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The great enemy of truth is very often not the lie--deliberate, contrived and 
dishonest--but the myth--persistent, persuasive and unrealistic. Too often we 
hold fast to the cliches of our forebears. We subject all facts to a 
prefabricated set of interpretations. We enjoy the comfort of opinion without 
the discomfort of thought. 
 

- John F. Kennedy 
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Summary 
 
The electroencephalogram (EEG) is one of the most widely used diagnostic tools within neurology and 
provides valuable information about the condition of the underlying cortex in a non-invasive manner. 
It is predicted, that in the near future, the EEG will play an even more prominent role as it does today. 
This prediction is based on the sharply increasing prevalence of neurological disease as people age.   
The increase of neurological diseases leads to an increased usage of the EEG and an increased burden 
on the already scarce personnel who need to visually analyze the EEG. Automating (a part of) this task 
would not only decrease this burden of the personnel but could also increase the consistency of the 
diagnosis by eliminating interrater variability.  
 
In this thesis we make two contributions towards the automated analysis of the EEG by enhancing an 
interictal epileptiform discharge (IED) detection algorithm called SpikeNet and by validating and 
enhancing the by Van Putten et al. proposed slowing and asymmetry detection.  
 
The proposed method to enhance SpikeNet is twofold. SpikeNet, a convolutional neural network, is 
firstly trained on 9005 control patients and 88297 candidate IED’s. To reduce the false positive rate, 
hard example mining was applied. This is a method where you predict your training set with the freshly 
trained model, to identify wrongly predicted EEG segments. The wrongly predicted EEG segments are 
added to the dataset and the model is trained again. The latter steps are repeated 15 times, resulting 
in our final model called SpikeNet15. A 70% false positive reduction is found resulting in a false positive 
rate of 15 per hour at a sensitivity of 95%. Using this overwhelming evidence, we conclude that hard 
example mining increases the model performance significantly and making this a crucial step in training 
similar models.  
 
Secondly, we tried to enhance the performance of SpikeNet by adding generated EEG segments to the 
training set. We build three versions of Generative Neural Networks (GAN’s); a GAN and a Wasserstein 
GAN with gradient penalty which are both optimized using ADAM, and finally we build a Wasserstein 
GAN with gradient penalty which is optimized using Adamod (WGANGP-Adamod). WGANGP-Adamod 
outperformed the other GAN versions and was able to increase the area under the ROC curve 
(AUCROC) from SpikeNet15. Even though the AUCROC increased, the performance increased, the FP/h 
at 95% decreased from 15 to 18.3 FP/h, resulting in a decreased performance of SpikeNet15.  
 
The second contribution we made was the validation and enhancing of the BSI and tBSI which are, 
respectively, the asymmetry and slowing detection algorithms proposed by Van Putten et al. Both 
detection algorithms are relying on the power of the EEG of the patient. The tBSI requires a healthy 
reference EEG from the same patient before the slowing calculations can start. This dependency makes 
this algorithm useless if no reference EEG from the same patient is present. In order to overcome this 
burden, we generated a reference matrix using a neural network. The reference matrix includes the 
average power of the EEG, per frequency, per channel, per age. This reference matrix does include all 
the necessary features making a reference EEG useless.  
After implementing the reference matrix in the tBSI, we optimized the bandwith for the power 
calculations in both the BSI and tBSI. The BSI and tBSI are both evaluated using their own dataset of 
200 patients. Each dataset contained 100 control patients and 100 (near) continuous 
slowing/asymmetry patents. Evaluating the algorithms lead to an AUCROC of 0.95 for the BSI and 0.88 
for the tBSI. Further research is needed to make these algorithms applicable for intermitted slowing. 
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Abbreviations 
AUC   : Area Under the Curve 
AUCROC  : Area Under the Receiver Operator Characteristic Curve 
AUCPR   : Area Under the Precision Recall Curve 
BSI   : Brain Symmetry Index 
CAR   : Common Average Reference  
D   : Discriminator 
DB   : Double Banana 
EEG   : Electroencephalogram 
EM   : Earth Mover distance 
FP/h   : False Positives per Hour 
FP/m   : False Positives per Minute 
DALY   : Disability-Adjusted Life-Years 
G   : Generator 
GAN   : Generative Adversarial Network 
GAN-ADAM  : Generative Adversarial Network with ADAM as optimizer 
Grad-CAM  : GRADient-weighted Class Activation Mapping 
GUI   : Graphical User Interface 
IED   : Interictal Epileptiform Discharge 
FID   : Frechet Inception Distance 
IS   : Inception score 
POSTS   : Positive occipital sharp transients of sleep. 
PR   : Precision Recall  
PSD   : Power Spectral Density 
ReLU   : Rectifying Linear Unit 
ROC   : Receiver Operator Characteristic 
r-BSI   : Revised Brain Symmetry Index 
r-tBSI   : Revised Temporal Brain Symmetry Index 
SGD   : Stochastic Gradient Decent 
SpikeNetn  : The nth version of SpikeNet 
tBSI   : Temporal Brain Symmetry Index 
VAE   : Variational Auto Encoder 
WGAN   : Wasserstein GAN 
WGANGP-ADAM : Wasserstein GAN with Gradient Penalty which uses ADAM as optimizer 
WGANGP-Adamod : Wasserstein GAN with Gradient Penalty which uses Adamod as optimizer 
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Thesis introduction 
 
In 2016, neurological disorders where the second leading cause of global deaths with 9 million annual 
deaths, and where the leading cause in disability-adjusted life-years (DALY) with approximately 276 
million DALY’s. Over the course of 1990 to 2016, a 39% increase in deaths and 15% increase in DALY’s 
is found. The prevalence of neurological disorders steeply increased with age, with an increasing world 
population and life expectancy a further increase in deaths and DALY’s is imminent [1]. This will lead 
to an increased demand of the already scarce qualified personnel leading to the need of new 
prevention and treatment strategies [2]. 
 
One of the most commonly used techniques is the electroencephalogram (EEG), which is able to non-
invasively measure brain activity [3] and is widely used for the diagnosis of, but not limited to, 
epilepsy[4]–[7], traumatic brain injury[8], [9], stroke [10], [11],encephalitis [12], [13],brain tumor[14], 
[15], encephalopathy [16], [17], memory problems [18], [19], sleep disorders[20]–[23] and  coma [24], 
[25]. Visual inspection is still the golden standard for the clinical interpretation and analysis of the EEG 
[26] and during visual analysis of the EEG one must account for reactivity, symmetry, synchrony, 
morphology, the level of occurrence and localization of certain EEG patterns [27]. It is not hard to 
imagine that reading an EEG must be done precisely and Brogger et al. showed that reporting a routine 
EEG takes on average 12.5 minutes [26].  
 
Visual scoring is subject to the interpretation of the expert resulting in different outputs of the same 
EEG while scored by different raters. This interrater variability differs drastically from task to task and 
Westhall et al. reported a kappa of 0.71 for determining highly malignant patters, 0.72 for rhythmic or 
periodic malignant patterns, 0.42 for malignant patterns and 0.26 for unreactive EEG [24]. Using 
automated EEG analysis techniques as stand-alone feature or as a supplementary one, will save time 
and will increase the output consistency. Also, knowing that in developed countries, the number 
neurologist per 100.000 inhabitants varies between 1 and 10, in major parts of the world, mostly Africa 
and South East Asia, neurology is marginally present [2]. Therefore, automatic analysis of the EEG will 
reduce the burden of the Neurologists in developed countries but also elevate neurology in the less 
developed world. 
 
Fully automating the EEG analysis is a project too big to be handled on its own, so many studies focused 
on automating a subtask, for example diagnosing a single disease [4]–[15], [20], [21], [23]. 
This thesis is a contribution towards a fully automatic EEG analysis and is containing two subtasks; 
Automatic interictal epileptiform discharges (IED) detection (chapter 1 & 2) and generalized / localized 
slowing detection (chapter 3). Even though multiple projects are addressed, the main focus of this 
thesis is the IED detection. 
 
IED detection is already addressed by multiple studies where Jing et al. does have the best results at 
the time of writing with a deep neural network called ‘SpikeNet’ [4], [6]. Even though the results of 
Jing et al. do surpass the expert level performance, the false positive rate does leave us some room for 
improvement [4]. 
 
Improving an already existing model can be done in three ways: Alternating the model, alternating the 
data or alternating both the model and the data. The excellent performance of SpikeNet does suggest 
a well-chosen architecture witch sufficient usage of the data. If the architecture and original data is 
fully exploited, data augmentation has proven to be an effective way to enhance the performance of 
already existing models [28]–[31]. 
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Data augmentation is an umbrella term for alternating your data into different, useful data. This 
augmentation can vary in complexity and ranges from rotating and scaling data, up to synthesizing 
new data [28]. Most data augmentation techniques are solely used for enriching one or more classes 
in the dataset with the main goal of increasing the generalization and/or countering the class 
imbalance [32]. If a class includes a broad range of patterns that should lead to the classification of 
that specific class, such as the multiple morphologies in IED detection, it is found that not all patterns 
are equally hard to classify correctly. The patterns that are harder to classify, or so-called hard 
examples, do potentially yield important predictive values. Localizing and adding these samples to the 
dataset will gradually increase its difficulty, which may lead to an increased performance [33]. 
The amount new data that can be created using hard example mining is limited, since technically no 
new data is created, which motivates the choice for additional technique. 
 
A less limited augmentation method is the use of Generative models. Generative models, as the name 
suggest, are able to generate data by learning the distribution of the data [34]. In this way generative 
models are able to generate new plausible data. In recent years, the interest in generative models has 
drastically increased as result of the state-of-the-art performance that they deliver [35], [36]. By 
combining both the hard example mining and generative model, it is possible to gradually increase the 
difficulty of the dataset and enriching one or more classes.  Both techniques have proven to be 
effective in other fields, however they are not applied for this specific application yet [30], [35], [37]. 
 

Research question 
 
Based on the previous, we could state the following research question: 
 
‘To what extent will advanced augmentation methods contribute to the improvement of an already 
state-of-the-art interictal epileptiform discharge detector?’ 
 
We can further divide this research question into the following sub questions that each will be 
discussed in separate chapters. 
 

- To what extend will using a semi-automatic hard example mining method, reduce the false 
positive prediction of the interictal epileptiform discharge detector?   ~ Chapter 1 

 
- To what extend can generated EEG segments increase the performance of the interictal 

epileptiform discharge detector?       ~ Chapter 2 
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Introduction 
Over the years, EEG has established itself as an essential non-invasive neuronal diagnostic tool. It is 
mostly used to diagnose epilepsy but can help determine sleep disorders, depth of anesthesia, coma, 
encephalopathies, and brain death [38].  When epilepsy is suspected, an EEG measurement is 
recorded, and a certified physician will look for abnormal EEG patterns with an epileptic nature. 
Abnormal EEG patterns can present in many forms, however IED’s are a typical display of an abnormal 
EEG with an epileptic nature [39]–[41]. IED’s include, but are not limited to: spikes, sharp waves, benign 
epileptiform discharges of childhood, spike–wave complexes, polyspikes, hypsarrhythmia and seizure 
patterns. Usually, abnormal EEG’s with an epileptic nature are found in 50% - 88% of patients with 
epilepsy during a single EEG measurement; repeated EEG’s, long time recordings and activation 
procedures will increase the chance of recording IED’s [42]. 
 
For most of the EEG analysis, including the identification of IED’s, manual analysis by a specialized 
physician is still the golden standard. Manual scoring is a time-consuming activity and is subject to 
inter- and intra-rater variability [5], [43], [44]. It is also seen that manual classification is a dying 
phenomenon in the era of computers, where many processes are getting automated, including the 
analysis of medical data [4], [20], [21], [23], [45]. In the last decade, multiple computer-based models 
are developed to automatically analyze EEG recordings, covering a wide range of applications among 
which IED detection algorithms present [4], [20], [21], [46].  Jing et al. developed SpikeNet, an IED 
detection algorithm which results surpassed both the expert interpretation and industry standard [4]. 
 
A major problem for the current automatic IED detectors is the false positive rate, making these 
automated IED detections unsuitable for stand-alone clinical usage [6], [47]. A similar problem is well 
known in the clinical setting considering that distinguishing between true IED’s and benign variants of 
uncertain significance is perhaps the most challenging for novice physicians [48], [49]. Indicating subtle 
morphological differences between the IED and benign variants of uncertain significance. 
 
There are many ways to elevate the performance of your model. However, the most promising method 
to reduce false positives is hard example mining [33], [50], or in other words, gradually improving the 
difficulty of the dataset by adding incorrect classified samples. This approach, firstly described by Sung 
et al. [51], will require an unknown number of training iterations and will be finished when 
convergence or a performance drop is reached [33], [50].  In this work, we retrospectively evaluate, 
using the MGH clinical care dataset, to what extend using a hard example mining method, will reduce 
the false positive prediction.  
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Methods 
Dataset 
Retrospective analysis of the EEG data was approved by 
the Partners Institutional Review Board without requiring 
additional consent for its use in this study. The data was 
recorded as part of routine clinical care in the MGH 
neurology department from 2012 until 2018. All EEG’s in 
the presented analysis are recorded using equipment 
from Grass Technologies (now owned by Natus Neuro, CA, 
US). EEG electrodes were placed in the following 19 
locations according to the international 10-20 system: 
Fp1, F3, C3, P3, F7, T3, T5, O1, Fz, Cz, Pz, Fp2, F4, C4, P4, 
F8, T4, T6 and O2. Each EEG was reviewed by an EEG 
laborant and/or a physician. Each patient was labeled as 
spike/non-spike and normal/abnormal, respectively 
according the presence of interictal spikes and the 
presence of abnormalities in general. 
 
The MGH EEG dataset contains 21175 patient files, where long measurements are cut into multiple 
files. After matching the files with the available labels, 10619 patients were selected. 10370 files where 
pre-processable. After removing heavily artifact contaminated EEG’s, a total of 10354 EEG’s are used 
in this study. A schematical representation of the inclusion pathway is given in figure 1.1. 
 
Pre-processing 
Signal pre-processing 
The raw EEG is resampled to 128Hz, after which a high pass, low pass and a notch filter are applied of 
0.5Hz, 64Hz and 60Hz respectively. After filtering, the Common Average Reference (CAR) montage is 
applied and the EEG is clipped between -500mV and 500mV. 
 
Dataset pre-processing of the control group 
Patients without IED’s are selected for the deep learning dataset. We randomly sampled 2000 non-IED 
examples of 1 second per patient. If 2000 samples exceed the number of samples in the corresponding 
EEG, the maximum number of samples is taken. These non-IED data will be referred to as control data 
later on. 
 
Dataset pre-processing of the IED’s 
The neurology research department at the MGH has a database of 88297 candidate IED’s. 
The 88297 candidate IED’s can be reduced to 13262 morphologically distinguishable candidate IED’s. 
The 13262 morphologically distinct candidate IED’s are rated by 8 experts, where each expert will score 
the candidate IED’s as ‘IED’ or ‘No IED’. Combining these scores will result in a soft label between 0/8 
and 8/8 where the fraction stands for the number of raters that scored the candidate IED as an actual 
IED. 
The 13262 labeled candidate IED’s will be referred to as medoid spikes. The 75035 candidate IED’s that 
are not labeled, can be clustered and linked to a medoid spike using the morphological similarity, 
resulting in 13262 clusters with one medoid spikes and multiple member spikes. Each member spike 
will receive the same label as the medoid in their cluster to ensure all 88297 candidate IED’s are 
labeled. 

Figure 1. 1 Schematic overview of patient inclusion 
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To enlarge the dataset and increase the variety of the candidate IED’s, the medoid and member spikes 
are augmented. First, the left and the right channels are switched in the montage, secondly the 
waveform was translated ± 0.1 second in time. 
 
After labeling, the data is split, patient wise, in a train, test and validation set. 
Each set contains respectively 70%, 15% and 15% of the control and spike patients. To ensure the 
performance evaluation of the model is not disturbed by augmentation or weak labeling, only control 
and non-augmented medoids are used in the validation and test set. The training set uses the control 
data as well as the augmented and non-augmented medoids and member spikes. 
 
Network architecture 
SpikeNet, the convolutional neural network created by Jing et al. 
is used in this study. The architecture of SpikeNet is based on 
Hannun et al. [45].  The input of the model is a one second EEG 
segment sampled at 128 Hz containing 19 CAR channels and 18 
bipolar montage channels. A single dimension is added to gain a 
three dimensional matrix with the size of [128,1,37]. This extra 
dimension is necessary when applying two dimensional 
convolutions and is used accordingly. 
 
The first block finishes with two consecutive convolutional 
layers. The first convolutional layer carries out a temporal 
convolution whereas the second layer carries out a spatial 
convolution. This repeated convolutional layer, which is based 
on Schirrmeister et al. [52], is applied so that all channels have 
the same temporal kernel. The separation of temporal and 
spatial convolutions may increase performance for EEG signals 
[52]. 
 
The second block, which is used twice, is also known as a residual 
block. Each residual block increases the number of filters by 32 
and reduces the time dimension by a factor of 4. 
The batch normalization centers and scales the data within a 
batch to a zero mean and a unit standard deviation. 
After batch normalization, a leaky rectified linear unit (ReLU) is 
applied as an activation layer. To improve regularization, a 
dropout layer is implemented that ignores 20% of the incoming 
nodes 
 
In the last block, the data, consisting the output of the last convolutional layer, is prepared for 
classification. This is achieved by reshaping the three-dimensional data into a one-dimensional array 
so it could fit into a dense layer. After the dense layer a SoftMax layer is applied. The SoftMax layer 
outputs the predicted label !" which is the calculated chance if a spike is present in the input data. 
  

Figure 1. 2 Model architecture of SpikeNet 
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Validating the model 
Validation of the model the sensitivity, calculated only using medoids, is plotted against the false 
positive rate per minute, calculated on the control data. This curve will be referred to as ROCadjust. An 
adjusted PR curve, later referred to as PRadjust, is calculated only using medoids for the true positives & 
false negatives, and only control data for the false positives. 
 
Processes of the Iterative training 
The training is an iterative process where each iteration consists of multiple actions. All possible actions 
that are used, are described in this paragraph. However, small differences between training iterations 
are present and a full overview of the training iteration is given in figure 1.5. 
 

Train: Train the model using the training and validation set. 
 

Predict: The new model predicts the training, validation and test set. 
 

Background rejection: An inhouse build, rule-based background rejection algorithm is applied on 
the predicted output to filter out artifacts. More in-depth information of the background rejection 
is given in appendix 1. 

 
Visualizing the convolutional focus: In the first round, Gradient-
weighted Class Activation Mapping (Grad-CAM) [53] is used to 
highlight the EEG segments that were important for the prediction. 
This technique visualizes the convolutional focus and shows us if 
the model focusses on the correct parts of the EEG. Additionally, it 
give us insight in the patterns that result in false positive 
predictions. More in-depth information for Grad-CAM is given in 
appendix 2. 

 
Automatic performance validation: For the automatic 
performance validation, the ROCadjust and the PRadjust are calculated. 
Both graphs are calculated multiple times using a different range 
of IED’s. The graphs are calculated using IED’s with the label ranges, 
ranging from IED’s with the label 5/8 and higher, to only IED’s with 
the label 8/8. 

 
Manual performance validation & label enhancement: In the first 
4 and last round, manual performance validation is applied 
complementary to the automatic performance validation. For the 
manual performance validation all control patients are used. 
Manual inspection is applied to see what kind of patterns causes 
false positive predictions. It could also lead to the finding of 
incorrect labeled patients. To get the insight in the false positives 
and to have the opportunity to relabel patients, a graphical user 
interface (GUI) was built in MATLAB. For each patient, as many  
false positives as possible with a maximum of 3 are manually  
inspected. The GUI and the visualization of the EEG are shown in  
figure 1.3 and 1.4. 

  

Figure 1. 3 The GUI that was build and 
used to label candidate false positive 
segements 
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Relabeling: After the manual performance validation a relabeling step is performed. Patients with 
IED’s present in their EEG are relabeled in the database and are removed from the control dataset. 
Enhancing the dataset: Subsequently to the relabeling, the hard examples of the spikes with the 
label “No-IED” are added to the dataset. All patients that are relabeled from “No-IED” to “IED” are 
removed from the dataset. 

 

 
 
 
 
 
 
 
 
 

 

 
Training the model 
The enhancement of the model is an iterative process, the training is stopped if no positive 
performance trend is present over the last 3 iterations based on the automatic performance. In the 
first training iteration, 6285 control patients are used, containing a total of 4.806.215 EEG segment. 
Manual inspection was applied during the iterations to find wrongly labeled patients. Manual 
inspection is applied until the false labeling rate was under 1% of the total number of patients. Since 
relabeling patients and adding hard examples effects the size of the dataset, an overview of the used 
data per iteration is given in table 1.1. 
 
  

Figure 1. 5 A schematic overview of which elements are used during the training iterations 

 

Figure 1. 4 The candidate false positive segment as shown to the raters 
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Results 
 
Patient demographics 
During the training, the demographics of the dataset changes due to the relabeling. Control patients 
are excluded from the dataset of IED’s was found within their EEG. As seen in table 1.1, a total of 753 
patients are relabeled and therefore excluded as control patient. 
 
Table 1. 1 Demographics of the dataset. 

IED’s Total number of medoid candidate IED’s 13262 
Total number of member candidate IED’s 75035 
  

 
 
 
Control 
patients 

Number of control EEG’s used at the start of iteration 1 9005 
Number of control EEG’s used at the start of iteration 2 8475 
Number of control EEG’s used at the start of iteration 3 8305 
Number of control EEG’s used at the start of iteration 4-15 8252 
  
Mean measurement length ± std of the 8252 control EEG’s (min) 57.5 ± 24.1 
Mean age ± std of the 8252 control EEG’s (age) 43.1 ± 26.7 

 
 
Visualizing model focus 
In the first training iteration no hard examples are present. During this iteration, we evaluated the 
performance of SpikeNet which will be used as baseline performance later on. As a sanity check, we 
visualized the convolutional focus to better understand the model predictions. The convolutional focus 
is plotted as a heatmap over the corresponding EEG. If the focus of the model increases, the heatmap 
will converge from blue via yellow to red respectively meaning low, moderate and high focus. 
Segments with labels ranging from 0 (0/8 & control) to 1 (8/8) are evaluated, only one per label is 
visualized below. For each segment, the label and the predicted value are given above the EEG. Looking 
at the convolutional focus, it can be seen that the candidate IED’s are highlighted in red from the label 
3/8 and above. Candidate IED’s with labels below 3/8, are highlighted in yellow or not highlighted at 
all. Looking more closely at the convolutional focus, it is found that the model mainly focuses on a 
sudden upward transition. The convolutional focus is increased if the upward transitions are 
simultaneous in multiple channels. If the transition is different and/or not present in multiple channels, 
mostly yellow representations are found meaning moderate focus of the model. 
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Figure 1. 6 A visual representation of the m
odel focus. 9 segm

ents w
ith labels ranging from

 0/8 until 8/8 are included. For each segm
ent the 

prediction is plotted and the m
odel focus is show

n using an heatm
ap overlay. W

here blue m
eans low

 focus and red m
eans high focus. As 

seen in the m
odel, the high focus, in red, is m

ostly present at sudden upw
ard transitions. 
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Manual Performance evaluation 
During the manual performance evaluation, a subgroup of all false positives is subjected to visual 
inspection. During this inspection, multiple recurring patterns that will produce high model predictions 
were found. All recurring patterns will be separately discussed below.  
 
Artifacts that effect (almost) all leads during the measurement 
Artifacts are commonly present in EEG’s and cause the majority of the false detections in SpikeNet’s 
prediction. Artifacts which affects all leads are regularly found in EEG’s and are most likely to a 
movement artifact. In general, high voltage movement artifacts are captured by our background 
rejection model and the model does in general not return high prediction when confronted, however 
not all artifacts are captured and, in some cases, high predictions are returned.  
The upper panel of figure 1.7 shows the model prediction where the red curve is the predicted output 
of SpikeNet, and the dotted black line is the predicted output after background rejection. The dotted 
black line and the red line will overlap if the data is not rejected by the background rejection algorithm. 
As seen, the high voltage artifacts before 0:06:58 are captured by the background rejection and the 
model does predict values up to 0.5. When the high voltage EEG artifacts reduces, the background 
rejection fails to reject the prediction and the SpikeNet prediction crosses the threshold value of 0.43 
as indicated in the middle of the EEG by the vertical red band. 
 

 
 
  

Figure 1. 7 This false prediction is caused by artifacts. In the upper panel, the red line shows the model prediction and the 
blue dotted line shows the model prediction after background rejection. it can be seen that the background rejection fails to 
reject all artifacts resulting in a threshold crossing prediction at 00:06:59. 
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Artifacts during the measurement which effect only a small number of leads 
Sharp and transient artifacts which only effect a small number of leads can create spike like behavior 
when the CAR montage is used. Even though the model receives 2 montages CAR and double banana 
(DB) montage, the model is fooled by this artifact. The enormous spike present in T4, reaching up to 
Fz in the montage, creates a brief very high average resulting in the downwards spikes in all other 
channels, as can be seen in figure 1.8. The intensity of the artifact and the number of affected channels  
are key factors for the model prediction. When the artifacts effect only one ore a few electrodes for a 
brief moment of time, SpikeNet predicts much higher values (0.7), compared to a higher voltage 
artifact that indicate more channels as shown in figure 1.7. 
 

 
Figure 1. 8 A artifact present in the lead T4 will create a spike like pattern using the common average reference montage as 
seen at 01:02:07. 

 
Artifacts that are induced by starting and ending the measurement 
The MGH EEG dataset pre-processing steps, as described earlier, do not include clipping the EEG at the 
start and end of the measurement. Resulting in a series of artifacts that are not present during the 
measurement itself but, non the less, are present in our false positive evaluation.  Artifacts created by 
starting or ending the measurement are characterized by an abrupt start of end of the EEG.  
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Figure 1. 9 When the EEG recording starts, a typical starting artifact is created. Similarly, when the EEG recording ends, a 
mirrored version of this artifact is present. Due to the sharp transition, the artifact is falsely detected as a IED 

Artifacts that are induced by the calibration of the EEG 
When the EEG is turned on, but before the measurement starts, the EEG equipment needs to be 
calibrated. The mechanical calibration of the EEG signal leads to a sinusoidal waveform in the 
prediction due to the consistent changing EEG. 
 

 
Figure 1. 10 A similar morphology compared to the artifact shown in figure 1.9 is created by the calibration of the EEG which 
also lead to a false detection. 
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False positives caused by benign variants of uncertain significance 
Some EEG patterns might be epileptiform appearing, since their morphology appears to be a sharp 
waveform or a spike. However, these patterns do not yield any relationship to epilepsy. The 
appearance of these benign variants of uncertain significance will become clinical significant if they are 
over interpreted and mistaken for IED’s [54]. Benign variants of uncertain significance which 
repeatedly causes false positive predictions, are described in below. 
 
Hypnagogic hypersynchrony 
Hypnagogic hypersynchrony is a hallmark of drowsiness in children aged 3 to 13 years. It can be 
described as generalized, paroxysmal, synchronized, high voltage, slow wave activity which lasts 
around 2 to 8 seconds.[55] During the hypnagogic hypersynchronisation, the slow wave activity is 
synchronized to such an extent that the upward transitions occur nearly simultaneously. In addition to 
the synchronized upward transitions, the morphology also comes with a higher voltage than the 
background rhythms, creating steeper transitions, which is enough to trick SpikeNet into predicts 
values that are reaching up to the threshold value an above. 
 

 
Figure 1. 11 The Hypnagogic hypersynchrony is clearly distinguishable between 00:55:44 and 00:55:49. The highly 
synchronized waveforms do tend to have the upward transitions at the same time, tricking SpikeNet into high output values. 

 
Sleep spindles 
Sleep spindles arise from thalamocortical oscillations and are a defining characteristics of stage N2 
sleep. They have a frequency ranging between 11-16 Hz and lasting around 0.5 to 1.5 seconds. Drug 
spindles have a very similar morphology to sleep spindles, but slightly faster in frequency, and can be 
seen when benzodiazepines are administered [56]. Figure 1.12 shows an EEG in the sleep state with 
the presence of sleep spindles. The sleep spindle has sharp contours and does stand out from the 
background rhythm. When the amplitude variance of the spindle increases, SpikeNet is more likely to 
output higher prediction values.  
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Figure 1. 12 A sleep spindle is present at 00:46:49. The sharp contours and steep slopes do mimic features of an IED to some 
extent. SpikeNet is tricked into predicting high output value by the ‘spiky’ appearance of the sleep spindle. 

Vertex waves 
Vertex waves are Sharply contoured waves finding their maximum over the central region of the brain 
and occur in late drowsiness and to some extend in N2 sleep [56], [57]. With a maximal duration of 0.5 
second and a spiky appearance, they might mimic IED’s in asymptomatic patients leading to incorrect 
predictions by SpikeNet. This is especially true in children due to the more spikey appearance of the 
vertex waves at younger age [54].  
 

 
Figure 1. 13 The vertex waves, present at 01:11:52, finds its maximum amplitude at Fz-avg. The spikey behavior does lead to 
high, threshold crossing, output predictions.   
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Wicket spikes 
Wicket spikes, mainly found during N1 and N2 sleep, are commonly present in trains with increasing 
amplitude of arciform waves with a frequency between 6 to 11 Hz [58]. They can also occur as a single 
waves, differentiation between an isolated wicket spike and an IED can be difficult due to similarities 
in the morphology which may lead to incorrect interpretation. [27], [54], [58]. 
 

 
Figure 1. 14 A train of wicket spikes, present between 00:53:54 and 00:53:56, is clearly distinguishable from the background 
rhythm. The increasing amplitude is most noticeable in F3-avg and Fz-avg. It can be seen that the SpikeNet prediction rises as 
the amplitude of the wicket spike trains increases.  

 
Automatic Performance evaluation 
In the end of each training iteration, automatic performance evaluation is carried out using the 
ROCadjust and PRadjust. For each iteration, the area under the curve (AUC) for the ROCadjust and PRadjust is 
calculated using 1000 rounds of patient wise bootstrapping. Multiple ranges in the IED labels are 
considered in the calculations, to give a more complete overview of the model performance.  The AUC 
of the ROCadjust and PRadjust, accompanied with their 95% confidence interval, are plotted against the 
training iterations to visualize the performance change as the training iterations increases.  
As seen in both the ROCadjust and PRadjust, the third iteration yields a considerable performance 
drawback. Subsequently, an increasing performance trend is present in the following 12 epochs, 
overcoming the drawback and outperforming all previous models. The increased performance of the 
ROCadjust and PRadjust can be related to the decrease in false positives per hour (FP/h).  
Figure 1.16 shows the FP/h per iteration at a 99%, 98% and 95% sensitivity level calculated using the 
same 1000 patient wise bootstrap as described above. Decreasing numbers of FP/h are found in all 
calculations among several levels of sensitivity. The greatest absolute reduction, of 42 FP/h, is found 
at a sensitivity of 99% calculated using only candidate IED’s with the label 8/8. The greatest relative 
reduction, of 70%, is found using the candidate IED’s with the label range of 5/8 – 8/8 calculated at a 
95% sensitivity. A two sampled t-test is applied to evaluate if there is a statistical difference between 
the performance of 15th and 1st iteration of SpikeNet. We compared the bootstrapped ROCadjust, PRadjust, 
FP/h at 8/8 upto FP/h at 5/8-8/8 of the 1st and 15th iteration, all calculations where statistical different 
with p<0.01. 
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Figure 1. 16 The FP/h per iteration shown at 99%, 98% and 95% sensitivity.  The bands that surrounds the line 
visualizes the confidence interval at 95%. The blue, yellow and green line are representing the FP/h calculated 
using at different sensitivities. sensitivities are respectively, 99%, 98% and 95%. As expected, the FP/h reduces 
as the sensitivity decreases. 

Figure 1. 15 The AUC of both the ROCadjust and PRadjust curves per training iteration. The bands that surrounds 
the line visualizes the confidence interval at 95%. The blue, yellow, green and red line are representing the 
AUCROC/AURPRC calculated using a different range candidate IED’s. The candidate IED ranges are 
respectively, 8/8, 7/8 and 8/8, 6/7 to 8/8 and 5/8 to 8/8. The wider the range of candidate IED, the lower the 
AUC, which is expected due to the inclusion of less prominent IED’s. 
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Discussion 
In our study, we enhanced SpikeNet resulting in an AUCROCajust and AUCPRCajust of at least 0.9985 and 
0.9983 respectively. After 15 iterations of retraining, we succeeded in increasing the AUC of both the 
ROCadjust and PRadjust as well as decreasing the false positive predictions, resulting up to a 70% drop in 
false positive predictions per hour. Indicating that hard example mining and adding the mined 
examples during re-training is a successful strategy for increasing model performance without the 
need of acquiring new data.  Suggesting that the proportion in the training data, corresponding to a 
data with a difficult level of distinguishability between ‘IED’ or ‘No IED’, and a possible increasing data 
diversity do play a critical role in the model enhancement. 
 
Compared to earlier preformed studies, we did not limit our iterations to a pre-detained number. We 
seek to find the maximum number of training iterations for which a positive is present in the 
performance evaluation, and therefor confirming and extending the training method of Jing et al. Our 
model performance surpasses the performance of Jing et al. and therefor also the performance of 
experts using a partly similar dataset [4]. Our model, has a sensitivity of 95% (955/8%), calculated using 
candidate IED’s with a label 5/8 or higher, while having a false positive rate of 15 FP/h. 
Tjepkema-Cloostermans et al.[6] who is using a CNN-LSTM architecture. reports a 36 FP/h (0.6 FP/m) 
at a 47.4% sensitivity. Scheuer et al. reports that the Persyst P13, which is the golden standard for 
automatic IED detection, has a 43.9% sensitivity at 99 FP/h [47] and Hao et al. repots a 30 FP/h at a 
sensitivity of 84.2% while using EEG and fMRI. Our model is outperforming all well performing 
automatic IED detection known to us at the time of writing and therefor setting a new standard for 
automatic IED detection. 
 
The strength of this research lies within the many iterations which allow tSpikeNet to carefully adapt 
to our enhanced dataset and increases its performance. In this training method, we created a harder 
training set every iteration by increasing the difficult examples in a semi-supervised way. This training 
method truly excels when all the false positives are checked by hand to make sure only true false 
positives are added. Since this manual validation takes a lot of time, a hybrid version, where 4 rounds 
are manually validated, is applied to make sure most test patients with actual IED’s are excluded and 
relabeled for later studies. 
 
A limitation our study is the lack of calibrating the IED threshold value during the iterations. If the 
optimal threshold has increased during the iterations, we have not included all false positives in our 
iterations, which may lead to a slower learning curve. On the contrary, if the optimal threshold for the 
IED detection has decreased over the iterations, we have falsely added true positives as false positives 
to our dataset.  
 
During most training iterations, the model performance increased leading to a positive trend in 
performance. During the last round of manual validation, it appeared that the number of false positives 
created by artifacts is reduced more than false positives created by benign variants of uncertain 
significance. This can be explained when looked at the morphology of the false positives. The 
morphology of, for example, isolated wicked spikes, vertex waves or positive occipital sharp transients 
of sleep (POSTS) are more similar to an actual IED than to an artifact. Most artifacts can be easily 
spotted by shortly trained eye, however the benign variants listed above do tent do fool even the eye 
of experts [27], [54], [58]. The model can be seen as a new EEG expert in training, therefor it will first 
learn easy to learn discrimination features and later on, more sophisticated and fine-grained features 
will be learned leading to a better performance. 
 
The problem with state-of-the-art automatic IED detection still remains the high false positive rates. 
Our method does reduce the false positive detections up to 70% while maintaining a sensitivity of 95% 
as can be seen in figure 1.16. The International League Against Epilepsy recommends a minimum 
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artifact free recording time of 30 minutes [59]. Following that guideline, a routine EEG that is predicted 
by our model will have on average 7.5 false predictions with a sensitivity of 955/8%. This reduction in 
false positives does make our model a good candidate for clinical use. Our model could function as a 
pre filtering tool for IED detection due to the high sensitivity. Since most artifacts are automatically 
rejected by the model while mostly benign variants of uncertain significance are returned as false 
positives, expert knowledge is required for further classification.  
 
In conclusion, iteratively adding false positives to the training dataset does improve the performance 
of the IED detection algorithm significantly by reducing the false positive rate. Making this method a 
crucial step in the training process of (similar) classification algorithms. 
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Introduction 
 
As already discussed in chapter 1, the MGH clinical care dataset incorporates 88297 candidate IED’s 
with 13262 morphologically distinguishable candidate IED’s. The labels of the candidate IED’s ranging 
between 0/8 and 8/8. The MGH clinical care dataset has also around 16 million control samples with 
the label 0/8, creating a highly-skewed class distribution even after the applied data augmentation. In 
chapter 1 we added hard examples to the dataset to increase its difficulty. Some of these hard 
examples are ‘easy examples’ for human interpreters however other hard examples such as wicket 
spikes, POSTS and vertex waves do tend to be falsely categorized even by (beginning) experts [48], 
[49], [57], [58]. Due to the morphological similarities, an increased number of samples for the closely 
related hard examples and candidate IED’s is preferred. Collecting labeled medical data is however a 
complex and expensive procedure, and researchers came up with another way to enlarge a dataset 
called, data augmentation. If applied correctly, data augmentation may elevate model performance, 
providing a regularizing effect and reducing generalization error [28]–[30], [60]. When applying data 
augmentation, you are creating new, artificial but plausible examples, where simple augmentations 
such as geometric transformations and noise addition are widely adopted [31]. However, these fairly 
simple techniques do have a limited diversity since they heavily rely on the original data. 
 
This lack of diversity gives incentive to a more advanced data augmentation technique called 
generative modeling. Generative modeling is the opposite of discriminative modeling, in which  
SpikeNet can be placed in. In discriminative modeling, the model tries to learn the probability of class 
y given input x, also known as conditional probability distribution. In generative modeling, the model 
tries to learn the joint probability distribution, that input data x and output label y do occur 
simultaneously [61]. In other words, the model learns a hidden structure of the data from its 
distribution and is therefore able to generate new data samples within the same distribution [34]. 
 
Various generative models are present today, including Latent Dirichlet Allocation, Gaussian Mixture 
Model, Restricted Boltzmann Machine, Deep Belief Network, Variational Autoencoder (VAE) and 
Generative Adversarial Network (GAN). Recently, the latter two do have gained the most interest due 
to their excellent ability of capturing key elements from a diverse range of datasets to generate realistic 
samples leading to sophisticated domain-specific data augmentation [30], [62]. 
 
The performance of the VAE and GAN is promising and mostly similar [35]. Comparing a VAE and GAN 
is subjective due to the lack of sufficient performance metrics, however some recurring performance 
trends are found; VAE tends to create more blurry images and are therefore lacking detail. On the 
contrary, a GAN usually generate sharper images and tend to be more flexible but has issues 
concerning training stability and sampling diversity [36], [63]. The loss of detail from a VAE in 
generating EEG will translate to the loss of the higher frequencies, resulting in synthesizing a slower 
EEG than intended, motivating the use of a GAN over the use of VAE for EEG synthesis. 
 
Recently, an increasing number of medical studies incorporated GANs, with implementations ranging 
from image synthesis of the retina [64], liver lesions [30] and breast cancer tissue [37] to up sampling  
and synthesizing EEG [35], [65]–[67] among others.  In this chapter, we investigate the applicability of 
various GAN’s to synthesize IED’s and their ability to enhance the performance of SpikeNet. 
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Method 
During this study, we built a GAN from scratch, evaluated the performance and enhanced the GAN 
accordingly. The enhancement can be translated back into three major changes in the GAN algorithm 
which will be described later on in this chapter. Our multi-phase developmental and experimental 
approach which lead to our third GAN, is chosen to be described as if we are comparing the three GAN 
algorithms simultaneously for the sake of the readability of this chapter. 
 
Generative adversarial network 
The basic principle of a GAN 
A GAN is, strictly speaking, an adversarial modelling framework for training a generative model, and 
was proposed by Goodfellow et al. in 2014 [62]. It is common to use deep neural networks such as 
convolutional neural networks in the architecture of a GAN but this is not mandatory. The architecture 
consists of a generator (G) and a discriminator (D). The task of the discriminator is to distinguish 
between real and generated data, whereas the task of the generator is creating realistic data and is 
therefore trying to fool the discriminator. Applying this to a real life example, the generator could be 
seen as a counterfeiter whereas the discriminator is the art connoisseur, where ideally the competition 
causes improvements in both models until the generated data is undistinguishable from the real data 
[68]. 
 
The generator takes a random noise vector #, sampled from a Gaussian distribution, as input and 
outputs fake data $%	also denoted as '(#). The fake data $% is passed to the discriminator together with 
a randomly selected real data sample, $, where they are classified as real or fake (figure 2.1). 
 

 
Figure 2. 1 An overview of the general architecture of a generative adversarial network. The dotted lines do represent the 
backpropagation to update the model parameters. Specific cost functions will be discussed later on and are therefore not 
incorporated in this figure. 

The two-player game 
Since the generator and discriminator are trained in a competitive way, the training can be seen as a 
two-player game with non-cooperative players. The two players, represented by the generator G, 
using parameters *!  and discriminator D, using parameter *", take turns on optimizing their loss 
function. The discriminator wants to minimize the loss function ℒ"(*" , *!) while changing *".  The 
generator wants to minimize ℒ!(*" , *!) by changing *! . The loss functions are defined as, 
 

ℒ"(*" , *!) = ℒ"
!#$ =	−/%~ℙ!0log45($)67 − /%(~ℙ"0log41 − 5($%)67	 	(2.1) 

and 
ℒ!(*" , *!) = ℒ!

!#$ =	/%(~ℙ"0log41 − 5($%)67	 	(2.2) 
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with ℙ)  and ℙ* respectively denoting the data distribution and model distribution [69]. The loss 
functions do partly depend on the parameters of the other player parameters leading to the 
description of a two player game instead of an optimalization problem [68]. 
 
Challenges during training 
As addressed earlier, GAN’s do have issues concerning training stability and sampling diversity. 
In, for example a classification problem, the gradient of the loss is calculated, and the model 
parameters are optimized accordingly. Optimally, each step would lead to a lower loss which finally 
results in finding the global minimum of the loss landscape. In a classification problem, this loss 
landscape is static, however in GAN’s the loss landscape changes a little every training step, making it 
very hard to find the global minimum in a high dimensional loss landscape, and could lead to exploding 
or vanishing gradients [70]. 
 
In addition to the convergence problems, GAN’s can suffer from another failure mode called ‘mode 
collapse’. During mode collapse, the generator learns to only generate a subset of all outcomes (or 
modes) of the data distribution ℙ). Therefore, different inputs of # lead to the same output $% [71]. 
Different hypothesis are presented in the literature however, to our knowledge, the true mechanisms 
of the mode collapse is not discovered yet. 
 
Strategies of improvement 
Wasserstein GAN with gradient penalty 
The Wasserstein GAN (WGAN) uses the same adversarial modelling framework as a normal GAN 
however the discriminator, who normally predicts the probability of a sample being real or fake, is 
replaced by a critic, who predicts the realness or fakeness of a given sample by calculating the Earth-
Mover (EM) distance [36]. The EM distance, or Wasserstein loss, is the minimal cost of transforming 
data distribution ℙ* to data distribution ℙ). Resulting in an improved stability and a meaningful loss 
metric [36]. Gradient penalty was proposed by Gulrajani et al. as an addition to the Wasserstein loss 
function, which lead to even further improvements in the stability. After implementing both the 
Wasserstein loss and the gradient penalty, the loss functions can be defined as, 
 

ℒ"
+!#$!, =	ℒ"

+!#$ + =/%(~ℙ#$[(‖∇%(5($%)‖- − 1)
-] 	(2.3) 

With 
ℒ"
+!#$ =	−/%~ℙ![5($)] + /%(~ℙ"[5($%)	] 	(2.4) 

and 
ℒ!
+!#$!, =	−	/%(~ℙ"[5($%)]	 	(2.5) 

 
Where ℙ%( is defined to sample uniformly between pair of points sampled from ℙ)  and ℙ* [35]. 
 
Optimalisation methods 
During training, the goal is to optimize your neural network and therefore minimize the loss function. 
Minimizing the loss function can be achieved via various techniques. A practical and well performing 
technique for optimizing your network is stochastic gradient decent (SGD). SGD does yield good results 
with the correct parameters, however the tuning of the parameters is hard and, optimally, do need 
adjustment during training [72]. In response, multiple adaptive optimizer have been created including 
ADAM, RMSprop and Adadelta [73].  On the time of writing, ADAM is probably the most used optimizer 
and is recommended by Gulrajani et al. to use in the Wasserstein GAN with gradient penalty [70], [74], 
[75]. Recently, AdaMod, a new optimizer that builds on ADAM, was proposed and claims to be less 
sensitive to the chosen learning rate, to have an improved convergence and does not need a warmup 
[76]. 
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Do’s and Don’ts 
During the years, studies have led to a better understanding of GAN’s and many recommendations on 
how to train and build your GAN’s are proposed. Radford et al. [77] proposed following architecture 
guideline. 
 

” Architecture guidelines for stable Deep Convolutional GANs 
Replace any pooling layers with strided convolutions (discriminator) and fractional-strided 
convolutions (generator). 
Use batchnorm in both the generator and the discriminator. 
Remove fully connected hidden layers for deeper architectures. 
Use ReLU activation in generator for all layers except for the output, which uses Tanh. 
Use LeakyReLU activation in the discriminator for all layers. “ 

− (Radford et al.[77]) 
 
Chintala, the Co-author of the cited paper above, did give additional information about recommended 
implementation techniques during his presentation at NIPS [68]. Useful recommendations regarding 
our study are: 

The use of Gaussian Latent Space instead of a uniform distribution. 
Feed separate batches for real and fake to de discriminator 
Use soft labels instead one hot encoding 
Introduce a small percentage of incorrect labels 

 

Implementing 3 GAN models 
Dataset 
The IED’s that we use for this study are coming from the same routine clinical care dataset that was 
used as described in chapter 1. In this study we include of both medoid and member candidate IED’s 
with the label 8/8 leading to the inclusion of 14874 candidate IED’s. Choosing only one label gives us 
the opportunity to label the generated spikes with the same label as trained upon, if the generator is 
able to learn the data distribution ℙ). 
 

Implementing GAN’s 
All implemented GAN’s do yield the same architecture for the generator and discriminator to ensure 
the changes is output can be related to the optimalisations steps that are implemented. 
 
The Generator 
The generator is built to create input segments for SpikeNet, SpikeNet takes an input of 1 second EEG 
sampled at 128 HZ with 37 EEG channels, however the 18 bipolar montage channels can be calculated 
from the CAR montage. To ensure the correct relationship between the bipolar and CAR montage, it 
was chosen to generate the CAR montage instead of generating the CAR and bipolar montage together. 
Therefore, the generator is built to create 1 second epochs of EEG at 128Hz using the CAR montage.  
 
The 19 CAR channels are generated in the following order: FP1-avg, F3-avg, C3-avg, P3-avg, F7-avg, T3-
avg, T5-avg, O1-avg, FZ-avg, CZ-avg, PZ, -avg FP2-avg, F4-avg, C4, -avg P4-avg, F8-avg, T4-avg, T6-avg, 
O2-avg. Using the recommendations from Chintala and Radford et al. in mind the following 
architecture is used.  
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The random noise vector # with the dimension (100,1) is fed into the dense layer where it will be up-
sampled to (3200,1). Reshaping this vector will give us the base of our EEG resulting in a 5 by 4 matrix 
with 160 filters. In the first block, which is repeated twice, the EEG will be up-sampled by the 
transposed convolutional layer doubling the dimensions and reducing the filters by 32. After two 
rounds of up-sampling, our generated EEG has a dimension of 20 by 16 with 96 filters. Since we only 
need 19 channels, we cut of one channel in the reshape layer resulting in an EEG segment of 19 by 16 
with 96 filters. 
 
In the second up-sampling block, the EEG length is doubled while the filters decrease with 32 per block. 
Resulting in an EEG sample with the dimensions of 19 by 128. The Tanh function does scale the EEG 
between -1 and 1, to compensate for this, the EEG is multiplied by 500 creating an EEG in the range of 
500 and -500 µV. 
 
The Discriminator 
To maximize the similarities between the generator and the discriminator, which may lead to a more 
stable training, a mirrored architecture of the generator is used. Here the first convolutional block will 
down-sample the length of the EEG by 2 and increase the filters by 32. The second block will reduce 
the height and width of the EEG by 2 and will increase the filters by 32. Passing all convolutional block 
will lead to a matrix of 5 by 4 by 160, which is the same size as the starting point for the generator. 
Where finally the prediction real and fake is made by the Leaky ReLU. 
 

 
 
 
 
 
 

Figure 2. 2The architecture of both the generator in blue and the 
discriminator in purple. The architectures are created such that they 
are very similar regarding the data size and number of filters. 
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The shown versions 
During this study, many experiments are conducted but not all will be shown. The experiments can be 
categorized in within three groups accounting for the major changes. The models that we will show 
are: 

The GAN + ADAM optimizer (GAN-ADAM) 
The Wasserstein GAN with gradient penalty + ADAM optimizer (WGANGP-ADAM) 
The Wasserstein GAN with gradient penalty + Adamod optimizer (WGANGP-Adamod) 

 

Evaluating GAN’s 
Evaluating generated data is challenging, since multiple answers can be correct and only the realness 
of the data needs to be evaluated. Human interpretation ceases to be a main evaluation metric in the 
beginning of the GAN’s.  Over the years evaluation metrics are proposed such as the widely adopted 
Inception Score (IS), Frechet Inception Distance (FID) and Euclidean Distance (ED). The first two do rely 
on a pre-trained image classification model, requiring a square input and judging realness based on 
image features. It is not hard to imagine that these metrics will not produce useful or even reliable 
scores when applied on EEG. 
 
Calculating the ED is not able to tell us how real or unreal our generated samples are; however, it can 
tell us if the model re-produces samples from the input domain ℙ)  and is therefore used in our 
evaluation. In addition to the ED we evaluate if our generator does produce IED’s, which is our main 
goal.  We accomplish this by generating 10.000 IED’s at the end of each training epoch and feed them 
into SpikeNet. We monitor the total number of detected IED’s by SpikeNet as well as the average 
outcome of the 10.000 IED. An increase in those scores, which are heavily related, will give us insight 
in the performance of the generator. Both scores will not give us any insight if mode collapse is present, 
therefore manual inspection is also applied. 
 

Enhancing SpikeNet with the generated spikes 
Enhancing SpikeNet by adding the generated IED’s to the dataset with the label 8/8 might look like the 
obvious approach. If our best performing GAN produces IED’s, that truly belong in the data distribution 
of the label 8/8, 100% of the time, the latter approach will be useful. However, it is most likely that our 
GAN will not be able to produce 8/8 IED’s all the time, making automatic labeling impossible without 
incorrectly labeling some of the generated IED’s. To overcome the problems of labeling the generated 
IED’s, we make one assumption. 
Looking at the results of chapter 1, we assume that the only difference between SpikeNet in training 
iteration 1 and 15 is the false positive rate. Using that assumption, we generate IED’s, predict the IED’s 
with both the SpikeNets from iteration 1 and iteration 15. Dividing the prediction SpikeNet15 from 
prediction SpikeNet1, gives you information about the likelihood of the given sample being a false 
positive or not. Values close to 0 are likely to be real where values close to 1 are likely to be a false 
positive. 
Adding the generated IED’s as ‘false positives’ to the dataset with the label 0/0 might lead to better 
performance of SpikeNet. The distribution of the outcome difference, between SpikeNet1 and 
SpikeNet15, as shown in figure 2.3, is a bell curve with one long tail. Based on this distribution, which is 
calculated on 100.000 generated IED’s, it is chosen to include generated IED’s with a where the 
outcome of SpikeNet1 minus the outcome of SpikeNet15  is greater than 0.4. 
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Figure 2. 3 The data distribution of the difference in outcome between SpikeNet1 and SpikeNet15. 100.000 samples are 
generated and are predicted by both SpikeNets. The right tail is longer than the left tail the the bell curve indicating the 
presence of generated false positives. 

 
Training procedure 
All models are initially trained for 1000 epochs, early termination of the training progress will be 
applied if the model if no indication of improvement is present, while the model fails to converge, 
suffers from significant mode collapse or generates IED’s with morphologies far from actual IED’s. 
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Results 
Convergence 
During the training of the three models, which are all trained multiple times, the convergence is the 
first and easiest thing to evaluate. After each training step, the generator and discriminator loss are 
calculated and visualized. When the losses do converge to zero, it indicates that GAN is finding an 
equilibrium between the generator and discriminator, resulting in a balanced training.  
 
GAN + ADAM optimizer 
The GAN-ADAM is our most simple implementation of the 3 models, and as shown below in figure 2.4, 
and is not able to have a stable training process. 
The orange line shows the generator loss and the blue line the discriminator loss. As seen no 
convergence is present. 

 
Figure 2. 4 The loss plotted during a typical training of the GAN with the generator loss in orange, discriminator loss in blue. 
As seen, both the losses do diverge from resulting in an unstable GAN. 

 
The Wasserstein GAN with gradient penalty + ADAM optimizer 
The WGANGP-ADAM is known to enhance the stability of the GAN and our implementation did achieve 
a higher stability. Even though some runs did fail to converge, the majority did, as shown below. In the 
majority of the runs an oscillating motion is seen in the generator loss (orange curve), which indicates 
that mode collapse is present. The oscillating motion is created when the generator switches from 
generating one mode to another. Different modes do yield different losses however the generator is 
not able to produce multiple modes simultaneously. As seen, for the first ~50 epochs the discriminator 
loss (in blue) seems to be in a free fall. Most likely finding a way to discriminate between real and fake 
samples. As seen, the generator loss stays practically zero. When the discriminator finds a way to 
discriminate between real and fake, the generator will start learning useful features.  
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The Wasserstein GAN with gradient penalty + Adamod optimizer 
The Adamod optimizer does very strictly what it promised to do in the WGANGP-Adamod 
configuration. It increases the stability and the learning ability in the beginning, however over time, it 
is not able to hold the equilibrium. As can be seen in figure 2.6, the discriminator loss slowly deviates 
while the standard deviation of the discriminator loss increases. Due to the stable results it was chosen 
to additionally train the WGANGP-Adamod for more epochs to see if it leads to better results. 

 
Figure 2. 6The loss plotted during a typical training of the WGANGP-ADAM with the generator loss in orange and the 
discriminator loss in blue. The gradient penalty is given in light blue 

Figure 2. 5 A typical training of the WGANGP+ADAM. In the first epochs, the discriminator (blue) is not able to discriminate 
between real and fake, hence the downward slope. When de discriminator finds a way to discriminates the generator start 
learning useful features. The plateaus seen in the generator loss (orange) are a hallmark of mode collapse. Each plateau is 
created when the generator only outputs a specific a subset of the classes, where different plateaus are created by different 
subsets. 
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ED score 
The Euclidean distance is calculated between all input data and 10.000 generated IED’s per generator. 
The more the generated IED’s mimics an input IED, the lower the ED score. The ED score is the average, 
point wise, Euclidean distance between the generated IED’s and the input IED’s. To give an indication 
what the mean ED should be, the ED score is calculated on itself using the input IEDs.  
 
Table 2. 1 The ED score of the best performing generator of each catagory. The ED score is also calculated on itself to create 
a reference value 

 GAN+ADAM WGANGP+ADAM WGANGP+ADAMOD Input IEDs 
Minimal  ED 281.1 9.7 86.9 0.1 
Mean ED 306.0 ± 8.4 52.8 ± 17.4 117.0 ± 9.9 39.6 ± 6.3 

 
Visual evaluation 
Before each training, 9 latent vectors are saved for evaluation purposes. At the end of each epoch, the 
9 latent vectors are fed into the generator, creating 9 IED segment. In this way, the development of 
the  IED’s could be tracked. After the training was finished, more IED segments are evaluated to check 
for mode collapse. Each segment is plotted as a one second, 19 channel CAR montage as described 
earlier. 
 
GAN 
The instability issues of the GAN-ADAM do lead to improper training of the generator resulting in a 
noisy output ranging between -500 and 500 uV as seen below in figure 2.7. 
 

 
 
Figure 2. 7 Nine one-second generated IED segments created by the GAN-ADAM are shown. The failure to converge lead to 
the output of a noisy signal. 
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The Wasserstein GAN with gradient penalty + ADAM optimizer 
The majority of the WGANGP-ADAM models suffered from mode collapse during training, however 
some models did avoid mode collapse. Both outcomes, are presented to give an insight in the 
generated samples. 
 
In figure 2.8 the outcome of a WGANGP-ADAM model with mode collapse is shown. As seen, a high 
similarity between the first and last three segments, and between segment 4 and 5 is present. Looking 
at the wave forms, all segments suffer from an upward slope at the end also, the morphology of the 
generated segments does not come close to an IED except for segment 6. 
 

 
 
Figure 2. 8 Nine one-second generated IED segments created by the WGANGP-ADAM are shown while mode collapse is 
present. 

 
If the WGANGP-ADAM did not suffer mode collapse, the generated IED’s do not only yield more 
variance but also a show a higher voltage EEG and a less present upward slop in the end. It can be seen 
that some spike like behavior is learned however the morphologies are in most cases vastly different  
from real IED’s.  
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Figure 2. 9 Nine one-second generated IED segments created by the WGANGP-ADAM are shown without a noticeable level of 
mode collapse. 

 
The Wasserstein GAN with gradient penalty + Adamod optimizer 
The increased performance lead to longer training sessions which on its turn lead inevitably to mode 
collapse. However, before mode collapse occurred generators are present which do have an improved 
outcome regarding the morphology of the IED as shown below in figure 2.10. As seen, in the majority 
of the samples, higher voltages are present in the lower half of the channels. Even though this 
similarity, many differences are found between the generated IED’s. Overall it could be stated that the 
generated IED’s of the WGANGP-Adamod do yield a more pronounced spiky pattern leading to 
morphologies with a higher tendency towards IED’s. 
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Figure 2. 10 Nine one-second generated IED segments created by the WGANGP-Adamod are shown. No  mode collapse is 
present in tis figure..  

 
SpikeNet evaluation 
After each epoch the generator was evaluated by SpikeNet15. Only the WGANGP-Adamod succeeded 
in generating IED’s that where classified as IED more than 60% of the time for multiple consecutive 
epochs, without suffering from mode collapse.  WGANGP+ADAM does reach the high percentages but 
only happens in severe mode collapse.  
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Figure 2. 11 The percentage of generated IED's evaluated with SpikeNet 15. At the end of each epoch, 10.000 IED’s are 
generated and evaluated with SpikeNet15. Based on the outcome of SpikeNet15, the GAN+ADAM is not able to generate 
IED’s, WGANGP+ADAM Is able to generate IED’s but suffers severe mode collapse and WGANGP+Adamod learns to produce 
IED’s up to 78% of the time. 

 
SpikeNet enhancement 
For comparison, all previous training iterations are shown. Training iteration 16, the last iteration, is 
the iteration where generated IED’s are appended to the dataset as false positives. 
The data shown below is created by adding generated IED’s classified as false positives with minimal 
difference between SpikeNet15 and SpikeNet1 of 0.4 Improvements over the AUCROCajust are present in 
all calculations except the one using the labels 7/8 or higher. However, the AUCPRCajust slightly 
decreases in all calculations. 
 

Figure 2. 12 The AUCROC and the AUCPRC plotted against the training iteration, in the 16th iteration the generated IED's are 
added to the dataset 
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Looking at the false positives per hour, plotted for the sensitivity levels of 995/8%, 985/8% ,955/8%, 
998/8%, 988/8% and 958/8% it can be seen that major improvements are made at 995/8% and 985/8% 
however all other parameters do have similar to worse performance. 

 
Figure 2. 13 The false positive predictions plotted against the training iterations 

 
When the ROC of SpikeNet15 (shown in the dotted lines) is compared with the ROC of SpikeNet16. It can 
be seen that ROC of SpikeNet16 has slightly moved upwards and to the right, resulting in a lower 
performance below ~19 FP/h and an increase performance above the ~19 FP/h. 
 

 
Figure 2. 14 The ROC Curve of SpikeNet15 shown by the dotted lines and SpikeNet16 in the continuous line. SpikeNet16 

outperforms SpikeNet15 at FP/h rates of 19 and above. Below the FP/h rate of 19, the SpikeNet15 is the superior one. 
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Discussion 

During this study we showed that stacking multiple stability improvement methods does cause an 
increased stability and there a performanceof the GAN. We were able to go from generating noise, 
using the GAN-ADAM, to generating IED’s with which are predicted to be an IED by SpikeNet15 more 
than 60% of the time without suffering from mode collapse using the WGANGP-Adamod. It remains 
unclear how to use the generated IED’s for performance enhancement of SpikeNet while focusing on 
the reduction of the FP/h since adding the generated IED’s increased the 95%5/8 from 15 to 18.3 FP/h. 
 
The potentials of generating EEG using GANs is a fairly unexplored field, where a hand full of papers 
exploring this opportunity are present at the time of writing. Existing studies showed the increased 
performance of classification tasks when generated EEG, without the presence of pathologies, was 
added to the dataset [35], [65], [66]. Where Luo et al. addressed the up-sampling of EEG from 125Hz 
to 250Hz [67]. To our knowledge, we are the first to generate and also evaluate the generation of IED’s 
using multiple GAN implementation. 
 
Our work is mainly explorative and does include empirical experiments and trial and error analysis. 
Unfortunately, we were not able to explore all promising features, techniques and/or methods. 
Unaddressed issues will be discussed in the recommendations. Besides the limit of the implemented 
methods, our study does have drawbacks including the lack of a sufficient evaluation metric. Using the 
prediction from SpikeNet 15 and the ED as a metric has two downsides. Firstly, it is known from chapter 
1 that SpikeNet 15 does suffer from false positives. Creating IED like segments can lead to false 
detections of SpikeNet 15. False detections of SpikeNet 15 do mostly include artifacts that mimic IED’s 
and benign variants of uncertain significance like vertex waves, POSTS and wickets spikes. We can 
therefor say that an increased prediction of SpikeNet 15 is associated with an increased IED like 
behavior. Secondly, the metrics based on SpikeNet 15, are not a sufficient to detect mild or moderate 
mode collapse. Severe mode collapse, results in a small range of predictions. When the generator, 
while suffering from mode collapse, transforms from generating non-IED like segments to generating 
IED like segments, the percentage of predicted IED’s, as classified by SpikeNet 15, will rapidly increase 
and will show oscillating behavior with can be linked to the generator loss when one mode changes to 
another.  Introducing the standard deviation of SpikeNet 15 prediction as a measurement of mode 
collapse may look like the obvious solution. However, this will only work if, and only if, one mode is 
generated, mode collapse with two vastly different modes can still result in a high standard deviation 
and is therefore chosen not to be implemented. 
 
The strength of our study lies within the explorative and validating nature. We explored the field of 
generating IEDs by using widely adapted deep neural network techniques which proved their 
performance in other fields [36], [62], [70], [76]. By systematically changing parameters we are able to 
show the individual changes that our different implementations provided. Henceforth, creating a 
promising starting point for further research. Even though optimalisation is preferred, our approach 
of adding generated IED’s did overcome the problem of labeling the patients and enabled us to add 
the generated IEDs to the dataset based on our domain knowledge. 
 
During the evaluation of SpikeNet16 it was found that the ROC moved upwards and to the right, 
compared to the ROC of SpikeNet15, as seen in figure 2.14. The ROC values from 19FP/h and up do 
indicate that the model performance is increased. In other words, reducing the false positive 
predictions while maintaining the sensitivity. Meaning that the difference in model prediction between 
false positives and IEDs has increased. This is especially true in the area of low predictions (SpikeNet 
outcome of <0.28), leading to a higher distinguishability of the IED’s, which is good. However, using 
higher thresholds than 0.28 (current is 0.43), the model prediction slightly drops leading to a decreased 
performance. In other words, the added IEDs caused a reduced distinguishability between false 
positives and spikes at higher thresholds. This performance increase can be explained by the fact that 
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a part of the generated IED’s indeed where false positives, leading to the improved performance at 
low thresholds.  However, the reduction in performance can be caused by two mechanisms. Firstly, it 
could be that some of the generated IED’s might not be an actual false positive, creating high gradients 
in the backpropagation which lead to a lower prediction of the IED’s. Secondly, all the generated IED’s 
where indeed false positives, however some have a highly similar morphology compared to the IED. 
For example, the model generated benign variants of uncertain significance. Due to the high 
morphological similarities, SpikeNet was not able to learn the fine-grained differences resulting in a 
performance drop. 
 
In conclusion, we implemented three versions of our IED generating GAN, where the WGANGP-
Adamod, who was designed to be the most stable, outperformed all other models. Even though a 
suitable way to include the generated IEDs in the training process of SpikeNet is not found, the 
promising results regarding IED generating without suffering from mode collapse, do pave the way for 
future work. 
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Symmetry Index 
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Introduction 
The EEG is a complex interplay of frequencies that is created by the underlaying cortex.  
When cerebral disfunction occurs, the frequencies created of the affected cortex slow down, also 
known as background slowing [27], [57].  The EEG can provide evidence of underlying cerebral 
disfunction by demonstrating this background slowing. The slowing of the background activity can be 
presented focally as well as generalized, depending on its underlying cause. However, generalized 
background slowing cannot immediately be linked to cerebral disfunction since generalized 
background slowing in the theta (4-8Hz) and delta (0.5-4Hz) range of the EEG can represent 
developmental slowing, during drowsiness and sleep and it can be induced by sedative medication. 
However, intermittent generalized slowing or persistent focal slowing of a specific region, as well as 
unreactive focal or generalized slowing should be considered pathologic [27]. Pathologic causes of 
generalized slowing include encephalopathies[78], neurodegenerative disorders[79], as well 
generalized anoxia caused by a cardiac arrest[80]. Focal slowing can be caused by numerous underlying 
mechanisms like, ischemic stroke[81], brain hemorrhage[82] and tumors[83]. 
 
As earlier described, visual scoring of the EEG is still the golden standard, even though multiple 
automated EEG analysis algorithms are present. Van Putten et al.[84] published in 2006 a method to 
detect the occurrence of generalized slowing and asymmetry in the EEG, called temporal brain 
symmetry index (tBSI) and brain symmetry index (BSI) respectively. In 2007 Van Putten published a 
refined version of his previously published slowing asymmetry detection called the revised temporal 
brain symmetry index (r-tBSI)  and revised brain symmetry index (r-BSI) respectively[85], [86]. 
 
Both the tBSI and the BSI where initially designed to assist detecting feature changes in the EEG, such 
as detecting (partial) slowing of the EEG during carotid endarterectomies. Both yield promising results. 
However, there is one major drawback in the approach of the tBSI. A design choice of the tBSI is the 
dependency of a reference epoch coming from the same EEG. Already present continuous slowing 
cannot be detected since the slowing will be present in the reference epoch, making the tBSI in 
combination with the proposed method unsuitable for detecting continuous slowing. In contrast to 
the tBSI, the BSI does not depend on a reference epoch and detection is not affected. 
 
The dependence on a reference does not necessarily have to be changed before generalized slowing 
can be detected. The reference power calculated using the patient’s own EEG could be replaced by a 
general reference. A general reference could overcome the burden dependency of the same EEG. This 
reference matrix must include the power spectral density (PSD) of the EEG per channel per age. The 
general reference must at least include the PSD per channel, however the PSD per channel per age is 
highly recommended since the PSD of the EEG has been proven to changes during aging [22], [87], 
[88]. 
 
In this study, we calculate a general reference matrix which includes the PSD per channel per age. 
We implement both the r-tBSI and r-tBSI using the general reference matrix. Subsequently, we validate  
both the original and revised tBSI and BSI. 
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Method 
 
Data preparation 
For the creation of the general references, all normal EEG’s (n=4656) are included. All EEG’s are 
resampled to 128Hz and are high pass and notch filtered using 0.5Hz and 60Hz accordingly. 
All EEG’s are constructed to be in the anterior-posterior montage, also known as double banana (DB) 
montage. For each bipolar derivation, the PSD is calculated using a 5 second non overlapping window 
and is stored accordingly. Creating a Nx321x18 matrix with N the number of 5 second epochs. 
 
Creating the general reference matrix via averaging per age 
The PSD, with a frequency resolution of 0.2 Hz, is calculated for all 5 second epoch, to ensure that no 
asymmetry is present in the general reference matrix, the PSD’s of the following channel combinations 
are averaged: FP1-F7 & FP2-F8, F7-T3 & F8-T4, T3-T5 & T4-T6, T5-O1 & T6-O2, FP1-F3 & FP2-F4, F3-C3 
& F4-C4, C3-P3 & C4-P4 and P3-O1 & P4-O2. After averaging per channel, the PSD’s are averaged per 
age. The reference at age y is derived by calculating and averaging the PSD for all patients with the age 
of y-1, y and y+1. Using a bandwidth of 3 years will smooth the PSD while retaining ability to capture 
the changing PSD. The main function of this PSD matrix is to enable visual evaluation of the deep 
learning created reference matrix. 
 
Creating the general reference matrix via a deep learning model 
No complex smoothing techniques are used in the general reference matrix which is described above. 
To create a smoother reference matrix, a deep learning model used. To ensure the symmetry of the 
reference matrix, the same channel combinations are averaged as mentioned above, leaving 8 unique 
EEG channels. For each unique EEG channel, a deep learning model was trained based on Sun et al.’s 
Deep Neural network. The model is trained to predict the spectrogram E.,0,1,2  on a log scale (Decibel), 
where F is the frequency; G the channel; and H the epoch within patient I. The model takes 
0J. , J.

-, J.
3, J.

4, J.
57, with J.  the age of subject I, as input and has one hidden layer with 100 nodes. 

 
Patient selection 
Out of the available 5698 abnormal EEG’s, 100 EEG’s with slowing between the age of 18 and 80 were 
randomly chosen.  It was made sure, by reading the EEG reports, that all 100 patients were diagnosed 
with generalized ‘theta’ or ‘delta/theta’ slowing without the occurrence of conditions that significantly 
change the PSD of the EEG such as: (partial) seizures, extensive muscle artifacts, breach rhythm or 
medication induced slowing. If one of the conditions was present, the corresponding EEG was replaced 
by another randomly chosen EEG until all 100 EEG’s fulfilled the criteria. 
 
For the asymmetry group, 100 patients were selected in the same manner as for the slowing group. 
Only now, all patients with reported ‘background asymmetry’ within the range of 18 and 80 years old 
where included. 
 
The control groups contain 100 EEG’s each with patients between the age 18 and 80. The patients 
were randomly selected and where checked by hand to see if slowing or asymmetry was present 
respectively. If present, the patient was rejected for the control group and a new randomly chosen 
patient was inspected until 100 patients per control group was reached. 
 
Table 3. 1 Demographic features of the 4 patient groups. 

 Slowing Asymmetry Control slowing Control asymmetry 
Age ± std (years) 52.1 ± 17.8  52.7 ± 16.7 46.3 ± 17.2 51.4 ± 17.9 
Length ± std (min) 58.5 ± 16.1 57.9 ± 31.9 60.0 ± 22.4 56.3 ± 25.7 
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Implementing the BSI & r-BSI 
The BSI and the revised BSI (r-BSI) are defined by Van Putten as a measure for interhemispheric spectral 
symmetry. The BSI is defined as, 
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with Q.,2/R.,2  the power calculated at the right/left hemispheric bipolar derivation j while using the 
frequency range i. 
 
While the r-BSI can be written as, 
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where [:(H, Z) and \:(H, Z) are the power at the frequency i for channel j evaluated at time Z for 
respectively the right and left hemisphere. 
 
Implementing the tBSI & r-tBSI 
The tBSI and the revised tBSI (r-tBSI) are created for temporal changes in the EEG. The original tBSI is 
defined as, 
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where E.,2  is denoting the power of bipolar derivation j calculated using the frequency range i. E)<0	.,2,> 
is the reference power for bipolar derivation j using frequency range i at age a. 
 
While the r-tBSI is defined as, 
 

r-ZKEL = 	a|(∆Q(Z) − d) ∙ (∆R(Z) − d)|	 (3.7) 
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where  Z)<0 is denoting the power at the frequency j for channel location I evaluated at the reference 
matrix and d is an offset correction factor. 
 
Implementation phase 
During the implementation phase, the BSI, r-BSI, tBSI and r-tBSI are implemented as described by Van 
Putten et al. except that we use a total frequency range between 0.4 and 20Hz instead of 1 to 25Hz. 
Lowering the upper frequency range will result in lower sensitivity for EMG artifacts while retaining 
the sensitivity [86]. Subsequently, the reference matrices ware created and the BSI, r-BSI, tBSI and r-
tBSI where predicted. During the prediction, the PSD is calculated using a 5 second non overlapping 
window. After implementation the performance is evaluated via the AUCROC. The original and revised 
algorithms are compared, and the best performing algorithm is chosen for the experimental phase. 
 

Results implementation phase 
Creating the reference matrix 
Before implementation of the algorithms, the reference matrices are created.  In figure 3.1 the power 
spectral density is plotted for the F3-C3 and F4-C4 bipolar derivation. The upper panel shows the 
reference matrix created by the deep learning model where the lower panel shows mathematical one 
using a 3-year bin.  As seen the reference matrix created by the deep learning model is smoother 
compared to the mathematical reference matrix but follows the overall trend which is present in the 
mathematical model.  
 

 
Figure 3. 1 Reference matrices. The upper panel shows the reference matrix created by the DNN.  
The lower panel shows the calculated reference matrix. As seen, the upper panel is the smooth  
version of the lower panel. 

Implementing the algorithms 
After implementing BSI, r-BSI, tBSI and r-tBSI the means and standard deviation per group as well as 
the AUCROC are calculated and shown in table 3.2. 
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Table 3. 2 Performance of the BSI, r-BSI, tBSI and r-tBSI. 

  Mean prediction 
± std (patients) 

Mean prediction 
± std (controls) 

AUCROC Sensitivity at 
99% 
Specificity 

Sensitivity at 
95% 
Specificity 

Asymmetry 
detection 

BSI 0.346 ± 0.118 0.205 ± 0.040 0.92 68% 75% 
r-BSI 0.518 ± 0.160 0.268 ± 0.077 0.90 59% 74% 

Slowing 
detection 

tBSI 0.526 ± 0.094 0.442 ± 0.073 0.84 46% 70% 
r-tBSI 0.744 ± 0.084 0.701 ± 0.076 0.82 56% 65% 

 

Experimental phase 1 
During the experimental phase, changes are made compared to the original implementation. 
The frequency range i over which the power is calculated is consists of 20 bins in the original 
implementation. This is reduced to 4 bins corresponding the delta (0.4 – 4 Hz), theta (4 – 8 Hz), alpha 
(8 – 13 Hz) and beta (13 – 20 Hz) power of the EEG and lastly it is reduced to 2 bins corresponding to 
the delta-theta (0.4 – 8 Hz) and alpha-beta (8 – 20 Hz) range. 
The best asymmetry and slowing detection algorithm will be selected based upon the AUCROC. 
 
Table 3. 3 Overview of experimental calculations during Experimental phase 1 with the corresponding performance. 

 
 
 
 
 
 
BSI 

Number 
of freq. 
bins 

Description of 
frequency bins 

Mean 
prediction ± 
std (patients) 

Mean 
prediction ± 
std (controls) 

AUCROC Sensitivity 
at 99% 
specificity 

Sensitivity 
at 95% 
specificity 

2 0.4Hz-8Hz (Delta-
Theta) 
8Hz-20Hz (Alpha-
Beta) 

0.524 ± 0.171 0.236 ± 0.107 0.94 44% 63% 

4 0.4Hz-4Hz (Delta), 
4.2Hz-8Hz (Theta), 
8.2Hz-13Hz (Alpha), 
13.2Hz-20Hz (Beta) 

0.346 ± 0.118 0.205 ± 0.040 0.95 72% 77% 

20 0.4Hz-1Hz, 
1.2Hz-2Hz, 
2.2Hz-3Hz, 
… 
19.2Hz-20Hz 

0.343± 0.119 0.204± 0.039 0.92 68% 75% 

 
 
 
 
 
 
tBSI 

2 0.4Hz-8Hz (Delta-
Theta) 
8Hz-20Hz (Alpha-
Beta) 

0.600 ± 0.139 0.691 ± 0124 0.69 12% 22% 

4 0.4Hz-4Hz (Delta), 
4.2Hz-8Hz (Theta), 
8.2Hz-13Hz (Alpha), 
13.2Hz-20Hz (Beta) 

0.526 ± 0.094 0.442 ± 0.073 0.88 55% 76% 

20 0.4Hz-1Hz, 
1.2Hz-2Hz, 
2.2Hz-3Hz, 
… 
19.2Hz-20Hz 

0.519 ± 0.094 0.453 ± 0.074 0.84 46% 70% 
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Experimental phase 2 
When looked closely at the BSI, it can be seen that the outcome is based on the relative difference 
between the channels. This can give misleading values while the power approaches zero, for example, 
in the beta range during extreme slowing, it will also be misleading when the power of the total signal 
approaches zero during burst suppression or in an isoelectric EEG. 
 
These circumstances have one thing in common, the calculated power at Q.,2  (R.,2) is far below healthy 
value.  The smaller the calculated power, the more influence an unsignificant absolute differences has. 
To overcome this, a correction factor is created which starts at 1 and will approach zero when de 
calculated power deviates from the healthy value. 
 
The correction factor needs to take the power of both hemispheres into account. To do so, the 
percentual slowing between Q.,2  and R.,2  is calculated which can be derived as follows. The absolute 
BSI at frequency i and derivation j is defined as 
 

Jij4KEL.,26 = Y
Q.,2 − R.,2
Q.,2 + R.,2

Y (3.10) 

 
Rewriting formula 3.10 gives us the relative percentage of slowing between the derivations, defined 
as 
 

l@.: =	
min4Q.,2 , R.,26

max4Q.,2 , R.,26
= 	
1 − Jij4KEL.,26

1 + Jij4KEL.,26
	 (3.11) 

 
l@.: denotes the relative power of the channel with the least power (min4Q.,2 , R.,26) compared to the 
power in channel with the most power (max4Q.,2 , R.,26). The relative power of the channel with the 
most power is by definition 1, since it is compared with itself. 
The total power found within the two channels is defined as, 
 

l@>% = 1 + l@.: (3.12) 
 
The value of l@>% lies between 2 and 1, if  l@>% = 2 no asymmetry is precent since l@.:must be 1.  
If l@>% = 1, maximal asymmetry is present meaning that no power was found in one of the channels.  
 
To calculate the deviation from the healthy value, the reference matrix from the tBSI is used. However, 
the power in the reference matrix is based on healthy individuals. Any asymmetry will always lead to 
deviation from the reference even if the unaffected hemisphere is completely normal. To counter this 
phenomenon, the reference power is defined as 
 

QrF>AB@ =	l@>% × E)<0	.,2,> (3.13) 
 
We now have a reference power that corrects for the asymmetry. Using a similar method as used in 
the tBSI the correction factor is defined as 
 

s = 1 −	 Y
4Q.,2 , +	R.,26 −	QrF>AB@
4Q.,2 , +	R.,26 +	QrF>AB@

Y 	(3.14) 

 
creating a correction factor that will approach zero when the total power deviates from the healthy 
reference value. Implementing this correction factor in the BSI gives us 
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After implementing both the BSI and the BSIcorr the performance was evaluated using the AUCROC. 
As seen in table 3, the correction factor worsens the performance. It can be seen that the mean 
prediction values of the BSIcorr are slower resulting in a smaller difference between the average 
prediction of the patient and control group.  
 
Table 3. 4 Performance of the BSI and the BSIcorr evaluated at the using the AUCROC 

 Mean prediction ± 
std (patients) 

Mean prediction ± 
std (controls) 

AUCROC Sensitivity 
at 99% 
specificity 

Sensitivity 
at 99% 
specificity 

BSI 0.346 ± 0.118 0.205 ± 0.040 0.95 72% 77% 
BSIcorr 0.201 ± 0.064 0.114 ± 0.038 0.91 61% 63% 

 
 
Visualization of the algorithms 
Both the BSI and tBSI with 4 frequency bins outperform all models in their class. To give an impression 
of their performance, the BSI and tBSI are visualized with the corresponding EEG. 
 
As seen in figure 3.2, the bipolar derivations on the left hemisphere (odd numbers) do project EEG with 
higher frequencies and amplitude compared to the right hemisphere. This is most noticeable from 
00:29:44 to 00:30:00 where bursts of faster activity are present in Fp1-F7, F7-T3 and T3-T5. This 
increased activity is lacking in Fp2-F8, F8-T4 and T4-T6. The activity of the left hemisphere gradually 
increases during this time frame, while the activity of the right hemisphere does not change much. 
This results in a greater asymmetry over time, which is also indicated by the BSI.  
 

 
Figure 3. 2 The BSI as shown in the upper panel, and the corresponding EEG in the lower panel. This EEG does show asymmetry 
with the loss of fast activities at the right hemisphere. When the asymmetry worsens, the BSI does increase as can bes een 
from 00:29:40 to 00:30:00.  
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Figure 3.3 shows a EEG where background slowing is present. It can be seen, that the fast activities in 
all channels fade away in this time frame, where the tBSI increases in response to the slowing EEG.  
 

 
Figure 3. 3 The tBSI shown in the upper panel, shows a steady increase while the EEG slows. It can be seen that the high 
frequencies, wich are more dominant on the right, fade away. From 00:52:21 and on, the slow wave activity becomes more 
prominent. Both fenomenon lead to a slower EEG, which is also indictadet by the tBSI. 
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Discussion 
After implementing the BSI, r-BSI, tBSI and r-tBSI and selecting the best performing models for further 
experiments, the BSI and tBSI using 4 frequency bins, corresponding to the delta, theta, alpha and 
theta range of the EEG, reaches the highest AUCROC with a value of 0.95 and 0.87 respectively. The 
sensitivity at 99% and 95% specificity shows that using 4 frequency bins, chosen based on physiological 
knowledge, improves the performance by elevating the sensitivity at 99% specificity for BSI and tBSI 
with respectively 4% and 9% and the sensitivity at 95% specificity with respectively 1% and 6%.  For 
the (r-)tBSI another contribution was made by showing that our reference matrix created by our DNN 
is able to function as a reference for predicting (near) continuous slowing. Making it not only useful 
during carotid endarterectomy but also as a general (near) continuous slowing detection algorithm. 
 
Lodder et al. proposed an automatic detection algorithm for diffuse slow-wave activity with a 
sensitivity of 78% at a specificity of 98% [89]. Although the performance is quite similar, Lodder et al. 
does outperform the tBSI. The algorithm from Lodder et al. does need an extra input feature since this 
input allows only segments from the eyes closed state. This extra information may not always be 
available resulting in a less applicable model. 
 
A major weakness in this study is the lack of (epoch wise) labels, resulting in a free text search to create 
the patients and control groups. The labels, given to all epochs in the patient, are based on the patients 
report, inevitable resulting in misclassified epoch. Especially since near continuous slowing and 
asymmetry were accepted in the patient groups. Epoch wise labeling will enable us to do a more 
precise study which could lead to further optimalisation of this model. However, our results do pave a 
way for a follow-up study regarding the detection of intermitted slowing and asymmetry. 
 
The strength of our study is the tiered and broad validation of the , the BSI/tBSI and the r-BSI/r-tBSI. 
Resulting in the surprising result that the original BSI and tBSI outperform the r-BSI and r-tBSI, which 
we belive lies in the mathematical basis of the formula. The difference in the approach between the 
BSI/tBSI and the r-BSI/r-tBSI which causes the biggest change in the outputted value is that the r-BSI/r-
tBSI is taking the squared power of a segment, as can be seen in equation 3.3 and 3.4.  Taking the 
squared power does increase the sensitivity of the algorithm resulting in the bigger difference in the 
mean value between the patient and control group. However, this also effects the standard deviation 
resulting in a slightly worse performance. The standard deviation might be reduced when epoch wise 
labeling is present, eradicating the incorrectly labeled epochs and boosting the performance. 
 
The BSIcorr does, as expected, predict lower values compared to the BSI. However, a bigger drop in the 
outputted value is present patient group compared to the control group, resulting in a smaller 
difference between the patient and control group. The smaller difference makes is harder to 
distinguish between the groups leading to a performance drop. The difference in the outputted value 
from the BSIcorr indicates that the correction factor in the patient group was overall lower, and 
therefore correcting more, compared to the control group. This may be caused by the overlap of 
slowing patients in the asymmetry group. It was chosen to include patient with asymmetry and slowing 
into the asymmetry group since simultaneous occurrence of both conditions does exist and should be 
taken into account while optimizing the algorithm. 
 
In conclusion, we validated the earlier presented BSI and r-BSI. Using a selective approach we  
improved the BSI by reducing the frequency bins to follow the four physiological defined frequency 
bands of the EEG leading to an AUCROC of 0.95. Secondly, were able to generate a smooth general 
reference matrix using a deep neural net. The reference matrix was used in the validation of the the r-
tBSI and tBSI for detecting continuous slowing. Using the same selective improvement approach, the 
AUCROC of the tBSI was increased to 0.88. Both the BSI and the tBSI do yield promising results on 
continuous slowing and asymmetry, future work is needed to evaluate the performance of intermitted 
slowing and asymmetry. 
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General conclusion 
 
Based on the previous, we could state that our work is a valuable contribution towards the automated 
analysis of the EEG. We validated multiple asymmetry detection algorithms, enhanced a slowing 
detection algorithm, reduced the FP/h in a state-of-the-art IED detector and we paved the way for 
GAN generated EEG segments.   
 
To answer our main research question, we first need to answer our sub questions.  
In chapter one, where we address the false positive detections from the IED detector, we answered 
the question: 

 
To what extend will using a hard example mining method, reduce the false positive prediction 
of the interictal epileptiform discharge detector?  

 
We showed an increase in the AUCROCajust and AUCPRCajust of at least 0.9985 and 0.9983 respectively. 
Most importantly, we showed a decrease up to 70% in the false detection rate, resulting in a FP/h of 
15 at a 95%5/8 sensitivity. Therefore, clear evidence is given that hard example mining does significantly 
improve the results and should be incorporated into the standard training procedure of similar models.  
 
In chapter two, we tried to improve SpikeNet even further by using generated EEG segments in the 
training, therefore answering the following question: 
 

To what extend can generated EEG segments increase the performance of the interictal 
epileptiform discharge detector? 

 
After overcoming multiple pitfalls regarding stability and labeling generated IED segments, we were 
able to improve the overall AUCROCajust to 0.9986, however small decreases were found in the 
AURPRCajust. Monitoring the outputs closely, it can be found that the SpikeNet performance only 
increased when using a threshold of 0.28 and lower.  This results in the increased FP/h of 18.3 at 95%5/8  

sensitivity. Since a high sensitivity is required for this task, we conclude that adding the generated IED’s 
does not improve the model performance.  
 
In conclusion, we showed promising results regarding the generation of IED’s. Unfortunately, the 
generated data is too noisy in absolute terms but also too noisy regarding the labeling assignment, 
making it, at this stage, impossible to incorporated the generated data for training purposes. Leaving 
augmentation methods that heavily rely on the input data the preferred choice for enhancing 
SpikeNet.  
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Recommendations 
 
Future steps for SpikeNet 
To improve the performance of SpikeNet, it is necessary to further reduce the false positive rates while 
maintaining high sensitivities. During the evaluating the false positive predictions it is found that most 
false positive predictions are caused by artifacts. The artifacts that are not rejected by the background 
rejection algorithm are mostly difficult to reject using a rule-based algorithm. However, one artifact 
does seem to be a candidate for addition to the rule-based algorithm. The artifact that could be ruled 
out based fairly simple features, is the artifact that is created when the measurement starts or ends. 
These artifacts occur per definition adjacent to a flatline. Flatlines are already to detect by the rejection 
algorithm which makes it possible to extend the rejection, so it includes the artifact. 
 
Secondly, some benign variants of uncertain significance, such as vertex waves and sleep spindles, are 
related to sleep depth. Incorporating sleep depth as an input feature could potentially provide useful 
information. Even though this yield some predictive power, this is most likely not able to drastically 
improves the performance. Creating a multi-task model which predicts IED’s and also benign variants 
is likely to improve the results [90]. Since the model is forced to learn both the features of the IED’s 
and the benign variants, features that could distinguish between the latter two must be learned to 
achieve good performance in both tasks. The power of the multi-task model lies within the shared 
features of both tasks, where learning features for one task could additionally benefit another task 
since the features per task do partly overlap.  
 
I would recommend starting with the expanding of the model with one benign variant that has a clearly 
distinguishable morphology, for example sleep spindles. Ahmed et al. showed a 93.7% accuracy for his 
automatic spindle detection making this a good candidate for an unsupervised sleep spindle mining 
algorithm [91]. Subsequently, the mined EEG can be used to train the multi-task model. The spindle 
detection could also be used as a stand-alone feature, if the multi-task model does not reach similar 
performance as the spindle detection from Ahmed et al. 
  
 

Future steps for generating IED segments 
The methods used for generating IED’s are barely scratching the surface of all possibilities. In this 
paragraph we purpose some architectural and model specific changes that could potentially lead to an 
increased performance. 
First of all, we recommend using residual blocks instead of the convolutional blocks that are currently 
used in the generator and discriminator. Residual blocks, firstly described by He et al., is an architecture 
to ease the training of very deep neural networks[92].  The residual connections, which function as 
shortcuts to the model, are enabling the training of deeper nets. In our study, it is found that increasing 
the depth of the architectures in the GAN is accompanied by increased instability. Reducing that 
instability by adding residual connections might enable us to learn more features without 
compromising on the stability. Increased features could lead to a better adaptation to the target 
domain in both the morphology as well as the variability of the generated EEG. 
 
Secondly, we chose to only use IED’s with the label 8/8 as input domain. Using a subset of IED’s will 
not give a correct representation of the input domain. A Conditional GAN give you the opportunity to 
use all data from the target domain while enabling you to control which IED’s you want to 
generate[93]. This is achieved by incorporating conditions as an additional input for both the generator 
as well as the discriminator. In our case we could incorporate the class labels as condition.  
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If the discriminator is able to learn the relation between the added labels and the IED’s, it will penalize 
the generator if it generates IED’s that do not correspond with the given label.  
An additional advantage of this approach is that it will ease the implementation of the IED’s in the 
SpikeNet dataset since the generator is able to generate the IED’s by label. 
  
Lastly, we are suggesting a modification of the loss function. Luo et al. introduced a new loss function 
special for EEG synthesis, the so called spatio-temporal-frequency loss, which is an addition to the 
current loss as described in equation 2.3 to 2.5 [67]. This spatio-temporal-frequency loss is based on 
spatial, temporal and frequency features of the EEG and penalizes the GAN to whenever it deviates 
from the optimal features. Incorporating this loss should encourage the model into generating EEG 
segments with an more realistic spatial, temporal and frequency features. 
 

Future steps for the slowing and asymmetry detection 
We showed the potential of both the BSI and the tBSI by demonstrating excellent performance for 
both the BSI and the tBSI using patients with (near) continuous slowing and asymmetry. To make the 
algorithms applicable for clinical usage, they should also be able to detect intermitted slowing and 
asymmetry. To calibrate and extend the model for intermitted patterns, epoch wise labeling is 
preferred. The tBSI and BSI can be used to identify potential epochs that contain intermitted slowing 
and asymmetry accordingly. Finally, the proposed epochs should be rated by multiple raters to identify 
the if the proposed epochs indeed contain slowing or asymmetry.  
 
After implementing the correction factor in the BSI the performance dropped. A plausible explanation 
is the overlap of patients with generalized slowing and asymmetry. The correction factor is built in such 
way that it functions correctly if one hemisphere is unaffected. The correction factor will output lower 
values, and therefore correct more, when in addition to the asymmetry, generalized slowing is present. 
To overcome this burden, the tBSI should be incorporated into the correction factor.  
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Appendices 
 

Appendix 1: Background detection algorithm 
 
The background rejection algorithm that is used for the rejection artifacts from the EEG is an in-house 
build, rule-based algorithm built in MATLAB. The background rejection algorithm calculates features 
based upon 1 second epochs of non-overlapping EEG.  The following features are calculated: 
 

- average zero crossings 
- max	(vv') 
- jwx(l0DEE) 
- max	(lFG<F>/l*>@@>) 
- mean	(lFG<F>/l*>@@>) 
- max	(lFG<F>) 
- mean	(lFG<F>) 
- max	(l>EHG>/l*>@@>) 
- mean	(l>EHG>/l*>@@>) 
- mean	(lI<EF>) 
- mean	(lFG<F>/l>EHG>) 
- max	(lJ<F>/l*>@@>) 

 
Where l0 is denoting the average band power per channel for frequency range F. For each of the 
calculated values, a threshold value is present and if one of the calculated features exceeds its personal 
threshold, the 1 second EEG segment is rejected.  
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Appendix 2: Grad-CAM 
 
 
Grad-CAM is a technique for making convolutional neural networks transparent by visualizing input 
regions on which the model based its prediction[53]. It can be seen in figure a. 2.1, that Grad-CAM is 
a stand-alone model which taps data from the original model to calculate the localization map. 
 
To obtain the class-discriminative localization map, the gradient score of class G, !1, is calculated with 
respect to the feature map activations {K, and is denoted as 	LB

%

L#&
. To obtain the neuron importance 

weight |K1 , the gradient score, with the size I × H , is global-average-pooled and can be denoted as, 
 

JK
1 =	

1
}
NN

~!1

~{.,2
K 	

2.

	(J. 2.1) 

with 
 

} = 	I × H	 	(J. 2.2) 
  
 
The localization heatmap is created by a weighted combination of feature maps which are passed 
through a ReLU, which can be denoted as,  
 

R!)>IMN#6
1 = QrR�ÄN|K

1{K

K

Å 	(J. 2.3) 

 
 
 
 

 
Figure a 2. 1 A schematical representation of Grad-CAM 


