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ABSTRACT 

Many countries face challenges in the water and food sector, especially with the current rapid population 

growth, and increasing water scarcity due to climate change. Policies and actions have been implemented in 

order to meet these demands. Kenya is among these countries, and applies various policies to boost the land 

and water productivity in agriculture; crop or livestock, forestry, fisheries and more. The slogan ‘more food 

per drop’ is often used. 

Water productivity (WP) refers to the ratio of mass of agricultural output to the amount of water consumed. 

Different approaches have been adopted in measuring WP. Food and Agriculture Organization, the United 

Nations (FAO-UN) plays a leading role in this with the Water Productivity Open-access portal of Remotely-

sensed data (WaPOR) that provides land and water productivity information across Africa and the Near 

East. 

To ensure that WaPOR datasets are efficient to users, quality assessment via validation and comparative 

analyses have been (and are still) conducted on different WP data components. This research compares 

WaPOR level II to SWAT+ model WP estimates in the Lake Naivasha basin located in the Rift Valley in 

Kenya, over an 11 years period (2009-2019). SWAT+, which is a new version of the SWAT model, is a 

physical-based, semi-distributed hydrological model that performs simulations on crop growth, hydrological 

balance (surface and groundwater), water quality, and sediment transportation in a catchment. 

Fieldwork was first conducted, on 8-25th January 2020, with an aim to collect ground-truth information on 

the land cover, and crop phenological information with the basic land and water management practices from 

farmers in the catchment. The SWAT+ model  for the Lake Naivasha basin was then established to simulate 

total biomass production and actual evapotranspiration, after which the WP estimates from SWAT+ could 

be calculated. These were then compared to the WaPOR WP estimates. As the nature of the datasets from 

these two approaches is different, only the long term average results were compared. 

Average annual TBP and ETa values of 23723.5 kg/ha/year and 823.6 mm/year, and 31974.7 kg/ha/year 

and 800.2 mm/year from WaPOR and SWAT+ respectively were obtained. This gave WP of 3.02 kg/m3 

and 3.99 kg/m3 in the entire catchment. In addition, wheat and maize crops were analysed. For WaPOR, 

the crops WP was estimated from TBP and ETa at the area covered, while for SWAT+, the crops WP were 

estimated from grain yield and ETa at a few studied hydrological response units levels. WaPOR gave average 

annual TBP, ETa and WP of 23160.7 kg/ha/year, 779.1 mm/year, and 2.98 kg/m3 respectively for wheat. 

And, 24018.5 kg/ha/year, 836.2 mm/year, and 2.92 kg/m3 respectively for maize. 

With SWAT+, wheat gave average annual ETa values of 560.5 mm/year and 563.1 mm/year at two HRUs 

studied (HRU 1621 and HRU 1584), and maize gave 833.7 mm/year and 788.1 mm/year (HRU 257 and 

HRU 1614). Average annual wheat crop yields of 1261.7 kg/ha/year and 1530.0 kg/ha/year, and for maize 

yield, 5444.5 kg/ha/year and 3159.1 kg/ha/year were obtained. Therefore, wheat crop WP of 0.23  kg/m3 

and 0.27 kg/m3, and maize crop WP of 0.65 kg/m3 and 0.40 kg/m3 were obtained. Maize gave higher WP 

components than wheat in both approaches, but with differing crop WP.  

However, results of this study should caution users concerning SWAT+’s current capacity to accurately 

simulate biomass time series in a catchment. The model does not implement all calculations, and hence, the 

output generation on crop yields and land cover management is not fully available. Also, the complex nature 

of the micro climatic conditions of the study area leading to uncertainty in the weather input data, may have 

highly influenced the results in both WaPOR and SWAT+. 
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COMPARISON OF WAPOR RS-BASED TO SWAT+ MODEL WATER PRODUCTIVITY IN LAKE NAIVASHA 

BASIN, KENYA 

1 

1. INTRODUCTION 

1.1. Background and relevance 

The physical water scarcity across the globe poses a threat on agricultural productivity, especially with the 

current rapid population growth in many countries, leaving the countries facing challenges in the water and 

food sector. FAO (2011) states that the agricultural production will require to increase by 70% by the year 

2050 in order to oblige to the foreseen 40% population rise. 

 

In Kenya, agriculture plays a key role in the country’s social and economic development as it contributes to 

about 60% of the total export earnings and accounts for 26% of the country’s Gross Domestic Product 

(GDP) (Adimo, 2016). In provision of sustainable water and food security in Kenya among other semi-arid 

countries in Africa, policies and actions have been implemented with efforts to boost land and water 

productivity (Molden, 2007). In Kenya, the Water Act 2002 recognizes water as important natural resources 

as well as a basic human right (Ministry of Water and Irrigation, 2007). The agricultural policy governs the 

utilization of these resources to improve agricultural growth by promoting different diversity in crops, as 

well as environment protection especially the degraded areas and catchments (Alila & Atieno, 2006). 

 

Water productivity (WP) is defined as the biophysical or economic benefits per unit amount of water 

required or used in provision of these benefits. This is applied on agriculture; crop or livestock, forestry, 

fisheries and more. In physical WP, the slogan ‘more food per drop’ is often used referring to the ratio of 

mass of agricultural output to the amount of water consumed (Molden et al., 2007). Crop water productivity 

(CWP) [kg/m3] is defined as the ratio of harvestable crop yield [kg/ha] to the amount of evapotranspiration 

[m3/ha] (Zwart & Bastiaanssen, 2004). Crop yield is the marketable product of biomass, evapotranspiration 

is the actual crop water consumed, which consists of transpiration from plants and evaporation from the 

soil. 

 

Different scales including plant level, farm field, basin, national and global levels as well as their inter-

relationships (depending on user-defined goals), are essential when analysing agricultural WP (Molden, 

Murray-Rust, Sakthivadivel, & Makin, 2003). For instance, J. Liu et al. (2008) conducted an analysis at global 

scale (124 countries) using the GEPIC crop model and found that 80% of the countries have potential to 

improve their water productivity, with the present farm management practices. Also, Zwart & Bastiaanssen 

(2004) carried out a field survey and found that there was a huge difference in WP among the investigated 

crops, mainly due to climate variation and farm management practices at that moment. 

 

Different approaches have been applied in studies on quantifying WP. Cai et al. (2009) categorizes these 

into four approaches: (i) Field experiments, which provide detailed information on WP but are limited to 

local scale. (ii) Crop-hydrological modeling, which is focused on hydrological processes in relation to plant 

growth at a catchment extent. For instance the Soil and Water Assessment Tool (SWAT) model adopts this 

approach. (iii) Coupling of a hydrological model with information from remote sensing as a source for the 

model input data. (iv) Adopting geo-spatial application tools only, which is advantageous in mapping WP 

across different spatial as well as temporal scales. 

 

WaPOR (FAO, 2020) was launched by the Food and Agriculture Organization of the United Nations (FAO-

UN) on April 20th 2017. The portal provides open access to remotely sensed datasets that enable monitoring 
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of land and water productivity across Africa and the Near East. The derived data sets cover the period from 

01/01/2009 to present at temporal scales that vary from daily to dekadal, seasonal and annual. WaPOR 

targets stakeholders from local farmers to decision makers with an aim of increasing agricultural production 

by monitoring WP. The consortium of the WAPOR project include ITC, eleaf, VITO, UNESCO-IHE, 

IWMI, and WaterWatch Foundation. 

 

The derived remote sensing-based datasets cover different regions at three spatial levels. (i) Level I (250 m 

resolution) products are available at continental scale over Africa and the Near East. (ii) The level II (100 m 

resolution) products cover a selected set of countries (21) and river catchments (4) including Jordan River 

basin, Nile River basin and Niger River basin. (iii) Level III (30 m resolution) covers selected irrigation 

schemes (8 so far) in Egypt, Mali, Lebanon, Ethiopia, Mozambique, Kenya and Sudan (FAO, 2019). Table 

1.1 shows details of the data sets available on the WaPOR portal. 

 

Thematic 
area 

Layers Level I (250 m) Level II (100 m) Level III (30 m) 

Climate Precipitation Daily (5 km)   

Reference 
Evapotranspiration 

Daily (20 km) 

Water Actual Evapotranspiration 
and Interception 

Dekadal/annual Dekadal/ 
seasonal/ 
annual 

Dekadal/ 
seasonal/ 
annual Evaporation 

Transpiration 

Interception 

Land Total biomass production Dekadal/annual Dekadal/annual Dekadal/annual 

Land cover classification 

Phenology  Seasonal Seasonal 

WP Gross WP Annual Seasonal Seasonal 

Net WP Annual Seasonal Seasonal 

 

With an aim to ensure that WaPOR datasets are efficient to users, quality assessment via validation and 

comparative analyses have been (and are still ongoing) conducted by researchers on different WP data 

components. Most of these researches are MSc and PhD theses, and are discussed in Mannaerts et al. (2018) 

and Mul & Bastiaanssen (2019). 

Blatchford et al. (2019) validated Version II of WaPOR ETa against insitu measurements (from 14 eddy 

covariance (EC) stations) across Africa and obtained an overall estimation of R2 and RMSE of 0.6 and 1.04 

mm/day respectively. She also found out that there was a consistency in the time series trend at the 3 levels, 

especially for Level I and II, as influenced by the regions’ climatic conditions. 

Teshite (2018) compared WaPOR Level III to AquaCrop model WP estimates in Wonji sugarcane 

plantation, upper Awash basin Ethiopia. Results indicated that WaPOR above ground biomass production 

(AGBP) estimates were consistently lower than the AquaCrop and in-situ AGBP estimates. Hence a lower 

WaPOR WP estimates (1.43-3.46 kg/m3) compared to the model estimates (2.49-5.39 kg/m3) were obtained. 

Table 1.1 Specifications of available WaPOR Version 2.1 datasets in the portal adapted from Mul & 
Bastiaanssen (2019). 
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He recommended that further studies to be conducted in assessing WaPOR WP components by exploring 

in-situ measurements as well as the use of other approaches. 

1.2. Research Objectives 

1.2.1. Main Objective 

The main objective of this research is to compare WaPOR remote sensing-based level II WP estimates to 

SWAT+ model-based WP estimates in Lake Naivasha basin, Kenya. 

1.2.2. Specific Objectives 

The specific objectives are: 

i. To evaluate the spatial distribution of different land cover types present in Lake Naivasha Basin. 

ii. To simulate SWAT+ model TBP and ETa. 

iii. To analyze WAPOR level II products TBP, ETa and TBWP. 

1.2.3. Research Questions 

i. What types of land covers are found in Lake Naivasha Basin? And how are they spatially distributed 

in the catchment, especially the rainfed and irrigated crops? 

ii. How does SWAT+ simulate its WP components? Which input parameters in the model are 

sensitive in the calibration and validation process?  
iii. How do WaPOR WP estimates compare to SWAT+ in the catchment? 

This research hypothesizes that WAPOR remote sensing-based and SWAT+ model-based WP estimates 

are comparable. 

1.3. Novelty of the study 

SWAT+ is a new version of the SWAT model, completely restructured with high flexibility and added 

capabilities such as a reduced number of database files, which can be utilized depending on user application 

(Bieger et al., 2017). The SWAT model (Arnold, Kiniry, et al., 2012) is a physical-based, semi-distributed 

hydrological model that performs simulations on crop growth, hydrological balance (surface and 

groundwater), water quality, and sediment transportation at defined small to large catchment scale on a daily 

continuous time steps (Arnold & Fohrer, 2005).  

 

SWAT can also be used for predicting the long term impact of changing climatic conditions, soil 

characteristics, land cover types, topographic features, and farm practices within a catchment. It operates 

on a daily time step with up to monthly or annually output time-step. It is widely applied globally, and proved 

to work efficiently for different regions applications (Arnold & Fohrer, 2005). With its open coding access 

and technical support from the user groups, the model has the ability to function with tool interfaces for 

pre- and post-processing, parameterization and calibration. GIS interfaces have been developed for QGIS 

and ArcGIS. 

 

An advantage of the SWAT model over other crop-hydrological based models such as AquaCrop and SWAP, 

is that the crop biomass and water consumption estimates in relation to availability of water resources are 

accounted for (Vaghefi et al., 2017). 

 

Past researches have been conducted using SWAT in modeling the hydrological processes and water quality 

in Lake Naivasha basin, Kenya. Some of these researches have targeted the lake Naivasha, while others 

focussed on a particular sub-catchment. For instance, Makau (2018) estimated sediment transportation in 
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the Malewa sub-catchment. Lukman (2003) analysed the impact of climate change variability on the lake 

levels. Muthuwatta (2004) focussed on the fluctuation of the lake levels as well on estimating spatial 

distribution of stream flows in the Gilgil and Malewa sub-catchments. The novel aspect of this research is 

to establish a SWAT+ model for the Lake Naivasha basin, especially focused on simulating the biomass and 

ETa which are then compared to WaPOR estimates. 

1.4. Structure of the thesis 

The structure of this thesis consists of seven chapters. Chapter 1, Introduction gives a brief background and 

relevance of the research topic, which leads to the objectives, questions, and novel aspect of the research. 

Chapter 2, Literature review provides an overview of the concepts of WP and the tools to estimate the WP 

components from both WaPOR and SWAT+. In chapter 3, the study area characteristics including 

geographical position, climate, topography and hydrology, are described. Chapter 4, Fieldwork survey 

provides insight to the study area; the land cover and crops data collected. This is in fulfillment to the first 

specific objective of this research. 

 

Chapter 5 fulfills specific objective (ii) as it discusses the SWAT+ model concepts, required input datasets, 

procedures and results. Chapter 6 discusses the calculations and results of WaPOR WP components 

(specific objective (iii)). Chapter 7, Conclusion summarizes SWAT+ WP results in comparison to WaPOR 

WP results in fulfillment of the main objective. It also provides a reflection on the research process in 

general, challenges encountered and recommendations for future studies. Figure 1.1 shows general overview 

of the methodology approach. 

 

 

 

Figure 1.1 Flowchart diagram outlining the general research methodology 
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2. LITERATURE REVIEW 

2.1. Concepts of Water Productivity 

In agricultural crop production, WP is derived as a function of biomass output obtained in relation to 

amount of water input to the plants. The output is measured in terms of accumulated biomass or crop yield, 

whereas the water input is measured in terms of actual evapotranspiration.  

 

Water productivity components are influenced by factors including: (i) Geographical location of the region 

of interest, which determines accessibility to resources that facilitate adequate water productivity. (ii) 

Climatic conditions. Precipitation plays a key role. Other weather factors are air temperature, solar radiation, 

relative humidity and wind speed, which control the evapotranspiration. (iii) Environmental factors 

including topographic and soil properties of the region, and the land cover. (iv) Land and water management 

practices, which include supplementing rainfed agriculture with irrigation systems, nutrients supply, pest and 

diseases control, among others (Blatchford, 2016). 

 

WaPOR estimates the WP intermediate components basically from satellite datasets. The SWAT+ on the 

other hand, models hydrological processes and plant growth to estimate both ETa and accumulated biomass 

from which WP is later calculated externally from the model. 

2.1.1. Actual evapotranspiration 

Actual evapotranspiration is defined as the sum of the amount of water transpired from plants, evaporated 

from the soils and intercepted rainfall by canopy. ETa is a significant portion of the water balance in a 

catchment, especially in an arid and semi-arid regions where the ETa demands are met or exceeded (Teixeira, 

2008). 

 

For Lake Naivasha basin, different methodologies have been used in past researches to estimate the ETa. 

For instance Alemseged (2002) used derived satellite data as input to the Surface Energy Balance (SEBS) 

model (Su, 2002) for estimating ETa at Kijabe wheat farm. Similarly, Njuki (2016) estimated ETa using the 

SEBS model and compared the outcomes with EC flux measurements to assess irrigation performance at 

Delamare farm. 

 

WaPOR provides evaporation (E), transpiration (T) and interception (I) separately, primarily at dekadal 

timestep, which can then be aggregated to seasonal and annual basis (eLEAF, 2020). The ETLook algorithm 

(Bastiaanssen et al., 2012; Pelgrum, Jehanzeb, & Cheema, 2010) is applied in estimating the E,T and I. It 

adopts the Penman-Monteith equation (Monteith, 1965) (Equation 2.1) as a two-source model in calculating 

E and T expressed in Equation 2.2 and Equation 2.3 and calculates I (Equation 2.4) as a function of plant 

canopy, leaf area index (LAI), and precipitation (FAO, 2019). 

 

 

𝜆𝐸𝑇 =
𝛥(𝑅𝑛 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

𝛥 + 𝛾(1 +
𝑟𝑠
𝑟𝑎

)
  

 

Equation 2.1 
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Where 𝜆 is the latent heat of evaporation [J kg-1], E is evaporation [kg m-2 s-1], T is transpiration [kg m-2 s-1], 

𝑅𝑛 is the net radiation [W m-2], 𝐺 is soil heat flux [W m-2], 𝜌𝑎 is air density [kg m-3], 𝑐𝑝 is specific heat of 

dry air [J kg-1 K-1], 𝑒𝑎 is actual vapour pressure of the air [Pa], 𝑒𝑠 is saturated vapour pressure [Pa] which is 

a function of the air temperature. Δ is the slope of the saturation vapour pressure against the temperature 

curve [Pa K-1]. 𝛾 is the psychrometric constant [Pa K-1], 𝑟𝑎 is aerodynamic resistance [s m-1], and 𝑟s is bulk 

surface resistance [s m-1]. 

𝜆𝐸 =
𝛥(𝑅𝑛,𝑠𝑜𝑖𝑙 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎,𝑠𝑜𝑖𝑙

𝛥 + 𝛾(1 +
𝑟𝑠,𝑠𝑜𝑖𝑙

𝑟𝑎,𝑠𝑜𝑖𝑙
)

     

 

 

𝜆𝑇 =

𝛥(𝑅𝑛,𝑐𝑎𝑛𝑜𝑝𝑦) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)

𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦

𝛥 + 𝛾(1 +
𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦

𝑟𝑎,𝑐𝑎𝑛𝑜𝑝𝑦
)

   

 

where 𝜆E and 𝜆T are evaporation [W/m2] and transpiration [W/m2] respectively, Rn,soil [W/m2] and 

Rn,canopy [W/m2] are the net radiations at soil and canopy respectively. r,soil [s/m] and r,canopy [s/m] are soil 

and canopy resistances respectively. 

 

𝐼 = 𝐼𝑙𝑎𝑖 (1 −
1

1 +
𝑐𝑣𝑒𝑔𝑃

𝐼𝑙𝑎𝑖

) 

 

Where I is the Interception, cveg is vegetation canopy, Ilai is the leaf area index [-] derived from NDVI [-], and 

P is the precipitation [mm]. 

 

Figure 2.1 indicates that E and T are computed from the surface and sub-surface soil moisture respectively, 

and the I is estimated from vegetation canopy (FAO, 2019). 

 

Equation 2.3 

Figure 2.1 Conceptual diagram of the ETLook model  

 

Equation 2.2 

Equation 2.4 
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When the three components (E, T, and I) are considered in calculation, Gross WP is obtained as indicated 

in Equation 2.5. When the plant output is related to only the transpiration, Net WP is obtained (Equation 

2.6). 

 

𝐺𝑟𝑜𝑠𝑠 𝑊𝑃 =  
𝐵𝑖𝑜𝑚𝑎𝑠𝑠

𝐸 + 𝑇 + 𝐼
 

       

 

𝑁𝑒𝑡 𝑊𝑃 =  
𝐵𝑖𝑜𝑚𝑎𝑠𝑠

𝑇
 

       

 
In SWAT model studies, ETa is simulated as a component in the hydrological processes (Equation 5.1) and 

is represented as a main source of depletion of the fallen precipitation. The ETa is calculated from Potential 

Evapotranspiration (PET). PET is the amount of water that can evaporate and transpire where there is 

unlimited water availability. This can be estimated in SWAT+ model via four approaches, namely (i) 

Priestley-Taylor, (ii) Penman-Monteith, (iii) Hargreaves, or (iv) Read-in external PET values. Similarly to the 

WaPOR, PET was estimated using the Penman-Monteith approach (Equation 2.1) (Monteith, 1965). 

Climatic input data including air temperature [°C], solar radiation [MJ/m2], relative humidity [-], and wind 

speed [m/s] were required in this case (described in section 5.2.1). 

 

The model first calculates the evaporated maximum amount of precipitation that was intercepted by the 

plant canopy, which varies daily as a function of LAI (Equation 2.7) (Neitsch, Arnold, Kiniry, & Williams, 

2005). The amount of intercepted precipitation depends on the land covers. For instance in forests, the 

amount of evaporated interception can be higher than transpiration. Secondly, SWAT model calculates the 

maximum soil evaporation and maximum plant transpiration using Ritchie (1972) approach. 

 

 

𝑐𝑎𝑛𝑑𝑎𝑦 = 𝑐𝑎𝑛𝑚𝑎𝑥 ∗ 
𝐿𝐴𝐼

𝐿𝐴𝐼𝑚𝑎𝑥
 

      

where canday is the maximum amount of water that can be withheld in the canopy on a given day [mm], 

canmax is the maximum amount of water that can be withheld when the canopy is fully developed [mm], LAI 

is the leaf area index for a given day [-], and LAImax is the maximum leaf area index for the plant [-]. 

 

Different methodologies have been employed in estimating ETa in a catchment using the SWAT model. 

Marek et al. (2015) performed calibration and validation of ETa directly against lysimeter insitu 

measurements. B. Liu & Gan (2018) used derived remote sensing ETa instead of insitu ETa. Tulshiram et 

al. (2015) obtained ETa estimates after calibrating and validating reservoir storage simulations. 

2.1.2. Biomass production 

In WaPOR, biomass production is represented as either TBP, AGBP or specific crop yield. TBP is the total 

accumulated biomass at the end of growing season of a plant. AGBP is obtained by applying a constant 

conversion factor of 0.65 that represents the ratio of the shoot to the entire plant. Crop yield is the 

harvestable biomass depending on the specific crop type and is calculated as Equation 2.8 (Mannaerts et al., 

2020). 

 

 

Equation 2.5 

Equation 2.6 

Equation 2.7 
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𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑 =  
𝐻𝐼 ∗ εlue 𝑐𝑜𝑟 ∑ 𝑁𝑃𝑃𝐸𝑂𝑆

𝑆𝑂𝑆

𝛼 ∗ 𝐴𝐺𝐵𝐹 (1 − 𝜃)
 

 

where crop yield is in [ton/ha]. HI is the crop harvest index [-], εlue𝑐𝑜𝑟 is the plant light use efficiency 

correction factor [-]. SOS and EOS are the plant start and end of season respectively [day], NPP is the plant 

net primary production [gC/m2/day], 𝛼 is the factor that relates NPP to dry matter production (DMP) 

[tonDM/ha/day], AGBF is the plant above ground fraction [-], and 𝜃 is the plant moisture content [-]. 

 

 

The biomass production is obtained as a conversion from the Net Primary Production (NPP) [gC/m2/day] 

to dry matter production DMP [kgDM/ha/day] using a scaling factor of 0.45 gC/gDM. Therefore 1 NPP 

[gC/m2/day] is equal to 22.222 DMP [kgDM/ha/day]. The NPP values range between 0 to 5.4 gC/m²/day, 

that is DMP of 0 to 120 kgDM/ha/day, though higher values of upto 320 kgDM/ha/day can occur (FAO, 

2018).  

 

The NPP component is derived from satellite and weather data using the light use efficiency approach 

(Ruimy et al., 1999) based on Monteith (1972). NPP describes the carbon exchange between the ecosystem 

and the environment during photosynthesis process (Valentini, 2003) as shown in Figure 2.2. 

 

 

The NPP is computed during a growing season for a particular land cover based on the plant light use 

efficiency (LUE) in relation to the amount of intercepted photosynthetically active radiation-fraction 

absorbed by vegetation (faPAR), soil moisture stress, solar radiation, and minimum to maximum 

temperature ratio. This calculation is based on Monteith (1972) as presented in Equation 2.9. 

 

 

 

𝑁𝑃𝑃 = 𝑆𝑐 𝑅𝑠𝜀𝑝 𝑓𝐴𝑃𝐴𝑅 𝑆𝑀 𝜀𝑙𝑢𝑒 𝜀𝑇 𝜀𝐶𝑂2 𝜀𝐴𝑅 [𝜀𝑅𝐸𝑆] 

    
 

where NPP is the Net Primary Production, 𝑆𝑐 is the scaling factor from DMP to NPP [-], 𝑅𝑠 is the total 

shortwave incoming radiation [GJT/ha/day], εp is the fraction of PAR (400nm - 700nm) in total shortwave 

0.48 [JP/JT], 𝑓𝐴𝑃𝐴𝑅 is the PAR-fraction absorbed (PA) by green vegetation [JPA/JP], 𝑆𝑀 is the soil 

moisture stress reduction factor, εlue  is the light use efficiency at optimum [kgDM/GJPA], εT  is the 

normalized temperature effect  [-], εCO2 is the normalized CO2 fertilization effect [-], εAR is the fraction 

Figure 2.2 Schematic representation of the carbon fluxes; Gross Primary Production (GPP), Net Primary 
Production (NPP), Net Ecosystem Production (NEP) and Net Biome Production (NBP) (FAO, 2019). 

Equation 2.9 

Equation 2.8 
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kept after autotrophic respiration [-], and εRES is the fraction kept after residual effects (including soil 

moisture stress) [-]. 

 

 

In the SWAT model, plant growth is witnessed from the development of leaf area and canopy height (Allen, 

Jensen, Wright, & Burman, 1989) influenced by the plant light use efficiency together with weather 

parameters. Temperature is a significant factor to plant growth, and minimum (base) temperature requires 

to be attained before a plant development commences. The temperature ranges depend with plant variety. 

Plant growth process occurs when the accumulated daily temperature exceeds the base temperature until 

optimum temperature is reached (maturity stage). This is expressed as heat units (Equation 2.10). Heat units 

is the accumulated heat required by a plant to maturity stage (Neitsch et al., 2005). 

 

 

𝐻𝑈 = 𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑏𝑎𝑠𝑒         when   𝑇𝑚𝑒𝑎𝑛 > 𝑇𝑏𝑎𝑠𝑒 

    

  

where HU is the number of heat units accumulated in a day [-]; where the summation during the growth 

period gives the total potential heat units (PHU) required for a plant to mature (Equation 2.11). Tmean is 

the mean daily temperature [0C], and Tbase is the minimum (base) temperature for a plant growth [0C].  

 

𝑃𝐻𝑈 =  ∑ 𝐻𝑈

𝑚

𝑑=1

 

      

where PHU is the total heat units required for plant maturity [-], HU is the number of heat units accumulated 

on day d, where d = 1 on the day of planting, and m is the number of days required for a plant to reach 

maturity stage. 

 

SWAT+ model utilizes an algorithm that converts heat units to ‘days-to-maturity’ for different species of 

plants/crops that are defined by the length of growing season (simply the planting date to maturity date). 

These include seasonal, annual and perennial plants. Plant growth is simulated under adequate water, 

nutrients and climatic conditions at daily timestep (Arnold et al., 2019). 

 

During photosynthesis process, the model converts the intercepted solar radiation to biomass at a plant 

specific biomass-energy ratio [[kg/ha]/[MJ/m2]] (Arnold et al., 2019). When the plant reaches maturity 

stage, it stops uptaking water and nutrients, and transpiration. This gives the accumulated biomass [kg/ha] 

or crop yield, when the plant is harvested and/or completely removed ‘killed’. Crop yield, the harvestable 

biomass, is calculated as the product of above ground biomass and harvest index (HI) (Equation 2.12). 

 

 

𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑 = 𝐵𝑖𝑜𝑚𝑠 ∗ 𝐻𝐼 

     

 

where Crop yield is in [kg/ha]. HI, the harvest index, indicates the amount of above ground biomass 

contributing to the harvestable portion. It is expressed as a ratio of the weight of dry grains [kg] to the 

weight of total dry matter [kg] ranging from 0.0 to 1.0 for majority of crops (Sinnathamby, Douglas-Mankin, 

& Craige, 2017). Bioms [kg/ha] is the above ground biomass on the day of harvest calculated as expressed in 

Equation 2.13 (Neitsch et al., 2005). 

Equation 2.10 

Equation 2.11 

Equation 2.12 
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𝐵𝑖𝑜𝑚𝑠 = (1 − 𝑓𝑟𝑟𝑜𝑜𝑡) ∗ 𝑏𝑖𝑜 

      

 

where frroot is the fraction of the total biomass in the roots at the day of harvest [-]. bio is the total plant 

biomass on the day of harvest [kg/ha]. 

 

 

In relation to the specific crop variety, WP can be calculated in terms of the crop yield per unit water use 

(ETa) as shown in Equation 2.14 (Sadras, Grassini, & Steduto, 2010). 

 

𝐶𝑊𝑃 =  
𝐶𝑟𝑜𝑝 𝑦𝑖𝑒𝑙𝑑

𝐸𝑇𝑎
 

      

 

where CWP is the crop water productivity [kg/m3], crop yield is in [kg/ha], and ETa is the actual 

evapotranspiration [m3/ha]. 
 

The SWAT model has the capability of simulating phenological information as well as growth dynamics of 

about 80 varieties of crops via the parameters defined. The model also factors in management practices such 

as tillage operations, and crop residue management in organic matter decay and mineralization processes by 

soil bacteria and micro-organisms (Arnold et al., 2012). In comparison to SWAT, SWAT+ model has added 

capability features: two or more crops planted in rotation or growing at the same time can be modeled. Land 

management practices, such as planting and harvesting dates, can also be modeled by specific user-defined 

criteria (Bieger et al., 2017). 

 

 

Equation 2.13 

Equation 2.14 
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3. STUDY AREA 

3.1. Location 

Lake Naivasha basin is located in the Rift Valley in Kenya at latitude 0.150S to 0.920S and longitude 36.150E 

to 36.400E (zone 370S UTM) (Figure 3.1). It is shared between Nyandarua county in the north and west, 

Nakuru county in the south-east and Narok county in the south-west. Nyandarua county consist of 

Kinangop, Kipipiri, Ol Kalau, Oljororok and Ndaragua sub-counties.  

 

 

3.2. Topography 

Elevation ranges from 1980 m above sea level (masl) at the floor of the Rift Valley near the lake to 3990 

masl at the Aberdare Ranges and Mau Escarpments on the eastern and south-west sides of the catchment 

respectively. High elevations are also witnessed at the far south where Mount Longonot borders the 

catchment. 

Figure 3.1 Location of the Lake Naivasha basin, indicating distribution of studied farm fields and hydro-
meteorological stations 
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3.3. Hydrology 

The catchment covers an area of approximately 3400 km2 with Lake Naivasha, the 2nd largest freshwater 

lake in Kenya after Lake Victoria, covering approximately 170km2. The lake has no surface outflow, and is 

famously known as a Ramsar wetland site since 1995 (Becht, Odada, & Higgins, 2005). 

 

Two major perennial rivers from the north are River Malewa which contributes about 80% and River Gilgil 

which contributes 10% inflow into the lake (Armstrong, 2002). Surface water does not reach the lake on the 

east, west and south sides during the whole year, because of seasonality of the rivers. River Karati on the 

eastern side reaches the lake during heavy rains, while others such as River Marmonet from Mau Escarpment 

recharges at Ndabibi Plains at the western side of the lake. These seasonal rivers contribute about 10% 

inflow to the lake (Clarke, Woodhall, Allen, & Darling, 1990).  

3.4. Climate 

The catchment is located in an equatorial tropical region. The climate conditions of the catchment are 

diverse due to the altitudinal difference, where the upper parts of the catchment experience a humid climate 

while the lower parts, especially near the lake, experience semi-arid conditions (Becht & Harper, 2002). 

 

The micro climate is experienced with a mean annual rain of about 600 mm at the floor of the Rift Valley 

and 1500 mm at the Aberdare Ranges (Al-Sabbagh, 2001). This occurs in two rainy seasons; long rains in 

March to May and short rains in October to November. These are preceded with relatively dry seasons in 

December to February and June to September respectively. The daily mean maximum and minimum 

temperatures ranges between 24.6 0C to 28.3 0C and 6.8 0C to 8.0 0C respectively (De Jong, 2011). Figure 

3.2 shows the catchment rainfall, maximum and minimum temperature sourced from CHIRPS and NCEP 

CFSR respectively. 

 

 

 

Figure 3.2 Average monthly rainfall and daily maximum and minimum temperature in a month. 
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3.5. Socio-economic activities 

A major portion of the catchment is used for both rainfed and irrigated; subsistence and commercial 

agriculture purposes. It supports a wide variety of socio-economic activities. The upstream part holds mainly 

small-scaled farming with cultivated crops such as cereals, vegetables and tuber crops. The downstream part 

consists of large horticultural and floricultural greenhouses, geothermal projects, fish farming, and inhabited 

diverse species of wildlife that acts as a tourist attraction. Other parts of the catchment are covered with 

natural vegetation: forests, shrubs, grassland, and water bodies including the Lake Naivasha and rivers 

(Odongo, 2016). 
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4. FIELDWORK SURVEY 

Fieldwork was conducted from 8th to 25th January 2020 at different parts of the catchment, targeting both 

upstream and downstream sections. Locations of ITC weather stations were also used as reference to the 

targetted farm fields. The main purpose of this fieldwork was (i) To conduct ground-truthing on land cover 

information in Lake Naivasha basin. (ii) To collect crop phenological information and basic land and water 

management practices from farmers in the catchment. 

4.1. Evaluating land cover data 

The ‘Windshield survey’ sampling strategy (Defourny, Jarvis, & Blaes, 2014) was employed to target parcels of 

0.25 ha or larger sizes that are easily accessed along the roads. The land cover information was collected 

using ‘SW maps-GIS and Data Collector’ mobile application installed on an android phone (SOFTWEL Pvt, 

2020). This included both cropland (cereals, tuber crops, vegetables, leguminous, grasses and fodder crops) 

and non-cropland (shrubland, forests, greenhouses, waterbodies, bare land) covers.  

 

Google Earth Pro (Google Earth, n.d.) was used for counter-checking the land covers and map locations. 

Photographs together with written notes were also included in the process. Figure 4.1 shows the specific 

farm fields in Lake Naivasha basin that were surveyed and where land cover crop information was collected. 

 

Figure 4.1 The Lake Naivasha basin locations surveyed with the specific cover crops 
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It was evident that the majority of the farm fields are small, mostly on flat terrain, hence have a large 

heterogeneity in the land cover. For instance, Kinangop ‘Engineer’ and upstream areas consist of rainfed 

small scale farmlands with mainly cereal crops and grasslands vegetation. However, it was noticed that some 

large-scaled farms dominate parts of the catchment downstream. For instance, Kijabe farm at the west of 

Lake Naivasha mainly consists of large scale wheat growing. Delamare and Nunjoro at the north-eastern 

side of the lake consist of mainly irrigation schemes growing fodder crops. Figure 4.2 and Figure 4.3 illustrate 

some of the farm fields visited. 

 

 

 

 
The climate in Kinangop area is different from the rest parts of the catchment with lower temperatures that 

result in frost due to nearby slopes of Aberdare ranges. The frost formation help in weed and pests control. 

Oats and tuber crops such as irish potatoes are therefore favorable crops in this condition. Other crops also 

evaluated in this region include grassland, maize, barley, cabbages, and garden peas. These crops are mainly 

rainfed on which farmers use human labour in planting, weeding and harvesting and some machinery in 

ploughing.  

 

Figure 4.2 Harvested wheat with pivot irrigation equipment on site (left) and overgrown wheat after 

harvesting (right) at Kijabe farm. 
 

Figure 4.3 Maize at maturity stage, on a farm at Kinangop area (left) and dry ready to harvest maize on a 
farm at the upstream part of the catchment (right) 
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In the upstream region, rainfed; grassland, maize and some oats are the main cover crops. Compared to 

Kinangop area, where the maize was almost at maturity stage, in this region maize was dry and ready for 

harvest (Figure 4.3). Farmers interviewed, also reported that the delayed harvest was due to the delayed rains 

in the year 2019. Farmland sizes in this visited region were larger than those at Kinangop area. The climate 

here was also noticed to be drier than Kinangop. 

4.2. Crop growth information 

Crop growth as well as land and water management practices information from farmers was collected 

through interviews and questionnaire sheets (sample shown in Appendix A). Crop information from a total 

of 5 crop types were obtained from farmers in Lake Naivasha basin. Figure 4.4 shows the calendars obtained 

for the specific crops. 

 

 
Legend: 

Planting phase Growing phase Harvesting phase 

   

Figure 4.4 Cropping seasons for specific crops in years 2019-2020 in Lake Naivasha basin 

 
Furthermore, long-term crop information, covering the years 2009 to 2019, was obtained from Nyandarua 

County Crop Development Department office. This included annual crop yields (that is later discussed in 

Chapter 5), crop phenological information, farm management practices, and monetary and weight value 

production data. 

4.3. Land cover map 

A land cover map created from Sentinel-2 imagery (29/01/2018 and 01/02/2018) was obtained from Njuki 

(ongoing PhD research at ITC). During the field survey, the ground-truth information collected at the 

specific field sites, showed that some covers such as, shrubland at the upstream parts of the catchment, 

reflected on the land cover map. The map seems to have missed the greenhouses in some areas north of the 

lake, as they might have been recently constructed. Irrigated farms around the lake including Delamare were 

well represented. It was also noted that, most of the cereals crop lands were captured as grassland and bare 

land. 

 

The confirmed specific land covers from the field survey were then ‘burnt-in’ in the map. This was basically 

carried out in a simple stepwise manner using polygon-to-raster conversion, combine, and reclassify tool 

Crop type Crop Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 

 
 
Cereals 

Baby corn             

Normal corn             

Wheat             

Barley             

Oats             

Leguminous 
crops 

French beans             

Garden peas             

Root-tuber 
crop 

Irish potatoes             

Vegetables Cabbages             

Broccoli             

Fodder Lucerne             
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operations in ArcGIS. Maize, wheat, oats and alfalfa (Lucerne) were defined as separate classes as they were 

dominant compared to the other crops on the sites visited. Figure 4.5 shows the land cover map obtained. 

 

 

 

 

 

 

 

Figure 4.5 Land cover from Sentinel-2 imagery (29/01/2018 and 01/02/2018) 
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5. SWAT+ MODEL WATER PRODUCTIVITY ANALYSIS 

This research adopts the SWAT+ model in building a model for Lake Naivasha basin and simulation of 

ETa and TBP in the period 2009 to 2019. In comparison to the SWAT model, SWAT+ has improved 

capability in spatial representation of hydrological processes to achieve the realism in a user-defined 

catchment.. This is with regard to the catchment delineation and relationships between the spatial objects 

(sub-basins, hydrological response units (HRUs), channels, inlets and outlets). Users can also define output 

files at different temporal resolutions (daily, monthly, yearly and average annual), and spatial resolutions 

(HRU, and basin scale extent) (Bieger et al., 2017). This novel model is, however still improving to fulfil 

user needs in different application regions with regard to geographical, topographical and climatic 

characteristics. Bugs and errors in the program are still present and must be fixed. 

5.1. Concept of hydrological water balance 

In the SWAT+ model, hydrological processes in a catchment takes place in two phases. (i) The land phase, 

where the amount of water, nutrients and pollutants in a sub-basin are estimated. This occur via infiltration, 

percolation, evaporation and transpiration processes as well as horizontal exchanges to a channel. (ii) The 

routing phase, where the actual movement of the water, nutrients and pollutants in a network of channels 

to the main outlet of the catchment are simulated (Neitsch et al., 2005). 

 

Major hydrological processes in the land phase are quantified based the general water balance equation 

(Equation 5.1) to comprehend the key water balance components in a catchment. One source of potential 

uncertainty in the water balance equation is that not all inflows, outflows and storages are fully accounted 

for (Arnold, Moriasi, et al., 2012). 

 

 

     

 

where SWt is the final soil water content after timestep t of day i [mm]. SWo is the initial soil water content 

on day t, t is the time [days],. Preci is the amount of precipitation on day i [mm]. SURQ is the amount of 

surface runoff on day i [mm]. ETa is the amount of evapotranspiration on day i [mm]. Wseep is the amount 

of water seeping into the unsaturated zone from the soil profile on day i [mm]. And GWQ is the amount of 

return flow on day i [mm]. 

 

Precipitation, which is a driving force in hydrological processes, is partitioned into several elements. The 

falling precipitation may be intercepted by plants or fall on the soil surface, which will either evaporate into 

the atmosphere, infiltrate or flow as runoff to the main channel. The infiltrated water in the soil may either 

be taken up by plants, percolate into the aquifer or move laterally to the main channel.  

 

SWAT+ model provides two approaches for estimating surface runoff and infiltration flow. These are (i) 

the SCS Curve number method (Mockus, 1972) and (ii) the Green & Ampt infiltration method (Green & 

Ampt, 1912). The SCS Curve number method which is based on daily precipitation and curve number 

values, was adopted for this research, because it factors in the canopy interception processes, as the plant 

canopy has a significant influence on the surface runoff as well as ETa and infiltration. On the contrary, 

Equation 5.1 
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interception is calculated separately when the Green & Ampt infiltration method is used. In estimating the 

runoff through the stream network, SWAT+ provides two approaches. (i) Variable storage method 

(Williams, 1969). (ii) Muskingum method (McCarthy, 1938). The default variable storage method was 

adopted for this research. 

5.2. Datasets 

The quality of SWAT output greatly depends on the accuracy of the input data. Various past researches 

conducted on the Lake Naivasha basin have resulted in the availability of a fair amount of data in the ITC 

archives. However, the quality of this data was questionable, outdated and with gaps. The apparent missing 

or outdated data needed to be accounted for by updating. Therefore, more sets of data were collected and 

compared to the already acquired data. In the process, some differences between the data sets were found, 

and some decisions were made before the data was implemented. This is further explained in the specific 

sub-sections. 

5.2.1. Climate data 

With the model approaches for surface runoff, evapotranspiration and plant growth, five weather 

parameters, namely precipitation [mm], maximum and minimum temperature [°C], solar radiation [MJ/m2], 

relative humidity [-] and wind speed [m/s] are required. Other parameters are wind direction and 

atmospheric deposition that were absolutely not required with the chosen model set-up. These parameters 

are in point data form at the represented meteorological stations, and must be either provided as observed 

input data or simulated using SWAT+’s weather generator. 
 

It was noted that for the entire period, the ITC and TAHMO measured weather data were unreliable. 

Inconsistency in the ITC stations data (2017-2019) was due to major gaps that might have resulted from 

poor maintenance of the rain gauges in the field. On the other hand, most of the TAHMO measured data 

were unavailable covering only some months in 2018 and 2019. Therefore, the Climate Hazards Group 

InfraRed Precipitation with Stations (CHIRPS), and the National Centers for Environmental Prediction - 

Climate Forecast System Reanalysis (NCEP CFSR) weather data for the other variables, were sourced. 

5.2.1.1. Comparison of CHIRPS to available TAHMO monthly precipitation 

Before CHIRPS precipitation data was adopted as input to the model, a comparison to available TAHMO 

data (covering March 2018 – Dec 2019 with missing data within) at two measuring stations was conducted 

to check on reliability of the CHIRPS data in the study region. Table 5.1 shows location information for the 

two TAHMO rain gauge stations and the comparison results are shown in Figure 5.1 and Figure 5.2. 

 

 
Table 5.1 Location of the two TAHMO stations 

Station Latitude [0S] Longitude [0E] Elevation [m] 

TA00414 -0.5866 36.4931 2432 
TA00416 -0.6068 36.5811 2488 
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From Figure 5.1 and Figure 5.2, it is evident that CHIRPS precipitation differs from TAHMO at both 

stations TA00414 and TA00416. However, the trends match the catchment’s seasonal pattern of high 

precipitations in the long rains season (around March-May) and low precipitations in the short rains season 

(around September-November). It was also evident that January-March of 2019 is a dry period with almost 

0 mm precipitation recorded in both stations, as well as by CHIRPS. 

 

Although CHIRPS appears to record higher precipitation than TAHMO in most of the assessed months at 

both stations, there are a few months where TAHMO recorded equal or higher precipitation especially at 

station TA00416. In December 2019 even a very high precipitation of almost 1000 mm was reported. This 

record is probably erroneous when compared to that recorded at TA00414. Therefore, these short-term 

comparison results were not really able to determine the reliability of CHIRPS data in this study. 

Figure 5.1 TAHMO against CHIRPS monthly precipitation at station TA00414 (2018-2019) 

Figure 5.2 TAHMO against CHIRPS monthly precipitation for station TA00416 (2018-2019) 
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5.2.1.2. Weather generator data 

Despite having multiple stations in a sub-basin, SWAT+ model utilizes the weather station closest to the 

centroid of a sub-basin for representing the entire sub-basin weather data. This technique could lead to 

picking a station with less reliable data. Hence, ‘artificial’ weather stations on the centroids are generated 

using inverse distance interpolation of the available ‘real’ weather stations, to minimize potential 

uncertainties (Neitsch, Arnold, Kiniry, & Williams, 2009). Cho et al. (2009) compared the centroid method 

to precipitation input based on the Theissen polygons method, and found that the centroid method resulted 

in higher inaccuracies in simulated data when there is a high spatial variation in the measured precipitation 

amounts. However, the centroid method is the approach still used in the SWAT+ model.  

 

The weather generator tool generates weather stations data when there is insufficiency in the daily records. 

This constraint is common in long term data records with ‘missing data’ in the measured records. Also in 

situations where the weather data is completely unavailable due to lack of operational weather stations. The 

daily weather values are generated from average monthly data values in each sub-basin with disregard to the 

spatial variation (Richardson & Nicks, 1990). This weather generator is widely used in SWAT model studies 

and it is evidenced in a study conducted by Zhang et al. (2004) that in general, the tool is statistically 

comparable for precipitation, solar radiation, maximum and minimum temperature values when validated 

against observed data. 

5.2.1.3. CHIRPS precipitation data 

CHIRPS (Funk, 2018) was adopted to solve the problem of unreliable measured precipitation data from the 

ITC and TAHMO stations. CHIRPS sources time series (1981 to present) precipitation dataset in raster 

format at 5 km2 spatial resolution. It consist of satellite observed precipitation blended with rain gauge 

stations data (Dinku et al., 2018). 

 

CHIRPS data for the simulation period (2008-2019) was downloaded from Gorelick et al. (2017) at 7 stations 

(Figure 3.1) distributed within the Lake Naivasha basin. At each station point, a pixel precipitation value 

was extracted. To ensure that the values were not erroneous, an average value for the 10 nearby pixels weas 

applied. Figure 5.3 shows the CHIRPS average annual precipitation plotted against elevation at the 7 stations. 

This shows a positive relationship between the annual precipitation values extracted and the elevation points. 

 

 

Figure 5.3 Average annual precipitation from CHIRPS plotted against elevation for the 7 stations 
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5.2.1.4. NCEP CFSR weather data 

The US National Centers for Environmental Prediction - Climate Forecast System Reanalysis (NCEP CFSR) 

data consist of 36 years (1979-2014) of historical weather variables at 38 km2 spatial resolution (Saha et al., 

2010). NCEP CFSR was sourced for the other weather parameters, namely; maximum and minimum 

temperature, solar radiation, relative humidity and wind speed. These variables (2009-2014) were 

downloaded from Texas Agriculture and Management University (2020). And the weather generator was 

adopted for the remaining 2015 to 2019 period. 

5.2.2. Streamflow data 

Streamflow data at five gauge stations in Lake Naivasha basin, shown in Figure 3.1 and detailed in Table 5.2 

were acquired from the ITC archive. This data was found to be incomplete and outdated regarding the years 

2007-2014 (Abbasi, Mannaerts, & Makau, 2019). Hence, an updated set of streamflow data at the five 

stations was acquired from WRMA Naivasha. This data values still differed much from the ITC data, apart 

from at gauge station 2GB04 and 2GB05. This could be probably due to different quality control methods 

used from both parties. These include handling and or imputation of missing data, and checking and removal 

of outliers. 

 

Table 5.2 Location information on the five gauge stations 

Station X-Coordinate [m] Y-Coordinate [m] Elevation [m] 

2GB04 219808.8 9969175.2 2334 

2GB05 210688.5 9945446.0 1987 

2GB08 212081.6 9964640.5 2264 

2GC04 212451.6 9946983.4 2000 

2GC05 228295.2 9939060.7 2408 

 

The streamflow data was measured by reading water levels [m] at daily basis from a gauging staff and then 

converted to flow rate [m3/s] using rating curves developed by Meins (2013). It was recommended by Makau 

(2018) and Ochieng (2017) that an update on the rating curves should be conducted by including recent 

acquired streamflow data sets. This would help improve future analysis of simulated compared to the 

observed streamflows. 

5.2.3. Crop Yield data 

Actual sampled annual crop yields from farmers in Nyandarua county were obtained from the County Crop 

Development Department office. This included different cereals, tuber crops, leguminous, pyrethrum, 

vegetables and fruits. Only maize and wheat yields were used for this research. The sampled crop yields 

cover the study period but with missing data for 2013. These yields data were used for the validation of 

simulated crop yields at specific hydrological response units (HRUs). 

5.3. SWAT+ model set up 

In this research, SWAT+ modeling was conducted in SWAT+ Editor version 1.3.0 and QSWAT+ version 

1.3.3 in QGIS version 3.4.11. These software are open source and QSWAT+ is equipped with capability of 

visualization of simulated results graphically and dynamically over time, which is advantageous compared to 

other SWAT platforms like ArcSWAT (Y. T. Dile et. al., 2016). Basically, the following steps were 

implemented: (i) Watershed delineation, (ii) Creating HRUs, (iii) Writing input files, and (iv) Running the 

model. 
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5.3.1. Watershed delineation 

Following the step-by-step procedure guidelines in the QSWAT+ user manual (Y. Dile, Srinivasan, & 

George, 2015), the SWAT+ model for Lake Naivasha basin was created. Topography information from 

SRTM Digital Elevation Model (30 m resolution) (Figure 5.4) was acquired from USGS (2018). The Lake 

Naivasha basin is identified as an endorheic catchment (that is catchment with only an internal outlet) where 

the river network converge into the lake. A sink ‘hole’ (less than 1000m) was therefore, created in the lake 

to identify the lowest elevation point. This is due to the difficulties of the Terrain Analysis Using Digital 

Elevation Models (TauDEM) (Tarboton, 2015) river network and catchment delineation software used by 

SWAT model. The model still recognized the southern part of the catchment as lowest point during the 

delineation process. This issue however did not affect this research, as the focus was on biomass and ETa 

outputs. The DEM was then projected to a projection coordinate system (WGS 84 UTM zone 370S) to fit 

the SWAT+ model requirement. 

 

 

 

 

 

The lake and a main outlet at the most downstream point of the catchment were then defined generating 

15 sub-basins as shown in Figure 5.5. 

 

 

Figure 5.4 SRTM DEM data for Like Naivasha basin 
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5.3.2. Creating Hydrological response units (HRUs) 

The delineated sub-basins were further subdivided into HRUs, which are the smallest units within the model. 

They consist of homogeneous areas of uniform land cover, soil type, and slope range with disregard to the 

spatial aspect. At each HRU, streamflow is simulated separately and then routed to the sub-basin. HRUs 

enhance the accuracy in crop heterogeneity hence hydrological processes simulation in a catchment (Arnold, 

Kiniry, et al., 2012). 

The number of HRUs is limited by considering the percentage thresholds in land cover, soil and slope to 

decrease the run time of the model. These thresholds have a minor effect on streamflow, but a major effect 

on nutrients simulations with a high sensitivity to soil types and slope (Her, Frankenberger, Chaubey, & 

Srinivasan, 2015). Thresholds of 20%, 10%, and 20% on land cover, soil and slope respectively were applied, 

which are the default setting in SWAT (Winchell, Srinivasan, Di Luzio, & Arnold, 2010). An exemption 

from the thresholds was made to irrigated cropland, alfalfa, corn and oats land covers as they covered smaller 

areas. 15 sub-basins with 187 channels and 1832 HRUs were generated, covering 96.31% (327155.04 ha) of 

the total delineated catchment area. The Lake Naivasha covers the remaining 3.69% (12080 ha). 

Figure 5.5 Delineated Lake Naivasha basin 
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5.3.2.1. Soils definitions 

Lake Naivasha basin is of a volcanic type of soils and majorly consist of clay silt texture. Figure 5.6 shows 

the soil classification map that was developed by the Kenya Soil Survey (Macharia, 2004), acquired from the 

ITC and ISRIC SOTER (2010) databases. It consist of 23 soil classes, for which physical and chemical 

properties details are provided in Sombroek, Braun, & van der Pouw (1982). This was then projected to 

same projected coordinate system as the DEM (WGS 84 UTM zone 370S). 

 

 

Table 5.3 gives the soils type description of the soil classes as shown in Figure 5.6. Becht et al. (2005) found 

out that soils in the catchment are very permeable with a low water holding capacity especially around the 

lake. Parameterization of the soil map was adopted still from Tiruneh (2004) after his fieldwork expedition. 

This included physical properties as explained in Table 5.4. These were then translated to the SWAT+ model 

as user lookup tables in csv file format. 

 

 

 

 

 

Figure 5.6 Lake Naivasha basin soil classification map 
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Table 5.3 Meaning description of the soil map classes adopted from Tiruneh (2004). 

Soil name Description 

R3 Well drained 

Ux3 Deep to very deep, silty clay (brown clay) 

H9 Shallow-well drained, very bouldery or stony loam to clay loam 

L20 Well drained, moderately deep to very deep clay, loam to clay 

Pi11 
Well drained, moderately deep to deep, fine gravelly, sandy-clay loam to sandy clay, with 
humic top soil 

H4 Rocky and stony, clay loam, rock out crops 

Ux7 
Well drained shallow, dark brown stony loam, with a stone surface dissected older piedmont 
plain 

H6 Deep to very deep, clay loam with a thick humic top soil 

LU2 Well drained, deep to very deep, clay loam with a thick humic topsoil 

L22 Well drained, deep to very deep clay loam, imperfectly drained, deep cracking clay 

R1 Well drained, extremely smeary clay with an acid humic topsoil 

F7 Well drained, deep to very deep friable clay with an acid humic topsoil 

M2 Well drained, very deep clay loam to clay 

M9 Imperfectly drained, shallow to moderately deep loam to clay loam rock out crops 

L21 Imperfectly drained, deep very dark firm clay, silty clay loam of thick top soil 

Ux5 Well drained, very deep friable and slightly smeary clay with a humic topsoil 

Pv6 Excessively drained to well-drained, very deep, loose  fine sand to very fine sandy loam (silt) 

M1 Excessively drained, shallow to moderately deep stony to gravelly clay loam 

PI7 Imperfectly drained to poorly drained, very deep silt loam to clay with a humic topsoil 

 

 

Table 5.4 Soil physical properties required by SWAT+ model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil parameter  Description  

NLAYERS  Number of soil layers in soil (1 to 10) [-] 

HYDGRP  Soil Hydrological group (A, B, C, D) [-] 

SOL_ZMX  Maximum rooting depth [mm] 

ANION_EXCL Fraction of porosity from which anions are excluded [-] 

SOL_CRK  Potential or maximum crack volume (optional) [-] 

TEXTURE  Texture of soil layer (optional) [-] 

SOL_Z  Depth from soil surface to bottom layer [mm] 

SOL_BD Moist bulk density [g/cm3] 

SOL_AWC Available water capacity of the soil layer [-]  

SOL_K  Saturated hydraulic conductivity [mm/hour] 

SOL_CBN  Organic carbon content [%] 

CLAY Clay content [%] 

SILT Silt content [%] 

SAND Sand content [%] 

ROCK Rock fragment content [%] 

SOL_ALB  Moist soil albedo [-] 
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5.3.2.2. Land use definition 

The land cover determines the amount of intercepted precipitation as well as the impact of the rain drops 

that hit the soil for instance contributing to nutrients transportation and soil erosion. The obtained land 

cover map (Section 4.3) was projected to same projected coordinate system as the DEM (WGS 84 UTM 

zone 370S). The respective classes were then defined according to SWAT model classes using a look-up 

table in csv format. Details of the defined land cover classes are provided in Table 5.5.  

 

Table 5.5 Land use land cover (LULC) classes details 

Class value Original LULC Swat code SWAT LULC meaning Watershed area [%] 

1 waterbodies WATR Water 1.03 

2 bare SWRN South western range + bare 19.70 

3 grassland PAST Pasture/hay 26.17 

4 shrubland RNGE Range shrubland 31.01 

5 forest FRST Mixed forest 14.24 

6 cropland-rainfed AGRR Row crops 2.15 

7 cropland-irrigated AGRL Generic crops 0.53 

8 greenhouses UCOM Urban commercial 0.56 

9 built-up URML Urban medium density 0.17 

10 maize CORN Maize (120 days) 0.08 

11 alfalfa ALFA Alfalfa (perennial) 0.03 

12 oats OATS Oats (150 days) 0.02 

13 wheat SWHT Spring wheat (150 days) 0.62 

 

5.3.2.3. Slope definition 

In addition to land cover and soil properties, the slope variation in a catchment dictates the flow direction 

and speed of water. Spatial distribution of the soil classes in the catchment indicated that 55.79% of the 

catchment falls within 0-10 % slope range, 20.54% of the catchment lies in 10-20 % slope range and the 

remaining 19.98 % catchment have a slope of  >20 %. 

5.3.3. Writing input and output files 

After the catchment delineation and generation of HRUs, the prepared daily weather data and model 

parameter settings (Arnold, Kiniry, et al., 2012) were written as inputs to the SWAT+ Editor (Tech, 2019). 

The model simulation was then run first for 11 years (2009-2019) with a 2 years warm-up period (2007-

2008). The warm-up period enables the model to adopt realistic initial conditions based on the input data 

before providing results. The model outputs are in *.txt file format, which can be exported back to QGIS 

for visualization (graphs, maps or animation time series) via QSWAT+. 

5.4. Calibration and validation processes on surface runoff 

A calibration process is conducted by adjusting the model inputs including parameters with an aim of 

minimizing differences between observed and simulated data. Afterwards, validation is conducted to 

evaluate the reliability of the adjusted parameters on an independent set of data. Calibration and validation 

processes are, therefore conducted at distinct time periods and perhaps also spatiality on hydrological, 

management-based or plant related simulations. 
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Generally, both automatic and manual techniques are implemented in the calibration and validation of 

SWAT model simulations studies. Several automatic algorithms, which were developed for SWAT, have 

been updated so as to be compatible with the new SWAT+ model. These include IPEAT JAMES+ (Yen et 

al., 2019), SWATplus-CUP (Abbaspour, 2015), and SWATPlusR (Schuerz, 2019). 

 

Two of the three mentioned algorithms were adopted but were unsuccessful due to several challenges. 

IPEAT JAMES+ Version 1.0.0 was reported to be still under development. SWATplus-CUP Version 1.0, 

using the Sequential Uncertainty Fitting (SUFI-2) algorithm, (one month license) with the limitation of 

calibrating only monthly streamflow simulations, resulted in unresolved challenges that required it to be 

updated due to the current often updated SWAT+ released versions. 

 

Manual calibration and validation was opted for with parameters within their defined ranges at a monthly 

timestep. Simulations at monthly timestep are reported to perform better than simulations at daily timestep 

(Moriasi et al., 2007). However, the attempt to manually calibrate and validate the streamflow dataset was 

unsuccessful, and resulted to unresolved errors. SWAT+ model developers reported that this is mainly 

because the model is very new and still has several components under development. 

 

In addition, Arnold et al. (2012) explains that challenges that may arise during calibration and validation 

process include the availability of sufficient observed data, calibration adjustments distorting the real 

physical representation of a catchment system by the model, predicting conditions beyond the model 

capability, among others. In the end, no calibration was, therefore, applied in this study. However, parameter 

values of the well calibrated SWAT2018 model by Abbasi et al. (2019) on the Malewa sub-catchment, which 

covers approximately 55% of the Lake Naivasha basin, were used. A sensitivity analysis was performed and 

the uncalibrated streamflow results at gauges 2GB04 and 2GB05 were analyzed. 

5.4.1. Sensitivity Analysis 

A sensitivity analysis is performed to analyze the effect of changing model parameters on the output results. 

Since SWAT in general consists of a huge number of parameters that could be calibrated, identified 

parameters from previous researches on Lake Naivasha basin were used to identify the key parameters. 

 

The two types of sensitivity analysis are (i) local; where parameter values are changed at one-at-a-time (OAT) 

basis, and (ii) global; where multiple parameter values are allowed to change simultaneously. Global methods 

take into account that the sensitivity of one parameter depends on other parameters, but a large number of 

simulations is required. OAT on the other hand is limited to the fact that, correct values of other parameters, 

which are fixed during the sensitivity analysis, are never known (Arnold, Moriasi, et al., 2012). In this study, 

OAT as the default method in SWAT+ model was used. 

 

OAT sensitivity analysis was first conducted by adjusting parameters from their baseline values and assessing 

the overall streamflow percentage change over the study period. A total of 16 parameters (Table 5.6) 

regarding streamflow (same as (Abbasi et al., 2019)) were evaluated, but only 7 parameters were found to 

be sensitive. 
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Table 5.6 Sensitivity analysis with their ranks on parameters regarding streamflow 

Rank Parameter Description Absolute 
limits 

Variation 
[%] 

Q % 
change 

1 SOL_K Hydraulic conductivity of the soil 
[mm/h]  

0 – 200 ±30 ±0.39 

2 SOL_Z Depth of the soil layer [mm]  0 – 2000 ±30 ±0.24 

5 CN2 SCS runoff curve number per land [-] 35 – 95 ±30 ±0.15 

3 ESCO Soil evaporation compensation co-
efficient [-] 

0 – 1 ±30 ±0.12 

4 PERCO Deep aquifer percolation fraction [-] 0 – 1 ±30 ±0.10 

6 TRNSCH Transmission losses from channel to 
deep aquifer fraction [-] 

0 – 1 ±30 ±0.03 

7 SOL_AWC Available water capacity in the soil [-]  0.01 – 1 ±30 ±0.01 

8 ALFA Baseflow alfa factor [day] 0.15 – 0.50 ±30 ±0.00 

8 GW_DELAY Groundwater delay [day] 0 – 500 ±30 ±0.00 

8 FLO_MIN Threshold depth outflow from shallow 
aquifer [mm] 

1 – 500 ±30 ±0.00 

8 REVAP_MIN Threshold depth of water in the 
shallow aquifer [mm] 

0 – 1000 ±30 ±0.00 

8 REVAP_CO Groundwater “revap” coefficient [-] 0.02 – 0.4 ±30 ±0.00 

8 OVN Manning’s value for overland flow[-] 0.01 – 30 ±30 ±0.00 

8 N Manning’s value for the main channel 
[-] 

0.01 – 0.5 ±30 ±0.00 

8 K_CH Main channel hydraulic conductivity 
[mm/h] 

0.01 – 173 ±30 ±0.00 

8 SURLAG Surface runoff lag coefficient [-] 0 – 4 ±30 ±0.00 

 

 

The streamflow simulations are highly sensitive to parameters that control the amount of water in the soil 

layers. These include SOL_K, SOL_Z and SOL_AWC. ESCO directly affects the evaporation from soil. 

CN2 determines the amount of water that infiltrates from soil surface, and that is converted to runoff. 

TRNSCH and PERCO (known as RCHRG_DP in SWAT model) dictate the amount of water that seeps 

to deep aquifer. These results could be used in future calibration studies as starting point for streamflow 

simulation. 

5.4.2. Simulated streamflow results 

The model uncalibrated simulations on streamflow at channels 10 (gauge 2GB04) and 61 (gauge 2GB05), 

upstream and downstream in River Malewa respectively, were presented in hydrological graphs (Figure 5.7 

and Figure 5.8). At both channels, the simulated streamflow peaks and troughs match the high and low 

precipitation trend respectively. Gauge station 2GB04 (Figure 5.8) shows large gaps in observed streamflows, 

while gauge station 2GB05 (Figure 5.7) shows a gap only in years 2015-2016. 
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From Abbasi et al. (2019) results, where he adopted SWAT-CUP using SUFI-2 algorithm to automatically 

calibrate and validate streamflow at the five gauge stations (Table 5.2), he obtained the following results for 

gauge station 2GB05 and 2GB04: R2 of 0.86, NSE of 0.64 and PBIAS of 12.93 % (period 2007-2012), and 

validation results of R2 of 0.62, NSE of 0.61 and PBIAS of 12.24 % (period 2013-2017) at gauge 2GB05. 

His validation results at 2GB04 (2016-2017) gave R2 of 0.84, NSE of 0.80 and PBIAS of 10.05 %. 

 

Figure 5.8 Observed and simulated flows at channels 10 plotted against precipitation at monthly timestep 

 

Figure 5.7 Observed and simulated flows at channels 61 plotted against precipitation at monthly timestep 
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5.5. Average annual water balance analysis 

Despite the model being uncalibrated, the water balance components results were fair when compared to 

past studies, as good initial parameter settings were applied where possible. An average annual ETa ratio 

(actual evapotranspiration divided by precipitation) of 0.64, a streamflow ratio of 0.24 and a percolation 

ratio 0.12 were obtained (Figure 5.9). Abbasi et al. (2019) obtained 0.68 ETa, 0.29 streamflow and 0.13 

percolation ratios on the Malewa sub-catchment. Muthuwatta (2004) obtained a streamflow ratio of 0.13 on 

the Gilgil sub-catchment. 

 

 

5.6. TBP, ETa and TBWP simulations analysis 

The ultimate results obtained from the model were ETa [mm] and TBP [kg/ha] (referred to as biomass in 

the model) at daily, monthly, annual and average annual time step across the simulated 11 years (2009-2019). 

The simulated products present a limitation in temporal variation over the period frame as CHIRPS 

precipitation, NCEP CFSR and the weather generator were applied. 

 

The ETa monthly (Figure 5.10), capture the catchment’s seasonality with relation to precipitation. The ETa 

peaks and troughs coincide with the precipitation troughs and peaks respectively. This shows the inverse 

relationship between ETa and precipitation. The ETa peaks are recorded in the dry season, while the troughs 

are recorded in the wet season of every year. Figure 5.11 gives a closer look at these results. The ETa peaks 

tend to fluctuate across the time frame, but the low troughs give a clear pattern of approximately 50 mm in 

around April and October. 

 

Figure 5.9 Schematic representation of the average annual water balance components in the catchment 
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Figure 5.12 indicate the monthly TBP with a small variation in the values. This is explained by the fact that 

the model presents the TBP simulations at yearly timestep as shown in Appendix B. The results however 

show that the TBP peaks match the precipitation high peaks around March to May. 

Figure 5.10 Simulated ETa [mm] plotted against precipitation at monthly timestep for the entire catchment 

Figure 5.11 Simulated ETa [mm] plotted against precipitation at monthly timestep in period 2009-2012 
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Figure 5.13 shows the spatial variation of the average annual ETa and TBP in the catchment. High TBP was 

recorded at the wetland areas around lake Naivasha, as well as at high altitude (forested) areas at the Aberdare 

ranges and Mau Escarpment in the north-west and south-east, respectively, of the catchment. Low TBP is 

indicated at farm lands, for instance at Kijabe wheat farm. This could be due to the seasonal or annual crops 

that are removed from the farm through harvest and kill at the end of their growing periods. 

 

ETa on the other hand, shows high values at grasslands and at the Kijabe wheat farm. The high ETa at 

grassland could be due to the less vegetation density thus greater exposure of the soil to evaporation rates. 

Low ETa estimated are distributed at different areas of the catchment. The high altitude (forested) areas at 

the Aberdare ranges and Mau Escarpment show moderately high ETa. The soil types as described in Table 

5.3 also influence resulted ETa value rates. For example at the northern part of the catchment (upper Gilgil 

sub-catchment) shows low ETa. This area consist of soil type R3, a well-drained soil, hence less water is left 

on the surface for evaporation or lower surface flow generation, which is evident from Muthuwatta (2004). 

 

 

Figure 5.12 Simulated TBP plotted against precipitation at monthly timestep for the entire catchment 
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Table 5.7 lists the obtained average annual TBP, ETa, and TBWP for the entire catchment. These yearly 

TBP results further reflect the obtained monthly TBP (Figure 5.12) on less varying values. 

 

Table 5.7 Average annual TBP, ETa, and TBWP obtained in the entire catchment 

Year TBP [kg/ha] ETa [mm] TBWP [kg/m3] 

2009 31976.79 801.61 3.99 

2010 31981.03 816.20 3.92 

2011 31975.75 837.92 3.82 

2012 31974.68 819.31 3.90 

2013 31976.48 829.72 3.85 

2014 31973.80 843.69 3.79 

2015 31973.11 820.16 3.90 

2016 31974.01 788.94 4.05 

2017 31968.53 780.32 4.10 

2018 31974.96 746.28 4.28 

2019 31972.75 750.90 4.26 

Mean 31974.72 800.20 3.99 

 

 

The annual mean ETa [mm] was then converted to [m3/ha] by applying 1mm = 1L/m2 = 10 m3/ha in order 

to calculate the TBWP [kg/m3]. An average annual TBP, ETa and TBWP of 31974.72 kg/ha, 800.20 mm 

and 3.99 kg/m3 respectively were eventually obtained. 

 

Figure 5.13 Visual representation of the simulated annual means ETa [mm] and TBP[kg/ha] of the 
catchment for the period 2009-2019 
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5.7. Wheat and maize crop analysis 

On assumption that crops have been growing on the same areas for the past 11 years, wheat and maize; 

yields, ETa and WP were analyzed in addition to the catchment-wide analysis. It was noted that the model 

TBP output in seasonal and annual crops differed at the different timesteps but perennial plants (forest, 

shrubland, grassland, and alfalfa) were well represented. This is evidenced with the represented values in 

‘hru_pw_mon.txt’ and ‘hru_pw_yr.txt’ output files. Also, the model does not implement all calculations, 

and hence, the output generation on crop yields and land cover management is not fully available. 

 

Crop information in Figure 4.4 was incorporated into the model as management practices. Wheat is planted 

in May and completely removed from the farm by a ‘harvest and kill’ operation in November. Maize is 

planted in April and ‘harvested and killed’ in December. Wheat and maize have 150 ‘days to maturity’ and 

180 ‘days to maturity’ respectively. The crops were considered as rainfed, and other management practices 

including fertilizers application and pest control were not considered in this analysis. 

 

The model simulates crop data at many HRUs; wheat and maize covering approximately 2776.85 ha and 

394.01 ha respectively. Simulated yields for a few selected HRUs with the two crops were evaluated against 

Nyandarua county office obtained crop yields from farmers in the region (Figure 5.14). Wheat at HRU 1584 

and HRU 1621 at the Kijabe farm area, and maize at HRU 1614 (downstream area of the catchment) and 

HRU 257 (upstream area) were analyzed. By default, the model applies harvest indices of 0.42 and 0.5 for 

wheat and maize respectively (Neitsch et al., 2009). 
 

 

Srinivasan, Zhang, & Arnold (2010) recommended the evaluation of SWAT model average annual crop 

yields instead of crop yield at annual timestep, as the model is limited in accurate representation of crop data 

at higher timestep. This is also witnessed in this analysis (Figure 5.14), where the presented yield results 

don’t vary much across the year. However, maize at HRU 257 indicates some major fluctuations.  

 

Figure 5.14 shows that the model simulates lower annual wheat yields (average of 1261.70 kg/ha/year and 

1530.02 kg/ha/year at HRU 1621 and HRU 1584 respectively) than the county office (2286.26 kg/ha/year), 

but higher annual maize yield (average of 5444.46 kg/ha/year and 3159.07 kg/ha/year at HRU 257 and 

HRU 1614 respectively) than the county office (1846.90 kg/ha/year). The fact that the county crop data 

represents sampled information form farmers in Nyandarua county has a significant impact on the 

uncertainty in the above results. 

 

Figure 5.14 Wheat and maize yield from Nyandarua county office against SWAT+ simulations at specific 
HRUs 
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The wheat and maize results at each year are listed in Table 5.8 and Table 5.9. The decrease in wheat and 

maize yields, apart from HRU 257, across the study period, reflect on the obtained decrease in WP results. 

For wheat, the average annual ETa at HRU 1621 and HRU 1584 were 560.45 mm and 563.07 mm 

respectively, and average annual maize ETa at HRU 257 and HRU 1614 were 833.69 mm and 788.06 mm 

respectively. The crops WP aspect was calculated in terms of grain yield per unit water use (ETa in this case). 

Average annual wheat WP of 0.23 kg/m3 and 0.27 kg/m3 were obtained at HRU 1621 and HRU 1584 

respectively. While average annual maize WP of 0.65 kg/m3 and 0.40 kg/m3 were obtained at HRU 257 

and HRU 1614 respectively, indicating that the WP for maize is larger than for wheat. 

 

 

Table 5.8 Wheat crop WP simulated results 

Wheat 

HRU1621 HRU1584 

Year 
Yield 

[kg/ha] 
ETa 

[mm] 
WP 

[kg/m3] 
Yield 

[kg/ha] 
ETa 

[mm] 
WP 

[kg/m3] 

2009 1501.55 562.98 0.27 1813.74 567.12 0.32 

2010 1437.49 570.51 0.25 1735.96 573.57 0.30 

2011 1393.23 539.86 0.26 1703.02 541.74 0.32 

2012 1335.14 564.41 0.24 1674.92 566.15 0.30 

2013 1248.24 562.86 0.22 1420.62 565.43 0.25 

2014 1280.33 541.47 0.24 1512.53 544.11 0.28 

2015 1196.37 538.49 0.22 1440.67 540.51 0.27 

2016 1159.11 560.94 0.21 1432.72 562.17 0.26 

2017 1143.66 571.71 0.20 1412.77 575.13 0.25 

2018 1095.68 596.65 0.18 1344.39 598.90 0.23 

2019 1087.91 555.06 0.20 1338.85 558.92 0.24 

Mean 1261.70 560.45 0.23 1530.02 563.07 0.27 

 

 

Table 5.9 Maize crop WP simulated results 

Maize 

HRU1614 HRU257 

Year 
Yield 

[kg/ha] 
ETa 

[mm] 
WP 

[kg/m3] 
Yield 

[kg/ha] 
ETa 

[mm] 
WP 

[kg/m3] 

2009 3988.96 827.51 0.48 5800.71 832.11 0.70 

2010 3824.01 784.90 0.49 5052.42 830.05 0.61 

2011 3375.42 743.36 0.45 3463.07 828.23 0.42 

2012 3484.19 781.98 0.45 7268.84 828.11 0.88 

2013 3184.14 777.97 0.41 7642.20 846.51 0.90 

2014 2624.78 764.59 0.34 3807.48 799.35 0.48 

2015 3272.06 791.71 0.41 4541.57 824.44 0.55 

2016 2859.71 767.02 0.37 6323.92 854.34 0.74 

2017 2734.95 812.27 0.34 4996.96 841.75 0.59 

2018 2706.13 837.23 0.32 6035.44 842.65 0.72 

2019 2695.43 780.16 0.35 4956.44 843.08 0.59 

Mean 3159.07 788.06 0.40 5444.46 833.69 0.65 
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6. WAPOR WATER PRODUCTIVITY ANALYSIS 

6.1. Methodological approach 

WaPOR time series data sets can be accessed via the FAO WaPOR website, but were also provided by the 

consortium to the ITC server (FAO, 2020). The FAO-Frame toolbox in ILWIS (Westen et al., 2001) was 

created to process WaPOR data. This research focused on Version II of the Level II product for Lake 

Naivasha basin in Kenya. 2009-2019 time series data sets at dekadal time-step were provided. These include 

evaporation, transpiration, interception and net primary production listed in Table 6.1. 
 

Table 6.1 Provided WaPOR Level II datasets used for Lake Naivasha basin in this study. 

Dataset Timestep Start date End date Scaling Units 

Evaporation  dekad 01/01/2009 31/12/2019 10 [mm/day] 
Interception dekad 01/01/2009 31/12/2019 10 [mm/day] 
NPP dekad 01/01/2009 31/12/2019 1000 [gC/m2/day] 
Transpiration dekad 01/01/2009 31/12/2019 10 [avg mm/day] 

 

Scripts that facilitate the data processing were provided in the ILWIS FAO-Frame toolbox and could be 

edited based on user-defined goals. The data processes could either be conducted by editing the codes 

generated on ILWIS command line or by using external batch routine processes in MS-DOS. Following the 

procedure in Maathuis (2019), ETIa1, TBP and TBWP on dekadal basis were calculated by implementing 

respective scripts repeatedly taking into consideration the number of days per dekad. The equations are as 

shown below. 
 

i. ETIa calculation 

 

𝐸𝑇𝐼𝑎 =
𝐸 + 𝑇 + 𝐼

10
∗  𝑁 

      

where E, T, and I are daily evaporation [mm], transpiration [mm] and interception [mm] respectively, 10 is 

the scaling factor, and N is the number of days per dekad. ETIa units are in [mm/dekad] and can be 

converted into volume per unit area using; 1mm = 1L/m2 = 10 m3/ha. 

  
ii. TBP calculation 

 

𝑇𝐵𝑃 =  
𝑁𝑃𝑃 ∗ 22.222

1000
∗  𝑁 

      

where TBP is the total biomass production [kg/ha] and N is the number of days per dekad. NPP is the net 

primary production [gC/m2/day], which is converted to dry matter production (DMP [kgDM/ha/day]) 

using a scaling factor of 0.45 gC/gDM (FAO, 2018). Thus, 1 NPP [gC/m2/day] is equal to 22.222 DMP 

[kgDM/ha/day]. 1000 is the scaling conversion factor. 

 
1 ETIa [mm] represents ETa [mm] in WaPOR analyses 

Equation 6.1 

Equation 6.2 
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iii. TBWP calculation 

 

𝑇𝐵𝑊𝑃 =  
𝑇𝐵𝑃

𝐸𝑇𝐼𝑎
 

       

where TBWP [kg/m3] is the total biomass water productivity in a dekad, TBP [kg/ha/dekad] is the total 

biomass production, and ETIa [m3/ha/dekad] is the actual evapotranspiration and interception per dekad. 

 

NPP values less than 0 were masked out. These areas are often waterbodies and greenhouses classified in 

the land cover maps, which result in ambiguous values in ETIa and TBP calculations. The processed datasets, 

from the provided defined window with bounding coordinates, were clipped to the Lake Naivasha basin 

polygon. Due to the large number of files generated, a comprehensive structure with consistent file naming 

was highly maintained as well as creating maplists in ILWIS.  

 

6.2. Results analysis at yearly basis 

The obtained dekadal time series results were aggregated to an annual basis by summing the 36 dekads in a 

year. The annual maps were averaged to mean annual data sets for the entire period. Yearly TBP, ETa and 

TBWP derived data components covering the entire catchment were evaluated by visual inspection on the 

raster maps and geographically averaged statistics over the catchment. These statistics include maximum, 

minimum, means and standard deviation. 

 

𝑀𝑒𝑎𝑛 =  ∑
𝑥𝑖

𝑁
 

       

 

𝑆𝐷 =  √
∑(𝑋𝑖 −  x̄)^2

𝑁
 

      
     

Where SD is the standard deviation xi is each value obtained, N is number of recorded data, and x̄ is the 

mean value. 

 

6.2.1. ETa [mm/year] 

Table 6.2 shows that the maximum and minimum ETa [mm/year] values per year differed across the study 

period. Year 2009 recorded the greatest range with 1808.2 mm/year. This could imply that there was greater 

variation in factors such as precipitation and land cover influencing ETa. In addition to this, a standard 

deviation of 318.0 mm/year was captured, indicating a greater difference of ETa values from the mean ETa 

value compared to the other years. Overall maximum and minimum ETa are 1514.6 mm/year and 226.4 

mm/year respectively, the mean is 823.6 mm/year and the standard deviation is 214.1 mm/year for the 

entire catchment across the study period. 

 

 

 

 

 

Equation 6.3 

Equation 6.4 

Equation 6.5 
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Table 6.2 Yearly statistics of WaPOR ETa [mm/year] (2009-2019) over the catchment. 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Minimum 123.5 125.6 144.4 155 141.3 119.3 76.3 60.2 55.4 80.9 195.1 

Maximum 1931.7 1794.0 1822.9 1781.4 1869.1 1388.4 1380.3 1351.8 1561.9 1415.9 1591.3 

Mean 821.71 1023.41 957.6 981.21 1001.1 699.21 670.44 716.75 657.49 719.13 802.05 

Sd 318.0 284.1 281.9 256.8 294.9 207.0 180.3 191.8 201.0 199.8 191.0 

 

 

Figure 6.1 shows the yearly spatial variation in ETa [mm/year] in the catchment across the study period 

(2009-2019). It can be seen that the wetland areas around lake Naivasha as well as high altitude (forested) 

areas at Aberdare ranges and Mau Escarpment consistently have the high ETa over the years. The high ETa 

at the wetland areas is influenced by water surfaces which are greatly evaporated. The fact that forested areas 

captured high ETa could imply that intercepted precipitation by the canopy greatly contributes to the total 

ETa. The area north of the lake, which majorly consist of irrigation cropland areas, also shows a consistently 

high ETa in all the years The far north-eastern and southern part of the catchment indicate low ETa as they 

consist of majorly bare rocks and dry shrubland covers.  

 

Whereas the above discussed areas tend to limitedly vary throughout the years, the other parts of the 

catchment varied significantly. This could be explained by the heterogeneity in land covers. Generally, the 

yearly means recorded in Table 6.2 are reflected on the maps across the study period. Years 2009 to 2013 

seem to show high ETa than years 2014 to 2019, though 2009 shows lower ETa (mean of 821.71 mm) 

among the first half study period, and 2019 shows higher ETa (mean of 802.05 mm) among the second half 

study period. 

 

It was also noted that the years 2018 and 2019 show more masked out areas of waterbodies and greenhouses, 

as they appeared to have been captured in the respective land cover maps, compared to the other years. 
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Figure 6.1 Yearly spatial distribution of WaPOR ETa [mm/year] in Lake Naivasha basin across the study 
period (2009-2019). 
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6.2.2. TBP [kg/ha/year] 

Table 6.3 indicates that a minimum TBP of as low as 0 kg/ha/year was recorded in the specific years. Overall 

maximum and minimum TBP are 41241.2 kg/ha/year and 1873.4 kg/ha/year respectively, the mean is 

23723.45 kg/ha/year and the standard deviation is 5174.7 kg/ha/year for the entire catchment across the 

study period. 

 

 
Table 6.3 Yearly statistics of WaPOR TBP [kg/ha/year] (2009-2019) over the catchment. 

 

 

Figure 6.2 shows the yearly spatial variation of TBP [kg/ha/year] in the catchment across the study period 

(2009-2019). Wetland areas around lake Naivasha as well as the area north of the lake, which majorly consist 

of irrigation cropland areas, shows a consistently high TBP in all the years. The high TBP at the irrigated 

areas agree with the high ETa results (Figure 6.1), and could imply that sufficient water is applied for the 

high production of crop biomass. The Mau Escarpment and Aberdare ranges also shows high TBP over the 

years due to the perennial dense vegetation. 

 

The far north-eastern and southern part of the catchment shows low TBP over the years. Results in this 

areas, coincide with the low ETa in Figure 6.1, as these areas consist of bare rocks and dry shrubland covers. 

Year 2009, with the lowest mean of 19160.9 kg/ha/year across the study period, shows that many areas in 

catchment reflect low TBP. The years 2018 and 2019 show more masked out areas of waterbodies and 

greenhouses, as they appeared to have been captured in the respective land cover maps, compared to the 

other years. 

 

 

 

 

  2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Minimum 0.0 2389.2 1949.4 2180.9 2458.2 414.4 10.5 0.0 0.0 0.0 0.0 

Maximum 43421.1 43034.5 42167.5 45714.3 49816.6 48019.5 46344.6 46199.4 48187.4 44705.0 50391.9 

Mean 19160.9 26601.4 24418.2 25159.7 26946.8 22582.8 22226.8 24985.4 21146.1 23047.0 24252.4 

Sd 7217.4 5206.2 5782.3 5294.7 5949.4 5460.3 5272.3 5546.2 6106.0 5155.8 5555.9 
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Figure 6.2 Yearly spatial distribution of WaPOR TBP [kg/ha] in Lake Naivasha basin across the study 
period (2009-2019). 
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6.2.3. TBWP [kg/m3] 

Table 6.3 indicates that minimum TBWP values are as low as 0 kg/m3, while the maximum values vary 

across the study period. Overall maximum and minimum TBWP are 12.66 kg/m3 and 0.57 kg/m3 

respectively, the mean is 3.02 kg/m3 and the standard deviation is 0.50 kg/m3 for the entire catchment 

across the study period. Years 2009-2013 recorded low TBWP values (mean of less than 3 kg/m3), while 

years 2014-2019 recorded higher TBWP values (mean of more than 3 kg/m3). 

 

 
Table 6.4 Yearly statistics of WaPOR TBWP [kg/m3] (2009-2019) over the catchment. 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Minimum 0.10 0.40 0.48 0.50 0.28 0.10 0.10 0.10 0.10 0.00 0.00 

Maximum 13.60 22.80 18.83 16.60 18.19 11.80 10.20 10.70 12.30 11.00 6.06 

Mean 2.39 2.71 2.64 2.64 2.80 3.33 3.40 3.60 3.31 3.31 3.05 

Sd 0.49 0.58 0.54 0.52 0.55 0.58 0.62 0.71 0.73 0.63 0.41 

 

 

Figure 6.3 shows the yearly spatial variation of TBWP in the catchment across the study period (2009-2019).  

It was noted that the far north-eastern and southern parts of the catchment, which consist of bare rocks 

and dry shrubland covers, show high TBWP across the study period. These areas recorded low ETa and 

TBP. The years 2018 and 2019 show more masked out areas of waterbodies and greenhouses, as they 

appeared to have been captured in the respective land cover maps, compared to the other years. 
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Figure 6.3 Yearly spatial distribution of WaPOR TBWP [kg/m3] in Lake Naivasha basin across the 
study period (2009-2019) 
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6.3. Results analysis at dekadal timestep 

With an aim to capture the seasonal trend of WaPOR WP across the 11 years period for the entire catchment, 

the ETa, TBP and TBWP were analyzed at dekadal timestep. These were represented in time series graphs. 

The relationship between the TBP and ETa components at dekadal timestep was also reported. 

 

Figure 6.4 indicates an irregular pattern with a high fluctuating trend across the time frame for both TBP 

and ETa. TBP shows a consistent lower trough of almost 200 kg/ha/dekad at the end of the first quartile 

(February-March) of every year, apart from 2013 and 2014 which record 400 kg/ha/dekad. These drops 

clearly indicate the dry season in the catchment. A high peak of 1000 kg/ha/dekad is measured in January 

2010. A mean of 529.97 kg/ha/dekad was recorded across the time frame. The TBP relates positively to 

ETa with R2 of 0.64. 

 

 

 

A mean ETa of 17.57 mm/dekad was measured in the study period. The ETa highly fluctuates (Figure 6.4), 

but it was noted that 15-30 mm/dekad was measured in the first half (years 2009 to 2013) and then there 

was a decrease to approximately 5-25 mm/dekad in the second half (years 2014 to 2019). This is reflected 

in the TBWP graph (Figure 6.5) as ETa varies inversely to TBWP (Equation 6.3). 

 

The decline in ETa from year 2014 to 2019 could imply that there was a reduction in precipitation which 

led to a reduction in soil moisture. Funk, Davenport, & Michaelsen (2010) reported that, due to climate 

change, there has been a continuous decrease in precipitation in Kenya in year 1960-2009, accompanied by 

increase in air temperature, which is expected by the year 2025 especially for regions which receive more 

than 100 mm during the long rains seasons.  

 

Figure 6.4 Time series representation of ETa [mm/dekad] and TBP [kg/ha/dekad] for years 2009-2019 
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Figure 6.5 shows a fluctuating TBWP with a range of approximately 2-3 kg/m3 in the first half (years 2009 

to 2013) and 2-5 kg/m3 in the second half (years 2014 to 2019). In dry seasons, where the ETa has lower 

values (troughs), the TBWP recorded high values (peaks). This indicates that the ETa decreases in the dry 

season, but the TBP is maintained relatively at the same level. 

6.4. Wheat and maize crop results analysis 

On assumption that the wheat and maize crops have been growing on the same farm areas for the past 11 

years, the crops TBWP (Table 6.5) was analyzed at yearly basis, in addition to the overall catchment TBWP 

analysis. Wheat at Kijabe farm and maize at some parts of the upstream and downstream of the catchment 

gave average annual TBWP of 2.98 kg/m3 and 2.92 kg/m3 respectively. Wheat recorded lower TBP and 

ETa of 23160.74 kg/ha/year and 779.07 mm/year respectively, than maize, which recorded TBP of 2418.52 

kg/ha/year and ETa of 836.24 07mm/year. The average annual wheat TBP and ETa are lower than maize, 

and this can be explained by the difference in structure of both plants. 

 

The decrease in ETa in the second half period (2014-2019) (as it was seen from the overall catchment results 

in Figure 6.4 is also reflected in these crops. This is hence reflected in the TBWP results, where higher values 

are recorded in the second half period compared to the first half (2009-2013). However, lower maize ETa 

is recorded in year 2009. This could imply that in perhaps not the exact crop that was on site in that particular 

year, in reality. Results on that same year show the lowest TBWP of 2.51 kg/m3 and 2.39 kg/m3 at both 

wheat and maize respectively. 

 

 

 

 

 

 

 

 

 

Figure 6.5 Time series representation of TBWP [kg/m3 at dekadal time-step 
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Table 6.5 Mean annual wheat ETa, TBP and TBWP across the 2009-2019 period. 

Year ETa [mm/year] TBP [kg/ha/year] TBWP [kg/m3] 

Wheat Maize Wheat Maize Wheat Maize 

2009 812.38 744.70 20439.65 17790.49 2.51 2.39 

2010 884.18 1021.88 25283.93 27012.80 2.85 2.79 

2011 855.63 949.86 23990.23 24976.85 2.80 2.67 

2012 862.67 960.93 23286.50 25393.74 2.68 2.69 

2013 850.90 1022.38 24630.98 28464.26 2.88 2.84 

2014 691.24 708.57 22740.73 22473.20 3.28 3.21 

2015 685.96 773.10 22305.14 24507.46 3.25 3.16 

2016 738.67 780.75 25408.54 25864.94 3.43 3.32 

2017 774.69 745.04 22478.46 21325.73 2.90 2.86 

2018 640.57 754.75 20704.64 23382.58 3.22 3.13 

2019 772.87 736.68 23499.28 23011.74 3.04 3.13 

Average 779.07 836.24 23160.74 24018.52 2.98 2.92 
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7. CONCLUSION  AND RECOMMENDATION 

7.1. Conclusion 

The main objective of this research was to compare WaPOR Level II to SWAT+ model WP estimates in 

Lake Naivasha basin, Kenya, over an 11 years (2009-2019) study period. This thesis has demonstrated that 

WP estimated from the two approaches are comparable. The ultimate comparison results are presented at 

average annual basis, as the nature of datasets from these two approaches is different. 

 

WaPOR WP estimates, based on ETa and TBP, are derived from satellite data sets and translated to dekadal 

and annual timesteps. SWAT+ on the other hand, is a hydrological model based on hydrological and plant 

growth processes which outputs the WP estimates based on ETa and TBP or crop yield. However, the 

temporal variability of the SWAT+ estimates was limited because of availability of the not so good nor 

complete long term in-situ meteorological data sets from stations in the study area. Therefore, CHIRPS 

precipitation and NCEP CFSR data together with the weather generator approach were adopted. 

 

Ultimately, SWAT+ model gave an average annual WP of 3.99 kg/m3 compared to WaPOR which gave 

3.02 kg/m3. TBP and ETa values of 23723.5 kg/ha/year and 823.6 mm/year were obtained from WaPOR, 

while SWAT+ gave TBP and ETa of 31974.7 kg/ha/year and 800.2 mm/year respectively. 

 

In addition to the catchment-wide analysis, wheat and maize crops were analysed in both approaches. For 

WaPOR, the crops WP was estimated from TBP and ETa at the area covered by wheat and maize. For 

SWAT+, the crops WP were estimated from grain yield and ETa, with incorporated crop information 

collected from the fieldwork, at a few studied HRU levels. WaPOR gave average annual TBP, ETa and WP 

of 23160.74 kg/ha/year, 779.07 mm/year, and 2.98 kg/m3 respectively for wheat, and 24018.52 kg/ha/year, 

836.24 mm/year, and 2.92 kg/m3 respectively for maize. 

 

With SWAT+, wheat gave average annual ETa values of 560.45 mm/year and 563.07 mm/year at two 

HRUs studied (HRU 1621 and HRU 1584). Maize gave average annual ETa values of 833.69 mm/year and 

788.06 mm/year (HRU 257 and HRU 1614). Average annual wheat crop yields of 1261.7 kg/ha/year and 

1530.02 kg/ha/year were obtained. For maize yield, 5444.46 kg/ha/year and 3159.07 kg/ha/year were 

obtained. Therefore, wheat crop WP of 0.23 kg/m3 and 0.27 kg/m3, and maize crop WP of 0.65 kg/m3 

and 0.40 kg/m3 were obtained. 

 

In both WaPOR and SWAT+, maize gave higher ETa, TBP (for WaPOR) and crop yield (for SWAT+) 

estimates, than wheat. The crop WP results from both cases, however, differed. SWAT+ gave significantly 

higher maize WP than wheat, while WaPOR gave slightly higher wheat WP than maize. 

7.2. Challenges and limitation 

The main limitation in this research was the fact that the SWAT+ model version 1.3.0 is very new and has 

still several components under development, with limited documentation. This was a great hindrance 

especially in the anticipated calibration and validation processes. 

 

Results of this study should caution users concerning SWAT+’s current capacity to accurately simulate 

biomass time series in a catchment. This limitation is evident in the outputs presented in yearly timestep. 
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Also, the model does not implement all calculations, and hence, the output generation on crop yields and 

land cover management is not fully available. For now, users are recommended to still fall back on the 

SWAT2012 or SWAT2018 models for this particular simulation. 

 

The study area being located at the floor of the Rift Valley, with high altitudes at the Aberdare ranges in 

north-east and the Mau Escarpment at the west, gave a daily variation in the weather variables, thus a 

complex micro climatic conditions. Uncertainty in these weather data may highly have influenced the results 

regarding both WaPOR and SWAT+. For WaPOR ETa, for instance cloud cover is an influencing factor 

in the tropical climate. The adopted weather input data in SWAT+ model failed to capture the topographic 

difference and spatial heterogeneity in the study area, as they were derived from CHIRPS (precipitation) and 

NCEP CFSR (the other variables) satellite data. 

7.3. Recommendations 

Based on the research findings, it is recommended that input data quality, especially for the insitu weather 

data, for SWAT+, needs to be improved. This can be done by proper maintenance of the weather 

instruments in the field in order to function effectively. Another approach; is to investigate and apply 

downscaling techniques to obtain improved surface meteorological information. Research on this is ongoing 

by Njuki (current PhD research). 

 

Also, performance of the established model for Lake Naivasha basin could be improved in the future by 

calibration and validation processes, for example with the newly developed SWATPlus CUP tool. The 

sensitivity analysis results obtained in this research could also be used as a starting point in these analyses. 

The model could also be improved by factoring in other farm management activities such as nutrient supply 

and control in water supply depending on the land cover. 

 

For the WaPOR, it is recommended that evaluation of various data input quality including NDVI, albedo, 

cloud cover, and atmospheric conditions such as precipitation and temperature to be conducted to further 

explain the current results, as the quality and accuracy of the output is influenced by input data source. Also, 

Level III WP could be analyzed for the specific crop information collected in this research, such as at a 

specific irrigation or rainfed areas, then compared to the obtained level II results to check the consistency 

of the results. 
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Data Purpose 

Identified farm field, coordinates Identification of the croplands locations 

Size area of farmland 

Crop name, type of crop  Seasonal or annual 

No. of crops (stems/seeds) or area planted 
No. of crops (stems/seeds) or area harvested 

To determine the yield (productive stems) 
No. of plants per unit area 

Single type of cropping or 2 types (which crops) 
or crop rotation 

 

Crop phenology information  

Tillage Methods 
Dates of development:  
Planting 
Emergence 
Flowering 
Maturity 
Harvest 

That facilitate soil holding capacity 
To establish crop calendar.  
And thus determine days to maturity which derive heat 
units 

Canopy height, and Root depth at minimum 
(emergence) and maximum (maturity) stage 

Crop specific  characteristics 

Rainfed or irrigated 
If irrigated: type of irrigation 
Dates, frequency, duration, timeliness and rate 

To validate irrigated and rainfed lands according to land 
cover map.  
To related irrigation method (if irrigating) to water 
productivity  

Fertilizer application: 
Which ones; N, P, K, organic (manure) other 
How much? (per day/per annum) 
At what stages of application 

Land management practice that affect the yield 
 

Pest diseases and weed management 
Which methods 

Land management practice that affect the yield 

Runoff erosion occurrence? 
Prevention techniques 

Land management practice that affect the yield 

Questionnaire information on the collected crop data 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Wheat and maize yield information in years 2009 to 2019, but missing 2013. 

 

 

 

 Maize yield Wheat yield 

Year 
Area 
[ha] 

Production 
[ton] [ton/ha] 

Area 
[ha] 

Production 
[ton] [ton/ha] 

2009 17850 24097.5 1.35 3670 6606 1.8 

2010 18000 40500 2.25 2870 6457.5 2.25 

2011 20352 54950.6 2.70001 2157 4854.8 2.250719 

2012 19842 53574.6 2.70006 2034 4296.5 2.11234 

2013 - - - - - - 

2014 17104 14017 0.819516 2097 4521 2.155937 

2015 17837 26575.5 1.489909 4250 11813.04 2.779539 

2016 16300 27594 1.692883 3520 9729 2.76392 

2017 16200 21870 1.35 3800 8550 2.25 

2018 17885 34289 1.917193 3560 9612 2.7 

2019 16,906 37,184 2.199456 3572 6430 1.800112 
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Crop Planting2  
[days] 

Emergence 
[days] 

Flowering 
[days] 

Maturity 
[days] 

Harvesting 
[days] 

Baby corn 0 7 60 90 90 

Normal corn 0 7 120 to 150 180 to 240 330 to 360 

Wheat 0 4 to 5 130 140 140 to 160 

Barley 0 7 42 to 45 120 to 150 175 

Oats 0 8 to 10 45 120 to 150 120 to 150 

French beans 0 7 to 10 35 75 90 

Garden peas 0 7 to 14 50 to 60 75 to 80 120 

Irish potatoes 0 30 60 120 150 

Cabbages Transplanted at  28 
to 42 days old 

- - 60 60 to 90 

Broccoli Transplanted at 21 
days old 

- 60 70 to 80 90 

Lucerne 
fodder 

0 21 30 30 to 40 30 to 40 

 

Crops phenology per growth stage; planting, emergence, flowering, maturity and harvesting for year 2019-

2020 obtained during the fieldwork. 

 

 

 

   
Different varieties of oats illustrated by the growth height (left) and appearance (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Note: Emergence, flowering, maturity and harvesting days are counted from planting day that is day 
0 
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Example of a filled questionnaire, information collected from a farmer during the fieldwork. 
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Results on the monthly simulated TBP results over the entire catchment. 

 

 

 

Results on the yearly simulated TBP results over the entire catchment. 
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 Average annual WaPOR ETa [mm] (a), TBP [kg/ha] (b) and TBWP [kg/m3] (c) for the study period. 

 
 Average annual WaPOR ETa [mm] (a), TBP [kg/ha] (b) and TBWP [kg/m3] (c) for the study period. 
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River Malewa at upstream of Lake Naivasha basin 

 

 

 

A visit to one of the ITC stations in Delamare farm (left), and at Paul Ruoya’s farm in Kinangop (right) 
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Different weather in the catchment, evidenced by the muddy roads at downstream areas (left) and dry rocky 

roads (right) 

 

 

 

 


