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Abstract

As precision dairy farming technologies become more common, new possibilities arise in the man-
agement of health in dairy cows. Ketosis is a transition cow disease, caused by the start of milk
production after calving. Even at the subclinical level, it has an impact on milk yield, reproduction,
and other cow diseases causing significant costs on a farm level. Currently, detecting subclinical
ketosis by sampling blood is the golden standard, but this is infeasible on a large scale. With
behaviour data captured with cow-mounted sensors, large-scale detection is possible. Initial studies
to produce a detection model from behaviour data with machine learning have been performed, but
a focus on all aspects of the machine learning methodology is lacking. By presenting a complete
methodology and comparing time windows, normalisation, features and machine learning models,
this study provides an exploratory view on using cow behaviour data to detect subclinical ketosis
with machine learning. Using BHBA measurements from two on-farm experiments as targets and
behaviour data as input, the detection models are compared. Additionally, a regression variant is
proposed to produce a better estimation of subclinical ketosis. The behaviour data was windowed
by taking all data relative to either calving-date or measurement-date and the measurement date
based window was not significantly better. To evaluate the effect of farm-specific behaviour, herd
normalisation of behaviour was compared to other normalisation techniques. The non-normalised
values were significantly better with a mean AUC of 0.65. With static risk factors such as BCS, par-
ity and dry period length as the baseline feature set, several feature sets derived from the behaviour
data were compared. However, the behaviour features were not able to beat the static features.
Comparing several standard machine learning models, Random Forest and Gradient Boosting per-
formed best on the task. In the direct prediction of BHBA levels using regression, high levels of
BHBA were not predicted accurately. Overall, the subclincal ketosis detection model using be-
haviour data of this study are not reliable enough, but a solid methodology is presented for future
studies using machine learning to detect cow diseases using behaviour data.
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1 Introduction

Modern dairy cows are adapted to produce high amounts of milk for to supply the world demand
for dairy products. One of the problems modern dairy cows are facing today is the disease called
ketosis. This disease is caused by the sudden change in energy demand, generally happening
after parturition. Cows start giving milk right after calving and this creates a negative energy
balance. The severeness of the negative energy balance cannot be countered and the cow suddenly
shows less movement, eating, ruminating and less milk yield. At the subclinical level, there is a
prevalence of 8% to 40 % on a farm during parturition on a global level [13] and the costs caused
by ketosis are substantial [46]. While the detection of subclinical ketosis is proven effective using
blood samples, this is found to be expensive and time-consuming on a large scale. Moreover, blood
sampling is invasive to the cow. New methods are needed to detect subclinical ketosis to prevent
further costs, treatment and improve well-being of the cows. The rise of Precision Dairy Farming
technologies provides new ways to monitor cows on the individual level, especially on large-scale
systems. Behaviour sensors mounted on the individual cow monitor the behaviour of cows in near
real-time. This allows systems to be developed that are able to correlate the behaviour of the cow
to certain dairy cow diseases, such as ketosis.

1.1 Problem statement

Early behavioural studies showed a correlation of decreased eating and rumination time around
calving when cows were suffering from ketosis [31, 37, 68, 39]. Other behaviour parameters such
as lying time and activity have also been related to ketosis[37, 68]. To implement a system that
can detect subclinical ketosis, there needs to be reference values to those behaviour parameters
that can distinguish healthy cows from ketotic cows. As it turns out, cow behaviour has a high
variation between cows and this makes developing a system of reference values hard. Therefore,
we can utilise machine learning techniques to learn those reference values by the system itself.
Machine learning can find subtle differences and are able to generalise to build a robust prediction
system. Already, some initial studies in detecting ketosis have developed methods using machine
learning with behaviour data. However, these studies are either limited by data set size or lack
in the application of important parts of the machine learning methodology. To date, these studies
have not used normalisation techniques, experimented with different window sizes, or compared
different features. Moreover, since the threshold for subclinical ketosis is disputed[22], predicting
BHBA directly with regression can deliver more precise predictions for cows. Therefore, there is a
need for more exploratory research in subclinical ketosis detection using behaviour data, focused
on every step in the machine learning methodology.
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Figure 1.1: Different steps in (subclinical ketosis) classification with time series and machine
learning. Each block represents data and each arrow represent a transformation.

1.2 Research question

That leads us to formulate to the main question for this research.

To what extent can subclinical ketosis be detected in dairy cattle using peripartum data
in a machine learning approach?

This study aims to contribute in different areas of the steps involved in ketosis detection using ma-
chine learning. These steps are defined in Figure 1.1. They are largely based on the fundamental
steps of supervised machine learning. The key areas of this research are around windowing, nor-
malisation, feature functions, machine learning models, and classification compared to regression.
These areas are investigated to explore different approaches for SCK detection.

How do a time-window based on the day of measurement of BHBA and a time-window based on the
day of calving compare with respect to the quality of ketosis detection? is the first sub question for
this research, as the state-of-the-art have never used time windows relative to the day of calving.
They have exclusively used time-windows based on the day of measurement of BHBA. However,
the literature suggests that ketosis related behavioural changes also happen at an earlier moment
in time and ketosis has a strong correlation to the period around calving. Therefore, a calving-date
based time window is introduced and compared to the measurement-date based time window.

How does normalisation on herd level compare to other normalisation methods and non-normalised
data? is the second question of this research, as farm management varies and this has an impact on
the behaviour of the entire herd of cows. The behaviour of a cow is different every day and different
for every cow and this is caused by a lot of different factors. To be able to distinguish normal
variation in behaviour from abnormal variation caused by SCK, a method to minimise normal
variation is needed. Normalisation is a standard practice within machine learning to achieve this.
As this study uses data from several different farms, one way to apply normalisation is to normalise
to the entire herd. This eliminates changes that caused the entire herd to behave differently, for
example when there is a visit from a veterinarian. This herd-normalisation is compared to other
individual normalisation methods and non-normalised data.

What is the effect of different feature sets on subclinical ketosis detection? is the third question
for this research. State-of-the-art have used mostly raw data from behaviour sensors as features
for their ketosis detection models. This raw data is either steps per day or the total time (eat-
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ing/ruminating/lying,...) per day. However, raw values are susceptible to daily variation and result
in overfitting. Moreover, the literature suggests that SCK is sustained over multiple days. There-
fore, features can capture multiple days have the potential to improve the detection performance.
In this study, the raw behaviour features are compared to statistical features, trend features. In
addition, a new promising method of quantifying regularity in the prepartum period is added as
features to compare with raw values.

What is the performance of different machine learning models in detecting subclinical ketosis is the
fourth question. Given a set of machine learning models, we want to find the best model for ketosis
detection. In the previous attempts at ketosis detection found in the literature, usually a set of
basic supervised learning models were used and compared. As some of these models work better
under different circumstances, this study also evaluates and compares different models. Like related
work, the set of models is restricted to a few different basic machine learning models, as this is an
exploratory research.

How precisely can BHBA values be predicted using a regression model and how does this model
compare to the classification model? is the last sub question for this study. The classification in
this study is performed by transforming the measured BHBA levels in healthy and sick cows by
applying the standard SCK threshold value (1.2 mmol/L). However, this threshold value for SCK is
disputable[22] and might mark healthy cows incorrectly. The reaction to certain levels of BHBA in
blood differs per cow. Instead, if an estimation can be made on the value of BHBA it can provide
a finer grained decision on how to treat a cow. Regression, as opposed to classification, is able to
predict continuous values, so BHBA values can be directly predicted using regression. Moreover,
the predicted BHBA values can be transformed into a classification result. By utilising the standard
SCK threshold, a direct comparison between regression and classification is possible. Therefore, a
set of regression models is trained on the same data as the classification models and evaluated on
regression-specific metrics and evaluated on classification metrics.

The five questions introduced above are summarised below. Their place in Figure 1.1 is highlighted
in bold.

1. How do a measurement-date based time-window and a calving-date based time-window com-
pare with respect to the quality of ketosis detection? (Windowing)

2. How does herd-normalisation compare to other normalisation methods and non-normalised
data? (Normalisation)

3. What is the effect of different feature sets on subclinical ketosis detection? (Feature func-
tion)

4. Which machine learning model has the best at detecting subclinical ketosis? (Model pre-
diction)

5. How precisely can BHBA values be predicted using a regression model and how does this
model compare to the classification model? (Regression)
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2 Background

In this chapter, information is given about the dairy cow disease called ketosis, the risk factors for
ketosis and the current state of precision dairy farming. Furthermore, fundamental background
information is given on time series, normalisation, machine learning and evaluation as they form
the building blocks of this study.

2.1 Ketosis

Ketosis or hyperketonemia is a disease mainly seen in the transition period of dairy cattle. This
transition period is defined as the three weeks before and after calving [21]. During the transition
period, cows experience a negative energy balance, weight loss, hypocalcemia and reduced immune
function [40]. The transition period is a vulnerable and critical period for dairy cows [38]. Around
30 to 50% of dairy cows develop metabolic or infectious diseases around calving [40]. The nega-
tive energy balance occurs when the cow milk production is increasing, but its feed intake does
not increase accordingly [1]. This early lactation stage has the highest disease incidence of the
lactation-gestation cycle [35]. When energy and nutrient consumption of the cow is lacking, the
probability increases of developing clinical or subclinical diseases including ketosis, hypocalcemia
and metritis [57]. These diseases relate to the process of metabolising body fat [53], categorised as
metabolic disorders [66]. Ketosis, defined as an excessive amount of ketone bodies in the blood, can
present itself as clinical ketosis (CK) by a visible decrease in appetite, uncoordinated movement,
acetonic breath, weight loss and a decrease in milk production. It can also present itself as sub-
clinical ketosis (SCK), defined as having excessive amounts of ketone bodies in blood without the
visible (clinical) signs mentioned. In its subclinical and clinical state, ketosis has been related to
decreased milk yield and increased chances for other fresh cow disorders [20, 33, 22, 43, 54, 6]. For
example, cows diagnosed with SCK had 6.1 more chances of displaced abomasum [43], a disease in
which treatment is more costly.

Prevalence The prevalence of SCK differs in literature. It ranges from 1.8% up to 55% [23, 45].
The study of McArt et al. [43] found 43% of the cows were diagnosed with SCK, with the peak
prevalence (70%) at 5 days in milk. Duffield et al. [23] reported a prevalence of SCK between 8.9%
to 34%. More studies found its peak prevalence of SCK within the first month of lactation [52, 23].
On a global level, SCK prevalence ranged from 8.3% to 40.1% [13]. Differences in prevalence are
attributed to study methodology, regional differences and differences in parity distribution per
study [77]. These studies show that SCK occurs on many dairy farms, most prominent in the first
weeks of lactation of a cow.
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Costs Costs of ketosis depend on incidence rates, treatment costs and milk price. The majority
of the costs are caused by reduced reproduction rates and loss of milk yield [22, 46]. Reproductive
efficiency is the key to a profitable dairy farm [63]. McArt et al. [46] estimated the cost of SCK
at $289 per case, accounting for associated diseases such as metritis and displaced abomasum.
Others claimed that costs involving the disease could be accounted for twice and they provided a
recalculated estimation of the costs [57], at a total cost of e257 per case.

Treatment cost consist of diagnostic costs, therapeutic costs, labour costs, and these costs are
estimated at $6 (2015, [46]) and e22 (2015, [57]). The large difference could be explained as the
latter study considered CK treatment costs. However, both did not factor in extra labour costs.
Therefore, the direct costs of SCK are low compared to the indirect costs of SCK.

The impact of SCK is also visible on an ecological level, as agriculture is responsible for a significant
amount of greenhouse gasses (9.8%, [15]). The effect of impaired reproductive performance and
reduced milk yield also contributed to the greenhouse gas emissions [49]. This study showed that
SCK and related diseases contributed to a 2.3% increase in greenhouse gasses.

Treatment Treatment can be applied in a proactive or reactive manner. Proactive treatment
is meant to prevent the development of ketosis and consist of specific feed intake during the dry
period. However, the success of preventive treatment is variable [23]. Reactive treatment is applied
after diagnosis of (subclinical) ketosis. Studies show that after (veterinary) treatment of SCK, most
cows recover in 5 days time [45]. Treatment also reduces the risk of clinical ketosis and increases
milk yield [45]. Therefore, detection of SCK in an early state can minimise the costs involved [32].

Diagnosis Clinical ketosis in cows is often noticed by the farmer, shown by reduced eating time,
weight loss, uncoordinated movement, acetonic breath and decreased milk yield [2]. Near-zero feed
intakes have been reported on the day of diagnosis [32]. The clinical diagnosis is usually between
ten days to three weeks after calving [30].

In SCK, invasive tests have to be used to diagnose ketosis reliably. By definition, there are no
visible signs of illness and farmers cannot notice cows with SCK. Presence of ketone bodies in
blood indicates a negative energy balance, signalling ketosis at high levels [30, 1]. From the three
ketone bodies present, Beta-hydroxybutyrate (BHBA) has become the standard detection method
of ketosis [47]. BHBA can be measured in urine, milk and blood [71]. Blood is reported to be
the most accurate [71] and it is considered the gold standard method [47]. This gold standard is
measured in the laboratory, but more convenient cow-side tests are available [47]. The definition
of SCK based on BHBA concentrations is based on a certain threshold value. The cutoff threshold
commonly used is 1.2 mmol/L, based on distribution skewness of this value [52]. However, this value
has been claimed as arbitrary [22]. Care is needed when measuring BHBA, as variations throughout
the day have been reported [41]. Blood sampling is considered invasive and time-consuming [76].
Therefore, in practice blood sampling is considered unfeasible on large scale [81] and new types of
tests have the potential to detect SCK on a large scale.

2.1.1 Detection or Prediction

In identifying cows with ketosis, there is a distinction between detecting ketosis and predicting
ketosis based on the relative time of decision making. Currently, the detection of ketosis is defined
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Figure 2.1: Timeline of the health status progression in the transition period of a cow with ketosis.
On the time axis, three types of analysis are related to stages of ketosis. This figure shows that the
progression of SCK is a gradual process and thus prediction and detection have a dependency on
time.

as finding high BHBA concentrations in blood samples of the cow. Prediction of SCK is when there
is a reliable forecast about the future state of SCK of the cow, which can only be verified afterwards.
This prediction can be used as an early warning signal and stimulate preventive treatment. In the
retrospective scenario, other diseases caused by ketosis have been diagnosed and costs have been
made. In terms of treatment costs, the retrospective scenario is considered the most expensive,
followed by detection. Prediction is considered the least expensive as an early response may benefit
treatment [32], which proves the added value of prediction over detection. The separation over time
of detection, prediction and retrospective analysis in SCK is illustrated in Figure 2.1.

2.2 Non-invasive measurable risk factors of SCK

Several studies have shown that other cow measurable parameters are related to SCK [31, 37, 16,
62, 68, 39, 67, 65, 38, 26, 51]. These can be categorised into behaviours like eating or ruminating
and other parameters like milk yield. This distinction is based on the type of sensor involved, where
the behaviour can be measured using a similar sensor.

2.2.1 Behavioural risk factors

Behaviour of an animal is considered as a good indicator of its physiological state [29]. Rumination
behaviour, eating behaviour and the amount of activity are seen as signs closely related to health
and productivity [7].

Eating Eating behaviour consists of feed intake, duration, and eating repetitions [19]. Postpartum
diseases are frequently related to eating behaviour during the transition period [31]. Metabolic
disorders such as ketosis have been reported to have a great impact on eating behaviour [19]. The
study of Goldhawk et al. [31] and Itle et al. [37] reported up to 28% reduction in eating time
compared to healthy animals in the postpartum period leading to diagnosis. In the prepartum
period, eating time is also reported to be reduced [16]. The type of feed has been identified as a
risk factor, with less quality feed 1.5 higher odds of SCK compared to high quality feed [6]. Specific
eating behaviour is also found in ketotic cows. Sahar et al. found ketotic cows eating less in the
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first 90 minutes after fresh feed delivery [62].

Rumination Cows need to ruminate to acquire nutrients. This is a vital process for a cow, so
differences in rumination behaviour can suggest a disorder. Like eating, rumination behaviour
is summarised as total rumination time, rumination spouts(repetitions) and rumination duration.
Most of the studies investigating the association between rumination and ketosis used total rumina-
tion time as a behavioural indicator. Stangaferro et al. [68] reported a decrease in rumination time
in the period of 5 days before diagnosis up to the diagnosis day. Decrease in rumination time was
also reported in the study of King et al. [39]. Other studies reported a rumination time decrease in
ketotic cows in the week prepartum [67], especially for multiparous cows [65, 38]. Soriani et al. [67]
even negatively correlated rumination time with BHBA levels, suggesting that rumination time has
a direct relation with SCK.

Lying Due to the role of lying in rumination [19], it is considered a vital part of dairy cow
behaviour. Lying amounts to a large part of a cows daily activity and cows prefer lying over
eating and social behaviour [50]. Deviation in prepartum lying behaviour have been associated with
ketosis, Itle et al. [37] showed that ketotic cows show reduced lying time in the week prepartum.

Activity The activity of a cow is usually measured as the daily step count of a cow. Activity
has also been associated with ketosis. A study of Stangaferro et al. noted decreased activity up
to five days before diagnosis [68]. Similar reductions in activity have been seen in other studies
[42, 26, 39, 51]. However, questions have been raised on whether decreased activity is a consequence
or a cause of ketosis [51].

2.2.2 Other risk factors

Other factors have been identified to associate with SCK. Body Condition Score (BCS) is a visual
assessment of the ratio of body fat of a dairy cow. A high BCS was identified as a risk factor to
develop ketosis [77, 58, 44]. Locomotion scores, visual assessments of the mobility problems of a
cow, are associated with SCK [14]. Especially higher lameness scores show higher levels of BHBA.
Parity is also considered an important factor for SCK. Compared to primiparous, multiparous
showed higher prevalence of SCK [77, 6]. Time of year due to different feeds has also been related
to ketosis [77]. Milk parameters such as colostrum yield, previous lactation length and dry period
length were considered increased risk for SCK and CK [77]. Milk yield was also reported to be
reduced before diagnosis of subclinical ketosis [39].

2.3 Precision dairy farming

Precision dairy farming is defined as the technology to support or replace the farmers’ observation
of their livestock [61]. Its purpose is to monitor the individual behaviour of cows in close to
real-time [5]. This is especially important in high-value livestock, such as dairy cows [78]. Using
various individual cow sensors, data is gathered and processed by cow management systems. These
systems provide farmers with detailed information of each individual cow. Farming industries’
interest in precision dairy farming has increased over the last years [7]. This individual monitoring
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has become increasingly important, since cows per dairy farm are increasing, but employees per
farm are not increasing accordingly [51, 7]. Reducing workload and increasing efficiency using
precision dairy farming are the largest factors of interest for farmers [7]. Its potential accuracy
of livestock production management is unprecedented and allows fine-grained management of the
farm [78]. However, care must be taken with the monitored parameters, as they are biological and
inherently unpredictable [67].

Sensor types In the last years, there has been a growth in the implementation of multiple devices
to monitor behaviour and physiological parameters [61]. Pedometers were the first sensors to be
applied to dairy farming [24]. Electrical conductivity and milk colour sensors in milk systems
are used in mastitis detection. Several types of boluses are also available: measuring rumen pH,
temperature or detecting oestrus [61, 24]. Special rumination sensors are available, for detection
of rumination via a microphone sensor [64]. These sensors belong to the wearable sensor category.
Other wearable sensors are tri-axial accelerometers mounted in the neck, leg, ear or tail of the cow.
Whereas the neck, leg or ear sensors capture general behaviour, there are tail sensors specifically
designed for calving prediction. Wearable sensors which capture the general behaviour of a cow
(eating, ruminating, lying, or walking) are widespread and validated in several studies [75, 12].

These sensors are often integrated into cow management software. This system uses the data
from the sensors and produces alerts whenever an event is detected (oestrus) or some behaviour is
irregular (reduced eating time). The behavioural alerts are based on threshold differences from the
cows past behaviour. The event detection mostly uses binary targets [82], for example, oestrus or
no-oestrus, without providing insight on the certainty of this event. This leads to many false alerts.

Usage The usage of precision dairy farming was categorised by Rutten et al. [61]. It consists of
1) (sensor) measurements, 2) classification of measurements, 3) integration with other sources, 4)
decision making. On Dutch farms, the adoption rate of activity sensors for oestrus detection is
around 20% [69]. Other sensor technologies are less adopted [60]. New development in precision
technology presents a unique problem in case of subclinical detection. The farmer must act on alert
without any clinical signs [68]. Studies show that the output of sensor data is already intensively
used [58]. Observation of cows behaviour has seen increased importance in the early identification
of a disease [19].

Usefulness Surveys show that farmers want affordable technology with a clear cost-to-benefit
ratio [10]. Many systems provide farmers raw data or indicators that are not clearly related to
disease or treatment [61]. The value of unprocessed data is limited [29]. Alerts based on behaviour
are not sensitive enough, a lot of alerts are false positives. They must be improved and produce
an actionable change for farmers [25]. Although sensitivity is lacking for alerts and other new
functions, it can still be useful when no other investments have to been made [25].

2.4 Time series

Time series is a type of data in which data points are bound together by time. The value at time 2 is
dependant on the value of time 1. This type of data is commonly seen in climate data (temperature
over years), financial data (stock market values over time), and sensor data. Early machine learning
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on time series concentrates on time series forecasting: the prediction of future values using value
from the past. This means forecasting the temperature for the next ten years or predicting the
stock market value of tomorrow.

Classification of time series instead of forecasting has seen recent interest as wearable sensors are
integrated in modern society. The classification of tasks based on time series is not concerned
about what values are next, but rather what patterns can be extracted to distinguish two or more
types of classes[3]. For example, a sensor may be placed on a human subject and the sensor data
over a day is captured. This data can be used to classify the different types of movement this
person did during the day (walking, sitting, or lying) by learning specific patterns in the time series
data. The prediction of movement types is called time series classification and common methods to
classify time series are to compare whole segments of time series to each other, find small unique
patterns for each class, or extract higher-order features from the time series[3]. Among the popular
algorithms, Dynamic Time Warping has achieved success in time series classification and it is often
used as a baseline in time series classification tasks[3]. Recent advancements in deep learning have
also enabled to improve on time series classification, with the availability of enough data[36].

This study aims the detection of SCK using behaviour data and this is a time series classification
task, because behaviour data is time bound and behaviour data from different cows has to be
classified as either healthy or SCK. For example, Figure 2.2 shows the hourly values of the eating
time of cows A and B. This figure of a three-day period shows the time correlation of eating: the
eating time of one hour depends on whether the cow has eaten before. The SCK detection model
would use this behaviour data and predict whether or not cows A or B are healthy or sick.

Figure 2.2: Eating time of two cows in a three day period. Both cows show lower eating time
around midnight, indicating a day-night pattern.

2.5 Windowing

Time series are often large, windowing is a way of limiting time series data into smaller parts. By
taking a certain reference point in the time series with a certain window size, it creates a different
subset of the time series data. Often, a single value in a time series is not informative enough.
Therefore, by taking multiple values in the neighbourhood, there is more information to be found.
For example, in time series forecasting, a single stock value contains only small information about
the stock value in the future. However, taking the last 30 days into account, we can calculate a
trend from the past 30 days to make a better prediction.

Taking account of the last 30 days can be done at any point in the time series. If this procedure
is performed on a data set containing a full year, we can calculate the stock price for every next
day by “sliding” our operation over the time series. This procedure in this case is called a sliding
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window procedure. The sliding window is a common method when there is a need for a continuous
output at every point in time. The sliding window enables to look back time steps in the past
to make a more accurate prediction. Often this is enough to make a reliable prediction without
needing the entire time series.

In time series classification, the sliding window approach is also used when there is a label for each
point in time. When a prediction is only needed at a single point in the time series, windowing can
be used to limit the amount of data. Limiting the data might be necessary to reduce the amount of
dimensions, reduce noise or when samples in a data sets have different lengths in their time series.
In this study, we do not have label for each point in time, so we use the single point windowing to
limit the amount of data per cow.

2.6 Normalisation

Normalisation is the technique of unifying the numerical scale of different features to reduce the im-
pact of large-scale features and reduce the effect of external factors. For example, in loan application
data, the age of a person is much smaller than the net income of this person. The numerical value
of the net income is much larger. To avoid this problem, we can apply normalisation. This scales
all data points to the same order of magnitude. The two most common techniques in normalisation
are min-max scaling and z-score normalisation.

Min-Max scaling maps all data points to the range of [0,1] by utilising the maximum and minimum
of each attribute. More specifically, let mini and maxi be the minimum and maximum of attribute
i, then the min-max scaling for the jth data point xji is defined as follows

yji =
xji −mini

maxi −mini
(2.1)

The problem with this approach is that outliers have a lot of impact on the scaling.

Z-Score normalisation does not have this problem. It takes the mean µi and standard deviation σi
of attribute i and transforms the jth data point xji as follows

yji =
xji − µi

σi
(2.2)

2.7 Time series features

To derive features from time series, the naive method is to use all values within the window of
the time series. Depending on the window size, this might be small enough to be used as features
itself, or it might be too much data. “Raw” values can be too specific, because they are bound to
a specific time.

An alternative is to aggregate the time series data to calculate other features. Descriptive statistics
like mean, variance, minimum and maximum are statistics that can be calculated on a time series.
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We can also fit a polynomial function to the time series, like a linear fit. Such a linear fit can return
a slope which tells us whether the values are increasing, stabilising or decreasing over time.

2.7.1 Time representation

In a time series, the time/date is often also a feature. However, the standard representation for time
does not account for the cyclic nature of time itself. For example, on a number line, the time 00:00
is very far from 23:00, while it only is an hour apart. This makes it difficult for machine learning
models to notice their close relation. Therefore, we introduce another representation for time by
extracting it into two features with a sinus and cosine transformation (see Equations 2.3 and 2.4).
In these formulas, x is the time variable in a zero-based interval 0 ≤ x ≤ X. This transformation
works for every cyclic (time) variable (weekdays, month, quarters, hours, seconds).

sine(x) = sin

(
2π × x
X + 1

)
(2.3)

cosine(x) = cos

(
2π × x
X + 1

)
(2.4)

The results of this transformation are points in a 2-dimensional space. An example of such a
transformation is given in Figure 2.3. This figure shows the transformation of the months of the
year. On an ordinary number line, January is at the far left while December is at the far right.
After the transformation, January is close to December in the 2-d space as shown in the figure.

Figure 2.3: Month represented by sine and cosine transformation

2.7.2 Nonperiodicity and Fast Fourier Transform

The study of van Dixhoorn et al. [74] introduced a new statistic for cow behaviour named non-
periodicity. It resembles a measure of regularity in the daily pattern of the behaviour of a cow.
Their assumption was that cows with more regular behaviour have better capacity to undergo the
transition period around parturition. Nonperiodicity is defined as the mean squared error between
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the autocorrelation of the time series and a sinusoid with a 24 hour cycle and an amplitude of
0.25. The 24 hour cycle was chosen to represent the diurnal cycle of the behaviour of cows. The
amplitude of 0.25 seems arbitrary and follow-up questions to the original authors revealed that this
value was chosen because it had the best fit to their test subjects.

Nonperiodicity(x) =
1

T

T∑
t=1

(
autocorr1(xt)− 0.25 sin

(
2πt

u

))2

(2.5)

where autocorr is the autocorrelation function with one-step lag. Autocorrelation is visualised for
a cow in Figure 2.4 together with the sinoid with the parameters mentioned.

Figure 2.4: Autocorrelation plot of eating time of a cow and a sinusoid with a period of 24 hours
and an amplitude of 0.25. The nonperiodicity (mean squared error between these two time series
is high (0.17) van Dixhoorn et al. [74]

The nonperiodicity is closely related to other techniques to analyse frequencies in a signal. When
there are periodic signals in a time series, we can apply Fast Fourier Transform (FFT) to analyse
the frequencies of these signals. These frequencies or the strength of the frequencies can then be
used as features. An example of a FFT of the eating behaviour of a cow is shown in Figure 2.5.
To limit the number of frequencies, a threshold line is calculated for each individual FFT by the
following formula

Peak threshold = q75 + 3 ∗ (q75− q25) (2.6)
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Figure 2.5: Fast Fourier Transform of eating behaviour of a cow over a 18 day period. The dotted
line is the peak threshold line. Peaks occur at 1 time, 2 times and 6 times a day.

14



This formula is derived from the standard outlier definition which is a box plot (median±(q75−q25)
As the variation within the FFT is high, the threshold is set at a high level. From this FFT, we
can calculate the following features.

• Strength at frequency 1, 2, ..., 6 times per day. Peaks are rounded if slightly higher or lower
than the integer value. This value is 0 if below the peak threshold

• Mean and variance of all frequencies

• Highest strength value

• Frequency with the highest strength

• Total strength

• Total number of frequencies with a peak above the threshold

• Average strength of all nonzero frequencies

2.8 Machine learning models

In this study, four supervised machine learning models are used: Random Forest, Gradient Boosting,
Multilayer Perceptron and Random Forest. They are basic classical machine learning models, which
suits the exploratory aspect of this study.

The Random Forest (RF) [72] classifier consists of an ensemble of decision trees. Multiple trees are
created by taking a random subset of the training data and fitting a decision tree, a technique called
bagging. These trees produce a vote in which the majority wins. The splitting criteria in these
trees are based on the seen training data. In this study the training data is similar to testing data,
the random forest classifier has good initial performance. Common hyperparameters for Random
Forest to be tuned are the number of trees, maximum number of features per tree, maximum depth
of each tree, the minimal samples per split and the minimum samples per leaf.

Gradient Boosting (GB) [27] is an ensemble, like Random Forest, of decision trees. The difference
is the building process of trees. Instead of taking a subset of data for each tree, an initial tree is
fitted to the data set. Then, using the gradient of a predefined loss function, a new tree is trained
on these gradients. The Gradient boosting hyperparameters to be tuned have overlap with the
Random Forest, as both use decision trees as the base learner. However, the hyperparameter values
cannot be shared as the learning process is different.

The Näıve Bayes (NB) [28] classifier is based on the conditional probability of features explaining
the target under the assumption of mutual feature independence. For a few number of features, this
assumption might hold and if the conditional probability is not uniform, the Naive Bayes classifier
also provides good performance without any configuration. This classifier fits the static feature set
well, as features are scarce and mostly independent. For continuous data, a Gaussian probability
model is needed to predict unseen values. The Naive Bayes does not have any hyperparameters to
be tuned.

The Multilayer Perceptron (MLP) model is a feed-forward neural network [8]. Using a nonlinear
activation function, MLP is able to learn complex functions, which makes it a good classifier algo-
rithm. The optimiser used for this study was the Adam optimiser. Common hyperparameters to
be tuned are learning rate, hidden layer size, and activation function.
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Hyperparameters Hyperparameter optimisation is the process of finding the best set of hyper-
parameters for a machine learning model. In contrast to the normal parameters of the model,
hyperparameters cannot be learned during training. Some machine learning models have several
hyperparameters (e.g., the number of trees and the subset of features per tree) or none (e.g. k-
Nearest Neighbour). The goal of the hyperparameter optimisation is to find the set of parameters
which minimises a predefined performance metric in cross-validation. The optimal way is to per-
form a grid search over a manually defined hyperparameter space. When this space is large, it takes
a lot of computing time to find the optimal set of hyperparameters. Another approach is to ran-
domly sample from this hyperparameter space, limiting the number of samples to be taken. Both
approaches are easily executed in parallel, because the hyperparameters values are independent of
each other. Other approaches exists, such as Bayesian optimisation, gradient-based optimisation
and evolutionary optimisation. These approaches are deemed too complex to fit into this research.
Random hyperparameter search is the chosen approach for hyperparameter optimisation of machine
learning models.

2.9 Evaluation metrics

2.9.1 Classification metrics

Classification can be evaluated by a number of statistics. The basic evaluation process is by com-
paring the test values and the predicted values. From these, we derive a confusion matrix containing
the number of true positives, false positives, true negatives and false negatives (in the case of binary
classification). Precision is the percentage of true positive values in the set of all predicted positive
values. Recall is the percentage of true positive values in the set of all positive values. This is
also called sensitivity. Specificity is the percentage of true negative values in the set of all negative
values. Accuracy is the percentage of all correctly predicted values in the set of all values.

Most supervised machine learning models can also produce a probability value instead of an actual
binary prediction. Then these probabilities are transformed into the positive or negative class using
a threshold value, with 0.5 as the default threshold. If we would change this threshold value, the
confusion matrix would change. If this threshold is 0.8, the number of predicted positive values are
lower and the number of predicted negative values are higher. We can vary the threshold in such
a way that we can get 100% Sensitivity or 100% Specificity and everything in between. The curve
that follows is called the ROC-curve. This curve contains information of what Sensitivity score we
can get at a certain Specificity score and vice versa. This allows for fine-grained control over the
the trade-off between the number of predicted positives and negatives, especially in an imbalanced
data set. From this curve, the area underneath can be calculated and this number is another metric
called the Area under the ROC-curve(AUC).

In the same fashion, we can create a Precision-Recall curve by adjusting the positive threshold.
Then the result is a function of Precision at a certain recall, or vice versa.

2.9.2 Regression metrics

Common regression metrics include mean squared error, mean absolute error and R2. The mean
squared error(MSE) is the squared difference of the predicted value and the actual value averaged
over all predictions. The mean absolute error(MAE) is the absolute difference of the predicted value
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and the actual value averaged over all predictions. The R2 score is the coefficient of determination
which is representation of the proportion of explained variance in the predictions. The best value
is 1 and a value of 0 means the model always predicts the expected value over all values (mean).

In a data set where outliers are important, the MSE and MAE are not able to capture the perfor-
mance of those outliers, as they are both the average scores. Rather, by analysing the distribution
of all errors, we can derive a useful quantity to quantify the performance on outliers. For instance,
we can take the 90% percentile of the errors to see what the error is at the higher errors. If a model
is performing well on the well-represented numbers, but worse on the outliers, than this percentile
includes those errors.
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3 Related work

Combining the sensors from precision dairy farming and the known behavioural deviations of cows
related to SCK presents new possibilities in the detection of SCK. In fact, a number of studies
already have used precision dairy farming technologies to detect SCK and also in other related
problems. This related work is split into two categories. The first category consists of all research
conducted on the detection or prediction of ketosis. The second category consists of other research
deemed similar enough to provide insight into the data, methods and outcomes.

3.0.1 Search procedure

On February 26 2020, a literature search on the Scopus database has been performed using the
following query:

(Prediction OR Detection OR Identification) AND (ketosis or hyperketonemia) AND
(activity OR behaviour OR behavior) AND dairy AND (cattle OR cows)

This initial search resulted in 28 papers. A second search step was executed to include relevant
research on ketosis and precision dairy farming. This process consisted a forward citation and back-
ward reference search and selecting the relevant papers based on the presence of terms in the title or
abstract. These terms were based on similar disease(ketosis), data(behaviour) or objective(detect
or predict ketosis). Some of these papers were unavailable, non-English or had an region specific
source. Finally, 11 papers have been identified as related work. An overview of these papers is
presented in Table 3.1.

3.1 State-of-the-art on ketosis detection

As technological advancement have been predicted to include automatic monitoring of metabolic
health [55, 19], initial studies into ketosis detection have been performed. Background on the
methods and models used in these studies can be found in Chapter 2.

A study by Eckelkamp [25] used activity and behaviour to improve the performance of disease
alerts using machine learning models, under the assumption that alerts signalled a disease such as
ketosis. Using data from a validated commercial behaviour sensor, several machine learning model
have been tested in a large field study of 1374 cows (4 farms), of which 213 cows were diagnosed
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with SCK. This study used 30% decrease from a 10-day moving average in eating, lying or steps
as features. As it only considers daily totals, the features do not capture any information within
daily pattern of a cow. The best performance this study produced reached 83% sensitivity and 83%
specificity with a Random Forest model in a time window of 5 days before to the day of diagnosis.

The study of Stangaferro et al. [68] used a proprietary score to predict ketosis. The method of
scoring was not published and this research is only reproducible with proprietary sensors. They
also used a validated commercial behaviour sensor that produced a Health Index Score (HIS). This
HIS was used to signal ketosis and other metabolic disorders. The time window of HIS consisted
of daily score in a period of 5 days before to two days after diagnosis. The study was performed
on 1080 cows, of which 54 cows were diagnosed with SCK. This study reached 91% sensitivity, but
did not report a specificity score.

Ushikubo et al. [73] have used several machine learning models to detect subclinical ketosis in an
early stage. Data such as feed intake, several milk parameters and activity were as features. Using
feature selection techniques, only variance of activity was used as input to the machine learning
models. Their ketosis target was defined as 0.1 mmol/L BHBA measured in milk, which has been
showed to be an unreliable method of testing. This study compared daily data from two days
and three days before diagnosis and therefore this study produced a predicting model. However,
the analyses was still performed retrospectively, which means that in production use could give a
lot more false positives, and thus real-world application is limited. Using several different feature
selection methods and machine learning models, their best performance (using SVM) was 93%
sensitivity using a Support Vector Machine model, but they did not report specificity.

Bonfatti et al. [9] used infrared spectroscopy to predict BHBA levels. This new technology have
potential to be integrated into the milk systems to quickly detect ketotic cows. They used blood
samples as reference, but only reached 76% sensitivity and 82% specificity, which was labelled as
too low to be valuable.

Paudyal et al. [56] compared rumination on the day of diagnosis to the (herd) average rumination
of 3 to 5 days before diagnosis and transformed these values into a cow index system. If one of
these values passed a certain threshold, the cow was marked as sick. Cows were grouped based on
days in milk. These threshold values were determined graphically using a Receiver Operating Curve
(ROC) on the entire data set. No separation between training and test sets was made. Sensitivity
and specificity reached both 80%.

Xu et al. [81] presented a metabolic status indicator based on a k-Means clustering and predicted
those statuses using a combination of milk data, Dry Period Length (DPL), Body Weight (BW)
and Parity (PAR). This milk data was sampled in a weekly frequency and at the end of the week,
the data was used as features. The metabolic status of poor was related to ketosis, but predictions
on poor status did not reach high performance and were omitted from the original paper. In the
supplemental paper, the performance on all statuses reached an error rate of 24% with a Random
Forest Model.

Steensels et al. [70] used rumination, activity and milk data together with logistic regression to
detect ketosis. The data was sampled on a daily frequency in the period of 4 days before to 2 days
before diagnosis. Their targets were based on urine samples. Their model reached a performance
of 70% sensitivity and specificity. All related work used short time windows, up to 10 days, but
literature suggests changes related to SCK also happen earlier. No study used combination of all
the different behavioural parameters.

Early detection of ketosis may benefit treatment response and stop the progression into other

19



diseases [68, 62, 80]. This is illustrated in Figure 2.1. An improvementment to the current studies
is to combine real-time measurements into the model [80]. The impact of different farms can also
be significant, with other validation farms showing a decreased detection accuracy [70].

3.2 Other related work

Detection in dairy science using machine learning have been widely applied in oestrus and mastitis
detection [11]. Fuzzy logic has been applied to oestrus and mastitis detection by de Mol et al. [18],
combining milk yield, milk temperature and activity of a cow. Detection of estrus, general illness or
calving are already widespread in dairy farming [11, 68] An improvement of 55% to 80% has been
reported in the case of oestrus detection [69]. Borchers et al. [11] used behaviour date to predict
the calving day and 2h period. Benaissa et al. [4] combined localisation data with accelerometer
data to predict calving and oestrus. Both have improved sensitivity compared to accelerometer
data alone. Purpose built sensors have also had their success in calving prediction, with a tail
sensor achieving high performance [48].
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Study Objective Data source Time
window

Model(s) Evaluation Score Cows (%
SCK)

[25] Predict disease
(e.g. ketosis)

Feeding, activity -5d to d0,
daily

RF, LDA, PC-
ANN

Se/Sp/Acc 83%/82%/83% 1,374 (16%)

[68] Identify
metabolic
disorders

Rumination, activ-
ity

-5d to 2d,
daily

HIS (proprietary) Se 91% 1080 (5%)

[73] Early prediction
of ketosis

Feed intake, Milk
data, Activity

-3d, daily kNN, SVM, Logit,
RF, XGB

Se 93% 75 (?)

[56] Detect health
disorders (CK)

Rumination -5d to d0,
daily

Index value cutoff Se/Sp/AUC 80%/80%/0.8 198 (23%)

[81] Predict
metabolic
status

Milk data, DPL,
BW, PAR

d0,
weekly

DT, NB, BN,
SVM, ANN, BA,
RF, kNN

Error rate 24% 295 (?)

[70] Detect ketosis Rumination, Activ-
ity, Milk data

-4d to -
2d, daily

Logistic regression Se/Sp 70%/70% 706 (29%)

[9] Predict BHBA
and ketosis

Milk infra red spec-
tra

n/a PLS discriminant Se/Sp 76%/82% 542 (≈ 56%)

[11] Predict calving Behaviour data RF, LDA, NN Se/Sp 100%/87%(d)
83%/80%(8h)

53

[17] Detect oestrus Milk data and Ac-
tivity

Fuzzy logic Se/Sp 67%/99% 179

[32] Test possible in-
dicators of dis-
eases

Feeding behaviour -7d to d0,
daily

Standard deviation
from 7d rolling
mean

Pr 91% ≈100

[59] Predict calving Activity, Rumina-
tion, Feeding, Tem-
perature

Logistic regression AUC 0.929 400

Table 3.1: Overview of relevant papers. See the glossary for abbreviations. Time window is defined as the period in which data is used
and the time steps size of these data points. Models marked in bold scored best on ketosis detection or prediction.
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4 Materials and methods

This chapter is divided into six sections. Section 4.1 contains a detailed description of the behaviour,
blood measurement and other data used in this study. Section 4.2 shows the steps taken in this
study to prepare this data for ketosis detection. Section 4.3 introduces two different time windows
as proposed in the first sub research question. Section 4.4 introduces the different feature sets
used in this study. It also defines the normalisation techniques: herd-normalisation, prepartum
normalisation and within-window normalisation. Section 4.5 presents the machine learning models
used in this study and Section 4.6 defines the evaluation process and metrics to answer the different
research questions.

4.1 Data description

For this study, data from two experiments are presented: SenseOfSensors and EFRO. They recorded
blood sample data, behaviour data and other relevant data of dairy cows from farms in the Nether-
lands. Extra data from the cow management system is also available. This section gives a descrip-
tion of the data collection methods and the types of data collected.

4.1.1 Data sources

In the period between 2016 and 2018 several on-farm experiments have been performed. These
experiments recorded blood serum measurements and additional data such as calving dates, Body
Condition Score (BCS), locomotion, parity and more. Cows from these studies were equipped with
behaviour sensors during the experiments. The blood measurements of interest for this study are
around the first week and second week postpartum, falling in the ‘Detection’ zone in Figure 2.1.
Other related information such as parity and calving dates on cows have also been recorded.

SenseOfSensors SenseOfSensors (SoS) was the largest experiment, consisting of eight farms in the
Netherlands. The experiment took place from November 2016 to May 2018. During this period,
cows were monitored by veterinarians around their calving period. For each cow, several things were
noted. Most importantly, cows were scored on their BCS and locomotion at different times during
parturition, calcium and BHBA concentrations were measured from blood serum sampled in the
first week postpartum and BHBA concentrations were measured in the second week postpartum.
For this study, the prepartum scoring data and the first week BHBA data were important, so the
other data was removed. As the data from this study contained missing data, some filtering has
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been performed. Cows without identification number (to match with behaviour data) and calving
date (an important reference date) have been removed from the data. After that, cows without a
first measurement of BHBA were removed from the data.

EFRO EFRO was a smaller experiment, consisting of four farms in the Netherlands. The exper-
iment took place between March 2017 and August 2018. Blood serum have been sampled in the
two weeks prepartum, in the first week postpartum and five weeks postpartum. The blood serum
samples were analysed for concentrations of calcium, albumin, BHBA, Hatpoglobin, NEFA and
Ureum. For this study, only the BHBA concentrations of the first week prepartum were important
and therefore the rest of this data was removed. Like in the previous data set, filtering of the data
was needed. The filtering process was adjusted, because there was no calving date in the EFRO
data and only the second measurement of the EFRO experiment is important to this study.

The initial amount of data points and amount of data points after filtering is shown in Table 4.1.
The filtering on calving date and ID was performed first and then all data points without first week
BHBA measurement were removed.

Filter SoS EFRO Total

No filter 1740 181 1921
Calving date & ID 1551 181 1732
BHBA measurement 1403 178 1581

Table 4.1: The amount of calvings per study with filtering on 1) calving date and cow identification
number and 2) BHBA measurements. The latter was performed after the filter of calving date. For
SoS, the BHBA filter was based on either the existence first measurement value. For EFRO, the
BHBA filter was based existence on the second measurement value.

Cow management system Extra data about the cows from the experiments was available through
data from the cow management systems from all farms involved. This data consisted of behaviour
data, animal data data and calendar data. The animal data was used for additions and corrections
on the experiment data, explained in Section 4.2.2

4.1.2 Blood measurements

BHBA levels have been measured in blood serum for the experiments. As stated in Section 2.1,
measurement of BHBA is the standard detection method of SCK and the value of 1.2 mmol/L is
used as threshold for SCK.

Histograms of BHBA values in the SoS experiments show an almost equal distribution between the
first and second measurement, both peaking at around 1 mmol/L (Figure A.4). Also, the change in
measurements between the first week and second week shows a normal distribution (Figure A.5).

With the cutoff value determined at 1.2 mmol/L BHBA, the amount of cows with subclinical ketosis
and clinical ketosis is presented in Table 4.2.
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Measurement SoS EFRO Total

2 weeks prepartum n/a 0 0
1st week postpartum 297 8 305
2nd week postpartum 353 n/a 353
5th week postpartum n/a 21 21

Table 4.2: Cows with BHBA at 1.2 mmol/L or higher at different measurements in the two studies.
SoS did not have a third measurement. Moments of measurements are different for the experiments.
SoS measured in the first week postpartum and in the second week postpartum. EFRO measured
in two weeks prepartum, first week postpartum and five weeks postpartum.

4.1.3 Sensor data

For both experiments, the behaviour data was captured using Nedap neck and leg mounted sensors.
The neck sensor is mounted with a collar around the neck of the cow and the leg sensor is strapped
to one of the front legs of the cow. These mounting points enable capturing and categorising of
different cow behaviours. The neck sensor captures behavioural activity every minute and outputs
this as subsequent blocks. Behaviours is categorised as inactive, ruminating, eating and other. The
neck sensor also captures a head movement count, which resembles the cows neck activity. The leg
sensor captures a summary of behavioural activity in the last 15 minutes. Behaviour is categorised
as walking, standing and lying. Each 15 minutes, a summary of the minutes walking, standing and
lying is outputted from the sensor. In addition to that, the leg sensor also captures the number
of the cows standups and the number of steps. For each sensor, the behaviour data is mutually
exclusive. For example, when a cow is ruminating, it cannot be inactive or eating. Likewise, when
a cow is lying, it cannot be standing or walking. Therefore, a high correlation between the different
behavioural activities exist. As the sensors work independently, different combinations of neck and
leg behaviour data exists. For example, cows can be ruminating while lying, standing or walking.
A summary of the sensor properties is presented in Table 4.3. The sensor data is stored on the
sensor for 24 hours. In the barn, there is a receiver which transports the sensors data to either an
on-site database or to Nedap online storage.

Sensor Nedap SmartTag Neck Nedap SmartTag Leg

Mounting position Neck Front leg
Behaviour data (time) Eating, Ruminating, Inac-

tive and Other
Lying, Standing, Walking

Behaviour output data Subsequent periods 15 minutes
Activity data (amount) Neck movements Steps
Additional data n/a Number of standups

Table 4.3: Sensor properties

An example of daily eating time derived from sensor data is given in Figure 4.1.

Both sensors are validated in a study of Van Erp-van der Kooij et al [75]. Compared with visual
observation of behaviour, eating, rumination, inactive, lying, standing show high Pearson correlation
scores (r > 0.8), only walking time showed a low Pearson correlation score (r = 0.25).

As both studies concerned of multiple farms, some few external factors are not present in the

24



-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Days postpartum

0

50

100

150

200

250

300

350

400

Da
ily

 e
at

in
g 

tim
e 

[m
in

ut
es

]

Figure 4.1: Daily eating time of a random cow from the experiments around parturition.

behaviour data. Firstly, as cows enter the dry period, the length of this period depends on man-
agement practices. Often, farms have a special area for dry cows and cows on different farms
experience different environments including beddings, irregular food or different surrounding cows.
Also, external effects such as the season and temperature can have effect on cows behaviour.

Behaviour data is merged from different sources and this resulted in data loss. Also the amount
of cows with behaviour data in the prepartum period increases up until the measurement period
(see Figure A.11; Appendix A). This affects the choice of the time window, because the machine
learning models benefit from more training samples and testing is more reliable with more samples.

4.1.4 Other related data

Additionally, other cow-specific data have been logged such as parity, calving date, BCS and loco-
motion score. This includes parity and the calving date. Parity has been shown to have effect on
the SCK prevalence.

As SCK is a fresh-cow disease, so having the calving date is very important. The negative energy
balance occurs during the first part of lactation, so having SCK prepartum is unlikely.

Calvings Farms from both studies differ in the amount of calvings in the SoS and EFRO exper-
iments (shown in Figure A.1. For example, the largest farm 2.5 times as much calvings registered
compared to the smallest in the SoS experiment. As the amount of data is an important factor in
machine learning, the skewed distribution introduces a bias towards the larger farms.

The SoS study span over multiple years, so it is possible that a cow can have multiple calvings in
the span of the study. Indeed, about 20% of the cows had multiple calvings (shown in Figure A.3).
The EFRO study did not have multiple calvings per animal recorded.

Parity As mentioned in the previous chapter, parity is a risk factor for developing SCK. The
distribution of parity in the samples is shown in Figure A.2. Especially the distinction between
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primiparous and multiparous cows is important, as multiparous cows have higher risk for SCK.
Almost three quarters of cows are multiparous in both studies.

BCS & Locomotion The SoS experiment recorded BCS and locomotion scores from a veterinary
assessment. This scoring was at the end of the dry-period of each cow according to the experiment
protocol. Figure A.7 show the median scoring is ten days before calving. Higher BCS and loco-
motion scores have been identified as risk factors for SCK in Section 2.2.2. Figure A.8a and A.9a
show the distribution of BCS and locomotion scores respectively. Higher BCS was related to SCK
in literature and this is visible in Figure A.8b. Higher locomotion score was also associated with
SCK, Figure A.9b also shows this pattern, with locomotion score of four showing elevated levels of
BHBA.

4.1.5 Training-test split

As good practice, the data set was split up into a training set and testing set. The training set
is used as input for the machine learning model. For training and testing, a (80%/20%) stratified
split of the data is applied. As the data is is imbalanced, stratification is applied to have an relative
equal amount of positives in training and test set. With 1581 BHBA measurements in the first
week, this results into 1265 training and 316 testing samples.

4.2 Data mining & Preprocessing

From a large database of cow behaviour, certain data has to be filtered in order to be relevant
for this study. We need to deal with missing data and outliers, merge the blood data with the
behaviour data, define the unit of time steps, define a time window and deal with gaps in behaviour
data. All data mining and preprocessing is performed using the Python1 programming language
and Pandas2 data processing package.

4.2.1 Outliers

Values that differ significantly from the other values are marked as outliers. Outliers occur in
any sampled probability distribution by means of chance, but they can also be caused by sensor
misreadings or human errors. Outliers have been identified in measurement dates, as shown in the
histograms in Figure A.6. The criterium for outliers was that measurement dates should between
calving and 14 days after calving. The outliers are likely to be typing errors in calving dates or
measurement dates. Removal of the outliers show that the remaining measurements are within the
time frame set by the experiment (4-10 days after calving). Outliers are corrected by hand where
possible, i.e. if typing errors are off by a year or a month. They are also corrected with system
data. The amount of outliers unresolved are reported in the results.

1https://www.python.org
2https://pandas.pydata.org
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4.2.2 Data correction

The experiment data contained errors and gaps and to reduce erroneous data, correction were
made to this data set. Some life identifications were wrongly formatted, so the data is only partly
matched. The format of these life ids is ‘NL xxxxxxxxx’, where the x’s form a 9 digit number.
Errors include the absence of the ‘NL’ part, the absence of the space and missing a number in the
digits. Also some cows had duplicate life ids or missing life ids, which are likely to be input errors.

To recover as much as possible, the errors were corrected in the following order:

1. Absence of the ‘NL’ or the space was checked with a regular expression and corrected.

2. Missing life ids were filled by matching the combination of the farm number and animal
number from the experiment data with the cow management system. Animals numbers can
be reused on a farm, so the calving date from the experiment data validated the right match.

3. Missing parity was also filled if there was inserted if available on the cow management system.

4. Missing measurement dates were computed

5. All life ids were checked against the cow management system and the misspelling of some life
ids were corrected.

6. Calving dates, blood measurement dates and parity were also checked against the cow man-
agement system and likely type errors were corrected by hand.

4.2.3 Merging data

Behaviour data comes from Nedap sensors and blood data comes from different studies. Both data
sources contained life ids for the cows, which were corrected in the previous section. To be able
to link the behaviour data to the experiment data, each data point from the behaviour data was
marked with the correct life id. This enables us to match it with the experiment data and select
the relevant behaviour data in a time window.

4.2.4 Transformation & Resampling

The two sensors have different outputs for their behaviour. In order to use both sensor data
together, we have to transform the data into compatible shared format. The neck sensor outputs
subsequent periods of behaviour and the leg sensor outputs summaries of a period of 15 minutes
(See Figure 4.2). The transformation is only possible in one direction, as the summary does not
contain the order of the behaviour.

The neck behaviour data was transformed to a summary similar to the leg sensor by calculating in
which time frame(s) a certain behaviour period belongs and dividing this time according to their
contribution of the total time in this time frame. This is illustrated by the transformation of the
neck behaviour in Figure 4.2 to the summarised format.

Moreover, this study also resamples the data to limit the amount of behaviour data points. To
illustrate, the sampling rate of the behaviour from the leg sensor is 15 minutes. This results in
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Figure 4.2: Output of behaviour data from the neck and leg sensors. The neck sensor outputs
behaviour in subsequent periods. The leg sensor outputs behaviour in a summary of 15 minute
blocks. The summarised neck behaviour is dividing the periods to the fixed time blocks.

480 data points over a period of 5 days for a single behaviour. Resampling means summarising
multiple data points into one by taking the sum, mean or some other statistic. This will sacrifice
some detail, but it will allow the model training to be faster and decrease the amount of outliers in
the behaviour data.

For this study, we chose to resample the sampling rate of the data into periods of 24 hours by
taking the sum of the values. This period was defined as 24h starting at 0:00 in the local timezone.
This yields into total eating/ruminating/etc.. time of each day. The daily time scale is preferred,
because cows have a diurnal pattern and therefore daily values are directly comparable.

4.2.5 Gaps in behavioural data

For several reasons, there are gaps in the behavioural data. The sensor itself has a limited memory
and occasionally some data is lost. An overview of the gaps in behaviour data per sensor is found
in Figure A.10 in Appendix A. To reduce the amount of data loss, a distinction is made between
different amounts of data missing:

1. Missing values within a day. The rest of the values within this day are scaled linearly to a
total of 24 hours. The correction function defined in Equation 4.1 is the function to correct
within a day, where xi is the daily behaviour minutes for behaviour i and J is the set of all
behaviour types.

2. Missing values of a day or more. These days are be marked as missing.

corrected(xi) = xi ×
24 ∗ 60∑
j∈J xj

(4.1)

When a time window selects a missing day for a given subject, the subject will be dropped from
the data set.
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4.2.6 Imputation

The experiment data is not complete and missing values have been imputed by a 3-Nearest-
Neighbours approach to minimise data loss. The training and test set from Section 4.1.5 contain
459 entries and 121 entries respectively which have one or more missing values (See Appendix A.4
for more statistics on missing values). Imputation is the method of filling in missing data by using
information contained in the entire data set. The naive approach for imputation is to fill the missing
values by the mean of non-missing values on the entire data set. The 3-Nearest-Neighbour approach
differs by utilising information contained in row to produce a better estimate for the missing value.
For example, consider a data set D with entries containing values for X and Y. Some entry A is
missing value X in this data set. Imputation with the mean fills the value of XA in A with the
mean value of X in the entire data set. Imputation with 3-Nearest-Neighbours fills the value of XA

in a with the mean value X of the 3 nearest entries based on the value in value Y. The nearest
value is based on Euclidean distance. As data values are often correlated, the 3-Nearest-Neighbour
approach provides a better estimation compared to a mean value approach. The imputation was
fitted on the training set and then applied to training and test set.

4.3 Time windows

To limit the amount of input data, a time window has to be defined. As stated in Section 1.2,
the first research question is to experiment with a calving based time window. The relation of
the transition period of a cow in relation to the data of this study highlights two important dates:
measurement day and calving day. Firstly, the measurement day is the moment where the cow is
sampled for her blood. Secondly, as seen in Figure 5.1 and 5.2, the day of calving marks a change
in the behaviour of cows. These two events are used to define two time windows. Since SCK occurs
mostly in the two weeks postpartum, we use this fact to define our time windows.

While the assumption that some behavioural patterns are visible in cows with SCK is supported by
literature, it is still unknown whether these patterns are long or short, occur once or multiple times.
In Section 3, multiple studies used measurement-date based time windows. As stated in Section
2.2.1, this approach is sub optimal, since different behavioural patterns related to SCK occur at
different moments relative to calving. Therefore we define two time windows for behaviour data
and evaluate which is better suited to SCK detection.

1. Fix the size of the time window to include x days before and up until measurement
(measurement-date based);

2. Fix the time window to be x days before and y days after calving (calving-date based).

In a cross validation on the training set, results showed that a 5 day window was best on this data
set. Likewise, the start of calving-date based was set at 2 days after calving.

The options are graphically represented in Figure 4.3. This shows that the measurement date is not
fixed relative to calving, therefore a measurement-date based (MB) window selects different days
relative to calving for every cow. It also shows that the end of this window is equal to the day of
measurement, so the state of BHBA concentration in the cow at last day in the window is always
correct.
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Figure 4.3: Graphical overview of all time windows. The calving date is fixed, but the measure-
ment date is different for each cow. Therefore, the measurement-date based window has lower and
upper bound.

This in contrast to the calving-date based (CB) window. There are cows which are tested at 10
days after calving, but most of cows are tested before. This results in a time window where the
BHBA value measured is somewhere in this time window. Therefore, the complete time-window
does not represent the current state of an animal.

The calving allows for a better recognition of pattern of subclinical ketosis might cause, but it has a
weaker relation to BHBA value directly compared to measurement-date based time window. In the
context of predicting or detecting SCK, the usage of the calving-date based makes the classification
in some cases a prediction and in other cases a detection, as the calving-date based overlaps some
measurement dates.

4.4 Features

Different feature sets are derived from the data available. We distinguish three categories in the
feature sets: the static feature set, behaviour feature sets and combined feature sets. The static
feature set contains features derived from information about the cow which is known beforehand
and is considered a risk factor for subclinical ketosis. The behaviour feature sets contain feature
sets which have a unique feature definition. The combined feature sets contain combinations of the
feature sets introduced earlier to evaluate their combined potential.

The amount of samples per feature set and time window varies. We set the amount of samples to
all animals with complete behaviour data in the given time window. This causes the Fast Fourier
Transform features and individual normalisation features to contain significantly less samples com-
pared to the other feature sets. Table 4.4 provides an overview of the amount of samples per feature
set and time window. Features derived from the daily totals (with herd-normalisation or without
normalisation) do not change the amount of samples.

4.4.1 Static features

The static feature set contains the dry period length, the previous lactation length, the gestation
length, the prepartum body condition score, the prepartum locomotion score and the month of
the calving date. Dry period length was calculated as the difference in days between the dry-off
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Feature set MB CB

Static features* 961 / 231 982 / 233
Daily behaviour totals 961 / 231 982 / 233
Herd-normalised totals 953 / 228 982 / 233
Prepartum normalisation 902 / 210 907 / 212
FFT features** n/a 845 / 194
Combined features 953 / 228 982 / 236

Table 4.4: The amount of samples per time window and feature set. *The static feature set
is limited to all samples found in the daily behaviour time windows for fair comparison. **FFT
feature set is based on prepartum data, which is calving based.

date and calving date. Previous lactation length is calculated as the difference in days between the
previous calving date and the dry-off date. The gestation length is calculated as the difference in
days between the last insemination date and the calving date. The dry-off date, previous calving
date and last insemination date are all gathered from the cow management system and suffer from
administration issues. The prepartum body condition score and locomotion score were gathered
from experiment data. The month of the calving date was represented as a combination of a sine
and cosine transformation of the value using the method defined in Section 2.7.1.

To summarise the above, the following features are considered in the static feature set.

1. Body Condition Score

2. Locomotion score

3. Parity

4. Dry period length

5. Gestation length

6. Previous lactation length

7. Sine transformation of the calving month

8. Cosine transformation of the calving month

The amount of samples in static data is larger than in any of the behaviour feature sets using
any time window, because not all cows were fitted with a behaviour sensor, behaviour data was
incomplete or the data contained gaps. Therefore, this feature set was evaluated twice using different
sets of training and test data. It was evaluated on the training and test samples present in the
measurement-date based time window and once it was evaluated on the training and test samples
present in the calving-date based time window. This allows to have a fair comparison between
behaviour features and static features.
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4.4.2 Behaviour features

Daily behaviour totals

Daily behaviour totals contain the sum of each behaviour type of each animal per day as described
in the resampling process (Section 4.2.4). Through time windows, daily totals of the cows are the
same relative to the reference point (calving or measurement date). Literature suggests that some
behaviour time decreases (eating, activity) and other behaviour time increases (inactivity, lying), so
daily totals are a good starting point as a feature set. The amount of features is equal to the amount
of behaviour parameters multiplied by the amount of days specified by the time window. For the
measurement-date based time window, the amount features is equal to 6(days)× 10(behaviours) =
60 features, for calving-date based time window this is equal to 8(days) × 10(behaviours) = 80
features. As suggested by related work, cows suffering from ketosis show abnormal behaviour.

The daily totals are also used as input for the derived features below.

Behaviour statistics

The behaviour statistics features set contain the mean, variance, minimum and maximum of all
behaviour types aggregated of the daily behaviour totals within the specified time window. It also
contains the ratio between the means of different behaviour types. The ratio between different
behaviour types removes the absolute amount of behaviour time. For instance, some cows eat
more than others, but if their rumination time is relatively the same, then the ratios are equal.
As ketosis concerns energy, the ratio between ruminating and activity gives an approximation to
amount of energy gained and spend. Compared to the daily behaviour totals, the statistics removes
the time component from the features as natural variation between days occurs. Removing the time
component reduces the effect of natural variance of behaviour cows experience between days. For
instance, a cow with ketosis can have their activity on two days on 70% of normal activity while
another cow with ketosis can have activity on 50% and 90% for two days. In this case their is a
large difference between daily behaviour totals, however their mean is equal. The statistics feature
set contains 4(statistics) × 10(behaviours) + (3 × 3)(ration) = 49 features regardless of the time
window.

Behaviour trend

The behaviour trend feature set contains a slope and offset for each behaviour type derived from
a linear fit on the daily behaviour totals within the window. Behaviour is not necessarily a linear
function, it also have a shape of some other function. However, if the general trend is downwards,
the linear fit slope will show this trend. The linear fit is defined as a linear function f(x) = ax+ b
where a(slope) and b(offset) are coefficients which minimise the mean squared error. Like the
statistics feature set, the trend feature set removes the time component within the feature. The
trend line represents the development of behaviour over time. The statistics feature set contains
2(statistics)× 10(behaviours) = 20 features regardless of the time window.
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Prepartum FFT features

The Fast Fourier Transform (FFT) feature set contains features derived from a FFT from a two
week prepartum time window based on hourly data to find regularity in the behaviour of a cow.
This deviates from all the other feature sets, as they use daily data instead. However, to find
regularity within a day, a smaller time scale was needed. The FFT is an extension to the non-
periodicity feature introduced by van Dixhoorn et al. [74]. Where the non-periodicity is the mean
squared difference between the autocorrelation and a 24h sine wave, the FFT feature set applies a
FFT on the hourly data and extracts the frequency of each behaviour per day.

From the FFT, a threshold line is calculated and values above this threshold line are defined as
peaks. For each frequency, the strength of the peak is saved if it passed the threshold. Also the
maximum strength, the frequency with maximum strength and the number of peaks are calculated
as well as some other statistics. The entire feature definition is found in Section 2.7.2.

4.4.3 Normalised behaviour features

There is a lot of variation in behaviour among cows. This variation has the effect that normal
behaviour for one cow can be abnormal for another. In order to mitigate these some of these normal
abnormalities and also to normalise the magnitude of the features, we apply different normalisation
techniques and evaluate their effect on ketosis detection.

The basis for normalisation in this study is the procedure of z-score normalisation: values are
subtracted by some mean x̄ and divided by some standard deviation s. The sample set k for
the mean x̄k and standard deviation sk is varied throughout different normalisation methods. By
changing this set k, we can normalise on various aspects of cow behaviour.

xnorm =
x− x̄k
sk

(4.2)

Herd normalisation

As cows are situated in barns with other cows, there is social behaviour, specific eating times and
inter-barn movement. This changes the behaviour of cows, but its not disease related. For example,
the entire herd can moved to another barn. This is difficult to detect with individual cow data and
these changes may look like outliers or noise when compared to cows from another farm. However,
they could be explained by the behaviour of the herd.

Moreover, research has indicated that social behaviour of a cow changes when it suffers from SCK.
For example, cows with SCK showed less feed intake in the first 90 minutes of fresh feed delivery
compared to healthy herd [62]. Without extra data, it would be hard to detect such behaviours.

Therefore, the normalisation based on the herd is applied. The herd is defined as all cows in the same
group: lactating or dry, because cows can be moved into a dry-off pen. As the cow management
system registers dry-off events, we cannot assume that dry cows belong to same herd as the lactating
cows. Based on the individual cow, we calculate the herd mean and herd standard deviation of
either all dry cows or all lactating cows. This includes cows that did not enter the experiments, but
were fitted a sensor and their behaviour was logged in the cow management system. Then, each
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daily total of a cow is subtract with the mean of its herd, divided by the standard deviation of this
herd, producing an aforementioned z-score normalisation.

The behaviour statistic feature set and behaviour trend feature set are also applied to the herd-
normalised values.

Prepartum normalisation

The prepartum normalisation feature set contains the daily behaviour totals which have been z-
score normalised by the mean and standard deviation of the first week before calving (see Figure
4.3. Individual cows have different behaviour and a normalisation on individual level could show
abnormal behaviour. The amount of this data for this feature set is smaller than the others, because
the number of animals having prepartum data is smaller than the number of animals in both time
windows.

Within-window normalisation

The within-window normalisation feature set contains the daily behaviour totals which have been
individually z-score normalised. The daily behaviour totals are subtracted by the mean within time
window and divided by the standard deviation within the time window.

4.4.4 Combined feature sets

The combined power of the behaviour features is also evaluated in this study, with the exception
of the FFT features and prepartum normalised features, because these feature sets the amount of
data significantly (see Table 4.4. Finally, a different set using the combined behaviour features and
the calendar data is evaluated.

In conclusion, the following feature sets are tested (Table 4.5).

Feature set name Normalisation Feature functions

Static features None Static features
Totals None Daily totals
Statistics None Statistics
Trend None Trend
FFT features None FFT features
HN-Totals Herd Daily totals
HN-Statistics Herd Statistics
HN-Trend Herd Trend
PN-Totals Prepartum Daily totals
WWN-Totals Within-window Daily totals
Combined behaviour features None + Herd Daily Totals + Statistics + Trend
All features None + Herd Static features + Totals + Statistics + Trend

Table 4.5: Summary of all feature sets tested in this study. HN is herd-normalised values, PN is
prepartum normalised and WWN is within-window normalised values.
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4.4.5 Feature selection

Feature selection was applied to each feature set to limit the amount of features and reduce the
amount of noise in the feature set. The feature selection method used in this study is based on the
frequently used wrapper method[34]. The wrapper was based on a initial fit with a Random Forest
classifier/regressor which scored the features according to their importance in building the trees in
this model. Importance is calculated as the normalised reduction of Gini impurity of the training
set. Features which scored higher than the mean importance were kept and features which scored
lower than the mean were dropped. On the calendar feature set, feature selection was not applied,
because the amount of features was already low.

4.5 Machine learning models

For this study a set of classical machine learning algorithms is used. Machine learning has not
been applied often in SCK detection and the size of the data set is not large enough to apply
deep learning. This study uses learning models based on different principals: Bayesian probability,
decision trees and neural networks. The models used in this study are Random Forest (RF), Näıve
Bayes (NB), Multilayer Perceptron (MLP) and Gradient Boosting (GB). For an introduction of the
models, see Section 2.8. These models have proven to be successful on smaller data sets and among
the models that are used in exploration machine learning research.

Except for Naive Bayes, all machine learning models introduced above have a regression variant.
The linear regression model is added as replacement for Naive Bayes as it also has a very simple
definition.

The hyperparameter optimisation for the given models are randomly searched of a set parameter
space. Each experiment first computed their hyperparameters on the training set, so hyperpa-
rameters differ per experiment. This benefits either both small and large number of data points
per sample, as the models can adapt their hyperparameters which makes the chosen model more
flexible. See Appendix D for all parameters searched in the hyperparameter optimisation for each
model. For hyperparameter optimisation, the training set is used, as we do not want to optimise
our model on the test set.

4.6 Evaluation

The evaluation procedure of this study concerns hyperparameter optimisation using cross validation,
predictions on the test set with given performance metrics and performance comparison by pair-wise
significance testing or mean ranking scores. As said earlier, for training and testing, the split is a
(80%/20%) stratified split of the data is applied. As the data is imbalanced, stratification is applied
to have an relative equal number of positives inthe training and test set. For all approaches, 5-fold
cross-validation is used to optimise the hyperparameters of each model using the training data set.
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4.6.1 Task definitions

Classification The main task of this study is to detect SCK in dairy cows. Like Section 4.1.2, we
use the cutoff point of 1.2 mmol/L to distinguish healthy and SCK cows and we can define this
task as a binary classification task. Given a data set with certain features, produce a target label
(SCK or healthy).

Let X be all behavioural data from calvings, f(x) be the function to transform the raw values
into features for any x ∈ X and L = {SCK,Healthy} is the set of labels. Then our classification
model C defines a mapping C : f(X)→ L. Note that feature function f(x) is the identity function
f(x) = x for the daily behaviour totals feature set.

Regression

One of the sub questions of this research proposes to investigate a regression model to predict
BHBA directly, instead of applying a threshold like the classification task. Thus the task is given
a set of features, predicting a BHBA value. Then the predicted BHBA values can be compared to
the original BHBA values, or both can be transformed to binary values by applying the threshold.
The binary values can then be evaluated against all non-probabilistic evaluation metrics.

The regression task is formally defined as follows. X and f(x) are the same as classification, but
the targets are now drawn from the continuous domain R+. Then our regression model R defines
a mapping R : f(X ) → R+ Then these predicted BHBA values can also be transformed into
classification labels using 1.2 mmol/L threshold. The adjustment is then a mapping Rc; f(X ) →
R+→ L

4.6.2 Metrics

All related studies use the evaluation methods of sensitivity and specificity. To be able to compare
with related work, this study also produces sensitivity and specificity scores for the classification
task and regression task. Care must be taken when using sensitivity and specificity. When the
balance between positive and negative cases is skewed, the sensitivity and specificity can be both
high, while the practical usage of such a model is limited. Therefore, we introduce additional
metrics that give more insight into the performance of our model. For detailed information on all
evaluation metrics used, refer to Section 2.9.

Classification metrics

For the classification models, the test set is evaluated on Area under the Receiver Operating Curve
(AUC), Sensitivity (Recall), Specificity, Precision, Accuracy. In addition to these metrics, the
Sensitivity at 95% Specificity (Se@95Sp) and Precision at 95% Recall (Pr@95Re) are calculated.
In subclinical ketosis detection, the Sensitivity at 95% Specificity indicates sensitivity score at a
false negative rate which is acceptable in real-life settings, because the literature suggests a high
amount of false negatives reduces the amount of trust in the system. The Precision at 95% Recall
is a useful metric to see if the classifier would retrieve all positive cases, what percentage of all
classified positives is actually positive. In a ketosis detection system, this metric shows how many
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healthy cows would be treated if all almost all SCK cows detected. The 95 percentage is chosen,
because the threshold of subclinical ketosis is not valid for all cows. By taking 95% Specificity or
Recall, we can eliminate the cows that are healthy but still test positive for subclinical ketosis and
vice versa.

Regression metrics

Metrics for the regression models are the (root) mean squared error, the mean absolute error and
the R2 score. In addition to these metrics, the error in the 95% percentile is also calculated. As
shown in the distribution plots of the BHBA value in week 1, most measurements are around 1.
However, this study is interested in values of 1.2 and up. In the distribution of all prediction errors
of BHBA values, the 95% percentile error shows the larger errors, which presumably are in the
higher BHBA values. The 95% percentile error is preferred over the maximum error, as the BHBA
value can be high while the mean is low.

As shown earlier, using the SCK threshold value, the regression values can be transformed to binary
classification values. Then, the non-probabilistic metrics of classification can be used as well. This
allows us to compare the regression model to the classification model.

4.6.3 Significance testing

This experiment produced 168 different results, through a combination of different time windows,
machine learning models and tasks. These different combinations can be compared to each other
to answer the four subquestions presented in Section 1.2. This regards the comparison between a
measurement-date based based time window and a calving-date based time window. As Table 4.6
shows, the assumption that the metric values are normally distributed does not hold every time
under a significance level of α = 0.05. Therefore, this study uses the nonparametric Wilcoxon
signed rank significance test[79] for all metrics. This rank test is used one-sided to test if the mean
of one distribution is greater than the other with an alpha value of 0.05. In some cases, we use the
same experiments to search for multiple significant differences. In this case, we apply Bonferroni
correction for multiple testing by dividing the alpha value by the number of tests.

Metric p-value

AUC 0.09
Se@95Sp 0.07
Pr@95Re 6.8e-07
Accuracy 5.5e-14

Table 4.6: Shapiro-Wilk test for normality. The null hypothesis is that the metric values are
normally distributed. This hypothesis is rejected for Pr@95Re and Accuracy.

4.6.4 Ranking

In the case of feature set comparisons, there are not enough test results to apply significance
testing. Therefore, a ranking method is applied. This works by grouping all test results of the same
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parameters and computing the ranking for each of the groups. The mean rank is then calculated
for each attributed that needs to be compared. Let X,Y, Z be the parameters of an experiment
and S all scores of the experiment. To compute the mean rank of all values in X, all experiments
are grouped by their values of Y and Z and for each group, their scores in S are used to create a
ranking for the value X. Then all rankings are averaged on the values in X to produce the mean
ranking of values in X.
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5 Results

5.1 Data visualisations

Before applying machine learning to the problem, the behaviour data is first visualised over time.
The behaviour data was split into a healthy cow set and a SCK cow set, based on the cutoff value
mentioned in Section 4.1.2. The behaviour data was limited to two weeks prepartum up until to
weeks postpartum for each animal and the data was sampled into daily totals. Figure 5.1, 5.2 and
5.3 show the histograms for each day for each set of cows. The median of each set is calculated and
visualised over time on top of the histogram.

(a) Rumination time (b) Eating time

(c) Inactive time

Figure 5.1: Median neck behaviour (line) and histogram of each day compared between SCK and
healthy cows. n is the amount of samples for each class. Visible differences are present at eating
time, ruminating and inactive time in the median line. The spread of each day is large.

In general, the overlap in the histograms of both groups is large. No significance tests are performed
as this data is only a initial insight into behavioural differences.

39



Behaviour derived from neck sensor Rumination time in both data sets sees a large drop off
directly postpartum, as seen in Figure 5.1a. From there on, the rumination time increase to a
higher point than prepartum. In contrast to rumination time, eating time in Figure 5.1b sees no
notable change in around calving. Inactivity time has a large increase around calving, as seen in
Figure 5.1c. This is expected as the neck behaviour is mutually exclusive.

As mentioned in literature, the rumination time for SCK cases is lower compared to healthy animals.
Just like in rumination time, the SCK cases show lower eating time. The median inactivity is visibly
higher for ketotic animals compared to healthy animals, but the spread of inactivity is also larger.

The daily median neck activity can be found in Figure 5.3a. Like in inactivity time, activity
(measured in number of head movements) sees a notable increase postpartum. Differences in the
groups are only marginal postpartum, prepartum no difference is visible.

(a) Lying time (b) Standing time

(c) Walking time

Figure 5.2: Median leg behaviour (line) and the histogram of each day compared between SCK
and healthy cows. n is the amount of samples for each class. Walking, lying and standing show
small visible differences between the classes, the spread of values is large.

Behaviour derived from leg sensor Lying time sees a significant drop around calving as seen in
Figure 5.2a, with small differences between the two groups. As lying is decreased around, standing
time is increased as seen in Figure 5.2b. Standing time also show small differences between the two
groups. Walking time is also increase around calving, as is the amount of standups a cow makes.
These can be seen in Figure 5.2c respectively. The activity sensor of the leg (Figure 5.3b shows the
same curve as walking time.

The distribution of BHBA is visualised in Figure 5.4. This figure shows farms have different
distributions of BHBA levels.
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(a) Neck activity (b) Leg activity

Figure 5.3: Activity (line) and histograms of each day compared between SCK and healthy cows.
n is the amount of samples for each class. Leg activity median line. Spread across each day is large.
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Figure 5.4: BHBA values spread around farms for training and test set. The BHBA measurements
are put into bins. The BHBA levels are not spread out the same on each farm.
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5.2 Windowing

In this scenario we compare test results of calving-date based (CB) window and measurement-date
based (MB) based wind by comparing pair-wise using the same feature-set and model. We compare
these two on four different metrics: AUC, Se@95Sp, Pr@95Re and Accuracy. Therefore by the
Bonferroni correction α = 0.05

4 = 0.0125 The mean Area under the ROC-curve(AUC) score for a
measurement-date based time window is 0.65(± 0.01) compared to the mean AUC score of 0.63(±
0.01) for a calving-date based time window. With a value of α = 0.0125, the p-value of 0.417 shows
we cannot conclude that the measurement-date based time window is better than the calving-date
based window. As seen in Table 5.1, also Se@95Sp and Accuracy is higher, but not significantly.
Pr@95Re is higher for calving-date based windows and is even significantly better with an inverse
p-value of 1− 0.997 = 0.003.

Metric MB CB Samples p-value

AUC 0.648 (±0.0086) 0.632 (±0.0084) 44 0.417
Se@95Sp 14.3 (±1.2) 13 (±1.2) 44 0.35
Pr@95Re 27.8 (±0.23) 28.7 (±0.25) 44 0.997
Acc 71.4 (±1.2) 70 (±1.3) 44 0.124

Table 5.1: Comparison of different time windows. Given are the mean (±SE) metric values.
(measurement-date based (MB) is a time window of 5 days before up to and including the day of
measurement. calving-date based (CB) is a time window of 2 days after until 10 days after calving.)

When we analyse per machine learning model (Table 5.2), in general RF and GB have more variation
between the windows. RF and GB perform better in measurement-date based windows on AUC,
Se@95Sp and better in calving-date based window on Pr@95Re. NB and MLP are almost equal
between the windows on all metrics. As there are a lot of tests here, so no significance testing is
performed.

5.3 Normalisation

In Section 4.4.3, we presented three normalisation methods: herd-normalisation, individual normal-
isation and z-score normalisation. Each of these used daily values for each behaviour as features.
From these three, initial tests showed most promise for herd-normalisation. Therefore, unlike the
other normalisation methods, we also created the same derived feature sets: statistics and trend.
This resulted in 24 different paired test results, with the herd normalisation being the difference.
With α = 0.05

4 = 0.0125 (by Bonferroni correction), we found that the AUC score of raw values was
significantly better with a p value of 1 − 0.999 = 0.001. In the other metrics, raw values were not
significantly better, see Table 5.3.

In Table 5.4, we present the highest possible AUC scores for each normalisation method with a
daily values feature set. Raw daily values outperformed all normalisation method proposed on
AUC scores.

As we have also created two feature sets from herd-normalised data and compared it to the raw
variant. Table 5.5 present the highest possible AUC scores of these feature sets. The statistics
feature set performed better than the trend feature set, both for raw values and herd-normalised
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Metric Model MB CB samples

AUC RF 0.683 (±0.014) 0.642 (±0.02) 11 0.143
AUC NB 0.617 (±0.011) 0.632 (±0.013) 11 0.857
AUC MLP 0.621 (±0.014) 0.621 (±0.013) 11 0.857
AUC GB 0.671 (±0.02) 0.632 (±0.021) 11 0.212
Se@95Sp RF 17.8 (±2.1) 13.5 (±2.3) 11 0.124
Se@95Sp NB 11.1 (±1.9) 11.9 (±2.7) 11 0.465
Se@95Sp MLP 10.4 (±1.7) 11 (±1.9) 11 0.571
Se@95Sp GB 17.9 (±2.8) 15.8 (±2.7) 11 0.605
Pr@95Re RF 27.2 (±0.48) 29.2 (±0.46) 11 0.996
Pr@95Re NB 28 (±0.39) 28.3 (±0.46) 11 0.762
Pr@95Re MLP 27.9 (±0.43) 28.3 (±0.54) 11 0.703
Pr@95Re GB 28.1 (±0.53) 29.1 (±0.57) 11 0.923
Acc RF 74.9 (±0.63) 73.3 (±0.77) 11 0.124
Acc NB 64.6 (±3.3) 60.1 (±3.8) 11 0.212
Acc MLP 71.5 (±2.2) 72.8 (±0.73) 11 0.465
Acc GB 74.6 (±0.6) 74 (±0.79) 11 0.5

Table 5.2: Time window comparison per machine learning model. Given are the mean (±SE)
metric values. (measurement-date based (MB) is a time window of 5 days before up to and including
the day of measurement. calving-date based (CB) is a time window of 2 days after until 10 days
after calving.)

values. Moreover, the highest possible scores of the herd-normalised statistics feature set is on par
with the best feature set with raw values.

5.4 Features

For the feature set comparison, we apply a different comparison method to the previous sections. As
the amount of experiments for each feature set was limited, we apply a ranking method the feature
sets. As seen in Table 5.6, the Static Feature set has the highest mean rank in AUC, Se@95Sp and
Pr@95Re. Only in Accuracy, the All Features set performed better. The Fast Fourier Transform
feature set performed worst on all metrics, except for Pr@95Re. In this metric, it was third best.

5.5 Machine learning models

In the model comparison tests, Random Forests performed best compared to the other machine
learning models with a mean AUC score of 0.664 compared to Multilayer Perceptron (0.619), Naive
Bayes (0.626) and Gradient Boosting (0.651), see Table 5.7. In Sensitivity at 95% Specificity,
Gradient Boosting was better than Random Forest. In other metrics, they performed on par, but
MLP and Naive Bayes are always worse.
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Metric Raw Herd-normalised Samples p-value

AUC 0.651 (±0.0063) 0.628 (±0.0072) 24 0.999
Se@95Sp 12.8 (±1) 11.5 (±1.3) 24 0.747
Pr@95Re 27.8 (±0.23) 27.5 (±0.22) 24 0.964
Acc 71 (±1.3) 69.4 (±2.3) 24 0.718

Table 5.3: Comparison of raw values and herd-normalised values under different feature sets (daily
values, statistics and trend), different windows and different models. Given are the mean (±SE)
metric values. ( Raw values are daily summations of each behaviour under a time window with
optional feature extraction. Herd normalised values are individual deviations from the herd on a
daily basis.)

Metric Daily values Herd-normalisation Prepartum nor-
malisation

Within-window
normalisation

AUC 0.70 0.65 0.62 0.61
Se@95Sp 18 15 22 5
Pr@95Re 28 26 31 27
Accuracy 75.32 73.68 72.38 68.83

Table 5.4: Daily values (with normalisation) under measurement-date based time window and a
Random Forest model

5.6 Regression

The regression model performed best on the Static Feature set (see Table 5.8, with a root mean
squared error of 0.42, a Q95E of 0.84 and a R2 score of 0.16. The Q95E score means that in
the worst case, a BHBA value is predicted 0.84 higher or lower than reality. Since BHBA values
lower than 0.4 are few, this error will always transform a healthy BHBA value to a value above the
threshold, and vice versa. The R2 value shows that there is small linear correlation between the
predicted value and the actual BHBA value.

The mean accuracy of of the classifiers was 74.0(± 0.275), compared to the mean accuracy of
the regressors 70.5(± 1.36). With a significance threshold of α = 0.05, we can conclude that
classification task perform significantly better with a p-value of 0.024 under 44 paired samples.
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Metric Statistics Herd-normalised statistics Trend Herd-normalised trend

AUC 0.70 0.71 0.65 0.63
Se@95Sp 18 15 17 19
Pr@95Re 28 27 26 26
Accuracy 75.32 73.25 72.29 73.68

Table 5.5: Aggregated feature sets (with normalisation) under measurement-date based time
window and a Random Forest model. The normalisation is based on on difference from the herd
(see Section 4.4.3) The statistics features contain the mean, variance, minimum and maximum of
daily (normalised) values within the time window. The trend features contain the slope and offset
of a linear fit on the daily (normalised) values within the time window.

AUC Se@95Sp Pr@95Re Accuracy

Static features 1.12 (±0.12) 1.88 (±0.52) 2.50 (±0.85) 3.88 (±0.90)
All Features 3.88 (±1.09) 3.12 (±0.72) 6.50 (±1.41) 2.88 (±0.69)
Trend 4.38 (±0.84) 7.12 (±0.72) 7.25 (±0.92) 5.88 (±1.11)
All behaviour features 5.62 (±1.12) 4.38 (±1.27) 7.88 (±1.25) 4.00 (±1.13)
Daily values 5.62 (±0.65) 4.50 (±0.73) 5.88 (±1.23) 5.75 (±1.11)
Statistics 5.75 (±0.56) 8.62 (±0.94) 7.38 (±1.16) 7.00 (±1.24)
Daily values herd nor-
malised

6.12 (±1.01) 6.00 (±0.98) 7.38 (±0.71) 6.12 (±1.01)

Statistics herd normalised 7.12 (±0.77) 7.88 (±0.77) 7.88 (±1.17) 8.75 (±1.03)
Daily values within win-
dow normalised

8.38 (±0.94) 8.38 (±1.31) 6.50 (±1.02) 7.00 (±0.80)

Trend herd normalised 8.62 (±0.91) 8.00 (±0.80) 8.50 (±0.60) 5.88 (±0.83)
Daily values prepartum
normalised

10.00 (±0.85) 7.38 (±1.12) 2.88 (±0.67) 9.38 (±0.89)

FFT features 10.75 (±0.25) 9.50 (±1.19) 3.00 (±0.58) 11.00 (±0.71)

Table 5.6: Feature set mean rank (±SE) sorted on AUC mean rank. The highest average rank
is highlighted in bold. The rank was calculated by comparing all feature sets under the same
conditions (equal window and model)

Metric GB MLP NB RF

AUC 0.651 (±0.014) 0.619 (±0.0093) 0.626 (±0.0082) 0.664 (±0.012)
Se@95Sp 17 (±1.9) 10.5 (±1.2) 11.5 (±1.5) 16.2 (±1.6)
Pr@95Re 28.6 (±0.38) 28.1 (±0.32) 28.2 (±0.29) 28.2 (±0.38)
Accuracy 74.3 (±0.47) 71.9 (±1.1) 62.4 (±2.4) 74.2 (±0.49)

Table 5.7: Mean metrics scores (±SE) of models on all experiments. GB is Gradient Boosting,
MLP is Multilayer Perceptron, NB is Naive Bayes and RF is Random Forest. On all metrics,
Gradient Boosting performed best on a small margin, in AUC Random Forest performed best.
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Metric Static Features Behaviour Features All Features

RMSE 0.42 0.43 0.43
Q95E 0.84 0.84 0.86
R2 0.16 0.11 0.13
Accuracy 77.06 75.44 75.44

Table 5.8: Regression statistics with a measurement based window and a Random Forest Regres-
sion model
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6 Discussion

This chapter discussed the quality of this research in three sections. Section 6.1 discusses the results
in relation to the state-of-the-art. Section 6.2 discusses the quality of the data used in this study,
Section 6.3 discusses the quality of the results and

6.1 Quality of the state-of-the-art

Compared with other related studies, this study was one of the largest in the data samples. By
combining the two experiments, we gathered 1581 samples of which 1192 (or 1215 depending on
the time window) were usable. The largest study in the related work consisted of 1374 cows[25],
followed by 1080[68] and 706[70]. However, these studies were limited by their methodology.

Stangaferro et al. used a proprietary model, which makes it impossible to reproduce. Furthermore,
their evaluation metric was sensitivity, which can be altered as high as possible using a prediction
probability and threshold (see Section 2.9. In the study of Steensels et al., the specificity score of
70% is considered very low, because the prevalence of ketosis in that study was 29%. This means
there are 150 false positives, which will generate a lot of attentions for the farmer, in turn reducing
the trust in the system.

During the study, we also executed a reproduction of the study of Eckelkamp et al.[25]. This
study reported higher sensitivity scores compared to this study. The experiments in this study also
measured BHBA values using the same measurement device. When this value was higher than 1.2
mmolL, it was marked as ketosis. The study also used daily data, however no time window was
used. Instead, each day was a separate sample and days without measurement were considered
negative for ketosis. Furthermore, data from days before calving was also added and marked as
negative. As seen in Section 2.1, the risk for ketosis is low during this period, so the relevancy of this
data is questionable. Therefore, this study has improved on the methodology of the state-of-the-art
by contributing to many more aspects of the ketosis detection process.

Although the initial number of BHBA values in this study was large compared to the state-of-
the-art, the resulting data set size is still considered small in machine learning. In addition to a
relatively small total size of the data set, the small number of cows per farm and the restriction
of a single measurement after calving were also limiting factors. The total number of samples is
due to a limited experiment setup with only ten farms and the removal of certain animals because
of missing data. Because the experiments occurred in the Netherlands, where the typical size of
a farm is about 100-200 cows, the number of cows per farm is low. Single measurements can be
misleading in the case of ketosis. The sample taken is an approximation of the cow well-being.
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Studies show that the time of day has influence on the level of BHBA within the blood, due to daily
variations such as rest and feeding times. Furthermore, the test is inherently susceptible to errors,
because the testing machinery is not 100 percent accurate. Therefore, a set of measurements over
a few days period is more representative of the state of ketosis within a cow and should be a better
target for ketosis detection systems.

6.2 Quality of the data

The experiment data contained a lot of errors and missing values, especially in the SenseOfSensors
experiment. We were able to correct some of these errors and missing values using our procedure, but
still imputation was needed to fill the gaps in the experiment data. This increases the dependence
on the training data and thereby increases the amount of overfitting to the data set. As seen in
Figure A.10, the amount of data for each cow was not equal.

The behaviour data contained gaps in their behaviour data, it lacked data in the days before calving
and some cows did not have any behaviour data. This affected the number of usable samples in
training and testing and thereby decreases the performance of the machine learning models. The
number of positive cases of subclinical ketosis is imbalanced compared to the negative cases; 305
of 1581 experiment samples in the first week. Therefore, missing data has more impact on the
generalisation of positive cases compared to the negative cases. Moreover, 59 (measurement-date
based) to 75 (calving-date based) samples lacked prepartum data, which affected the performance
comparison between either prepartum normalisation or prepartum features as the number of samples
were unequal.

The behaviour data was represented as minutes spent at a certain behaviour per day. However,
the measurement of time of a certain behaviour does not fully represent the dynamics of this
behaviour. For instance, the behaviour data contains eating time, but this is not the same as feed
intake. The number of minutes eaten does not tell the speed of feed intake, the amount per bite
or the amount of swallows. Therefore while the general behaviour is captured in the data, the
dynamics of the behaviour are hidden. Moreover, this behaviour is not a raw sensor measurement.
Instead, the sensors have an integrated a classification algorithm based on human-created features
from the accelerometer data. This means that the behaviour is processed from raw sensor data.
Even though its correlation is high compared to human observation[75], it still introduces extra
noise in the data. As the validation study is performed on a single farm, it is unknown whether the
correlation is high in a general setting. This affects the reliability of the behaviour data

6.3 Quality of the results

In this study, we used four evaluation metrics in the results. In the pairwise comparison of the
different research questions, we used a Bonferroni correction to account for the multiple testing
problem. This is viewed as a conservative measure in the multiple testing world. However, this
did not impact any results in this study; the p-values were either above the α = 0.05 threshold or
below the Bonferroni corrected α = 0.05

4 = 0.0125 threshold.

As a general remark, we note that the results presented in Chapter 5 are all based on the same
experiments. The difference is the grouping of the results to compare time windows, feature sets
or models. Important to note is that the set of compared variables in one aspect also affects the
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others. For example, the machine learning models includes the MLP model, but in the results,
this model seems to perform randomly, irrespective of time window or feature set. In the within-
window normalisation feature set with measurement-date based window, the MLP model scores 0.64
AUC, much higher than the other models (see Table B.5. However, in the daily values feature set
with measurement-date based window, the MLP scores 0.58 AUC, but other models perform much
better (see Table B.6). The comparison between feature sets is affected here by the inclusion of the
MLP model. This lead to insignificant results in the time window comparison and normalisation
comparison and in the average feature ranking.

The results presented aimed to answer the five sub-research questions proposed in Section 1.2.
Before making any conclusions, there are some remarks regarding these questions. The results on
the first research question, How do a measurement-date based time-window and a calving-date based
time-window compare with respect to the quality of ketosis detection?, were affected by the moment
of measurement in the experiments. As seen in Figure 4.3, the calving window could fail to overlap
with the moment of measurement, which in this case could render the target incorrect, as it is
unknown whether the cow was suffering from ketosis somewhere in the calving window. This could
be prevented by enlarging the window size of the calving-date based window. However, the size
of the time window was set at five days for each window to equalise the amount of input features
between the MB window and CB window and limit the amount of samples to be discarded, as many
samples had incomplete behaviour data.

Moreover, the samples each window contained were not equal. This also affected the comparison, as
both time windows had other training and test samples. When analysing the the different samples
in the training set, the mean BHBA of samples not in the calving-date window was 1.36 compared
to the mean BHBA of 0.83 of the samples not in the measurement-date window. This means that
the calving-date based window had fewer positive SCK samples to train on.

In the results of the second sub research question, How does herd-normalisation compare to other
normalisation methods and non-normalised data?, we note that the size of some of the participating
farms is very small. This has an impact on the herd-normalisation, which relies on the mean and
standard deviation of the herd. Then individual cows have a relatively large influence on the mean.

When performing the experiments on single farms, the results are mixed. For instance, farm 4
performs worse (0.60 AUC; Table C.3 on daily values compared to the entire data set (0.70 AUC;
5.4), whereas farm 8 performs much better (0.81; Table C.4. The BHBA level spread in these farms
is almost equal (Figure 5.4, so there are other factor factors which influence the prediction. These
results explain why herd-normalisation did not improve ketosis detection. When individual farm
classifiers would all perform better, there must be specific farm features lost in the entire data set,
which should become visible after normalising for each farm.

Regarding the results of the third sub-research question, What is the effect of different feature sets
on subclinical ketosis detection? , remarks on the results have to be made. The performance of
raw daily values under the four metrics (see Table 5.6) can be limited to this test set. As the
training and test data set is a random split on the same data set, there is a large chance that the
performance does not translate to other farms in different countries.

As a result, static risk factors perform best in the feature ranking. The problem is that this feature
set only has 8 features, while the behaviour sets have a minimum of 10× x where x is the number
of features derived from the time windowed behaviour . For example, daily raw values have 50
features. While feature selection was applied, the number of features is still multiple times bigger.
This impact is seen in the difference between the ”All feature” set result and the static feature set
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result. All feature set contains more than 200 features including risk factors. However, the result
is performed worse on all metrics.

The results of the fourth sub-research question, Which machine learning model has the best at
detecting subclinical ketosis?, Naive Bayes was unable to deal with the high number of features.
This was signified by the result of Naive Bayes in the Static feature set (0.71 AUC) compared to
the All feature set(0.60 AUC).

The MLP had the issue of random results, as mentioned earlier. This is probably due to overfitting
to the training set caused by the high number of iterations (10000) used to train the MLP. These
were necessary to converge the model in a stable state, however it hurt the model by overfitting.

The last sub-research question, How precisely can BHBA values be predicted using a regression
model and how does this model compare to the classification model?, for this research concerned the
application of regression models. The assumption was that the SCK threshold was not a good fit for
all cows and that some cows marked with SCK were actually healthy and vice versa. However, the
regression approach did not yield better results. Especially the high BHBA levels were difficult to
predict, illustrated by the difference between the Q95 error and the root mean squared error, where
Q95E is twice the RMSE for the best regressor (Table 5.8). When looking at the predicted-actual
plots (Figure B.3; Appendix B), it shows that the regressors predict around the mean of the BHBA
values. There is a very low correlation between the predicted values and actual values in general,
seen in these plots and with the R2 value of 0.16 of the best regressor. Thus, the current regression
models do not fit the problem very well.
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7 Conclusion

The aim of this research was to find out to what extent subclinical ketosis can be detected in dairy
cows using behaviour data focusing on all steps in the machine learning process. Behaviour data
derived from neck and leg sensors were combined with BHBA measurements. The machine learning
classifiers were scored on AUC, Sensitivity@95%Specificity, Precision@95%Recall and Accuracy.
Using both raw and normalised data, different feature sets were formed and compared.

How do a measurement-date based time-window and a calving-date based time-window compare
with respect to the quality of ketosis detection? Two windowing methods were created to limit the
amount of behaviour data for each cow. Measurement-date based windows were already used in the
initial experiments for ketosis detection, but these were not significantly better than calving-date
based windows in any metrics with p-values of 0.417, 0.35, 0.997 and 0.124.

How does herd-normalisation compare to other normalisation methods and non-normalised data?
The variation in behaviour by dairy cows is known to be significantly different between cows. In
the data visualisations from Section 5.1 we saw a large spread of behaviour for each day. There-
fore, normalisation should be answer to equalise these differences and really focus on the oddities.
However, as shown in the results, normalisation did not improve classification. Specific normali-
sation techniques to factor out farm-specific behaviour were applied, but the AUC of daily values
were significantly better with 0.651 mean AUC compared to 0.628 mean AUC for herd normalised
features.

What is the effect of different feature sets on subclinical ketosis detection? Static prepartum features
were added as a baseline. In a mean ranking order, the static features outranked all behaviour
feature sets, including the set with static features included with an average rank of 1.12, 1.88, 2.50
and 2.88 on AUC, Se@95Sp, Pr@95Re and Accuracy respectively.

Which machine learning model has the best at detecting subclinical ketosis? Four different classical
machine learning models were trained on the feature sets and compared to each other. The ensemble
models of Random Forest and Gradient Boosting outperformed on each metric with average AUC
scores of 0.664 and 0.651, respectively.

How precisely can BHBA values be predicted using a regression model and how does this model
compare to the classification model? At last, the continuous values of BHBA were used directly to
perform a regression learning to provide a more nuanced approach to subclinical ketosis detection.
However, the regression model failed to predict higher BHBA values with a 95 percentile error of
0.84 and a R2 score of 0.16 with Static features and a Random Forest regressor. Moreover, compared
to the classification model, the predicted BHBA values were significantly worse at detecting SCK
with the standard threshold value. The average accuracy score of the regression model was 70.5
compared to the average accuracy of 74.0.

51



To what extent can subclinical ketosis be detected in dairy cattle using peripartum
data in a machine learning approach? The best model in this study consisted of static features
with a Random Forest model with an AUC score of 0.76. Overall, the ketosis detection model is not
reliable enough for commercial usage. However, this study presented a thorough methodology for
ketosis detection with behaviour data and machine learning. Moreover, with small adjustments in
the time window and target, this methodology is also applicable for other (transition) cow diseases.

7.1 Recommendations

To develop a more robust SCK detection, the focus should lie on the gathering of more cows
with more samples on larger farms. The data set of this study contained 1581 cows with BHBA
measurement. Depending on the methodology used, this should be increased by a factor 10 for the
current methods, or by a factor 1000 for more complex methods such as deep learning.

In this study, data was lost because of unavailable prepartum behaviour data and incomplete
experiment data. From the 1581 BHBA measurements, only 65% (1037) could be used in the
prepartum features. Furthermore if multiple BHBA measurements were taken, progression of the
disease can be used to create new features which are better at distinguishing healthy cows and cows
suffering from SCK.

Herd normalisation was applied unsuccessfully in this study. One of the reasons discussed in Section
6.3 was the size of the farms. This normalisation technique should perform better if larger farms
are considered. Typical Dutch farms contain about 150 cows, however in other countries farms with
more than 1000 cows exist. Even when herd-normalisation would not work on those larger farms,
the data is still useful to develop other methods to normalise farm-specific behaviour.

Addition of other types of automated measurable data of cows is worth considering. Milk data
is missing in this study, but related work showed that this data is valuable in relation to ketosis
detection. Moreover ketosis has been related to lower amounts of socialising within the herd, so
features representing that can prove to be valuable.

Deep learning neural networks have shown to outperform all other methods on a variety of tasks
given enough data. Furthermore, in time series classification, deep learning has seen a recent
popularity. It has beaten the widely used DTW algorithm. However, the data in this study was
limited and since the DTW experiments showed very little promise, we decided to limit this study to
classical learners such as Random Forest and Naive Bayes. Given more data samples and more tests,
the proven capabilities of deep learning can provide improvements to subclinical ketosis detection.
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Glossary

beta-hydroxybutyrate A keton body. 7, 60

calving The act of a cow delivering a calf. 6

clinical Disease showing distinct physical signs. 6

hypocalcemia A postpartum disease in which a cow has a shortage of calcium caused by start of
lactation. 6

lactation Period in which a cow produces milk. 6

metritis Infection of the uterus. 6

negative energy balance When energy intake (food) is lower than energy consumption. 6

postpartum After giving birth (after calving). 8, 22–24, 29, 39, 40

prepartum Before giving birth (before calving). 8, 9, 23–25, 39, 40

subclinical Disease hiding distinct physical signs. 6
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Acronyms

Acc Accuracy. 21, 36

ANN Artificial Neural Network. 21

AUC Area under the Receiver Operating Curve. 21, 36

BA Bootstrap Aggregation. 21

BCS Body Condition Score. 9, 22, 26

BHBA Beta-hydroxybutyrate. 7–9, 19, 21, 23, 24, 26, 64, 65

BN Bayesian Network. 21

BW Body Weight. 19, 21

CB calving-date based. 4, 5, 29–32, 37, 42, 43, 48, 49

CK clinical ketosis. 6, 7, 9, 21, 23

DPL Dry Period Length. 19, 21

DT Decision Tree. 21

FFT Fast Fourier Transform. 14, 15, 30, 31, 33, 34, 43

GB Gradient Boosting. 15, 35

HIS Health Index Score. 19

kNN k-Nearest Neighbours. 21

LDA Linear Discriminant Analysis. 21

Logit Logistic Regression. 21

MB measurement-date based. 4, 5, 29–32, 37, 42–45, 48, 49

MLP Multilayer Perceptron. 15, 35
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NB Näıve Bayes. 15, 21, 35

NN Neural Network. 21

PAR Parity. 19, 21

PC-ANN Principal Component Artificial Neural Network. 21

PLS Partial Least Squares. 21

Pr Precision. 36

Pr@95Re Precision at 95% Recall. 36

RF Random Forest. 15, 21, 35

ROC Receiver Operating Curve. 19

SCK subclinical ketosis. 4–9, 11, 18, 19, 23, 25, 26, 29, 30, 33, 35–37, 39, 40, 48–52

Se Sensitivity. 21, 36

Se@95Sp Sensitivity at 95% Specificity. 36

SoS SenseOfSensors. 22, 23, 25, 26, 48

Sp Specificity. 21, 36

SVM Support Vector Machine. 19, 21

XGB XGBoost. 21
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A Data exploration

A.1 Calvings and parity

(a) SenseOfSensors (b) EFRO

Figure A.1: Pie chart of calvings per farm. The SenseOfSensors study has a balanced distribution
between farms, while the EFRO study is unbalanced.

(a) SenseOfSensors (b) EFRO

Figure A.2: Distribution of parity in both studies. The majority of cows has a parity ≤ 5. Three
quarters of the cows are multiparous.
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Figure A.3: Occurrence of an individual cow in the study for SenseOfSensors. About 20% of the
cows had multiple calvings in this study. The EFRO study is omitted, because it lacks multiple
calvings per cows
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A.2 Blood measurements

(a) SenseOfSensors 1st measurement (b) SenseOfSensors 2nd measurement

(c) EFRO 2nd measurement (d) EFRO 3rd measurement

Figure A.4: Histograms of BHBA measurements with a Kernel Density Estimator line and the
SCK cut-off line. These histograms and lines show distributions skewed to the right. Therefore,
they do not pass the normality test. Few measurements pass the SCK line.
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(a) SenseOfSensors (b) EFRO (1-2)

(c) EFRO (2-3)

Figure A.5: Histograms of change between BHBA measurements. The change follows a normal
distribution, with EFRO showed a slight translation of the mean to the right.
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(a) SenseOfSensors (b) SenseOfSensors without outliers

(c) EFRO (d) EFRO without outliers

Figure A.6: Boxplots of relative measurement dates (difference between calving and measure-
ment). SenseOfSensors contains a lot of outliers. Without outliers, the box plot confirm the study’s
specified measurement dates.

66



A.3 BCS & Locomotion

(a) SenseOfSensors (b) SenseOfSensors without outliers

Figure A.7: Boxplots of relative scoring (BCS and locomotion) dates (difference between scor-
ing and calving). Outliers are attributed to typing errors. On average, the scoring of BCS and
locomotion is at 10 days prepartum.

(a) Distribution of BCS (b) Two measurements of BHBA grouped by BCS.
The grey line indicated the SCK cutoff value.

Figure A.8: Body Condition Scores(BCS) in SenseOfSensors. The cow was scored at the end of
the dry period. Low BCS means a shortage of body fat, high BCS means a superplus of body fat.
Most cows show a BCS value of 3, which means a healthy amount of body fat. Higher BCS show
higher levels of BHBA.
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(a) Distribution of locomotion scores (b) Two measurements of BHBA grouped by loco-
motion score. The grey line indicated the SCK cutoff
value.

Figure A.9: Locomotion scores in SenseOfSensors. The cow was scored at the end of the dry
period. Higher locomotion scores mean a higher impaired mobility. At higher scores, cows show a
higher average BHBA measurement.
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A.4 Missing values in experiment data

Feature Training set Test set

Parity 2 0
Lactation length 156 55
Dry period length 175 53
Gestation length 163 38
BCS 280 67
Locomotion 284 67

Table A.1: Missing values per feature based on a measurement-date index

Values missing Training set Test set

0 502 110
1 115 27
2 209 55
3 39 16
4 71 20
5 24 3
6 1 0

Table A.2: Amount of rows missing a number of values.
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Figure A.10: Missing samples per data type.
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Figure A.11: Total amount of samples over time.
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B Results

B.1 Classification

B.1.1 Measurement-date based window

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.74 0.22 0.27 8.47 97.63 55.56 74.56
NB 0.60 0.10 0.27 30.51 79.29 33.96 66.67
MLP 0.64 0.10 0.28 8.47 97.04 50.00 74.12
GB 0.75 0.22 0.27 15.25 97.63 69.23 76.32

Table B.1: All Features set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.72 0.22 0.27 16.95 95.27 55.56 75.00
NB 0.60 0.12 0.27 52.54 66.27 35.23 62.72
MLP 0.53 0.03 0.26 0.00 100.00 0.00 74.12
GB 0.70 0.17 0.27 15.25 98.82 81.82 77.19

Table B.2: All behaviour feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.65 0.15 0.26 15.25 94.08 47.37 73.68
NB 0.63 0.07 0.26 57.63 65.68 36.96 63.60
MLP 0.61 0.12 0.27 0.00 100.00 0.00 74.12
GB 0.64 0.19 0.27 16.95 96.45 62.50 75.88

Table B.3: Daily herd normalisation feature set
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AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.62 0.22 0.31 5.17 98.03 50.00 72.38
NB 0.57 0.05 0.30 8.62 91.45 27.78 68.57
MLP 0.63 0.12 0.31 0.00 100.00 0 72.38
GB 0.63 0.10 0.29 10.34 94.08 40.00 70.95

Table B.4: Daily prepartum normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.61 0.05 0.27 18.33 86.55 32.35 68.83
NB 0.62 0.15 0.29 31.67 73.68 29.69 62.77
MLP 0.64 0.13 0.27 8.33 96.49 45.45 73.59
GB 0.59 0.05 0.29 1.67 96.49 14.29 71.86

Table B.5: Daily within-window normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.70 0.18 0.28 18.33 95.32 57.89 75.32
NB 0.63 0.15 0.28 46.67 73.68 38.36 66.67
MLP 0.58 0.12 0.28 71.67 42.11 30.28 49.78
GB 0.72 0.05 0.31 5.00 94.15 23.08 71.00

Table B.6: Daily values feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.70 0.13 0.27 16.67 94.15 50.00 74.03
NB 0.62 0.03 0.26 3.33 93.57 15.38 70.13
MLP 0.62 0.10 0.29 18.33 94.15 52.38 74.46
GB 0.69 0.17 0.26 6.67 97.66 50.00 74.03

Table B.7: Statistics feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.71 0.15 0.27 27.12 89.35 47.06 73.25
NB 0.60 0.10 0.27 81.36 17.16 25.53 33.77
MLP 0.64 0.03 0.28 8.47 93.49 31.25 71.49
GB 0.66 0.14 0.28 16.95 94.08 50.00 74.12

Table B.8: Statistics herd normalisation feature set
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AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.65 0.17 0.26 33.33 85.96 45.45 72.29
NB 0.63 0.10 0.29 18.33 87.72 34.38 69.70
MLP 0.65 0.12 0.27 6.67 98.25 57.14 74.46
GB 0.64 0.08 0.27 8.33 95.32 38.46 72.73

Table B.9: Trend feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.63 0.19 0.26 35.59 86.98 48.84 73.68
NB 0.59 0.08 0.28 16.95 85.80 29.41 67.98
MLP 0.59 0.03 0.27 1.69 98.82 33.33 73.68
GB 0.61 0.10 0.27 11.86 92.31 35.00 71.49

Table B.10: Trend herd normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.75 0.20 0.31 38.33 88.30 53.49 75.32
NB 0.71 0.27 0.30 28.33 94.74 65.38 77.49
MLP 0.70 0.23 0.30 0.00 100.00 0.00 74.03
GB 0.71 0.20 0.28 13.33 96.49 57.14 74.89

Table B.11: Static feature set
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B.1.2 Calving-date based window

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.74 0.23 0.35 14.75 97.14 64.29 75.85
NB 0.63 0.15 0.27 22.95 90.86 46.67 73.31
MLP 0.63 0.00 0.28 88.52 31.43 31.03 46.19
GB 0.74 0.16 0.32 13.11 96.00 53.33 74.58

Table B.12: All Features set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.69 0.16 0.31 6.56 97.71 50.00 74.15
NB 0.63 0.11 0.26 31.15 86.29 44.19 72.03
MLP 0.61 0.13 0.28 18.03 92.00 44.00 72.88
GB 0.67 0.08 0.27 6.56 96.00 36.36 72.88

Table B.13: All behaviour feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.55 0.04 0.31 18.18 84.17 31.25 65.46
NB 0.59 0.09 0.30 80.00 31.65 31.65 45.36
MLP 0.58 0.09 0.28 3.64 98.56 50.00 71.65
GB 0.56 0.07 0.30 9.09 92.81 33.33 69.07

Table B.14: FFT feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.62 0.16 0.27 14.75 96.57 60.00 75.42
NB 0.62 0.08 0.29 22.95 82.86 31.82 67.37
MLP 0.60 0.05 0.27 0.00 100.00 0.00 74.15
GB 0.62 0.07 0.26 6.56 96.00 36.36 72.88

Table B.15: Daily herd normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.52 0.08 0.30 1.67 99.34 50.00 71.70
NB 0.57 0.07 0.32 35.00 76.97 37.50 65.09
MLP 0.54 0.02 0.31 1.67 93.42 9.09 67.45
GB 0.50 0.05 0.31 3.33 96.71 28.57 70.28

Table B.16: Daily prepartum normalisation feature set
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AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.59 0.10 0.27 6.56 98.86 66.67 75.00
NB 0.53 0.07 0.26 3.28 97.71 33.33 73.31
MLP 0.47 0.00 0.27 18.03 74.86 20.00 60.17
GB 0.63 0.07 0.27 1.64 96.57 14.29 72.03

Table B.17: Daily within-window normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.69 0.10 0.31 16.39 93.14 45.45 73.31
NB 0.63 0.10 0.27 39.34 79.43 40.00 69.07
MLP 0.60 0.10 0.27 32.79 80.57 37.04 68.22
GB 0.64 0.10 0.29 9.84 95.43 42.86 73.31

Table B.18: Daily values feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.63 0.18 0.28 4.92 97.71 42.86 73.73
NB 0.65 0.15 0.26 6.56 97.71 50.00 74.15
MLP 0.60 0.18 0.28 0.00 100.00 0.00 74.15
GB 0.61 0.07 0.27 6.56 93.14 25.00 70.76

Table B.19: Statistics feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.67 0.15 0.30 1.64 100.00 100.00 74.58
NB 0.62 0.10 0.26 86.89 16.00 26.50 34.32
MLP 0.60 0.07 0.26 8.20 92.57 27.78 70.76
GB 0.64 0.08 0.28 6.56 96.00 36.36 72.88

Table B.20: Statistics herd normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.62 0.18 0.27 18.03 94.19 52.38 74.25
NB 0.66 0.15 0.27 22.95 91.86 50.00 73.82
MLP 0.65 0.13 0.27 9.84 95.93 46.15 73.39
GB 0.64 0.03 0.27 3.28 95.35 20.00 71.24

Table B.21: Trend feature set
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AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.60 0.11 0.26 8.20 99.43 83.33 75.85
NB 0.61 0.05 0.27 14.75 90.86 36.00 71.19
MLP 0.63 0.08 0.26 1.64 97.71 20.00 72.88
GB 0.62 0.10 0.27 9.84 95.43 42.86 73.31

Table B.22: Trend herd normalisation feature set

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.76 0.28 0.30 37.70 87.43 51.11 74.58
NB 0.72 0.25 0.30 26.23 94.86 64.00 77.12
MLP 0.67 0.23 0.26 0.00 100.00 0.00 74.15
GB 0.72 0.25 0.31 8.20 97.14 50.00 74.15

Table B.23: Static feature set
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B.1.3 ROC plots
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(d) Daily herd-norm.
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Figure B.1: ROC plots
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B.1.4 Precision-recall plots
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Figure B.2: Precision-recall plots
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B.2 Regression

B.2.1 Measurement-date based window

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.43 0.18 0.30 0.85 0.13 3.39 98.22 40.00 73.68
LR 0.43 0.19 0.31 0.82 0.11 30.51 92.90 60.00 76.75
MLP 0.46 0.21 0.34 0.94 0.00 0.00 100.00 0.00 74.12
GB 0.42 0.17 0.30 0.84 0.17 25.42 95.27 65.22 77.19

Table B.24: All Features set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.43 0.19 0.31 0.84 0.11 10.17 98.22 66.67 75.44
LR 0.46 0.21 0.32 0.85 0.02 18.64 92.31 45.83 73.25
MLP 0.46 0.21 0.33 0.95 -0.00 0.00 100.00 0 74.12
GB 0.44 0.20 0.31 0.85 0.06 15.25 94.67 50.00 74.12

Table B.25: All behaviour feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.20 0.32 0.93 0.07 6.78 98.82 66.67 75.00
LR 0.45 0.20 0.33 0.88 0.06 1.69 98.22 25.00 73.25
MLP 0.44 0.20 0.32 0.90 0.06 0.00 100.00 0 74.12
GB 0.44 0.19 0.32 0.91 0.08 15.25 96.45 60.00 75.44

Table B.26: Daily herd normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.45 0.20 0.33 0.95 0.08 3.45 96.71 28.57 70.95
LR 0.46 0.21 0.33 0.97 0.04 0.00 99.34 0.00 71.90
MLP 0.46 0.21 0.33 0.96 0.05 0.00 100.00 0 72.38
GB 0.46 0.22 0.33 0.99 0.03 12.07 94.08 43.75 71.43

Table B.27: Daily prepartum normalisation feature set
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RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.45 0.21 0.33 0.94 0.04 6.67 97.66 50.00 74.03
LR 0.46 0.21 0.32 1.02 0.00 0.00 100.00 0 74.03
MLP 0.45 0.21 0.32 0.99 0.04 0.00 100.00 0 74.03
GB 0.46 0.21 0.32 0.97 -0.00 13.33 90.64 33.33 70.56

Table B.28: Daily within-window normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.19 0.31 0.91 0.09 8.33 97.08 50.00 74.03
LR 0.44 0.20 0.32 0.93 0.08 1.67 98.25 25.00 73.16
MLP 0.46 0.21 0.34 0.97 0.00 0.00 100.00 0 74.03
GB 0.45 0.20 0.31 0.96 0.05 11.67 94.15 41.18 72.73

Table B.29: Daily values feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.19 0.32 0.88 0.10 13.33 97.08 61.54 75.32
LR 0.46 0.21 0.33 0.92 0.01 5.00 98.83 60.00 74.46
MLP 0.46 0.21 0.34 0.98 0.00 0.00 100.00 0 74.03
GB 0.46 0.21 0.33 0.94 0.00 16.67 95.32 55.56 74.89

Table B.30: Statistics feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.20 0.32 0.96 0.07 8.47 96.45 45.45 73.68
LR 0.46 0.21 0.33 0.95 -0.00 5.08 95.86 30.00 72.37
MLP 0.46 0.21 0.33 0.89 0.01 1.69 98.82 33.33 73.68
GB 0.44 0.20 0.32 0.95 0.06 16.95 92.90 45.45 73.25

Table B.31: Statistics herd normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.19 0.31 0.90 0.09 13.33 98.83 80.00 76.62
LR 0.45 0.20 0.32 0.89 0.07 1.67 98.83 33.33 73.59
MLP 0.45 0.20 0.32 0.97 0.05 1.67 100.00 100.00 74.46
GB 0.45 0.20 0.32 0.92 0.05 11.67 98.25 70.00 75.76

Table B.32: Trend feature set
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RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.45 0.20 0.33 0.86 0.04 10.17 97.63 60.00 75.00
LR 0.45 0.20 0.32 0.91 0.05 0.00 98.22 0.00 72.81
MLP 0.45 0.20 0.33 0.93 0.04 0.00 100.00 0.00 74.12
GB 0.46 0.21 0.34 0.92 -0.01 13.56 94.08 44.44 73.25

Table B.33: Trend herd normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.42 0.18 0.31 0.84 0.16 15.00 97.66 69.23 76.19
LR 0.44 0.19 0.32 0.92 0.10 3.33 98.25 40.00 73.59
MLP 0.44 0.19 0.33 0.88 0.10 0.00 100.00 0.00 74.03
GB 0.43 0.19 0.32 0.88 0.13 28.33 96.49 73.91 78.79

Table B.34: Static feature set
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B.2.2 Calving-date based window

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.19 0.32 0.92 0.10 9.84 96.57 50.00 74.15
LR 0.45 0.21 0.32 0.91 0.04 18.03 93.71 50.00 74.15
MLP 0.46 0.22 0.34 1.05 -0.00 0.00 100.00 0.00 74.15
GB 0.44 0.19 0.32 0.88 0.09 22.95 93.71 56.00 75.42

Table B.35: All Features set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.20 0.32 0.92 0.08 8.20 96.00 41.67 73.31
LR 0.46 0.21 0.32 0.88 0.00 16.39 94.29 50.00 74.15
MLP 0.46 0.22 0.34 1.05 -0.00 0.00 100.00 0.00 74.15
GB 0.46 0.21 0.33 0.92 0.01 16.39 90.86 38.46 71.61

Table B.36: All behaviour feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.47 0.22 0.34 0.94 0.01 5.45 98.56 60.00 72.16
LR 0.47 0.22 0.33 0.93 0.01 0.00 97.84 0.00 70.10
MLP 0.47 0.22 0.34 0.92 0.01 1.82 98.56 33.33 71.13
GB 0.47 0.22 0.34 0.94 -0.01 12.73 94.24 46.67 71.13

Table B.37: FFT feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.46 0.21 0.33 0.93 0.01 6.56 97.71 50.00 74.15
LR 0.45 0.21 0.32 0.92 0.04 3.28 97.71 33.33 73.31
MLP 0.45 0.21 0.32 0.92 0.04 0.00 100.00 0.00 74.15
GB 0.49 0.24 0.35 0.94 -0.12 8.20 92.57 27.78 70.76

Table B.38: Daily herd normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.47 0.22 0.34 1.05 0.01 3.33 97.37 33.33 70.75
LR 0.48 0.23 0.35 1.01 -0.02 0.00 100.00 0.00 71.70
MLP 0.48 0.23 0.34 1.01 0.00 0.00 100.00 0.00 71.70
GB 0.49 0.24 0.36 1.08 -0.07 3.33 97.37 33.33 70.75

Table B.39: Daily prepartum normalisation feature set
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RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.47 0.22 0.34 0.98 -0.02 0.00 98.29 0.00 72.88
LR 0.46 0.21 0.33 1.00 0.02 0.00 100.00 0.00 74.15
MLP 0.46 0.21 0.34 1.02 0.00 0.00 100.00 0.00 74.15
GB 0.49 0.24 0.36 1.02 -0.11 3.28 95.43 20.00 71.61

Table B.40: Daily within-window normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.47 0.22 0.34 0.91 -0.01 8.20 93.71 31.25 71.61
LR 0.46 0.21 0.33 0.98 0.03 6.56 96.00 36.36 72.88
MLP 0.46 0.22 0.34 1.04 -0.00 0.00 100.00 0.00 74.15
GB 0.51 0.26 0.37 1.05 -0.21 8.20 89.14 20.83 68.22

Table B.41: Daily values feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.45 0.20 0.32 0.87 0.06 3.28 97.71 33.33 73.31
LR 0.46 0.21 0.32 0.94 0.03 8.20 96.57 45.45 73.73
MLP 0.46 0.22 0.33 1.06 -0.00 0.00 100.00 0.00 74.15
GB 0.46 0.21 0.34 0.93 0.03 16.39 94.29 50.00 74.15

Table B.42: Statistics feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.19 0.32 0.83 0.11 6.56 98.86 66.67 75.00
LR 0.46 0.21 0.32 0.91 0.03 6.56 97.14 44.44 73.73
MLP 0.45 0.20 0.32 0.91 0.06 0.00 100.00 0.00 74.15
GB 0.44 0.19 0.31 0.96 0.12 14.75 95.43 52.94 74.58

Table B.43: Statistics herd normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.44 0.19 0.32 0.94 0.12 13.11 96.51 57.14 74.68
LR 0.43 0.19 0.31 0.90 0.13 8.20 97.67 55.56 74.25
MLP 0.46 0.21 0.32 1.00 0.02 0.00 100.00 0.00 73.82
GB 0.46 0.21 0.33 0.97 0.04 11.48 93.60 38.89 72.10

Table B.44: Trend feature set
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RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.45 0.21 0.33 0.89 0.04 4.92 97.14 37.50 73.31
LR 0.45 0.21 0.32 0.93 0.04 1.64 98.29 25.00 73.31
MLP 0.45 0.21 0.32 0.92 0.04 0.00 99.43 0.00 73.73
GB 0.48 0.23 0.34 0.95 -0.07 6.56 92.57 23.53 70.34

Table B.45: Trend herd-normalisation feature set

RMSE MSE MAE Q95E R2 Se Sp Pr Acc

RF 0.43 0.18 0.31 0.85 0.16 11.48 96.57 53.85 74.58
LR 0.44 0.19 0.31 0.93 0.09 3.28 98.29 40.00 73.73
MLP 0.46 0.21 0.34 1.01 0.02 0.00 100.00 0.00 74.15
GB 0.43 0.18 0.31 0.88 0.15 16.39 96.00 58.82 75.42

Table B.46: Static feature set

B.2.3 Predicted-Actual plots
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Figure B.3: Predicted-Actual plots with a measurement-date based window and Random Forest
regressor
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B.3 Dynamic Time Warping Result

DTW

AUC 0.50
Se@95Sp 0.00
Pr@95Re 0.26
Se 25.00
Sp 75.44
Pr 26.32
Acc 62.34

Table B.47: DTW classifier with daily values results on metrics
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C Farm specific results

Measurement based windows have been trained and tested on the four biggest farms.

C.1 Classification

C.1.1 Measurement based

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.70 0.18 0.42 18.18 95.00 66.67 67.74
NB 0.56 0.09 0.35 54.55 60.00 42.86 58.06
MLP 0.53 0.00 0.35 27.27 80.00 42.86 61.29
GB 0.69 0.09 0.44 18.18 75.00 28.57 54.84

Table C.1: Daily values farm 2

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.67 0.20 0.19 0.00 100.00 0.00 81.48
NB 0.65 0.20 0.23 30.00 77.27 23.08 68.52
MLP 0.65 0.10 0.19 0.00 100.00 0.00 81.48
GB 0.58 0.10 0.19 20.00 93.18 40.00 79.63

Table C.2: Daily values farm 3

AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.60 0.12 0.28 12.50 95.65 50.00 74.19
NB 0.58 0.12 0.27 50.00 47.83 25.00 48.39
MLP 0.58 0.12 0.26 25.00 69.57 22.22 58.06
GB 0.59 0.12 0.28 37.50 91.30 60.00 77.42

Table C.3: Daily values farm 4

87



AUC Se@95Sp Pr@95Re Se Sp Pr Acc

RF 0.81 0.40 0.25 20.00 100.00 100.00 85.71
NB 0.57 0.20 0.20 20.00 86.96 25.00 75.00
MLP 0.53 0.20 0.20 60.00 39.13 17.65 42.86
GB 0.77 0.00 0.36 0.00 95.65 0.00 78.57

Table C.4: Daily values farm 8
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D Hyperparameter search

D.1 Random Forest

The hyperparameter search for the Random Forest classifier (and regressor) was based on a 5-fold
cross-validation in which the model with the best AUC score was selected. The parameters were
searched using a randomised search over the parameter space. The randomised search had 30
iterations. These parameters with possible values are listed below. The parameters correspond to
the scikit-learn1 arguments for the Random Forest model.

n_estimators = [int(x) for x in np.linspace(start=100, stop=2000, num=20)]

max_features = [’auto’, ’sqrt’, None]

max_depth = [int(x) for x in np.linspace(10, 110, num=11)]

max_depth.append(None)

min_samples_split = [2, 5, 10]

min_samples_leaf = [1, 2, 4]

bootstrap = [True, False]

D.2 Gradient Boosting

The hyperparameter search for the Gradient Boosting classifier (and regressor) was based on a
5-fold cross-validation in which the model with the best AUC score was selected. The parameters
were searched using a randomised search over the parameter space. The randomised search had 30
iterations. These parameters with possible values are listed below. The parameters correspond to
the scikit-learn arguments for the Gradient Boosting model.

n_estimators = [int(x) for x in np.linspace(start=20, stop=200, num=10)]

max_features = [’auto’, ’sqrt’, None]

max_depth = [2**depth for depth in range(7)]

min_samples_split = [2, 5, 10]

min_samples_leaf = [1, 2, 4]

1https://scikit-learn.org/stable/
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D.3 Multilayer Perceptron

The hyperparameter search for the Multilayer Perceptron classifier (and regressor) was based on a
5-fold cross-validation in which the model with the best AUC score was selected. The parameters
were searched using a grid search over the parameter space. These parameters with possible values
are listed below. The parameters correspond to the scikit-learn arguments for the Multilayer
Perceptron model.

hidden_layer_sizes = [(x,) for x in range(2, 20, 2)] +

[(x, x) for x in range(2, 20, 2)]

activation=[’relu’, ’logistic’],

learning_rate_init=[0.001, 0.005, 0.01]
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