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ABSTRACT 

Despite the proliferation of sophisticated climate variables measurement techniques, the resulting datasets 

remain subject to errors due to the complex nature of the variables being estimated. This raises a formidable 

challenge in water management domains where proper decisions depend heavily on the reliability of the 

datasets. In this study, the triple sensor approach for the monitoring of water and climate was investigated 

by testing climatic variables from mutually independent sources on the extended triple collocation method 

to establish the conditions for its effective applicability for the identification of reliable climatic datasets.  

The factors affecting rainfall measurement systems (as the main research variable) were described and the 

differences leading to reliability concerns about the resulting datasets were appreciated. Further, datasets of 

rainfall, short-wave incoming solar radiation, and 2m air temperature were statistically engaged in different 

set-ups using the extended triple collocation covariance analysis and the results were used to judge the most 

reliable at several locations in and around the Lake Naivasha basin in Kenya. Some of the used datasets were 

obtained from independent citizen observers in the study area, to emphasize the potential of their 

involvement in data collection especially in data scarce areas. 

It was concluded that the triple sensor approach allows a more absolute standpoint to assess the reliability 

of datasets of many climatic variables at a given location compared to the usual dual dataset comparison 

used for validation except for situations where the triple collocation initial assumptions are violated. Data 

ranges, variability and size of the time-series were noted as factors contributing to a potential violation of 

the assumptions and consequently resulting in biased outcomes which cannot be used decisively about the 

corresponding datasets reliability. The ability of the triple sensor approach to penalize datasets with outliers, 

as a rather a frequently observed characteristic in climatic datasets, was demonstrated for rainfall datasets. 

While the triple sensor approach has potential, it cannot always be used as a substitute for other data filtering 

techniques such as the identification of missing data values before any statistical analysis for dataset 

validation. It was also noted that the data requirements of the triple sensor approach also limit its application. 

Lastly, the triple sensor toolbox implemented in ILWIS, as an important communicative tool to stakeholders 

in scientific research, was tested and suggestions for the improvement of its usability, presentation, and 

interpretation of its results were outlined. 

KEYWORDS: Extended triple collocation, Triple sensor, Covariance analysis, error variance, correlation 

coefficient, signal-to-noise-ratio, satellite observations, in-situ measurements, climatic model, citizen 

observer, reliability. 
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1. INTRODUCTION 

1.1. Background 

 
One of the most key aspects of climate monitoring is the necessity for reliable climatic datasets because 

information about their temporal and spatial distributions have a consequential effect in water resources 

management decisions (Ebert, Janowiak, & Kidd, 2007). For example, the paramount role of accurate 

quantification of precipitation as an essential climate variable on local and global scales can never be 

neglected in domains such as water cycle studies and agriculture. Several climate data sources using 

sophisticated instruments and methods have existed and improved over time but remain, nonetheless, error-

prone in the face of the complex nature of climate evolution and inter-woven physical processes.  

 

For instance, In situ measurements of climatic variables always represent a specific point in space where the 

sensor is located which may not necessarily be sufficiently representative of the entire area of interest. While 

satellite and radar-based observations allow larger spatial coverages, they are subject to equipment 

malfunctions or algorithm failure which results in data gaps. Alternatively, numerical climate models are 

another important source of climate data. Besides the complex equations used in numerical models to 

produce climate datasets, observations errors emanating from model initial conditions can undoubtedly 

propagate into model outputs (Tolstykh & Frolov, 2005).  

 

Most of the available knowledge about climatic variables occurrence and their distribution is based on data 

disseminated by national and international level meteorological organizations. However, another source of 

data that is seemingly emerging fast in scientific research is the data obtained from independent citizen 

observers. Silvertown, (2009) outlines independent observers as independent data collection, analysis, and 

dissemination of the data for scientific endeavors and public engagement in scientific discussion. In climate 

sciences, independent observers’ data has been acknowledged as an alternative solution for data scarcity 

because they enable the acquisition of large amounts of data with high spatial-temporal resolution essential 

for the improvement of our understanding of the environment. (Muller et al., 2015). 

 

On the other hand, skepticism in regards to independent observers datasets lies mainly in data quality, 

knowledge, the willingness of the independent observers, as well as poorly documented operational 

processes. Despite the limitations, datasets obtained from trained independent observers, have proven to 

be important in various climatology studies (Eney & Petzold, 1988).  
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1.2. Problem statement  

 
With the massive amounts of climatic datasets presently available, users in relevant domains require robust 

data filtering and quality assessment methods which allow sufficient information about possible errors in 

datasets obtained from different sources before admissibility in scientific applications. A conscientious 

selection concerning the exigency of the intended application is therefore required, considering that a 

method that can account for all characteristics between the measurement system and the target variable does 

not exist (Entekhabi, Reichle, Koster, & Crow, 2010). 

 

The triple sensor monitoring of water and climate is an approach based on the statistical engagement of 3 

climatic datasets obtained using mutually independent measurement systems (sensors) to determine the 

most reliable at a given location and time. It is rooted in the standard Triple Collocation(TC) and Extended 

Triple Collocation(ETC) statistical methods introduced for geophysical measurement systems calibration 

and validation when no reliable datasets are available for normal dual comparison. The methods provide, 

through a covariance analysis of three climatic datasets, useful information about error distribution in the 

collocated datasets which can be used to judge the fidelity of the corresponding measurement systems.  

 

While the general rationale behind the triple sensor approach may seem straightforward, several constraints 

exist and it is, therefore, important to scrutinize it in different set-ups and further characterize the conditions 

of its appropriateness for climatic datasets reliability evaluation. 

1.3. Research Objectives 

1.3.1. Main objective 

 
The primary objective of this research is to apply the Extended Triple Collocation method to determine the 

most reliable climatic data source between In-measurements, Satellite-based observations, and model-based 

data at a particular location and time. 

1.3.2. Specific objectives: 

 

• To describe the nature of rainfall measurement systems(as the main research variable) and 

identify the factors affecting the reliability of the resulting datasets.  

• Test datasets obtained from the previously-mentioned measurement systems on the ETC 

method and evaluate their performance for rainfall, solar radiation, and surface air temperature.  

• Analyze the effects of different time aggregation levels, the presence of outliers, and missing 

data on the ETC analysis outcomes for the used datasets. 

• Contribute further to the improvement of the triple sensor toolbox currently implemented in 

ILWIS. 
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1.4. Research questions 

 

• How do the limitations of existing rainfall estimation methods (In-situ measurements, Satellite-

based observations, and climatic models) affect the reliability of the resulting datasets? 

• How can the triple sensor approach be used for the evaluation of climatic datasets' reliability 

and what are the associated constraints?  

• How can the performance of the triple sensor approach currently implemented in ILWIS be 

improved? 

1.5. Scientific and societal justification 

 
Geophysical measurement verification methods for data quality assessment are meaningful if they can 

provide decisive information about the level of reliability that can be associated with the datasets being 

investigated (Stanski, Wilson, & Burrows, 1989). The expected outcome of this study is the identification of 

the appropriate conditions required for efficient use of the triple sensor approach to determine the most 

reliable climatic data sources at a given location and time, as novel scientific use of the triple collocation 

technique.  

 

In a more societal context, the outcomes of this work will further improve the quality of information for 

public use in related domains and it will raise more awareness to users who would normally rely solely on a 

single data source. It will also emphasize the efficacy of independent citizen climatic data collectors especially 

in countries where measurements are scarce. 
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2. LITERATURE REVIEW 

2.1. Description of precipitation estimation techniques and associated limitations 

 
Precipitation is any form of water particles(solid or liquid) that fall from the atmosphere and reach the earth's 

surface. When masses of warm air and moist air encounter masses of cold air, the formation of droplets, 

which may become rain(for instance in the current study area), crystals or snow, occurs. When the formed 

droplets become too heavy, they precipitate towards the earth's surface. Precipitation is one of the most 

essential climatic variables and it plays a crucial role during the characterization of the climate and its 

changes. In studies such as Watson & Challinor, (2013), erroneous rainfall datasets have been noted to be 

detrimental to crop productivity model robustness.  In the following sub-sections, methods used by the 

three main sources of rainfall datasets are described. 

2.1.1. In-Situ rainfall measurements 

 
In-situ rainfall measurements are performed by a rain gauge which is usually placed at an open location to 

collect rainwater, rainfall is expressed as the height of the accumulated water in millimeters. A typical rain 

gauge is a tipping bucket; it consists of an opening that allows water inside, and the water is collected by two 

small buckets in an alternating sequence. Every bucket tipping is recorded electronically, the amount of 

rainfall at the location of the instrument will be the product of the amount of water required for a bucket 

to tip and the number of recorded tippings.  

 

According to Kim et al., (2014), rain gauge data are the most accurate representation of rainfall at a precise 

location, but mechanical problems or operational inefficiencies may introduce errors. Various errors in 

datasets can occur because of the destruction of the gauge by animals or even humans. Kidd & Huffman, 

(2011) explain that gauge data often underestimate precipitation amounts because of wind effects or rain 

particles that evaporate before reaching the gauge. Furthermore, the underestimation will intensify if the 

rain gauge is located under dense vegetation (for example in a forest with dense crowns) and consequently 

most rainwater will be intercepted and evaporated before reaching the gauge. Another critical aspect is that 

rain gauges give spot samples of rainfall which cannot be sufficiently representative in areas with 

heterogeneous rainfall distribution. 

2.1.2. Satellite-based rainfall estimates 

 
Satellite-based observations provide datasets with high spatial and temporal resolutions over the span of 

their orbits depending on the characteristics of rainfall in a given region, and they are the only instruments 

whose measurements can be used to obtain homogeneous rainfall estimates over a given area (Tapiador et 

al., 2012).  
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In the visible region (VIS) of the spectrum, the sensors allow the distinction between clouds and the surface 

due to the higher brightness associated with clouds. The resulting imagery can be used to distinguish 

between different types of clouds and their brightness can be related to the occurrence of rainfall. However, 

the VIS imagery relies on sunlight and can therefore only be obtained during the day. Another important 

limitation is that the relationship between cloud brightness and precipitation at the surface is often too low. 

(Kidd & Huffman, 2011).  

 

Thermal InfraRed sensors with high spatial and temporal resolutions measure clouds temperatures and 

observations can be performed during day and night, and when mounted on Geostationary satellites, they 

can achieve vast areal coverages (Dembélé & Zwart, 2016). The assumption used by infrared measurements 

is that low cloud temperatures suggest massive development of clouds in the vertical which can be related 

to rainfall using the Cold Cloud Duration(CCD) method. Unfortunately, cold clouds do not necessarily 

precipitate and may often have multiple layers that are imperceptible to the infrared sensors. 

  

A more direct approach to producing more reliable rainfall estimates from satellites is the microwave region 

of the electromagnetic. Microwave sensors provide information about the depth of the clouds and layer 

characteristics, which are then converted to the formation of precipitation (Duan, Liu, Tuo, Chiogna, & 

Disse, 2016). The principle of Passive Microwave methods is that the surface radiates energy which is 

affected by water vapor and precipitation particles present in the atmosphere before reaching the sensor. 

The received signal will be mixed with the radiometric component of the emission and scattering of rain 

particles in the clouds. For the active microwave sensors, a pulse is emitted by a radar instrument from the 

satellite towards the clouds and the surface, the returning signal will be attenuated by particles in the 

atmosphere. Microwave rainfall products are obtained by signal attenuation-correction algorithms(Kidd & 

Huffman, 2011). The main disadvantage of microwave sensors is the low spatial and temporal resolution 

because they are onboard Low Earth Orbiting(LEO) satellites. 

 

2.1.3. Model-based rainfall data 

 
Another vital source of rainfall data is numerical climatic models such as the European Centre for Medium-

Range Weather Forecasts or the Global Forecast System. They are computer algorithms that attempt to 

study the transformation of the state of the atmosphere by modeling its interlinked physical processes using 

complex mathematical equations. Climatic models require datasets of numerous climatic variables for the 

definition of model initial conditions in a process known as Data Assimilation (Malardel Sylvie, 2019). 

Different models exist depending on their purpose or coverage (global, national, or local), spatial, and 

temporal resolutions. 

One of the methods used by climatic models is the 4-D variational data assimilation which combines 

observational data, obtained using techniques such as satellite-based observations and in-situ measurements, 
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with model-generated forecasts in an attempt to reduce a cost function between the two data sources and 

reach an optimal fit (Apte, 2015). The imperfections in observational datasets will inevitably be reproduced 

in the climatic model outputs. As climatic models rely on mathematical equations, another issue is how 

accurately can science model the intricate laws that govern the evolution of the atmosphere.  

2.2. Backgrounds of the standard triple collocation and the extended triple collocation methods 

 
The triple collocation introduced by Stoffelen, (1998), is a powerful statistical method that is used to estimate 

root mean square errors of at least three independent geophysical measurement systems without considering 

any of them as a reference. It presupposes a linear error model where errors in measurement systems are 

unrelated to each other and the target variable, which is valuable for the quantification of error structures in 

measurements when the true quantity of the target variable is unknown (Vogelzang & Stoffelen, 2012). The 

triple collocation method has arisen from the need to combine measurements performed from ground 

stations and those generated by models or satellites. Some of the notable examples of its application are 

error estimation and calibration of scatterometer winds, soil moisture retrievals, and characterization of 

spatial and temporal error patterns in precipitation datasets. 

 

While the triple collocation method is useful for quantifying just one system performance metric (the 

RMSE), other more robust statistical performance metrics are needed for the calibration and validation of 

various geophysical variables. The extended triple collocation introduced by McColl et al., (2014), uses the 

same hypothesis and assumptions as the standard triple collocation to produce an unbiased signal-to-noise 

ratio and correlation coefficients between the collocated measurement systems and the unknown true 

quantity of the target variable. 

2.3. The general principals of the triple collocation methods 

2.3.1. The standard triple collocation analysis 

 
The triple collocation of independent datasets is based on the availability of three independent (spatially 

and temporally collocated)  measurement systems which attempt to estimate the same geophysical 

variable, whereby each of the measurement systems is related to the unknown true quantity by the 

following error model: 

𝑿𝒊 = 𝜶𝒊 + 𝜷𝒊 ∗ 𝑻 + 𝜺𝒊(𝑖 ∈ {1,2,3})   (Equation 1) 

Where: 

• 𝑋𝑖 (𝑖 ∈ {1,2,3}) representing the measurement systems. 

• T is the part of the signal common to the 3 collocated measurement systems (the unknown truth). 

• α and β are least-squares additive and multiplicative bias terms. 
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• ε is the zero-mean random error term in each measurement system. 

In the same manner, the remaining two measurement systems can also be related to the unknown true 

quantity of the target variable. The 3 measurement systems could be represented by In-situ measurements 

obtained by ground stations, a remotely sensed dataset such as Satellite-based observations, a model 

generated datasets and all represent the same system property.  

Further, some assumptions concerning the statistical properties of the error terms are necessary for the 

triple collocation analysis: 

• Error orthogonality: This assumption signifies that the errors in the measurement systems 

are uncorrelated to the true quantity of the target variable, such that  (𝑪𝒐𝒗(𝜺𝒊, 𝒕) = 0) 

• Independence between the measurements: This signifies that the errors in the 

measurement systems are not correlated with each other (𝑪𝒐𝒗(𝜺𝒊, 𝜺𝒋) = 0, 𝑖 ≠ 𝑗). 

• Stationarity of error statistics: The signal and error properties of the available 

measurement samples are representative and can, therefore, be extrapolated (variance 

homoscedasticity and zero-mean error). 

 
The covariances between measurement systems can be expressed as: 

𝑪𝒐𝒗(𝑿𝒊, 𝑿𝒋) = 𝐸(𝑿𝒊, 𝑿𝒋) + 𝐸(𝑿𝒊, )𝐸( 𝑿𝒋) = 𝜷𝒊𝜷𝒋𝝈𝒕
𝟐 + 𝜷𝒊𝒄𝒐𝒗(𝒕, 𝜺𝒋) + 𝜷𝒋𝒄𝒐𝒗(𝒕, 𝜺𝒊) + 𝒄𝒐𝒗(𝜺𝒊, 𝜺𝒋) 

Whereby: 

 Var(t) = 𝝈𝒕
𝟐. Since we assume no error cross-correlation between measurements systems, and again no 

correlation between measurement systems’ errors and the unknown true quantity of the target variable, the 

two middle terms of the covariance equation will vanish, and the same applies to the last term of the equation 

when 𝒊 ≠ 𝒋 (𝑖, 𝑗 ∈ {1,2,3}). From that, the covariance equation will be as follows: 

𝑄𝑖𝑗 ≡ 𝑐𝑜𝑣(𝑿𝒊, 𝑿𝒋) = {
𝜷

𝒊
𝜷

𝒋
𝝈𝒕

𝟐                     𝒇𝒐𝒓 𝒊 ≠ 𝒋

𝜷
𝒊
𝟐𝝈𝒕

𝟐 + 𝝈𝜺𝒊

𝟐 ,             𝒇𝒐𝒓 𝒊 = 𝒋 
 

Where: 

 𝒗𝒂𝒓(𝜺𝒊) = 𝝈𝜺𝒊
𝟐  

Now we have six terms in the covariance matrix, and six equations with six unknowns and the system cannot 

be determined. 

If we drop solving for 𝜷𝒊  and 𝝈𝒕
𝟐 and introduce a variable 𝜭𝒊 = 𝜷𝒊𝝈𝒕

  the covariance will reduce to: 

 

𝑄𝑖𝑗 ≡ 𝑐𝑜𝑣(𝑿𝒊, 𝑿𝒋) = {
𝜭𝒊𝜭𝒋                     𝒇𝒐𝒓 𝒊 ≠ 𝒋

𝜭𝒊
𝟐 + 𝝈𝜺𝒊

𝟐 ,             𝒇𝒐𝒓 𝒊 = 𝒋 
  (Equation 2) 
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We reach the triple collocation estimation of the root mean RMSEs for the measurement systems because, 

with six equations and six unknowns, the system becomes solvable. The root mean square errors are as 

follows:  

 

𝝈𝜺 =

[
 
 
 
 
 
 √𝑄11 −

𝑄12𝑄13

𝑄23

√𝑄22 −
𝑄12𝑄23

𝑄13

√𝑄33 −
𝑄13𝑄23

𝑄12 ]
 
 
 
 
 
 

(Equation 3) 

 

2.3.2. The extended triple collocation analysis 

 
The extended triple collocation builds on the standard triple collocation assumptions to estimate the 

correlation coefficients of the measurement systems’ estimates with respect to the unknown truth. The 

following steps for the derivation of the extended triple collocation method were introduced and 

demonstrated by McColl et al., (2014): 

Knowing that the relationship between the slope (βi), the correlation between a measurement system (Xi) 

and the truth (𝝆𝒕,𝑿𝒊
) is expressed as: 

𝜷𝒊 = 𝝆𝒕,𝑿𝒊

√𝑸𝒊𝒊

𝝈𝒕
   (Equation 4) 

Where: 

• 𝝆𝒕,𝑿𝒊
 is the correlation coefficient between the unknown truth(t) and a measurement system (𝑿𝒊), 

and maintaining that that the unknown truth t has no measurement error.  

From equation 4, we can obtain  𝜭𝒊 = 𝝆𝒕,𝑿𝒊
√𝑸𝒊𝒊  ,  

Where: 

• √𝑸𝒊𝒊  is the variance of any given measurement system and can be estimated from any of the data, 

and also 𝜭𝒊 can as well be solved using equation 2, and 𝝆𝒕,𝑿𝒊
 can also be determined.  
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The extended triple collocation estimation equation can be written as follows: 

 

𝝆𝒕, x = ±

[
 
 
 
 
 
  √

𝑄12𝑄13

𝑄11𝑄23

sign (𝑄13𝑄23)√
𝑄12𝑄23

𝑄22𝑄13

sign (𝑄12𝑄23)√
𝑄13𝑄23

𝑄33𝑄12]
 
 
 
 
 
 

(Equation 5) 

 

Whereby: 

• 𝝆𝒕,𝑿𝒊
 is correct but there is a sign uncertainty. To resolve the sign uncertainty, it is assumed that, 

in practice, measurement systems are generally positively correlated to the true unknown quantity 

of the target variable. A pre-test must be conducted on the datasets being collocated before the 

extended triple collocation analysis to reduce the likelihood of measurement systems that might 

be negatively correlated to the truth. This test is conducted by ensuring a positive relationship 

between the datasets being collocated (themselves) and if the positive relationship does not exist, 

the datasets are judged to be unsuitable for the extended triple collocation analysis (Chen et al., 

2017). 

The correlation coefficient derived previously allows new information about the performances of the 

different measurement systems. From the first error model (equation 1) relating measurement systems to 

the unknown truth, it can be shown that the squared correlation coefficient is the unbiased signal-to-noise 

ratio as follows:  

𝝆𝒕,𝑿𝒊

2 =
𝜷𝒊

𝟐𝝈𝒕
𝟐

𝜷𝒊
𝟐𝝈𝒕

𝟐+𝝈𝜺𝒊
𝟐 =

𝒖𝒃𝑺𝑵𝑹

𝒖𝒃𝑺𝑵𝑹+𝟏
  (Equation 6) 

Whereby: 

𝑢𝑏𝑆𝑁𝑅 =
𝒗𝒂𝒓(𝑿𝒊

𝟐)

𝒗𝒂𝒓(𝜺𝒊)
= 𝜷𝒊

𝟐𝝈𝒕
𝟐 + 𝝈𝜺𝒊

𝟐  is defined as the unbiased signal to noise ratio ranging between 0 and 

1. It contains information about the sensitivity of the measurement systems β, the variability of the signal as 

𝝈𝒕
𝟐, and the variability of the measurement error as  𝝈𝜺

𝟐. 
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3. METHODOLOGY 

3.1. Flowchart 

 

3.2. An overview of the main activities 

 

• Climatic datasets acquisition and preparation 

Datasets used in the triple sensor approach must originate from 3 independent sources and as can be 

expected they are in different formats. A data integration step was required to reconcile all datasets into a 

common interoperable format. The preferred format in this research was the CSV file format. In this sense, 

the pixels of raster datasets overlapping of ground in-situ weather stations were extracted using the stations' 

coordinates and they were stored as CSV files for each station. In-situ datasets were acquired already in the 

CSV format. (All used datasets are presented separately in the next chapter, section 4.2) 

 

Figure 3.1: Flowchart. 
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• Formation of triplets 

After saving all datasets in a common format (CSV), they must be grouped in triplets for the extended triple 

collocation analysis. The formation of triplets consists of arranging 3 datasets of the same variable for the 

same location into a single CSV file, whereby one column contains data values for one dataset and each row 

contains the date on which the values were recorded. Table 3.2 shows a sample of triplets formed by 

CHIRPS, ERA5, and In-situ TAHMO rainfall datasets. 

 

Table 3.1: Triplets formation example. 

Date CHIRPS ERA5 IN-SITU TAHMO 

01/01/2018 0 0 0 

02/01/2018 0 0 0 

03/01/2018 6.94 1 9 

04/01/2018 0 0 11 

05/01/2018 0 0 0 

06/01/2018 8.27 0 0 

07/01/2018 0 0 0 

08/01/2018 0 0 0 

09/01/2018 0 0 5 
 

• Time aggregation 

The datasets were obtained in daily time aggregation levels. For the analysis of the effects of time aggregation 

levels, the datasets were aggregated in pentad and dekad. The aggregation for rainfall was done by summing 

rainfall values of 5 and 10 consecutive days for pentad and dekad time aggregation levels respectively for 

each dataset. For solar radiation datasets, the aggregation was done by averaging 5 and 10 consecutive days 

for pentad and dekad aggregation levels.  

 

• Suitability analysis 

Following the sign ambiguity that was explained for the ETC correlation coefficient in sub-section 2.3.2, a 

suitability test must be performed to do away with datasets that might be negatively correlated to the 

unknown true quantity of a given variable. 

 

• The application of the extended triple collocation 

The application of the extended triple collocation entails performing a covariance analysis of the triplets 

using the equations presented in section 2.3. The covariance analysis yields root mean square errors and 

correlation coefficients estimated for each dataset in the triplets table.  
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• Ranking 

The estimated correlation coefficients are squared to calculate the unbiased signal to noise ratio for each 

dataset following equation 6 in sub-section 2.3.2. The unbiased signal to noise ratios of all three datasets are 

then ranked in a descending order whereby the dataset with the highest value gets rank 1 and is judged as 

the most reliable between the 3 at that location. 

3.3. An overview of the tools 

 
In this research, several software packages were used for various tasks, at different stages of the research 

and inter-changeably, the main ones are outlined below: 

 

• GDAL: The Geospatial Data Abstraction Library was used to translate raster datasets into same, 

common raster formats for visualization and analysis in different GIS Environments.  

 

• ILWIS: The Integrated Land and Water Information System was used for two main tasks: the 

acquisition of CHIRPS rainfall datasets using the ISOD toolbox and to test sample dataset on the 

triple sensor toolbox. 

 

• JavaScript: A JavaScript code was used to retrieve from the Google Earth Engine model datasets 

 

• ArcGIS: The “Extract Multi Values to Points” tool of the Spatial Analyst Toolbox of ArcGIS was 

used for the extraction of information stored in raster datasets pixels using ground stations point 

coordinates(for this task Rstudio was also used).  

  

• RStudio:  R studio was the main workhorse in this research, use was made of it for all the statistical 

computations involved in the extended triple collocation analysis. It was as well used to make 

graphs. 

 

• Microsoft Office: Microsoft Excel was used for tasks such as triplets formation, time aggregation 

while Microsoft word was used for general thesis writing.  

 



TRIPLE SENSOR APPROACH FOR MONITORING WATER AND CLIMATE 

13 

4. STUDY AREA AND DATASETS 

4.1. Study area  

4.1.1. Study area location  

 
The study area of this research is located around the Lake Naivasha basin in the Kenyan central and Rift 

Valley regions at a latitude of 0o 09′ to 0o 55′S and a longitude of 36o 09′ to 36o 24′E about 75km Northwest 

of the capital, Nairobi. The highest and lowest altitudes in the basin are 3990m, and 1980m above mean sea 

level respectively. The total area covered by the basin is 3400km2, whereby lake Naivasha occupies a space 

of 169km2. (Odongo, Onyando, Mutua, van Oel, & Becht, 2013). 

 

 

Figure 4.1: Study area map. 

 
The study area map shows a total number of 13 ground meteorological stations scattered in the study area, 

among which 5 are operated by ITC and the other 8 by the Trans-African Hydro-Meteorological 

Observatory (TAHMO). The stations were installed to facilitate climatic data availability for scientific 

research in the area.  
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4.1.2. Study area description 

 
The basin is characterized prominently by economically significant agricultural activities which have 

contributed considerably to population growth and consequently water resources management issues in the 

basin due to increased pressure on the available water resources (Becht, Odada, & Higgins, 2005).  

 

Precipitation regimes vary quite highly because they depend on both local (altitude and relief, The Aberdare 

Mountains and the Mau Escarpment) and distant processes related to changes in temperature in the oceans. 

The basin is characterized by long rains from March to June and short rains from October to December. 

The highly variable climatic conditions in the Lake Naivasha Basin observed by Kuhn, Britz, Willy, & van 

Oel, (2016) and Odongo et al., (2013), may hamper agriculture practices in the basin as they rely on accurate 

knowledge of environmental conditions such as rainfall occurrence.  

 

The prediction of environmental conditions, on the other hand, relies on the availability and reliability 

climatic variables datasets which have been noted to be an issue in the basin by the water management 

authority in the basin area (van Oel et al., 2013). Careful water management solutions must be the main 

focus of concerned parties for the benefit of the communities in the Naivasha basin and far beyond.  

4.1.3. Fieldwork 

 
For this research, a fieldwork campaign was conducted between the 08-22 Jan 2020 in the study area, and 

comprised the following activities: 

• Familiarizing with the study area and collecting in-situ meteorological datasets that cannot be 

transferred automatically. 

• Visiting all ITC ground meteorological stations and appraising their suitability for in-situ 

datasets collection for this research and to give recommendations regarding future use. 

4.1.3.1. Main fieldwork findings 

 

• During the fieldwork, visits were conducted to all ITC ground stations, and it was found that most 

data collection instruments were in poor maintenance conditions. For instance, rainfall 

measurement instruments had been clogged by the accumulation of vegetation debris and 

restricting rainwater and allowing consequently no rainfall measurements. All ITC stations were 

deemed unreliable specifically for rainfall analysis in this research. The focus was turned to other 

in-situ rainfall data sources available in the study area(discussed in later sections). Figure 4.2  

illustrates the condition of the ITC rain gauge located at the Nunjoro farm. 
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Figure 4.2: Nunjoro farm weather station. 

 

• On the other hand, instruments for the measurement of other variables, notably soil moisture, were 

generally in good condition at most stations, and the datasets were subsequently downloaded during 

the fieldwork. 

• Another important finding of the fieldwork is the rain gauge operated by Delamere farm 

management as independent citizen observers. This rain gauge had long time-series of rainfall 

events dating back to 1980, and rainfall records were used as an additional alternative data source. 
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4.2. Research datasets 

 
The use of the triple sensor approach requires the availability of three mutually independent data sources 

whereby the datasets represent the same variable, the same spatial and temporal coverages. In the following 

sub-sections, the used datasets for rainfall, solar radiation, and air temperature are presented. 

4.2.1. Rainfall datasets 

 
Rainfall datasets used are from 3 different sources: In-situ rainfall measurements obtained using rain gauges, 

Satellite-based rainfall products, and Model re-analysis rainfall datasets for the study area. 

4.2.1.1. In-situ datasets 

 
In-situ datasets for rainfall were acquired from The trans-African Hydro-Meteorological Observatory 

(TAHMO) which operates several relatively well-maintained weather stations in the study area. The datasets 

of daily rainfall estimates were retrieved as CSV files from the Online TAHMO data portal the years 2018 

and 2019. After a closer inspection, some of the TAHMO stations were discarded due to large amounts of 

missing data or because they didn’t pass the suitability analysis for the ETC analysis. Three stations were 

finally used: 

• Moi Forces Academy, Ole Tipis GHS, and Taita Mauche for the years 2018 and 2019.  

• Delamere farm own rain-gauge rainfall data for the year 2018. 

 

4.2.1.2. Satellite datasets 

 
The Climate Hazards Group Infrared Precipitation with station data is a quasi-global rainfall dataset that 

combines high resolution (0.050, about 5.5km) satellite imagery with ground in-situ stations to form gridded 

rainfall datasets that can be used by users in several fields1981 (Funk et al., 2015).  

 

The datasets were directly retrieved via the In Situ and Online Data Toolbox (ISOD) in ILWIS for daily 

time aggregation over the African region. The raster maps of daily rainfall were visualized in ILWIS as 

maplists to catch a glimpse of the rainfall trend over the continent and the study area in 2018 and 2019. For 

consistency and integration with other datasets in this research, the pixel values were extracted using 

TAHMO stations coordinates and saved as CSV files for the ETC analysis. Figure 4.3 is a sample spatial 

variability visualization of the CHIRPS rainfall over the African continent and in the study area: 
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Figure 4.3: Spatial visualization of CHIRPS monthly rainfall(January 2018). 

 

4.2.1.3. Model datasets 

 
For model-generated datasets, use was made of the ECMWF ERA5 which is a climate reanalysis dataset 

spanning the period from 1950 to present. This model provides high-quality global forecasts and climate 

reanalyses using data assimilation techniques(4D-VR). The ERA5 datasets are available in both GRIB and 

NetCDF formats at a regular spatial resolution of 0.250 * 0.250(roughly 27.75km). For this research, 

preference was given to ERA5 re-analyses data because it is better compared to its re-analysis predecessors 

such as the ERA-Interim, in many aspects such as spatial and temporal resolutions (Copernicus Climate 

Change Services, 2018). 

 

Normally, the datasets can be accessed through MARS (Meteorological Archival and Retrieval System), 

whereby users can use python scripts to download the data from ECMWF servers directly from the website. 

The time aggregates which were available in MARS were unsuitable for this research, so daily aggregates of 

total precipitation were instead retrieved directly from Google Earth Engine to save a lot of energy and 

computations, by use of a JavaScript code.  

 

The code helps to visualize the preferred variable globally and then the coordinates of the corresponding 

ground in-situ stations (in this case the TAHMO) were used to extract, plot, and export corresponding 

pixels values directly in CSV file format. Figure 4.4 is a sample illustration of the ECMWF ERA5 rainfall 

variability over the study area: 
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Figure 4.4: Spatial visualization of ERA5 monthly rainfall(January 2018). 
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4.2.1.4. Datasets temporal visualization 

 

a. Daily rainfall datasets. 

 
In Figure 4.5 we visualize the temporal variability of rainfall at Moi Forces Academy and Ole Tipis GHS 

for the from 2018 up to 2019(730 days). The first column contains CHIRPS, ERA5, and In-situ TAHMO 

rainfall estimates at Moi Forces Academy while the second column shows the same datasets at Ole Tipis 

GHS in the same order. 

 

 

Figure 4.5: Daily rainfall at Moi Forces Academy and Ole Tipis GHS. 
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In Figure 4.6, rainfall estimates are presented for Delamere Farm and Taita Mauche SS for 2018 and 2019 

respectively. The first column contains rainfall at Delamere Farm starting from CHIRPS, ERA5 up to In-

situ. The second column presents rainfall in the same order at Taita Mauche SS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Daily rainfall at Delamere farm and Taita Mauche SS. 
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b. Pentad rainfall aggregates 

 
In Figure 4.7 we present the temporal visualization graphs for pentad rainfall aggregates at Moi Forces 

Academy and Ole Tipis GHS for 2018 and 2019 combinedly. The first column shows CHIRPS, ERA5, and 

In-situ TAHMO estimates at Moi Forces Academy while the second column is for Ole Tipis GHS in the 

same order. 

 

 

Figure 4.7: Pentad rainfall at Moi Forces Academy and Ole Tipis GHS. 
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In Figure 4.8, pentad aggregates of rainfall at Delamere farm and Taita Mauche SS are presented in the first 

column and the second respectively. The aggregates at Delamere farm are for the year 2018 and 2019 at 

Taita Mauche SS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dekad datasets 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Pentad rainfall at Delamere farm and Taita Mauche SS. 
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c. Dekad rainfall aggregates 

 
In Figure 4.9 we present the temporal visualization graphs for dekad rainfall aggregates at Moi Forces 

Academy and Ole Tipis GHS for 2018 and 2019 combinedly. The first column shows CHIRPS, ERA5, and 

In-situ TAHMO estimates at Moi Forces Academy while the second column is for Ole Tipis GHS in the 

same order. 

 

Figure 4.9: Dekad rainfall at Moi Forces Academy and Ole Tipis GHS. 
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Figure 4.10 contains graphs for the visualization of dekad rainfall aggregates at Delamere Farm for 2018 and 

Taita Mauche SS for 2019. The first column is for Delamere farm while the second is for Taita Mauche SS. 

 

 

 

 

 

 

 

 

 

Figure 4.10: Dekad rainfall at Delamere farm and Taita Mauche SS. 
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4.2.1.5. Evaluation of the rainfall datasets suitability for the extended triple collocation analysis 

 
To resolve the sign ambiguity which arises in the correlation coefficients estimated by the ETC analysis, 

here a test is conducted to ensure that the chosen datasets are positively correlated to the unknown quantity 

of the target variable. The test is done by verifying whether the used datasets have a positive relationship 

with each other.  

The correlation coefficient between two measurement systems x and y is given by the following equation:  

 

𝜌𝑥𝑦 =
𝐶𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
 (Equation 7) 

 Where: 

𝜌𝑥𝑦= Pearson correlation coefficient. 

Cov(x,y)= The covariance of x and y. 

σx= The standard deviation of x. 

σy= the standard deviation of y. 

 

4.2.1.6. Correlation analysis 

 
This test was performed on daily, pentad, and dekad time aggregation levels for CHIRPS, ECMWF ERA5, 

and TAHMO In-situ datasets for the year 2018 and 2019 separately and then combinedly. The results of 

the relationship analysis are summarized in table 4.1 and table 4.2. 

 

Table 4.1: Correlation coefficient analysis, rainfall datasets(2018&2019). 

YEAR 
TIME 
AGGREGATION 

DATASET 
Moi Forces 
Academy 

Ole Tipis GHS 
Delamere 
farm 

2018 

DAILY 

CHIRPS-ERA5 0.217 0.454 0.226 

CHIRPS-IN-SITU 0.312 0.535 0.310 

ERA5-IN-SITU 0.229 0.560 0.192 

PENTAD 

CHIRPS-ERA5 0.633 0.448 0.704 

CHIRPS-IN-SITU 0.542 0.598 0.713 

ERA5-IN-SITU 0.420 0.580 0.799 

DEKAD 

CHIRPS-ERA5 0.737 0.747 0.763 

CHIRPS-IN-SITU 0.773 0.742 0.838 

ERA5-IN-SITU 0.512 0.645 0.855 

  

2019 

  
DATASET 

Moi Forces 
Academy 

Ole Tipis GHS 
Taita Mauche 
SS 

DAILY 
CHIRPS-ERA5 0.247 0.416 0.168 

CHIRPS-IN-SITU 0.075 0.462 0.278 
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ERA5-IN-SITU 0.139 0.318 0.363 

PENTAD 

CHIRPS-ERA5 0.344 0.595 0.553 

CHIRPS-IN-SITU 0.393 0.154 0.520 

ERA5-IN-SITU 0.581 0.476 0.460 

DEKAD 

CHIRPS-ERA5 0.564 0.528 0.701 

CHIRPS-IN-SITU 0.554 0.100 0.646 

ERA5-IN-SITU 0.649 0.585 0.536 

 

 

Table 4.2: Correlation coefficient analysis, PCP datasets for 2018&2019 combined. 

YEAR 
TIME 
AGGREGATION DATASET 

Moi Forces 
Academy 

Ole Tipis GHS 

2018&2019 
COMBINED 

DAILY 

CHIRPS-ERA5 0.234 0.395 

CHIRPS-IN-SITU 0.253 0.485 

ERA5-IN-SITU 0.250 0.328 

PENTAD 

CHIRPS-ERA5 0.516 0.571 

CHIRPS-IN-SITU 0.309 0.605 

ERA5-IN-SITU 0.495 0.461 

DEKAD 

CHIRPS-ERA5 0.650 0.681 

CHIRPS-IN-SITU 0.457 0.713 

ERA5-IN-SITU 0.748 0.495 

 

The correlation analysis between the three datasets reveals that in daily time aggregation level the relationship 

is rather weak (nevertheless positive) and increases slightly with time aggregation levels. The weak 

relationship between the used measurements gives, on the other hand, more ground to the triple collocation 

analysis for the identification of the most reliable one. Regardless of the relatively weak relationship, it is 

positive in all cases, which satisfies fully the requirement for the ETC suitability. 
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4.2.1.7. Introduction of outliers in daily time aggregation rainfall datasets 

 
In climate sciences, some of the consequences of climate change could be extreme rainfall events which 

result in outliers.  According to Wu, Liu, & Chawla, (2010), outliers in rainfall datasets used in different 

studies for example for analysis and prediction could skew the results and lead to false conclusions. One of 

the objectives of this research being the evaluation of the effects of outliers on the results of the ETC 

analysis, an experimental dataset with outliers must be generated from one of the existing datasets. 

 

Logically we must first establish both the upper and lower limits of the dataset and then introduce random 

values greater than the upper limit. The Inter-Quartile Range method (IQR) described by Mirzaei et al., 

(2014) is used to evaluate the distribution of the datasets around the median value and at both ends.  

The dataset is divided into quartiles, whereby a quartile is a statistically dividing point that splits the data 

into quarters which are then used to specify both the upper and the lower limit in the data. The IQR methods 

steps are shown below: 

• Step 1: The data values are arranged from the least to the greatest. 

• Step 2: Determine the position of the first quartile by (N+1)/4, whereby N is the number of all 

data points. 

• Step 3: Determine the position of the third quartile by 3*(N+1)/4. 

• Step 4: Calculate the interquartile range(IQR) by subtracting the value of the first quartile from the 

value of the third quartile. 

• Step 5: The lower and upper limits of the data are given by (First quartile)-(1.5*IQR), and (Third 

quartile)+(1.5*IQR) respectively. 

 

For simplicity, daily rainfall estimates at Ole Tipis Girls Highschool (the Year 2018) used for this step. We 

consider this original dataset as outlier free and then establish its lower and upper limits. The results of the 

analysis are shown below in table 4.3: 

 

Table 4.3: Calculation of upper and lower limits. 

  CHIRPS ERA5 IN-SITU 

Quartile 1 0 0 0 

Quartile 3 3.18 4 1.29 

IQR 3.18 4 1.29 

Upper limit 7.95 10 3.24 

Lower limit -4.77 -6 -1.94 
 

At this stage, we intentionally deteriorate the in-situ dataset by introducing random values greater than the 

upper limit of the original data (we assume that negative outliers in rainfall datasets should be easily spotted, 

it is therefore not necessary to introduce any values lower than the lower limit.). Figure 4.11 shows the 
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original daily rainfall in-situ rainfall at Ole Tipis GHS(first graph) and the generated datasets with 

outliers(second graph): 

 

 

Figure 4.11: Original and Altered TAHMO In-situ rainfall datasets at Ole Tipis GHS. 

 

4.2.1.7.1. Cross-correlation in the dataset with outliers  

 
As done previously, a pre-test must be conducted on the altered dataset to assess its suitability for the triple 

collocation analysis. It can be noted from table 4.4 that the correlation coefficient between the correlation 

coefficient reduced from 0.535 to 0.454 between CHIRPS-IN-SITU and from 0.56 to 0.47 between ERA5-

IN-SITU. The population variance also increased considerably from 89.02 in the original dataset up to 426.4 

in the dataset with outliers. 

 

Table 4.4: Correlation analysis-altered dataset. 

LOCATION 
CORRELATION COEFFICIENT 

CHIRPS-ERA5 CHIRPS-IN-SITU ERA5-IN-SITU 

Ole tipis GHS 0.4542 0.4544 0.47 
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4.2.1.8. Analysis of the impact of missing data 

 
Another objective of this study is the analysis of the impact of missing data on the results of the triple 

collocation analysis, for this step, the Taita Mauche SS 2018 daily rainfall dataset was used. This dataset has 

a large proportion of missing data in the TAHMO in-situ dataset, precisely 36.7%. 

 
The datasets at Taita Mauche SS were first evaluated for their suitability for the triple collocation analysis by 

analyzing the relationships between them. In table 5 it is shown that a positive relationship exists. 

 

Table 4.5: Correlation analysis in the dataset with missing data. 

LOCATION 
CORRELATION COEFFICIENT 

CHIRPS-ERA5 CHIRPS-IN-SITU ERA5-IN-SITU 

Taita Mauche SS 0.28 0.43 0.5 

 

4.2.2. Solar radiation datasets 

 
Solar radiation is the electromagnetic energy emitted by the sun in all regions of the electromagnetic 

spectrum, it is the driving factor of several physical processes such as evaporation and precipitation which 

are at the core of the global climate dynamics. Several measurement systems for this variable exist and it is 

always necessary to scrutinize the resulting datasets before use as much as for other important climatic 

variables. For this research, we use the ETC analysis to compare different datasets of the shortwave 

incoming solar radiation (SW) obtained using the in-situ measurements, satellite-based sensors, and model-

based (reanalysis) estimates of the downwelling shortwave solar radiation.  

 

All used datasets were acquired in daily aggregations and different formats for the years 2017, 2018, and 

2019. The data preparation such as the extraction of pixel values overlapping locations of in-situ stations 

and the formation of triplets were performed in the same manner as for rainfall datasets. The major 

difference in the preparation of the datasets of the rainfall and solar radiation datasets is that for solar 

radiation the pentad and dekad aggregation levels were performed by averaging 5 and 10 consecutive days 

respectively after combining the 2017,2018 and 2019 time-series.  

 

The ETC analysis was performed for each year's time-series separately in daily time aggregation and then 

for daily, pentad, and dekad time aggregation levels for the combined time series.  
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4.2.2.1. In-situ data 

 
In-situ measurements of the shortwave incoming solar radiation are performed by pyranometers installed 

in the field and are representative for that specific location, it absorbs the incoming solar radiation in the 

shortwave solar spectrum. In this study, we use the TAHMO  shortwave incoming solar radiation datasets 

obtained by pyranometers installed at both Karima GHS and Moi Forces Academy in the study area for the 

year 2017, 2018, and up to November 2019. The datasets were retrieved as CSV files of hourly time 

aggregation and then daily values were calculated by averaging 24 hours(Daily hourly-based averages).  

 

4.2.2.2. Model data-ECMWF ERA5 

The European Centre for Medium-Range Forecast ERA5 is a model-based dataset which provides among 

others historical estimates of the shortwave solar radiation portion which reaches the Earth Surface (not 

absorbed or reflected by atmospheric constituents) estimated using data assimilation methods. The ERA5 

downwelling shortwave radiation datasets are globally available in 0.1°x0.1° spatial resolution and according 

to ECMWF, (2019), the datasets are reasonably good compared to those estimated by a pyranometer.  

 

In this study, we make use of the ECMWF ERA5 hourly land datasets retrieved from the Copernicus Data 

Store in the GRIB raster format for the years 2017, 2018, and up to November 2019. Pixel values 

overlapping Karima GHS and Moi Forces Academy stations were extracted and the daily hourly-based 

averages were calculated by averaging 24 hours.  Figure 4.13 illustrates the spatial variation of the shortwave 

incoming solar radiation in the study area for the first day of 2017(sample). 

 

 

Figure 4.12: Sample ERA5 SW solar radiation spatial visualization. 
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4.2.2.3. Satellite data 

 
For the satellite-based solar radiation, we use the datasets obtained by the NASA CERES (Clouds and 

Earth’s Radiant Energy System) scanner onboard the Earth Observation System Aqua and Terra satellites.  

The CERES algorithm assimilates the cloud and aerosol properties (fraction, optical depth, top height, and 

particle size) retrieved from MODIS and GEO radiances, into radiative transfer models to compute TOA 

and surface fluxes of solar radiation.   

 

The cloud and aerosol properties are gridded onto 1ox1o and hourly spatial and temporal boxes respectively, 

and the distribution of the cloud optical depth is estimated for each cloud type. The cloud properties along 

with other elements such as the temperature and relative humidity profiles are used together in radiative 

transfer models, as described in detail by Kato, Loeb, Rutan, & Rose, (2015), to compute top of atmosphere 

and surface fluxes.  

 

The dataset used in this study is Synoptic TOA and surface fluxes and clouds CERES_SYN1deg_Ed4.1 

computed daily means (from hourly means) of the shortwave downwelling component of the surface flux 

in a spatial resolution of 1°x1° for the years 2017, 2018, and up to November 2019 retrieved from the 

CERES Data Product website.  It can be seen in Figure 4.13 that due to the relatively coarse spatial 

resolution of the CERES solar radiation products, there is not a lot of variability in the study area and the 

two stations (Karima GHS and Moi Forces Academy) are, in fact, overlapped by a single pixel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Sample CERES SW radiation spatial 
variability. 
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4.2.2.4. Solar radiation datasets temporal visualization 

 
In Figures 4.14, 4.15, and 4.16 we visualize the temporal variabilities of daily shortwave incoming solar 

radiation (W/m2) for the years 2017, 2018, and 2019 respectively, for the three involved data sources. The 

first column in each figure contains graphs for Karima GHS and the second is for Moi Forces Academy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: 2017 SW incoming solar radiation and Karima GHS and Moi Forces Academy. 
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Figure 4.15: 2018 SW incoming solar radiation at Karima GHS and Moi Forces Academy. 
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Figure 4.16: 2019 SW incoming solar radiation at Karima GHS and Moi Forces academy. 
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4.2.2.5. Solar radiation datasets suitability analysis for ETC 

 
In this section, we perform the correlation analysis to ensure the existence of a positive relationship between 

the used datasets as a pre-requisite for the triple collocation analysis. The results in Tables 4.6 and 4.7 show 

a positive relationship between the used datasets which satisfies the requirement for the triple collocation 

analysis. 

 

Table 4.6: Correlation analysis, radiation datasets(2017,2018, and 2019 separately.) 

YEAR DATASET 
Moi Forces 
Academy 

Karima 
GHS 

2017 

CERES-ERA5 0.87 0.88 

CERES-IN-SITU 0.76 0.79 

ERA5-IN-SITU 0.62 0.69 

  

2018 

CERES-ERA5 0.87 0.88 

CERES-IN-SITU 0.76 0.84 

ERA5-IN-SITU 0.63 0.75 

  

2019 

CERES-ERA5 0.89 0.88 

CERES-IN-SITU 0.76 0.82 

ERA5-IN-SITU 0.65 0.72 

 

 
Table 4.7: Correlation analysis-daily hourly SW incoming radiation(2017,2018,2019 combinedly). 

YEAR 
TIME 
AGGREGATION 

  
Moi Forces 
Academy 

Karima 
GHS 

2017,2018&2019 
COMBINED 

DAILY 

CERES-ERA5 0.88 0.88 

CERES-IN-SITU 0.75 0.81 

ERA5-IN-SITU 0.63 0.72 

  

PENTAD 

CERES-ERA5 0.95 0.95 

CERES-IN-SITU 0.79 0.88 

ERA5-IN-SITU 0.72 0.85 

  

DEKAD 

CERES-ERA5 0.95 0.96 

CERES-IN-SITU 0.76 0.90 

ERA5-IN-SITU 0.71 0.88 
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4.2.3. Air temperature datasets 

 
Air temperature (2m) is another crucial variable in the water cycle which plays a key role in water cycle 

processes such as evaporation and precipitation. In this study, we apply the ETC analysis on monthly means 

of air temperature from In-situ measurements, ECMWF ERA5 re-analysis, and a gridded surface air 

temperature product for the years 2018 and 2019: 

 

• For in-situ measurements, monthly means of air temperature (2m) measured at Karima GHS and 

Moi Forces Academy were retrieved from the TAHMO online data portal in CSV files. 

 

• For the ECMWF ERA5 re-analysis product, use was made of the air temperature means obtained 

from the Climate Data Service(CDS) in regular grids of 0.1°*0.1°. Figure 4.17 is a sample 

visualization of the dataset’ spatial variability in the study area: 

 

 

Figure 4.17: Spatial visualization of ERA5 air temperature(January 2018) 

 

• The third dataset used is air temperature NOAA NCEP CPC GHCN_CAMS gridded product 

which provides global monthly means of air temperature at regular grids of 0.5° *0.5° for the period 

1948 up to the present. According to Fan & Dool, (2008), these datasets are obtained by 

interpolation of in-situ observations. Figure 4.18 is a sample visualization of the GHCN+CAMS 

air temperature spatial variability in the study area for January 2018: 

 



TRIPLE SENSOR APPROACH FOR MONITORING WATER AND CLIMATE 

37 

 

Figure 4.18: Sample spatial variability. 

 
For the two raster-based air temperature products, the coordinates of Moi Forces Academy and Ole Tipis 

GHS were used to extract pixel values and store them as CSV for the ETC triplets formation(same 

procedure as rainfall and solar radiation datasets).  

4.2.3.1. Visualization of air Temperature datasets temporal variability 

 In Figure 4.17, the variation of monthly air temperature at Ole Tipis GHS and Moi Forces Academy is 

presented for the years 2018 and 2019. 

 

 

Figure 4.19: Monthly air temperature at Ole Tipis GHS and Moi Forces Academy. 
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4.2.3.2. Air temperature datasets suitability analysis for ETC 

 
A positive relationship between the used air temperature datasets must be ensured before the ETC analysis 

as done for the other datasets.  The results of the analysis are shown in table 4.8 where at both stations the 

positive correlation exists between the datasets. This Satisfies the requirement for the datasets’ ETC 

suitability. 

  

Table 4.8: Correlation analysis, air temperature. 

LOCATION 
CORRELATION COEFFICIENT 

GHCN + CAMS-
ERA5 

GHCN + CAMS-
TAHMO 

ERA5-
TAHMO 

Ole Tipis GHS 0.80 0.73 0.92 

Moi Forces Academy 0.90 0.92 0.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TRIPLE SENSOR APPROACH FOR MONITORING WATER AND CLIMATE 

39 

5. RESULTS PRESENTATION AND DISCUSSION 

5.1. Root mean square error and correlation coefficient results 

5.1.1. Rainfall 

5.1.1.1. Results of each year analyzed separately 

 
Table 5.1 contains the ETC estimates of the RMSEs, correlation coefficients (rho), signal to noise ratio 

(rhosqr) and the corresponding ranks for each rainfall dataset at Delamere farm, Moi Forces Academy and 

Ole Tipis GHS for the years 2018 and 2019.  

The ETC correlation coefficients are relatively low in daily time aggregation level but increase with pentad 

and dekad aggregations, the same behavior is observed in the normal Pearson correlation coefficients 

estimated between the datasets before the ETC analysis. 

The results are in most cases reasonable except for pentad and dekad time aggregation levels whereby biased  

RMSEs, correlation coefficients, and signal-to-noise ratio are estimated (negative RMSE, correlation 

coefficients and signal-to-noise ratio greater than 1).  

The most reliable dataset at each station is represented by value 1 in the rank row which corresponds to the 

highest signal-to-noise ratio. In cases where the signal-to-noise ratio is biased, the corresponding dataset 

gets a rank 1 because it is always a greater number compared to the other collocated datasets. Its 

interpretation in terms of reliability is given in later sections. 

 

Table 5.1: ETC results for rainfall(2018&2019). 

YEAR T.AGG Location Delamere farm Moi Forces Academy Ole Tipis GHS 

2018 

  Dataset CHIRPS ERA5 IN-SITU CHIRPS ERA5 IN-SITU CHIRPS ERA5 IN-SITU 

Daily 

RMSE 47 24 64 62 23 23 57 14 25 

rho 0.60 0.37 0.51 0.54 0.40 0.57 0.66 0.69 0.81 

rhosqr 0.36 0.14 0.26 0.29 0.16 0.33 0.44 0.48 0.66 

rank 1 3 2 2 3 1 3 2 1 

Pentad 

RMSE 76 178 487 416 167 57 247 70 132 

rho 0.90 0.70 0.60 0.68 0.66 0.88 0.79 0.89 0.90 

rhosqr 0.82 0.49 0.36 0.46 0.43 0.77 0.63 0.79 0.81 

rank 1 2 3 2 3 1 3 2 1 

Dekad 

RMSE -136 471 923 244 286 245 525 247 146 

rho 1.05 0.70 0.73 0.93 0.81 0.80 0.87 0.88 0.97 

rhosqr 1.11 0.49 0.54 0.86 0.65 0.64 0.75 0.78 0.94 

rank 1 3 2 1 2 3 3 2 1 

2019 
  

Location Taita Mauche SS Moi Forces Academy Ole Tipis GHS 

Dataset CHIRPS ERA5 IN-SITU CHIRPS ERA5 IN-SITU CHIRPS ERA5 IN-SITU 

Daily 
RMSE 57 14 25 47 24 64 62 23 23 

rho 0.36 0.47 0.78 0.36 0.68 0.21 0.78 0.54 0.60 
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rhosqr 0.13 0.22 0.60 0.13 0.46 0.04 0.60 0.29 0.35 

rank 3 2 1 2 1 3 1 3 2 

Pentad 

RMSE 692 2861 326 574 -364 680 216 480 37 

rho 0.48 0.71 0.82 0.44 1.36 0.35 0.79 0.70 0.66 

rhosqr 0.23 0.51 0.66 0.19 1.84 0.12 0.63 0.49 0.43 

rank 3 2 1 2 1 3 1 2 3 

Dekad 

RMSE 1171 5098 1014 1727 -2471 2249 247 1080 78 

rho 0.69 0.81 0.80 0.30 1.76 0.33 0.92 0.76 0.70 

rhosqr 0.48 0.66 0.64 0.09 3.09 0.11 0.84 0.58 0.49 

rank 3 1 2 3 1 2 1 2 3 
 

5.1.1.2. Combined time-series 

 
In table 5.2, the ETC results for the combined time-series of the years 2018 and 2019 for rainfall datasets 

are shown for Moi Forces Academy and Ole Tipis GHS. The correlation coefficients estimated by the ETC 

are also relatively low in daily time aggregation levels but augment once more in pentad and dekad 

aggregation levels.  

Biased RMSEs, correlation coefficients, and signal-to-noise ratios observed in the pentad aggregation for 

2018 and 2019 rainfall separately no longer exist after combining the two years' time-series. However, such 

values are still observed in one case at Moi Forces Academy in the dekad time aggregation level. 

Biased ETC estimates still get a rank with respect to the other collocated dataset results. 

 

Table 5.2: ETC results for rainfall(2018&2019 combined time-series). 

YEAR T.AGG Location Moi Forces Academy Ole Tipis GHS 

2018&2019 
COMBINED 

  Dataset CHIRPS ERA5 IN-SITU CHIRPS ERA5 IN-SITU 

Daily 

RMSE 71.74 22.81 63.43 35.27 42.15 25.03 

rho 0.47 0.49 0.33 0.77 0.52 0.64 

rhosqr 0.22 0.24 0.11 0.59 0.27 0.40 

rank 2 1 3 1 3 2 

Pentad 

RMSE 502.49 63.81 359.63 155.64 359.72 204.82 

rho 0.57 0.91 0.55 0.87 0.66 0.70 

rhosqr 0.32 0.82 0.30 0.75 0.44 0.49 

rank 2 1 3 1 3 2 

Dekad 

RMSE 981.84 -66.71 690.28 34.34 1016.03 651.35 

rho 0.63 1.03 0.73 0.99 0.69 0.72 

rhosqr 0.40 1.07 0.53 0.98 0.47 0.52 

rank 3 1 2 1 3 2 
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5.1.1.3. Root mean square error and correlation coefficient analysis in the daily dataset with outliers 

 
Table 5.3 contains the results of the ETC analysis after introducing artificial outliers into the daily In-situ 

rainfall dataset and collocating it with the original CHIRPS and ERA5 datasets at Ole Tipis GHS in 2018. 

An increase of the ETC RMSE is observed in the in-situ dataset (from 25 to 137), which corresponds also 

to a decrease in the ETC correlation coefficient for this dataset (from 0.81 to 0.69) and the signal-to-noise 

ratio decreased (from 0.66 to 0.476). In comparison with the original CHIRPS and ERA5 datasets, the 

original in-situ dataset had been ranked as the most reliable (rank 1) but after the introduction of outliers, it 

has shifted to the second position. 

 

Table 5.3: ETC results for the dataset with outliers. 

Ole Tipis GHS 

DATASET CHIRPS ERA5 IN-SITU 

RMSE 56.86 13.790 137.01 

rho 0.658 0.692 0.69 

rhosqr 0.433 0.479 0.476 

rank 3 1 2 
 

5.1.1.4. Root mean square error and correlation coefficient analysis in the datasets with missing values 

 
Table 5.4 contains the ETC analysis results for datasets with missing values. Here, an In-situ rainfall dataset 

at Taita Mauche SS with a lot of missing data points was collocated with CHIRPS and ERA5 datasets with 

no missing values. The estimates of the ETC show that the in-situ dataset has the lowest RMSE, the highest 

correlation coefficient, the highest signal-to-noise ratio, and gets a rank 1 despite having a large part of 

missing data. 

 

Table 5.4: ETC results for the dataset with missing values. 

Taita Mauche 
SS 

DATASET CHIRPS ERA5 IN-SITU 

RMSE 76.14 48.57 9.23 

rho 0.49 0.57 0.88 

rhosqr 0.24 0.32 0.77 

rank 3 2 1 
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5.1.2. Solar radiation 

5.1.2.1. Results of each year analyzed separately 

 
Table 5.5 contains the ETC estimates of the RMSEs, correlation coefficients, signal to noise ration, and 

ranking of the different datasets that were collocated. The results shown are for daily shortwave incoming 

radiation at Karima GHS and Moi Forces Academy for the years 2017, 2018, and 2019 each separately. The 

ETC correlation coefficients are all high. In some cases, notably at Moi forces Academy, biased RMSEs, 

correlation coefficients, and signal-to-noise ratio are observed in each year at Moi Forces Academy and 2019 

at Karima GHS. The order of ranks given to the datasets remains uniform in all years and at all stations. 

 

Table 5.5: ETC results for solar radiation. 

YEAR Location Karima GHS Moi Forces Academy 

  Dataset SATELLITE ERA5 IN-SITU SATELLITE ERA5 IN-SITU 

2017 

RMSE 6.686 198.022 1242.319 -154.99 226.74 862.22 

rho 0.998 0.879 0.787 1.04 0.84 0.74 

rhosqr 0.996 0.773 0.619 1.08 0.71 0.54 

rank 1 2 3 1 2 3 

2018 

RMSE 51.774 200.28 859.451 -154.151 246.629 849.03 

rho 0.989 0.887 0.847 1.032 0.845 0.741 

rhosqr 0.978 0.787 0.717 1.065 0.714 0.549 

rank 1 2 3 1 2 3 

2019 

RMSE -8.821 250.875 1072.454 -69.964 227.209 710.386 

rho 1.002 0.879 0.816 1.015 0.875 0.748 

rhosqr 1.004 0.773 0.666 1.03 0.766 0.56 

rank 1 2 3 1 2 3 

 

5.1.2.2. Results for combined time-series 

 
Table 5.6 contains the ETC results which were estimated for the combined time series of short-wave 

incoming solar radiation of 2017, 2018, and 2019 at Karima GHS and Moi Forces Academy. The results are 

for daily, pentad, and dekad aggregation levels. At Karima GHS, the correlation coefficients are all high and 

within normal range and do not vary considerably with time aggregation levels. At Moi Forces Academy, 

biased ETC results are observed in all aggregation levels in the satellite-based datasets. The order of ranking 

of the correlation coefficient remains invariant. 

 

Table 5.6: ETC results for solar radiation(2017,2018 and 2019 combinedly). 

T.AGG Location Karima GHS Moi Forces Academy 

  Dataset SATELLITE ERA5 IN-SITU SATELLITE ERA5 IN-SITU 

Daily RMSE 29.472 214.931 1071.346 -92.23 228.92 851.52 
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rho 0.994 0.884 0.820 1.02 0.86 0.74 

rhosqr 0.988 0.781 0.672 1.04 0.74 0.54 

rank 1 2 3 1 2 3 

Pentad 

RMSE 33.557 58.476 390.85 -42.79 81.08 340.87 

rho 0.989 0.958 0.889 1.01 0.934 0.78 

rhosqr 0.978 0.918 0.790 1.03 0.87 0.6 

rank 1 2 3 1 2 3 

Dekad 

RMSE 22.325 34.932 258.373 -30.352 52.561 250.883 

rho 0.99 0.969 0.909 1.013 0.948 0.752 

rhosqr 0.980 0.939 0.826 1.026 0.899 0.566 

rank 1 2 3 1 2 3 

 

5.1.3. Air temperature 

 

In table 5.7, the ETC analysis results are shown for the monthly air temperature dataset. At Ole Tipis GHS, 

the correlation coefficients are all high and the TAHMO dataset has the highest compared to the other 

datasets. At Moi Forces Academy, biased estimates are once again observed. 

 

Table 5.7: ETC results for air temperature. 

Location Ole Tipis GHS Moi Forces Academy 

Dataset 
GHCN + 
CAMS 

ERA5 TAHMO 
GHCN + 
CAMS 

ERA5 TAHMO 

RMSE 0.123 0.219 0.098 0.295 -0.010 0.391 

rho 0.944 0.953 0.974 0.798 1.003 0.920 

rhosqr 0.891 0.908 0.949 0.637 1.006 0.846 

rank 3 2 1 3 1 2 
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5.2. Results interpretation and discussion 

 

5.2.1. Evaluation of the ETC results 

The ETC estimates for all variables used in this study (rainfall, solar radiation, and air temperature) are in 

reasonable ranges, and in most cases, the lowest root mean square errors corresponded to the highest 

correlation coefficients, signal-to-noise ratio and ranks. To evaluate the magnitudes of the ETC estimates 

let’s follow, let’s follow McColl et al., (2014) and consider the unbiased root mean square error  𝝈𝜺
 =

47.356 and correlation coefficient 𝝆𝒕,𝑿
 = 0.604 calculated for  the CHIRPS satellite daily rainfall product 

at Delamere farm in the year 2018. By replacing these values in equation 6 (section 2.3.1 of the thesis) and 

also assuming the sensitivity of the measurement system 𝜷 
  ≈ 1, we obtain a realistic estimate  𝝈𝒕≈

 58.485.  

 

In cases where the biased ETC estimates were observed, it is due to violation of the implicit initial triple 

collocation assumptions of error stationarity(zero-mean error and variance homoscedasticity) and error 

orthogonality, the effects of which, are discussed in detail by  Tugrul Yilmaz & Crow, (2014).  In such cases, 

the verification cannot be performed because the calculation done in the previous paragraph result in the 

square root of a negative number.  

 

5.2.2. Effects of time aggregation levels 

Biased ETC results were, were noted in many cases for all variables used in this study but they were more 

prominently noticeable in pentad and dekad datasets of rainfall where the datasets’ ranges and variability 

increased significantly as a result of the aggregation done by summation of consecutive days. It suggests 

that, for a geographical area like the Lake Naivasha basin with highly varying climatic conditions, increased 

variability because of the aggregations (which is also partly due to the presence of many zero values in rainfall 

datasets), the potential violation of the triple collocation assumptions is to be expected. In solar radiation 

datasets, biased ETC outcomes were noted more remarkably at Karima GHS in 2019 and Moi Forces 

Academy in all set-ups. The time aggregations affected only marginally the ETC outcomes because the 

aggregations were made by averaging consecutive days which doesn’t change significantly the data ranges.  

 

Regarding the results obtained for combined time-series(2 years for rainfall and 3 years for solar radiation), 

the ETC estimates improved in pentad rainfall at Moi Forces Academy and dekad solar radiation at Karima 

GHS. It implies that depending on the magnitudes and distribution of errors in the datasets, the effects of 

the violation of error stationarity and orthogonality assumptions may be suppressed when the used time-

series are sufficiently long. 

 



TRIPLE SENSOR APPROACH FOR MONITORING WATER AND CLIMATE 

45 

5.2.3. Effects of outliers 

Consistent with the introduction of outliers, the correlation coefficient in the daily rainfall estimates of the 

in-situ datasets at Ole Tipis GHS in 2018 has decreased from 0.81(highest compared to the CHIRPS and 

ERA5) in the original dataset to 0.69 (second highest after ERA5). This is directly related to the increment 

of the root mean square error for the in-situ dataset after the introduction of outliers (from 25 up to 130). 

It implies that outliers may degrade the outcomes of the extended triple collocation depending on the 

distribution and amount of outliers present and how they affect the dataset’s variability. 

 

5.2.4. Effects of data gaps 

The correlation coefficient estimated for the in-situ rainfall at Taita Mauche SS in 2018 has the highest 

correlation coefficient despite a large amount of missing data compared to CHIRPS and ERA5 products. It 

indicates that ETC results could be misleading as far as data gaps are concerned due to the simple reason 

that statistics will be calculated for the available data values only. Depending on the underlying data 

distribution properties, their variance may be the lowest compared to the other datasets and will result 

consequently in a higher correlation coefficient. 

5.3. The triple sensor ILWIS toolbox 

 
An ILWIS geospatial procedure to perform the ETC analysis and visualize cartographically the results has 

been created. Here we use it to perform the ETC on selected rainfall datasets to assess its performance and 

propose improvements. The datasets used for this are the CHIRPS, ECMWF ERA5, and in-situ TAHMO 

monthly rainfall at Moi Forces Academy, Ole Tipis GHS, and Taita Mauche SS for the year 2019. The 

toolbox allows 3 data inputs: two raster time-series referred to as maplists and one point map as shown in 

figure 5.1. In this case, the raster time-series are the CHIRPS and ECMWF ERA5 rainfall products while 

the point map is produced using in-situ coordinates and corresponding rainfall values.  

 

 

Figure 5.1: Triple sensor data input. 
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After clicking ‘show’ the toolbox runs the ETC covariance analysis and yields a point map showing the 

stations involved and an associated attribute table as follows: 

 

 
The attributes w1,w2,w3 are the correlation coefficients calculated for each input( Maplist sensor 1, Maplist 

sensor 2, and Point map sensor 3). A higher value indicates a higher fidelity in the corresponding dataset 

with respect to the unknown quantity of the target variable.  

The attributes r1,r2, and r3 and the ranking given to the correlation coefficient in descending order. For 

example at pnt1(which corresponds to the first station Moi Forces Academy), the Maplist sensor 2 

corresponding to the ERA5 dataset has the highest correlation coefficient.  

The attributes rhosqur1, rhosqr2, and rhosqr3 are the squares of the correlation coefficient which are the 

unbiased signal to noise ratio shown in equation 4 in the methodology section.  

Lastly, the errvar1, errvar2, and errvar3 are the RMSEs calculated using the ETC for each dataset.  

The next step is the visualization of the results in a map using RGB values for each location using a Red-

Green-Blues triangular legend. The RGB values are calculated as follows: 

 

Blue = 255*rhosq1/max(rhosq1,rhosq2,rhosq3), High correlation coefficient for Satellite data (w1) 

contribute to the color Blue. 

Red = 255*rhosq2/max(rhosq1,rhosq2,rhosq3) High correlation coefficient for ERA5 data (w2) contribute 

to the colour Red.  

Green = 255*rhosq3/max(rhosq1,rhosq2,rhosq3) High correlation coefficient for in_situ data (w3) 

contribute to the colour Green. 

An attribute filed called COLOR_TC is added to the attribute table and will then be used to color the 

different points depending on which datasets has a higher correlation coefficient: 

 

color_tc:=COLOR(255*rhosq2/max(rhosq1,rhosq2,rhosq3),255*rhosq3/max(rhosq1,rhosq2,rhos

q3), 255*rhosq1/max(rhosq1,rhosq2,rhosq3)). 

 

 

Figure 5.2: ETC results initial attributes table. 
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The last column in Figure 5.3 contains the color contributions for each dataset: 

 

 

Figure 5.3: ETC final attribute table with colour values. 

 
Figure 5.4 is a map visualizing the final output of the ETC analysis in the study area using the triple sensor 

ILWIS toolbox. It can be seen that the three stations namely; Moi Forces Academy, Taita Mauche SS, and 

Ole Tipis GHS are represented by different colors, depending on which dataset had the highest correlation 

coefficient and signal-to-noise ratio than others. 

 

 

Figure 5.4: ETC results visualization. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

In this research, we investigated the Triple Sensor Approach for Monitoring water and Climate using the 

extended triple collocation covariances analysis to identify the most reliable climatic data source between 

In-situ measurements, Satellite-based observations and model-generated datasets. The following 

conclusions have been drawn: 

 

• Measurement systems employing different methods will lead to different data estimates. While this 

seems obvious enough,  the differences evidenced by relatively low Pearson correlation coefficients 

calculated between the datasets in daily rainfall were very remarkable. It emphasizes once more the 

necessity of a robust approach like the triple sensor method because it allows a more absolute way 

to assess dataset reliability. The ETC analysis results provide more information about the dataset’s 

measurement system sensitivity, the variability of the signal, and measurement error as noted by  

McColl et al., (2014). This information is a compelling basis to judge more objectively which dataset 

can be trusted most at a given location, compared to the normal dual comparison data validation 

approaches.  

 

• Time aggregation levels can greatly affect the estimates of the ETC analysis results depending on 

how the datasets are aggregated. For instance, the aggregates of rainfall which were obtained by 

summation resulted in biased ETC results because of the increased data ranges and variability. For 

variables where the aggregation is calculated by averaging consecutive data points(e.g. solar 

radiation), the ETC results are only slightly affected. 

 

• The triple sensor approach has the capability to penalize datasets characterized by the presence of 

outliers considering the high sensitivity of the ETC covariance analysis to outliers. The ETC results 

will be skewed depending on the number of outliers and their effect on the data distribution 

properties. In this study, the introduced outliers increased the corresponding dataset’s root mean 

square error and its correlation coefficient, signal-to-noise ratio, and consequently leading to a lower 

reliability rank.  

 

• The triple sensor approach is on the other hand is unable to expose datasets with gaps because the 

ETC statistics are only performed for the part of the datasets with available values. If the datasets 

with gaps have the lowest variance (observed case in this study) and the highest ETC correlation 

coefficient and signal-to-noise ratio, it may be misleadingly interpreted as the most reliable.  
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• Limitations to the applicability of the triple sensor approach have also been noted. A typical case is 

when the distribution properties(ranges, variability) of the used dataset violate the initial triple 

collocation assumptions of zero-mean error, variance homoscedasticity, and no-error cross-

correlation between the used datasets. This limits the situations in which the triple sensor approach 

can be employed. 

 

• Another important limitation of the triple sensor approach that was observed is related to its 

datasets requirement. The ETC analysis requires at least three datasets that must be temporally and 

spatially collocated. It is not easily achievable because many datasets have differences, especially in 

temporal resolutions, length of time-series.  

 

• Regarding the data quality of different data sources and types, we observed that especially the in-

situ rainfall station data present a high potential source of error. Normally, the people’s perception 

of data quality inter-comparison is that in-situ measurements represent the ground truth, and cannot 

be biased. This was obviously not the case, as we investigated in this study. Proper maintenance of 

local automated weather stations (AWS) is of prime importance, to obtain reliable data. This holds 

especially for rainfall, which usually is still a kind of mechanical measurement (tipping bucket or 

other principles). For solar radiation, air temperature, and soil moisture sensors other sensors, this 

is less the case as we observed during fieldwork, although regular control is required for example 

to change power supply batteries. Too many people think that in-situ water and climate observation 

ends when a device (station) has been installed, and the data are transmitted automatically (e.g. 

GPRS, etc.), in weather and other environmental observation is more than that. 

 

• The results of this research emphasize, further, the potential of independent citizen observer 

climatic datasets in scientific research. It is exemplified by cases where citizen datasets (in-situ 

rainfall datasets estimated by Delamere farm own rain gauge) performed relatively well and in some 

scenarios, better than the most commonly used satellite and model datasets. data sources. 
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6.2. Recommendations 

6.2.1. General recommendations  

 

• For the triple sensor approach to allow useful information regarding climatic datasets' reliability, 

the used datasets should be spatially and temporally collocated and should be representing the same 

climatic variable. The datasets can be from the same source (for example satellite) as long as the 

retrieval processes are mutually independent and the distribution properties do not violate any of 

the triple collocation assumptions. In cases where the assumptions are violated the results will be 

biased and can therefore not be reliable. It is advised to use different datasets or to attempt 

manipulating the time-series where possible. 

 

• A suitability analysis of the datasets at hand for the ETC analysis should also be prioritized as well 

as using other data filtering techniques such as the identification of data before the application of 

ETC analysis to filter out datasets that can potentially add a margin for mistakes in the ETC results’ 

interpretation.  

 

• In terms of data collection and quality, it was realized that the ITC low-cost Sodaq (Kukua) weather 

stations in the Naivasha area are of poor manufacturing and electronic component quality, but also 

poorly maintained especially rain gauges and therefore the datasets cannot be easily used for any 

scientific research. Another important element is the solar radiation datasets which are available but 

cannot be used because the conversion factor of the dataset was not provided by the instrument 

manufacturer. The AWS systems of the TAHMO project and African network showed a variable 

behavior in data quality. At some locations, rather reliable data time series are collected, where other 

locations show similar problems as the ITC stations. The time interval between manual check-ups 

and maintenance activities such as the cleaning of rain gauges is too long. We recommend more 

frequent check-ups and maintenance to facilitate future research in the area. 

 

• The use of independent citizen observer datasets in climate science has also been emphasized. 

When available, these datasets can be very useful, but also on the sole condition, that the in-situ 

citizen observatories and stations undergo regular control and maintenance and proper operational 

procedures are documented. 
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6.2.2. Improvement of the triple sensor toolbox in ILWIS 

 

• One of the main setbacks of the triple sensor approach and also generally in scientific research is 

data availability and accessibility in the required spatial and temporal resolutions. To the average 

user, the task of data identification and retrieval may be daunting. A data retrieval method through 

the triple sensor toolbox for the most commonly used and available datasets should be enabled in 

ILWIS as it has been done for the ISOD toolbox. Also regarding the dataset, the current triple 

sensor toolbox only allows the entry of two raster map lists and one point map. A lot more flexibility 

is required because some datasets are only available for example as rasters only or point maps. 

 

• Warning routines can be added in cases where the condition for a proper application of the triple 

sensor approach are not respected to facilitate the ETC results’ interpretation for the datasets’ 

reliability: Spatial and temporal inconsistencies in the datasets, datasets with negative cross-

relationships(relating the datasets suitability analysis performed earlier) and biased ETC estimates.  

 

• A simple reliability score can be calculated and added to the ETC results table to ease the 

interpretation of the results. The squared correlation coefficient of a given dataset would be divided 

by the maximum correlation observed in all the collocated datasets at that particular location. This 

means that for the maximum correlation coefficient itself, the reliability score would be 1. As an 

example, let’s take daily rainfall at Delamere farm in 2018 whereby the squared correlation 

coefficients of the involved datasets are as follows: 

CHIRPS=0.36. ERA5=0.14 and In-situ=0.26. 

The reliability scores would be: 

CHIRPS=0.36/0.36=1, ERA5=0.13/0.36=0.44 and In-situ=0.26/0.36=0.72. 

 

• An automatic legend function for the cartographic visualization of the triple sensor outcomes 

should be created to allow a complete and smooth visual interpretation. Currently, it is only available 

in the triple sensor web demo and it is a triangular type of legend based on a mixture of RGB colors 

to represent the results of the triple sensor approach as shown in figure 24. Each collocated dataset 

contributes to the mixture of colors and the most dominant color corresponds to the dataset with 

the highest correlation coefficient(the most reliable). This does not enable a straight forward visual 

identification of the best performing dataset at that location when the correlation coefficients of 

the used datasets are close. The legend should rather be calculated using the reliability score 

proposed previously, in such fashion that a data source would be represented by a unique color 

every time it achieves the highest reliability score in comparison with the other collocated data sets.  
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7. APPENDIX 

Table 7.1: Ground weather stations coordinates. 

Name X Y Z 

Moi Forces Academy 36.16998 -0.28712 1936 

Karima Girls 36.5875 -0.50084 2523 

Ole Tipis Girls 35.89234 -1.09468 1922 

Molo Academy 35.7289 -0.23934 2508 

Nyandarua Highschool 36.37694 -0.20018 2421 

Murungaru Sec 36.49309 -0.58664 2423 

Magomano Sec 36.58292 -0.60715 2482 

Taita Mauche 35.97424 -0.50307 2441 

Kijabe Farm 36.19085 -0.75382 2074 

Delamere Farm  36.41029 -0.68526 1910 

Paul Farm 36.56659 -0.59977 2468 

KWSTI 36.44983 -0.73678 1998 

Nunjoro farm 36.47917 -0.64381 2237 

 

 

 

 

 

 

 

 

 

 

 


