
Master thesis

University of Twente

Department of Electrical Engineering Mathematics
and Computer Science

Improving food safety by
designing a decentralised

traceability architecture in line
with stakeholder concerns.

Author:
Rob van Dijk

First supervisor:
dr. ir Erwin Folmer

Second supervisor:
dr. ir. Marten van

Sinderen

Formal supervisor:
dr. Christopher Brewster

Daily company supervisor:
ir. Paul Brandt

30th October 2020

Abstract

In the recent past, society was alarmed by food safety incidents multi-
ple times. These food safety incidents hurt both consumer safety and the
value creation of supply chains. One of the underlying problems that con-
tribute to food safety incidents is the lack of traceability in the agri-food
supply chain. The purpose of this thesis is to address the lack of traceabil-
ity, to increase food safety. Concurrent traceability systems do not address
stakeholder concerns enough. Moreover, agri-food supply chain actors still
perceive barriers in the adoption of traceability systems. In this thesis,
an architecture is designed to address these concerns and barriers. This
architecture captures traceability data in a decentralised manner. Each
supply chain actor captures their traceability data in a pedigree. The
pedigree describes the product and actions done to create the product.
Actors share the identifiers of the pedigrees to create linked pedigrees.
These decentralised linked pedigrees contain the traceability data needed.
The architecture uses the Solid ecosystem to realise the exchange and
storage of data. Fine-grained access control was realised by emulating
Ontology based access control (OBAC). OBAC presents a novel and ef-
ficient method to define access control policies based on the structure of
the data. The architecture was validated by building a proof of concept,
that was exposed to a scenario of the horsemeat scandal. The architecture
is shown capable of creating traceability as well as handle uncooperative
actors in the case of a food security incident. Furthermore, this research
provides a use case for the Solid ecosystem outside of the initial social me-
dia context. Next to that, the architecture could be used in other domains
that require traceability.

1

Contents

1 Introduction 5
1.1 Definitions . 7

1.1.1 Traceability . 7
1.1.2 Food safety incident . 8

1.2 Benefits of traceability . 8
1.3 Problem description . 9
1.4 Method and Outline . 10

2 Problem investigation 11
2.1 Conceptual model for supply chain orientation 11
2.2 Stakeholders and their concerns 11
2.3 Barriers to adoption . 14

3 Requirements 20
3.1 Traceability . 21

3.1.1 Traceability - data . 21
3.1.2 Traceability - linked . 23
3.1.3 Traceability - query . 25
3.1.4 Traceability - backup . 27

3.2 Access control . 29
3.3 Value proposition . 29

3.3.1 Value proposition - data reuse 31
3.3.2 Value proposition - compelling feature 31
3.3.3 Value proposition - easy to use 34

3.4 Trusted software supplier . 35
3.4.1 Trusted software supplier - supplier reputation 35
3.4.2 Trusted software supplier - reliable system 36
3.4.3 Trusted software supplier - governance 38

3.5 Out of scope requirements . 39

4 State of the art systems 40
4.1 traceability systems . 40

4.1.1 Linked pedigrees . 40
4.1.2 IBM food trust . 44
4.1.3 TE-FOOD . 45
4.1.4 SeafoodIQ . 46
4.1.5 Traces . 47
4.1.6 Gap analysis . 48

4.2 Approaches for traceability systems 49
4.2.1 Solid . 49
4.2.2 IDS . 51
4.2.3 Inter planetary file system 53
4.2.4 Blockchains . 54
4.2.5 Gap analysis . 56

2

4.3 Ontology based access control . 56

5 Architecture 60
5.1 Business architecture . 60

5.1.1 Baseline description . 60
5.1.2 Target description . 61
5.1.3 Gap analysis . 66

5.2 Information systems architecture 67
5.2.1 Application architecture 68
5.2.2 Data architecture . 73

5.3 Technology architecture . 76
5.3.1 ViewPoint: storing data 77
5.3.2 Viewpoint: Creating traceability 81
5.3.3 Viewpoint: access control 84

6 Treatment validation 87
6.1 Validation method . 87
6.2 Proof of concept . 87
6.3 Effect & trade-off questions . 88

6.3.1 Traceability scenario . 88
6.3.2 Backup traceability scenario 91
6.3.3 Access control scenario . 93
6.3.4 Data import scenario . 94
6.3.5 Downstream traceability scenario 95

6.4 Requirement satisfaction . 95
6.5 Sensitivity questions . 97
6.6 Contribution to stakeholder goals 98
6.7 Limitations of the proof of concept & architecture. 99

7 Discussion & conclusions 101
7.1 research questions . 101

7.1.1 RQ 1: What requirements should a traceability system
satisfy in the agri-food supply chain? 101

7.1.2 RQ 2: What are the possible treatments that satisfy the
requirements? . 102

7.1.3 RQ3: What are the advantages and disadvantages of the
available treatments? . 103

7.1.4 RQ4: What is an architecture that would satisfy the re-
quirements for a traceability system in the agri-food sup-
ply chain? . 104

7.1.5 RQ5: How well does the architecture handle simulated
food security incidents from the past? 106

7.1.6 Contributions . 106
7.2 Applicability to other domains 107
7.3 Limitations . 107
7.4 Recommendations . 108

3

7.5 Future work . 108

References 110

A Proof of concept 114

4

1 Introduction

In recent years, European residents’ confidence in the quality of their food is
lowered and they demand higher quality assurance (Bánáti, 2014). This be-
came visible after the food scandals in the recent past, such as the infamous
horsemeat scandal, melamine in milk, and fipronil in eggs. Four weeks after the
horsemeat scandal, a decline of 43% in frozen burgers and 13% in ready-made
meals sales was observed (Kantar Worldpanel, 2013). According to the Gro-
cery Manufacturers Association (GMA), the melamine adulterated milk had a
total cost of ten billion dollars. The GMA further estimates that “The cost of
one adulteration incident averages between two and fifteen per cent of yearly
revenues depending on company size” (GMA & Kearney, 2010).

A review of literature and media in 2013 found 137 distinct food fraud cases
since 1980 (Everstine, Spink, & Kennedy, 2013). In the seafood industry, mul-
tiple studies found percentages of 25, 26, 37 and 33 of wrongly labelled, more
expensive species. In 2008, 22 Chinese food companies sold dairy products with
melamine. 300.000 children became ill and 6 had died. Another tragic case
happened in 1981 in Spain when consumers bought denatured oil, intended for
industrial use, as olive oil. This resulted in almost 20.000 cases of sickness and
more than 300 deaths. These are some of the extreme cases (Everstine et al.,
2013).

There are four root causes for food safety incidents are; long and complicated
supply chains, a lack of resource dedication, power asymmetry, and a lack of
traceability along the supply chain. The root causes are explained in more detail
below.

• Long and complicated supply chains

Long and complicated supply chains create fraud opportunities (Everstine
et al., 2013). To reduce the cost of beef, traders searched for cheaper
sources in other parts of Europe. Ultimately this led to complex sup-
ply chain networks to gain cheaper resources in other parts of Europe
(Czinkota, Kaufmann, & Basile, 2014). The expansion of the supply chain
led to an increased amount of actors. Each new actor creates a new place
where contaminants can be introduced. Next to that, the complexity of
the supply chain increases the chances for criminals to stay hidden. In
the horsemeat scandal, the search for cheap beef eventually led to the
introduction of horse meat into the supply chain.

• Lack of resource dedication

“Sustainable quality cannot be achieved without dedicating sufficient re-
sources by all stakeholders and there is a limit to budget cutting on a
macro level” (Czinkota et al., 2014). Product quality will eventually drop
when budgets are cut to produce as cheaply as possible. For example,
cheaper products can be made when fewer quality tests are conducted,
increasing the likelihood of an undetected incident.

5

• Power asymmetry

Power asymmetry in a single supplier - multiple buyer relationships con-
tributes to food adulteration (Nnamdi O. Madichie & Yamoah, 2017). A
single supplier - multiple buyer relationship creates an environment with
an over-reliance on a single supplier. This over-reliance increases risks for
organisations when something happens with this supplier. For example,
in the horsemeat scandal or banana production after Hurricane Mitch in
1998 (Hittle & Leonard, 2011). Actors could no longer keep up with de-
mand because crops were ruined, lowering production capacity. In times
without food safety incidents, investing in capacity flexibility reduces effi-
ciency. However, history shows that reoccurring supply chain crises make
it worthwhile to invest in capacity flexibility (Nnamdi O. Madichie &
Yamoah, 2017). The common success and failure characteristics to sur-
vive a supply chain crisis are quantitatively identified by Hittle Leonard
(2011). Unfavourable characteristics include: Dependence on a single sup-
plier and a poor supplier relationship. To survive a supply chain crisis,
the best indicators are: capacity flexibility, multiple suppliers, planning
for crises and effective communication along the supply chain. These
studies demonstrate that the desire for operational efficiency at individual
and supply chain level increase risks for the supply chain and possibly for
end consumers (Hittle & Leonard, 2011; Nnamdi O. Madichie & Yamoah,
2017).

• Lack of traceability

Finally, a lack of traceability in the agri-food supply chain (Bánáti, 2014;
GMA & Kearney, 2010; Everstine et al., 2013; Nnamdi O. Madichie &
Yamoah, 2017; Manning & Soon, 2016, 2014; van Ruth, Huisman, &
Luning, 2017; Czinkota et al., 2014). The lack of traceability originates
from the long and complicated supply chains. Although some methods
for traceability exist, they do not enable a timely response in the case of
a food safety incident. This can be observed from the response time to
find the origins and destinations of contaminated products. Examples of
this include the E. Coli contamination and the horsemeat scandal. In the
case of the E. Coli contamination, six months after detection no origin
was known (Buchholz et al., 2011). In the horsemeat scandal, five weeks
after the discovery the root cause was still unknown (Felicity, 2013a). It
took six months to map the supply chain. European law requires agri-food
supply chain actors to keep records of procurement and sales. However,
the regulation does not mention a format. At this moment, traceabil-
ity is largely done on paper (Minnens, Sioen, van de Burg, Luijckx, &
Verbeke, 2018). This does not enable timely reactions when food safety
incidents happen because a manual search through paper records is time-
consuming. The time to find causes of food safety incidents is worsened
by the allowed response time of 24 hours for each supply chain partner
(Welt & Blanchfield, 2012). In that case, it costs one week to gather all
the required information in a supply chain of seven actors.

6

The disappearance of companies further increases the long times to find the
origin of food safety incidents. This could be observed in the 2011 organic food
crisis in Italy where, among other problems, short term companies were founded
and closed to make traceability impossible (Flari et al., 2014).

Although traceability is formally in place as required by law, the long-lasting
search for the origin of a food safety incident hurts both the agri-food supply
chain and consumers. Due to the long search times, authorities cannot prevent
consumers from ingesting harmful products. Moreover, consumers can no longer
trust the food they buy is safe for consumption. Supply chain actors are stuck
with potentially contaminated products that they cannot sell and have reduced
overall profit.

A potential solution to increase the speed of traceability is the use of a trace-
ability system. This solution direction is not new, as they are commercially
available. E.g. TE-food, SeafoodIQ and IBM food trust. The commercially
available traceability systems demonstrate that traceability systems can be cre-
ated. Moreover, the willingness of actors to adopt a traceability system is not
the problem either (Minnens et al., 2018). The problem is a combination of
both: agri-food supply chain actors do not adopt systems that are not aligned
with their concerns. Because traceability data contains sensitive data of sup-
ply chain actors, supply chain actors hesitate to adopt a system where data
confidentiality is not ensured. Moreover, all the supply chain actors must use
the same traceability system (or an interoperable one) to realise traceability.
Multiple studies investigated the perceived barriers to adoption of a traceability
system. Therefore, the design of a system that addresses the lack of trace-
ability in a manner that conforms to the stakeholders’ concerns is described
in this thesis. When supply chain actors adopt traceability systems, it could
realise the benefits of traceability described in section 1.2. Before the benefits
of traceability are described, a definition of traceability is given.

1.1 Definitions

1.1.1 Traceability

Traceability is defined as: “The ability to access any or all information relating
to that which is under consideration, throughout its entire life cycle, by means
of recorded identifications.” (Olsen & Borit, 2013). This definition includes
upstream and downstream tracking, as well as internal (traceability inside a
single company) and external (traceability between actors in the supply chain)
traceability. Moreover, it means that a system can be queried for specific data.
Traceability data refers to the information in the recorded identifications. This
thesis focuses on external traceability, as it is assumed that organisations have
measures in place for internal traceability as it is required by law to capture
this (Regulation (EC) No 178/2002).

7

1.1.2 Food safety incident

Throughout this thesis, the term food safety incident is used multiple times. In
the literature, a wide variety of terms exist for the safety of food. Therefore,
all the terms and definitions in the literature i.e. economically motivated adul-
teration, food fraud and food defence incidents have been piled into food safety
incident to create a word that indicates that food is unsafe for consumption
regardless of the reason why. This is not in line with the definition in the litera-
ture where a food safety incident indicates unintended, harmful contamination
(Manning & Soon, 2016).

1.2 Benefits of traceability

Bosona & Gebresenbet (2013) identified and summarised 6 benefits of food
traceability, listed below.

1. Increase in customer satisfaction Traceability is expected to increase
the confidence of customers in food quality. The available product infor-
mation enables customers to make informed choices which increase the
confidence of consumers. Additionally, it is said to reduce customer com-
plaints and reduce social costs.

2. Improvement in food crises management In the case of a food safety
incident, traceability can present the products affected on a detailed level
which “minimises the production and distribution of unsafe or poor quality
products” (Bosona & Gebresenbet, 2013). Because information is avail-
able faster, product recalls reach the affected producer faster. The af-
fected producer can prevent further waste work on the affected product.
Moreover, faster recalls of affected food products can prevent further con-
sumption by unaware consumers. Additionally, companies can directly
prove the extent of their liability in food safety incidents. Some argue
that traceability reduces the chance of food safety incidents. Others argue
that while traceability systems enable effective management of food safety
incidents, they do not affect the chances of food safety incidents.

3. Improvement in food supply chain management Traceability data
can increase the efficiency of logistics and reduce costs. Traceability data
contain the product routing, from which more efficient routes can be dis-
tilled. Additionally, it can increase the amount of coordination between
partners. The increased supply chain management creates the possibility
for partners to develop their economic and technical competence.

4. Competence development Effective traceability systems help to stay
competitive in the market by the development of competences. Because
a traceability system: “ i) enables to solve food safety problems; ii) pro-
vides a good-faith legal defence in product liability cases; iii) enables a
company to understand well its logistics system; iv) provides promotional
advantages by connecting manufacturer with consumers (Hall, 2010); and

8

v) enables to develop products of better quality in long run using the
laboratory based test results and availability of traceability information.”
(Bosona & Gebresenbet, 2013)

5. Technological and scientific contribution Organisations that imple-
ment traceability systems help research because it generates the data re-
quired by scientific research into the cause of food safety incidents. Addi-
tionally, it provides data about products, production and the supply chain
which can be used in the development of new technologies and tools used
to create traceability.

6. Contribution to agricultural sustainability Traceability promotes
transparency in sourcing and food production. The transparency helps in
the implementation of sustainability initiatives. At this moment, a large
proportion of seafood cannot be traced to the level of a vessel or fish
farm and may be caught in a non-sustainable manner. This is caused by
the aggregation of batches at auctions (Randrup et al., 2008). Traceability
systems can prove seafood is caught sustainable. Additionally, traceability
systems are said to promote effective packaging technologies, which reduce
food losses during distribution.

1.3 Problem description

As previously mentioned, agri-food supply chain actors perceive multiple barri-
ers to adopt a traceability system. The most prominent of these is the concern
for the confidentiality of their data. However, when every actor keeps their
data private, the data is not available and accessible for traceability. Therefore
the goal of this thesis is to design a traceability system that conforms to the
requirements of stakeholders. To do this, five research questions were created
which are stated below. The first research question identifies the requirements,
the second and third search for potential solutions, the fourth research question
creates the artefact that addresses the goal of this thesis. The fifth research
question validates if the artefact satisfies the requirements.

1. What requirements should a traceability system satisfy in the agri-food
supply chain?

2. What are the possible treatments that satisfy the requirements?

3. What are the advantages and disadvantages of the available treatments?

4. What is an architecture that would satisfy the requirements for a trace-
ability system in the agri-food supply chain?

5. How well does the architecture handle simulated food security incidents
from the past?

9

1.4 Method and Outline

In this thesis, the design problem of: a traceability system that conforms to
the requirements of stakeholders is investigated. The design cycle from design
science methodology was used (Wieringa, 2014). In total three phases were
done: the problem investigation, treatment design and treatment validation. In
design science methodology, a treatment is a solution for a problem, hence the
names treatment design and treatment validation. Each phase answers one or
more research questions.

In the first phase, the problem investigation, the goal is to “identify, de-
scribe, explain and evaluate the problem to be treated” (Wieringa, 2014). This
happens in the problem investigation section 2 and creates the background for
the requirements of research question 1.

The next phase is the treatment design. In this phase, a design is made
to solve the problems identified in the problem investigation. The treatment
design provided the background to answer research questions two to five. The
requirements are specified in the first step of the treatment design. The re-
quirements are listed in section 3 and provide the answer to the first research
question. After the requirement specification, the available treatments found
are listed in the state of the art, section 4. These were used to answer the third
research question. Finally, two state of the art systems were combined in a new
treatment, specified in section 5. This section provides information to answer
the fifth research question.

The third phase in design science is treatment validation. During this phase,
a check is done if the designed treatment solves the defined problems in the
problem investigation. The treatment validation is located in section 6 and
provides the background to answer the fifth research question.

In section 7, the research questions are answered and discussed. Next to
that generalisations, recommendations and suggestions for possible future work
are given.

Throughout the thesis, the horsemeat scandal is used as a motivating ex-
ample. This is done because it gives a concrete model from the real world to
use as an example. Additionally, the lack of traceability, long and complicated
supply chain, overreliance on a single partner and a lack of resource dedication
are present in this example.

10

2 Problem investigation

In this section, the perceived barriers to adoption of traceability systems are
identified. The information gathered in this section is used to answer the first
research question: What are the perceived barriers by stakeholders in the agri-
food supply chain to adopt a traceability system? To do this, the problem
investigation of design science examines: the goals and concerns of stakeholders
(section 2.2), available frameworks (2.3) and observed phenomena (2.3). This
section starts with a conceptual model used to describe the orientation of stake-
holders in the supply chain in relation to each other.

2.1 Conceptual model for supply chain orientation

In this thesis, communication between supply chain partners is a reoccurring
subject. This model was made because organisation names, upstream and down-
stream could result in ambiguous sentences. In figure 1, the conceptual model
for stakeholder orientation can be seen. The goal of the conceptual model is
to demonstrate how different supply chain actors are positioned in the supply
chain. It shows suppliers and buyers of an actor, and shows who are further
upstream and downstream than the direct buyers and suppliers of an actor.

In this model, A is the organisation of interest and can be every actor in
the supply chain. A can have multiple partners up and downstream. For each
subsequent downstream actor, the letter A is increased in alphabetical order.
For example, if A is a tomato farmer, B is the sauce producer. Then C is
the lasagne producer. A can be the first actor in the chain (farmer) as well as
the last (retailer). To indicate upstream actors, a U is added. In the previous
example, UB is the seed supplier of tomato farmer A. A number is used to
distinguish between multiple actors on the same level of the supply chain. An
example: UB1 is a minced meat supplier. UB2 is a pasta supplier. A uses
minced meat from UB1 and pasta from UB2 in his ready made-lasagne. C can
be a supermarket who sells the lasagne produced by A and distributed by B1.
For the remainder of this thesis, actors in the supply chain are indicated by
italic capital letters similar to this section.

2.2 Stakeholders and their concerns

“Stakeholders are the source of goals and constraints of the project, which are
in turn the source for requirements in the treatment, and so it is important to
identify relevant stakeholders” (Wieringa, 2014). Therefore this section contains
a list of stakeholders and their concerns to be used in subsequent sections. The
list of stakeholders was derived from a list of possible stakeholders of projects
(Wieringa, 2014).

• Supply chain actors The supply chain actors are the agri-food supply
chain companies which use traceability systems to create traceability of
their products. These are the farmers, food processors, distributors and
supermarkets.

11

Figure 1: Model of possible interactions between supply chain actors.

The primary goal of the actors, as they are commercial entities is to cre-
ate value. However, the current food scandals hurt the brand of these
companies. Current traceability documentation is largely done on paper,
an electronic system may reduce documentation effort and increase effi-
ciency. Furthermore, the benefits of traceability may reduce the costs of
food safety incidents. But on the other hand, there are a lot of possi-
ble concerns for supply chain actors before the adoption of a traceability
system.

– Costs: Will it be affordable? How will it affect the efficiency of the
organisation? Will the promised benefits materialise, especially when
only part of the supply chain implements traceability? Do I require
new employees to use the system?

– Data: Is my traceability data safe? Who has access to my data? Is
the data anonymous? What can others do with the data they receive?
Can I trust the data quality of other actors? Can the quality of the
data be guaranteed? These concerns are discussed in further detail
in section 2.3.

– Commercial context: Will the use of a traceability system increase
the number of audits? Will my competitors profit from my effort to
implement a traceability system? Do we require another system and
does it require changes to the IT landscape?

• End users The end users are the employees of the supply chain actors
which use the traceability system. The concerns of the end users are
relevant because improperly managed end users can become threat agents.
For example, their concerns include:

12

– Do I have enough skills to use the traceability system? The cur-
rent paper-based way of working is easy to understand, I may not
understand the new system.

– Will the traceability system take more of my time than the previous
(paper) documentation and increase my workload?

– Will the traceability system threaten the existence of my job? When
gathering traceability data goes faster or is automated, my job may
no longer be required.

• Software owner This is the organisation that produces traceability sys-
tems. Its functions consist of maintaining the system, as well as granting
support for new adopters and possible training. Their concern is to have a
working product which is sellable. Moreover, they want to reach a critical
mass of adoption of their system.

• European food safety authorities The food safety authorities are re-
sponsible for The quality of food in Europe. Their goal is to grant cus-
tomers trust in the food they buy. A traceability system may improve
audit speed. Moreover, when a food safety incident happens, traceability
systems may reduce the effort required to find the root cause. Thereby
better protecting the European citizens. Additionally, it may even safe
work when organisations handle safety incidents before it reaches con-
sumers. The concerns of the authorities include: can the data be trusted?
What happens when data are lost?

• Consumers The end consumers of the products from the supply chain
using a traceability system. The primary concern of consumers is: is
my food safe? They will benefit from traceability systems by a reduced
chance of food safety incidents reaching the consumer. Depending on the
implementation it may be possible to observe where their food originated.
This is particularly valuable for communities that require food containing
undetectable properties, such as fair trade.

• Current traceability systems The traceability systems that are on the
market at this moment. A new traceability system may pose a threat to
their market share. Their reason for being is to create a profit of their
system. Their goal is to gain adoption of their system over others.

• ERP systems End users of a traceability system may have ERP systems
that produce traceability data that can be reused. Because some functions
may overlap, the developers of the ERP system may feel threatened. Their
concerns are: Will a new traceability system cost us market share? Will
my ERP system become obsolete?

• Fraudsters Any traceability system will require data to work. Fraudsters
may provide the system with faulty information which lowers the value of
the system. They will want to keep their (dark) market share. Traceability

13

systems are negative for them, and fraudsters will, therefore, attempt to
hinder the adoption of traceability systems. Because their network may be
throughout the entire supply chain, they may prevent the total adoption
of any traceability system.

2.3 Barriers to adoption

In this section, a list of found factors affecting software adoption decisions is
given. For each factor, an explanation and the perceived barriers are given. The
list of factors is based on literature about factors that drive or inhibit software
adoption. This literature empirically tests factors that influence the adoption
decision for software as a service, ERP systems and anti-spyware. The papers
build on frameworks like TOE, VAM and theory of planned behaviour to create
models for determinants. The factors below are a summary of found factors and
combined into categories according to the writers’ interpretation. The factors
may not be entirely correct because all studies rely on different models, methods,
backgrounds and definitions. But they still provide factors worth considering.
Applicability of the factors to the agri-food domain is estimated based on the
literature on perceived barriers to adoption.

Ease of use

The (perceived) ease of use positively affects the adoption chances (Kwon &
Seo, 2013; Seethamraju, 2015; Wu, 2011; Yang, Sun, Zhang, & Wang, 2015).
However, not for anti-spyware (Lee & Kozar, 2008).

This is reflected in the literature on perceived barriers. Some studies indicate
that companies lack skilled employees to use the traceability system (Bosona
& Gebresenbet, 2013; Duan, Miao, Wang, Fu, & Xu, 2017). Next to that,
as it is allowed to store traceability data on paper, the transition to a digital
system could be perceived as more complicated. This indicates that the current
traceability systems are not easy to use.

Usefulness

Usefulness or functionality represents the fit between the business needs and
the functionality the solution provides (Kwon & Seo, 2013; Lee & Kozar, 2008;
Seethamraju, 2015; Wu, 2011; Yang et al., 2015). Organisations are unlikely to
buy software that does not provide in their needs.

The non-adoption of interoperable traceability systems at partners affects
the usefulness for an actor. A traceability system does not realise its full poten-
tial when the supply chain is incomplete (Dediu, Moga, & Cristea, 2016). Some
of the benefits may still be realised like good documentation in legal defence and
(minor) increase in food safety incident management (Bosona & Gebresenbet,
2013). However, paper traceability can also realise these. Thus, these do not
add to the usefulness.

14

Organisational fit

The adoption chance is influenced by how much an organisation has to change
its business processes to work with the solution. Software which is in line with
current business processes is more likely to be adopted than software which
requires business process changes and change management (Lee & Kozar, 2008;
Seethamraju, 2015; Yang et al., 2015). The organisational fit is related to the
cost of a system as changes to the business process bring costs.

Business processes may require remodelling when a traceability system is
adopted. Actors must to invest in software, hardware and hire personnel to im-
plement a traceability system. Some studies indicate that companies lack skilled
employees to use the traceability system (Bosona & Gebresenbet, 2013; Duan et
al., 2017). This would mean that companies require to attract additional ICT
staff. For those who have skilled employees: “One of the main disadvantages is
that information sharing might increase the workload of staff” (Minnens et al.,
2018).

Another problem is the number of available standards. The available trace-
ability systems rely on different techniques (Paper-based, EDI, GS1 EPCIS,
barcodes and XML) as well as different standards within a chosen technique:
“some major buyers have their own “flavors” of EDI, forcing customisation even
within a “standard.”” (Dediu et al., 2016). Because each actor has different re-
quirements for traceability systems, there is no “one size fits all” solution. For
example, the use of a certain standard is favourable for one organisation as they
already use it, while it may not be compatible with another organisation. More-
over, for some of the standards, it is never possible to create interoperability, as
they capture other data or rely on different techniques. This happens when one
company keeps track of pallets, while another keeps track of crates or individual
products.

Benefits

The benefits a solution has over the current way of working. When a new
solution provides minimal benefits over the old solution it is less likely to be
adopted (Kwon & Seo, 2013; Wu, 2011).

A traceability system should bring benefits to an organisation. However,
the return on investment (ROI) is unsure (Dediu et al., 2016). One of the
reasons for the unsure ROI is the intangible benefits. A traceability system
does not guarantee increased revenue. The ROI can only be estimated and
can never be measured precisely because the implementation of a traceability
system alters the observed environment. A traceability system saves production
on contaminated goods and can save the image of an organisation or product,
it results in fewer losses when a food safety incident happens. But there is no
guarantee that food safety incidents occur, if they do not occur, no benefits
are realised. Another cause of unsure ROI is that most of the benefits are
unlikely to be realised until a critical mass has adopted a traceability system.
As indicated earlier, in the usefulness factor, an automatic traceability system

15

realises minimal benefits when the supply chain is incomplete (Dediu et al.,
2016).

Security and trust

Security and trust indicate how secure an application is and can be trusted
by end-users to create value. It contains concerns about security and fear of
losing control. Security and trust is a relevant factor affecting the adoption
decision for cloud services (Wu, 2011; Yang et al., 2015), but not for anti-
malware (Seethamraju, 2015)

Multiple studies argue that there is a lack of trust between the actors in the
supply chain (Minnens et al., 2018; Storoy, Thakur, & Olsen, 2013; Bosona &
Gebresenbet, 2013). However, this lack of trust originates from the sensitive
nature of the data that must be shared between supply chain partners for a
traceability system, not the relationships per se. Organisations may trust each
other enough to work together, but not enough to share sensitive data. This
is reflected by a Delphi study for adoption of traceability systems: “The ma-
jority of stakeholders consider a traceability system only promising if the data
confidentiality is guaranteed by the data infrastructure” (Minnens et al., 2018).

In total there are 6 possible business risks for actors in the supply chain when
sharing traceability data identified. Some of these risks can never be guaranteed
to be prevented as actors can gather information through other means than a
traceability system. For example, two neighbouring farmers who physically talk
about the trader they both sell to.

1. B1 and B2 may conspire against A. A cannot sell its product for com-
petitive prices. This Business risk was observed in America where chicken
processors allegedly conspired to buy chicken below competitive prices
(Wiseman, Sanderson, & Robb, 2018).

2. Similar to the previous risk, such a conspiracy can happen upstream. UB1
and UB2 may conspire to drive up their sales prices. In the motivating
example, this would happen when farmers work together to gain more
value for each cow.

3. UB1 and B1 may learn of the existence of each other through communi-
cation with A. At this moment they can estimate profit margins from A,
and handle accordingly. Moreover, they may realise that they no longer
require A, skipping A or set up a venture to exclude A.

4. A variation in supply or demand after a better supplier or buyer has been
found through the information in a traceability system. E.g. when A1
makes contact with new UBs with data extracted from A2. This happens
when two lasagne producers compete, and one can buy tomato sauce or
beef from the competitors’ supplier.

5. In the case that a traceability system is linked to production data, com-
pany secrets like recipes can leak. If a competitor acquires secrets from
an actor, the actor may lose the uniqueness of their product.

16

6. large food processors are said to produce the same food product with dif-
ferent labels for multiple retailers. For example, the dutch “Hema rook-
worst” is said to be produced at UNOX, a large producer of “rookworst”
(Novum, 2007). In general, a producer which produces lower grade prod-
ucts for other actors next to their high-grade product may be hesitant to
share their traceability data. Especially since leakage of this knowledge
may result in negative branding.

Examples from the past, like the chicken example in the first risk, may make
organisations hesitant to implement a traceability system. Moreover, the need-
to-know culture in the industry hinders data sharing (Brewster, Seepers, & all
WP Participants, 2018).

Moreover, Belgian authorities give fines when a food recall happens (Minnens
et al., 2018). A traceability system would carry the information that a food
recall happened. Therefore it would no longer be possible to hide recalls from
authorities because the proof of the recall would be in the data. Additionally,
by the nature of a traceability system, the origin of food safety incidents or
adulteration is more likely to be found. Once the information is out that an
incident has happened in a certain organisation, they may lose a higher market
share than without the traceability system. But this argument can also be used
as a benefit: the ability to blame one specific organisation prevents negative
branding for the others in the sector.

Besides the business risks, there are technical risks. Although they are tech-
nical, they still have an impact on the value creation process. Technical risks
for traceability systems include: vendor lock-in, unexpected scalability costs
and system availability risks.

Trialability

The option for an organisation to test the product. By testing the product,
organisations or end users have a chance to feel the benefits of changing to a
new system (Lee & Kozar, 2008; Yang et al., 2015). This factor was not found
in the literature on adoption of traceability systems.

Vendor reputation

when organisations compare software solutions, organisations look at the rep-
utation of the service provider. The time in business of the vendor and the
willingness to help in implementation and production affect the vendor repu-
tation factor. The vendor reputation is found to be unaffected by a vendor
lock-in, as the switch between different solutions would always require change
management (Seethamraju, 2015).

In the agri-food supply chain, the required trusted third party to handle the
traceability data reflects the vendor reputation factor (Minnens et al., 2018). A
software owner with control over the data may sell traceability information for
profit, which the actors would want to keep secret. Or the software owner finds
trade secrets in the data.

17

Social factors

Social factors represent environmental pressure to adopt new solutions. These
can originate from competition and trade partners (Wu, 2011; Yang et al., 2015)
and internal as a status symbol (Lee & Kozar, 2008). However, some sources
indicate that social pressure does not influence adoption decisions (Seethamraju,
2015).

For the agri-food supply chain, each time a food safety incident happens,
social factors push to the adoption of traceability systems. This can be observed
from the amount of research on traceability systems after the horsemeat scandal.

Technology

Technology can be perceived from different perspectives. On one hand interest
in new technologies can increase the likelihood of adoption (Wu, 2011). On the
other hand, technology can be perceived as difficult and cost time to under-
stand. This decreases the likelihood of adoption. It should be noted that the
outsourced technology risks are considered minimal by SMEs as their IT own
capabilities are perceived as less than those of service providers (Seethamraju,
2015). Technology readiness can be seen as a combination of a few previous
factors (benefits, ease of use, security, organisational fit and trialability) and is
found to have a significant impact on SaaS readiness (Yang et al., 2015). In anti-
spyware adoption, computing capacity significantly impacts adoption decisions
(Lee & Kozar, 2008).

For traceability systems, technology can be one of the barriers. The tech-
nology of traceability systems is perceived as too difficult, this is related to the
ease of use and lack of skilled personnel factors. Additionally, the security of
sensitive data in the traceability system can become a barrier to adopt a trace-
ability system (Minnens et al., 2018). Another technology-related problem is
that traceability systems may require additional IT infrastructure not present
at the supply chain actor.

Costs

Finally, in cloud service adoption, the economic factors are perceived to increase
the value of cloud solutions. These factors include: applications are faster up
and running, less maintenance costs and improve manageability (Kwon & Seo,
2013). On the other hand, costs do not seem to affect adoption in anti-spyware
(Lee & Kozar, 2008). For SaaS adoption, the costs are seen as a benefit factor,
not a separate factor (Seethamraju, 2015; Yang et al., 2015).

The costs of a traceability system are one of the most prominent barriers.
One of the issues identified in multiple studies is a lack of resources available
for a traceability system (Minnens et al., 2018; Storoy et al., 2013; Bosona &
Gebresenbet, 2013; Dediu et al., 2016; Duan et al., 2017; Hardt, Flett, & Howell,
2017). A traceability system requires companies to invest in software, hardware
and hire personnel to implement a system. Post-implementation costs may

18

include software licensing, hardware and employees. The lack of skilled employ-
ees means that companies would require additional ICT staff. For those who
have skilled employees, it would mean that their employees are less productive
because it might increase the workload of staff (Minnens et al., 2018). Addi-
tionally, actors may perceive digital systems as more expensive than records
on paper. The many standards further increase the costs of traceability sys-
tems. To make two traceability systems interoperable, they require expensive
custom-built interfaces.

Marketing

Although marketing does not directly influence the adoption chance, it influ-
ences social factors, ease of use and usefulness and can thereby increase adoption
chances (Wu, 2011). This is an effect worth noting for solution providers. Mar-
keting was not mentioned in the literature on perceived barriers.

19

3 Requirements

In design science, the problem investigation is followed by the treatment design.
The first step in the treatment design is the specification of requirements. The
requirements provide guidelines in the search for possible treatments and stem
from the stakeholder goals (Wieringa, 2014). This section is used to answer the
second research question: What requirements should a traceability system sat-
isfy in the agri-food supply chain? The rationale is that when the requirements
are satisfied, the stakeholders should not or minimally perceive the barriers to
adoption. In table 1, the requirements are summarised and the concerns they
address are listed.

Design science provides guidance on a meta-level, therefore the Volere re-
quirements template was used to specify the requirements (Robertson & Robert-
son, 2007). Each requirement is first explained, then summarised in a table
structured in line with the Volere template. The Volere requirement template
specifies 13 fields for each requirement:

1. Requirement A unique ID for the requirement.

2. Requirement type The type of requirement, the available options are:
functional requirement, nonfunctional requirement, project constraint, de-
sign constraint, project driver, and project issue (Robertson & Robertson,
2007).

3. Event/use case Events or use cases that use this requirement.

4. Description “A one sentence statement of the intention of the require-
ment” (Robertson & Robertson, 2007)

5. Rationale “A justification of the requirement” (Robertson & Robertson,
2007). For this, the contribution argument from design science is used.
The contribution argument justifies the choice for a requirement. It is
structured in the following format: “(Artifact Requirements) × (Context
Assumptions) contribute to (Stakeholder Goal)” (Wieringa, 2014).

6. Originator The stakeholder that raised this requirement.

7. Fit criterion A method to test if the requirement is satisfied.

8. Customer satisfaction Indicates the happiness of stakeholders once this
requirement is satisfied. The score ranges from one to five, one indicates
uninterested, five extremely pleased. As argumentation Kano’s model has
been used (Spool, 2019). Kano’s model defines three categories of sat-
isfaction generators: the excitement generators, the performance payoff,
and basic expectations. Excitement generators are features in a product
that are new to the customer. Because they are new and exciting, they
create satisfaction for the customer. For example, free WiFi in a hotel
when it was new. However, as time progresses, and more organisations
provide the same excitement generator, it becomes a basic expectation.

20

Basic expectations do not generate satisfaction, they generate dissatisfac-
tion when absent. In the WiFi example, consumers expect free WiFi in
a hotel. It does not bring consumers joy when it is present. However, it
brings dissatisfaction when there is no WiFi. The performance payoff is
a linear satisfaction factor. The more pieces of it present, the more satis-
faction it generates. An example of this is the number of functions a text
editor has, more functions mean more excitement for the consumer.

9. Customer dissatisfaction Indicates the unhappiness of stakeholders if
this requirement is not satisfied. Customer dissatisfaction is scored on a
one to five scale, where one indicates hardly matters and five extremely
displeased. As argumentation, Kano’s model was used (Spool, 2019).

10. Priority “A rating of the customer value”(Robertson & Robertson, 2007).
To quantify the priority, the MoSCoW model has been used (O’Connor,
2016).

11. Conflicts If someone implements this requirement, it is not possible to
implement the following requirements.

12. Supporting materials A pointer to other documents that explain and
illustrate the requirement. This was not used in this document, it suites
architectures of multiple files and folders better.

13. History “Creation, changes” (Robertson & Robertson, 2007). Was not
used in the specification of the requirements.

3.1 Traceability

In the introduction, one of the identified root causes was a lack of traceabil-
ity. To solve the lack of traceability, multiple traceability systems have been
proposed. The traceability requirement represents the demands to solve the
lack of traceability. Besides the creation of traceability, a traceability system
may solve other root causes as well. For example, a traceability system could
influence the long and complicated supply chains, because it grants vision on
the supply chains.

3.1.1 Traceability - data

By the European law (Regulation (EC) No 178/2002), food processors are re-
quired to keep: information of any person from whom they have been supplied
or have supplied with food and are capable of making this information available
to authorities. This applies to all stages of production, processing and distri-
bution. To comply with the law, each supply chain actor should keep records
of:

• Organisations to whom they have sold their product. There is no restric-
tion on the size of a consignment. Records may be kept for individual
products or a truckload.

21

Requirement Related concerns
Traceability - data Data are required for traceability and are required by law to be available (Reg-

ulation (EC)No 178/2002).
Traceability - linked When traceability records are separated, it costs a lot of effort to match the

right records.
Traceability - query Each food safety incident has different clues to start the search for the ori-

gin of the contamination and many different questions could be asked to the
traceability system.

Traceability - backup Some actors disappear to make traceability of their counterfeit products
impossible(Flari et al., 2014).

Access control Traceability systems handle sensitive data(Minnens et al., 2018). A need-to-
know culture when data are shared (Solanki & Brewster, 2014). Is the data
safe? Part of the traceability data must be accessible to achieve traceability.

Value proposition - com-
pelling feature

Current traceability systems have subjective gains. Current traceability sys-
tems only realise value when the entire supply chain adopts a traceability sys-
tem

Value proposition - easy to
use

Supply chain actors lack skilled employees to use traceability systems.

Value proposition - data
reuse

Worries about additional workload when a traceability system is
adopted(Minnens et al., 2018). The system should replace or reuse cur-
rent systems, otherwise, it is an additional burden (Minnens et al., 2018).
Traceability systems require a lot of investment.

Trusted software supplier
- supplier reputation

Supply chain actors require a trusted third party to handle the traceability
data (Minnens et al., 2018).

Trusted software supplier
- reliable system

The system should work properly. The system should not create a vendor
lock-in.

Trusted software supplier
- governance

Supply chain actors require a neutral governance body they can trust.

Table 1: Requirement - concern relationships. This table lists which concerns are
addressed by a requirement.

22

• Organisations from whom they bought their products.

• A record of all the ingredients in a sold product.

This obligated record-keeping enables traceability. Additionally, this should re-
alise the mentioned benefits of traceability. Actors use the captured traceability
data to find the origin of a food safety incident. Once the origin is found, ac-
tors and food safety authorities use the traceability data to find where other
contaminated goods went to, to prevent human ingestion, save the image of
organisations, and prevent waste production.

This is a functional requirement because it is the goal of a traceability system.
The rationale for this requirement is: If the system can capture traceability
data, and assuming that all supply chain actors cooperate, then the system
contributes to solving part of the root causes of food safety incidents. This
requirement originates from the regulations laid down by food safety authorities,
the demand for safe food of consumers, and agri-food supply chain actors who
want to realise the benefits of traceability (section 1.2). This requirement is
satisfied when actors can find the origins and destinations of their products.
The customer satisfaction is graded on a 2. Because officially all organisations
are supposed to have traceability in place. It is a basic expectation that will
not increase customer satisfaction. Because traceability is a basic expectation,
absence of this feature will displease organisations. Customer dissatisfaction
is therefore graded with a 5. Given the importance of this requirement, the
priority is a must. This requirement does not conflict with other requirements.

3.1.2 Traceability - linked

Fast traceability requires more than capturing data. Currently, all supply chain
actors should capture traceability data because it is required by law. But as
shown in the introduction, this is not fast enough. At this moment, the Regu-
lation only obliges actors the capability to identify any person(UB) from who
A, has bought a food or feed product and vice versa (Regulation (EC) No
178/2002). However, this does not mean that the exact product can be named.
For example, when a cattle farmer sells beef to the lasagne producer. The
lasagne producer keeps a record that he bought beef from the farmer. The
farmer keeps a record of sold beef. This will work for one product or batch, but
when the amount of consignments increases, it will be hard to find the matching
products, especially when different record types are kept (trolleys v.s. crates).
When actors share an identifier of the products, they can safe time to find the
matching product. A possible implementation of this requirement could look
like: actors share the barcode of a product. For example, if a lasagne producer
keeps a record of the barcodes on their ready-made lasagne and the supermarket
keeps the barcodes as well, the supermarket can indicate exactly which products
are affected. This limits the number of records to search through at the lasagne
producer. When this is done digitally, it would enable the possibility to query
through the supply chain. This would decrease the time used to find actors in
an affected supply chain.

23

Table 2: Traceability - data

Requirement Traceability - data
Requirement type Functional
Events/use cases Discovery of contamination ori-

gins, the current location of con-
taminated goods.

Description The system should be can cap-
ture traceability data.

Rationale If the system is can capture
traceability data, and assuming
that all supply chain actors co-
operate, then the system con-
tributes to solve the lack of trace-
ability.

Originator food safety authorities, con-
sumers, food supply chain actors

Fit criterion An actor should be capable to
find the origin and destination of
products.

Customer satisfaction 3.
Customer dissatisfaction 5.
Priority Must
Conflicts -

24

This is a functional requirement because it creates a solution for the long
time to find the root cause of food safety incidents. Actors and food safety
authorities use the links between product records to find the origins and desti-
nation of products. Because it enables querying through the different records of
the data, regardless of the location. The following contribution argument can be
made: If the system has links between products spanning company borders and
assuming that actors need rapid access to traceability data of partners, then the
product links contribute to the goal of faster contamination location discovery.
This requirement originates from consumers and food safety authorities, in their
request for safe food. The supply chain actors are also originators because of
the benefits faster traceability brings. This requirement can be tested by look-
ing if an actor is capable of pointing to an exact product record at a partner
organisation. Because this is most likely new to supply chain actors, this is
an excitement generator. As this requirement is an excitement generator the
customer satisfaction is graded with a 4. Because it is an excitement generator,
the absence is not likely to cause dissatisfaction and therefore graded with a 2.
This requirement is a must because increasing speed in traceability is important.
This requirement does not conflict with other requirements.

3.1.3 Traceability - query

A quick response to food safety incidents requires the power of querying. This
is because a food incident usually has vague clues to what a possible origin was.
Previous research has demonstrated this with six example knowledge questions
that could be asked to a traceability system to help solve a food safety incident
(Solanki & Brewster, 2014). These questions have a variety of entry points(E.g.
data at a retailer, data of consumer organisations, and food producers) or clues
to a location to start the search for a food safety incident. The ability to
query the data creates freedom to search and order the data in a structure that
contributes to finding clues and root causes of a food safety incident, rather
than an endless search for a needle in a haystack of data.

This requirement is a functional requirement because it creates a function for
the system. The ability to query is used to search for clues of the root cause for
food safety incidents. The requirement can be described as: The system must
support queries on the traceability data. The rationale behind this requirement
is that when a system can query trough the traceability data, then the ability to
query contributes to the goal of faster contamination location discovery. This
requirement originates from the food safety authorities, consumers, and supply
chain actors, who are concerned with food safety. This requirement is satis-
fied when an actor is can query trough the traceability data. This requirement
is a basic expectation because almost every system can query. Therefore, the
customer satisfaction is graded on a 2 and the customer dissatisfaction on a 5.
Because it is a basic expectation, this requirement is a must. Unfortunately,
this requirement could conflict with the concerns of other requirements: access
control and value proposition - easy to use. To query data of multiple other ac-
tors, an actor requires access to data of others. Which conflicts with the concern

25

Table 3: Traceability - linked

Requirement Traceability - linked
Requirement type Functional Requirement
Events/use cases To find the originator (producer)

of the contaminated product.
Description The system should have links be-

tween products in different or-
ganisations at the level of indi-
vidual batches or consignments.

Rationale If the system has links between
product spanning company bor-
ders and the system can be
queried and assuming that actors
need rapid access to traceability
data of partners, then the prod-
uct links contribute to the goal
of faster contamination location
discovery.

Originator Food safety authorities, con-
sumers, food supply chain actors

Fit criterion An actor can of point to an ex-
act product record at a partner
organisation.

Customer satisfaction 4.
Customer dissatisfaction 2.
Priority Must
Conflicts -

26

Table 4: Traceability - Query

Requirement Traceability - query
Requirement type Functional Requirement
Events/use cases In the search for clues to a root

cause of food safety incidents.
Description The system must support queries

on the traceability data.
Rationale If the system can query the trace-

ability data, then the ability to
query contributes to the goal
of faster contamination location
discovery.

Originator food safety authorities, con-
sumers, food supply chain actors

Fit criterion An actor is can query trough the
traceability data.

Customer satisfaction 2.
Customer dissatisfaction 5.
Priority Must
Conflicts -

of actors regarding the sensitivity of the data. A solution that shares specific
parts of the data rather than an entire dataset, can address the concern for data
safety and the demand for queries. For example, a tomato sauce producer has
no reason to hide that he uses tomatoes, as this is clear from the actors’ role.
End users could perceive the creation of queries as difficult. However, software
developers usually automate queries in the applications for end users. There-
fore, the ability to query should not conflict with the easy to use requirement, as
end-users do not see queries. When a new question arises, a software developer
can add this as a new functionality.

3.1.4 Traceability - backup

The fourth requirement is a backup mechanism. The previous requirements
have the flaw that once an actor disappears, removes his data, or is unavailable,
traceability is impossible. This became apparent in the 2011 organic food cri-
sis (Flari et al., 2014). In this crisis, fraudsters opened and closed short term
organisations to hamper traceability. Therefore a mechanism should be present
to recreate traceability without the cooperation of an actor. The backup can
create a trust-related issue because organisations may not trust the party re-
sponsible for the backup. Because the backup is out of control of the actors,
actors no longer possess the opportunity to choose who can access their data.

This requirement is a functional requirement because it creates a new func-
tion for the system. The backup mechanism reconstructs the traceability when

27

Table 5: Traceability - backup

Requirement Traceability - backup.
Requirement type Functional requirement
Events/use cases When an actor disappears

or does not share data when
obliged.

Description A backup mechanism should be
in place to recreate the traceabil-
ity when actors disappear.

Rationale If the system has backup trace-
ability, assuming that some ac-
tors try to hide their criminal
activities, then the backup con-
tributes to the goal of preventing
data loss.

Originator Food safety authorities.
Fit criterion An actor should be capable to

find the origin and destination of
a product when some of the ac-
tors are missing.

Customer satisfaction 2 & 5.

Customer dissatisfaction 2.
Priority Should
Conflicts Access control,

an actor does not cooperate. The contribution argument for this requirement
is: if the system has backup traceability, assuming that some actors try to hide
their criminal activities, then the backup contributes to the goal of preventing
data loss. This requirement originates from food safety authorities because they
can not prosecute the involved actors and can not ensure food safety. The sat-
isfaction of this requirement can be tested by an actor who can find the origin
and destination of a product when some of the actors are missing. For food
safety authorities this generates a lot of satisfaction because it helps them in
their job. Therefore the customer satisfaction is graded a 5. The customer
dissatisfaction is graded a 2, Because this it is new for food safety authorities
to have a second location where traceability data can be retrieved, the absence
of it is not expected to generate high dissatisfaction. This requirement is given
a should because it creates benefits for the food safety authorities and possibly
contributes to food safety, but does not directly reduce the barriers to adoption
for the supply chain actors. This requirement could conflict with the access
control requirement.

28

3.2 Access control

As indicated in the previous section, traceability systems fail due do lack of
trust. “A system is only considered promising if data confidentiality is ensured
on a technical level” (Minnens et al., 2018). This requirement represents con-
cerns of stakeholders and the security and trust factor(section 2.3). Therefore,
an access control framework should be in place. An access control framework
can help in the prevention of a large part of the risks as well as address the stake-
holder concerns about the safety of the system. Specific access control could
mitigate the 6 risks of the security and trust factor. Specific access control
achieves this by sharing data required for traceability (sourcing of ingredients)
but keeping transaction records private. Moreover, the culture in the agri-food
supply chain prevents data sharing between actors more than one up or down-
stream (Brewster et al., 2018). However, actors require lower trust in each other
when they can share specific parts of their data. E.g. when two parties trade
a physical good, they can safely share the bar-code (or another identifier) of
that product because both locations know this information. This reduces the
trust required between parties to share part of their data. The use of an access
control framework is expected to lower the risks posed by the sensitive nature
of the data and thereby the chances of adoption are increased.

This requirement represents a functional requirement because it is essential
for the system to have, to be considered promising by actors. The access control
requirement is used when an actor tries to gather traceability data from other
actors in the supply chain. For this to happen in a manner that aligns with the
stakeholder concerns, the system should allow actors to define who has access
to parts of their data. Because actors do not join systems where their data
safety is not guaranteed, the possibility for actors to specify who has access
to their traceability data contributes to the adoption of a traceability system.
This requirement originates from the supply chain actors who worry about the
sensitive nature of their data. This requirement is satisfied when data cannot
be accessed by other actors who do not have access. Customer satisfaction is
scored on a 2. This requirement will not contribute to the satisfaction because
it is a basic expectation. Because it is a basic expectation, the dissatisfaction
will be high and therefore scored a 5. The concerns of the stakeholders indicate
this requirement is a must as they do not adopt a system without access control.

3.3 Value proposition

Because the costs, organisational fit and unsure benefits are prominent barriers
to adoption the value proposition attempts to lower these barriers. In contrast
to the traceability requirements, the value proposition requirements are present
to lower the barriers to adoption. The value proposition requirements relate to
the factors ease of use, usefulness, organisational fit, benefits, and costs.

29

Table 6: Access control

Requirement Access control
Requirement type Functional requirement
Events/use cases An actor wants to see data of a

partner.
Description Each actor can define who has

access to which part of their
data.

Rationale If the system has the possibility
for actors to specify who has ac-
cess to their traceability data, as-
suming that actors do not join
systems where their data safety
is not guaranteed, then the ac-
cess control contributes to the
adoption of traceability systems.

Originator Supply chain Actors.
Fit criterion Data cannot be accessed by

unauthorised actors.
Customer satisfaction 2.
Customer dissatisfaction 5
Priority Must
Conflicts Traceability - backup

30

3.3.1 Value proposition - data reuse

The design decisions in a traceability system influence the costs to implement
a traceability system. Because resources are tight for a large proportion of the
supply chain, large investments would mean hurdles for a large proportion of
the supply chain. One of the possible ways to lower the costs of traceability
systems is to increase the organisational fit factor. minimising the amount of
business process remodelling lowers the costs of adoption. This can also be seen
in the demand for systems to reuse or replace current applications instead of
being an additional one (Minnens et al., 2018). The possibility for traceability
systems to reuse the data from existing systems is expected to decrease the
adoption costs as the reuse of data from current applications limits the amount
of business remodelling. Additionally, it helps in the ease of use.

This requirement is a design constraint because it imposes restrictions on
how the system should be designed. This requirement is used when the system
loads data from other existing systems to create traceability. This requirement
can be described as: the system should reuse existing data where possible. The
rationale behind this requirement is that if the system reuses existing data where
possible and the reuse of data lowers the implementation costs, then the reuse of
data lowers a barrier to adoption. This requirement originates from the supply
chain actors, that lack the resource required to implement a traceability system.
Satisfaction of this requirement can be tested by the ability to import data
from existing systems. This requirement realises a payoff satisfaction because
the more data it can import, the more satisfaction is generated. Therefore the
customer satisfaction is scored on a 3. The dissatisfaction has been scored on
a 3 as well. This requirement has a priority of should because it contributes
to the adoption of the system. However, it can function without it and can
be added later. This requirement may conflict with value proposition - easy
to use, because integration with other systems may create a difficult system for
end-users. Moreover, a system that relies on legacy systems could worsen future
adjustments to the system or application landscape of actors. Reusing data can
save manual work and contribute to the easy to use requirement.

3.3.2 Value proposition - compelling feature

One of the encountered problems in the barriers of adoption is that the entire
chain must adopt the traceability system to realise value. A single supply chain
actor, that does not adopting the system, breaks the business case for the en-
tire supply chain. To prevent this, the system should have a positive business
case independent of the number of users. A new business process which gener-
ates value and creates traceability should create a positive business case. This
requirement does not propose a specific compelling feature. At the time of re-
quirement specification, the author did not know how to satisfy this requirement
yet. Changing it to a specific feature would conflict with the search for possible
solutions as well as limit the creativity for possible solutions.

In a Delphi study, 80% (30 participants) indicated to adopt a traceability

31

Table 7: Value proposition - data reuse

Requirement Value proposition - data reuse
Requirement type Project constraints
Events/use cases Adding data from other systems.
Description The system should reuse existing

data where possible.
Rationale If the system reuses existing data

where possible, assuming that
the reuse of data lowers the
implementation costs, then the
reuse of existing data increases
the chances of adoption.

Originator Supply chain actors
Fit criterion Most of the data are imported.
Customer satisfaction 3.
Customer dissatisfaction 3.
Priority Should.
Conflicts Easy to use

system direct or as early adopters (Minnens et al., 2018), this number is ex-
pected to be lower in reality for two reasons: the first reasons is due to their
self-selected sample. By the self-selection, companies interested in traceability
systems are more likely to participate in the study than companies who are not
interested. Therefore a warning is made for generalisation outside the study
sample. Second, it is easy to say that you will adopt a system, but doing it in
practice takes more effort. Therefore, 80% is expected to be an overestimation
of reality. Moreover, even a percentage of 80% would imply that in a supply
chain of five actors, one actor would not adopt a traceability system, damaging
the business case.

The requirement type is a project driver because it is a business-related
force that drives the adoption of a traceability system. The requirement can
be described as: the traceability system should have a feature that brings value
for adaptors in itself when no other actors are adopting. The rationale for
this requirement is that current traceability systems do not realise value when
other actors do not adopt the traceability system, a compelling feature should
contribute to the value creation of the traceability system. This requirement
originates from the supply chain actors because they perceive the lack of oth-
ers joining the system as a barrier. A compelling feature is expected to be an
excitement generator because it is most likely new for the sector. Because it
is an excitement generator, the customer satisfaction is graded on a 5, and the
customer dissatisfaction is graded on a 2. The priority of this requirement is
graded on a should, because it is not required for a traceability system to func-
tion and can be added later. But it helps in lowering the barriers to adoption.
This requirement does not conflict with other requirements.

32

Table 8: Value proposition - compelling feature

Requirement Value proposition - compelling
feature

Requirement type Project driver
Events/use cases
Description The system should have a feature

that realises value even when a
single actor adopts a traceability
system.

Rationale If a traceability system has a
compelling feature and assuming
that current systems do not re-
alise value when others do not
adopt the traceability system,
then the compelling feature con-
tributes to the perceived value.

Originator Supply chain actors.
Fit criterion A new feature apart from trace-

ability that brings value.
Customer satisfaction 5.
Customer dissatisfaction 2.
Priority Must/should.
Conflicts -

33

3.3.3 Value proposition - easy to use

This requirement represents the concerns of end users, supply chain actors and
the ease of use factor. To counter the lack of skilled employees, concern for lower
efficiency and possible easier paper traceability, traceability systems should be
easy to use. The system should prevent the need for (new) skilled employees
because additional employees lower operational efficiency and increase the per-
ceived bureaucratic burden. Moreover, an easy to use system should reduce the
concerns of end users about their capability to use the systems. Traceability
systems which are easy to use should not require additional personnel and may
even be easier to use than a paper-based version. Moreover, based on the ease
of use adoption factor, an easy to use system receives larger uptake. Unfortu-
nately, the perception of individuals determines satisfaction of this requirement.
E.g. LATEX and Microsoft Word are both text editors, but the former can be
perceived more as a burden to edit text than the latter. Marketing and triala-
bility factors may help in this regard to demonstrate potential value and ease of
use. This requirement gains importance towards the end of the implementation
when the user interface is created. This requirement should still be considered
in the design of a solution to prevent a lock-in to complicated solutions.

This is a non-functional requirement because it poses restrictions on the
quality of the traceability system. This requirement is seen in the daily use of
traceability systems and in the marketing of a system. The requirement can be
described as: the system should be easy to use for end users. This rationale
behind this requirement is that if the system is easy to use and assuming that
the end users understand how the traceability system works, then the easy to
use requirement contributes to the perceived value of a traceability system. By
increasing the perceived value of a traceability system, it lowers the barrier
where traceability systems are perceived as difficult to use. Additionally, an
easy to use system could prevent the need for additional employees to use the
system for supply chain actors. This requirement originates from the agri-food
supply chain actors and the end users. Because the end users had concerns
if they were skilled enough to use the system, might lose their job because of
it, or would have a higher workload. The supply chain actors are originators
because they are concerned about the productivity of their employees. The
customer satisfaction is graded on a 3 because this requirement is believed to
be a performance payoff. Because with more investment in features, the system
becomes easier and easier to use. The customer dissatisfaction is graded on a 5
because a complicated system is unlikely to be used by actors because they do
not understand the value it brings. The priority is graded on a could. Although
its importance, this requirement could be satisfied in later stages when a user
interface is updated to better fit this requirement. Easy to use is not affected
by other requirements.

34

Table 9: Value proposition - easy to use.

Requirement Value proposition - easy to use.
Requirement type Nonfunctional requirement.
Events/use cases daily use of traceability systems
Description The system should be easy to use

for end users.
Rationale If the system is easy to use and

assuming that the end users un-
derstand how the system works,
then the easy to use require-
ment contributes to the per-
ceived value of a traceability sys-
tem.

Originator Agri-food supply chain actors,
end users.

Fit criterion The perceived ease of use by end
users.

Customer satisfaction 3.
Customer dissatisfaction 5.
Priority Could.
Conflicts -

3.4 Trusted software supplier

The trusted software supplier is a requirement category of three requirements
for the creator of traceability systems. It is related to the security and trust
factor, the vendor reputation factor and the concerns regarding the sensitive
data of supply chain actors.

3.4.1 Trusted software supplier - supplier reputation

The industry requires a trusted and neutral third party to handle the data
because of the sensitive nature (Minnens et al., 2018). The supply chain actors
should trust the company that builds traceability systems. The software supplier
should preferably not have large ties with large food corporations. Moreover,
the trusted software supplier may have access to the data, or own the data
depending on the implementation. But the software owner can also outsource
the storage of the data. In any case, the supply chain actors should trust the
trusted software supplier. Especially the software supplier should be trusted
not to sell the data or inferences without the consent of the actors. Trust
in the software supplier should increase when they are neutral. Additionally,
government agencies are not an option because they are not perceived as neutral
by the industry (Minnens et al., 2018). For later stages, a vendor who helps
actors during implementation of traceability systems is expected to contribute
to the uptake.

35

This requirement is a project issue requirement because it defines a condition
for traceability. Some events of this requirement are: handling of sensitive
data, during the adoption of a traceability system, and when actors experience
problems with a traceability system. This requirement can be described as: the
supplier should have a good reputation and can be trusted with the sensitive
data of organisations. The reason for this requirement is that actors do not buy
systems where their data are not save. Moreover, as actors have experienced
difficulties in the implementation of traceability systems, a vendor that helps
them in their implementation. Therefore, a good supplier reputation is expected
to lower a barrier to adoption. This requirement originates from the agri-food
supply chain actors that are concerned for their sensitive data and for possible
difficulties during implementation. A fit criterion for this requirement can be
a survey under adopters for their opinion on the software supplier. A vendor
with a good reputation is expected to be a basic expectation. Therefore it is
expected to generate minimal excitement and scored on a 2. The customer
dissatisfaction has been graded on a 5, because of the sensitive nature of the
data handled. Organisations are not expected to join a system which is owned
by an organisation with a negative reputation on data safety. Moreover, the
dissatisfaction is expected to be high when a basic expectation is not present.
This requirement should be satisfied because it creates a significant barrier for
actors before adoption but does not have a direct effect on a traceability system
itself. Additionally, the reputation of a software supplier is fluid and can be
affected after the creation of a system. But, a reputation is easier to diminish
than to build. This requirement does not conflict with other requirements.

3.4.2 Trusted software supplier - reliable system

Additionally, the actors require a software supplier that builds a reliable system
that functions properly. Moreover, the system should not generate a vendor
lock-in.

This requirement is a nonfunctional requirement because it creates a quality
feature for the system. Ideally, actors should never encounter this requirement,
because that would mean that it always works. And if it does not work properly,
actors can switch to another traceability system with minimal effort. This
requirement can be described as: the system should work appropriately and not
have a lock-in. The rationale behind this requirement is that actors are unlikely
to adopt systems that do not function properly or have a lock-in. When a
system functions properly and does not have a lock-in, actors perceive a lower
barrier to adopt such a system. This requirement originates from the agri-food
supply chain actors, who have limited available resources. When a system does
not function properly, it hurts their value creation and the ROI of the system.
Moreover, a lock-in raises prices for actors to switch to another system, even
when they would want to switch. The up-time of the system can be used to
test satisfaction of this requirement. This requirement is judged as a basic
expectation because actors expect a system to function when they buy into
it. Therefore the satisfaction is graded on a 1 because it does not bring joy

36

Table 10: Trusted software supplier - supplier reputation.

Requirement Trusted software supplier - sup-
plier reputation

Requirement type Project issue.
Events/use cases Handling sensitive data, Adop-

tion of software, Help during
events.

Description The supplier should have a good
reputation and can be trusted
with the sensitive data of organ-
isations.

Rationale If the supplier has a good rep-
utation, and assuming that or-
ganisations are unlikely to adopt
software from organisations who
do not handle sensitive data ap-
propriately and software is more
likely to be bought from soft-
ware vendors known to help
their customers in implementa-
tion and problem solving, then
the supplier reputation helps in
the adoption chance of traceabil-
ity systems.

Originator Agri-food supply chain actors.
Fit criterion A survey at the adopters of a

traceability system.
Customer satisfaction 2.
Customer dissatisfaction 5.
Priority Should
Conflicts -

37

Table 11: Trusted software supplier - reliable system.

Requirement Trusted software supplier - reli-
able system.

Requirement type Nonfunctional requirement
Events/use cases When the traceability system is

not available.
Description The system should work appro-

priately and not have a lock-in
Rationale If the system is reliable, and as-

suming that actors are unlikely
to adopt a system that is known
to be unavailable a lot of the
time, then the reliable system
helps in the adoption chance of
a traceability system.

Originator Food supply chain actors.
Fit criterion The amount of time the system

is available.
Customer satisfaction 1.
Customer dissatisfaction 5.
Priority Must.
Conflicts -

when it functions as it should. The dissatisfaction is graded on a 5 because
consumers are expected to be extremely unhappy when the system does not
function properly. Implementation of this requirement is a must because an
unreliable system will cause the system to be a failure from the start. This
requirement does not conflict with other requirements.

3.4.3 Trusted software supplier - governance

Every system will require some sort of governance. As time passes environments
change, and so will traceability systems. As time progresses new laws may
require the capture of new data or changes to a data model. Because of these
inevitable future changes, a governance model or governance organisation is
required. The governance body should be neutral and can be expected to be
in existence for the foreseeable future “particularly given the short life span of
many software companies” (Seethamraju, 2015).

This requirement is a project issue because it defines a condition for the
traceability system to function within. This requirement is used in future adap-
tions or updates of the traceability system. This requirement can be described
as: the traceability system should have a neutral governance structure. The ra-
tionale for this requirement is that changes to a system are inevitable. To cope
with these changes, a governance structure is required. Similar to the supplier

38

Table 12: Trusted software supplier - governance.

Requirement Trusted software supplier - gov-
ernance

Requirement type Project issue.
Events/use cases Future developments.
Description The created system should have

a neutral governance structure
Rationale If the traceability system has

a neutral governance structure,
and assuming that the system
will require changes in the fu-
ture, then actors are more likely
to adopt the system.

Originator Food supply chain actors
Fit criterion A neutral governance body or or-

ganisation is present.
Customer satisfaction 2.
Customer dissatisfaction 5.
Priority Would.
Conflicts -

reputation, the governance body should be trusted by the supply chain actors.
food safety authorities are said to play an important role but are also not trusted
by the industry (Minnens et al., 2018). Therefore food safety authorities could
be part of a governance body, but not be the only governance actor. The avail-
ability of a neutral governance body is expected to lower barriers to adopt a
traceability system. This requirement originates from the supply chain actors.
The satisfaction of this requirement can be tested to look if a neutral governance
body is present. Governance of a system is a basic expectation. Therefore the
satisfaction is graded on a 2, and the dissatisfaction on a 4. The priority of this
requirement is a would, because it does not affect the development of a system
and can be satisfied in later stages of development. This requirement does not
conflict with other requirements.

3.5 Out of scope requirements

One of the expressed concerns by some of the supply chain stakeholder is that
data must be correct. Although some solutions may exist which can predict
faulty data, this is not the goal of this research and is therefore excluded.

Another issue is the cost structure. Because only thirty per cent of the
industry stakeholders are prepared to pay for a traceability system (Minnens
et al., 2018), the software developer should finance the system in another way
than through direct payment.

39

4 State of the art systems

After specifying the requirements the next step in treatment design is the search
for available treatments. In the search for possible treatments two categories
have been made: available traceability systems and approaches where traceabil-
ity systems could be built upon. After an introduction of the traceability system,
they are compared to the requirements defined in the previous section. After all
traceability systems have been analysed, a gap analysis is done. Similar to the
first part, the approaches are introduced, checked if they fit the requirements,
and a gap analysis is done. This section ends with an analysis of ontology based
access control as an access control framework.

4.1 traceability systems

As previously noted, multiple initiatives try to enable traceability. Below is a
small list of traceability initiatives that were suggested, found on google and
google scholar or encountered during this thesis. This list is likely to be incom-
plete and traceability systems are missing. The satisfaction of the requirements
is summarised in table 13. The traceability systems are scored on the satisfac-
tion of the requirements. They are scored on a three-point scale: not satisfied
or not possible (-), neutral (+/-) and satisfied (+).

4.1.1 Linked pedigrees

Linked pedigrees(LP) contributes to the integrity of the agri-food supply chain
in two ways. The first contribution is in the formalisation of EPCIS and CBV
(explained later) into formal ontologies. Next to that, LP provides a setup
for a decentralised architecture for traceability in the agri-food supply chain
which can be seen in figure 2 (Solanki & Brewster, 2014). LP is elaborated
in three components: the data model, the application architecture and the
communication architecture.

The data model has been build on the idea of a classical pedigree which is
“a record that traces the ownership and transactions of a product as it moves
among various trading partners” (Solanki & Brewster, 2014), the classic pedi-
grees can both be paper-based and electronic. In LP, a pedigree is made for
every product or batch of products. Each pedigree represents the actions an or-
ganisation has done to create their final product from ingredients. Every actor
has control over their pedigrees and a privately owned storage for their pedi-
grees. In figure 2 this is represented by the separated actors and their individual
data stores. The pedigrees are saved in linked data(RDF) format. A pedigree
is identified with a URI. The pedigree is used by actors to describe the product,
transaction, and consignment information. Moreover, each pedigree contains
URIs to the pedigree datasets of upstream and downstream actors. For exam-
ple, consider a simplified supply chain for the production of ready-made lasagne
consisting of a beef trader, a sauce producer and a lasagne producer. The beef
trader has a pedigree that contains the information on the sourcing of the beef,

40

storage conditions, crates in the consignment, and the pedigree URI of the sauce
producer. The sauce producer has a pedigree that contains information on the
sourcing (among other things the pedigree URI of the beef trader), production
processes, and the pedigree URI of the lasagne producer. The lasagne producer
has a pedigree that contains information on the sourcing (among other things
the pedigree URI of the sauce producer), production processes, and information
on the supermarkets. The information of these actors combined creates the
traceability required. In figure 2, the purple arrows represent the flow of the
food consignments (beef, sauce and lasagne in the example), while the arrows
between the actors represent the exchange of pedigree URIs. To fill the pedi-
gree with the necessary data for traceability, the OntoPedigree ontology design
pattern has been made. OntoPedigree can be used to design domain-specific
ontologies. Two of the domain-specific models that are incorporated in the On-
toPedigree and explained below are the Electronic Product Code Information
Services(EPCIS) and core business vocabulary of GS1. Initially, GS1, an organ-
isation responsible for the barcode standards, had created barcodes and RFID
tags to create traceability. However, as time progressed they kept developing
standards to create traceability and information sharing. Combined, EPCIS
and CBV create specifications to create traceability.

• EPCIS EPCIS is used to share information on product movement and
status between actors. It focuses on the capture of what, where, when
and why of the product to create correct and specific product information
(GS1, n.d.). This data are automatically generated by the scanning of
barcodes and RFID tags during production. Each production step or
product movement is abstracted as an event.

• CBV CBV is meant to be used in combination with EPCIS. CBV provides
a standard to fill the data fields defined in the EPCIS standard. The goal
of CBV is to grant a common way for organisations to interpret data,
which may be interpreted differently without the standard. (GS1, n.d.)

Each LP application has three main components. The Linked Data Reposi-
tories(LDR) include the data of supply chain partners and supply chain opera-
tions. Additionally, it may contain data on the products to be shipped and lo-
cations. Second, the Event Extraction Engine is responsible for extracting data
from the LDR using the LinkedEPCIS library. The Linked pedigrees Generator
component is responsible for generating pedigrees conforming to the OntoPedi-
gree vocabulary and are stored in the Linked pedigrees repository. The Linked
Pedigree Generator is part of the Linked Pedigree Manager agent, which also
has the role to create a connection with the upstream and downstream actors,
confirming the sending and receiving of goods at an actor. The LDR and Linked
pedigrees repository are separate entities.

The communication architecture has two different actors, the individual sup-
ply chain actors and the Integrated Linked pedigrees Store (ILPS). Pedigrees
URIs are sent in a pull model. The chain begins with an actor sending a physical
consignment to a downstream actor. Upon the arrival of the consignment at

41

Figure 2: High-level architecture of Linked pedigrees.

the downstream actor, the downstream actor sends a request for the pedigree
URI. The downstream actor responds by sending the URI to their corresponding
Pedigree. At the same time, the URI is sent to the ILPS. Each actor incorpo-
rates the URIs of previous actors in its pedigree. This process is repeated until
the end of the supply chain is reached. At this point, the final information and
the end-of-supply-chain message is sent to the ILPS. By sending the URIs to the
ILPS, integrity of the traceability chain is ensured when actors are unavailable
for any reason. The ILPS contains a knowledge base with standards, commu-
nication protocols, vocabularies and a set of relevant open data. Moreover, it
contains knowledge services for applications for individual parties to connect to.

Requirements checklist

Traceability - data: Satisfied, LP captures the required data for traceabil-
ity.

Traceability - linked : Satisfied, during the pedigree exchange protocol, the
links between the pedigree datasets of upstream and downstream actors
is made.

Traceability - query : Satisfied, the use of semantic web standards creates
the opportunity to create queries that span multiple triple stores.

Traceability - backup: Satisfied, the ILPS provides the ability to indicate
which actor is not sharing the required information. Furthermore, it en-
ables the reconstruction of the supply chain when an actor disappears even
though it does not have actual data inside a pedigree.

42

Access control : Not satisfied, LP does not provide access control to data.
A note is made on the abstraction of it. It should be noted that LP is
designed in a manner that allows data owners to be in control of their
data. The communication protocol only requires actors to send URIs of
the pedigree, no supplementary data. Actors can decide who has access
through the pedigree URI.

Value proposition - compelling feature: Neutral, LP does not provide a
compelling feature. When only a single actor adopts LP he is not likely
to realise value. The ILPS provides an access point for other application
of actors. These applications may realise the value generated by LP when
no other actors in the supply chain are present.

Value proposition - easy to use: Satisfied, although it is hard to judge if a
system is easy to use from the architecture, the vision seems easy in use
for end users. A pedigree is automatically generated each time a product
arrives and linked to the sender. This creates minimal manual effort in
generating traceability data when consignments arrive. One scan and the
product is confirmed arrived, registered and the pedigree URI is requested
from the sender. The organisation only has to incorporate a link to the
received pedigree in its product pedigree when selling a product.

Value proposition - data reuse Satisfied, LP creates a loose application,
that reuses data from other datastores already present at the actors to fill
the pedigrees. In that way, users extract data and put it in a pedigree,
rather than re-entering the data. Moreover, the pedigree URIs of up and
downstream actors provide access points for potential supplementary data,
assuming they are granted access.

Trusted software supplier - supplier reputation: Neutral, LP does not have
a software supplier building the system. Therefore no statements can be
made on the supplier regarding their behaviour with sensitive data and
help in implementations. However, the architecture prevents the need to
trust the software supplier with data as they are kept local. The ILPS
presents a risk factor because they possess all the connected URIs of the
actors at a single location. This is because the pedigree URIs point to
access points of the data. These access points could be local computers
of the supply chain actors. Another possibility is that the URIs contain
company names. Therefore, it can be devised who is trading with who,
by looking at the URIs at the ILPS. When the software supplier acts as
the ILPS, the supplier must be trusted with the data again.

Trusted software supplier - reliable system: Satisfied, it cannot yet be
judged if the system will always work, this will be seen when the system is
in use. However, the ILPS provides a second route when B is not available
or has problems with LP. Then A can use the ILPS to receive information
from C. LP does not generate a vendor lock-in by itself. However, the

43

users of LP are locked-in to the environment, as the current architecture
does not have interoperability built-in with other traceability systems.

Trusted software supplier - governance: Not satisfied, since there is no
software supplier at this moment no statements can be made on the ap-
plication part regarding the governance. However, the used standards in
OntoPedigree, are under the governance of GS1. Moreover, the linked
data structure is governed by the World Wide Web consortium.

4.1.2 IBM food trust

Food trust is a traceability initiative by IBM. It is a blockchain-based sys-
tem offering traceability and document management. The solution is made for
the entire supply chain, from farmer to the consumer. Large corporations like
Carrefour have already joined the system. Data are stored on the private IBM
blockchain. The costs of food trust was 100 dollar for organisations with revenue
lower than 50 million (Dignan, 2018), but this has information has disappeared
from their website now (IBM, n.d.-b). Users can specify which parts of their
data they are willing to share, with whom and under which conditions. Unfor-
tunately, minimal information could be found on the data processing rights of
IBM. It is therefore expected that IBM has the right to process users data for
insights. Initiatives, like Thank my farmer for tracing the origin of coffee beans,
are built on the Food trust network (IBM, n.d.-a). Although food trust is built
on a blockchain, the costs of Food trust are relatively low at 100 dollars for
small organisations (Dignan, 2018). Additionally, IBM provides an estimator
tool for estimation of the saved products when implementing Food trust, the
tool indicates a positive business case for businesses to join the system.

Traceability - data: Satisfied, food trust is capable of creating traceability

Traceability - linked : Satisfied, the response time of 2.2 seconds to find
the origin farmer of products indicates that product links are established.

Traceability - query : Satisfied, Because the blockchain provides a location
where queries can be sent to, to gather the traceability data required.

Traceability - backup: Satisfied, the blockchain is expected to provide the
backup traceability

Access control : Satisfied but doubtful. Data on the IBM blockchain is
stored encrypted, the user remains in control of their data and can define
who has access. However, it is unsure if IBM sells the data to third parties
(see supplier reputation)

Value proposition - easy to use: Satisfied, the application seems to be
relatively easy to use (aelf, 2019).

Value proposition - compelling feature: Not satisfied, Food trust does not
have a compelling feature. One of the benefits for adopters of Food trust

44

is the ability to validate the certification of products, this is likely to save a
lot of time (aelf, 2019). However, this relies on the entire upstream supply
chain adopting food trust.

Value proposition - data reuse: Satisfied, food trust offers a separate mod-
ule for sale to upload import-documents and reuse data.

Trusted software supplier - governance: Satisfied, the governance of the
system lies at IBM as the owner of the software.

Trusted software supplier - reliable: Satisfied, the system is expected to
be reliable, based on the reputation of IBM to build reliable software.
Additionally, the use of the blockchain should ensure a reliable system
which is always online. This system generates a lock-in for the IBM-food
trust. Because the used blockchain is privately owned by IBM.

Trusted software supplier - supplier reputation: Satisfied but doubtful,
IBM is a somewhat neutral software supplier. Unfortunately, it is un-
sure whether IBM has access to the data of the supply chain to sell or
not. The website says the data owner is in control of who can see the
data, but it does not say anything about IBM using the data. Moreover,
user agreements do not provide the required information to answer this
question. Moreover, users do not pay for placing data on the blockchain,
third-party apps that use the data do (Morris, 2019). This implies that
IBM can access and sell the data of the users. Food trust is expected to
generate a lock-in for their system. IBM has been around for a long time
and is therefore expected to be for the foreseeable future.

4.1.3 TE-FOOD

According to Medium, “TE-FOOD is the most popular farm-to-table food trace-
ability solution” (TE-FOOD, 2019). It is currently in use by at least 6000 busi-
ness customers (TE-FOOD, 2019). TE-FOOD is a blockchain-based traceability
system. Additionally, it has an API that accepts excel files and GS1 EPCIS for-
mats for legacy systems. For organisations with minimal digital capabilities,
TE-FOOD offers a mobile application to capture the required traceability data.
For consumers, TE-FOOD offers a free mobile app to present food history in-
formation. (TE-FOOD, n.d.)

Traceability - data: Satisfied, the application provides traceability

Traceability - linked : Satisfied, links between products are established.

Traceability - query : Satisfied, because TE-FOOD is blockchain based,
every actor has a location to send queries to that span the supply chain.

Traceability - backup: Satisfied, the blockchain ensures the backup trace-
ability.

45

Access control : Not satisfied, the application provides minimal access con-
trol. The permissioned blockchain requires permission to write data to,
but the transparency implies open data for other users and consumers.

Value proposition - easy to use: Satisfied, TE-FOOD seems to be easy to
use (TE-FOOD, 2018). Especially with the use of their mobile application,
traceability data can be entered on demand.

Value proposition - compelling feature: Not satisfied, there is no com-
pelling feature because the application does not provide value when only
one actor joins the system.

Value proposition - data reuse: Satisfied, TE-FOOD offers the opportunity
to reuse data from excel and their mobile application.

Trusted software supplier - governance: Satisfied, TE-FOOD has its own
governance.

Trusted software supplier - reliable: Neutral, Judging by their lowering
amount of daily volume on their cryptocurrency, users seem to lose interest
in TE-FOOD which will negatively affect the chance of survival. The use
of the blockchain should ensure a reliable system which is always online.

Trusted software supplier - supplier reputation: Satisfied, TE-FOOD ap-
pears to be a neutral software supplier. Because their goal is to realise
food traceability, this may work well for the agri-food supply chain. TE-
FOOD does introduce a lock-in for their systems, but it allows freedom in
the usage of third party apps for generating data to be uploaded to their
blockchain.

4.1.4 SeafoodIQ

SeafoodIQ is a traceability system meant for the seafood industry. The system
includes RFID tags in pallets and boxes to trace the products as well as the
temperature during transportation and storage. The tags are also used in auto-
matically tracking the movement once the tag moves through gates. In this way,
SeafoodIQ appears as a complete system for both internal and external trace-
ability. The data are stored on the blockchain. (SeafoodIQ, 2018a) SeafoodIQ
is a project sponsored by the EU and expected to enter the market at the end of
2020 (SeafoodTrace: Intelligent Traceability Platform enabling full transparency
in the Seafood supply chain, 2018).

Traceability - data: Satisfied, SeafoodIQ offers traceability.

Traceability - linked : Not satisfied, it does not appear to provide links
between products. For the seafood industry this is most likely not neces-
sary, as the product is a fish, and not/minimally used as an ingredient in
subsequent products. The ability to query the data is present due to the
use of a blockchain.

46

Traceability - query : Satisfied, similar to the previous two solutions, SeafoodIQ
is built on blockchain, which acts as a location that actors can query.

Traceability - backup: Satisfied, the blockchain provides the backup trace-
ability of the products.

Access control Not satisfied, The website of SeafodIQ does not provide
information on the access control or security of the system other than
”Enterprise-level security”. However, it is expected that some form of
access control is in place. The promo video indicates that restaurants can
see all the information on the food they received, indicating open access
to SeafoodIQ users (SeafoodIQ, 2018b).

Value proposition - easy to use Satisfied, the system appears to be very
easy to use. The combination of RFID tags and automatic scanning gates
saves manual work in keeping a record of product locations and movement.
The temperature-sensitive RFID tags help in estimating shelf life and
providing proof of shelf life (SeafoodIQ, 2018b).

Value proposition - compelling feature Satisfied, one of the compelling
features would be the near-automatic internal and external traceability.
Even when no other players would join the ecosystem, SeafoodIQ creates
internal traceability and insights into the local production process.

Value proposition - data reuse Satisfied, although SeafoodIQ offers a com-
plete system, acquiring all the hardware may require a large investment.
Additionally, the temperature-sensitive RFID tags may create a lot of costs
over a temperature measurement of the cool storage facility. However, the
application automatically reuses all the data generated by separate RFID
tags.

Trusted software supplier - governance: Satisfied, SeafoodIQ has their own
governance.

Trusted software supplier - reliable: Satisfied, because they are founded in
2015, it is unsure for how long they will exist. The use of the blockchain
should ensure a reliable system which is always online. However, the
blockchain also generates a lock-in to their system.

Trusted software supplier - supplier reputation: Satisfied, SeafoodIQ is a
for-profit organisation, making it not entirely neutral. Their system would
create a lock-in when adopted.

4.1.5 Traces

TRAde Control and Expert System (TRACES) is a traceability system of the
EU. It is meant for the documentation of imported food inside the EU and
between member states. Traces is in use by all customs offices in the EU
(TRACES: TRAde Control and Expert System, n.d.).

47

Traceability - data: Satisfied, the system captures traceability data by
enabling actors to upload their relevant data.

Traceability - linked : Satisfied, the promotion video implies that there is
a link present between the products at different owners by being able to
directly determine the origins and destinations.

Traceability - query : Neutral, Traces offers a search function that has
underlying query functions. However, it does not has a field for specifying
queries.

Traceability - backup: Satisfied, most likely there is a backup of the data
entered into the system somewhere.

Access control : Not satisfied, Traces does not provide the ability to de-
termine who has access to the data. Additionally, competent authorities
may always access the data in traces, outside the control of the actors.

Value proposition - easy to use: Neutral, Traces is available in 35 lan-
guages, this can create ease of use, especially in trade spanning country
borders. However, the number of certificates and steps indicate a system
which costs a lot of effort to use.

Value proposition - compelling feature: Satisfied, Traces does not provide
a compelling feature. However, it is free to use, which is quite compelling.
Additionally, the use of traces is obligated for some sectors, removing the
need for a compelling feature to gain sufficient adoption in those sectors.

Value proposition - data reuse: Satisfied, Traces provides a service inter-
face that can be used by third-party applications to use traces.

Trusted software supplier - governance: Satisfied, Traces is an initiative
by the EC, and therefore the EC has the governance.

Trusted software supplier - reliable: Satisfied, Traces is available 24/7 and
used by a large number of users, the system is expected to be reliable.
Traces is mandatory in some sectors. Therefore it has a lock-in.

Trusted software supplier - supplier reputation: Neutral, Traces provides
a helpdesk, which can contribute to a good reputation. However, as the
EC is a government agency it is not perceived as neutral by the actors
(Minnens et al., 2018).

4.1.6 Gap analysis

In table 13, an overview of some traceability systems can be seen. None of the
systems fully satisfies the requirements. As can be seen, only IBM food trust
satisfies the access control requirement. However, the policies hidden in the
use of IBM food trust make both the supplier reputation and access control

48

Requirement Linked pedigrees IBM food trust TE-FOOD SeafoodIQ Traces
Traceability - data + + + + +

Traceability - linked + + + - +
Traceability - query + + + + +/-

Traceability - backup + + + + +
Access control - + and - - - -

Value proposition - easy to use + + + + +/-
Value proposition - compelling feature - - - + +

Value proposition - data reuse + + + + +
Trusted software supplier - governance - + + + +

Trusted software supplier - reliable + + +/- + +
Trusted software supplier - supplier reputation +/- + and - + + +/-

Table 13: Summary of the fulfilment of requirements for some of the commercially
available traceability systems. systems are scored on the following scale: not satisfied
or not possible (-), neutral (+/-) and satisfied (+).

doubtful. Moreover, none of the traceability systems has a compelling feature.
Traces does not truly satisfy the requirement for a compelling feature. However,
by making it available for free, actors may be compelled to use Traces. Next
to that, the obligation to use Traces in some sectors removes any choice and
thereby the need for a compelling feature. All systems have some a lock-in to
some extend. Therefore two gaps are present in the current systems: access
control and the compelling feature.

4.2 Approaches for traceability systems

4.2.1 Solid

Social Linked Data(Solid) is a set of standards and best practises which creates a
decentralised platform for social web applications. Solid puts users back in con-
trol of their data. In contrast to many concurrent applications, Solid separates
data and application. Every actor stores their data in a Personal Online Data-
store(POD) at a service provider of their choosing (POD server). Applications
run as web applications on client-side in a browser or as mobile applications
(Mansour et al., 2016). Applications read and write data to and from the pods,
and multiple applications can use the same data. By decoupling the data from
the application, users can easily switch between similar applications without
recreating their data as in current systems. Users are can switch between POD
servers. For authentication, users register at an identity provider. This can also
be the POD server. PODs can include both structured (RDF) and unstructured
data of any type for videos and images. At this moment there seems no restric-
tion on the vocabulary used, creating the possibility for multiple app makers to
use or create different vocabularies, and thus making the true interoperability

49

between applications questionable.1

Requirements checklist

Traceability - data: Satisfied, Solid in itself does not create traceability. At
this moment, Solid is designed as a social platform. A traceability system
can be seen as social media for organisations where every actor posts their
daily sells instead of daily pictures of normal social media. And a friend
request can be seen as a data request. Therefore applications on the Solid
platform could potentially create traceability.

Traceability - linked : Satisfied, the use of RDF naturally lends itself for
the creation of links between products, even if the data are separated.

Traceability - query : Satisfied, The Solid PODs have been designed in a
way to mimic a triple store endpoint. However, it does not yet possess a
query engine that can be used to create SPARQL queries. But components
can be written that execute as if they were queries.

Traceability - backup: Neutral, the backup traceability goes against the
goal of Solid to prevent separate data silos, but this could be solved by
a separate trusted “backup” or ILPS POD to which all users send their
URIs.

Access control : Satisfied, the access control of Solid is good enough for the
agri-food supply chain context. The UNIX like access features for read,
write, append and control for each document is fine-grained and creates
a lot of possibilities. However, depending on the application, the access
control may be too complicated and cost a lot of time in configurations.
Data can be made public and private and only accessible by pre-defined
actors.

Value proposition - compelling feature: Neutral, there is no direct com-
pelling feature in Solid. But Solid creates possibilities for data reuse be-
tween applications. This can create the possibility to use the data gen-
erated in the traceability system for other purposes and together create
value, even when part of the supply chain is missing.

Value proposition - easy to use: Satisfied, because Solid primarily provides
a backbone to build applications on, it is hard to judge on the ease of use
for end users, as this is application dependent. But the reuse of data
between applications can prevent double manual data entry and create
ease of use there. Additionally, the setup of a Solid environment should
not require a lot of technical knowledge. This is because data storage
is done by the POD servers, and applications run on browsers. Another
feature that creates ease of use is the combination of RDF and WebID,

1More information on Solid can be found on https://solidproject.org/

50

hiding the difficulties of authentication and routing of nodes from the users
of the ecosystem.

Value proposition - data reuse: Satisfied, Solid claims that it is easy to
build applications on their platform. If this is true, applications may be-
come cheaper because it saves development time. The storage of PODs
will present a cost factor for the end users, but this is also the case for
contemporary storage solutions. Another possibility to reduce costs is
to grant the POD server access to the stored data for analytics to gain
free POD storage. Another possible way Solid could provide cost savings
is trough a possible better organisational fit. Because in Solid, multiple
applications can work on the same data, new applications may become
available without the need to gather additional data with the new appli-
cation. This can prevent part of the costs in adapting business processes
to new applications.

Trusted software supplier - supplier reputation: Satisfied, the Solid archi-
tecture solves vendor lock-in problems by creating the possibility to switch
between applications while keeping and reusing your data in a competi-
tors application. However, the choice for Solid locks actors into the solid
environment.

Trusted software supplier - reliable system: Satisfied, because solid is a
set of open standards and not a direct application, it does not provide
insurances for a reliable system. Similarly, the reliability of internet con-
nections does not stem from W3C but internet providers. However, Solid
indirectly enforces reliable systems. The created environment where users
rapidly switch between applications punishes unreliable systems by a rapid
loss of users and thereby enforces reliable applications.

Trusted software supplier - governance: Satisfied, because Solid relies on
open standards from the W3C, it has a governance structure present.

4.2.2 IDS

Another approach initiative is the International Data Spaces (IDS). In some as-
pects it has similar features but is has different goals. Where Solid is designed
for social data, IDS is designed to create interoperability between organisa-
tions in an data sovereign way. IDS is built on three assumptions: “Data is
a strategic and economically valuable resource”, companies will have to share
data more and more to stay competitive and companies only share data when
data sovereignty is guaranteed. Therefore IDS grants data owners control over
their data and the possibility to sell data with usage agreements between two
parties. (Otto, Steinbuß, Teuscher, & Lohmann, 2019)

In IDS every actor connects to the IDS environment trough their “connec-
tor”. The connectors send and receive data from the applications of users. IDS
assumes that software companies will build connectors for interested companies.

51

Each actor only has to create a connection between their software and their con-
nector. Each connector registers itself at a broker with a list of their offered
or requested data. Actors use the broker to find other actors that offer the
data they need. The connectors establish a protocol for data exchange. Data
exchange is registered at the clearinghouse to resolve conflicts and create the
possibility to sell data between actors. An identity provider is used to prove
everybody is who they say they are. Service providers are available to host the
applications and connectors. Because IDS does not have a mandatory protocol,
these have to be established for each integration project. This may increase the
costs of IDS projects over projects that have a protocol established. On the
other hand, IDS creates the possibility to sell data, possibly lowering the costs
of IDS projects.2

Requirement checklist

Traceability - data: Satisfied, IDS should be capable of creating trace-
ability. However, there are no restrictions on the data used. This can
both be an advantage and disadvantage, as every actor can stick to their
applications and data models.

Traceability - linked : Satisfied, When implemented correctly, links between
products should be possible.

Traceability - query : Neutral, each actor has to search for a data provider,
and can then query them through the connector component. Unfortu-
nately, this requires the actor to find the data provider before a query can
be made.

Traceability - backup: Satisfied, Because all data transactions are stored at
the clearinghouse, this actor may also play a role in the backup traceability.

Access control : Satisfied, Access control happens through the connector.
The connector checks if a data requester is certified. When sharing data,
usage policies are included containing restrictions like the non-persistence
or re-sharing of data.

Value proposition - compelling feature: Satisfied, the most prominent com-
pelling feature of IDS is the possibility to sell data under predefined poli-
cies creating the possibility for new business models as well as the possi-
bility to materialise the value of their data without the need for the entire
supply chain to join.

Value proposition - easy to use: Not satisfied, at this point, it is difficult
to judge if IDS is easy to use. The broker provides the opportunity to
find data providers which may improve the ease of use. On the other
hand, the number of roles can be perceived as complex. Additionally,
making the connector to function with the environment may cost a lot of

2More information can be found on https://www.internationaldataspaces.org/

52

work. Finally, IDS does not provide protocols for the data exchange and
this should be negotiated between the connectors. While, for integration
projects, agreeing on a protocol is one of the difficult steps.

Value proposition - data reuse: Satisfied, IDS does not place any limits
on current applications. Therefore it does not enforce large business tran-
sitions to adopt new applications. Old applications can be reused once a
connector is in place. Additionally, the connector can enable data reuse.

Trusted software supplier - governance: Satisfied, The development of IDS
is done by the International data spaces association. With industry and
research organisations as members. Because the IDS association contains
a wide variety of members it is expected to be relatively neutral.

Trusted software supplier - reliable: Satisfied, The IDS environment is ex-
pected to be in use for a long time since the governing association contains
a lot of members which exist for a long time. The system is vulnerable
when an actor is not available to become unusable for their partners. By
choosing for IDS, a lock-in to the infrastructure happens. Moreover, it
could harden the switch between applications, as a new IDS connector is
required to connect to the infrastructure.

Trusted software supplier - supplier reputation: Satisfied, Applications
on the IDS environment depend on the manufacturer. When choosing
for IDS, a lock-in for this environment is present. However, since the
connector is the link to the IDS environment, individual applications can
be kept and possibly interchanged.

4.2.3 Inter planetary file system

Inter planetary file system(IPFS) is a decentralised and distributed file storage
system. Files are stored and made public for everybody to read. When a file
is requested, the file is downloaded from multiple sources. IPFS stores files
based on content rather than location-based like file systems and HTTP. When
somebody is interested in a file, they download the file and make it available for
other interested persons. In this way, every file is available as long as at least
one person has it (Labs, n.d.). IPFS is expected to lower the costs hardware to
provide enough bandwidth to handle requests for data, as part of this is taken
over by other parties interested in the data.

Requirements checklist

Traceability - data: Satisfied, IPFS should be capable of storing and shar-
ing traceability data. Each actor could publish their data on IPFS and
others could copy it.

Traceability - linked : Satisfied, because the content is stored based on
content rather than location, product links could be made directly into
the files.

53

Traceability - query : Satisfied, IPFS can query across multiple data sources.

Traceability - backup: Satisfied, because multiple people have the data
the backup traceability is almost guaranteed. However, when nobody
publishes a file, it disappears.

Access control : Not satisfied, the current IPFS does not provide the ability
to share files with selected users for sensitive files (Steichen, Fiz, Norvill,
Shbair, & State, 2018).

Value proposition - easy to use: Not satisfied, similar to the previous
solutions, it is hard to judge the ease of use. The content-based storage
instead of location-based storage may be difficult for end users, as most
concurrent systems work location-based. However, a good interface can
prevent this.

Value proposition - compelling feature: Not satisfied, Although IPFS cre-
ates increased bandwidth for file downloads which can be compelling for
certain industries. IPFS does not bring a compelling feature.

Value proposition - data reuse: Satisfied, IPFS has the possibility to reuse
available data.

Trusted software supplier - governance: Satisfied, IPFS is an open-source
project by Protocol Labs.

Trusted software supplier - reliable: Neutral, because IPFS is relatively
new, Adopting IPFS is expected to bring risks, as it is unsure whether it
will still exist in 10 years. Additionally, the reliance on people having an
interest in specific files may pose a threat to the system, but also a way
to guarantee 100% uptime. If IPFS is used, it is likely to create a lock-in
for their environment, because of their unique architecture.

Trusted software supplier - supplier reputation: Neutral, IPFS is an envi-
ronment rather than an individual application. Therefore there is supplier
reputation of the application is yet unknown. IPFS has extensive docu-
mentation and tutorials that help programmers in implementation.

4.2.4 Blockchains

Blockchains store data in a tamper-proof, decentralised manner. Data is stored
in blocks. Each time new data are added, a new block is created and added
to the chain. Each block contains a hash of their previous block and this cre-
ates the security of the blockchains. Because each block contains the hash of
the previous block, old blocks cannot be changed without changing all the fu-
ture blocks. This means that data on the blockchain are immutable. In a
blockchain, the majority of the network have to agree on the validity of the
next block. Blockchains have multiple ways of generating new blocks, checking
their validity and prevent tempering like the proof of work. There are many

54

versions of blockchains with different technologies behind in, but their basic
principles as described above are similar. Blockchains can be open, like bit-
coin, and permissioned like Ethereum. The former is open for everybody read
from and write to while the latter requires permission to do so. The blockchain
is more expensive than traditional data storage. The costs of storing data on
the blockchain are about 2000 to 8000 times more expensive than on a cloud-
based database (Content blockchain, n.d.). Additionally, the business model of
a blockchain is doubt-full. Because a blockchain is immutable, the data are on
the blockchain forever. This, in contrast with the concurrent trending for service
business models like the I(nfrastructure)aas, S(oftware)aas and P(latform)aas.
In these models, everything relies on a monthly payment, while the blockchain
would rely on a one-time payment for the storage of a block for eternity. This
will eventually realise a collapse of the blockchain because the new blocks will
not generate enough profit to sustain all the previous blocks, requiring higher
block prices or removal of old data. Some applications exist with a monthly fee,
running on a permissioned blockchain of a third party (IBM, n.d.-b).

Requirement checklist

Traceability - data: Satisfied, blockchains are capable of creating trace-
ability.

Traceability - linked : Satisfied, linking between the data records is possi-
ble.

Traceability - query : Satisfied, queries can be sent to a node of a blockchain.

Traceability - backup: Satisfied, because many nodes in the blockchain
network contain the data, backup traceability is ensured.

Access control Neutral , access control depends on the blockchain chosen.
Some are open to read for every node, while others require permission to
join the network for reading and writing data. Some blockchains offer the
ability to place smart contracts, which are pieces of code, placed on the
blockchain. These can be used to create access control policies on the data
in the blockchain. Unfortunately, since the blockchain is readable to the
users, so is the smart contract, laying bare possible implementation mis-
takes in the access control policy. Therefore, this requirement is deemed
unfulfilled.

Value proposition - easy to use: Neutral, similar to the previous ap-
proaches the blockchain does not provide direct applications and ease of
use cannot be judged at this point.

Value proposition - compelling feature: Neutral, one of the compelling
features of using a blockchain is the current hype attached to it (Panetta,
2019). A blockchain-based traceability system probably has a good selling
point. However, the blockchain in itself does not provide value for actors
when others do not join.

55

Value proposition - data reuse: Satisfied, blockchains enable data reuse.
Because all data can be stored on the chain, and accessed by all the nodes,
data can be accessed and written by a multitude of applications of a single
actor.

Trusted software supplier - governance: Neutral, blockchains are devel-
oped by a wide range of actors, being individuals and organisation. There-
fore blockchains can sometimes be built by neutral organisations and some-
times by commercial organisations like IBM.

Trusted software supplier - reliable: Neutral, when choosing for a blockchain,
a lock-in is generated for the blockchain technology. It could be possi-
ble that similar blockchains could be changed with minimal effort, but
that would require the entire supply chain to switch. Another possibil-
ity would be when multiple applications built on the same blockchain.
This limits the lock-in for one application but creates a lock-in for that
blockchain. Because the blockchains are relatively new, it cannot be guar-
anteed to be present in the future. However, the hype increases the chance
that blockchains are present for the foreseeable future. But care should
be taken that when the nodes lose interest in a certain blockchain, that
blockchain becomes insecure and data may be lost. However, as long as
enough nodes have interest in the chain, it is always available.

Trusted software supplier - supplier reputation: Neutral, because blockchains
come in a wide variety of versions. The supplier reputation should be
judged for each blockchain.

4.2.5 Gap analysis

In table 14 the requirements checklists have been placed in table format. Un-
fortunately, none of the systems completely satisfy all the requirements. IPFS
is not suited to built a traceability system on, as it does not comply with too
many requirements. The other three are possible. However, every approach has
its downside. Solid’s design challenges the implementation of a backup. Next
to that, it does not provide a compelling feature. IDS checks all the boxes but
has the downside of creating a complicated ecosystem. Blockchains are very
strong in the functional points of traceability(data, linked, query and backup).
However, it brings a lot of new issues that have to be overcome before it can
be used. All approaches generate a lock-in to some extent. In conclusion, Solid
seems the most appropriate choice for an approach because it satisfies most
requirements and the challenges it has seem manageable.

4.3 Ontology based access control

As part of this research, the possibilities that Ontology based access control(OBAC)
(Brewster, Nouwt, Raaijmakers, & Verhoosel, 2019) brings to the LP architec-
ture this is analysed. First OBAC is introduced. Then the advantages and
disadvantages are shown.

56

Requirement Solid IDS IPFS Blockchains
Traceability - data + + + +

Traceability - linked + + + +
Traceability - query + +/- + +

Traceability - backup +/- + + +
Access control + + - +/-

Value proposition - compelling feature +/- + - +/-
Value proposition - easy to use + - - +/-
Value proposition - data reuse + + + +

Trusted software supplier - supplier reputation + + +/- +/-
Trusted software supplier - reliable system + + +/- +/-

Trusted software supplier - governance + + + +/-

Table 14: Requirement satisfaction of state of the art approaches. The requirements
are scored on a three point scale: not satisfied or not possible (-) or neutral (+/-) or
satisfied (+)

OBAC is an access control framework designed to grant access to data “in
settings where data access is demanded but restricted” (Brewster et al., 2019).
The idea of OBAC is a generic one and abstracts from implementation details
like APIs and resources. Therefore OBAC can potentially be used in multiple
cases, regardless of the underlying architecture. To achieve this, OBAC has the
following assumptions to function (Brewster et al., 2019):

• “Metadata needs to be assigned to raw object data prior to access.”

• “The metadata scheme adheres to an ontology: it is hierarchically struc-
tured, with meaningful (interpretable, semantic) relations between nodes
(concepts) and reflects domain knowledge.”

• “Access to the object data occurs through the metadata, with the possi-
bility of defining access for a given person or role to specific layers (strata)
in the metadata.”

• “Access to object data and re-usability of (meta)data is determined by
referring to the structure of the metadata graph, the contents of the nodes,
or both.”

This is interpreted as data must be assigned metadata; the data are struc-
tured as an ontology; A data requests happen by the relations in the ontology;
Access policies are created by defining the structure a person or role has access
to; access is granted or rejected based on the pattern of the request and value
of the data records.

In their proof of concept, OBAC is built as an extension of the XACML
architecture and a SPARQL endpoint. It utilises the policy enforcement point
to catch the request for data. In OBAC each data request is (part of) the meta
data graph. In the policy decision point, the request is evaluated. To allow

57

or reject access, the request graph is compared to the policy graph. Only the
matching part of the graphs is returned to the user.

Another Access control framework is Web Access Control(WAC) used in
Solid. WAC has a similar structure as access control on a UNIX file system.
Each container or file is accompanied by an access control file. In this file, the
access modes, the affected files and the users are defined. In comparison to
OBAC, WAC has a higher granularity. Where OBAC creates one role for mul-
tiple resources, WAC creates multiple roles for one resource. Another difference
is that OBAC relies on a meta data description for access policies, while WAC
explicitly writes all the access modes for a resource.

An extension on WAC is pattern based access control(PBAC) (Werbrouck
et al., 2020). PBAC and OBAC both utilise the idea of matching a pattern
to determine access to the data. In OBAC the focus lies on patterns in the
data and constant roles or users are assumed. In contrast, PBAC focuses on
the patterns available in roles of users to determine access to a file rather than
individual triples. In future work, PBAC intents to extend the methods to use
ontologies to describe the user as well, possibly combining both approaches.

One of the advantages of OBAC is the possibility to create a single access
policy for multiple instances of resources. This allows for easier maintenance
of access policies because less policies are required. Moreover, access based on
the graph combined with values in the graph, creates the opportunity to grant
access to a single triple in a triple store. This contrasts with contemporary
systems where all or nothing access is granted to files. Next to that, the poten-
tial use of SPARQL allows easier development of systems that use cross-server
queries (Mansour et al., 2016). However, the use of OBAC also brings some
disadvantages. First, applications are bound to have a SPARQL like endpoint,
where data is requested based on the meta data graph of the used ontology.
Moreover, because OBAC requires the use of an ontology, it prevents possible
unstructured data to be found.

In the context of the agri-food supply chain, OBAC brings the advantage
of sharing a specific part of the data. By limiting the amount of shared data
with an actor, the potentially sensitive parts of the data can be screened off.
This could lower the perceived risk of sharing data in a traceability system,
and thereby increase the adoption chances. Another advantage of sharing only
the required amount is that it lowers the amount of bandwidth required to
retrieve the data. Furthermore, it allows for a more efficient search in the data
by the data requester. This is because the data requester only receives the
data they demand, not the entire file where he searches for the correct part of
the data. Finally, the agri-food supply chain is expected to fill many of the
same forms. With the use of OBAC, the access policies for data in these forms
only has to be defined once. However, OBAC also has some disadvantages
when used in the agri-food supply chain. First, all the data must be structured
and in line with an ontology. However, as most actors still work paper based
this is not possible. For the ones that have digital systems, there are a lot of
different standards used (section 2). This means that for OBAC to work in
an interoperable environment, actors must use either the same ontology or a

58

component translating the different standards to an ontology used at another
actor. Moreover, OBAC may experience the role explosion observed in role
based access control frameworks, as it relies on the definition of access policies
per actor or role (Elliott & Knight, 2010). Next to the amount of access policies
is the potential difficulty in defining the access policies. Correctly defining the
access policies requires the end user to sufficiently understand the used ontology.
As an ontology can be perceived as complex, this could conflict in with the
adoption of systems using OBAC.

59

5 Architecture

The next part of the treatment design is the design of new treatments. For
the development of the new treatment, The open group architecture framework
(TOGAF) was used because design science focuses on a meta-level rather than
detailed guidance in the treatment design phase. TOGAF is an architecture
framework for enterprises. TOGAF defines 9 sequential phases. The phases
start with a preliminary phase which focuses on defining project constraints3.
Phase A focusses on the stakeholders, their concerns and objectives, require-
ments, and constraints4. Therefore, the activities in phase A are described in
section 2 and 3. Phase B5,C6 and D7 focus on the creation of the architecture.
This section is structured according to these three phases. The goal of Phase
B(section 5.1) is to describe the strategy and business environment. In phase B,
a baseline architecture(current/as-is state) and target architecture(to-be state)
are made. The target architecture should realise the stakeholder goals. The
baseline architecture and target architecture are used to identify gaps between
the organisational states. The gaps are used in phase C (section 5.2) to identify
the information systems components required to realise the stakeholder goals.
Phase C is split into the data and application architecture. In Phase D (5.3) the
technology architecture is created, which realises the architecture components
identified in phase C. This section stops at phase D because phase E and later
phases focus on the implementation and transition road map.

Viewpoints in this section are made in the Archimate modelling language.
This is the modelling language developed by the open group that complements
TOGAF8. The Archimate modelling language relies on colours for the level of
a concept(e.g. yellow for the business layer, purple for the motivation layer,
blue for the application layer, and green for the technology layer) and concepts
within each layer(e.g. goals, requirements, and stakeholders in the motivation
layer)

5.1 Business architecture

5.1.1 Baseline description

Before a baseline description was made, that fits all the actors in the supply
chain, a model of the ready-made lasagne supply chain was made. Most value
chains are split in multiple actors to create parts of the end products. This is
graphically illustrated in figure 3a. It illustrates the value creation process of
ready-made lasagne. Figure 3a shows the business actors involved in the creation
of ready-made lasagne on the right and left. Moreover, each actor realises part
of the value chain, and does not realise value on its own. The sub-parts of

3https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap04.html
4https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap05.html
5https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap06.html
6https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap07.html
7https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap10.html
8https://pubs.opengroup.org/architecture/archimate3-doc/

60

ready-made lasagne are depicted next to the actors. Each actor creates part of
the ready-made lasagne and sells it to the next person. The primary reason for
being part of the agri-food supply chain is the production of food for society. A
food safety incident at a single actor hurts the value for the entire chain.

Figure 4a shows a generalised value stream of a single actor in figure 3. A
generalised version is required to create a baseline architecture that holds for
most actors. As their primary reason for being, each organisation is producing
some part of a final food product. The production of a partial food product is
represented by the food production value stream. Every agri-food supply chain
actor must have a food production value stream, or they would not be part of the
agri-food supply chain (aside from distributors and retailers). Three business
processes should be present to realise the food production: Buy ingredients, pro-
duce (partial) food product, and sell food product. The details of food production
were abstracted into produce (partial) food product because every actor does this
different. The register ingredients and register sold product are present in every
actor because they are required by law for traceability. These two processes
realise the traceability data value stream. To support the food production, an
inventory management process is in place. For a single farmer, this means feed
for the cattle is in stock, while it can be realised by an ERP system or depart-
ment in larger organisations. Moreover, large organisations may have additional
business processes such as customer service. But these are not guaranteed to
be present in every actor.

5.1.2 Target description

To argue for changes to the baseline description towards the target description,
a motivation viewpoint is made. Figure 5 shows the motivation view. The
motivation viewpoint links the requirements and concerns to the goals. This
figure shows why stakeholders should transition to a target architecture. Figure
5, depicts the agri-food supply chain as stakeholder on the top. Because food
safety incidents hurt the chain in their value creation, their goal is to increase
food safety. This goal can be broken down into two sub-goals: having a better
response time, and early detection of food safety incidents.

Better response time The target architecture should assist when a food safety incident happens.
For example, during the horsemeat scandal, authorities found products
contaminated with undeclared ingredients. In a target architecture, su-
permarkets should directly point to the producers of ready-made lasagne
with the use of their traceability system. Assuming they have access to the
data of the lasagne producers, the supermarkets could find the beef suppli-
ers of the lasagne producer by following the traceability data. Combining
the information of the lasagne producer and the contaminated products, it
is now possible to determine which beef supplier sold contaminated beef.
After identifying which beef supplier had contaminated beef, their sources
can be investigated even further until the root cause is found. Because all
the data are up-to-date, it should not take longer than a day to find all the

61

(a) Value stream of ready-made lasagne. Indicates two ingredients used in the creation of
ready-made lasagne. Depicts the business actors and their addition to the value stream of
ready-made lasagne.

(b) Value stream of ready-made lasagne with more detail. Indicates the same value stream as
3a. The value stream is enriched with the business processes realising the value.

Figure 3: Models of the value stream of ready-made lasagne

62

(a) The baseline value creation process of agri-food supply chain actors. Their main value
creation process (food production) is shown in the centre. As part of this process is the
production, buying of ingredients, selling of the final product and creation of documentation.

(b) The target value creation process of agri-food supply chain actors. Their main value
creation process (food production) is shown at the top and has not changed. As part of this
process is the production, buying of ingredients, selling of the final product and creation of
documentation. two new business processes are shown: sell traceability data and sell fair
trade food.

Figure 4: Baseline and Target value creation process of an agri-food supply chain
actor.

63

involved actors. The consequence of this time reduction is that the supply
chain can perform mitigation actions within one week as opposed to the
current five weeks. Then the actors can limit the amount of consumers
that eat harmful products.

Early detection The target architecture should prevent food safety incidents. In the horse-
meat scandal, part of the horsemeat came from a company called Draap
which is horse spelt backwards in dutch. According to Romania, Draap
correctly exported horsemeat while it was labelled as beef in France (Felicity,
2013b). The goal of the early detection is to discover these kinds of things.
This may have been discovered when actors requested proof from their sup-
pliers or when actors monitor their traceability data for red flags. In this
way, the early detection can prevent harmful products from leaving the
supply chain. Because hints to faults can be detected in the traceability
data before a product reaches retailers.

Traceability realises the better response time and early detection. To handle
according to the traceability, the data must be up-to-date. To realise up-to-date
traceability data, data is generated during production. If the actors generate
the data a month after producing a food product, a better response time and
Early detection would become impossible. Moreover, the traceability system
must satisfy the requirements (of section 3) to lower the barriers to adoption for
actors. Because these goals can only be realised when a large proportion of the
supply chain collaborates.

64

Figure 5: Motivation viewpoint. Shows the goals of the agri-food supply chain. The
supply chain is placed on the top. Below them are the goals they want to achieve. On
the bottom are the requirements that realise the business goals.

Where actors hesitated to share information with other actors in the past,
the target architecture should allow organisations to share a very specific part
of their information. This allows food safety incident discovery without sharing
an entire dataset or confidential parts of it. During times without food safety
incidents, the traceability data are kept up-to-date. This will ensure that data
are available when it is necessary.

Figure 6 shows the realisation of the business goals of figure 5 in the target
architecture. The highest goal of the supply chain actor is to create value. This
is realised by the food production. The food logistics ensure enough resources are
present for the food production. Together, the food production and food logistics,
generate the traceability data. They do this by scanning the consignments that
enter and leave the organisation. Additionally, the food production registers
the ingredients they use. New capabilities use the traceability data to increase
the food safety. The capability to monitor traceability data realises the early
detection. Monitoring of the traceability data can be done by algorithms or

65

manually. The capability handle food safety incidents realises the better response
time. The handle food safety incidents is a manual process where actors work
together with food safety authorities to find the root cause. The early detection
and better response time positively influence the food safety. Which positively
influences the value creation.

figure 4b shows the result of the target description. It shows the new business
processes enabled by a traceability system: the ability to sell traceability data,
monitor traceability data and handling food safety incidents.

Figure 6: This figure shows the strategy viewpoint. These are possible strategies
that businesses could use. Below them are the business capabilities that realise the
strategies. The business capabilities rely on the traceability data. The traceability
data are generated by food production and food logistics.

5.1.3 Gap analysis

In transitioning from the current way of working (figure 4a) to the new way
of working (figure 4b) 4 gaps have been identified. These are listed below.
Most business processes from the baseline architecture are conceptually the
same. This has the advantage that current systems can be reused and minimal
business remodelling is required. This should contribute to the organisational
fit, as the actors can keep using their current systems and way of working.

1. Monitor traceability data

66

To realise the goal of early food safety incident detection, the actors should
realise a business process to monitor the traceability data. This is one of
the new business processes in the target architecture. Actors should setup
new tasks and functions to look for strange behaviour in the traceability
data. E.g. an organisation with the name meaning horse, selling cheap
beef meat. This can be done manually or with automated algorithms. To
bridge this gap, the actors would require data of partners to monitor for
irregularities.

2. Handle food safety incidents
During a food safety incident, actors should use their traceability data to
handle accordingly. This is the second new business process. To bridge
this gap, actors should define processes to perform mitigating actions as
soon as possible. To do this, the actors use the traceability data to identify
the affected products. Existing employees, management or a short time
hired external expert can realise this process. Moreover, to handle food
safety incidents, the actors must combine their traceability data to find
the root cause of the problem.

3. Digital traceability data gap
This gap is the new implementation of the value creation process trace-
ability data. Although traceability data is present in both figure 4a and
4b, the implementation chances. This happens on the application level.
In the baseline, capturing traceability data happens on paper while in the
target, this is done digitally. The digital traceability data are required
by the first two gaps. To generate the digital traceability data, the im-
plementation of the food production and logistics change. In the baseline
architecture, employees would fill in traceability data on paper. In the
target, this happens on a digital device. Furthermore, employees register
events at the moment they happen, so that data are up-to-date.

4. Custom access control
This gap originates from the gaps to monitor traceability data and handle
food safety incidents and concerns for the safety of traceability data. This
creates a dilemma between sharing data and keeping it private. However,
a middle way, where an actor can define who has access to specific parts
of their data, can bridge this gap. When an actor can define access to its’
data, they can share their data with the partners they trust. Moreover,
they can sell this access, thereby realising the new business process to sell
traceability data.

5.2 Information systems architecture

In TOGAF the information systems architecture is split into two parts: the
application architecture and the data architecture. In the application architec-
ture, the components are defined that bridge the gaps defined in the business

67

architecture. In the data architecture, the data are defined that are required by
the application components to realise their function.

5.2.1 Application architecture

In figure 7, the high-level application architecture can be seen. The artefact is an
implementation of the Linked pedigrees architecture on the Solid ecosystem. It
is an update of the LP architecture because the access control was missing. The
architecture shows 3 actors and their traceability application. Each application
stores its data in a Solid POD. The ILPS is placed on the top of the figure.

Figure 7: High level architecture. It shows three instances of the traceability system
used by supply chain actors. The number of traceability systems equals the number of
actors in a supply chain. It also shows the PODs of individual actors. It can be seen
that the ILPS provides an overarching structure for backup traceability. The coloured
boxes around a traceability system and POD, indicate one traceability system. The
Identity providers enable secure connections between the traceability systems and the
PODs

LP has a lot of potential and was therefore used as a starting point for an
architecture. The choice for Solid as approach was based on the fit with LP and
because it was one of the best choices of section 4. The architectures of LP and

68

Solid complement each other because they both use the same standards. Next
to that, both architectures complement each other in the parts they are missing.
LP provides an application that is required before Solid works. The downside of
LP was that it lacked an infrastructure. Solid provides this. Additionally, the
decentralised nature of both architectures makes them compatible. The final
argument for Solid is the available libraries speeding up implementations.

The Solid ecosystem is the best solution for a traceability application. Solid
brings more solutions and a better fit with LP in comparison with blockchains.
Although blockchains are strong in satisfying the traceability requirements, they
are less strong in the access control and the value proposition requirements.
When comparing IDS with Solid, the same benefits can be realised. However,
the IDS ecosystem involves more actors, which could decrease the ease of use.
Moreover, Solid has a lot of libraries ready to be used while IDS does not. IPFS
is not suited because it is not possible to create access control.

Figure 8: Process/Application realisation diagram. The top layer indicates the busi-
ness processes that use application components.The ERP system serves the Traceabil-
ity system with data. The traceability system realises the capabilities shown in the
bottom.

Figure 8 shows how the business capabilities are realised by the application
components. This is a process/application realisation diagram. Moreover, it
shows which business processes use the applications. This creates the connection
between figure 6 and 4b. The top layer of figure 8 depicts three of the business

69

processes (the same business processes as in figure 4b). The traceability system
realises the capabilities of figure 6. The system realises the gaps identified in
the business architecture in the following way:

• Digital traceability To realise the digital traceability, employees use a
barcode scanner of an ERP system to register ingredients and sold prod-
ucts. The ERP system serves the Traceability system by generating the
traceability data required. If the actor does not have an ERP system, em-
ployees enter all data into the traceability system during food production
and logistics.

• Handle food safety incidents An overview screen that shows the trace-
ability of produced products realises the handle food safety incidents ca-
pability. An overview screen allows actors to view their traceability data,
and handle according to the information they see.

• Monitor traceability data Similarly, an overview screen, realises the
monitor traceability data capability, Such a screen allows actors to look
at data of their products and find irregularities.

• Sell traceability data A custom access control component realises the
ability to sell traceability data. When actors can themselves define who
has access to their data, they can make deals for this. Another option
is to open their data for free to their partners in return for access to the
partners’ data.

figure 9 shows the traceability system in more detail. The goal of this di-
agram is to present the composition of the traceability system into parts that
realise the functions the system must fulfil. The most important thing to no-
tice is that Solid applications do not have a back-end. This means that all
data transformations happen in the application, and the PODs only store data.
Therefore, the application consists of two components: the POD connection and
the user interfaces.

The POD connection reads and writes data to the PODs. The TripleDoc
module realises the POD connection. The TripleDoc module implements the
W3C standards used in the connection with PODs, more information on the
Solid ecosystem can be found in the documentation9. Because the ILPS is a
POD, the same standards apply. In the application, data flows always start in
the user interfaces. The user interfaces use the POD connection to send requests
for data to the PODs. The POD connection waits for the response of the PODs.
If the user has access to the data, the connection sends the data to the interfaces
where it can be used. The users can then change the data and save the data
trough the POD connection.

The user interfaces(UI) of figure 9 are the access points for the end users.
These UIs realise the capabilities of the system: traceability, monitoring trace-
ability data, handling food safety incidents and to buy, share, and sell traceability
data.

9https://github.com/solid/solid-spec

70

Figure 9: Software engineering diagram of the traceability system. Indicates the three
main components: user interfaces and the and POD connection. Three supporting
applications are shown.

• The partner overview is used to define trade partners. Since Solid is de-
centralised, the applications must know where to send requests to and
must know who has sent a request. Actors realise this in the partner
overview UI. In this UI, actors enter the WebID and other data describ-
ing partners. The application can use this information in later stages to
send messages to partners and show which partner has sent a message.
Moreover, the application uses the WebID standard during authorisation
of data requests10. Similar to concurrent web applications where users
have a username, WebID creates a unique username, represented as a
URI, located at the identity or POD provider. The WebID file contains
items like the name and profile picture of a person or organisation.

• Four UIs create the data required for traceability. Actors use the create
pedigree UI to create a new pedigree and fill it with traceability data.
Actors can add additional data to a pedigree in the pedigree overview
screen. The pedigree overview can import data from existing systems into
the traceability system, multiple solutions are possible and depend on the
presence of an ERP system. Once the data are loaded onto the application,
it can be saved to a POD like all other data.

10https://www.w3.org/2005/Incubator/webid/spec/identity/

71

– With ERP system present

1. Query the ERP systems’ database.

2. Use the API of the ERP system.

3. Transfer the ERP systems’ database to the POD provider. From
where it can be accessed by the application.

– Without ERP system

1. Enter data into the traceability system by hand. This is compa-
rable to filling in a paper form.

2. Using Barcode scanners or IoT devices that register the trace-
ability data required.

Two additional UIs are present to share pedigree URIs, the send URI
request and send URI response. The application uses the pedigree URIs
as pointers to retrieve traceability data of partners. The actors use the
send URI request UI to request a pedigree URI from a partner. The actors
use the send URI response UI to respond to the requests received from
trade partners. The (manual) send URI request and send URI response
UIs become obsolete when pedigrees are sent and received automatically
when scanning consignments. However, these UIs will remain in use by
the actors that lack the hardware for automation.

• Actors use the pedigree overview and partner pedigree overview to visu-
alise the traceability data. Actors use the pedigree overview to look at
the data in their pedigree. They use the partner pedigree overview to
view additional data in pedigrees of upstream and downstream products.
The pedigree URIs provide the access points for this. These overview
UIs realise the capabilities to handle food safety incidents and monitor
traceability data shown in figure 8.

• Actors use the define access policies UI to sell and share data. In this UI,
the actors can define the access rights for each partner. Actors define the
contract details like data-resharing, copying, privacy and payment trough
other means. This UI only defines the right to access for partners. Actors
use the partner pedigree overview to view the data once they negotiated
access.

For authorisation, the Web access control(WAC) is used11. WAC gen-
erates an authorisation document for each container. The authorisation
document contains actors (identified by their WebID) that are assigned
rights and files to access in that folder. The WebID-TLS protocol12 au-
thenticates their WebIDs and thus access rights of users with their identity
provider. Moreover, the WebID-TLS protocol ensures a secure connection
between the applications and PODs.

11https://github.com/solid/web-access-control-spec
12https://www.w3.org/2005/Incubator/webid/spec/tls/

72

To summarise this paragraph the following components have been identified
to realise the transition from the baseline architecture to the target architecture:
seven UIs, a POD connection component, a POD server and the ILPS.

5.2.2 Data architecture

The goal of the data architecture is to define the data that enables the business
architecture. Additionally, it defines which standards are used and how data are
transferred from the current situation (baseline) to the to be situation (target
architecture). In figure 11, the data used by the traceability system can be seen.

To realise the target business architecture, three categories of data are re-
quired for the traceability system at an actor: the traceability data, data of
partners and access control data.

• Traceability data

The traceability data is required to realise the business goals of handling
food safety incidents and monitoring traceability data. The traceability
data is used by the pedigree overview, partner pedigree overview, send
URI request and send URI response interfaces. The traceability data is
captured in the form of a pedigree. A pedigree is the digital representation
of physical products at a supply chain actor. A pedigree can describe sizes
ranging from a box, to a pallet, to a truckload. Each pedigree should be
filled with at least the following items:

– Link(s) to previous pedigrees for upstream traceability. This means
that a record is present that can identify the pedigrees of ingredients
used in this pedigree.

– Link(s) to pedigrees for downstream traceability. This means that a
record is present that identifies in what produce this product is used
as an ingredient.

– An item that describes the physical product a pedigree describes.

– A set of EPCIS events that describe the actions an actor has done
to the product. This should capture the internal traceability of an
actor. Examples of this for a miller include: mill wheat, put flour in
a flour bag, aggregation of flour bags on a pallet.

– An identifier that relates the physical product to the pedigree. This
can be bar-codes, QR-codes and stamps on products or containers.

Out of these records the following concepts and relations can be defined:

– Pedigree The pedigree concept is the digital representation of a
consignment. The pedigree captures the traceability data of one con-
signment and one actor.

– Has send pedigree A relation between two pedigrees. Actors use
this relation when they sent an pedigree and corresponding consign-
ment to a downstream actor.

73

– Has received pedigree A relation between two pedigrees. Actors
use this relation when they received an pedigree and corresponding
consignment from an upstream actor.

– Product or service The product or service offered by the actor in
this pedigree.

– Has product info A relation between a pedigree and product or
service.

– EPCIS event Represents a EPCIS event (Solanki & Brewster, 2014).

– Has consignment info A relation between a pedigree and EPCIS
events

– EPC The EPC is a concept that captures the digital identifier of a
consignment. The EPC can capture barcodes, QR codes or any other
identifier.

– Has identifier A relation between a pedigree and a EPC. Used to
link the digital pedigree to the physical world.

• Partner data
The partner data describe the partners of the actor. It is required to
determine to which data each partner has access. Moreover, it is required
to exchange data and messages between the actors. The partner overview,
define access policies, send URI request, Send URI response interfaces use
this record. For each partner the following data should be captured:

– A WebID. This is the identification of the partner. Each time a
partner makes a URI request or request for data, the system uses
the WebID in the process of authorising the requests. Moreover,
the WebID can be used to find additional data on the partner like
addresses.

– A name of the partner. This is used to display a name in interfaces
instead of the WebID.

– A list of pedigrees, that the actor has access to.

– A relation to an access control group (see below).

From these partner records, the following concepts and relations can be
defined:

– Partner The concept that represents trade partners of a supply chain
actor.

– Name Name is a concept that captures the name of the partner.

– Legal name This is a relation between the partner and name con-
cepts.

– Personal profile document This concept captures the Web ID of
actors.

74

– is primairy topic of This is a relation between the partner and the
personal profile document concepts.

– member Indicates the relation between a partner and access control
group.

– access to This is a relation between a partner and a pedigree.

• Access control group
The access control group data objects describe to which pieces of a pedi-
gree an actor has access to. This is used to realise the fine-grained access
control. The access control group object should capture contain:

– A name of the access group. This is used for the convenience of end
users.

– A list of partners that are assigned the access rights of this group.

– A model of the pedigree data, that captures which part of the pedi-
gree can be accessed by this access group. This should mimic the
data model of the pedigree.

For these access control records, the following concepts can be defined:

– Agent group This is the concept that represents an access control
group. It captures actors with similar access rights to pedigrees.

– Name Name is a concept that captures the name of the agent group.

– Has name This is a relation between the name and Agent group

– Read This is a relation between the Agent group and pedigree data
that indicates this access control group has access to the pedigree
data. E.g. the relation read, between agent group and EPC indicates
access to the EPC of a pedigree.

– Has member This is a relation between the agent group and part-
ners.

Next to the data at the traceability applications, the ILPS needs data for
a backup as well. The ILPS should only capture links to the pedigrees,
not the data in a pedigree. Hereby, the ILPS can recreate the traceability
chain, while allowing the actors to remain in control of their data. For
each pedigree, the ILPS should capture:

– The link to the considered pedigree. This should be used to identify
the pedigree of a supply chain actor.

– The owner of the pedigree. This is used to identify the owner of a
(partial) product. So that it is known who has made the product,
even when they disappear.

– The link to downstream pedigrees. This is used to capture the prod-
ucts in which this pedigree was used, and thus backup the down-
stream traceability

75

– The link to upstream pedigrees. This is used to capture the ingredi-
ents that were used in this pedigree, and thus backup the upstream
traceability

These records of the ILPS are translated into the following concepts and
relations:

– ILPS record A concept that encapsulates one backup record.

– Backup pedigree A relation between a ILPS record and a pedigree

– Has owner A relation between a ILPS record and a personal profile
document

– Previous ILPS record A relation between two ILPS records. Cre-
ates a link to the backup of upstream pedigrees.

– Next ILPS record A relation between two ILPS records. Creates
a link to the backup of downstream pedigrees

5.3 Technology architecture

Figure 10 shows a detailed model of the functionalities and interfaces that are
present. It is related to the software engineering diagram of figure 9, but with
additional detail on the functions behind the user interfaces. Because Solid
creates-client side apps, functionality happens on a local computer. This means
that all technology events and technology processes (E.g. saving data in a pedi-
gree) are hidden in the functionalities of the UIs. The tripledoc module realises
the read and write service to the PODs. This can be PODs of the organisation
itself, the ILPS or partner organisations. Each UI reads data from the pods
to present the data to the users. When fields are altered and saved the corre-
sponding processes sends the data to the POD with the use of the Tripledoc
module. The POD server provides functions to save data, authenticate and au-
thorise users. The create pedigree screen is used to create pedigrees which are
later used to create traceability. pedigrees can be viewed and edited in the edit
pedigree screen. If it is altered, the pedigree is saved. In the view pedigree chain
screen, all available data of the pedigree and precursors will be shown. This
screen can be used when a food safety incident happens. In the partner screen,
actors can assign a partner to an access control group and grant a partner access
to a pedigree. This triggers the save partner and update ACL files functions.
The request response screen and pedigree URI request screen are used in the cre-
ation of Linked pedigrees. The pedigree URI request screen provides a place to
manually create a request at the partner. The request response screen provides
a list of all requests for pedigree connections made by actors. On this screen, an
actor can couple their local pedigree to the pedigree of the downstream actor.
In the data request screen, a request can be made for additional access rights
to a pedigree. The access control groups provide a location where new access
control groups are made, and the access rights for groups defined. Finally, the
import data screen is used to manually import data from production processes
into the system.

76

Figure 10: technology architecture of the traceability system. Indicates the interfaces
and functionalities provided.

5.3.1 ViewPoint: storing data

The data model described in section 5.2.2 is stored on the Solid pods in RDF.
Each object identified in the data architecture gets their URI. The result of this
can be seen in figure 11.

The URIs of the pedigree are based on the OntoPedigree design pattern.
Actors can extend the data model of the pedigree to their wishes according
to the OntoPedigree design pattern. The subject pedigree is identified with a
unique URI called the pedigree URI. The links to previous pedigree URIs are
saved using the ped:hasReceivedPedigree13 predicate and a pedigree URI of the
upstream pedigree. The links to downstream pedigrees are saved using the
ped2:hasSendPedigree predicate and a pedigree URI. The ped2:hasSendPedigree
is a new predicate created as an opposite of ped:hasReceivedPedigree. The
ped:hasProductInfo predicate and gr:productOrService14 are used to describe the
product in a pedigree. The EPCIS events, or actions of an actor on the product
are saved using the ped:hasConsignmentInfo predicate and eem:SetOfEPCISEvents15

13Prefix ped = http://purl.org/pedigree
14Prefix gr = http://purl.org/goodrelations/v1
15Prefix eem = http://purl.org/eem

77

object. Finally, the relation with a physical product is saved using the ped2:hasIdentifier
and the ped2:EPCCode object, which stores an EPC, QR-code or any other
identifier.

The URIs of the partner data are based on various available predicates of
ontologies. The name of the partner is saved as a String, with the gr:legalName
predicate. The WebID of the partner is saved using the foaf:isPrimaryTopicOf 16

predicate. Then a list of pedigrees this actor has access to is saved using the
acl:accessTo17 predicate. Finally, the pointer to the access group this partner
belongs to is saved using the foaf:member predicate. The URIs of the access
control group should largely mimic the ones of the pedigree. However, in stead of
using the appropriate predicate, the acl:read predicate is used. Once an acl:read
and object of the pedigree is present, this actor group has access to this triple.
Furthermore, the name of the access group is saved using the ped2:hasName
predicate.

16Prefix foaf = http://xmlns.com/foaf/0.1/
17prefix acl = http://www.w3.org/ns/auth/acl

78

Figure 11: Structure of the data at the supply chain actors. Split into three blocks:
the pedigree data to capture traceability data, the data describing a partner, and the
data used for access control. The ped2 prefix indicates new objects and predicates.
Concepts and relations correspond to the ones defines in the data architecture

In the current state of Solid, the maximum level of granularity is a file. In
solid, data are stored in files which are stored in containers. Solid containers
can be compared to folders(with files in them) on a windows machine. Each
container can have an access control file. In this access control file, access to
the files for that container are defined. Therefore, the maximum granularity is
a file.

To refine the granularity, the pedigree data are spread out over multiple con-
tainers and turtle files. The pedigree URI locates the main container of the pedi-
gree. The pedigree URI is the digital identifier of the product. This container
has (sub-)containers for each object in OntoPedigree. The sub-containers are
named after the subjects they represent and contain. E.g. the pedigree is located
in example.com/data/pedigree1/. The hasReceivedPedigree triples are saved in
the turtle document located at example.com/data/pedigree1/hasReceivedPedigree/.
The EPCIS event triples are saved in example.com/data/pedigree1/hasConsignmentInfo/EPCISEvent.ttl.
The triples are saved in a turtle document and contain only one predicate type.

79

E.g. the EPCISEvent.ttl only contains triples of the ped:hasConsignmentInfo
predicate and of object type eem:EPCISEvent.

The other data records for the access control policies and partners are saved
in a file for access control policies and for partners in “normal” RDF. These do
not require the separation over multiple containers because they are not shared
with other actors.

To achieve interoperability, the pedigree folder contains an additional turtle
document that keeps track of the triples used in the pedigree, their location,
and the local version of the OntoPedigree ontology used. This document is re-
ferred to as the pedigree tracker. An example tracker document with 2 triples
is shown in listing 1. The pedigree tracker file does not contain any traceability
data. This can be seen in the example pedigree tracker. Other Linked pedigrees
applications use this file to find the location where the data resides. Moreover,
it can be used by applications to find the structure of the data, so that interop-
erability between the different versions of OntoPedigree can be ensured. This
can be seen in figure 13, where two possible versions of the OntoPedigree do-
main model are shown. 21a shows the original version of OntoPedigree. While
21b, shows another version, where the set of EPC is connected directly to the
pedigree. When an actor searches for the EPC code of products, they can search
for the predicate (eem:AssociatedWithEPCList) and object(eem:setOfEPCs) of
their interest, and fetch the corresponding data. Listing 1 corresponds to a local
version of the domain model shown in figure 21a.

<ped ig r e e URI> <rd f : type> <ped : ped igree >;
<ped : hasConsignmentInfo> <example . com/ data / ped ig ree1 /

EPCIS>;
<eem : associatedWithEPCList> <example . com/ data / ped ig ree1

/EPCs>;
<ped : hasRece ivedPedigree>

<example . com/ data / ped ig ree1 / hasRece ivedPedigree >.
<example . com/ data / ped ig ree1 /EPCIS> <type> <eem : SetOfEPCISEvents>.
<example . com/ data / ped ig ree1 /EPCs> <type> <eem : setOfEPCs>
<example . com/ data / ped ig ree1 / hasRece ivedPedigree> <type> <pedigree >.

Listing 1: Structure of the pedigree tracker document. Shows where the actual data
of the pedigree resides.

The data records at the ILPS are relatively simple. The ILPS only captures
pedigree URIs, no data that fill the pedigrees. This is done to keep supply
chain actors in control of their data while enabling a backup mechanism. The
structure of the data records at the ILPS is similar to a double linked list and
blockchain block. The ILPS has a ILPS record for each pedigree URI. In the
same record, it saves: a link to the next(downstream pedigree URI) ILPS record,
a link the previous(upstream pedigree URI) ILPS record, and the owner of the
pedigree. This is graphically illustrated in figure 12. As this figure shows, there
is no actual data of supply chain actors at the ILPS. This ensures that actors
remain in control of their data.

80

Figure 12: Structure of the data at the ILPS. The ILPS creates a chain of ILPS
records that contain a pedigree URI and a WebID of the owner. Concepts and relations
correspond to the ones defined in the data architecture.

Moreover, all the URIs used are relative. E.g. the ped:hasConsignmentInfo
subjects and objects in the example pedigree tracker document of listing 1 should
be “./data/pedigree1/EPCIS” instead of “https://example.com/data/pedigree1/EPCIS”.
In this way, the pedigrees and access control files can be transported to another
POD without problems. If the first part of the URI would be included(https://example.com),
all the URIs in the pedigrees and access control files would point to the wrong
location once data are transferred to another POD. The advantage of relative
URIs, is that the URIs can remain the same when switching to another POD
provider. Changing from POD provider only requires an update to the pedigree
URIs a partner has.

5.3.2 Viewpoint: Creating traceability

To create traceability between actors, the pedigree URIs must be shared between
supply chain actors. The protocol for this is presented in figure 14. It is similar
to the protocol of LP, but with additional messages to ensure the upstream and
downstream link.

1.1 The protocol starts at A when he sends a consignment to B.

1.2 Upon arrival of the consignment at B, B registers the consignment and
makes a request called the pedigree request. For this B generates an empty
pedigree in its POD, and grants A read rights to the tracker document
and append rights to the ped:hasReceivedPedigree container of the empty
pedigree. The pedigree request of B is a new turtle document saved in the
inbox of A. It contains a single subject with four statements as shown in
listing 2. The EPC is used to identify the correct product at the upstream
partner. The URI of B ’s pedigree is used in the establishing of the links
between pedigrees. The sender is used to know who the sender of the
pedigree request is, so that the request can be authenticated.

81

(a) A possible implementation of the OntoPedigree de-
sign pattern. The EPCs of products are places in the
eem:setOFEPCs, which are placed directly into the pedi-
gree.

(b) A possible implementation of the OntoPedigree de-
sign pattern. The EPCs of products are placed behind
the EPCIS events.

Figure 13: Two possible implementations of the OntoPedigree design pattern.

<any su b j e c t name> <https : //www. w3 . org /TR/ rdf−schema/#ch type>
<https : // l i n k e d p e d i g r e e s 2 . com/ PedigreeRequest >;

<https : // l i n k e d p e d i g r e e s 2 . com/ i d e n t i f i e r > <St r ing conta in ing
the EPC>;

<https : // l i n k e d p e d i g r e e s . com/ pedigree> <URI o f B’ s ped igree >;
<https : // l i n k e d p e d i g r e e s 2 . com/ sender> <p r o f i l e document o f B>.

Listing 2: Structure of a pedigree request.

2.1 A can send a pedigree response to B after the pedigree request. Once A
acknowledges that the pedigree request is valid, he saves the received pedi-
gree URI of B at the corresponding pedigree, using the ped:hasSendPedigree
predicate. A uses the pedigree URI received from B to send their URI
response. This is done by creating a new turtle document in the has-
ReceivedPedigree folder. This document contains a single triple: any
subject ; “https://linkedpedigrees.com/hasReceivedPedigree”; A’s pedigree
URI.A saves this using the PUT method, A got access to that during the
pedigree request of B.

2.2 and 2.3 Once an actor receives a pedigree, they will send both URIs to the ILPS.
Similar to URI requests, the message creates a new turtle document in the
inbox of the ILPS. The ILPS uses both messages as a validation. When
only message 2.3 would be present, B is reliant on A to send the correct
data to the ILPS. For example, A could send false data to the ILPS, that
would accuse B of a food safety incident, while he has done nothing wrong.

82

Or A could not send the message at all, while B trusts A to send it. This
message contains: the pedigree URI of B, the pedigree URI of A, and the
WebID of B. This message is structured as the statements in listing 3:

<any su b j e c t name> <https : //www. w3 . org /TR/ rdf−schema/#ch type>
<https : // l i n k e d p e d i g r e e s . com/ILPSmessage>;

<https : // l i n k e d p e d i g r e e s . com/ actorPed igree> <own ped ig r e e URI
>;

<https : // l i n k e d p e d i g r e e s . com/ usedIn> <ped ig r e e URI o f
downstream partner >;

OR
<https : // l i n k e d p e d i g r e e s . com/derivedFrom> <ped ig r e e URI o f

r e c e i v e d goods >;
<https : // l i n k e d p e d i g r e e s . com/ sender> <p r o f i l e document the

sender >.

Listing 3: Structure of a message to the ILPS.

3.1 For the more complex production processes, multiple messages are sent to
the ILPS. For example, if A has multiple pedigrees for their ready-made
lasagne, the sauce used and the pasta sheets used. (The ready-made
lasagne - pasta sheets) and (ready-made lasagne - lasagne sauce) pedigree
links have to be sent to the ILPS as well. This ensures that the internal
traceability is intact. This message contains the pedigree URIs of the
actor and his WebID.

Figure 14: Adjusted communication protocol of LP. Indicates how pedigree URIs are
exchanged and the product links between pedigrees are established.

83

Exchange of additional data can be done directly. Thanks to tripledoc and
the acquired pedigree URIs, actors can directly view data from partners they
have access to. However, it may be possible that an actor wants to see more
than his access rights currently allow. For this, the actors should contact each
other.

5.3.3 Viewpoint: access control

The previous viewpoint introduced the communication models for URI exchange
and data exchange. This section will explain the access control in detail.

In Solid, each container has a document which determines the access rights
to that container. If a container does not have such a document, the parent
containers’ document is used. This process repeats until an access control doc-
ument is found. The root folder must contain an access control document. The
access control document defines: 1) actors, 2) their rights and 3) the affected
resources or containers. Trading partners have the same access rights for each
consignment. The access control is based on the ontology(designed with the
OntoPedigree design pattern), following the logic of ontology based access con-
trol (Brewster et al., 2019). OBAC is chosen for access control because: 1) it
extends on a role based access control framework, which is present in Solid, 2)
it creates a more efficient way of managing access to similar resources, and 3)
creates a better overview. For OBAC to be implemented it must satisfy four
requirements. These requirements as well as their implementation are shown in
table 15. Although the data are not accessed by referring to the structure of
the (meta) data graph, the benefits of OBAC for end-users are still realised.

At this point, the actors should define who has access to which part of
their data model. For this, the access control UI presents an interactive graph
structure of the data model (based on OntoPedigree). Users click on the nodes
in the graph structure. By clicking on the nodes, access is granted or denied
to that specific node. This is extended by literal values that are forbidden
as well. Now, the access policies must be translated to the ACL files of the
corresponding pedigrees. The example access control file in listing 4 indicates
the access rights of farmer1 to the hasReceivedPedigree triples in the pedigree
of the trader. It shows that access rights are granted to one actor, per node in
the data model. The trader (owner of the data) has all the access rights (read,
write, and control).

@pref ix n0 : <http ://www. w3 . org /ns/auth/ a c l#>.
@pre f ix l i n : <https : // l i n k e d p e d i g r e e s />.

: t r ade r
a n0 : Author i zat ion ;
n0 : accessTo l i n : hasRece ivedPedigree , <./>;
n0 : agent <https : // t rade r . example . com/ p r o f i l e / card#me>;
n0 : d e f a u l t <./>;
n0 : mode n0 : Control , n0 : Read , n0 : Write .

: farmer1
a n0 : Author i zat ion ;

84

n0 : accessTo <./>;
n0 : agent https : // farmer1 . s o l i d . community/ p r o f i l e / card#me ;
n0 : d e f a u l t <./>;
n0 : mode n0 : Read .

Listing 4: Example ACL file granting farmer1 access to the hasReceivedPedigree triples
folders.

It is chosen to assign the right to view a pedigree per actor. Even tough
Solid can use acl:agentClass18 to indicate access per group rather than per
actor. Using acl:agentClass creates a vulnerability where every actor in that
group has access to a pedigree, while one a specific one is meant to have access.
This creates the opportunity to control who has access to a specific part of the
pedigree.

18https://www.w3.org/ns/auth/acl#agentClass

85

OBAC requirement OBAC implementation
“Metadata needs to be as-
signed to raw object data
prior to access.” (Brewster et
al., 2019)

By the implementation of the data in agri,
the data are assigned metadata before ac-
cess. Moreover, the pedigree tracker docu-
ment provides a location where metadata
of the pedigrees can be found.

“The metadata scheme ad-
heres to an ontology: it is
hierarchically structured,
with meaningful (inter-
pretable, semantic) relations
between nodes (concepts)
and reflects domain knowl-
edge.” (Brewster et al.,
2019)

By using the OntoPedigree design pattern,
every actor can design their own domain
ontology for traceability. By using Onto-
Pedigree and agri, it is hierarchically struc-
tured and has meaningful relations be-
tween the concepts.

“Access to the object data oc-
curs through the metadata,
with the possibility of defin-
ing access for a given per-
son or role to specific lay-
ers (strata) in the metadata.”
(Brewster et al., 2019)

Access to objects happens directly at the
data, not through the meta data.
Defining access for a person or role based
on the structure of the data happens in the
access control UI. This UI an image that
represents the ontology used by the actor.
By clicking on one of the concepts, access
to this concept can be changed. Addition-
ally, specific values can be given that are
forbidden for an actor to see. The ACL
files are updated according to the data en-
tered in the access control UI and define
the access to triples of one predicate or
value.

“Access to object data and
re-usability of (meta)data is
determined by referring to
the structure of the metadata
graph, the contents of the
nodes, or both.” (Brewster et
al., 2019)

Access to the data are determined by the
ACL file that accompanies a file that con-
tains triples. The values(access or not) in
the ACL file are determined in the access
control UI, where access to a node can be
defined based on the node or the values in
a node.

Table 15: This table shows how the requirements of OBAC are implemented in the
artefact.

86

6 Treatment validation

This section contains the third element in the design cycle. The goal of the
treatment validation is “to predict how an artefact will interact with its context,
without actually observing an implemented artefact in a real-world context”
(Wieringa, 2014). The results show if the artefact contributes to the stakeholder
goals. Central to the validation are four categories of validation questions: effect,
trade-off, sensitivity and requirement satisfaction questions (Wieringa, 2014). In
the effect category, the artefact is exposed to a model of the context and answers
questions related to the effects produced by exposing the artefact to a model of
the context. In the trade-off category, alternative artefacts are exposed to the
same context and compared. The sensitivity category introduces the artefact
to a different context. In the requirements satisfaction category, the artefact is
reviewed for the satisfaction of the requirements. The final section validates if
the artefact contributes to stakeholder goals.

6.1 Validation method

To test the designed treatment a proof of concept(POC) of the architecture
was made. The POC was used as a model of the artefact for the validation
of the created architecture. The POC is introduced in section 6.2, a detailed
version can be found in appendix A. After this, the four categories of validation
questions structure this section. The effect questions are used to validate the
artefact for its ability to contribute to handling food safety incidents. To do
this, scenarios of (fictional) food safety incidents have been used as a model of
the context. The scenarios are used to validate that the artefact can 1) create
traceability, 2) handle disappearing actors, 3) prevent access to private data,
and 4) import data to the system. This is based on the functional requirements.
Because the context is the same for effect questions and trade-off questions,
these have been grouped in the same section. To compare the results of the
artefact with other artefacts, the commercially available systems were used. The
requirement satisfaction section is concerned with the requirement satisfaction
questions. The introduction of the artefact to a wider context is the focus of
the sensitivity questions section. To do this, values of the POC have been taken
and increased to a value where the entire dutch supply chain uses the system.

6.2 Proof of concept

To show that the presented architecture in the previous section can be built,
a POC has been made. The proof of concept is used in the remainder of this
chapter to validate the architecture. The POC was implemented with the use
of a nodeJS server19. The Solid community server has been used as a POD
provider. And built by extending the example solid application (Writing a Solid
application, n.d.). The POC has a UI that for every UI listed in the technology
architecture (figure 10). The exceptions being the data import screen, which has

19https://nodejs.org/en/

87

been made part of the edit pedigree screen, and the data request screen, which
has not been implemented. Because this can be done through e-mail or a phone
call. The UIs can be accessed by the bar with buttons on the top of figure
15. Moreover, this figure gives an overview of the pedigrees currently present
at an actor. Figure 16, presents the UI that shows the traceability records of
a batch ready-made lasagne that is used in the validation. Another important
UI to present here is the access control UI of figure 29. This interface shows
a graphical representation of the OntoPedigree version used in the POC. This
figure is interactive and creates the opportunity to define the access to triples
of a specific kind. Further details on the POC and an explanation per UI can
be found in appendix A.

Figure 15: View pedigree interface of the proof of concept. grants an overview of the
pedigrees in the owners’ POD

6.3 Effect & trade-off questions

To create a context for the effect and trade-off category, multiple scenarios
have been made. The scenarios are based on the horsemeat scandal with some
adjustments (E.g. an actor disappearing). As the ready-made lasagne is used
as a motivating example throughout this thesis, this is also used as a model
of the context for the validation. To create the scenarios, a Solid profile has
been made for every actor in figure 3a. Then the actors create a single batch
of ready-made lasagne in the POC. To model the steps taken by every actor,
each actor has EPCIS events in its pedigree simulating the business processes
in figure 3b used to create a batch of ready-made lasagne. In this scenario, the
slaughterhouse is named Draap.

6.3.1 Traceability scenario

The goal of this scenario is to validate that the artefact is capable of creating
traceability and thereby finding clues for the origin of a food safety incident.
Traceability is considered validated when the entire lifecycle of a product can be
found. The data for the scenario has been created in a way that would happen

88

in the real context as well. First, the wheat farmer has created a pedigree. Then
it has added the EPCIS events Grow Wheat and Harvest Wheat described as
business processes in figure 3b. Then the wheat is sent to the wheat miller.
The wheat miller sends a request for the pedigree URI to the wheat farmer. In
turn, the wheat farmer sends a response. The wheat miller sends the flour to
the pasta producer. Each actor assigns access to the pedigree to their wishes
and includes the supermarket to have access to at least the hasReceivedPedigree
triples. This process repeats until the supermarket is reached. The supermarket
receives a message from food safety authorities that the ready-made lasagne
is contaminated with horsemeat. At this point, the supermarket enters the
pedigree URI of the ready-made lasagne and finds the results of figure 16. Figure
16b contains a pedigree of the beef trader, containing a hasReveivedPedigree link
to Draap. With the use of this traceability overview, the supermarket has an
indication who could have been the contaminant. This scenario validates that
the artefact is capable of creating traceability. Additionally, it validates the
linked traceability requirements, as each pedigree is located in a different POD,
and has links to other parts of the data available.

89

(a)

(b)

Figure 16: Pedigree chain view able by the supermarket. Split in two because it was
too big for one screen. (a): First half of the results view-able for the supermarket.
(b): Second half of the results view-able for the supermarket.

In comparison to the other traceability initiatives (section 4.1), the artefact
has a slower response time than IBM food trust (2.2 seconds). Although the
other systems do not provide the timing of traceability, they are expected to be
faster than the artefact. This is because they rely on a centralised location of
the data to query while the artefact has to query every POD in the traceability
chain. Similar to other systems all can create traceability. In comparison to
paper-based traceability, the artefact is faster.

90

6.3.2 Backup traceability scenario

The goal of this scenario is to validate that the system can recreate the traceabil-
ity chain, even when an actor disappears. Backup traceability is considered sat-
isfied when actors behind the disappeared actor can be reached again. This sce-
nario builds on the traceability scenario by removing the access rights of the su-
permarket from the beef importers’ pedigree. The results of the traceability can
be seen in figure 17. The results are similar to the previous ones, except for the
missing pedigree information of the beef trader and further upstream. To find
the missing traceability data, the last known pedigree is searched for at the ILPS.
In this case the, last known pedigree URI is: “https://beeftrader.solid.community/private/pedigreedata/1592821247026”.
This URI can be searched for in the ILPS (figure 33, row two). The ILPS tells the
next pedigree to be: “https://draap.solid.community/private/pedigreedata/1592820713661”.
If the supermarket plugs this pedigree into their pedigree chain interface it gener-
ates the results in figure 18. This shows the missing upstream information from
the cattle farmer and the slaughterhouse. This scenario validates the backup
traceability.

The other artefacts in the same context would not respond to this problem.
As three of the other systems rely on the blockchain, removing a data-record
is simply not possible. If one record is deleted, the entire blockchain is no
longer reliable. For Traces, there is most likely a backup on another location in
case data are unavailable. Therefore all other artefacts are capable of realising
backup traceability.

91

Figure 17: Results of the pedigree chain view-able by the supermarket when the beef
trader revokes access or disappears.

Figure 18: Recovered data retrieved with the help of the ILPS.

92

6.3.3 Access control scenario

The goal of this scenario is to validate that the system does not give access to
data that is considered private by an actor and is considered validated when it
does so. In the traceability scenario, the supermarket had access to all the data.
In this scenario, the sauce maker and the tomato farmer restrict access to the
EPC code of the pedigree. The results are shown in figure 19. It can be seen
that the supermarket still has access to some of the data in pedigrees of the
sauce maker and the tomato farmer actors. But not to the EPC category. This
validates that the artefact is capable of creating fine-grained access control.

In section 2.3, six possible risks of sharing data between actors were identi-
fied. All these risks can be mitigated by an actor if the granted access rights are
correct. As seen in the access control scenario above, the supermarket could not
view any EPC information of the sauce maker. If the sauce maker restricted all
access, the ready-made lasagne producer could not gain any new information
that realises the risks. These risks could become reality if the sauce maker actor
grants full access to their pedigree(s). There are two other possible ways how
these risks can occur: the first possibility for these risks to occur is when a data
breach happens at the ILPS, POD provider or application provider. The second
possibility for these risks to occur is when a trusted actor with the correct access
rights publishes the data they have access to. This requirement is considered
validated.

The other traceability systems do not appear to be capable of defining access
on a fine-grained scale. Only IBM food trust could be able to do this. However,
this cannot be proven or falsified at this without access to the application.

93

Figure 19: Results when the supermarket has limited access to the data in the pedigrees
of the supply chain actors.

6.3.4 Data import scenario

The goal of this scenario is to validate that the artefact is capable of importing
data. The ability to import data is considered validated when the system can
import data. In the next model of the context, the ready-made meals actor
has an ERP system that registers the production of their ready-made lasagne.
They are capable of exporting their data in JSON format. When the ready-made
lasagne actor has created a new pedigree. The data from the ERP system can
be put directly into the pedigree. Listing 5 below shows the ERP data imported
used as validation. This Validates that this artefact is capable of reusing data
from other systems. As mentioned in section 4.1, all other systems are capable
of data reuse.

{
”EPCISEvent ” :” Create l a sagne ” ,
”derivedFrom ” :” https : // b e r t o l l i . com/ l e f t o v e r s b a t c h 1 ” ,
” productOrServ ice ” :” Ready−made la sagne batch 2” ,
”EPCCode”:”8713337098627”

}

Listing 5: JSON file used to validate the import scenario.

94

6.3.5 Downstream traceability scenario

The goal of this scenario is to validate that the system is capable of creating
traceability. Because traceability includes both upstream and downstream, the
downstream traceability has to be validated as well. Downstream traceability is
considered satisfied when the most upstream actor can visualise all stages of its
product until the supermarket. To validate that the artefact is also capable of
creating downstream traceability, the same context as the traceability scenario
has been taken. However, in this case, the tomato farmer finds out that his
tomatoes are contaminated. To prevent image loss of the supply chain, the
tomato farmer enters his pedigree in the view downstream pedigree chain and
retrieves the data in figure 20. From here, he knows the downstream actors to
warn. To let this scenario work, all actors have given access to their pedigrees
to the tomato farmer. Next to that, the missing hasSendPedigree predicates
have been manually added to the PODs.

Figure 20: Results when the tomato farmer looks where his products went to.

6.4 Requirement satisfaction

The goal of this section is to validate that the artefact satisfies the requirements
laid down in the requirements, section 3. The requirements are considered sat-
isfied when the fit criterion is satisfied. The scenarios from the previous sections

95

validate the traceability, the access control requirements, and the value propo-
sition - data reuse. But the traceability - query, value proposition - compelling
feature, value proposition - easy to use and trusted software supplier require-
ments remain and are validated below.

The traceability - query, is partially satisfied. In the traceability scenario, it
can be seen that it is possible to query for the available data throughout multiple
PODs. Moreover, it is possible to continue searching with the retrieved data
from one actor. However, as Solid does not provide a query engine yet, it is not
possible to query through the system on demand. A query has to be manually
programmed to retrieve the data. Therefore, querying is possible, but not in a
“traditional” query language like SQL or SPARQL.

The value proposition - compelling feature requirement can be validated by
analogy of the access control requirement. Because the compelling feature is
realised by the ability to sell data, the data owner can monetise the access to
their data. Instead of a supermarket actor gaining access to the data on request,
a buyer is added in the partner list interface(figure 26) and granted access to
the pedigrees paid for. This creates a new feature apart from traceability that
brings value.

The value proposition - easy to use, can be both validated and falsified de-
pending on the interface used. First, the vision of scanning a barcode at the
arrival of a consignment; which automatically registers the product; sends a
pedigree request; automatically receives a response URI; creating the traceabil-
ity chain; satisfies the easy to use requirement. Moreover, end-users only require
to use a bar-code scanner. This should cover concerns of organisations to attract
new skilled employees to use the system. Employees scan a consignment, com-
pared to filling in paper forms, this should not add to their workload. However,
the manual managing of access control for each pedigree may become a tedious
job. This does not satisfy the easy to use requirement. On the other hand, the
retrieving of pedigree data from upstream actors in a single click does satisfy
the requirement and could save time.

The trusted software supplier - reliable system and supplier reputation can be
validated by analogy with other applications. For example, take the text editors
Microsoft Word, notepad and overleaf. Each of those applications is capable of
writing a text. Depending on the demands of the writer a different application
can be chosen. Once the chosen application has crashed multiple times, the actor
will lose trust in that application and switch to another one. Such a mechanic
forces the application providers to build a reliable product or their customers
will start disappearing. Because Solid provides the opportunity to easily switch
between POD providers and applications. This forces the POD providers and
applications providers to build a reliable system. Next to the reliability of
the information systems, a similar mechanic is present in the reputation of an
application supplier. When a supplier has a negative reputation, actors can
easily switch to another application supplier

The trusted software supplier - governance of the system could not be val-
idated. This depends on the willingness of the software companies developing
their implementations of the architecture. It may turn out that none of the soft-

96

ware companies are interested in creating an overarching governance function,
and the separate implementations of the architecture create their new standards.

6.5 Sensitivity questions

For the sensitivity of the artefact, of particular interest is the expansion of the
context. By an increasing number of users, there are potential bottlenecks.
First is the ILPS. During the traceability scenario described, the ILPS has
generated 3287 bytes in data. This represents a single batch of ready-made
lasagne. Assuming a supermarket receives one such a batch a week and there
are 6338 supermarkets in the Netherlands (Rosian & Pustjens, 2019). If the
average supermarket has 2000 products (The Albert heijn, ETOS and Gall &
Gall combined sell 28500 products on their website (Feiten en cijfers, n.d.))
would mean that all supermarkets and their products generate 1.97 TB of data
a year at the ILPS. This should not be a problem for a POD provider as they are
specialised in storing data. In comparison, Microsoft OneDrive offers 1TB data
storage for one user for 4,20 euro a month (OneDrive-abonnementen vergelijken,
n.d.). This means that storing the data on the ILPS should not be a bottleneck.

Second is the number of requests to the ILPS. Using the same numbers as
before uploading 1.97 TB of data over a year should not form a bottleneck
either. The number of messages to the ILPS is 18 in total. Using the same
numbers as before, an estimated total of 3.2 × 107 messages are sent to the
ILPS every year. In comparison, Google handles 3.5 × 1012 searches each day,
although this comparison is not entirely fair as this figure is worldwide (Google
Search Statistics, n.d.). Therefore this figure is adjusted to the percentage of the
Dutch inhabitants of the world population(0.223% (CBS, n.d.)), an estimated
7.82 × 109 searches per day remain. Therefore the number of messages to the
ILPS should not be a bottleneck either.

A Third bottleneck is the current data structure used to realise the fine-
grained access control. To view all the data in a pedigree, 5 requests are sent
to a POD. One for the pedigree tracker document, then one for every predicate
in the pedigree(currently the productOrService, EPCISEvents, EPCCode and
derivedfrom). Once the queries become bigger and span more than one con-
signment, this could become a bottleneck for a POD. Especially once the data
model is extended to contain more than 4 predicates.

Fourth is the amount of data stored in individual actors’ PODs. Using the
file browser of the Solid community, the pedigree of the sauce maker actor called
sauce batch 1(row 6 in figure 17) is said to be 4096 bytes. Assuming that the
sauce maker produces 3650 sauce batches a year, the sauce maker would create
0.014 GB of data in their pedigrees a year. Although this number is expected
to be higher in reality as the amount of information in a pedigree will be much
larger, this should not form a bottleneck.

The fifth bottleneck is the amount of data travelling from the POD to the
application and back. Although this has not been measured, it should be noted
that the application only loads data when required. Even if the entire 0.014
GB of the third possible bottleneck is passed back and forth for every save, the

97

application should still function. The application may be slow as the download-
/upload speed and the memory cap of machines could be reached. However, the
current architecture requires a new data request for every triple in a pedigree.
Therefore the amount of data requests to view pedigree could become an issue.

The final potential bottleneck is loading the application at the client. In
Solid ecosystem, applications are provided from the server of the application
provider and loaded on the local computers of the end-users. This could mean
that loading the application to all end-users could create a bottleneck at the
start of the production day when all computers are started. For these issues
load balancing techniques are available, yet it is unknown if this bottleneck will
occur.

One of the assumptions in the context is that users enter correct data. At
this moment, there are minimal checks on the input data. This means that an
application can be broken with syntactically wrong data. But this should not
be too much of an issue once input checks are in place for future applications. A
bigger threat for the artefact is the possible false data entry, creating traceability
that does not work when it is necessary. E.g. if the sauce-maker actor put in
false data about the origin of their products, linking to a beef importer while the
true importer sold horsemeat. Then the pedigree chain can no longer be trusted.
However, as the URIs are saved at the ILPS, they create proof of forgery. This
could work as a deterrent for entering false data.

Once the context grows, it would inevitably become interesting for hackers
to attack the system. Fortunately, the decentralised architecture hinders DDOS
attacks to the entire system. If for example, the beef trader is under DDOS, all
the actors are still able to use their system. The weak points in the architecture
are the POD providers if there is not enough diversity in the providers used. A
DDOS to a POD provider could cripple a large part of the systems’ infrastruc-
ture. Another vulnerable location is the ILPS as they are the only centralised
location in the architecture. Next to the ability to DDOS, the POD providers,
application providers and ILPS are potential interesting locations for hackers to
gain sensitive data from the supply chain actors.

As the context grows, the OntoPedigree could become another problem.
As the amount of different connected data models grows, there will be a data
model used by an actor that does not fit within OntoPedigree. However, as the
traceability scenario shows, all data can be entered manually without integration
to any system to realise traceability.

6.6 Contribution to stakeholder goals

These scenarios validate that the artefact is capable of contributing to the stake-
holder goals of increased food safety. The increased food safety is realised by the
ability to have early detection in place. This is validated by a side note of the
first scenario. In this scenario, the supermarket could have looked at this data
at any moment. Before putting the ready-made lasagne on the shelf, it could
have seen beef coming from the Draap company, raising alarms. The generation
of the results in figure 16 cost about five seconds. This validates the realisation

98

of the better response time goal. As organisations can warn the supply chain
partners almost directly.

The new revenue streams where traceability data can be sold has been val-
idated in the value proposition - compelling feature. The increased customer
satisfaction goal is realised by the ability to share production information with
customers as shown in the traceability scenario. The increased market share is
realised by tapping into new customer segments. The new customer segments
could be the fair trade products where documentation is required as proof. This
proof could be available from all downstream actors.

6.7 Limitations of the proof of concept & architecture.

• The first limitation regards the designed architecture that assumes correct
internal traceability. However, the quality of traceability for the whole
supply chain is a combination of the internal and external traceability.
If one actor does not have proper internal traceability, full supply chain
traceability is almost impossible. Currently, there are two cases in which
traceability is nearly impossible. These have been illustrated in figure 21.

1. The first case is when multiple batches are combined into one large
batch and become indistinguishable. This happens in the flour pro-
duction when grain of multiple farmers is combined in a single batch
of flour. If the flour is contaminated, it is nearly impossible to deter-
mine whose grain was contaminated. This is shown in figure 21a.

2. The second case is when an actor has a lot of consignments arriving
and leaving. When minimal or no internal data is captured, traceabil-
ity is almost impossible. This is graphically illustrated in figure 21b.
Without the internal traceability (yellow bar), it is almost impossi-
ble to determine which ingredient batch was used in an end product
batch.

Traceability of ingredients to end products is only possible if the produc-
ers share the internal information that links the input products with the
output products. Therefore, a fraudulent actor that forges data from the
beginning can obstruct traceability. Without the internal information,
upstream and downstream actors can combine their data, but can only
estimate which ingredients went into the sold product. However, once an
actor shares (correct) pedigree URIs, the internal traceability of the sec-
ond case is ensured. This covers the organic food scandal in Italy, where
fraudsters made short-lived companies to obstruct traceability (Flari et
al., 2014). Once the fraudsters have shared correct pedigree URIs, the
trade flow can be reconstructed.

99

(a) This figure shows the combination of three batches
of wheat intro one batch of flour. If the flour is contami-
nated, it is no longer possible to determine which wheat
batch was contaminated

(b) This figure represents a production process that uses
three ingredients and three possible end products. If the
internal traceability is absent (yellow box), traceability
becomes almost impossible.

Figure 21: This figure shows the importance of internal traceability.

• One of the goals of this research was to implement ontology based access
control(OBAC) in the Linked pedigrees architecture. Due to the current
state of Solid, this could not be proven to work. This affected both the
architecture and the POC.

Solid was said to be capable of defining access policies on the level of
individual triples (Sambra et al., 2016). However, these were individual
files (e.g. turtle files) when accessing data in the current solution. There
were two reasons why OBAC did not work: first, OBAC required data
requests to refer to the metadata. While in the artefact, data requests
happened by direct request for a file at an endpoint, and thus, no metadata
is included in the request. The second reason was that the graph of the
data and the request should be compared. This could not be done, because
requests do not include the graph of the data.

Although OBAC could not be implemented according to the four require-
ments presented by the writers, the high-level idea of OBAC, to determine
access policies based on the structure of the data was achieved. This can
be observed in figure 29, where an actor defines a graph of data that can
be accessed.

• The proof of concept does not differentiate between users of the applica-
tion. This means that every employee can access all parts of the applica-
tion. However, employees should have different rights according to their
functions. E.g. the logistics employees only have access to the logistics
information, while production employees must fill in the production steps
taken and management could grant access to supply chain partners. The
ideas used in pattern based access control could be used to improve this
(Werbrouck et al., 2020).

100

7 Discussion & conclusions

In this section, the conclusions of the thesis are presented. The first subsection
provides the answers to the research questions. Then generalisations towards
other domains are made. After this, the limitations are identified. The thesis
ends with future work.

The designed architecture is a possible solution for the lack of traceability in
the agri-food supply chain. The goal of this thesis was to design a system that
addresses the lack of traceability in the agri-food supply chain in a manner that
conforms to the stakeholders’ concerns. Existing traceability systems did not
address the stakeholders’ concerns regarding the safety of their data sufficiently.
To prevent overlooked concerns, the concerns and barriers to adoption were
identified. The concerns and barriers that had been identified, were translated to
requirements for a traceability system. Then five possible approaches to develop
a traceability system were analysed. Solid has the most promising requirement
satisfaction as approach. Linked pedigrees was extended to work with Solid
to create traceability combined with data access control. Moreover, Solid was
demonstrated in a business to business context rather than the original social
media context. An attempt was made to implement Ontology Based Access
Control to create fine grained access control. Technological shortcomings in a
component underlying the proof of concept, unrelated to the concept of OBAC
or Linked pedigrees, impeded its proper implementation. Despite this setback,
the proof of concept has demonstrated the fine-grained access control of OBAC
by emulation. Finally, the proof of concept of the architecture has demonstrated
the ability to find origins and destinations of products as well as supplementary
data of the production process. This was achieved by queries to the different
Solid PODs containing the traceability data. Moreover, the system is able to
recover the origins of products when an actor revoked access to their data. This
is achieved by an external backup of the data to find the suppliers of the actor.

7.1 research questions

7.1.1 RQ 1: What requirements should a traceability system satisfy
in the agri-food supply chain?

11 requirements were found during this research. This research question is
answered by the 11 requirements in chapter 3:

1. Traceability - data This requirement articulates the data that are re-
quired for traceability and required by law.

2. Traceability - linked This requirement articulates the demand for an
explicit relation between data records of raw materials, ingredients, and
(partial) food products.

3. Traceability - query This requirement articulates the demand to query
through the traceability data. This is demanded because of the wide range
of possible entrances of possible food safety incident clues.

101

4. Traceability - backup This requirement articulates the desire to have
a backup mechanism. The backup mechanism should ensure the supply
chain of a product can be reconstructed, not the data. This is required
because fraudulent actors attempt to hamper traceability (Flari et al.,
2014).

5. Access control This requirement articulates the demand for fine grained
access control. This originates from the supply chain actors who are con-
cerned about the safety of their commercial confidential data.

6. Value proposition - compelling feature This requirement articulates
the desire for a compelling feature. This originates in the need for the
entire supply chain to join a traceability system before it realises value.
The compelling feature should ensure an actor can realise value on its own.

7. Value proposition - data reuse This requirement articulates the desire
to reuse data from existing (legacy) systems. This is because stakeholders
are concerned that traceability systems add to the workload of employees.

8. Value proposition - easy to use This requirement articulates the desire
for traceability systems to be easy to use. This originates from previous
systems that were perceived too difficult for end users.

9. Trusted software supplier - supplier reputation This requirement
articulates the demand for a software supplier that can be trusted by
the agri-food supply chain and has a good reputation. This requirement
originates from the concerns of the stakeholders regarding the data safety.

10. Trusted software supplier - reliable system This requirement artic-
ulates the demand for a system that functions properly and continue to
function properly. Additionally, the system should not generate a vendor
lock-in.

11. Trusted software supplier - governance This requirement articulates
the demand for a neutral governance body for the data, standards used
and enterprise application integration. This requirement originates from
the demands of the supply chain actors.

7.1.2 RQ 2: What are the possible treatments that satisfy the re-
quirements?

This research question is answered in two categories: applications and ap-
proaches.

• Applications None of the available applications satisfied all the require-
ments. In the search for potential applications, five traceability systems
were analysed. All systems lacked satisfaction of the access control re-
quirement. However, access control is considered easiest to realise in the
Linked pedigrees application. Therefore only Linked pedigrees is consid-
ered most promising.

102

• Approaches Solid was found the approach that satisfied the most re-
quirements. Of the four approaches, none satisfied all the requirements.
Solid and blockchains came closest, both had neutral requirements. In
comparison, Solid satisfied more requirements than blockchains (9 vs. 5).
Therefore, Solid was found the most promising approach. The other ap-
proaches (IPFS and IDS) were incapable of satisfying some requirements
by their design, making them less suitable to use for a traceability system.

7.1.3 RQ3: What are the advantages and disadvantages of the avail-
able treatments?

The available approaches to be used as treatments have various advantages and
disadvantages. These are listed in table 16 below. Additionally, the advan-
tages and disadvantages of Linked pedigrees and ontology based access control
(OBAC) over current access control frameworks are given.

Linked pedigrees
Advantage: Enables traceability while the data owner remains in control of their data.
Advantage: A backup mechanism with minimal infringements on the data confidentiality.
Disadvantage: Missing access control and compelling feature requirements.

Solid
Advantage: Data owner is in control of their data.
Advantage: Available libraries for quick application development.
Disadvantage: Not designed for a backup mechanism.

IDS
Advantage: Data owner is in control of their data.
Disadvantage: Complicated environment to find new partners.

Blockchains

Advantage: Immutability of data.
Advantage: Hype of blockchains.
Disadvantage: Expensive data storage.
Disadvantage: Difficult to remain in control over the data on the blockchain.

IPFS
Advantage: Fast upload and download speed.
Disadvantage: Impossible to create access control.

OBAC
Advantage: Efficient way of managing access to similar resources.
Advantage: Ability to allow access to specific resources.
Disadvantage: Potential role explosion due to the role based background.

Table 16: Advantages and disadvantages of the found treatments.

One of the things that stood out, from the available application treatments
was the choice of most systems for a blockchain (TE-Food, Food trust, and
SeafoodIQ). Particularly, because one of the conclusions drawn from research
question 2, was that better approaches to built traceability systems on were
available. Particularly, as Food trust implies, that data on a blockchain can
still be sold to or accessed by third parties out of control of the supply chain
actors.

103

7.1.4 RQ4: What is an architecture that would satisfy the require-
ments for a traceability system in the agri-food supply chain?

The designed architecture that satisfies the requirements is presented in figure
22. The Linked pedigrees architecture was extended and implemented on the
Solid ecosystem. Therefore, figure 22 has similar elements as described in the
literature (Brewster et al., 2018; Sambra et al., 2016). The architecture has three
key characteristics to satisfy the requirements: distributed but linked pedigrees,
data separated from applications, and the integrated linked pedigrees store.

The distributed but linked pedigrees enable traceability while granting the
supply chain actors access control over their traceability data. Moreover, actors
that can control who has access to their data, are able to sell their data. The
ability to sell data satisfies the value proposition - compelling feature require-
ment.

The separation of data and application enables an environment that requires
application providers to built solutions that satisfy stakeholder goals and con-
cerns. In that way, actors can choose an application and application provider
which they trust and suits them. Moreover, the separated data and applica-
tions enable actors to switch to other application or POD providers when their
current providers cannot be trusted.

The integrated linked pedigrees store realises the traceability - backup re-
quirement. This is achieved in a stakeholder friendly manner by capturing the
links between products, but not the data of the products itself.

104

Figure 22: Overview of the designed architecture. This is the same architecture as
presented in figure 7 and explained in section 5. Shows two supply chain actors(blue
& yellow rectangles) that use a Linked pedigrees application from different application
providers.

105

7.1.5 RQ5: How well does the architecture handle simulated food
security incidents from the past?

The architecture was validated (section 6) capable of traceability in a model of
the ready-made lasagne supply chain. Next to that, it demonstrated the poten-
tial to generate traceability in 3-4 seconds. Food trust can generate traceability
in 1 second. Although 3-4 seconds is slower than food trust, it is a faster method
than currently possible with paper-based traceability. Moreover, the validation
demonstrated that the architecture satisfied the traceability requirements. The
traceability - data requirement was satisfied by capturing production and logis-
tics data in a pedigree. The traceability - linked requirement was satisfied by
sharing the pedigree URIs with upstream and downstream actors. The combina-
tion of the pedigree URIs and the Solid enabled the realisation of the traceability
- query requirement.

Moreover, the artefact is validated capable of handling with disappearing
actors. This was simulated by removing access to the data of an actor. To
re-find the origins of ingredients, the ILPS connected the known links (pedigree
URIs) between products. However, it was not validated what happens when
multiple actors disappear. This could create a problem in finding the root
cause. In the validation, only one actor was assumed to disappear which raised
a flag for investigation. When multiple actors disappear at the same time, such
a clear flag is no longer present.

The artefact was validated to satisfy all other requirements. The artefact
was validated able to create fine grained access control by emulating OBAC.
The value proposition - compelling feature was satisfied by the ability to sell
traceability data. The artefact realised this by the ability to specify persons who
have access to the data. The value proposition - data reuse was satisfied by the
ability to import data into the artefact. The value proposition easy to use was
satisfied by the design of the Linked pedigrees architecture, which had a design
to automate the process of capturing traceability data. The trusted software
supplier requirements are satisfied by the Solid ecosystem, that enables multi-
ple applications to be used, with a minimal vendor lock-in. This ensures that
software suppliers that cannot be trusted will receive minimal uptake of their
system. Therefore it is concluded that the artefact is capable of traceability,
satisfies the requirements and can handle a simulated food security incident.

7.1.6 Contributions

This research has made the following contributions:

• Identified a list of requirements for traceability systems. Future designers
of traceability can rely on the identified requirements to built a traceabil-
ity system in line with stakeholder concerns. Because the requirements
are based on needs of supply chain actors and barriers to adoption of pre-
vious traceability systems, implementing all requirements will lower the
perceived barriers to adoption for stakeholders.

106

• Designed an architecture that is in line with stakeholder concerns and that
can increase food safety. Moreover, The architecture was demonstrated
in a proof of concept to realise traceability. This also demonstrated the
possibility to implement Linked pedigrees.

• Finally, This architecture demonstrates new methods to realise traceability
in a decentralised manner. It demonstrates Solid outside the original social
media context and the realisation of traceability without a blockchain.

7.2 Applicability to other domains

The designed artefact should work in other domains where traceability is de-
sired as well. This is because similar barriers to adoption (section 2.3) could
be present. For example, the ROI of traceability systems relies on estimated
benefits quantified by other means than direct income, like less losses due to an
adequate response to product quality incidents. The realisation of these benefits
relies on every supply chain actor participating. Next to that, the production
data are of similar sensitivity resulting in similar distrust in sharing the data
with other supply chain actors.

Although the necessity for traceability is prominent in food safety incidents,
other domains could benefit from traceability as well. For example, the furni-
ture industries would use the artefact to create proof of sustainable wood rather
than tropical rainforest wood. Another example is chip production. Similar to
the agri-food supply chain, when a supplier delivers faulty chips (comparable
to contaminated food), end products like computers and smartphones do not
function properly. Finding the faulty chip producer quickly should save pro-
duction of faulty devices and negative branding. Additionally, precise recalls
of defective products would be possible. For these use-cases, the artefact still
realises benefits.

7.3 Limitations

One limitation of the architecture is that traceability data can be changed. This
can be improved by immutable data. The Backup at the ILPS ensures that the
pedigree URIs cannot be erased. However, the backup at the ILPS does not
store the traceability data, only the links between pedigree URIs. Therefore, the
ILPS cannot retrieve lost or changed traceability data, only recreate the chain of
products. Moreover, the ILPS cannot validate if the data are correct. Therefore
fraudsters can change or remove the data to hide the root cause of a food safety
incident. A partial solution for this can be the use of hashing algorithms. Similar
to IPFS, blockchains and nanopublications (Werbrouck et al., 2020), including
the hash of a pedigrees’ content into the URI. This allows validation of the
content. However, this does not address the removal of traceability data.

107

7.4 Recommendations

Traceability software providers should consider capturing traceability data in
the form of a pedigree. Then, actors should only share the access point of the
data. In this way, actors can access upstream and downstream traceability data,
while being in control who has access to it.

Future enterprise architects should consider architectures that separate the
data from the application, like Solid does. Such systems allow control over
company-owned data, easy application switching and data reuse, and applica-
tion interoperability. Decoupling applications from the data would provide these
benefits for organisations. Especially in organisations that have a large software
landscape with interoperability problems. The ability to work with multiple ap-
plications on the same data (Sambra et al., 2016), can create synergy between
applications in the application landscape. But, this requires semantic interop-
erability of the data. Moreover, decoupling the data from the application could
lower the number of legacy systems. This is because organisations can switch
between applications (Sambra et al., 2016) without transferring the data of the
old system to the new system. Moreover, a gradual transition would be possible,
so that employees can learn or test the new application while the main body of
work still happens on the legacy system. However, this relies on the availability
and interoperability of applications that decouple applications from the data.

7.5 Future work

Although the artefact was demonstrated capable of traceability, there are open
questions, which have not been answered by this thesis.

• The first open question is how to implement internet of things (IoT) de-
vices into the architecture to create (automatic) traceability. The auto-
mated traceability with IoT devises is desired because it would reduce
the perceived effort to create traceability. As described in the limitations,
traceability is depended on the quality of the internal traceability. Some
options to create internal traceability include: integration with commer-
cial of the shelf software and improving the architecture with IoT con-
nections to automatically capture traceability data. Therefore, future re-
search could investigate integration of IoT devices with the architecture,
or with application-data decoupled architectures. Some work has been
done in implementing IoT devices into the Solid architecture (Bader &
Maleshkova, 2020). However, their focus lies on interaction between IoT
devices and protocols used in communication between IoT devices.

• A potential step for future research is the development of detection al-
gorithms for potential food safety incidents. In the current state of the
artefact, the traceability data can be captured, and cross actor queries can
be programmed. In an ideal situation, this would be monitored automat-
ically. Moreover, such detection algorithms could be used to test for valid
traceability data. For example, the algorithms could detect fraudulent

108

behaviours in traders that say they bought more products from a farmer
than he can reasonably produce. Such behaviour was seen in the organic
food crisis in Italy (Flari et al., 2014), and should be detectable.

• A final direction for future research is the incorporation of contracts for
data access that agree on rules for replication and sharing the data to
others. The artefact allows this by a manual process at the moment a
contract is accepted over e-mail or in person. But, this could also be
automated in a manner similar to IDS, where rules on data reuse have to
be accepted before data access.

109

References

aelf. (2019). The Dapper Weekly — Ep 14 - IBM Food Trust Review (A Billion
Dollar App?). Retrieved from https://youtu.be/sSu4Zymu2n8

Bader, S. R., & Maleshkova, M. (2020). SOLIOT — Decentralized Data Control
and Interactions for IoT. , 12 (105), 1–31. doi: 10.3390/fi12060105

Bánáti, D. (2014). European perspectives of food safety. Journal of the Science
of Food and Agriculture, 94 (10), 1941–1946. doi: 10.1002/jsfa.6611

Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of
logistics management in food and agricultural supply chain. Food Control ,
33 (1), 32–48. Retrieved from http://dx.doi.org/10.1016/j.foodcont

.2013.02.004 doi: 10.1016/j.foodcont.2013.02.004
Brewster, C., Nouwt, B., Raaijmakers, S., & Verhoosel, J. (2019). Ontology-

based access control for FAIR Data. Data Intelligence(special issue DI-
2019-0006).

Brewster, C., Seepers, R., & all WP Participants. (2018). Ensuring the Integrity
of the European Food Chain: Overview and Showcases demo. UE Project
FP7-KBBE 613688 , 613688 (613688). Retrieved from https://secure

.fera.defra.gov.uk/foodintegrity/index.cfm

Buchholz, U., Bernard, H., Werber, D., Böhmer, M. M., Remschmidt,
C., Wilking, H., . . . Kühne, M. (2011). German Outbreak of Es-
cherichia coli O104:H4 Associated with Sprouts. New England Journal
of Medicine, 365 (19), 1763–1770. Retrieved from https://doi.org/

10.1056/NEJMoa1106482 doi: 10.1056/NEJMoa1106482
CBS. (n.d.). Bevolkingsteller. Retrieved 2020-06-26, from https://www.cbs

.nl/nl-nl/visualisaties/bevolkingsteller

Content blockchain. (n.d.). Exploding Costs of storing informa-
tion on a Blockchain. Retrieved 2020-03-30, from https://

content-blockchain.org/newsarchive/2017/07/20/exploding

-costs-of-storing-data-on-a-blockchain/

Czinkota, M., Kaufmann, H. R., & Basile, G. (2014). The relationship between
legitimacy, reputation, sustainability and branding for companies and
their supply chains. Industrial Marketing Management , 43 (1), 91–101. Re-
trieved from http://dx.doi.org/10.1016/j.indmarman.2013.10.005

doi: 10.1016/j.indmarman.2013.10.005
Dediu, L., Moga, L. M., & Cristea, V. (2016). The barriers for the adoption

of traceability systems by Romanian fish farms. AACL Bioflux , 9 (6),
1323–1330.

Dignan, L. (2018). IBM Food Trust blockchain network avail-
able, Carrefour joins retailer roster. Retrieved 2020-03-31, from
https://www.zdnet.com/article/ibm-food-trust-blockchain

-network-available-carrefour-joins-retailer-roster/

Duan, Y., Miao, M., Wang, R., Fu, Z., & Xu, M. (2017). A framework for the
successful implementation of food traceability systems in China. Informa-
tion Society , 33 (4), 226–242. doi: 10.1080/01972243.2017.1318325

110

Elliott, A., & Knight, S. (2010). Role Explosion: Acknowledging the Problem.
Software Engineering Research and Practice, WORLDCOMP(October
1992), 349–355.

Everstine, K., Spink, J., & Kennedy, S. (2013). Economically motivated adulter-
ation (EMA) of food: Common characteristics of EMA incidents. Journal
of Food Protection, 76 (4), 723–735. doi: 10.4315/0362-028X.JFP-12-399

Feiten en cijfers. (n.d.). Retrieved 2020-06-26, from https://nieuws.ah.nl/

feiten-en-cijfers/

Felicity, L. (2013a, 2). Horsemeat scandal: the essential guide. Re-
trieved 2020-02-15, from https://www.theguardian.com/uk/2013/feb/

15/horsemeat-scandal-the-essential-guide

Felicity, L. (2013b, 2). Horsemeat scandal: the essential guide. Re-
trieved from https://www.theguardian.com/uk/2013/feb/15/

horsemeat-scandal-the-essential-guide

Flari, V., Hussein, M., Maeder, R., Huber, B., Marvin, H., & Neslo, R. (2014).
Ensuring the Integrity of the European food chain Report on analysis of
historical cases of food fraud.

GMA, & Kearney, A. (2010). CONSUMER PRODUCT FRAUD: DETER-
RENCE AND DETECTION. Retrieved from https://www.gmaonline

.org/downloads/research-and-reports/consumerproductfraud.pdf

Google Search Statistics. (n.d.). Retrieved 2020-06-26, from https://www

.internetlivestats.com/google-search-statistics/%0A

GS1. (n.d.). EPCIS and Core Business Vocabulary (CBV). Retrieved 2020-07-
31, from https://www.gs1.org/standards/epcis

Hall, D. (2010). Food with a visible face: traceability and the public promotion
of private governance in the food system. GeoForum(41), 826–835.

Hardt, M. J., Flett, K., & Howell, C. J. (2017). Current Barriers to Large-scale
Interoperability of Traceability Technology in the Seafood Sector. Journal
of Food Science, 82 , A3-A12. doi: 10.1111/1750-3841.13796

Hittle, B., & Leonard, K. M. (2011). Decision making in advance of a supply
chain crisis. Management Decision, 49 (7), 1182–1193. doi: 10.1108/
00251741111151208

IBM. (n.d.-a). From bean to the brew on the blockchain. Retrieved 2020-03-31,
from https://www.ibm.com/thought-leadership/coffee/

IBM. (n.d.-b). IBM Food Trust. Retrieved 2020-03-31, from https://www.ibm

.com/blockchain/solutions/food-trust

Kantar Worldpanel. (2013). Grocery Market Share UK - First
Data Since Horsemeat Scandal. Retrieved 2019-09-16, from
http://www.kantarworldpanel.com/global/News/Grocery-Market

-Share-UK-First-Data-Since-Horsemeat-Scandal

Kwon, H.-k., & Seo, K.-k. (2013). Application of Value-based Adoption Model
to Analyze SaaS Adoption Behavior in Korean B2B Cloud Market. In-
ternational Journal of Advancements in Computing Technology , 5 (12),
368–373.

Labs, P. (n.d.). IPFS Documentation. Retrieved 2020-03-26, from https://

docs.ipfs.io/

111

Lee, Y., & Kozar, K. A. (2008). An empirical investigation of anti-spyware
software adoption: A multitheoretical perspective. Information and Man-
agement , 45 (2), 109–119. doi: 10.1016/j.im.2008.01.002

Manning, L., & Soon, J. M. (2014). Developing systems to control food adulter-
ation. Food Policy , 49 (P1), 23–32. doi: 10.1016/j.foodpol.2014.06.005

Manning, L., & Soon, J. M. (2016). Food Safety, Food Fraud, and Food Defense:
A Fast Evolving Literature. Journal of Food Science, 81 (4), R823-R834.
doi: 10.1111/1750-3841.13256

Mansour, E., Sambra, A. V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A.,
. . . Berners-Lee, T. (2016). A Demonstration of the Solid Platform for
Social Web Applications. , 223–226. doi: 10.1145/2872518.2890529

Minnens, F., Sioen, I., van de Burg, F., Luijckx, N. l., & Verbeke, W. (2018).
Ensuring the Integrity of the European food chain: report on stakeholder
attitudes towards information sharing along food supply chain.

Morris, N. (2019). Uploading data to IBM’s Food Trust blockchain is free. Re-
trieved 2020-03-31, from https://www.ledgerinsights.com/ibm-food

-trust-blockchain-cost-food-traceability/

Nnamdi O. Madichie, & Yamoah, F. A. (2017). Revisiting the European Horse-
meat Scandal: The Role of Power Asymmetry in the Food Supply Chain
Crisis. Thunderbird International Business Review , 59 (6), 663–675. doi:
10.1002/tie

Novum. (2007, 10). Hema-worst wordt bij Unox gemaakt. Amster-
dam. Retrieved from https://www.nu.nl/economie/1286516/hema

-worst-wordt-bij-unox-gemaakt.html

O’Connor, J. (2016). Prioritizing Your User Stories with the MoSCoW
Method. Retrieved 2020-04-29, from https://medium.com/@sax1johno/

prioritizing-your-user-stories-with-the-moscow-method

-8bf42d427da6

Olsen, P., & Borit, M. (2013). How to define traceability. Trends in Food Science
and Technology , 29 (2), 142–150. Retrieved from http://dx.doi.org/

10.1016/j.tifs.2012.10.003 doi: 10.1016/j.tifs.2012.10.003
OneDrive-abonnementen vergelijken. (n.d.). Retrieved 2020-06-26, from

https://www.microsoft.com/nl-nl/microsoft-365/onedrive/

compare-onedrive-plans?market=nl&activetab=tab:primaryr2

Otto, B., Steinbuß, S., Teuscher, A., & Lohmann, S. (2019). International Data
Space Reference Architecture Model Version 3.0. (April), 118.

Panetta, K. (2019). Gartner Top 10 Strategic Technology Trends for
2020. Retrieved 2020-05-05, from https://www.gartner.com/

smarterwithgartner/gartner-top-10-strategic-technology

-trends-for-2020/

Randrup, M., Storøy, J., Lievonen, S., Margeirsson, S., Árnason, S. V.,
Ólavsstovu, D. , . . . Frederiksen, M. T. (2008). Simulated recalls of
fish products in five Nordic countries. Food Control , 19 (11), 1064–1069.
doi: 10.1016/j.foodcont.2007.11.005

Robertson, J., & Robertson, S. (2007). Volere Requirements Specification Tem-
plate edition 13. the Atlantic Systems Guild.

112

Rosian, A., & Pustjens, M. (2019). Online boodschappen doen heeft nauweli-
jks impact op de supermarkt. Retrieved 2020-06-26, from https://

www2.colliers.com/nl-nl/research/20190726supermarkten

Sambra, A. V., Mansour, E., Hawke, S., Zereba, M., Greco, N., Ghanem,
A., . . . Berners-Lee, T. (2016). SoLiD: A Platform for Decentral-
ized Social Applications Based on Linked Data. Technical report, MIT
CSAIL & Qatar Computing Research Institute.. Retrieved from https://

diasporafoundation.org

SeafoodIQ. (2018a). NEW TOOLBOX FOR BETTER TOMORROW. Re-
trieved 2020-04-03, from https://seafoodiq.com/solutions/

SeafoodIQ. (2018b). SUPPLY CHAIN 4.0 / Seafood IQs corporate
video. Retrieved 2020-04-03, from https://www.youtube.com/watch?v=

k3jG266sVJM&feature=emb logo

SeafoodTrace: Intelligent Traceability Platform enabling full transparency in the
Seafood supply chain. (2018). Retrieved 2020-04-03, from https://cordis

.europa.eu/project/id/816070

Seethamraju, R. (2015). Adoption of Software as a Service (SaaS) Enterprise
Resource Planning (ERP) Systems in Small and Medium Sized Enterprises
(SMEs). Information Systems Frontiers, 17 (3), 475–492. doi: 10.1007/
s10796-014-9506-5

Solanki, M., & Brewster, C. (2014). Enhancing visibility in EPCIS governing
agri-food supply chains via linked pedigrees. International Journal on
Semantic Web and Information Systems, 10 (3), 45–73. doi: 10.4018/
IJSWIS.2014070102

Spool, J. M. (2019). Understanding the Kano Model — A Tool for
Sophisticated Designers. Retrieved 2020-04-29, from https://

medium.com/@jmspool/understanding-the-kano-model-a-tool-for

-sophisticated-designers-d91d092ad885

Steichen, M., Fiz, B., Norvill, R., Shbair, W., & State, R. (2018). Blockchain-
Based, Decentralized Access Control for IPFS. 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Comput-
ing and Communications (GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data (SmartData), 1349–
1354. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp

?tp=&arnumber=8726562 doi: 10.1109/Cybermatics
Storoy, J., Thakur, M., & Olsen, P. (2013). The TraceFood Framework

- Principles and guidelines for implementing traceability in food value
chains. Journal of Food Engineering , 115 (1), 41–48. doi: 10.1016/
j.jfoodeng.2012.09.018

TE-FOOD. (n.d.). Solution. Retrieved 2020-03-31, from https://tefoodint

.com/solution.html

TE-FOOD. (2018). Durian traceability on blockchain - TE-FOOD pilot in
Vietnam. Retrieved 2020-03-31, from https://www.youtube.com/watch

?v=5I0zexC-Mw4

TE-FOOD. (2019). Food Traceability Trends to watch in 2019. Retrieved 2020-

113

03-31, from https://medium.com/te-food/food-traceability-trends

-to-watch-in-2019-179a00b3b625

TRACES: TRAde Control and Expert System. (n.d.). Retrieved 2020-05-04,
from https://ec.europa.eu/food/animals/traces en

van Ruth, S. M., Huisman, W., & Luning, P. A. (2017). Food fraud vulnerability
and its key factors. Trends in Food Science and Technology , 67 (June), 70–
75. doi: 10.1016/j.tifs.2017.06.017

Welt, B., & Blanchfield, J. R. (2012). Food Traceability. Handbook of Food
Analysis, Third Edition - Two Volume Set(March), 265–272. doi: 10.1201/
b18668-16

Werbrouck, J., Taelman, R., Verborgh, R., Pauwels, P., Beetz, J., & Mannens,
E. (2020). Pattern-based access control in a decentralised collaboration
environment. (June), 1–14.

Wieringa, R. J. (2014). Design science methodology for information systems
and software engineering. Springer.

Wiseman, L., Sanderson, J., & Robb, L. (2018). Rethinking Ag Data Ownership.
Farm Policy Journal , 15 (1), 71–77.

Writing a Solid application. (n.d.). Retrieved 2020-06-24, from https://

solidproject.org/for-developers/apps/first-app

Wu, W. W. (2011). Developing an explorative model for SaaS adoption. Expert
Systems with Applications, 38 (12), 15057–15064. Retrieved from http://

dx.doi.org/10.1016/j.eswa.2011.05.039 doi: 10.1016/j.eswa.2011.05
.039

Yang, Z., Sun, J., Zhang, Y., & Wang, Y. (2015). Understanding SaaS adoption
from the perspective of organizational users: A tripod readiness model.
Computers in Human Behavior , 45 , 254–264. Retrieved from http://dx

.doi.org/10.1016/j.chb.2014.12.022 doi: 10.1016/j.chb.2014.12.022

A Proof of concept

Because some aspects provide limited new scientific insights they were left out
of the proof of concept. E.g. the import of data has been left out, as this feature
is present in many of today’s web applications. Similarly, the connection of IoT
devices has been left out as there already is an abundance of research on IoT
devices. The ability to show the pedigree chain downstream has also been left
out as this is functionally similar to the upstream version. To save time domain
model made with the OntoPedigree ontology has been simplified to a minimal.
The ability to request additional data has been left out as this could also happen
with the combination of a telephone or email and the partner list interface.

The proof of concept was implemented using a nodeJS server20. It is built
as an extension on the example solid application (Writing a Solid application,
n.d.). The Solid community server has been used as POD provider 21. The solid
community server is used to store pedigrees and additional data of the actors in

20https://nodejs.org/en/
21https://solid.community/

114

the validation scenario (section 6). An additional POD has been made for the
implementation of the ILPS.

In figure 23 till figure 32, an impression of the proof of concept can be found.
The top of the application has an orientation bar containing buttons that open
the interfaces described in the technology architecture. The orientation bar is
always present. The first interface is the overview interface, shown in figure
15. This interface shows a list of pedigrees. The edit button will open a popup
(figure 24) where additional data of the pedigree can be viewed and entered.
Additionally, the pop-up window contains an update ILPS button. This button
is used to create the backup traceability and realise the Send pedigree URI (B
and A) of the communication protocol in figure 14. Additionally, this popup
has a browse... button. This is used to import data from a JSON object into the
pedigree. The next interface, new pedigree, shown in figure 25, is used to create
a new pedigree. In this interface three fields have to be filled: the pedigree
name, which is a name the actors can give to a pedigree; The pedigree URI
extension grants the opportunity to create a pedigree URI of their choice22;
The product or service defined by the good relations ontology23. Figure 26,
shows the partner list interface. This interface is used to create new partners,
assigning them to an access control group and grant them access to a pedigree.
The top half is used to create new partners of an actor. The partner name is the
legal business name of the partner24. The partner card URI is the URI of the
partners’ profile document used for authentication. On the bottom half of the
partner list, is the list of partners. Each partner can be assigned to an access
control group with the assign to group button. This opens 27 where an access
control group can be chosen. Figure 28 shows the popup used to view all the
pedigrees a partner has access to within the limits defined in the access control
interface. The access control interface is shown in figure 29 and used to create
access control groups and edit the permissions of these groups. The top half is
used to create new access groups. By default, an access group does not receive
any access rights. The define policies button is used to open a popup where the
access rights can be edited. This is the popup shown in figure 29. This popup
has a button for every triple in the OntoPedigree ontology. Actors can define
the access for each triple by clicking the respective button. This will change the
colour between red and blue. Blue means the group has access to the triple, red
means that the group has no access to the triple. The send URI request and
Send URI response interfaces are used in the realisation of linked traceability
data and backup traceability. The Send URI request is shown in figure 30 and
is used to send a request for a pedigree URI to an upstream actor. It requires
an actor to fill in the profile card of the owner and the EPC of the product. The
Send URI response interface is shown in figure 31 and is used by the upstream
actor to send a response to the downstream player. The interface shows a list
of received pedigree requests. By clicking the connect URI button, a popup

22Base of the URI will still be the storage location mentioned in the profile document, most
likely the POD providers’ part of the URI.

23http://purl.org/goodrelations/v1#ProductOrService
24http://purl.org/goodrelations/v1#legalName

115

will open where the matching pedigree can be selected. In the background, a
message is sent to the ILPS to create the backup traceability. The view pedigree
chain interface is used to view the traceability chain of a product and is shown
in figure 32. The overview requires a pedigree URI to be entered. If the URI
is valid, all data in this URI will be retrieved and displayed in a row. If triples
containing the derivedFrom predicate are found, these URIs will be used in
subsequent rows to retrieve additional data. In the case shown in figure 32, the
ready-made meals actor does not have access to data at the pasta producer or
the sauce maker. For downstream traceability, a similar interface is made, the
only difference being the derivedFrom predicate has been changed with usedIn.

Figure 23: Orientation bar of the proof of concept. Shows the tabs available in the
proof of concept

Figure 24: Popup used to edit and add data to a pedigree.

116

Figure 25: New pedigree interface. Used to create new pedigrees.

117

Figure 26: Partner List interface. used to create new partners and assign access rights
to partners.

118

Figure 27: Popup used to assign partners to an access control group.

Figure 28: Popup used to grant partners access to a pedigree. Shows a list of pedigrees
that are currently visible by the AlbertHeijn actor. Currently, they can view three
pedigrees, and a fourth is being added.

119

Figure 29: Access control popup. Used to define the policies for an access control
group. Shows an interactive figure of the domain model used. Shows four possible
objects in a pedigree for which access can be defined. The selected access control
group has access to the product or service triples, and EPCIS event triples. On the
bottom, an input field is present where product codes can be entered, that should not
be viewable by this access group.

120

Figure 30: Send URI request interface. Used to create URI requests at upstream
actors. Requires the card of the upstream actor as an endpoint to send the request
to. The Product or batch code is used to identify the corresponding pedigree at the
upstream actor.

Figure 31: Send URI response interface, used to respond to the requests received,
created in figure 30. The popup is used to select the corresponding pedigree matching
the request.

121

Figure 32: View pedigree chain interface. Used in finding data of upstream actors.
Shows the data viewable by the ready-made meals actor. Shows the pedigree of the
ready-made lasagne and two ingredients.

The ILPS has been implemented as a separate application. The ILPS has one
interface, showing all the messages received from the actors in the supply chain.
The interface of the ILPS is shown in figure 33. The ILPS has been made in an
analogy of a double linked list. Each node(item in the list) contains a reference
to the previous node, next node and a single pedigree URI. The columns in figure
33 contain the node, the next node, the previous node and the pedigree URI. The
previous node corresponds to the derived from predicate and the next node cor-
responds to the used In predicate. E.g. The first row in figure 33 has a pedigree
URI ”https://draap.solid.community/private/pedigreedata/1592820713661”. It
also has a previousNode object. This previousNode object is the third row con-
taining the pedigree: ”https://cattlefarmer.solid.community/private/pedigreedata/betsi”.

122

Figure 33: Overview of the data in the ILPS. Shows the data of the validation scenario.

123

