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ABSTRACT 

Rapid urbanisation in low-and middle-income countries has led to the proliferation of slums, with over 

60% of the urban population living in deprived areas. Whiles remote sensing promise a sustainable source 

of information on slums, methods for citywide slum maps remains uncertain, and only few studies have 

focused on the spatio-temporal dynamics of slums. Moreover, the remote sensing community does not 

sufficiently understand the spatial information required of end-users. This study presents a processing 

chain for spatio-temporal slum mapping at a citywide scale using low-cost SPOT 6 image using Accra, 

Ghana as a case study. The processing chain relies on free and open software for geospatial (FOSS4G) 

solutions. Our research comprises of three parts: understanding the spatial information requirements of 

end-users, understanding ethical concerns of slum maps, citywide land-use mapping at street-block level, 

with the focus on slums, and change detection and analysis of uncertainties. We found out that the 

required spatial information and its level of details vary depending on the purpose of the institution. 

Interviewed experts agreed to make slum information publicly available. However, they raised geo-ethical 

issues that map producers need to address. Using the random forest (RF) classifier, land-use maps 

achieved high overall accuracy of over 80%. We applied class probability membership obtained from RF 

to identity uncertain street-blocks and further investigated the causes of uncertainties on grounds. The 

study identified three main causes including similar morphological characteristics of slums and old towns, 

areas with slum-like appearance due to unplanned and uncontrolled extension and slum areas which have 

been regularised. Post-classification change detection was applied to analyse spatio-temporal dynamics 

between 2013 and 2017 at the street-block level. we revealed that land-use change is stable is  Accra with 

over 90% of the area remaining unchanged. Slums appeared on vacant lands or in kiosk estates whereas 

slums in floodable zones disappeared. Finally, we exploited the trajectory error metrics to assess the 

accuracy of change detection. Change detection accuracy using trajectory error metrics improve from 53% 

to 67% when uncertain street-blocks were removed. The proposed framework offers a way to map slums 

at a citywide scale with high accuracy to support pro-poor initiatives and produced the needed information 

required by end-users.  

Keywords: slum, change detection, geo-ethics, spatial information requirement, street-blocks 
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1. INTRODUCTION 

1.1. Background and justification  

Most low-and middle-income countries are experiencing rapid urban transition and are facing an 

unprecedented growth of slum-like communities (UN-Habitat, 2015). These are seen in areas of poor 

housing condition, poor environmental quality, lack of social services and infrastructure (UN-Habitat, 

2016). UN-Habitat (2003) defines a slum as any specific place where half or more of all households lack 

better-quality water, improved sanitation, sufficient living area, durable housing, and secure tenure. 

Unfortunately, credible and up-to-date spatial information about their existence and dynamics required to 

support decision making is not readily available (Mahabir, Crooks, Croitoru, & Agouris, 2016).  

Slum mapping is essential for a wide range of user groups including policymakers, planners, slum dwellers 

and international organisation such as UN-Habitat and Slum Dweller International (SDI). These 

information helps identify and monitor slum growth to know where to intervene (Duque, Patino, & 

Betancourt, 2017). It is also vital for United Nations agencies seeking to alleviate poverty under the 

Sustainable Development Goals (SDGs) as well as monitor the progress of implementing these 

development goals (UN-Habitat, 2016). Furthermore, it is useful for local governments seeking to 

improve slum conditions. However, slum mapping is a difficult task. Mapping slums from grounds is time 

and resource-intensive and when mapped from space requires expert knowledge and its computational 

costly (Leonita, Kuffer, Sliuzas, & Persello, 2018). The problem is even more complicated as there is no 

agreed area-level definition of slum (Lilford et al., 2019), no agreement on methods (Kuffer et al., 2020) 

and end-user requirements are not well understood by map producers (Kuffer et al., 2018). These 

conceptual ambiguity and complexities contribute to ‘why’ most slums are not mapped. 

Lilford et al. (2019) identified three broad sources of data to study and map slum, namely, household 

survey, ground surveys of features in an area, and remote sensing (RS) imagery. Traditionally, information 

on slum conditions is derived mainly from socioeconomic indicators using census data. These sources of 

data are expensive, time-consuming, low temporal coverage, often published at a very aggregated level and 

omit areas with no physical accessibility (Duque, Patino, Ruiz, & Pardo-Pascual, 2015). They provide a 

partial view of slums, such as ignoring the spatial intra-urban variability of the slums (Ajami, Kuffer, 

Persello, & Pfeffer, 2019). They are further affected by issues including ecological fallacy (Martínez, 

Pfeffer, & Baud, 2016), aggregation bias (Paelinck, 2000) and modifiable area unit problem (Vogel, 2016). 

Recent studies show that RS offers several advantages over other methods, including objectiveness, low 

cost and global coverage (Leonita et al., 2018). It can capture different physical characteristics and high 

temporal resolution (Mahabir et al., 2016; Kuffer et al., 2016). It is faster and offers the opportunity to 

measure the spatial heterogeneity of urban poverty at any scale. However, they usually ignore the 

socioeconomic aspect of slum characteristics (Lilford et al., 2019).  

Slum mapping using RS focus on the location of slum, characteristics of slum and temporal changes of 

slum (Kuffer, Pfeffer, & Sliuzas, 2016). Despite the importance of spatio-temporal slum mapping 

including monitoring of upgrading projects and assessing the performance of urban management policies 

(e.g. climate change risk, natural hazards, and health), only a few studies have focused on them. One of the 

main reasons is the limited availability of temporal images and the difficulty in producing high accuracy 

change detection results (Pratomo, Kuffer, Kohli, & Martinez, 2018). If temporal analysis is applied, it is 
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done on a very small area due to the complex spatial pattern of slums or high cost of Very High 

Resolution (VHR) images (around 25 euros/km2 of image from Digital Globe). Another issue relates to 

the transferability of temporal mapping methods. In this context, transferability means the capability of a 

method to provide generic functionality for spatiotemporal slum mapping with limited adaptation (Kohli, 

Warwadekar, Kerle, Sliuzas, & Stein, 2013).   

With the availability of VHR images and advancement in earth observation (EO) methods such as object-

based image analysis (OBIA), support vector machines (SVM), random forest (RF), and convolutional 

neural networks (CNN), it is now possible to use cost-effective solutions to map the growth of slums at a 

fine level of spatial details (Kuffer et al., 2020; Leonita et al., 2018). However, there is no conclusion in 

literature about the best method for spatio-temporal slum mapping (Kuffer et al., 2020). Rule-based OBIA 

and Fully Convolutional Networks (FCN) showed limitations in mapping change trajectories due to the 

uncertainty of slum boundaries (Liu & Kuffer, 2019; Pratomo et al., 2018). These limitations will increase 

when applied at a citywide scale. Therefore, this study proposed a semi-automated approach to map slums 

at a citywide scale, which is sparsely researched. Consequently, it uses the results for change detection to 

analyse slum dynamics and spatial patterns. This provides useful information for policymakers and urban 

planners.  

1.2. Research problem 

Contemporarily, there has been an increase in EO-based methods for slum mapping (Mahabir, Croitoru, 

Crooks, Agouris, & Stefanidis, 2018). However, several challenges still exist. These challenges include 

scalability (most studies focus on small areas but not citywide scale), transferability, integration of context 

knowledge, aggregation scale, geo-ethics, temporal analysis and uncertainties of mapping results (Kuffer et 

al., 2020). Moreover, RS community does not sufficiently understand the spatial data required by potential 

users and the geo-ethical concerns in making slum information publicly available (Gevaert, Kohli, & 

Kuffer, 2019; Leonita et al., 2018). 

Most often, researchers limit their study to slum areas only or very small area (Duque et al., 2017; Kohli, 

Stein, & Sliuzas, 2016). Citywide slum mapping is needed for effective planning and management. Slums 

are connected to their surroundings and should be seen as a component of the general mapping process 

(Sliuzas, Kuffer, Gevaert, & Pfeffer, 2017). Most studies have focused on proof-of-concept rather than 

providing usable data for different stakeholders (Duque et al., 2017; Liu & Kuffer, 2019). Methods for 

large scale applications remain uncertain due to several factors such as the complexities of urban 

environment (Ma et al., 2017). For instance, Grippa, Georganos, Vanhuysse, Lennert, & Wolff, (2017) 

demonstrated that using the same optimised segmentation parameter on a small area underperforms when 

applied on a large area due to heterogenous of urban environment. Therefore, there is the need for a 

general, scalable, and efficient state-of-the-art method to better analyse the growth of slums at a citywide 

scale. This will also help identify slums dynamics or slum-like conditions that exist but have not been 

documented. 

Most slum mapping studies use VHR or unmanned aerial vehicle (UAV) images (Kuffer, Pfeffer, & 

Sliuzas, 2016; Kuffer et al., 2020). Although these images have the capability to map detailed spatial 

information, they are costly (price ranging from 15 to 40 euros/km2 ) and computational-intensive, 

especially for large scale mapping. Therefore, many cities in developing countries cannot afford such 

images. Additionally, Wang, Kuffer, & Pfeffer (2019) showed that VHR might not be required when 

mapping settlement boundaries as they can reduce classification accuracy due to the excessive object-level 

complexities. Thus, high data cost, high complexity and high computational costs prevent optimal usability 

of VHR data at city scale. However, low-cost images such as SPOT 6 (1.5m resolution) or the freely 



SPATIO-TEMPORAL SLUM MAPPING AT CITYWIDE SCALE USING VERY HIGH RESOLUTION IMAGES 

 

3 

available Sentinel-2 (10m resolution) images which can be an alternative are under-researched. These 

images are cost and computationally efficient as compared to VHR images. Furthermore, one scene 

covers large areas making it suitable for large-scale application than VHR images.  

This research focuses on spatio-temporal slum mapping at a citywide scale using Accra, the capital of 

Ghana, as a case study. The official slum dataset is highly fragmented, outdated and inconsistent due to 

the participatory mapping approached used to collect it (AMA, 2011). This approach is costly, time and 

effort-intensive and has limitations for large area mapping and monitoring (Leonita et al., 2018). 

Furthermore, no data is available outside the inner city of Accra. Therefore, this study proposes the 

utilisation of low-cost SPOT 6 images to analyse slum dynamics at a citywide scale. In this context, low-

cost is defined as the relatively inexpensive (SPOT 6 cost 3.60 euros/km2 and Pleides (0.5m resolution) 

cost 12.50 euros/km2 (Airbus, 2019)) and less computational cost (processing power) of SPOT 6 images 

compared to very high-resolution images. Comparatively, SPOT platform has more historical data (data 

archive has image since 1986) than sentinel-2, which was recently launched in 2015. Also, the opportunity 

to apply for SPOT 6 images through the European Space Agency (ESA) third party grant (providing 

images for research purposes free of charge) contributed to the decision of using SPOT 6 images. In 

addition, Wang et al. (2019) study concluded that the optimal resolution for separating slum from non-

slum is around 2 meters. Similarly, Engstrom et al. (2015) used 2.4m spatial resolution image to 

successfully map slums in Accra. This study proposes a semi-automated method for spatio-temporal slum 

mapping using Free and Open Source Software for Geospatial (FOSS4G) solutions. These solutions are 

relevant for developing countries which have limited funds, and their rapid pace of urbanisation requires 

frequent slum map updating. The developed processing chain may be reused, adapted or improved in 

other areas. The outcome will serve as the basis for long term pro-poor development plans, allocation of 

social service, and disaster response.  

1.3. Research objectives 

The main objective is to develop a processing chain for spatio-temporal slum mapping at a citywide scale 

using low-cost SPOT 6 image and free & open-source software. In this context, processing chain means 

the compilation of methods with generic functionality for many domain application and requires limited 

adaptation for different case studies. This objective allows analysing slum dynamics at a citywide scale. 

Specifically, the study aims to achieve the following objectives; 

To identify slum information required by end-users and geo-ethical concerns in making such 

data publicly available  

1. What is the spatial information required by different user groups? 

2. What are the ethical issues concerning making slum data publicly available? 

To develop a semi-automated method for slum mapping at a citywide scale  

1. What are the morphological characteristics of slums and non-slums in Accra? 

2. Which strategy is best for classification at a citywide scale? 

3. Which aggregation scale is appropriate for citywide slum mapping? 

4. Which image features can be generalised for spatio-temporal slum mapping? 
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5. What are the causes of uncertainties in the proposed method? 

To analyse the spatio-temporal dynamics of slums at a citywide scale 

1. Which method is appropriate for slum change detection at a citywide scale? 

2. How to assess the accuracy of change detection? 

3. What are the differences when uncertainties are integrated into change detection? 

4. What kind of spatial change patterns can be extracted from slum maps? 

1.4. Thesis structure 

This thesis consists of seven chapters. Chapter one presents a brief research background, justification, 

research problem, objectives and outline of the thesis. Chapter two provides a review of spatio-temporal 

slum mapping at a citywide scale. It discusses current challenges for citywide slum mapping, including 

scalability and level of aggregation. It further provides an overview of change detection methods and how 

to assess land change accuracy. Chapter three briefly describes the profile of the study area, including 

characteristics of slums and residential densities in Accra. It also describes data and software used for this 

research. Chapter four describes the methodology of the research. It demonstrates the methodological 

workflows used for the study from fieldwork to change detection and spatio-temporal analysis. The results 

of the study are presented in chapter five. It describes the main findings to each research objectives and 

questions. Chapter six deal with the discussion of the main findings. In chapter seven, we conclude and 

outline recommendations and future directions to improve spatio-temporal slum mapping further using 

RS.  
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2. LITERATURE REVIEW 

This chapter gives a review of spatio-temporal slum mapping at a citywide scale. It provides a review of 

the concept of EO-based methods for slum mapping. It further describes the main opportunities and 

limitations for citywide slum mapping. Lastly, it provides a concise review of change detection methods 

and how to assess land change accuracies.   

2.1. Conceptualising slums from remote sensing  

The problem with slum mapping begins with the fuzziness on the definition of a slum. In general, the 

term “slum” is often used for marginalised groups usually in deprived areas. For example, Favela in Rio de 

Janeiro, Kachi Abadi in Karachi, Zongo in Ghana. UN-habitat definition of slum households is widely 

accepted. According to this definition, any household which lacks any one of the following indicators as 

considered as slum household: better-quality water, improved sanitation, sufficient living area, durable 

housing, and secure tenure (UN-Habitat, 2003). However, this definition fails to capture important area-

based risk associated with living in deprived areas. For example, flood zones, crime, and lack of 

infrastructure such as roads, schools, health facilities. Also, the UN-habitat definition can overestimate 

deprived areas in some cities. For example, almost the entire city of Accra was classified as slum (Weeks, 

Hill, Stow, Getis, & Fugate, 2007).   

Area-based slum definitions have received much attention in recent years (Lilford et al., 2019). The 

definition used morphological features such as building density, size, height, organic settlement pattern, 

and lack of infrastructure to define and identify slums (Kuffer, Barros, & Sliuzas, 2014; Taubenböck & 

Kraff, 2014). However, there is no universally accepted area-based definition. Several efforts have been 

made to define slums including expert meetings (Sliuzas, Mboup, & Sherbinin, 2008), operational 

definitions and developing frameworks (Lilford et al., 2019; Mahabir et al., 2018). This conceptual 

ambiguity is due to high diversity and dynamics of slums characteristics (e.g. building materials) within the 

same city or across the world. Despite these diversities, slum areas have some common characteristics 

such as high population densities, and usually organic settlement patterns (Kohli, Sliuzas, Kerle, & Stein, 

2012). 

Weeks et al. (2007) showed that the concept of slum links with multiple deprivations associated with a 

neighbourhood. In the same way, Kohli, Sliuzas, & Stein (2016) defined slum as areas of sub-standard 

housing conditions and poor environmental conditions. In EO-based methods, it has been believed that 

“if you see a slum, you will know it”. This notion expresses the idea that slum has unique morphological 

characteristics such as building size, and building density from non-slum areas. Based on this notion, 

Kohli et al. (2012) developed a generic slum ontological (GSO) framework to conceptualised slums from 

VHR images. GSO consist of environ, settlement and object-level to map the morphology of slums. 

However, a recent study shows that slum characteristics are context-dependent (Duque et al., 2017). 

Therefore, its operational definition of mapping should be clear.  

Unfortunately, most studies failed to provide an operational definition of slum (Kuffer, Pfeffer, & Sliuzas, 

2016). In this study, the purpose is to develop a method that is consistent over time and fits local context 

so that slum growth can be monitored. Hence, slums are operationalised using the ontology proposed by 
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Kohli et al., (2012) and integrated with local context knowledge, including typology and stage of slum 

growth. Slums are defined as a concept of place with slum characteristics such as high building densities, 

irregular settlement patterns, and no or small roads.  

2.2. Scalability of methods  

Recent studies have employed landscape metrics ( Liu, Huang, Wen, & Li, 2017), texture and OBIA 

(Hofmann & Bekkarnayeva, 2017), machine learning coupled with contextual features (Duque et al., 2017; 

Engstrom et al., 2015), and deep learning to map slums ( Liu et al., 2019; Mboga, Persello, Bergado, & 

Stein, 2017). Other studies have combined OBIA and machine learning (Grippa et al., 2018). Despite 

these numerous studies, there is no conclusion or general agreement on the best method suitable for 

detecting and delineating slums (Kuffer et al., 2020; Thomson et al., 2020). For example, Mboga et al., 

(2019) applied FCN method for detecting slums. Leonita et al., (2018) implemented RF and SVM learning 

classifiers for detecting slums in Bandung, Indonesia. Grippa, Lennert, Georganos, & Mboga, (2019) 

combined OBIA and machine learning for land-use mapping and estimating population. Although they 

achieved high classification accuracy, most of these studies relied on very high-resolution images (0.3-0.5m 

resolution). Additionally, most machine learning studies have been proof-of-concept, usually covering a 

small area within the city. The urban environment is highly heterogeneous, which may affect existing 

methods. For example, Leonita et al., (2018) approach achieved high accuracy on a small scene but 

underperformed when applied on a larger area. Also, Ajami et al., (2019) have shown that slums have large 

intra-urban variation within a single city which can affect citywide slum mapping. Further problem for 

mapping slums refer to distinguishing characteristics of slums and inadequate reference data covering all 

the different appearance of slums affects existing methods (Pratomo, Kuffer, Martinez, & Kohli, 2017). 

Therefore, there is the need for a scalable and efficient methodological framework (Kuffer et al., 2020).  

One major concern when mapping at a citywide scale is the choice of the sensors. Most slum mapping 

studies use VHR or UAV images. UAV images with a resolution of 3-5cm allow mapping at object-level 

(e.g. building outlines) and accurate estimation of roof areas (Sliuzas et al., 2017). Similarly, VHR images 

with resolution up to 0.3m can provide detailed characteristics of slums. However, such images are 

expensive and difficult to acquire at a citywide scale. Little attention has been paid to free of charge 

Sentinel (Wurm, Weigand, Schmitt, Gei, & Taubenbock, 2017) or low-cost SPOT 6 images when mapping 

slums. Such data can be suitable for slum mapping at a settlement scale. Comparatively, they are 

computational more efficient than VHR or UAV images.  

2.3. Level of aggregation 

In an urban environment, slums can be mapped at different scales, ranging from pixels to administrative 

boundary depending on the purpose of the study. Moreover, the differences in spatial resolution 

potentially affect EO-based methods (Sliuzas et al., 2017). According to the existing literature, pixel scale, 

segment (object level), administrative boundary, grid and street-blocks are the commonly used mapping 

units (Figure 2.1) (Engstrom, Ofiesh, Rain, Jewell, & Weeks, 2013; Kuffer, Pfeffer, Sliuzas, & Baud, 2016; 

Stow, Lippitt, & Weeks, 2013).  

The pixel is a popular mapping unit. However, studies have shown that it is not the appropriate mapping 

unit when using VHR images (Blaschke, 2010; Blaschke et al., 2014). It is affected by noise known as salt 

and pepper effects (Wang et al., 2019). Also, policy and decision-making are usually performed at the 



SPATIO-TEMPORAL SLUM MAPPING AT CITYWIDE SCALE USING VERY HIGH RESOLUTION IMAGES 

 

7 

wards, block, or neighbourhood level making them not useful for policy-relevant information. 

Furthermore, object-level segments have the ability to create homogenous neighbourhood which could be 

suitable for aggregation (Kuffer, Pfeffer, Sliuzas, et al., 2016). However, aside from it been challenging to 

obtain good segments, they have in particular limitation for change detection studies. They produce a lot 

of false object changes because of uncertainties or differences in segment boundaries for different years. 

Administrative boundaries are often large aggregated mapping unit that is likely to contain a mix of slum 

and non-slums area. This means that pockets of slums are likely to be omitted or not captured, and it 

hides the spatial differences within units (Kuffer et al., 2018). The grid-scale could be an appropriate 

mapping unit. It is easy to create and provides sufficient spatial details. In terms of temporal analysis, the 

grid-scale promises a fixed boundary and prevent noise (Thomson et al., 2020; Thomson, Stevens, 

Ruktanonchai, Tatem, & Castro, 2017). However, they do not follow the general urban structure or 

morphology. Street-blocks or city-blocks is said to be the most appropriate mapping unit (Bochow, 

Taubenbock, Segl, & Kaufmann, 2010). It provides adequate spatial details and follows the urban structure 

(Grippa et al., 2018). However, official street-blocks data from city authorities are not readily available, 

especially in data-scares regions. Even if available, they suffer from inconsistency and incompleteness, 

especially at the peri-urban areas. The availability of OpenStreetMap (OSM) data can be used to create 

street-blocks.   

Figure 2.1 Different levels of aggregation.  

2.4. Change detection  

Spatial dynamics and patterns of slums can be understood through change detection methods. Change 

detection is the process of identifying changes in spatial patterns using two or more images of the same 

area but different times (Hussain, Chen, Cheng, Wei, & Stanley, 2013). This helps to measure changes 

over time quantitatively. Over the years, several change detection techniques have been developed. 

Tewkesbury, Comber, Tate, Lamb, & Fisher, (2015) identified six types of change detection, namely: layer 

arithmetic, post-classification change, direct classification, transformation, change vector analysis, and 

hybrid change detection. From literature, post-classification change detection is seen as the best technique 

for this study (Hofmann & Bekkarnayeva, 2017; Li & Zhou, 2009; Macleod & Congalton, 1998). 

Furthermore, post-classification change detection is commonly used in slum mapping studies ( Kit & 

Lüdeke, 2013; Badmos, Rienow, Callo-Concha, Greve, & Jürgens, 2018; Pratomo et al., 2018) and its less 

sensitive to radiometric variation in different images.  

Post classification is a quantitative change detection technique that provides detailed change matrix (from-

to change) information. It compares two or more individual classified images for detailed change analysis 

(map to map change detection) (Tewkesbury et al., 2015). It has the advantage of knowing the change 
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transition explicitly. Post-classification change detection allows identifying specific changes at the object 

level (e.g. buildings) or area level (e.g. Slums) changes (Pratomo et al., 2018; Teo & Shih, 2013). This 

indicates that post-classification change detection allows answering specific change question in context. 

However, the accuracy of post-classification change detection depends on the quality of the classified 

maps. It has the disadvantage of compounding error from the individual classified maps (Teo & Shih, 

2013). Therefore, the input classified maps should be of high quality to reduce the effect of this problem.  

Several frameworks for analysis of change detection have been developed. These have been categorised 

into pixel-based and object-based unit of analysis (Chen, Hay, Carvalho, & Wulder, 2012; Hussain et al., 

2013). The classical pixels-based approaches use pixels as the fundamental unit of analysis without 

considering the spatial context, whereas object-based approaches create image objects and use for analysis.  

2.4.1. Pixel-based and object-based change detection  

The pixel-based is the traditional approach where spectral characteristics are used to detect changes. It 

compares pixel to pixel to detection changes. However, it is not suitable for VHR images due to issues of 

high within-class and low-between-class variance in such images (Volpi, Tuia, Bovolo, Kanevski, & 

Bruzzone, 2012). The large variability results in too many changes being detected known as “salt and 

pepper” therefore decreasing the overall accuracy of pixel-based change detection approaches (Hussain et 

al., 2013). It also does not consider the spatial context that is the spatial arrangement of real-world objects, 

and their relationships are not modelled and analysed (Tewkesbury et al., 2015).  

Object-based change detection creates image objects and uses them for change detection. It considers the 

spatial context (e.g. shape and size) of objects which is similar to the human analyst who focuses on 

objects in images rather than pixels (Blaschke et al., 2014; Hussain et al., 2013). This approach is suitable 

for VHR images (Hofmann & Bekkarnayeva, 2017). However, object-based change detection is affected 

by high uncertainties of object boundaries. A study has shown that the level of uncertainty increase 

towards the boundary (Kinkeldey, 2014).  This problem will worsen as slum boundary plays an important 

role. For example, Liu & Kuffer, (2019) and Pratomo et al., (2018) raised the issues of uncertain 

boundaries that affected the change detection accuracy.  

One challenge with change detection is how to define change. Object-based change detection inevitably 

generates sliver polygons when objects are individually mapped and compared (post-classification change 

detection). They may arise as a result of image misregistration or inconsistent segmentation due to 

variation in weather, sun angle, cloud coverage (Chen et al., 2012).  

2.4.2. Change detection accuracy assessment 

Methods to validate the changes are often lacking. The commonly used methods for change detection 

accuracy is the traditional error-matrix and kappa coefficient (Macleod & Congalton, 1998). However, they 

are developed for thematic single-date classification and not suitable for temporal change detection task. 

Yuan, Elvidage, & Lunetta (1999) proposed the multiplication aggregation method using accuracy from 

individual classification. However, it ignores the correlation between individual classification layers. 

The change detection matrix was proposed by Macleod & Congalton, (1998). It is a modification of the 

single-date classification accuracy for change detection. Other methods, including area-based accuracy 

assessment (Lowell, 2001), trajectory error matrix (Li & Zhou, 2009) and rule-based rationality evaluation 
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(Liu & Zhou, 2004) have been proposed. Up-to-date, there are no agreed-upon methods for assessing the 

accuracy of change detection models.   

Furthermore, obtaining reference data for accuracy assessment remains a challenge. Most studies used 

point-based reference data for checking change accuracy (Liu & Kuffer, 2019; Pratomo et al., 2018). 

Although it is easy to generate point reference data, it underestimates object-based map accuracy and does 

not consider contextual information (Chen et al., 2012). Also, point-based methods require an excessive 

number of points to provide good estimates. However, area-based reference data considers spatial and 

contextual information when generating the reference (Lowell, 2001).  

2.5. Conceptual framework 

The growth of slums is one of the challenges most of the low-and middle-income countries face today 

(UN-HABITAT, 2011). Unfortunately, there is little information about their existence and dynamics. 

Although RS promises a sustainable source of information on slums and their dynamics, they face 

different challenges, including scalability and transferability. This affects spatio-temporal analysis to 

understand slum dynamics and spatial patterns. However, advancement in EO methods can be used to 

address these challenges. Figure 2.2 shows the conceptual framework of the study. Figure 2.1 shows that 

the challenges of slum mapping at a citywide scale includes uncertainties, transferability, scalable methods, 

and local context knowledge. Other challenges, such as data and user requirements relate to spatial data 

and level of details required by end-users. This helps to provide data required by end-users. When these 

challenges are overcome, change detection can be performed. Consequently, slum dynamics and patterns 

can be analysed.  

 
Figure 2.2 Conceptual framework.  
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3. STUDY AREA AND DATA DESCRIPTION 

This chapter presents the profile of the study area. It further describes the raw data and software used in 

this study. Lastly, it describes the characteristics of slums and residential densities in Accra.  

3.1. Study area, data and software 

The study area is Accra, the capital city of Ghana situated along the Gulf of Guinea of West Africa. Figure 

3.1 shows the study area. According to the 2010 census, it is a highly dynamic coastal city with more than 

4 million inhabitants (Ghana Statistical Service, 2010). About 18% of the total population of Ghana live in 

Accra. The historical effects, including race-based town planning, military cantonments, and migrant 

communities of the city has contributed to high inequality (Agyei-Mensah & Owusu, 2010). Also, rapid 

urbanisation in the city has resulted in increasing housing deficit and inadequate socioeconomic facilities 

such as education, health, sanitation, and utilities leading to the proliferation of slums (AMA, 2011). The 

city has diverse population groups. For example, in-migrant neighbourhoods. In 2010, 34% of residents in 

Accra lived in slums. The core city has a total land size of 173.2 km2, with slum dwellers occupying 15.7% 

of the total land area. In 2016, 265 slums were identified within the 10 sub-metros of Accra Metropolitan 

Assembly (AMA) using participatory rapid appraisal tool (People’s Dialogue, 2016). Additionally, the 2014 

cholera outbreak casualties occurred mostly in deprived neighbourhoods such as Old Fadama, Usher town 

and Mpoase (Arku, 2015).  

Accra was selected because to the best of our knowledge, no slum mapping beyond AMA administrative 

boundary has been done. The largest area of interest (AOI) on slum mapping was 243 km2 (see figure 3.1 

blue boundary), which covers only AMA catchment area (Engstrom et al., 2015). However, Accra has 

sprawled to cover Kasoa, in the central region and some part of Eastern region (Nasawan, Berekuso and 

Aburi). Therefore, to capture the diversity of economic activities and urban sprawl, we selected an AOI 

that covers both the core city and peri-urban areas. Therefore, the AOI was selected using the boundary 

of urban centres provided in the global human settlement layer (GHSL) and not restricted to 

administrative boundaries. This includes some part of the Greater Accra region and some part of the 

Central region, allowing us to assess the intra-urban dynamics of slums. The AOI covers 764.3km2. 

Additionally, the availability of cloud-free SPOT images of 2013 and 2017 from the ESA allows capturing 

the temporal dynamics of the city. Accra suffers from cloud cover and experiences dust storms 

occasionally (Weeks et al., 2007). These dates were the best cloud-free images the covers the area of 

interest. Table 3.1 present the data available and its sources. 

The study relies on FOSS4G solutions. FOSS4G solutions are crucial for low-and middle-income 

countries characterised by limited funds and allow anyone to review and adapt them to their needs (Rico 

& Maseda, 2012). They form the bases for spatial data infrastructure (SDI), where resources for system 

development and maintenance are scarce (Brovelli, Minghini, Moreno-Sanchez, & Oliveira, 2017). Thanks 

to the FOSS4G active community, they have robust and reliable software for geospatial application such 

as GRASS GIS and QGIS for raster and vector processing and analysis. They are efficient for raster and 

vector-based applications (Grippa et al., 2017). PostGIS was used for storing, managing and processing 

large vector datasets. 

Additionally, Python and R coding software was used for advanced statistical methods, mainly machine 

learning. The codes were implemented in Jupyter notebook to allow sharing of codes for reproducibility. 

The Jupyter notebook format integrates GRASS GIS functions with python and R programming 
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languages creating a semi-automated processing chain from input of initial dataset to final change 

detection analysis. 

 

Figure 3.1 Location of study area, Accra, Ghana. A) and B) shows typical examples of slum (Images used to vizualise the slums: 

SPOT 6, 2017). 

Table 3.1 Data sources used in this study. 

Data Resolution (m) Type Date Source 

SPOT 6 1.5 Panchromatic 17/12/2013 ESA 

SPOT 6 1.5 Panchromatic 01/04/2017 ESA 

SPOT 6 6 Multispectral  17/12/2013 ESA 

SPOT 6 6 Multispectral  01/04/2017 ESA 

54 location of slums - Shapefile  01/01/2011 

to 

01/08/2016 

Accra Metropolitan Assembly 

Buildings - Shapefile - Accra Metropolitan Assembly 

Communities - Shapefile - Accra Metropolitan Assembly 

OpenStreetMap data - Shapefiles  2020 OpenStreetMap 

3.2. Characteristics of slums and residential densities in Accra  

Slums in Accra vary in size, nature, typology and deprivation. The physical characteristics of slums are 

similar to “old towns” in Accra (see Figure 3.2). Old towns are neighbourhoods that existed before 

settlement planning became part of the government system of Accra (People’s Dialogue, 2016). They are 
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usually fishing communities that have grown over time. These neighbourhoods are usually deprived areas 

predominantly housed by low-income groups. Additionally, there are different types of slums in Accra. 

The typology includes: indigenous (e.g. Okponglo), migrants (e.g. Sabon Zongo), and cosmopolitan (e.g. 

Kwashieman) (Agyei-Mensah & Owusu, 2010). Indigenous slums are the old towns, migrant slums consist 

of foreigners, and cosmopolitan is a mixed of indigenes and migrants. 

a) Teshie old township  b) Nima slum  

Figure 3.2 Physical appearance of Oldtown and typical slum: (a) old township (b) Typical slum (source of the images used to 

visualise the slums: SPOT 6 image, 2017). 

Slums in Accra can be grouped into three development stages as proposed by Sliuzas et al., (2008). They 

are infant, consolidated and matured slums. According to Sliuzas et al. (2008), few houses are found 

during the infant stage. They become consolidated when they grow in numbers with the introduction of 

some services such as water and improved living conditions. The matured stage is when the growth leads 

to high densification, and the settlement boundary already has a shape. Residential densities are broadly 

categorized into low and high-density residential. Low-density residential consist of mainly large single-

family house on large plot size (villa type), and small self-contained units. They are usually located at the 

periphery of the city. High-density residential consist of single storey traditional compound house, multi-

storey compound house, apartments, and terrace housing. They are usually located within the city. Table 

3.2 and 3.3 describes slum and residential densities characteristics in Accra adopting the general slum 

ontology approach proposed by Kohli, Sliuzas, Kerle, & Stein, (2012) to ensure consistency.  
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Table 3.2 Characteristics of slums.  

Slum types level Indicators 

A:  
Matured  

 

Environs Location: They are usually located along water bodies and 
major drains such as the sea and rivers. Other slums are 
located on state land close to the central business district 
(CBD) or flood zones. 
 
Neighbourhood characteristics: They may be old 
traditional neighbourhoods (old towns), old migrant towns or 
cosmopolitan neighbourhoods. 
 

 Settlement  
 

Shape: They usually tend to follow elongated shape features 
such as sea, rivers, drains, and roads (e.g. Odaw river). 
 
Density: High roof coverage with no or little vegetation. 
More than 90% of roof coverage. 

 Object  
 
 

Buildings: Permanent building materials with iron roofing 
sheet. They are usually compound family housing and 
detached building type.   
 
Access network: They have inadequate roads. The roads are 
usually not connected.     

B: Consolidated  

 

Environs Location: They are usually located close to high income 
group. 
 
Neighbourhood characteristics: close of high-income 
neighbourhoods 
 

 Settlement  
 

Shape: They have irregular shape 
 
Density High roof coverage with no or little vegetation. 
More than 80% of roof coverage 

 Object  
 

Buildings: mix of permanent and temporal building 
materials. Small building size  
 
Access network: irregular and unconnected roads  

C:  
Infant  

Environs Location: In small pockets within the city. They often 
develop on open paces or state lands.  
 
Neighbourhood characteristics: usually close to 
neighbourhood of high income, extension areas and industrial 
site.  
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 Settlement  

 
Shape: small pocket within the city with irregular shape 
 
Density: High roof coverage with no or little vegetation. 
More than 80% of roof coverage 

 Object  
 

Buildings: Mix of permanent and temporal building 
materials. Small building size. 
Access network: No road within the area  

Kiosk Estate  

 

Environs Location: close to industrial site  
Neighbourhood characteristics: Predominantly found in 
industrial areas.  

 Settlement Shape: occupies less than 0.5ha of land with no clear shape 
Density: high roof coverage  

 Object  Buildings: movable structure with wooden materials. Very 
small building size   
Access network: no road within the area  
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Tale 3.3 Characteristics of residential densities.  

Residential type Level Indicators 

High density residential  

 

Environs Location: Located in the inner city or close to the CBD 

 

Neighbourhood characteristics: usually single/compound 

family housing residents. Housing type includes single storey 

traditional compound house, apartments and terrace housing 

 

 

 Settlement  Shape: usually elongated street-blocks 

 

Density: large roof with low vegetation (less than 15%). 

Vegetation is usually trees.  

 Object Buildings: permanent building materials with aluminium 

roofing sheet 

 

Access network: well-defined street pattern 

Low density residential  

 

Environs Location: usually located at the periphery  

 

Neighbourhood characteristics: Usually single family housing 

residents. Housing types are predominantly, large single family 

house and small self-contain units. 

 

 

 Settlement Shape: large street-blocks   

 

Density: low roof coverage with high vegetation (more than 

15%). vegetation is usually trees, lawns and shrubs. 

 Object  Buildings: permanent building materials with aluminium 

roofing sheet, or coated roofing sheet/stones.  

 

Access network: well-defined street pattern 
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4. RESEARCH METHODOLOGY 

This chapter describes the methodology of the research. It begins with the fieldwork to understand the 

local context, spatial information and geo-ethical related to making slum information available. It is 

followed by image processing to change detection and analysis. Figure 4.1 illustrates the main steps of the 

methodology. It starts with expert interviews and field observation to understand user requirement and 

ground-based causes of uncertainty. Afterwards, land-cover and land-use map were processed from the 

two images.  The results of land-use were used for change detection and analysis of slum dynamics.  

 
Figure 4.1 Flow chart of research methodology implemented in this study. 

4.1. Fieldwork  

Land-use maps were initially created without local context knowledge. Using the GSO approach 

introduced some uncertainties, such as the confusion between old towns and typical slums. For example, 

most areas of the core city were classified as slums (Figure 4.2). Moreover, the RS community does not 

sufficiently understand the data required by users and their concerns in making such data publicly available 

(Gevaert et al., 2019; Leonita et al., 2018). This communication gap raises issues of acceptance and usage 

of EO-based data. Therefore, fieldwork was carried out to assess the usability of the final mapping 

products and geo-ethics concerns in making RS-based data publicly available. It also investigated the 

causes of uncertainties in the initial model.  
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Firstly, topic-focused interviews were conducted with local experts working on slums to understand local 

context-knowledge, spatial data requirement, geo-data privacy and causes of uncertainty. Topic-focused 

interviews are flexible and can fully explore the topic (Groenendijk & Dopheide, 2003). From literature, 

the following institutions were identified as they relate to slum issues in the study area (AMA, 2011; 

People’s Dialogue, 2016). They include Land Use and Spatial Planning Authority (LUSPA), Physical 

Planning Department (PPD), Public Work Department (PWD), National Disaster Management 

Organisation (NADMO), Non-Governmental Organisation (NGO’s) mainly Peoples Dialogue on Human 

Settlement (PD), Tema Development Company (TDC), Department of Planning (DOP) of Kwame 

Nkrumah University of Science and Technology (KNUST). Table 4.1 presents an overview of institutions 

related to slum issues and their roles. Based on their roles, they were purposively selected as they relate to 

slums issues in the study area. To have diverse views on the subject matter, four planners from four 

different districts (Accra Metropolitan Assembly, Tema Metropolitan Assembly, Ablekuma Municipal 

Assembly and Ledzokuku municipal assembly), two experts from PWD (Tema Metropolitan Assembly 

and La-Dade Kotopon municipal assembly) and one each from the other institutions were interviewed.  

Table 4.1 Local experts related to slum and their roles. LUSPA: Land Use and Spatial Planning Authority; NADMO: 

National Disaster Management Organisation; PPD: Physical Planning Department; PWD: Public Works Department; 

PD: People’s Dialogue; DOP: Department of Planning; TDC: Tema Development Company. 

Level  Institution  Roles  

National LUSPA Preparing policies and planning standards 

 NADMO Ensuring disaster prevention and management  

District PPD Human settlement planning and management  

 PWD Responsible for ensuring development control 

NGO PD Responsible for slum profiling and communication 

participation 

Research  DOP Slum related research  

Company  TDC Managing all land and slum regularisation within the 

Tema catchment area  

 

To identify the causes of uncertainties, ground observation and inventory were conducted. Fourteen 

location points were sampled using specific criteria based on visual assessment of the initial classification 

and uncertainty results (see figure 4.2). Afterwards, a buffer of 1000 meters was created for each point. 

Field observation was then carried out within the 1000 meters buffer. Quickscan approach was used. 

Pictures of the visited areas were taken with GPS camera. The selection criteria used includes;  

•  Areas classified as slum (more than 70% certainty) but not slums in the reference data available  

• Areas classified as uncertain ( less than 70% certainty) but are slums in the reference data  

• Areas classified as high-density residential but are slums in reference data  

• Areas classified as non-residential but are slums in reference data  
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Figure 4.2 Sampling location for field observation.  

4.2. Pre-processing  

Both atmospheric correction and pan-sharpening tasks were carried out in the pre-processing phase. 

Firstly, an atmospheric correction using i.atcorr in GRASS GIS was performed to reduce the impact of 

radiometric and atmospheric variation in the two images. These errors can affect the overall accuracy and 

produce false change detection (Hussain et al., 2013). Lastly, pan-sharpening was performed in Erdas 

Imagine Software using modified intensity hue saturation (IHS) resolution merge algorithm with nearest 

neighbour resampling.  

4.3. Image segmentation  

The classical procedure for selecting parameters for segmentation is based on trial and error that relies on 

visual assessment of segments and gradual modification until best-fit results are obtained (Hay, Castilla, 

Wulder, & Ruiz, 2005). Although it allows flexibility in adding expert knowledge, it is time-consuming and 

hardly reproducible (Drăguţ, Csillik, Eisank, & Tiede, 2014). To overcome this problem, recent studies 

have proposed unsupervised methods for segmentation. It uses images statistics to determine the optimal 

parameters for segmentation. Belgiu & Drǎguţ, (2014) compared one supervised (segmentation accuracy 

assessment) and two unsupervised (estimation of scale parameter and segmentation optimization 

procedure) approach. They found out that both approaches achieved similar classification accuracy. 

Additionally, unsupervised segmentation parameter optimisation (USPO) in GRASS GIS has achieved 

remarkable results in recent studies (Grippa, Georganos, Vanhuysse, Lennert, & Wolff, 2017; Grippa, 

Wolff, et al., 2017). USPO combines intra-object variance and inter-object spatial autocorrelation 

measures to create homogenous objects (Lennert, 2015).  

In this study, segmentation was performed using i.segment module in GRASS GIS. The method uses a 

region-growing and merging algorithm (Momsen & Metz, Markus, 2015). Initially, all four multi-spectral 

information were used as input for segmentation. However, it was computational intensive as it took 13 

hours to completely segment the AOI using HP workstation Z620 with two Intel Xoen E5-2680. 
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Therefore, the panchromatic image (1.5m resolution) was used for segmentation. The computational time 

was four hours. Using visual assessment, it produced meaningful segments compared to using the four 

multi-spectral bands.  

Prior to the optimisation of segmentation parameter, over-segmentation and under-segmentation were 

empirically tested using i.segment to obtain threshold range to be used for USPO. i.segment uses two 

main parameters, namely the “threshold” for controlling the tolerance for merging homogenous objects 

and “minsize” for controlling the minimum size of a segment. Afterwards, the new GRASS GIS extension 

for USPO named i.segment.uspo was used to select the optimum parameter automatically. 

Georganos et al. (2018) have shown that using a single parameter for the whole scene produces poor 

results due to the high spatial heterogeneity within the image, especially for large-area mapping. Therefore, 

the study was partitioned into several subsets and applied USPO procedure locally in each subset. This is 

good for large scale mapping to reduce segmentation errors and overcome spatial variation problems. 

Through trial and error (testing different window size), the whole image was subdivided into regular tiles 

using a grid size of 500 meters. 500m grid size was used because visually, it created more homogenous 

zones than other sizes and reduced the computational time.    

4.4. Extracting texture features  

Studies have shown that using spectral information and geometrical features from segmentation are 

insufficient to map land-use and land-cover in the urban environment due to the complexity of the area 

(Kuffer, Pfeffer, Sliuzas, et al., 2016; Wurm et al., 2017). Texture features are effective to quantify the 

spatial and structural patterns which can serve as supplementary features to improve feature space 

differences (Engstrom et al., 2015; Kuffer et al., 2020). In this study, the land use classification 

methodology, on the one hand, relies heavily on the use of only contextual image information. On the 

other hand, it combines contextual features and land-cover information for land-use mapping. 

Grey-Level Co-Occurrence Matrix (GLCM) were extracted to characterised the spatial patterns observed 

in VHR resolution images (Kuffer, Pfeffer, Sliuzas, Baud, & van Maarseveen, 2017). These features have 

proven to show good performance for slum extraction (Kohli, Sliuzas, et al., 2016; Kuffer, Pfeffer, Sliuzas, 

et al., 2016). However, selecting good texture features as input for classification have always been a 

challenge when using VHR images (Georganos, Grippa, Vanhuysse, et al., 2018). These features can add 

up to several hundred and sometimes leads to information redundancy. This will not only increase 

computational cost and data storage but also can negatively affect the performance of the classifier. This is 

described as the curse of dimensionality or Hughes phenomenon (Hughes, 1968). Therefore, selecting 

appropriate textural features was an important task in this study.  

A recent study comparing four different feature selection techniques ( correlation-based feature selection, 

RF mean decrease in accuracy, RF recurvise feature elimination, and variable selection using RF) have 

shown that near-infrared (NIR) band performed well in all the techniques (Georganos, Grippa, 

Vanhuysse, et al., 2018). Therefore, the NIR band is used as input for extracting texture features. Firstly, 

GLCM was computed with varying size ranging from 5x5 to 27x27 with an increasing factor of two to 

identify the best kernel size. Variable selection using RF (VSURF) algorithm was used to select good 

kernel size (Díaz-Uriarte & Alvarez de Andrés, 2006). The VSURF algorithm identifies most important 

features by removing smallest variable importance while retaining the accuracy through a stepwise search. 

The selected features are the ones with the small out of bag (OOB) error. VSURF is said to be suitable for 

tree-based classifiers and has achieved good results in a recent study (Georganos, Grippa, Vanhuysse, et 
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al., 2018). Based on the test, a moving size of 5x5 was used for land-cover mapping. A kernel size of 

21x21 and 27x27 was used for land-use mapping. These kernel sizes were included to account for the 

varying contextual properties. Textual statistics extracted includes angular second moment (ASM), 

measures of correlation (MOC), variance, entropy and contrast. These features promise good results in 

slum mapping. They can measure local variation (e.g. contrast), and orderliness or disorderliness in pixel 

values (e.g. entropy). For example, slums often have organic morphology and could have high entropy 

compared to formal areas (Kuffer, Pfeffer, Sliuzas, et al., 2016). 

For all the texture features, object statistics were computed using GRASS GIS addon called 

i.segment.stats. It also computes the spectral and morphological statistics of objects (area, perimeter and 

compactness). For this study, statistics computed include minimum, maximum, standard deviation, 

coefficient variance, sum, mean, median, first quartile and third quartile for original bands, texture features 

and normalised difference vegetation index (NDVI). Table 4.2 presents an overview of the features used 

for land use and land cover mapping. In total, 154 features were extracted for classification. In order to 

speed up the processing time, the pool object in multiprocessing package in python was employed. Also, 

r.object.geometry addon was used to skip the need to vectorise the segments when computing the 

morphological statistics resulting in a significant gain in time.   

Table 4.2 Image features used for classification.  

Group Variables  

Spectral features  Red 

 Green 

 Blue 

 Near infra-red (NIR) 

Texture feature  Angular second moment (ASM) 

 Measures of correlation (MOC) 

 Variance 

 Entropy 

 Contrast  

Vegetation index  Normalised difference vegetation index (NDVI ) 

Land-cover  Proportion of built-up 

 Proportion of vegetation 

 Proportion of bareland 

 Proportion of water 

4.5. Land-cover classification  

Supervised classification using both OBIA and pixel approaches were implemented for land-cover 

classification. Training and testing sampling were created using random and stratified random sampling 

with data from OSM. An intensive visual interpretation was used for the final labelling of every point from 

OSM data by two experts to avoid wrong mislabelled samples. All disagreements between experts were 

removed from the samples. The visual assessment was an important step because of seasonal and 

temporal changes for the two images and OSM data. In addition, bareland was manually sampled since 

they are not included in OSM. In total 4031 and 3996 samples were used for 2013 and 2017, respectively. 

Table 4.1 shows the landcover classification scheme for both years. For classification, samples were 

randomly split into 67% for training and 33% for validation. Initially, subclasses of vegetation (trees, dry 

and wet vegetation) and bareland (untarred road and baresoil) were classified. Afterwards, they were 

reclassified into the four main land-cover types (built-up, bareland, vegetation and water).  
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Table 4.1 Sampling scheme for land-cover classification.  

Land cover Subclass  Number of sample for 
2013 

Number of sample for 
2017 

Built-up Buildings 
Asphalt  

960 
100 

901 
100 

Vegetation Tree 
Wet vegetation 
Dry vegetation 

533 
875 
243 

517 
470 
487 

Bareland Bare soil  
Untarred road  

408 
812 

672 
749 

Water Rivers, drains, and streams  100 100 

Total   4031 3996 

 

The land cover framework combines OBIA and machine learning. RF classifier was used for OBIA 

classification (Breiman, 2001). It requires the definition of the number of trees (ntree) and number of 

input features (mtry) to be considered at each node split. It is popular in RS studies as RF is relatively user-

friendly and has a high prediction accuracy. It can handle high data dimensionality and not affected by 

overfitting (Belgiu & Drăguţ, 2016). It is also efficient in parameter selection and computationally fast. 

Input features include multi-spectral band, geometric statistics (area, perimeter and compactness), 

Normalised Difference Vegetation Index (NDVI) as well as all texture features. The two main parameters 

in RF were optimised through cross-validation of the OOB error. This provided optimised 

hyperparameters for land-cover classification. 

Moreover, pixel-based classification using sequential maximum a posteriori (SMAP) was performed. The 

SMAP performs contextual image classification using a spectral class model called Gaussian mixture 

distribution. Image segmentation is done in region rather than segmenting each pixel separately like 

conventional maximum likelihood. (McCluaey,1995). In this study, we combine multi-spectral, NDVI and 

all texture features for land-cover classification. The method is implemented in GRASS GIS using i.smap. 

Firstly, a square buffer of 3 meters was created using the sampled points. Afterwards, a visual assessment 

was carried out to check if samples are overlapping for every class type. Lastly, i.gensigset module was 

used to generate signatures and classification was carried out.  

4.6. Street-block extraction 

Urban landscape composes of hierarchical patterns which can be analysed at different scale such as street-

block and grid (Wang et al., 2019). For this study, street-blocks are used for the land use classification. The 

street-block is the most fundamental and appropriate unit to map urban structure types (USTs) because 

most boundaries in cities are made by road network (Bochow et al., 2010). These boundaries usually show 

homogenous structures types. Also, it provides sufficient spatial details relevant to urban planning.  

However, reference street-block data are not easily accessible or outdated, especially in data-poor regions 

like Accra. This study relies on OSM data to overcome this limitation. The quality of OSM in terms of 

completeness and thematic accuracy has been improving in recent years. As shown in the work of Fonte 

et al., (2017), OSM has the potential to increase thematic level of land use and land cover mapping in data-

poor regions. It also gives a good approximation of results obtained from conventional methods. Visual 

assessment of data from OSM in Accra shows high level of completeness making it useful for the study. 

Also, authoritative data for Accra are often not available, especially for the peri-urban areas, so taking 

advantage of OSM data is an ideal solution.  
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Street-blocks were extracted, adapting the framework of Grippa et al., (2018). The semi-automated 

workflow used OSM data to create street-block geometries to be used as urban landscape units to land use 

map. It takes advantage of PostGIS, open-source software for storing, managing and processing large 

vector datasets. Python was used, and codes were implemented in Jupyter notebook to make it easily 

reproducible.  

In reality, it is difficult to obtain homogeneous land use within street-block, especially in the peri-urban 

areas with fewer data. Therefore, supplementary map features such as waterbodies, drains, railways and 

residential areas were added to the model to reduce the creation of large parcels. This was done to ensure 

high intra-homogeneity of urban structure types.  

Firstly, a bounding box of AOI was created and subdivided into tiles to be used for downloading OSM 

data. OSM data was automatically downloaded using OSM extended API or Xapi (OpenStreetMap Wiki 

contributors, 2018). OSM data was then imported in PostgreSQL database using osm2pgsql command-

line. Afterwards, the interested map features were extracted using their “key=value” pairs in the OSM 

tagging scheme (Davidovic, Mooney, Stoimenov, & Minghini, 2016). These map features (Lines and 

polygons) features that intersected with AOI are converted into linear features.  

The topology function in PostGIS was used to snap nodes into fully connected lines (merging 

neighbouring nodes) using a user-defined distance threshold (tolerance of 7). Similar to Grippa et al. 

(2018), urban blocks and sliver polygon (undesirable polygon) were generated after snapping. This is due 

to redundant linear feature geometries in OSM such as multilane roads, interchange and highway ramps. 

Therefore, the sliver polygon was removed using shape (compactness measure) and size criteria since they 

are thin and small. The best criteria were defined to select sliver polygon using a trial and error approach. 

Sliver polygons were then merged to their neighbouring non-sliver polygon which shares the larger 

border. The latest step iterates in the code until there is no sliver polygon. Friesen, Taubenböck, Wurm, & 

Pelz, (2018) shows in their work that the average morphological size of small slum unit is 1.6 hectares. For 

this study, the minimum street-block was set to 0.5 hectares to capture pocket of slums.  

4.7. Land-use classification  

By visually interpreting different urban structure types, a land-use scheme was prepared ( see section 3.2). 

The city of Accra is characterised by several types of land-use, including residential, commercial, industrial, 

administrative zones. For the purpose of this study, a clear focus is made on having better thematic 

precision of slums than for other class. Therefore, the land-use scheme is infant slums, matured slum, 

high-density residential, low-density residential, non-residential (commercial, industrial, and administrative) 

and non-built-up (vegetation and open space). Consolidated slums were added to matured slums due to 

difficulty in obtaining samples. They have a similar physical appearance as matured slums making it 

challenging to generate sampling using visual interpretation. Also, urban land use is often a mixture of 

activities within street-block. However, this study aimed to map dominant activities in the block.  

Initially, 500 street-blocks were randomly sampled for training and validation. Each sampled street-block 

was assigned a label by an expert using a computer-assisted photo-interpretation (CAPI) according to the 

dominate land-use class. The labels were based on the urban structure characteristics described in section 

3.2. There was imbalance sampling for infant slum, matured and high–density residential class. For this 

reason, an extra 210 street-block for 2013 and 235 street-block for 2017 were manually sampled for infant, 

matured and high-density residential. This explains why sample distributions were not uniform. Table 4.2 

shows the land-use sampling strategy. Samples were randomly split into 67% for training and 33% for 
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validation. Features generated for land use classification includes NDVI, RGB and NIR, texture features 

and/or land cover. R.zonal.class was used to compute the proportion of land cover in every street block. 

Table 4.2 Land-use mapping sampling scheme. 

Land use  Number of sample for 2013 Number of sample for 2017 

Infant slum 
Matured slum  

45 
114 

38 
121 

High density residential 145 152 

Low density residential 119 121 

Non-residential 140 142 

Non-built-up 147 161 

Total  710 735 

Again, RF was selected among other machine learning classifiers for land use classification. Two main 

parameters, namely, the number of trees and number of randomly selected features in RF were optimised 

through cross-validation of the OOB error. This provided optimised hyperparameters for land-use 

classification. We selected 1000 trees and square root of number of features (default) at each split.  

4.8. Accuracy assessment and uncertainty measures 

The reliability of the final mapping output depends on its accuracy and level of confidence. Classification 

rate was obtained from a confusion matrix by comparing the predicted classes with a reference set. Overall 

accuracy, precision or producer accuracy (PA) and recall or user accuracy (UA) were computed. The 

overall accuracy reveals the rate of correctly classified street-blocks. Precision and recall were included to 

reveal the misclassification per each class Precision is the error of failing to assign a correct street-block to 

a particular class. Recall refers to the wrong label of a particular class. Recall measures the reliability of the 

classification and precision measures the ability to classify a particular class (Foody, 2002). Visual 

assessment was also carried out.  

The occurrence of uncertainties in EO-based applications is inevitable. Such uncertainties affect the 

credibility of the mapping product. A recent study has shown that due to the subject definition of slums, 

reference data used for training and validation have low agreement in complex areas (Pratomo et al., 

2017). This adds to the uncertainties in the mapping results. Moreover, the high temporal dynamics of 

urban environment raises the issue of uncertainty. For example, the gradual transition between slums and 

non-slums, including densification process, upgrading and self-help improvement would affect the overall 

classification. Therefore, assessing uncertainties was necessary since the land-use maps were used for 

change detection.  

In this study, uncertainty is defined as the probability that a street-block is correctly classified. The 

uncertainty investigation focused on slum street-blocks only. These uncertainties could arise from the 

definition of slum affecting the generation of training samples, local contexts such as old towns and 

transition zones of the urban environment (Wang et al., 2019). For example, the similar physical 

morphology of slum and old towns can introduce uncertainties in the model.  

Analysing uncertainties can be expressed as existential and extensional uncertainties (Molenaar, 2000). In 

this study, existential uncertainty refers to the possibility that a street-block is classified as a slum but does 

not correspond to a slum on the ground or the possibility that a slum street-street-block is not detected. 

Extensional uncertainty refers to the level of confidence a street-block is classified as a slum. It occurs 

when the certainty of the prediction (spatial variation accuracy) is low thus less than 70% based on 
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commonly reported overall accuracy on RS-based slum mapping studies (Kuffer, Pfeffer, & Sliuzas, 2016). 

This usually happens when street-block contains heterogeneous land-cover types.  

To showcase the implication of these uncertainties and integrate into change detection model, field 

observations and interviews were conducted to assess existential uncertainty. Also, the class probabilities 

obtained from RF was used to analyse extensional uncertainties. This study used the equivalent reference 

probability measure (ERP) proposed by Bogaert & Waldner (2016). It is built on the concept of 

information-based criteria that has the advance of taking maximum probability values into accounts while 

committing for the full set of probabilities. ERP can be derived from any classifier that provides soft 

outputs (probabilistic or probabilities membership proxies such as number of trees, activation level, etc.). 

Moreover, the confusion matrix does not provide a distribution of uncertainty in space or street-block. 

Therefore, confidence maps were computed from the ERP to assess per street-block areas with high and 

low certainties. 

4.9. Change Detection  

Post-classification change detection was applied after independent land-use classification. Change 

trajectories were mapped at the street-block level. The focus of the study is to identify slum growth. 

Therefore, land use maps were reclassified into binary classes, namely, slum and non-slum (see table 4.3). 

Slum includes infant and matured slums. They were combined because of sampling (not enough number 

of samples) and unique morphological characteristics of infant slums, which affected the land-use 

classification. The Non-slum class includes high-density residential, low-density residential, non-residential 

and non-built-up. Slums were given a label of 1 and 10 for 2013 and 2017 respectively. Non-slums were 

given the label of 2 and 20 for 2013 and 2017 respectively. These labels were used to identity change 

trajectory using the plus operation.  

Table 4.3 Old and new labels for change detection.  

Class labels Years 

Old class New class 2013 2017 

Infant and matured slum slum 1 10 
high-density residential, low-density 
residential, non-residential and non-
built-up 

Non-slum 2 20 

For change-detection analysis, the binary classification results of 2013 and 2017 were overlaid to obtain 

the change detection map. Four change trajectories were identified since the study used two images and 

two classes. They are 11,12,21,and 22. The description of the change trajectory is presented in table 4.4.  

Table 4.4 Description of change trajectory. 

Change/no change class Trajectory value Description 

Slum remained slum  11 No change in both year  
Non-slum remained non-slum 22 No change from non-slum to non-

slum  
Slum to non-slum  21 Changed from slum to non-slum  

Non-slum to slum  12 Changed from non-slum to slum  

4.10. Land-use change detection accuracy assessment  

Accuracy assessment was performed to assess the credibility of the change detection map. In RS, the most 

common methods for assessing accuracy is the traditional error matrix and kappa coefficient (Olofsson, 
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Foody, Stehman, & Woodcock, 2013). However, these methods are designed for single date thematic 

mapping (Macleod & Congalton, 1998). Li & Zhou, (2009) proposed the trajectory error matrix (TEM) 

for change detection accuracy assessment. TEM employs a rule-based method that divides all possible 

trajectory into confusion sub-groups. Accuracy measures are then derived from the subgroups to avoid 

listing all trajectory types. TEM produces six confusion sub-groups used to reduce the complexity of the 

change confusion matrix. Moreover, the method has been applied in recent temporal slum analysis studies 

(R. Liu et al., 2019; Pratomo et al., 2018).  

Firstly, reference data was created using the stratified random sampling design. From land-use change 

analysis, there was a small proportion of changes trajectory, thus from non-slum to slum or vice versa.  

Therefore, the stratified random sampling design was used to identify and allocate enough samples to 

produce small standard error for the change user’s accuracy estimate (Olofsson et al., 2014). In this study, 

no change/change trajectories in table 4.4 were used to identify strata. Consequently, 30 street-blocks were 

randomly selected per strata and labelled them through visual image photo-interpretation. 

Secondly, similar to Li & Zhou, (2009), six confusion sub-groups were used for classifying trajectory 

combination (see table 4.5). In S1, “no change” trajectories are correctly detected with correct land use 

classification, i.e., both reference and classification agreed that there was no change. In S2, “change” 

trajectories are correctly detected with correct land use classification, i.e., both reference and image 

classification agreed that there was a change. In S3, “no change” trajectories (both reference and 

classification indicate no changes) are correctly detected with incorrect land use classification. In S4, “no 

change” trajectories are incorrectly detected as “change”. In S5, “change” trajectories are incorrectly 

detected as “no change”. Lastly, in S6, “change” trajectory (both reference and classification indicate 

changes) are correctly detected with incorrect land use classification. 

Table 4.5 Confusion sub-group of TEM Green is correct classification with correct change trajectory, yellow is incorrect 

classification with correct change trajectory, and red is incorrect classification with incorrect change trajectory. 

Group  
Classification 
outcome 

Description  

S1 
Correct 

“No change” with correct classification  

S2 “Change” with correct classification  

S3 

Not correct 

Correctly detected as “no change” but with incorrect classification   

S4 Incorrect detection “no change” trajectory as “change” 

S5 Incorrect detection “change” trajectory as “no change” 

S6 Correctly detected as “change” but with incorrect classification   

  

After defining the sub-groups, accuracy indices according to the six sub-groups were computed. As 

proposed by Li & Zhou (2009), overall accuracy (AT) and change/no change accuracy(AC/N) were used to 

measure overall accuracy. AT is the sum of correctly detected no change and change(only correct 

classification) over the total sample (Eq. 1). AC/N is the sum of all correctly detected as no change or 

change (with or without correct classification) over the total sample (Eq.2). Also, accuracy difference 

indices were computed to measure the extent AC/N can represent the accuracy of individual trajectory. 

Three indices, namely, Overall accuracy difference (OAD), accuracy different of no change trajectory 

(ADICN), and accuracy different of change trajectory (ADICC). OAD measures the difference between 

“AC/N” and “AT”. ADICN and ADICC measure the accuracy of each no change and change trajectory, 

respectively (see Eq. 4 and 5).  
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𝐴𝑇 =
𝑆1+𝑆2

∑ 𝑆𝑖
6
𝑖

 𝑋 100     (Eq. 1) 

𝐴𝐶/𝑁 =
𝑆1+𝑆2+𝑆3+𝑆6

∑ 𝑆𝑖
6
𝑖

 𝑥 100    (Eq.2) 

𝑂𝐴𝐷 = 𝐴𝐶/𝑁 − 𝐴𝑇     (Eq.3) 

𝐴𝐷𝐼𝐶𝑁 =
𝑆1

𝑆1+𝑆3
 𝑥 100    (Eq.4) 

𝐴𝐷𝐼𝐶𝐶 =
𝑆2

𝑆2+𝑆6
 𝑥 100    (Eq.5) 
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5. RESULTS  

In the chapter, the results of the study and their interpretations are discussed. This covers slum 

information needed by end-users and geo-ethics issues related to making slum information publicly 

available, results of land-cover and land-use classification, and change detection outcome including 

accuracies as well as spatial dynamics of slums.  

5.1. Spatial information requirement and Geo-ethnics   

In general, the RS community does not sufficiently understand the spatial data needed by different user 

groups (Leonita et al., 2018). They need to produce maps that can be used by different user groups as well 

as developing techniques suitable for local policy-making to support pro-poor projects. Through topic-

focused interview, this study investigated user data requirements. Local experts were asked about their 

presently available spatial information on slums. It was followed by the spatial information that was 

missing and needed to support the slum related activities. Moreover, the study investigated the geo-ethical 

considerations needed to make slum data publicly available.  

5.1.1. Spatial information presently available on slums 

Table 5.1 presents an overview of the spatial information presently available on slums in Accra. Most of 

the institutions have socioeconomic data at the community scale (enumeration area used by Ghana 

Statistical Service). These data are collected through household surveys during census, or preparation of 

medium-term development plans. However, the household surveys approach suffers from low coverage. 

In this context, low coverage means that not all slum areas and slum householders are included. The 

extent of slum information is available at the District, Municipal or Metropolitan level of the institutions. 

District, Municipal or Metropolitan is the small second-level administrative unit smaller than the city. The 

data are inconsistent because the indicators used are not comparable across institutions. For instance, 

TDC used land tenure indicator whereas NGO’s combined social, economic and environmental 

indicators. Although all institution reported 100% completeness, they do not have a mechanism to 

validate the slums maps similar to Leonita et al., (2018) findings in Bandung, Indonesia. 

Table 5.1 Spatial information presently available on slums LUSPA: Land Use and Spatial Planning Authority; 

NADMO: National Disaster Management Organisation; PPD: Physical Planning Department; PWD: Public Works 

Department; PD: People’s Dialogue; DOP: Department of Planning; TDC: Tema Development Company. 

 
National District 

NGO Research 
institution  

Company  

 LUSPA NADMO PPD  PWD  PD  DOP TDC 

Information 
type 

- Socioeconomic 
data  

Location and 
Socioeconomic 
data 

location  Socioeconomic 
data 

Socioeconomic 
data 

Location 
and land 
tenure  

Coverage (%) - 60 40 40 70 5 40 
Completeness 
(%) 

- 100 100 100 100 100 100 

Accuracy  - - - - - - - 
Aggregation 
level  

- Community District and 
community  

Community  Community -  Community 

Update 
interval 

- Every four 
months 

10 to 4 years  10 to 4 
years 

- - -  

Method of 
collection  

- Household 
survey 

Household 
survey 

Household 
survey 

Household 
survey 

Household 
Survey 

Household 
survey  
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5.1.2. Spatial information required by Users  

By asking local expert of spatial information lacking, the study was able to identify the spatial information 

required by different user group. The missing information includes slum dynamics, boundary, population, 

stage of slum growth and level of deprivation (Table 5.2). Additionally, the study investigated how data 

should be provided to end-users. The results of the expert interviews showed that while some experts 

(NGO and NADMO) wanted the final out in slum and non-slum, other experts (PPD, PWD, DOP and 

TDC) opted for land-use map. Experts from NGO and NADMO mentioned that the final output should 

include the degree of slum (showing good to worst slums) and non-slum with a combination of social, 

economic and environmental indicators. Experts from PPD, PWD, DOP and TDC mentioned that the 

final output should be a land-use map. They said that providing such information will help monitor land-

uses changing into slum and vice versa. Moreover, experts from PPD, PWD, NADMO, NGO and TDC 

wanted quarterly information on slums. This temporal granularity was selected because it is in line with the 

quarterly report. The expert from LUSPA mentioned yearly updates to formulate policies and plans. 

Table 5.2 Spatial information required by interviewed users. LUSPA: Land Use and Spatial Planning Authority; 

NADMO: National Disaster Management Organisation; PPD: Physical Planning Department; PWD: Public Works 

Department; PD: People’s Dialogue; DOP: Department of Planning; TDC: Tema Development Company. 

 
National District 

NGO  Research 
institution  

Company 

Institution  LUSPA NADMO PPD  PWD  PD DOP TDC 

Slum 
dynamics  

 √ √  √ √ √ 

Slum 
boundary 

 √ √ √ √ √ √ 

Stage of 
slum  

 √ √ √ √ √ √ 

Slum 
population  

√ √ √  √ √ √ 

Level of 
deprivation  

 √ √  √ √  

Users 
Activities  

Formulating 
policy and 
planning 
standards 

Planning and 
management  

Planning and 
management 

Management  Inventory Research  Planning and 
management 

5.1.3. Level of aggregation needed by users  

One purpose of the study was to investigate the mapping scale needed by end-users. The results of the 

expert interviews show the local diversity of information needed by the various institutions (Table 5.3). 

The experts from LUSPA working at the national level opted for administrative boundary, whereas other 

experts (NADMO, PPD, PWD and TDC) chose street-block or grid. They mentioned that working at this 

scale can provide detailed information to achieve their goal. For example, the expert from PWD wanted 

highly disaggregated map at 100m grid size to identify kiosks slums (temporal slums).  

Moreover, different user groups have different needs in terms of the level of details and aggregation 

(Figure 5.1). For example, PPD needs more detailed information (e.g. stage of slum) to take the initiative 

to relocate, redesign or upgrade. Detailed information on the level of deprivation also helps in deciding 

where and when to intervene. PWD requires disaggregated data with less detail. PWD purpose is to ensure 

development control. Therefore, identifying slum location and undocumented slum areas, i.e. slum areas 

that have not been identified and mapped, is essential. Similar to PWD, TDC expects disaggregated data 

to prevent the development of slums in the catchment area.  
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Table 5.3 Level of aggregation. LUSPA: Land Use and Spatial Planning Authority; NADMO: National Disaster 

Management Organisation; PPD: Physical Planning Department; PWD: Public Works Department; PD: People’s 

Dialogue; DOP: Department of Planning; TDC: Tema Development Company.  

 National  District  NGO Research 
Institution 

Company  

Aggregation 
level  

LUSPA  NADMO PPD PWD PD DOP TDC  

Administrative 
unit 

√     √  

Street-block  √ √  √ √  
Segments    √  √  
Grid  √ √ √ √ √ √ 

 

 
Figure 5.1 Level of details and aggregation. LUSPA: Land Use and Spatial Planning Authority; NADMO: National 

Disaster Management Organisation; PPD: Physical Planning Department; PWD: Public Works Department; PD: 

People’s Dialogue; DOP: Department of Planning; TDC: Tema Development Company. 

5.1.4. Geo-ethics  

Regarding ethics, the study focused on issues and challenges of making EO-based slum information 

publicly available. Local experts were asked questions related to their foreseen problems and concerns in 

making slum information publicly available. The results from the interviews showed no objection in 

making slum information publicly available by all parties. The expert from PD mentioned that “slum 

housing means more to the slum dweller than the stereotypical picture of deprivation and poverty.” This means that slum 

dwellers prioritised having a place to sleep than their poor living conditions. For this reason, slum dwellers 

fear the risk of eviction and stigmatisation than making them visible. Therefore, any effort to make slum 

visible should ensure adequate privacy. To ensure adequate privacy and produce satisfactory slum 

information for all users, PD hinted that matured slums are no/less threat to eviction than kiosk and 

infant slums.  

In addition, experts raised geo-ethical concerns that should be considered before making slum information 

publicly available. After showing experts samples of RS-based data on slums, one major concern was how 

the maps were prepared. Most experts attested that they have little knowledge of EO-based methods, 
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mainly machine learning classification approaches and cannot comprehend the mapping processes. 

Experts mentioned that such information would be used if the conceptual and operation definition fit into 

their local context. They also mentioned that detailed metadata should accompany such data.  

Experts criticised the use of only physical characteristics to map slums. Experts (PPD, PWD and research 

institution) mentioned that the housing strategies (e.g. incremental housing development) and 

uncontrolled extension would present most part of Accra as slums. This may happen because most of the 

new extensions are developed without settlement layout (Adarkwa, 2012). Furthermore, old towns have 

similar characteristics of typical slums. These local context knowledge introduce uncertainties in the 

training data and final map product. 

Moreover, experts were asked about the problems they foresee in using RS-based information since their 

accuracy usually ranges from 80 to 90% (Kuffer, Pfeffer, & Sliuzas, 2016). Experts were willing to use 

spatial information with accuracy over 70%. However, they raised concerns on how the final product is 

validated. They mentioned that map producers should clearly describe how the accuracy measures were 

performed and make the metrics available to support the interpretation of the maps. For example, areas 

with field validation should be reported. They indicated that map producers should report on the 

uncertainties related to the final product and elaborate on the potential implications of using such 

information.  

Experts raised concerns regarding the potential and limitation of RS-based information. They expect map 

producers to provide a guideline on how the data should be interpreted through training and workshops. 

The main conclusion on major deliverables is presented in Figure 5.2. Lastly, experts agreed that everyone, 

including communities, should have access to slum information. 

 
Figure 5.2 Expected outcomes that should accompany earth observation-based slum information 
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5.2. Image segmentation  

The proposed local USPO showed varied optimised threshold value per grid (Figure 5.3). Low values of 

the optimised threshold were observed in non-built-up areas whiles high optimised threshold values were 

observed in built-up areas. Similar results were obtained by Georganos, Grippa, Lennert, et al., (2018). 

Non-built-up (mix of different crop types, trees, and bareland) zones have low optimised threshold values 

because of the unique spectral properties, i.e. high local variance in objects. Higher optimised threshold 

values were observed in built-up areas, which resulted in under-segmentation of objects. Thus, the use of 

the local USPO did not achieve satisfactory results. Although quantitative assessment of segmentation 

quality was not the scope of this study, visual assessment reveals that under-segmentation occurred. Most 

of the under-segmented areas were related to merging of buildings and asphalt within the innercity. 

Therefore, they were used for land-cover classification because they were classified as built-up.  

 
Figure 5.3 Spatial distribution of local USPO thresholds.  

5.3. Land-cover classification  

The study compared the performance of pixel-based classification using SMAP and OBIA combined with 

RF (OBIA_RF). Using stratified random points, both methods achieved an overall accuracy of over 88% 

(Table 5.4). OBIA_RF achieved higher accuracy than SMAP in 2017. However, both methods obtained 

similar results in 2013. Nonetheless, Cohen’s kappa was low in OBIA_RF compared to SMAP. The low 

kappa coefficient of OBIA_RF can be attributed to the overestimation of built-up, which have the largest 

spatial coverage (Foody, 2002). 
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Table 5.4 OBIA_RF and SMAP accuracy assessment results.  

Year Classifiers Time (minutes) OA (%) Kappa 
2013 

 OBIA_RF 30 88.9 0.83 

 SMAP 7 88.6 0.86 
2017 

 OBIA_RF 30 90.1 0.84 
 SMAP 7 89 0.85 

 

Figure 5.4 presents subregion of the land-cover classification results. In general, the SMAP result is noisier 

than OBIA_RF. Visual assessment of OBIA_RF confirms an over-estimation of the built-up areas (Figure 

5.4b). Visually, there was a high confusion between built-up and bareland as well as bareland and 

vegetation. The over-estimation of built-up can be associated with the under-segmentation. On the other 

hand, SMAP over-estimated vegetation areas (Figure 5.4c). This can be related to the acquisition date. The 

2013 image was acquired in the wet season, whereas the 2017 image was acquired in the dry season. 

Furthermore, there was less confusion between built-up and bareland. To reduce the confusion between 

vegetation, bareland and built-up, subclasses of vegetation (tree, dry vegetation and wet vegetation) and 

bareland (untarred road and baresoil) were experimented. However, the experiment did not show an 

improvement. Hence, SMAP was used as input for the land-use classification. 

OBIA  

  
SMAP  

  
Figure 5.4 A subregion showing classification maps of OBIA Random Forest (RF) and SMAP A) OBIA_RF 2013 B) 

OBIA_RF 2017 C) SMAP 2013 D) SMAP 2017. 

5.4. Extraction of street-block geometries  

The proposed processing chain was able to create street-blocks geometries at a citywide scale. The 

workflow relies on the capability of PostGIS for managing large amount of data (more than 190,000 line 

A 

 

B 

 

C 

 

D 
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segments) and the integration with QGIS for visual assessment. In total, 26,316 blocks with sliver 

polygons were extracted using a tolerance of 7. The sliver polygons accounted for 26.9% of the initially 

extracted blocks. Sliver polygons were removed using a trial and error rule approach based on the 

compactness, and size of blocks. The final layer contains 19,213 block geometries for Accra.  

Figure 5.4 shows the results of different stages of street-block extraction. Imported line segments from 

OSM had many spatial and topological problems (Figure 5.3a). The snapping of line segments cleaned 

initial errors to some extent with the presents of sliver polygon (Figure 5.3b). The final street-blocks are 

presented in Figure 5.3c.  

 

 

A 

B 
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Figure 5.5 A subregion showing extraction of street blocks from OSM data. A) vector layers from OSM B) street-block 

with artefacts (sliver polygon) C) final street-block.  

5.5. Land-use classification  

A comparison between using only contextual features and land-cover combined with contextual features 

(from now on called LCLU) was performed to identify the best strategy for citywide slum mapping. Both 

approaches achieved high overall accuracy and F1-score of over 80% (Table 5.5). F1-score was used to 

assess the disparities between classes (Sokolova & Lapalme, 2019). The accuracy results are not 

significantly different. Also, an experiment of having one slum class for both approaches achieved a very 

high overall accuracy of over 90%. Therefore, the errors in the first level propagate into the subclasses. In 

addition, 2017 achieved lower accuracies in both approaches than in 2013. This could be associated with 

the difficulty in identifying infant slums in 2017 images (Table 5.6).  

Table 5.5 A comparison of contextual and LCLU overall accuracy and F1-scores for 2013 and 2017. 

 2013  2017  
 Contextual 

features 
LCLU Contextual 

features  
LCLU 

Overall 
Accuracy 

0.866 0.868 0.834 0.839 

F1-score  0.90 0.91 0.84 0.84 

Assessment of the per-class accuracy reveals that the precision and recall for all subclasses achieved high 

score of over 80% except for infant slums (Table 5.6). Infant slums achieved a lower recall of less than 

40% in all cases, and precision of infant slums ranges from 60 to 75%. Moreover, the F1 score, which 

defines the harmonic mean of precision and recall is lower than 52%. This means the prediction under-

perform on classifying infant slums.  

The assessment of the confusion matrix shows misclassifications (confusion) between infant slum, 

matured slum and high-density residential in all cases as expected (Appendix 1). These subclasses have 

similar morphological characteristics. Visual assessment of both contextual features and LCLU approach 

reveals no large difference (see Figure 5.6, 5.7, 5.8, and 5.9).  

C 
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Table 5.6 Precision, recall and F1 score of contextual features and LCLU HDR: high-density residential, LDR: low-

density residential, NON-RST: non-residential, NON-BLT: non-built-up, LCLU: Land-cover confined with contextual 

features. Green colour: High accuracy, yellow: medium accuracy and red: low accuracy. 

Class  Precision  Recall  F1-Score Support Precision  
 

Recall F1-Score  Support 

Contextual features  LCLU 

 2013 

HDR 0.81 0.91 0.86 47 0.81  0.94 0.87 47 

LDR 0.96 0.98 0.97 48 0.98  0.96 0.97 48 

Infant 0.6 0.4 0.48 15 0.75  0.4 0.52 15 

Matured 0.82 0.87 0.85 38 0.85  0.92 0.89 38 

Non-RST 0.96 0.88 0.92 58 0.96  0.91 0.94 58 

Non-BLT 0.96 0.97 0.97 71 0.96  0.97 0.97 71 

 2017 

HDR 0.87 0.88 0.88 52 0.88  0.87 0.87 52 

LDR 0.9 0.88 0.89 40 0.89  0.85 0.87 40 

Infant 0.6 0.25 0.35 12 0.6  0.25 0.35 12 

Matured 0.79 0.91 0.85 46 0.76  0.96 0.86 46 

Non-RST 0.84 0.82 0.83 45 0.84  0.82 0.83 45 

Non-BLT 0.86 0.88 0.87 48 0.86  0.88 0.87 48 

 

 
Figure 5.6 Land-use map of 2013 using contextual features.  
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Figure 5.7 Land-use map of 2013 using LCLU. LULU: land-cover combined with contextual features. 

 
Figure 5.8 Land-use map of 2017 using contextual features  
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Figure 5.9 Land-use map of 2017 using LCLU. LULU: land-cover combined with contextual features.  

5.5.1. Random forest feature importance 

One purpose of the study was to investigate which image features are most suitable for slum extraction. 

Table 5.7 presents the top five image features from the RF. The most important features are related to the 

vegetation in all cases. The best feature for classification was the NDVI similar to the results of Sandborn 

& Engstrom, (2016) and Grippa et al., (2018). For LCLU approach, the proportion of built-up and 

vegetation features were the best features for distinguishing classes. This confirms other studies (e.g., 

Kohli et al., 2012) that concluded slums have low vegetation cover hence making it a useful feature for 

separating classes.   

Table 5.7 Top five random forest image feature of importance (mean decrease in accuracy) Ndvi: Normalised different 

vegetation index, Prop_1: Proportion of built-up, Prop_2: Proportion of vegetation, img_red: red band, img_4: near-infrared 

band. 

 Contextual features  LCLU  
  2013   
 Features  importance features importance 
 Ndvi13_third_quart 0.033883 Prop_1 0.045596 
 Ndvi13_median 0.030225 Ndvi13_third_quart 0.026201 
 Ndvi13_mean 0.029685 Ndvi13_meadian 0.023191 
 Ndvi13_first_quart 0.021100 Ndvi13_mean 0.022494 
 Img_red_third_quart 0.020089 Prop_2 0.021942 
  2017   
 Ndvi17_mean 0.030243 Prop_1 0.045059 
 Ndvi17_median 0.029523 Prop_2 0.034018 
 Img17_4_median 0.023478 Ndvi17_median 0.024421 
 Ndvi17_third_quart 0.022240 Ndvi17_mean 0.022790 
 Img17_4_mean 0.021432 Ndvi17_third_quart 0.022260 
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5.6. Uncertainty analysis and thematic improvement of maps for change detection  

Reliable land-use classification results are crucial for post-classification change detection (Singh, 1989).  

Apart from the use of the confusion matrix, spatial variation of accuracy was analysed using class 

membership probability of every street-block provided by RF. The confidence map shows the uncertainty 

associated with every street-block and demonstrates which street-blocks are more likely to be the true 

classes. Identifying the extensional uncertainties allow to investigate ground-based causes of uncertainties 

(existential uncertainties) (Kohli, Stein, et al., 2016). Confidence maps are presented in appendix 2. Darker 

regions represent street-blocks with high certainty. From ERP results, heterogeneous street-blocks 

experience high uncertainty with values between 0.2 and 0.4. 

Most RS-based slum mapping studies usually report overall accuracy from 70 to 90% (Kuffer, Pfeffer, & 

Sliuzas, 2016). Therefore, street-blocks were labelled uncertain if the ERP is less than 70%. Overall, 7.6% 

and 7.4% street-blocks were labelled uncertain for contextual feature and LCLU for 2017 respectively. 

Whiles 6.4% street-blocks were labelled as uncertain in both cases for 2013. Based on the low 

uncertainties in LCLU, they were used for change detection. Final land-use mapping is presented in Figure 

5.10 

A 
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B 

Figure 5.10 Final land-use map of Accra for the years a) 2013 b) 2017. 

With the initial land-use classification results (before fieldwork), fieldwork was carried out to investigate 

the existential uncertainties (ground-based uncertainties only) associated with slum street-blocks. From 

field observation, three main causes of uncertainties were identified. They include morphological 

similarities of typical slum and old towns, presence of areas with slum-like appearance due to unplanned 

and uncontrolled extension, and presence of slum neighbourhoods which have been regularised or 

upgraded. 

Morphological similarities of typical slums and old towns make them difficult to be distinguished without 

local-context knowledge (Figure 5.11). These old towns have high building density and irregular settlement 

patterns similar to typical slums (Weeks et al., 2007). It also introduces uncertainties in generating 

reference data (Pratomo et al., 2017).  
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Figure 5.11 Morphological similarities between old towns and typical slum a) Kasoa old town b) Sukura. 

Additionally, areas with slum-like appearance introduce uncertainties. Due to unplanned and uncontrolled 

extension, some areas (e.g. Tema community 1 (see Figure 5.12)) appear as slum when only the physical 

characteristics are used to detect slum. These areas are predominantly housed by both low and middle-

income group. They have access to social services and infrastructure, such as electricity and potable water. 
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Figure 5.12 Slum-like appearance (Tema community 1) 

Lastly, slum communities which have been regularised or upgraded introduced some uncertainties. In the 

upgrading, it was not possible to follow the strict planning standards of planned areas but rather adapted 

to the existing situation. For example, they result in the creation of alleys or small size of the road. Also, 

they may be upgraded with the provision infrastructure such as electricity, water and sanitation but not 

spatial redesign of the neighbourhood, thus they are still seen as slum from images. This could be one of 

the reasons why end-users do not agree with using only the physical properties of slums.  

5.7. Change detection  

The accuracy of change detection was assessed using TEM. Table 5.8 presents the accuracy of change 

detection. For AT assessment, only 53.3% of the samples have correct change trajectory. AC/N obtained an 

accuracy of 59.2, which is high than AT. AC/N is higher than AT because it does not consider the 

correctness of the classification and change trajectory. The assessment shows low overall accuracy. In 

addition to the overall accuracy, individual trajectories were assessed. The study obtained an OAD of 

5.8% signifying higher accuracy in change/no change trajectory than correct classification and change 

trajectory. This means that despite being detected correctly as change/no change, some change trajectories 

do not match the reference data. ADICC is higher than ADICN, indicating that most change classes were 

correctly detected than no-change changes. Furthermore, ADICC achieved 100% accuracy, indicating that 

all change trajectory were correctly detected whiles 88.1% of no-change were correctly detected from the 

sample.   

Table 5.8 Accuracy of change detection.  

Indices Value (%) 

Overall accuracy (AT) 53.3 

Change/no change accuracy (AC/N) 59.2 

Overall accuracy difference (OAD) 5.8 

Accuracy difference of no change trajectory (ADICN) 88.1 

Accuracy difference of change trajectory (ADICC) 100 

Uncertain street-blocks obtained from uncertainty analysis was integrated into the final change detection 

maps to show areas with uncertain change/no change trajectory. After integrating uncertainties in the 
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change detection, TEM method proposed in section 4.10 was performed to check if the map would 

improve. The only modification was the exclusion of uncertainties street-blocks from sample selection. 

The overall accuracy increased from 53.3% to 66.7%. and the change/no change accuracy increased from 

59.2% to 70.8% (Table 5.9). This showed a large improvement in the model when uncertain street-blocks 

were excluded. 

Table 5.9 Accuracy of change detection after integrating uncertainty analysis.  

Indices Value (%) 

Overall accuracy (AT) 66.7 

Change/no change accuracy (AC/N) 70.8 

Overall accuracy difference (OAD) 4.1 

Accuracy difference of no change trajectory (ADICN) 91.5 

Accuracy difference of change trajectory (ADICC) 100 

5.8. Analysis of the dynamics of slums  

Figure 5.13 presents a map showing the change trajectory of land-use from 2013 to 2017. In general, 

90.3% of the study area remained unchanged, and 3.2% of land changed (Table 5.10). While 1.8% 

changed from slum to non-slum, 1.4% changed from non-slum to slum. 6.4% of the study area was 

classified as uncertain. In Accra, slums disappeared in areas close to river. An example of this dynamic is 

slums along the Kole Lagoon disappeared in 2017 (Figure 5.14).  This is the results of large eviction at Old 

Fadama by the AMA in 2015 (Oppong, Asomani-Boateng, & Fricano, 2020). These slums are 

characterised by kiosk or temporal structures, making them a high threat to eviction (appendix 3). 

Moreover, slums appeared on vacant land usually owned by the state or areas locally called “Kiosk estate”. 

Kiosk estate is where landowners provide land for poor people to put up temporal structures without 

services (e.g. water and sanitation) at a cheap cost (monthly rent of 20 -30 cedis).  

Even though the results from change shows 1.4% change from non-slum to slum, visually assessment 

shows that most of the change trajectory from non-slums to slums were not correct (Figure 5.15). This 

can be associated with the confusion between slums and high-density residential. However, there were 

changes within street-blocks that were not captured due to the level of aggregation. 

Table 5.10 Change trajectory between 2013 and 2017.  

Change trajectory  Area (km2) Percentage  

Slum remained slum 35.95 5.6 
Non-slum remained non-slum 541.1 84.7 
Slum to non-slum 11.8 1.8 
Non-slum to slum  9.2 1.4 
Uncertain 41.1 6.4 
Total  639.2 100 
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Figure 5.13 Change trajectory map of slums and non-slums between the years 2013 and 2017. 

 

A B 

 
 

Figure 5.14 Example of slum disappearing (Old Fadama). A)2013 B)2017  (source of the images used to visualise the 

slums: SPOT 6 image of 2013 and 2017). 
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A B 

 

 

 

 

Figure 5.15 Examples of change non-slum to slum in green and wrong change trajectory from non-slum to slum in red.  

A)2013 B)2017 (source of the images used to visualise the slums and non-slums: SPOT 6 image of 2013 and 2017). 
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6. DISCUSSION  

EO-based methods have the potential to map slums dynamics.  The results of this study reveal that land-

use change between slums and non-slums in Accra is more stable between 2013 and 2017. Over 90% of 

the area remained unchanged. However, there were changes which occurred within street-blocks that 

could not be captured due to the level of aggregation. Most slums disappeared in areas susceptible to 

flooding (Figure 5.14) and slum appeared on vacant land usually owned by the state or “kiosk estate”. 

According to the PD experts, infant or kiosk slums have a high threat of eviction and do not want to be 

visible. Therefore, this study produced maps at the street-block level, which could not capture kiosk 

slums. Producing high level disaggregated map means putting the most vulnerable people in danger. As 

researchers, we aim to provide data to support and improve slum dwellers living conditions rather than 

contributing to their stigmatisation and risk of eviction. Therefore, the level of aggregation proves to be 

ideal for the problem.  

Additionally, the proposed processing chain of using low-cost Spot 6 with a spatial resolution of 1.5m, 

covering 764.3 km2 proves to be operational for large area mapping. The advantage of the proposed 

method is the integration of local context knowledge, and it relies on FOSS4G solutions from initial pre-

processing to change detection analysis. Even though the proposed method achieved interesting results, 

perspectives for further development are discussed below.  

6.1. Spatial information requirements  

In general end-users requirements are not well understood by the RS community, and most EO studies 

never ask these questions (Kuffer et al., 2020; Thomson et al., 2020). This study has shown that the spatial 

information required by different user groups varies depending on the goal of the institution. For example, 

NGO’s need data on slum location and growth. Having access to such information, they can support 

them in developing pro-poor programs including provision of social amenities such as water and 

sanitation to improve their livelihood as well as assisting slum dwellers facing eviction. Additionally, 

different user groups require a distinct level of details and aggregation. Map producers should make a 

distinction between the level of details and aggregation needed by different user groups. In this study, we 

produced land-use map, which includes different stages of slum at street-block level.  This level of details 

and aggregation meet the requirement of most interviewed users except for TDC. TDC are more 

interested in highly disaggregated slum information to prevent slum growth. Further works should provide 

a more disaggregated map (e.g. grid-scale or segments) to identify kiosks or temporal structure in slums. 

Such information is needed by PWD and TDC to ensure development control. Also, a slum index could 

be developed to depict the differences between the good to worst slums to help NAMDO, PPD and PD 

to prioritised pro-poor initiatives (Engstrom, Pavelesku, Tanaka, & Wambile, 2017). 

Although all institutions have different purposes, they all raise similar concerns (such as report on level of 

accuracy and uncertainties, and guidelines on how to use and interpret the maps) in making slum data 

publicly available. This indicates the importance of including end-users in the mapping process. In general, 

end-users prefer a more bottom-up approach, as discussed by Lilford et al. (2019). This was also 

confirmed by the expert interviews done in Accra. Further research should investigate the data required by 

health institution, environmental institutions and slum dwellers themselves.  
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6.2. Land-cover and land-use classification  

6.2.1. Segmentation and feature selection  

The experiments showed that the local segmentation demonstrated different optimised threshold per grid 

depicting its ability to capture the very heterogeneous urban morphology. Surprisingly, high optimised 

threshold values were obtained for built-up and low optimised threshold values for non-built-up areas. 

Non-built-up areas achieved low optimised thresholds due to a high local variation in the panchromatic 

band. Also, there was a mix of different crop types, grass, trees and baresoil that increased the complexity 

of such zones. Local USPO achieved high optimised threshold values for built-up areas which were 

expected to have high intra-object variance leading to under-segmentation.   

Correspondingly, the grid size used for local USPO may have affected the segmentation quality as 

discussed by Drăguţ, Belgiu, Popescu, & Bandura, (2019) and Georganos, Grippa, Lennert, et al., (2018). 

This could be one of the reasons why local segmentation did not achieve meaningful objects. Also, the use 

of regular grids introduced edge effect, such as the splitting of buildings. Further research could use street-

blocks to make it adjustable to the urban landscape. Moreover, USPO requires a predefined range to 

obtain optimised parameters (threshold and “minsize”). Therefore, having a large range can lead to under 

segmentation, and a small range can lead to over-segmentation. The best segmentation can be achieved by 

testing different range parameters. 

Regarding feature selection, as mentioned by Georganos, Grippa, Vanhuysse, et al. (2018), some useful 

texture features are likely to be excluded when using expert-based knowledge. As a solution, we computed 

several hundred features and used VSURF feature selection procedure to select the most discriminant 

features. However, studies have concluded that the feature selection technique used can impact the 

performance of the classification (Cánovas-García & Alonso-Sarría, 2015). Future works could compare 

different methods and select the one with the best classification results.   

6.2.2. Sampling  

For the land-cover classification, the study relied on OSM for the creation of training and validation 

dataset. This is an important experiment to support scalability as the generation of manual reference is 

very time-consuming. However, the study area suffers from data incompleteness. For example, there was 

no data on bareland. OSM data are also affected by seasonal variations of vegetation. Therefore, the 

training and validation dataset still relied on expert intervention. Additionally, the use of points for training 

and validation excluded contextual information, therefore, further research could explore the use of 

superpixels for creating training and validation dataset (Kanavath & Metz, 2017). Superpixels can be 

created and used to visually assign labels to include contextual information into the model, especially for 

SMAP.  

For land-use classification, we faced difficulty in using visual interpretation to distinguish different slum 

stages. The similar appearance of consolidated and matured slums poses challenges. In this study, 

consolidated slums were combined with matured slums since they have similar morphological 

characteristics and was difficult in distinguishing them visually. Also, there was an inadequate number of 

samples for infant slums for both training and validation. This affected the infant class classification. 

Although RF is said to be robust for small sampling size (Belgiu & Drăguţ, 2016; Folleco, Khoshgoftaar, 

Van Hulse, & Bullard, 2008), however, it underperformed in this study. From the confusion matrix, it had 
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the lowest accuracy for F1 score, precision and recall. Comparatively, it is better than CNN which cannot 

handle this small number of samples (Mboga et al., 2017). 

Regarding generating reference samples for change detection, we even faced more problems using visual 

interpretation. It was difficult to determine changes if street-block did not change a lot. For example, only 

5% changed from vegetation to buildings. Liu & Zhou, (2004) proposed accuracy analysis by rule-based 

rationality evaluation with post-classification comparison. Based on that, further research can define 

threshold rules to determine changes within street-blocks to be used to generate reference data.  

6.2.3. Street-block extraction  

The quality of street-blocks relies on the level of completeness of OSM data. Although the study did not 

evaluate the geometric and semantic quality of the street blocks, some aspect can still be reviewed. The 

addition of other linear features such as rivers and drains reduce the impact of large blocks, especially at 

the peri-urban. Still, some land-use classes such as the kiosks slums could not be captured due to large 

street-blocks, especially at the industrial zones (Figure 6.1). The typical size of Kiosk slums around 500m2 

(one plot). Further research can add large roof buildings, especially at the industrial areas to further sub-

divide large street-blocks into small ones. Moreover, removing sliver polygons were done based on trial 

and error (rigorous parameter tuning) and expert knowledge. Further research should focus on developing 

a robust and effective way of removing sliver polygon.  
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Figure 6.1 Large street-blocks omitting kiosk slums. (source of the images used to visualise Kiosk slum: SPOT 6 image, 

2017). 

6.2.4. Land-use classification 

RF was the only classifier used for the land-use classification. Aside from its high prediction accuracy 

(Belgiu & Drăguţ, 2016), the study took advantage of the class membership probability to estimate spatial 

uncertainties. The classification results had an overall accuracy of over 80%, indicating the effectiveness of 

using this classifier. Similar results were obtained by Grippa et al. (2018) and Engstrom et al. (2015). The 

high accuracy shows that RF is robust for large scale mapping. The use of contextual features only and 

LCLU approaches achieved similar overall accuracy. Although high overall accuracy was obtained, 

classification errors were related to the different classes of slums. The precision of infant slums range 
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from 60 to 75%, and recall was lower than 40% in all cases (both contextual and LCLU approach as well 

as the two years) (Table 5.6). The low score of infant slum can be associated with the difficulty in 

obtaining training and validation dataset for both years (45 and 38 street-blocks for 2013 and 

2017respectively). They are usually found at few locations and experience rapid transition (Ranguelova et 

al., 2019). The low precision and recall of infant slums confirm that GLCM underperforms in identifying 

less prominent patterns in the urban environment (Kit, Lüdeke, & Reckien, 2012).  

Contrarily to findings in other studies (Belgiu & Drăguţ, 2016; Folleco et al., 2008), RF underperformed 

on a small sample size class in this study. This could be associated with the complexity of the class. Also, 

the confusion between slums and high-density residential areas can be reduced by adding building height 

or terrain information (topography), thus digital elevation model (DEM). Comparatively, slums usually 

have low height making them distinguishable from high-density residential with height information (Kohli 

et al., 2012). With the continuous availability of google earth street views, scene information can be added 

to improve the classification (Ibrahim, Haworth, & Cheng, 2019). Moreover, other contextual 

information, such as risk maps and socio-economic data can be integrated.   

One major advantage of the proposed method is the use of predefined boundaries for classification, 

because non-experts do like the noisy EO ouput. Furthermore, it produced map which meets the 

requirement of interviewed experts. One problem of slum mapping has been the uncertainties of slum 

boundaries (Pratomo et al., 2017). In general, studies suffer from the fiat boundary problem (Smith & 

Varzi, 2000) where there are high uncertainties on the boundary of slums (Liu & Kuffer, 2019; Pratomo et 

al., 2018). The high uncertainties of boundaries are not only machine learning problem, but also they 

happened when delineated by experts (Kohli, Stein, et al., 2016; Pratomo et al., 2017). In this study, we 

predefined the boundary of slums for land-use classification. This approached helped to overcome the fiat 

boundary problem by providing an operational boundary for citywide mapping. However, with the 

proposed aggregation level, kiosk slums were not captured. These slums are usually located at industrial 

areas covering less than 0.2 hectares. Further research can explore the use of grid to capture them.   

6.2.5. Computational cost  

One major bottleneck of slum mapping at a citywide scale is the involved high computational cost. 

Coupled with other problems such as image cost has hindered the development of citywide slum mapping. 

The use of street-blocks combined with low-cost SPOT 6 images has allowed producing a citywide scale 

slum map. The main advantage of the use of contextual features approach is that it is relatively quick to 

process compared to the LCLU approach. The contextual features approach skips the segmentation and 

landcover classification stage, reducing processing time. In general, the computational problem was still 

experienced in this study. An overview of the different processing cost is presented in table 6.1. Intensive 

processing relied on HP workstation Z620 with two Intel Xeon E5-2680 (2.7GHz) and eight cores and 

eleven threads. The processing was parallel with 11 threads. The computational intensiveness was one of 

the reasons why several parameter ranges (threshold and minsize) for USPO were not tested. Testing 

different parameter ranges could help to improve segmentation results. 
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Table 6.1 Computational cost. System description: HP workstation Z620 with two Intel Xeon E5-2680 (2.7GHz), and 

eight cores and eleven threads. 

Step Time (hours) 
Image segmentation 13  
Texture features extraction 69 
Computation of features statistics 19  
Extraction of street-block  43 
Land cover classification 2 
Land use classification  0.5 

6.3. Change detection and slum dynamics  

The proposed approach was tailored for identifying change trajectories at a citywide scale. Integrating 

uncertainty information from land-use classification with change detection improved the overall change 

detection accuracy (from 53% to 67%). This provides useful information for both map producers and 

end-users to understand the nature of errors better and improve the map quality (see Figure 5.13).  

The use of TEM reveals moderate overall accuracy similar to other studies (R. Liu et al., 2019; Pratomo et 

al., 2018). The visual assessment shows most of the change trajectory were correctly detected except for 

changes from non-slum to slum. The false change detection was associated with the vegetation phenology 

between the two images causing confusion between slums and high-density residential. The seasonal 

variation in the images may have affected the change detection because vegetation was the most important 

feature for distinguishing classes. Similar issues were identified in Duque et al. (2017) study. 

It is difficult to determine actual changes from false change using pixel or object-based methods (R. Liu et 

al., 2019; Pratomo et al., 2018). For example, in object-based change detection, a change in the shape of an 

object or a slight shift as a result of different viewing angle will be detected as changes. This approach of 

predefining boundaries helps to overcome such difficulties. However, the proposed approach could not 

capture within street-block dynamics. Visually, most changes in the study area occurred within street-

blocks. This could explain why over 90% remained unchanged. Further studies can subdivide street-blocks 

to better capture changes. The study could have two hierarchy levels where change detection analysis can 

be performed at the object level or small grid-scale and final maps are shown at the street-block level.  

within detailed information at object level, landscape metrics can be used to assess the compactness or 

disperse within street-blocks. This details are needed for analysis and the level of details in the final 

product should be minimised to ensure mapping ethics.   
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7. CONCLUSION  

The main objective of this study was to develop a processing chain for spatio-temporal slum mapping at a 

citywide scale using low-cost SPOT 6 image and Free & Open-Source Software. In this section, the 

conclusions of the research findings are presented for each objective  

7.1. Sub-objective 1: To identify slum information required by end-users and geo-ethical concerns in 
making such data publicly available  

In this study, we have identified the spatial information required by end-users through topic-focused 

interviews. The study has shown that end-users have varied spatial information. Depending on the 

purpose of the institution, they also have different requirement for the level of details and aggregation 

scale. The TDC and PWD mentioned that they need high disaggregated data to be able to monitor 

settlement growth and prevent slum growth. PD, PPD and NADMO would need a high level of detailed 

and disaggregated data to be able to plan and management pro-poor initiatives.  

Additionally, they found out that interviewed experts do not oppose to making slum information publicly 

available. The PD experts mentioned that slum dwellers, especially those in Kiosk or infant slums have a 

high risk for eviction and do not want to expose their location. Therefore, providing a high level of 

detailed and disaggregated information would put slum households at risk and contributes to their 

stigmatisation. In general, all interviewed experts raised similar geo-ethical concerns to consider before 

making slum information publicly available. They mentioned concerns including how accuracy measures 

were estimated, a detailed report on how to map was produced, how the map should be interpreted and 

expect detailed metadata from map producers.  

7.2. Sub-objective 2: To develop a semi-automated method for slum mapping at a citywide scale  

In the second objective, we have proposed a semi-automated approach for citywide slum mapping using 

SPOT 6 of 1.5m resolution. Our proposed method takes advantage of FOSS4G solutions for slum 

mapping at a street-block level. Moreover, the implementation of codes in Jupyter notebooks allows 

sharing of codes for reproducibility. The entire processing chain codes are available on a dedicated Github 

repository (https://github.com/maxwellowusu/Accra_slum_map.git). The approach has proved to be 

efficient to handle large datasets since the study area, Accra covers 753km2 in total.  

In this study, we found out that slums have unique morphological characteristics, thus building density, 

texture pattern, and geometry which can be distinguished from space. Employing EO-based methods 

allows to mapping different stage of slums and other land-use types at the street-block level. By using 

classifier, we compared the use of contextual features only and the combination of land-cover and 

contextual features for land-use mapping at a street-block level. Both approaches achieved a high overall 

accuracy of over 80%. No conclusion has been made of the best approach, but the contextual features 

approach was less computationally intensive than LCLU.  

The use of street-blocks provided a suitable aggregation level useful for citywide slum mapping. To some 

extent, it helped to overcome the uncertain boundary problem. It follows the urban morphology, and 

most of the interviewed experts selected it. Furthermore, the use of OSM data for generating reference 

data was efficient to support scalability since manually creating reference is time-consuming. Using the 

mean decrease in accuracy, the top most important features were associated with vegetation. 

https://github.com/maxwellowusu/Accra_slum_map.git
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Consequently, we have assessed the spatial uncertainties associated with every street-block to explicitly 

understand the quality of the land-use maps. We used ERP to assess extensional uncertainties and field 

observation to understands the causes of uncertainties (existential uncertainties). Most of the extensional 

uncertainties were found in heterogenous street-blocks. Field observation showed that ground-based 

uncertainties were caused by a similar physical appearance of slum and old towns, areas with slum-like 

appearance due to unplanned and uncontrolled extension and slum areas which have been regularised or 

upgraded. We conclude that local context knowledge is key for any EO-based slum mapping. 

7.3. Sub-objective 3: To analyse the spatio-temporal dynamics of slums at a citywide scale 

The study used post-classification change detection to map change trajectories. We used a predefined 

boundary to map change trajectories to deal with the problem of the uncertain boundary (fiat boundary). 

In addition, we applied the trajectory error matrix (TEM) to assess the credibility of change detection. 

Initially, we achieved an overall accuracy of 53.3%. However, when uncertain street-blocks were excluded 

from the assessment, the overall accuracy increase to 67%. We conclude that the use of uncertainty 

analysis in change detection helps to improve the quality of the map. We also visually checked the change 

trajectory and observed that except for slum to non-slum changes, other change trajectories were mostly 

correctly detected.  

In order to simplify the change trajectories, we reclassified the land-used maps into slums and non-slums. 

From the results, it could be observed that over 90% of the Accra remained unchanged, 1.8%  changed 

from slum to non-slum, and 1.4% changed from non-slum to slum. Moreover, 6.4% were classified as 

uncertain using the uncertainty analysis results of land-use mapping. By visual assessment, we identified 

that land changes occurred within street-blocks which were not captured.  Most of the new slums 

appeared on vacant lands whereas slums close to rivers (flood zones) disappeared (usually eviction by 

AMA).  

7.4. Recommendations  

Having investigated the use of low cost SPOT 6 for spatio-temporal slum mapping, the following topics 

may be considered for future research: 

• To have a holistic understanding of the spatial information required and geo-ethics in making 

slum information publicly available, further studies should investigate user requirements of health 

institutions, environmental institution, and slum communities.  

• The use of a regular grid for local segmentation was affected by edge effects. Further research 

could explore the use of street-block for local unsupervised segmentation parameter optimisation 

to make it is adjustable to the urban landscape.  

• The study area suffers from cloud covers and occasional dust storms, further studies can explore 

the use of radar images to identify slums. Radar images are able to produce quality images 

regardless of weather or time of the day. It is not affected by clouds.  

• Due to the computation demanding of the proposed method, future research should consider the 

use of medium resolution and free of charge Sentinel-2 images. 
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APPENDICES  

 
Appendix 1: Confusion matrix of land-use classification for contextual features and LCLU. HDR: 

high-density residential, LDR: low-density residential, NON-RST: non-residential, NON-BLT: 

non-built-up 

Reference 2013 (contextual) 

 Classes HDR LDR Infant Matured Non-RST Non-BLT 

Prediction 

HDR 43 0 2 2 0 0 

LDR 1 47 0 0 0 0 

Infant  3 0 6 5 1 0 

Matured 4 0 1 33 0 0 

Non-RST 2 1 1 0 51 3 

Non-BLT 0 1 0 0 1 69 

Reference 2013 (LCLU) 

 Classes HDR LDR Infant Matured Non-RST Non-BLT 

Prediction 

HDR 44 0 2 1 0 0 

LDR 1 46 0 0 0 1 

Infant  3 0 6 5 1 0 

Matured 3 0 0 35 0 0 

Non-RST 3 0 0 0 53 2 

Non-BLT 0 1 0 0 1 69 

Reference 2017 (contextual ) 

 Classes HDR LDR Infant Matured 
Non-
RST 

Non-BLT 

Prediction 

HDR 46 0 1 5 0 0 

LDR 1 35 0 0 3 1 

Infant  3 0 3 5 0 1 

Matured 3 0 1 42 0 0 

Non-RST 0 3 0 0 37 5 

Non-BLT 0 1 0 1 4 42 

Reference 2017 (LCLU) 

 Classes HDR LDR Infant Matured 
Non-
RST 

Non-BLT 

Prediction 

HDR 45 0 1 6 0 0 

LDR 1 34 0 0 4 1 

Infant  3 0 3 5 0 1 

Matured 2 0 0 44 0 0 

Non-RST 0 3 0 0 37 5 

Non-BLT 0 1 1 1 3 42 

 

 

 

 

 

 

 



 

60 

Appendix 2: Uncertainty map of land-use. A) contextual feature 2013 B) LCLU 2013 C)contextual 

features 2017 D) LCLU 2017. LCLU: land-cover combined with contextual features  
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Appendix 3: Examples of Kiosk slum, Sprintex Road, Accra.  (Source: field work, 2020)  
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Annex  
Expert interview 

Slum information 

1. What is your role in slum planning, management or interventions?  

2. Which criteria do you use to define a slum? 

3. What spatial information do you have about slums (year, coverage area, completeness, accuracy)? 

4. How do you use slum information? 

5. What information do you lack about slums/deprived areas? 

6. How often are information about slums (locations) updated? 

7. How often would you require updated spatial information about slums? 

8. What is the level of spatial detail on slums you would require to support your work? 

9. Do you have land cover/ land use map? If yes, how was it prepared? 

10. Will you consider slums as part of land use maps? If yes why? If no, why? 

 

Administrative units 
(wards) 

Blocks defined by the 
roads 

Segments  
 

Grids  
(100 x 100 m) 

    
 

 

Geo-data Privacy  

1. What would be your concerns if we upload slum information showing the boundaries to the 

public (international)?  

If yes, why?  

If no, why? 

2. Slum maps from satellites have typically an accuracy of 80-90%, thus areas some slum areas might 

be omitted and non-slum areas wrongly mapped as slums. What problems would you foresee to 

make a slum map with such an accuracy publicly available?  

3. What information will you consider sensitive? 

Who should have access to slum information? 


