(
AGATPTα Pα

)}
= tr

{
d
(
AGATPTα

)
Pα

}
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AGATPTα d (Pα)

}
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AGAT d

(
PTα

)
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}
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}
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{
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}
due to (A.3)
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T
}
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}
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}
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Therefore,

∂ tr
{
ATPTα PαAG

}
∂Pα

= 2PαAGA
T .

In a similar fashion we can conclude that

∂ tr
{
GTATPTα PαA

}
∂Pα

= 2PαAGA
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∂ tr
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To conclude:
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Appendix B

Derivation regularized
pseudo-inverse Pλ

In proposition 1 the rank dependent pseudo-inverse of the measurement matrix A ∈ Rm×n is
given and is the minimizer of

P = arg min
P

‖I − PA‖F . (B.1)

Multiplying A with a pseudo-inverse can severely magnify the smallest singular values and the
noise. Regularization can prevent that, which means that the pseudo-inverse is the minimizer
of

Pλ = arg min
P

‖I − PA‖F + λ‖P‖F . (B.2)

Below the closed form solution to the minimization problem (B.2) is given, where the solution is
dependent on the rank of the measurement matrix A. For the derivation of the regularized rank
dependent pseudo-inverse we use the same algebraic rules as in Appendix A, including (A.2)
and (A.3). By applying the definition of the Frobenius norm, we know that the minimizer of
(B.1) is the solution to

∂

∂P

tr

{
(I − PA)

T
(I − PA)

}
+ λ tr

{(
PTP

)} = 0

and therefore
∂

∂P

tr

{(
I −ATPT − PA+ATPTPA

)}+ λ
∂

∂P

tr

{(
PTP

)} = 0.

(B.3)
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Following the same procedure as in Appendix A, we first define

d tr

{(
ATPTPA

)}
= tr

{
d
(
ATPTPA

)}
due to (A.3)

= tr
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= tr
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P
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{
AATPT d (P )

}
due to (A.2) and (A.3)

= tr

{
AATPT d (P )

}
+ tr

{
AATPT d (P )

}
(B.4)

= tr

{(
2AATPT

)
d (P )

}
, (B.5)

thus

∂ tr
{
ATPTPA

}
∂P

= 2AATPT .

By performing a similar calculation it can be concluded that

∂ tr
{
PA
}

∂P
= A,

∂ tr
{
ATPT

}
∂P

= A and
∂ tr

{
PTP

}
∂P

= 2PT .

This means that equation (B.3) is equal to

−2A+ 2AATPT + 2λPT = 0

which gives Pλ = AT
(
AAT + λI

)−1

.

By changing minimization problem (B.2) to

Pλ = arg min
P

‖I −AP‖F + λ‖P‖F (B.6)

one obtains the right pseudo-inverse and is denoted by

Pλ =
(
AAT + λI

)−1

AT .
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When the measurement matrix does not have a full row or column rank, then the closed-
from solution to minimization problem (B.2) is [24]:

Pλ = Vr̂Ψr̂U
T
r̂ (B.7)

where r̂ ≤ r = rank(A), A = UΣV T , Vr̂ consists of the first r̂ columns of V , Ur̂ consists of the

first r̂ columns of U , and Ψr̂ = diag
(

σ1

σ2
1+λ

, . . . , σr̂
σ2
r̂+λ

)
. For more background on the derivation

of (B.7), we refer to [24].



Appendix C

Additional results MNIST

C.1 Reconstruction method 1: residual network

Figure C.1: Reconstruction by the residual network of digit 2, with in (a) the ground truth,
(b) FBP and (c) proposed method.

Figure C.2: Reconstruction by the residual network of digit 6, with in (a) the ground truth,
(b) FBP and (c) proposed method.
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Figure C.3: Reconstruction by the residual network of digit 7, with in (a) the ground truth,
(b) FBP and (c) proposed method.

C.2 Reconstruction method 2: U-Net

Figure C.4: Reconstruction by U-Net of digit 2, with in (a) the ground truth, (b) FBP and
(c) proposed method.

Figure C.5: Reconstruction by U-Net of digit 6, with in (a) the ground truth, (b) FBP and
(c) proposed method.
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Figure C.6: Reconstruction by U-Net of digit 7, with in (a) the ground truth, (b) FBP and
(c) proposed method.



Appendix D

Additional results LoDoPaB

D.1 Reconstruction method 1: residual network

Figure D.1: Reconstruction by the residual network, with in (a) the ground truth, (b) FBP
and (c) proposed method.

Figure D.2: Reconstruction by the residual network, with in (a) the ground truth, (b) FBP
and (c) proposed method.
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Figure D.3: Reconstruction by the residual network, with in (a) the ground truth, (b) FBP
and (c) proposed method.

D.2 Reconstruction method 2: U-Net

Figure D.4: Reconstruction by U-Net, with in (a) the ground truth, (b) FBP and (c) proposed
method.

Figure D.5: Reconstruction by U-Net, with in (a) the ground truth, (b) FBP and (c) proposed
method.
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Figure D.6: Reconstruction by U-Net, with in (a) the ground truth, (b) FBP and (c) proposed
method.



Appendix E

Connection mutual coherence
and regularization

This chapter contains the details on the relationship between regularization and the mutual
coherence of the preconditioned forward mapping. The first section proofs for a full rank
2 × 2 matrix that an increasing regularization parameter λ brings about an increasing mutual
coherence of the preconditioned forward mapping. In the second section some aspects of the first
section are discussed in details. In the final section a geometrical perspective on regularization
and mutual coherence is given. This gives an intuitive explanation on why the observed effect
in section E.1 holds for bigger matrices that are either full rank or rank deficient.

E.1 Effect regularization on mutual coherence

Proposition 2. Given a 2×2 full rank matrix A = UΣV T , σ1 > σ2 and the regularized pseudo-
inverse Pλ defined in (3.7), then the mutual coherence of the preconditioned forward mapping
PλA increases when λ goes up.

Proof. The pseudo-inverse is defined as

Pλ = V SUT

where S = diag( σ1

σ2
1+λ

, σ2

σ2
2+λ

). This means that

PλA =

v1 v2


 σ2

1

σ2
1+λ

v1

σ2
2

σ2
2+λ

v2

 (E.1)
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where vi is the i’th column of V . Therefore,

PλA =

 σ2
1

σ2
1+λ

v2
11 +

σ2
2

σ2
2+λ

v2
12

σ2
1

σ2
1+λ

v11v21 +
σ2
2

σ2
2+λ

v12v22

σ2
1

σ2
1+λ

v11v21 +
σ2
2

σ2
2+λ

v12v22
σ2
1

σ2
1+λ

v2
21 +

σ2
2

σ2
2+λ

v2
22



=


σ2
1(σ2

2+λ)v211+σ2
2(σ2

1+λ)v212
(σ2

1+λ)(σ2
2+λ)

σ2
1(σ2

2+λ)v11v21+σ2
2(σ2

1+λ)v12v22
(σ2

1+λ)(σ2
2+λ)

σ2
1(σ2

2+λ)v11v21+σ2
2(σ2

1+λ)v12v22
(σ2

1+λ)(σ2
2+λ)

σ2
1(σ2

2+λ)v221+σ2
2(σ2

1+λ)v222
(σ2

1+λ)(σ2
2+λ)


=: B.

The mutual coherence of a matrix PλA is the biggest off-diagonal element in absolute sense of
the Gram matrix of the normalized matrix B̃, where the normalized matrix B̃ is defined as

B̃ =


σ2
1(σ2

2+λ)v211+σ2
2(σ2

1+λ)v212√
σ4
1(σ2

2+λ)2v211+σ4
2(σ2

1+λ)2v212

σ2
1(σ2

2+λ)v11v21+σ2
2(σ2

1+λ)v12v22√
σ4
1(σ2

2+λ)2v221+σ4
2(σ2

1+λ)2v222

σ2
1(σ2

2+λ)v11v21+σ2
2(σ2

1+λ)v12v22√
σ4
1(σ2

2+λ)2v211+σ4
2(σ2

1+λ)2v212

σ2
1(σ2

2+λ)v221+σ2
2(σ2

1+λ)v222√
σ4
1(σ2

2+λ)2v221+σ4
2(σ2

1+λ)2v222

 .
This means that the Gram matrix G = B̃T B̃ is symmetric and of the form

G =

[
1 x(λ)

x(λ) 1

]
,

where x(λ) =
σ2

1(σ2
2 + λ)v2

11 + σ2
2(σ2

1 + λ)v2
12√

σ4
1(σ2

2 + λ)2v2
11 + σ4

2(σ2
1 + λ)2v2

12

· σ
2
1(σ2

2 + λ)v11v21 + σ2
2(σ2

1 + λ)v12v22√
σ4

1(σ2
2 + λ)2v2

21 + σ4
2(σ2

1 + λ)2v2
22

+
σ2

1(σ2
2 + λ)v11v21 + σ2

2(σ2
1 + λ)v12v22√

σ4
1(σ2

2 + λ)2v2
11 + σ4

2(σ2
1 + λ)2v2

12

· σ2
1(σ2

2 + λ)v2
21 + σ2

2(σ2
1 + λ)v2

22√
σ4

1(σ2
2 + λ)2v2

21 + σ4
2(σ2

1 + λ)2v2
22

.

(E.2)

This equation can be simplified by using the fact that V is unitary, i.e.

V TV = V V T = I. (E.3)

Since V =

[
v11 v12

v21 v22

]
and (E.3) holds, it is clear that

v11v11 + v21v21 = 1, v11v11 + v12v12 = 1
v22v22 + v21v21 = 1, v22v22 + v12v12 = 1
v11v12 + v21v22 = 0, v11v21 + v12v22 = 0.

(E.4)

The use of the equations in (E.4) simplifies (E.2) to

x(λ) =
σ4

1(σ2
2 + λ)2v11v21 + σ4

2(σ2
1 + λ)2v12v22√

σ4
1(σ2

2 + λ)2v2
11 + σ4

2(σ2
1 + λ)2v2

12 ·
√
σ4

1(σ2
2 + λ)2v2

21 + σ4
2(σ2

1 + λ)2v2
22

(E.5)

x(λ) :=
g(λ)

h(λ)
, (E.6)

where g(λ) = σ4
1(σ2

2 + λ)2v11v21 + σ4
2(σ2

1 + λ)2v12v22 (E.7)

and h(λ) =
√
σ4

1(σ2
2 + λ)2v2

11 + σ4
2(σ2

1 + λ)2v2
12 ·
√
σ4

1(σ2
2 + λ)2v2

21 + σ4
2(σ2

1 + λ)2v2
22. (E.8)
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We show that the absolute value of this off-diagonal element, i.e. the mutual coherence, increases
when λ increases. The derivative with respect to λ is

x′(λ) =
h(λ)g′(λ)− h′(λ)g(λ)

h2(λ)

where h(λ)g′(λ) =
2σ12

1 (σ2
2 + λ)5v11v21 + 2σ4

1σ
8
2(σ2

1 + λ)4(σ2
2 + λ)v11v

2
12v21v

2
22√

σ4
1(σ2

2 + λ)2v2
11 + σ4

2(σ2
1 + λ)2v2

12 ·
√
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1(σ2
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21 + σ4
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22

+
2σ8

1σ
4
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12v
2
21 + v2

11v
2
22) + 2σ12

2 (σ2
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12v
3
22√

σ4
1(σ2
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11 + σ4

2(σ2
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12 ·
√
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1(σ2
2 + λ)2v2

21 + σ4
2(σ2
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22

+
2σ8

1σ
4
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and h′(λ)g(λ) =
2σ12

1 (σ2
2 + λ)5v11v21 + 2σ4
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22√

σ4
1(σ2

2 + λ)2v2
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12v
3
22√
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2(σ2
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12 ·
√
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1(σ2
2 + λ)2v2

21 + σ4
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.

This means that h(λ)g′(λ)− h′(λ)g(λ) can be written as

σ4
1σ

8
2((σ2

1 + λ)3(σ2
2 + λ)2 − (σ2

1 + λ)4(σ2
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12v
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11v
2
22)√
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√
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+
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1σ
4
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12v
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11v
2
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√
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+
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1σ
8
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2
12v21v

2
22√
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1(σ2
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11 + σ4
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12 ·
√
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2(σ2
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− 2σ8
1σ

4
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1 + λ)(σ2
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11v12v
2
21v22√

σ4
1(σ2
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11 + σ4
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√
σ4
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,

(E.9)

where it is clear that all denumerators of (E.9) are equal and strictly positive for λ > 0. Since
the columns of V have unit length and the determinant of an unitairy matrix is ±1, it is clear
that v11 = ±v22, v21 = ±v12 and v12v22 should have an opposite sign compared to that of
v11v21. First it is assumed that v11 and v21 have the same sign, which means that v12v22 < 0.
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Since σ1 > σ2 it is clear (σ2
1 + λ)3(σ2

2 + λ)2 − (σ2
1 + λ)4(σ2

2 + λ) < 0 and therefore the first
line of (E.9) is strictly positive for λ > 0. By counting the powers of (σ2

1 + λ) and (σ2
2 + λ),

one can conclude that all other lines of (E.9) are strictly positive for λ > 0. This means that
the derivative of the mutual coherence with respect to λ is strictly positive for λ > 0 when v11

and v21 have the same sign. Since v11 and v21 have the same sign and v11v21 = −v12v22, it is
clear that x(λ) in (E.5) is strictly positive for λ > 0. Therefore, the mutual coherence always
increases when λ expands.

In the opposite case it is assumed that v11 and v21 have an opposite sign. Following the
same reasoning as above it is clear that v12 and v22 have the same sign. Since σ1 > σ2 it can
be concluded that the sum of the first two lines of (E.9) is strictly negative for λ > 0. The
same holds when the third and fourth line are summed and obviously the last two of (E.9).
This means that the derivative of the mutual coherence with respect to λ is strictly negative
for λ > 0. Furthermore, x(λ) in (E.5) is also strictly negative for λ > 0. Since the mutual
coherence is equal to the absolute value of the off-diagonal entry x(λ), we can conclude that the
mutual coherence is also increasing when v11 and v21 have an opposite sign for an increasing λ.

E.2 v11 and v21 having the same sign

The values ofA determine whether v11 and v21 have the same sign. For a 2×2 matrixA =

[
a b
c d

]
the matrix V is defined as [1]:

V =

[
v11 v12

v21 v22

]
=

[
s11
|s11| cos(Φ) − s22

|s22| sin(Φ)
s11
|s11| sin(Φ) s22

|s22| cos(Φ)

]
, (E.10)

where Φ =
1

2
arctan 2(2ab+ 2cd, a2 − b2 + c2 − d2), (E.11)

θ =
1

2
arctan 2(2ac+ 2bd, a2 + b2 − c2 − d2), (E.12)

s11 = (acθ + csθ)cΦ + (bcθ + dsθ)sΦ,

cΦ = cos(Φ),

sΦ = sin(Φ),

cθ = cos(θ),

sθ = sin(θ),

where

arctan 2(y, x) =



sgn(y) · arctan
(∣∣ y
x

∣∣) x > 0

sgn(y) · π2 x = 0, y 6= 0

undefined x = 0, y = 0

sgn(y) ·
(
π − arctan

(∣∣ y
x

∣∣)) x < 0.

(E.13)

Due to equation (E.10), it can be concluded that v11 and v21 have a different sign when Φ < 0.
This can only happen when y < 0 in (E.13), which therefore implies that 2ab + 2cd < 0 in

(E.11). If a1 =

[
a
c

]
is the first column vector of matrix A, then 2ab+ 2cd < 0 when the second
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column vector of a2 =

[
b
d

]
lies in the red half-plane illustrated in Figure E.2. It does not matter

in which quadrant a1 lies, the red region is always the opposite half-plane with a1 as the normal
vector.

a1 =

[
a
c

]

x

y

Figure E.1: Illustration of the region (in red) for a2 to lie in such that v11 and v21 have a
different sign.

E.3 Regularization and mutual coherence: a geometrical
perspective

In this section the influence of regularization is given from a geometrical perspective. This
explanation will give an intuition on why the effect explained in section E.1 holds for bigger
(close to) ill-posed matrices, which are of particular interest in this thesis. It is clear that

PλA =


σ2
1(σ2

2+λ)v211+σ2
2(σ2

1+λ)v212
(σ2

1+λ)(σ2
2+λ)

σ2
1(σ2

2+λ)v11v21+σ2
2(σ2

1+λ)v12v22
(σ2

1+λ)(σ2
2+λ)

σ2
1(σ2

2+λ)v11v21+σ2
2(σ2

1+λ)v12v22
(σ2

1+λ)(σ2
2+λ)

σ2
1(σ2

2+λ)v221+σ2
2(σ2

1+λ)v222
(σ2

1+λ)(σ2
2+λ)

 . (E.14)

Since the definition of the mutual coherence is

µ(A) = max
i 6=j

∣∣〈ai, aj〉∣∣
‖ai‖2

∥∥aj∥∥2

(E.15)

and in case of a 2× 2 matrix equation (E.15) is equal to

∣∣cos(θ)
∣∣ = max

i 6=j

∣∣ai · aj∣∣
‖ai‖2

∥∥aj∥∥2

(E.16)

where θ is the angle between the vectors ai and aj . Now we show that
∣∣cos(θ)

∣∣ goes to 1 when
λ increases in PλA in case when A is (close to) an ill-posed forward mapping. From equation
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(E.14) and (E.16), it can be concluded that

cos(θ) = max
i6=j

ai · aj
‖ai‖2

∥∥aj∥∥2

=
σ4

1(σ2
2 + λ)2v11v21 + σ4

2(σ2
1 + λ)2v12v22√

σ4
1(σ2
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1 + λ)2v2

12 ·
√
σ4

1(σ2
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21 + σ4
2(σ2

1 + λ)2v2
22

, (E.17)

which is the same expression as (E.5). Then it holds that

lim
λ→∞

cos(θ) =
λ2σ4

1v11v21 + λ2σ4
2v12v22√

λ2σ4
1v

2
11 + λ2σ4

2v
2
12 ·
√
λ2σ4

1v
2
21 + λ2σ4

2v
2
22

,

=
σ4

1v11v21 + σ4
2v12v22√

σ4
1v

2
11 + σ4

2v
2
12 ·
√
σ4

1v
2
21 + σ4

2v
2
22

. (E.18)

Since the forward mapping A is considered to be (close to) ill-posed, it is clear that certain
columns of that forward mapping are almost aligned. When columns are close to being aligned
the condition number of the matrix is big, which means that there is a large gap between the
biggest and smallest singular value. This means that

lim
λ→∞

∣∣cos(θ)
∣∣ =

∣∣∣∣∣ σ4
1v11v21√

σ4
1v

2
11 ·
√
σ4

1v
2
21

∣∣∣∣∣ = 1 (E.19)

and therefore θ → 0 or θ → π when λ → ∞. This means that columns that are close to being
aligned will get more aligned when λ increases. Therefore, the mutual coherence increases when
λ goes up.

When larger n× n (close to) ill-posed forward mappings are considered, it holds that

PλA =

v1 . . . vn




σ2
1

σ2
1+λ

v1

...
σ2
n

σ2
n+λvn

 . (E.20)

Due to linearity it is expected that regularization has the same effect on PλA as in the case of
a 2× 2 matrix. For rectangular m× n or n×m forward mappings, the PλA has the same form
as presented in (E.20), but then with dimensions n×n and m×m, respectively. Therefore, due
to linearity, the same growth of the mutual coherence is also expected here. For square rank
deficient forward mappings that are close to being ill-posed, where the rank = r < n, it holds
that

A = UΣV T ,

Pλ = VrSU
T
r ,

where Σ = diag(σ1, . . . , σr, 0, . . . , 0︸ ︷︷ ︸
n−r

), S = diag( σ1

σ2
1+λ

, . . . , σr
σ2
r+λ ), Vr consists of the first r columns
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of V and Ur consists of the first r columns of U . Then

PλA = VrSU
T
r UΣV T

= Vr


σ2
1

σ2
1+λ

. . .
σ2
r

σ2
r+λ

0︸︷︷︸
n−r

V T

=

v1 . . . vr




σ2
1

σ2
1+λ

v1

...
σ2
r

σ2
r+λvr

 , (E.21)

which is r−dimensional subspace of (E.20). Due to linearity it is expected that regularization
has the same effect on the columns of A, leading to an increasing mutual coherence of PλA for
an expanding λ. For rank deficient rectangular matrices the same reasoning can be used. Also
in this case it is expected that the mutual coherence rises when λ increases.



Appendix F

Including right preconditioners

A right preconditioner can add important prior information about x to the inverse problem. The
effect of this addition can be shown via the Bayesian view on inverse problem. Then, according
to section 2.4.2, the most likely solution is

xmap = arg min
x

∥∥P1(y −Ax− e0)
∥∥2

+
∥∥P2(x− x0)

∥∥2
,

:= arg min
x

V2(x),

which means that the optimal solution satisfies

∇V2(x) = −ATPT1 P1(y −Ax− e0) + PT2 P2(x− x0) = 0,

thus x∗2 =
(
ATPT1 P1A+ PT2 P2

)−1 (
ATPT1 P1(y − e0) + PT2 P2x0

)
.

Therefore, the Hessian is equal to

∇2V2(x) = ATPT1 P1A+ PT2 P2, (F.1)

which leads to

πposterior(x|y) ∼ N
(
x∗2,
(
ATPT1 P1A+ PT2 P2

)−1
)
. (F.2)

Due to the positive semi-definiteness of PT2 P2 it is clear that the variance of the posterior is
lower when a right preconditioner is included. Thus, the number of possible solutions decreases
when also a right preconditioner is considered. When ATPT1 P1A+ PT2 P2 is large, the mean of
πposterior(x|y) possibly converges to its correct value. Furthermore, the posterior also suggests
that when ATPT1 P1A is close to zero, the distribution of the posterior is roughly equal to the
prior distribution, which means that the measurements are ambiguous.
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