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ABSTRACT 

Floods are a significant challenge that can cause considerable damage and impede development. There is a 

need to capture data that can help control, manage, and mitigate this disaster. The emergence of UAVs 

has made the capture of this data more accessible, and at very high resolution. UAVs mounted with a 

camera or laser system can be an excellent choice for this. But looking at the cost of these systems, which 

data can be used for flood modeling in the Msimbazi river basin, located in the city of Dar es Salaam in 

Tanzania, which is prone to flooding. Hence the purpose of this study was to analyze and compare the 

quality of DTMs generated using UAV laser and UAV image data to demonstrate the application in flood 

modeling. 

 

Therefore to produce DTMs suitable for flood modeling, filtering of the point clouds into ground and 

non-ground is very important. So for this purpose, the PTIN algorithm, as implemented in Lasground, 

was used in this study. Six parameters that are crucial in the tuning of this algorithm are step, spike, bulge, 

standard deviation, offset, and sub. These parameters were tuned in both the LiDAR and DIM data and 

accuracy assessment done on both the point clouds and DTMs. Furthermore, an investigation was done 

to ascertain how tuning these parameters affect flood modeling in terms of extent, velocity, water surface 

elevation, and depth. The findings from the comparison of the LiDAR and DIM DTMs and point clouds 

indicate that as the parameters are being tuned, this heavily influences what gets added to the produced 

surface. This filtering consequently affects flooding. HEC-RAS modeling software was used for flood 

modeling.  

 

The analysis also showed that different landcover influence parameter settings when filtering. Also, the 

study showed that as the resolution of DTM reduces, flood extent increases because the DTM is more 

simplified at coarser resolutions, hence things like ramps, riverbanks, embankments may be removed. It 

was found that different parameter settings either increase or decrease the flooding effect. The analysis 

also showed that parameters that had the most significant influence when tuning the LiDAR data were 

bulge, step, and spike. And for DIM, the settings with the most significant impact were step, bulge, and 

offset. 

 

From the findings, it was observed that both LiDAR and DIM could be used for flood modeling. The 

only considerations should be landcover and terrain characteristics in the study area. Also, it is essential to 

know the limitations of both datasets, questions, like where does LiDAR work best and where does DIM 

work best should be answered. The most important thing is the removal of macro objects such as 

buildings, vegetation, bridges, and the preservation of ramps, riverbanks, embankments, dividers, etc., 

especially when the DTM is for flood modeling. 

 

Keywords: Ground filtering, DTM, accuracy assessment, LiDAR, DIM, Flood modeling 
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1. INTRODUCTION 

1.1. Background  

Unmanned Aerial Vehicle (UAV) platforms are an essential alternative and solution for examining and 

researching our environment and are a capable source of laser and imaging data for many applications 

(Nex & Remondino, 2014). UAV platforms are used for many applications such as forestry, natural 

disaster monitoring, precision agriculture, topographic mapping, volumetric calculations, building, and 

road engineering (Izumida et al., 2017). Further, UAVs are considered viable and less costly compared to 

conventional manned aerial vehicles because they require less time for data acquisition, especially if the 

area is not too big (Martínez-Carricondo et al., 2018). Technological advances on the weight of sensors 

have made it feasible for the UAV platform to be mounted with different sensors, such as camera and 

light detection and ranging (LiDAR) (Zeybek & Şanlıoğlu, 2019). 

LiDAR uses an actively emitted laser beam as its base for measuring the physical characteristics of objects 

and can provide data on the vertical structure of objects above the ground through scanning with a pulse 

(Begashaw, 2018). LiDAR is the most popular method of generating Digital Terrain Models (DTM) by 

filtering ground points from the entire point cloud. While photogrammetry needs image matching to 

generate a point cloud for filtering purposes, LiDAR obtains point cloud directly without additional 

processing (Rizaldy, 2018).  

UAV Photogrammetry is an up-to-date, mobile, simple, and cost-effective remote sensing area mapping 

technology that uses a digital camera mounted on a small, low-cost UAV system. High image quality is a 

massive influence on the effectiveness and quality of mapping products, such as DTMs and Orthophotos. 

The accuracy of these products depends heavily on camera resolution, flight height, and accuracy of 

Ground Control Points (GCPs) (Berteška & Ruzgienė, 2013). UAV photogrammetry is also very useful 

for obtaining an image-based dense point cloud. Therefore it is possible to say that UAV photogrammetry 

is another data source for point cloud in place of LiDAR (Polat & Uysal, 2018). Berteška & Ruzgienė 

(2013) were able to show that UAV data is suitable for the creation of 3D models and meets the 

requirements for large-scale topography and GIS needs. Further, they showed that the evaluation of 

DTM, generated from UAV images, is necessary if the final mapping product is to be accurate.  

A DTM is a digital depiction of the earth’s surface without objects on it like vegetation, buildings, street 

furniture, etc. (Briese, 2010). The bare earth is a boundary between ground and objects attached to the 

ground; thus, DTM contains elevation information of solid ground without anything on it. Some 

applications that use a DTM are flood management, infrastructure and engineering planning, and 

environmental protection (Rizaldy, 2018). LiDAR point clouds are usually the preferred choice for DTM 

extraction; This is because they give first, intermediate and last pulse data, which is necessary for the 

classification of the ground and non-ground points (Yilmaz & Gungor, 2018). However,3D elevation 

models can likewise be obtained from UAV photogrammetry within a reasonable period, and good 

accurate DTMs can be produced from this same technology.  

 Polat & Uysal ( 2018) studied the precision of Digital Surface Models (DSMs) and DTMs, which were 

generated from 4 different LiDAR data and UAV Photogrammetry. The quality metrics they used for this 

comparison were correlation coefficient and Root Mean Square Error (RMSE). Their main goal was to 
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exemplify that the image-based dense point cloud was as accurate as the LiDAR point cloud. Their study 

showed that for a relatively small area, UAV photogrammetry could generate digital elevation models as 

precise as LiDAR-derived. Harwin & Lucieer (2012) also supported this by showing the viability of Multi-

view stereo (MVS) and proving that UAV image data can be used for fine-scale landform change 

monitoring, focused on coastal erosion monitoring, which requires sub-decimetre dense and accurate 3D 

point clouds. 

Similarly, Javernick et al.(2014) were able to show that structure from motion(SfM) applied in a dataset of 

UAV images can deliver high-quality terrain datasets competitive with those obtained by LiDAR, and 

suitable for studying how rivers or coastal areas are affected by flooding. Further, Yilmaz & Gungor 

(2018), in their study, showed that the use of UAV image-based point clouds enables the generation of 

accurate DTMs and may be an alternative for LiDAR technology. The research, therefore, will evaluate 

which dataset is ideal for flood modeling between UAV laser and UAV image data. 

 

The Msimbazi river valley found in the city of Dar es Salaam in Tanzania. People settling in the flood-

prone area, deforestation, and soil erosion have contributed to the basin failing to keep water naturally. 

Substantial and prolonged rainfall characterized by recurrent and severe flooding has been a big challenge 

that is faced here (Fintling, 2006). Hence flood plain mapping using drones is helping to bring up 

mitigation measures, which can bring down the risks associated with flooding by helping to create detailed 

terrain models. The data from this region is what the researcher used to conduct the research (WorldBank, 

2019). 

 

It is foreseen that the research will result in better knowledge regarding DTMs for flood modeling in the 

Msimbazi river valley basin, and it would also show which method performs better in the study area’s 

terrain between UAV LiDAR and UAV photogrammetry. The players who would benefit from this data 

are the government, private sector, and development partners. Accurate monitoring and mapping of the 

DTM and flood extent are critical to assess flooding risk, develop wide-ranging relief efforts immediately 

after flooding, and provide damage estimates in both spatial and temporal dimensions (Hashemi-Beni et 

al., 2018). Therefore, the results of this research will contribute to the scientific literature on flood 

modeling on the use of UAV laser and UAV image data. 
 
 
1.2. Research problem 

From both UAV image and laser data, high-density point clouds and DTMs are derived. The accuracy of 

the point cloud will influence the quality of the DTM product, and so there is a need to investigate how 

accurate this point cloud data is. Several studies have focused on the accuracy of DTM derived in forest 

areas and mine areas (Begashaw, 2018; Obeng-manu, 2019) and some specifically on Digital Elevation 

Model (DEM) from UAV photogrammetry compared to SAR images for flood water level monitoring 

(Mantong, 2018). Others focused on Lightweight UAV data derived digital elevation models and 

orthoimage for environmental applications, focusing on data accuracy evaluation, the capacity for river 

flood risk modeling, predicting the effects of sea-level rise to flooding and erosion risk (Coveney & 

Fotheringham, 2011). Some studies like Yang & Chen (2015) integrated UAV laser, and image data since 

the reasons for integration are prompted by the significant deviations from direct geo-referencing of laser 

with image data. This co-registration method registers mini-UAV image data and LiDAR data successfully 

with an error of less than one pixel.  

Therefore, it is necessary to study the accuracy of the DTMs derived from LiDAR or digital image 

matching (DIM) to find out whether they can be used for flood modeling in the study area. Thus it is vital 
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to determine if UAV LiDAR or UAV DIM data can be used independently for flood modeling in the 

Msimbazi river basin. 

1.3.  Research objectives 

The main research objective is to analyze and compare the quality of DTMs generated using UAV laser 

and UAV image data to demonstrate application possibilities for flood modeling. This objective will be 

achieved through the following sub-objectives: 

1.3.1. Sub-objectives  

1. To focus on the optimization of filtering LiDAR and DIM DTMs for flood modeling by conducting a 

parameter sensitivity analysis using the TIN algorithm.  

a. What are the crucial parameters that affect the final LiDAR and DIM DTM products? 

2. To determine how data processing methods affect the final LiDAR/DIM DTM product 

a. How do the produced DTMs differ from each other? 

b. Can the produced DTMs be used for flood modeling in the Msimbazi river valley basin?  

3. To compare the influence of different DTMs for flood models produced from the parameters with 

the biggest influence. 

a. How do the different DTMs compare to each other in terms of flood depth, extent, and velocity? 

b. What is the effect of optimizing all relevant parameters on the output DTMs for flood modeling? 

c. Which parameters do have the most impact when analyzing DTM produced for flood modeling?  

d. What effects does filtering DTMs of different resolutions have on flood extent? 

1.4. The innovation of the study  

The research aims at combining parameter optimization of DTM filtering and flood modeling. The 

novelty will be to investigate how different parameter combinations influence the flooding extent, velocity, 

and depth. This would indicate how the filtering has either preserved objects like riverbanks, ramps, curbs, 

or removed macro objects like bridges, vegetation, and buildings. 

1.5. Structure of Thesis  

The research thesis is composed of five chapters. Chapter 1 is an introduction that looks at problem 

statement, research gap, objectives, and research questions. Chapter 2 is literature review; this chapter 

presents related works in line with the thesis. Chapter 3 is the Methodology it describes the methods used 

to achieve the sub-objectives. Chapter 4 is results and discussion; this presents the evaluation and 

discussion of the results. Chapter 5 is the conclusions and recommendations; this gives a conclusion based 

on the findings drawn from answering the research questions, and finally, recommendations are proposed. 
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2. LITERATURE REVIEW 

2.1. UAV Photogrammetry 

Photogrammetry is a system that is centered on the processing of images for the production of DTMs, 
DSMs, orthoimages, 2D and 3D reconstruction, etc. (Remondino et al., 2012).UAV Photogrammetry can 
generate very high-resolution datasets, which make it possible to generate 3D models (Micheletti et al., 
2015). An example of image acquisition is shown in figure 1. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among many other applications of UAV photogrammetric system, one of the essential ones is the capture 

of high-resolution images. Multi-view stereopsis (MVS) and SfM methods can be used to produce a dense 

3D point cloud from  UAV image data acquired through UAV photogrammetry (Harwin & Lucieer, 

2012). DIM or SfM is a process that tries to match common features between images which are then used 

to establish both interior and exterior orientation parameters, after which a dense point cloud is extracted 

(Micheletti et al., 2015; Höhle & Potuckova, 2011;Polat & Uysal, 2017). 

From their study Uysal, Toprak, and Polat (2015) were able to show that UAV photogrammetric data can 

be as accurate as RTK GPS data and can be used to generate DTMs using photogrammetric techniques. 

(Shahbazi et al., 2015) also reiterated this by stating that the generation of DTMs,3D point cloud, photo 

mosaic, and DSM are produced through the application of photogrammetric processes. 

 

2.2. UAV LiDAR system 

LiDAR is an optical remote sensing technique within which scattered light properties are measured to 

work out the variety and alternative information of an object (Guo et al., 2010). LiDAR data may be used 

to generate comprehensive high-resolution DTMs by using suitable interpolation techniques (Chu et al., 

2014). Airborne LiDAR has many applications, some of which are DTM extraction, generation of 3D 

Figure 1: Example of UAV Photogrammetry data acquisition 
(source: www.wingtra.com) 
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building models, road extraction, forest parameter estimation, etc. (Hui et al., 2019). How data is captured 

using UAV LiDAR is shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LiDAR is one of the faster techniques for acquiring 3D laser data. Airborne laser systems use a laser beam 

emitted to record 3D information about a phenomenon through which the laser pulse bounces off. This 

can be done from helicopters, fixed-wing aircraft, or since recently UAVs (Siwiec, 2019). Axelsson (2000) 

further stated that the 3D point clouds acquired from the laser scanning system are capable of giving more 

than one unique z-value, which makes it possible to have different height attributes. Polat & Uysal (2017), 

in their study, emphasized that LiDAR has become a powerful means of collecting 3D information 

because it can do this efficiently, accurately, and on time. This is also highlighted by (Höhle & Potuckova, 

2011). 
 

The major difference between Photogrammetry and Airborne Laser Scanning (ALS) data is that with ALS 

measurements, it is almost difficult to make out what something is without the use of additional optical 

sensors. In contrast, photogrammetry, you can easily interpret what something is because of its advantage 

of color (RGB) imaging. One other significant difference is the ability of LiDAR systems to penetrate 

through vegetation canopies and hence provide ground points even in forested areas. On the other hand, 

DIM systems can only offer elevation data top of the canopy, as they are not able to provide ground 

information in thick, dense vegetation. So, the two point clouds would be very different from the two 

systems around vegetated areas. 

Generally, LiDAR point clouds are considered more accurate than the DIM point clouds due to the latter 

containing several outliers below the terrain level (Zeybek & Şanlıoğlu, 2019).  Therefore, the processing 

of the two point clouds would be different to consider the outliers (low points). In terms of point density 

and size, the DIM point cloud is denser and thereby larger than the LiDAR (Salach & Bakuła, 2018). 

However, both the DIM data and LiDAR data must go through the process of filtering before the process 

of DTM generation. 

2.3. Filtering of point clouds 

Filtering is the removal of all non-terrain objects to come up with a bare earth. The ground filtering is an 

essential step in the separation of points which are part of the ground surface and those which are not 

(Polat & Uysal, 2015;Zeybek & Şanlıoğlu, 2019; Moudrý et al., 2020; Liu, 2008). Separating ground and 

Figure 2: Example of UAV LiDAR data acquisition (source: 
www.wingtra.com) 
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non-ground points can be a very demanding task, especially in areas where there is a lot of variability in 

terrain. Therefore the accuracy of the DTM is dependent on the removal of non-ground points (Polat & 

Uysal, 2015). 

Filtering results also depend upon the filtering algorithm used. The differences in the filtering processes 

can be checked through qualitative and quantitative methods. Qualitative methods include cross-sections 

profiles, Hillshaded DTMs, while quantitative methods include correlation coefficient, DEM of difference, 

RMSE, cloud to cloud compare among others (Anders et al., 2019;Sithole & Vosselman, 2004; Polat & 

Uysal, 2015). 

Different filtering algorithms may produce different DTMs because they have different strengths and 

weaknesses, this is due to the parameter settings they use to fit different field data (Polat & Uysal, 

2015;Nie et al., 2017; Zeybek & Şanlıoğlu, 2019). Zeybek & Şanlıoğlu (2019) further stated that some 

algorithms require some tuning of parameters, thereby giving the user power to influence the outcome of 

the filtering results. In their work of comparing different filters, Sithole & Vosselman (2004) show that the 

best filter algorithms and the optimal parameters are influenced by the landscape being investigated. 

Căţeanu & Arcadie (2017) in their work state that parameter optimization starts from default values, and 

then either these values are increased or decreased for each parameter value until the optimal one is 

arrived at (one that yields the lowest RMSE). 

The algorithm for classifying ground and non-ground can be put in four different categories according to  

(Sithole & Vosselman, 2004): slope based, surface-based, clustering/segmentation, and block minimum 

algorithms. The most used algorithms are the surface-based because they use more context compared with 

other algorithms in the filtering process. Surface-based filtering algorithms can further be categorized into 

three: morphological-based filters, iterative-interpolation-based filters, and progressive-densification-based 

filters (Nie et al., 2017). Progressive TIN(PTIN) is a commonly used algorithm for filtering airborne 

LiDAR data (Nie et al., 2017;Polat & Uysal, 2015).  

However, PTIN has weaknesses in that in steep terrain areas, it finds it difficult to find all possible ground 

points, and it tends to misclassify lower objects as ground points (Nie et al., 2017). Moudrý et al. (2020) 

show that though PTIN removes some ground points, misses some steep slopes, and did not perform well 

where there is dense vegetation, it was able to conserve the topography well. They further identified three 

conditions that may cause the filtering algorithms to fail in classifying ground and non-ground, namely: (i) 

sharp ridge/steep slope (ii) very dense vegetation (iii) vegetation on the slope or in ditches. On the other 

hand (Sithole & Vosselman, 2004) identified two more, namely outliers in the data and objects that are 

attached to the terrain.  

Moudrý et al. (2020) state that to achieve optimal filtering performance, the choice of algorithm and 

tuning of parameter settings should be directed by the prevalent landscape in the study area. This process, 

according to them, is applied in Lastools, which allows users to select a set of parameters for a particular 

landscape in the study area. Lastools are developed for the processing of LiDAR data, and the Lasground 

tool is for the classification of ground and non-ground points. This tool uses an improved version of the 

TIN algorithm developed by Axelsson (Zeybek & Şanlıoğlu, 2019). In their study, Căţeanu & Arcadie 

(2017) show that Lasground performed better as compared to the other eight filters in mountainous 

terrain, steep slopes, and forestry vegetation. Zhang et al.(2018) in their study concluded that standard 

LiDAR filters like Lasground could be used to filter DIM point clouds preceding DTM generation. They 

further argued that the filtering results could be improved if a ranking filter is used before applying the 

ground filtering algorithm.  

A description of how PTIN algorithm works is described by (Nie et al., 2017; Silva et al., 2018;Polat & 

Uysal, 2015), and it works by improving on the TIN algorithm developed by (Axelsson, 2000) by adding a 

step to enhance the densification using an algorithm similar to the Douglas-Peuker algorithm which builds 

an improved TIN to ensure that no ground points are under the improved TIN. And secondly, the 
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iterative judgment criteria is changed in that only a point with minimum distance to the corresponding 

TIN surface is selected as the ground point. Figure 3 depicts how the PTIN works: 

 

 

2.4. DTM accuracy 

Jakovljevic et al.(2019) in their study listed four elements that affect the accuracy of a DTM, namely: (i) 

Point cloud accuracy and point density, (ii) efficiency of ground filtering algorithm, (iii) the interpolation 

method used and the, (iv) DTM resolution. 

2.4.1. Quantitative assessment 

The accuracy of LiDAR and DIM point clouds are assessed by using two methods: DEM of Difference 

(DoD) and cloud-to-cloud (C2C). DoD is the most used method of point cloud comparison, it works on a 

pixel-by-pixel difference, thereby highlighting vertical uncertainties and change detection (Jakovljevic et al., 

2019; Salach & Bakuła, 2018;Leitão et al., 2016). The Root Mean Square Error (RMSE) and Mean Average 

Error (MAE) of the elevations were calculated in the LiDAR and UAV point clouds compared to the 

reference. MAE is a metric used to identify the overall bias in the data, thereby showing underestimation 

and overestimation in the elevations per land use/land cover (Jakovljevic et al., 2019; Salach & Bakuła, 

2018; Ismail et al., 2015). 

Polat and Uysal (2018) in their study used correlation coefficient to compare the similarities between 

LiDAR and DIM surfaces to illustrate that the DIM point cloud is as accurate as the LiDAR one(Cao et 

al., 2019;Peterson et al., 2019). Further, Pa’suya et al.(2019) also used linear correlation when analyzing 

differences between SRTM and GDEM surfaces against mean sea level reference surfaces.  

The spatial variability of point cloud accuracy is assessed in CloudCompare using the C2C tool, which 

computes the cloud to cloud differences. Consequently, the mean absolute distance (MAD) and standard 

deviation (SD) were calculated based on the absolute distance between the two point clouds (Jakovljevic et 

al., 2019). 

Figure 3: How PTIN works.       Source: (Nie et al.,2017) 
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2.4.2. Qualitative assessment 

Visual methods provide the first assessment of DTMs and require a higher level of adaptation to specific 

problems; Hillshaded DTMs are one such example (Podobnikar, 2009). Hillshaded DTMs aid in analyzing 

terrain as it shows the simplicity and complexity of the terrain, it also shows a realistic view on the depth 

in the DTM (Wilson & Gallant, 2000;Zhang et al., 2018). This visual inspection can help to ensure that 

things like riverbanks and ramps are not filtered out if the resultant DTM is meant for flood modeling. 

Therefore, shaded relief can be used to assess the quality of DTMs qualitatively, as shown by (Leitão et al., 

2016;Cao et al., 2019).  

Terrain profiles are also an effective way of visually assessing DTM quality, and these visualizations reflect 

the methods used, leading up to DTM production (Podobnikar, 2009). Jakovljevic et al. (2019) similarly 

used cross-sections in various land use/land cover to assess the accuracy of the DTMs. Equally, Salach & 

Bakuła (2018) also showed in their work that the cross-section method is a valuable assessment of filtering 

results and DTM accuracy. Finally, Peterson et al. (2019) further proved that a profile could be used to 

compare two surfaces by using the extracted centreline of a road. 

2.5. Flood Modelling 

Urban flooding is an inescapable scenario for many cities around the world, and the challenges which are 

caused by this can vary from minor ones to major ones that cause massive inundation (Mark et al., 2004). 

The authors went on to further state that urban drainage modeling is a good case study in developing 

countries, because of the extent and frequency of the flooding in their cities as flood data is available. 

Hence it is essential to model these floods to analyze and understand the existing conditions so that 

mitigation measures can be implemented. 

 

Urban flood modeling has several input parameters, and one crucial one is a DTM because it affects the 

flow direction, flow velocity, flood extent, and flood depth (Abdullah et al., 2009;Jakovljevic et al., 2019; 

Muller, 2015). Anders et al. (2019) further state that the choice of filtering technique for hydrological 

modeling is vital if the correct modeling outputs are to be achieved. The characteristics of DTMs for 

urban flood application is that objects like bridges, buildings, vegetation, flyovers, and light rail train line 

should be removed, while ramps, curbs, and dividers should be preserved (Abdullah et al., 2009; Leitão & 

Sousa, 2018;Meesuk et al., 2015). Mark et al. (2004) also state that the characteristics of data in a flood-

prone area, such as the base and curb level of the road, the general topography of each catchment, and the 

height data of low and high points, should be correctly obtained. 

 

Abdullah et al. (2009) used MIKEFLOOD software to do the flood simulation to analyze the outcome of 

the filtering process (produced DTM). 2D flood models were created for each of the filters and analyzed. 

The authors argued that Urban flood application is dependent on how the DTM surface closely represents 

the real surface.  
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Abdullah et al. (2009) also did an evaluation and comparison of 8 different filtering algorithms to ascertain 

which one produces a DTM that is suitable for urban flood applications. The DTMs were analyzed in 

terms of flood depth and flood extent compared to reference flood depth and flood extent data. Figure 4 

shows the results of their work depicting DTMs from 5 filters (1) Elevation threshold Elevation Window 

(ETEW), (2) Morph2D, (3) Poly two surface (4) Slope and (5) Adaptive TIN. 

Abdullah et al. (2009) conclude that the adaptive TIN flood simulation in terms of flood depth and extent 

gave results that were close to the reference data. This is because of its ability to remove macro objects, 

and its resultant DTM is closer to the surface of the study area. Similarly, in their work Abdullah et 

al.(2012) showed that the performance of the ATIN filter for creating a suitable hydrological DTM was 

second overall only to their developed modified progressive morphological filter. Anders et al. (2019) went 

on to show that the TIN densification algorithm is suitable for producing a bare-earth DTM. 

In their study, Jakovljevic et al. (2019) showed that though LiDAR data is a recommended source of 

hydrological data, an alternative is a DIM data that can perform well in many land cover classes, and it’s 

also cost-effective. These findings are in agreement with (Escobar Villanueva et al., 2019). This was also 

reiterated by (Leitão et al., 2016), who added that image classification could be the basis for urban drainage 

modeling. Langhammer et al.(2018) went on further to show how different DTMs can depict different 

flood extents and flood depth in each scenario. They further proved that DTMs from DIM could be used 

to model floods, as did (Meesuk et al., 2015). 

 

There are several flood modeling applications, as highlighted in Table 1 below. In this study, HEC-RAS 

was used; it is a software that can perform one and two-dimensional hydraulic calculations for both 

natural and man-made networks (Ben Khalfallah & Saidi, 2018). A number of studies have been 

conducted by using this model since its development, some of which are those highlighted in Table 1. 

One of the main inputs in HEC-RAS is a DTM, which is essential for the development of a hydraulic 

model; others are geometric data and map layers. Geometric data in HEC-RAS includes things like river 

cross-section data, 2D flow area, boundary conditions, breaklines, structures, etc. (Brunner, 2016). 

Boundary conditions are conditions that are linked to the 2D flow area, and they permit the program to 

Figure 4: Urban Flood model Simulation from 5 filters    
Source: Abdullah et al., 2009 
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perform computations among them are flow hydrograph, stage hydrograph, normal depth, rating curve, 

and precipitation. 

 

 
Table 1: Flood Modelling applications 

Application Applied by 
SOBEK (Tamiru & Rientjes, 2001) 
MIKEFLOOD (Meesuk, 2017) 

(Abdullah et al., 2009) 
(Abdullah et al., 2012) 

LISFLOOD (Anuar bin Md, 2018) 
HEC-RAS (Anuar bin Md, 2018) 

(Alho et al., 2009) 
(Nandurkar et al., 2017) 
(Alaghmand et al., 2014) 
(Ben Khalfallah & Saidi, 2018) 

PCRaster (Muller, 2015) 
OPENLISEM (Pratomo, 2015) 

(Bout & Jetten, 2018) 
(Habonimana, 2016) 
 

 

The main features of HEC-RAS are modeling 1-D steady flow, 1 and 2-D unsteady flow calculations, sand 

deposit transport, and water quality modeling (Brunner, 2016). Examples of expected output from HEC-

RAS in terms of flood depth, velocity, water surface elevation, and flood extent are shown the figures 5-8 

below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

(a) (b) 

Figure 5:(a)water depth map and (b) water velocity map 
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From the literature review, it can be noted that different DTMs can be generated based on different 

parameter settings in the filtering algorithm. It can also be concluded that the PTIN algorithm is a 

considerably good filter that can be used to filter point clouds, specifically for flood scenario generated 

DTMs. Further, it is essential to conduct both qualitative and quantitative assessment of the DTMs 

produced. 

This research aims at using the PTIN algorithm in LAStools to carry out the parameter optimization and 

investigate using the flood modeling software HEC-RAS the effects of the different parameters on 

flooding in the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 

 

(a) (b) 

Figure 6: (a) Water surface elevation and (b) flood extent map 
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3. METHODOLOGY 

3.1. Study Area 

The case study area is the Msimbazi river valley basin in Dar es Salaam, Tanzania. The Msimbazi 

watercourse flows across Dar es Salaam town from the upper regions of Kisarawe within the coastal zone 

and discharges its waters in the Indian ocean(de Risi et al., 2013). This area is susceptible to flooding, and 

hence, there is a need to model the flooding in this area so that some mitigation measures can be put in 

place to help the people who live along the river, figure 7 shows the study area. 

 

Data sources  

The source of the Photogrammetric and LiDAR data was CDR international (2019). The LIDAR data was 

obtained in March 2019, while the Photogrammetric data was obtained in September 2019. These datasets 

were made available as point clouds in Laz format for use in this research. Also, a total of 8 control points 

were marked around the study area, and these are shown in Table 2. The coordinate system used was 

WGS84 UTM 37S. figures 8 and 9 show the LiDAR and DIM raw point clouds. 

 

 

Figure 7: Study Area (Msimbazi river basin) 
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Figure 8: Subset of LiDAR point cloud Figure 9: Subset of DIM point cloud 

 
Table 2: Ground control points in WGS84 UTM 37S 

Point ID Easting(m) Northing(m) Z(m) 

GCP-01 531075.061 9248766.414 -22.901 

GCP-02 530353.151 9248436.971 -15.157 

GCP-03 528969.653 9248158.025 -19.218 

GCP-04 529402.167 9247131.435 -21.621 

GCP-05 529380.292 9246798.731 -21.800 

GCP-06 528103.916 9246751.987 -16.458 

GCP-07 528995.062 9246548.000 -19.485 

GCP-08 529861.105 9247022.124 -20.736 

 

3.2. Methodology workflow 

The research questions were addressed by applying three methods in the research: filtering, accuracy 

assessment, and flood simulation of the dense 3D point clouds and DTMs from the two datasets. Figure 

10 shows the flowchart of the methodology. 
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Figure 10: Workflow of the Methodology  
 
 

3.3. Filtering parameter optimization 

The filtering method adopted in this research is the TIN algorithm, as implemented in LAStools. The way 

this algorithm works is by; first, initial parameters are calculated using the data; secondly, seed points are 

chosen; thirdly, iterative densification of the TIN is done by calculating parameters for each iteration from 

any point included in the TIN. If a point meets the threshold, it is added. Fourthly, this process continues 

until all pints are classified as ground or non-ground. According to Mantong (2018), the TIN algorithm is 

used for flood modeling because it gives an accurate portrayal of the geometry of channels, riverbanks, 

dikes, etc., and it’s able to model elevation changes and breaks in gradient. 

Several parameters, such as step, spike, and offset, will be optimized to investigate which ones have more 

influence on the DTMs for flood modeling. The meaning of these terms is as follows; Step is the measure 
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of setting the resolution of the grid. Spike sets the threshold of spikes that can be removed (up-spike and 

down-spike), and offset sets the margin within which points above the specified ground can be included. 

This algorithm was chosen because it can handle complex scenes, lower-resolution data, and its ability to 

handle type I (rejection of ground points) and type II (acceptance of non-ground points) errors. Since this 

algorithm can process 3D point clouds from both UAV laser data and UAV images, it would make it 

easier to compare which dataset produces a suitable DTM for Flood Modelling in the study area. This is 

essential because the DTMs will have been produced using the same methods. 

 Căţeanu and Arcadie (2017) analyzed nine LiDAR filtering algorithms, and from their findings, the 

adaptive TIN algorithm provided better results than the others. Other studies which have used the 

adaptive TIN algorithm to filter point clouds from either Image or laser data are (Anders et al., 2016; 

Axelsson, 2000; Anders et al., 2019;Wallace et al., 2016). 

Also, to produce a DTM, all non-ground points are removed or filtered. Rapidlasso (2019) published 

several articles on their website, highlighting how the adaptive TIN algorithm in Lasground can be applied 

in the processing of both UAV image and LiDAR data. They showed how photogrammetric produced 3D 

point clouds could be processed, from denoising, filtering, and consequently, up to the production of 

DTM.  

 

 In this research, the optimization of these parameters to remove the non-ground points was investigated 

to produce DTMs that can be used for flood modeling from the UAV image and laser data. The relevant 

investigated parameters are optimized to produce DTMs that can be useful for flood simulation in the 

study area. To come up with the parameters that would influence the accurate processing of point clouds, 

parameter combinations for the different LAStools algorithms were set to default values. Then their 

behavior is monitored when increased or decreased until they reach a point where they cannot be 

optimized any further (Căţeanu & Arcadie, 2017). 

 

3.3.1. LiDAR point cloud processing steps in LAStools 

To carry out the analysis, a subset of the point cloud was used for the processing and subsequent 

parameter tuning. A batch script from LAStools (Rapidlasso, n.d.-b)  was modified to be used for the data 

preparation and derivative production (Appendix B). The following steps were used to execute the work; 

Step 1: create a buffered tiling of 200m x 200m and buffer of 30m, from the original LiDAR point cloud 

using lastile 

Step 2: Lasground was used to classify ground and non-ground points 

Step 3: lasheight was used to remove low and high points 

Step 4: lasclassify was used to classify buildings and trees from the cleaned tiles 

Step 5: lastile was used to remove the buffers from the classified tiles 

Step 6: las2dem was used to create raster DTM from the ground points 

Step 7: blast2dem was used to generate hillshade DTMs and actual elevation DTMs in tiff format  

3.3.2. Preliminary steps for DIM point cloud 

Since the DIM point clouds covered a bigger area than the LiDAR data, it was necessary to create a 

boundary around the LiDAR points, which would then be used to clip the DIM points cloud.  

Step 1: Lasboundary was used to generate a shapefile of the LiDAR point cloud. 

Step 2: Using lasclip the boundary from LiDAR was used to clip the photogrammetric point cloud and 

merged 

Step 3: Lasduplicate was used to remove duplicate points that were similar in terms of X, Y, and Z. The 

purpose of the above steps was to ensure that the two point clouds covered the same study area. 
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3.3.3. DIM point cloud processing steps in LAStools 

To carry out the analysis, a subset of the point cloud was used for the processing and subsequent 

parameter tuning. Similarly, for the DIM point cloud a photogrammetric batch script from LAStools 

(Rapidlasso, n.d.-b) was modified to be used for the data preparation and derivative production (Appendix 

B). The following steps were used to execute the work; 

Step 1: create a buffered tiling of 200m x 200m and buffer of 30m from the original photogrammetric 

point cloud lastile 

Step 2: lasthin was used mark points whose z coordinate corresponds to certain percentile  

Step 3: lasnoise was used to remove isolated low points from marked points of step 2  

Step 4: lasground was used to classify ground and non-ground using remaining points from step 3  

Step 5: lasheight was used to classify points above and below the ground  

Step 6: lasthin was used to classify the lowest points that was not noise  

Step 7: lasground was used to classify code 8 points into ground and non-ground  

Step 8: las2dem was used to create a DTM from the ground points  

Step 9: blast2dem was used to create a seamless DTM and hillshade DTM  

3.4. DTM generation 

Among the common DTMs used to represent the existing terrain, the most common ones are the regular, 

the triangular irregular network (TIN), and the contour line model (Ramirez, 2006). Based on the 

parameter optimization, several DTMs were generated for analysis from both the UAV image and laser 

data. This was done in LAStools. 

3.5. DTM comparison 

To access the DTMs of the two datasets, a comparison had to be made in selected landcover of the study 

area to ascertain how the different DTMs performed in these regions. To do this, a combination of 

methods were conducted: 
 

3.5.1. Point cloud noise analysis in CloudCompare 

A comparison was made to check and compare how noisy the filtered point clouds from both the LiDAR 

and DIM are compared to each other in different Landcover scenarios. Before the filtered point clouds 

could be analyzed, lassplit was used to split the final classified point cloud into its classified point clouds. 

The output required for this case is the ground filtered points only because the analysis was to check how 

noisy these ground filtered point clouds are.  

Noise analysis of the filtered point clouds was carried out on a car park area using CloudCompare 

software. The area of interest was the same for all the surfaces analyzed, and to find out how noisy a point 

cloud is, a flat surface is preferred. This procedure involves fitting a plane through the point cloud and 

calculating the RMSE between the plane and the points in the selected point cloud.  The RMSE is a 

measure of how noisy the point cloud, the lower it is, the less noisy the point cloud 

 

3.5.2. Cloud to cloud accuracy assessment in CloudCompare 

For the accuracy assessment in CloudCompare, first, the classified LiDAR and DIM point clouds are split 

into ground and non-ground for easy analysis using lassplit. The ground filtered point clouds were 
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compared to each other to check how the DIM point cloud differs from the LiDAR. The comparison was 

based on only the ground points since they are the ones used to produce the DTMs for LiDAR and DIM. 

For this assessment the LiDAR point cloud was taken as a reference. 

 

3.5.3. Cross-section accuracy assessment 

One way of making a comparison between two surfaces is to compare their corresponding cross-

sections/profiles. Profile lines are a qualitative measure for comparison of surfaces. Profile lines at 

different filtering parameter settings were compared, assuming the LiDAR as the reference in this case. In 

this study, four areas were examined, namely: built-up, vegetated, bare/open grassland, and man-made. 

Khalid et al. (2016), in their study, used profile sections to do a visual inspection of generated DTMs in 

comparing them to the reference. 

 

3.5.4. DEM of difference 

Difference models are a qualitative comparison of DTM surfaces. Podobnikar & Vrečko (2012) used the 

DEM of difference to assess the differences between DTMs produced from different filtering algorithms. 

In this study, the difference models were created using ArcGIS software. The LiDAR DTM was taken as 

the reference, so the Z value of the DIM DTM was subtracted from the LiDAR DTM pixel by pixel. This 

yielded a surface that shows the differences between the two, and this difference map displays the areas 

where the LiDAR and DIM data differ, and where there is little or no difference. 

3.5.5. DTM comparison using correlation coefficient 

For this study, the points for the calculation of the correlation coefficient were made in ArcGIS software 

using a subset from the study area. Random points were extracted on both the LiDAR and DIM surfaces. 

These points were then assigned Z values using the corresponding surfaces. Finally, by using RStudio, the 

correlation coefficient in different regions of the study area was calculated (Appendix C). 

 

Two quantitative continuous variables can be investigated using a technique known as correlation, one 

common one is the Pearson’s correlation which is a measure of how related the two variables are 

(Boslaugh, 2012). Khalid et al. (2016) used the correlation coefficient to evaluate and compare how the 

heights in open-source DEM and LiDAR compare to each other. Therefore, the correlation coefficient is 

an excellent way to evaluate the differences between the two DTMs. 

For this study, the points for the calculation of the correlation coefficient were made in ArcGIS software. 

Random points were extracted on both the LiDAR and DIM surfaces. These points were then assigned Z 

values using the corresponding surfaces. Then using RStudio, the correlation coefficient in different 

regions of the study area was calculated. 

3.6. Flood simulation in HEC-RAS 5.0.7 

For the flood simulation, open-source software called HEC-RAS was used, is open-source modeling 

software that can perform one-dimensional steady flow, one and two-dimensional unsteady flow 

calculations and many more such as sediment transport/mobile bed computations, and water 

temperature/water quality modeling (Brunner, 2016; Alzahrani, 2017). HEC-RAS version 5.0.7, which was 

used in this research, allows 2D unsteady flow calculations. In this way, a river network and floodplain 

could be modeled through a 2D flow computational mesh (Alzahrani, 2017). This study focused on 

applying a 2D HEC-RAS model on the Msimbazi river basin.  
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According to, Abdullah et al.(2009), flood simulation uses as its input, the DTM for flood modeling. They 

also stated that the DTM could be analyzed by direct comparison of the flood depths and flood extent of 

the model in contrast to that at gauging stations. Hence flood simulation levels can indicate the accuracy 

of the DTM. Coveney and Roberts (2017) stated that DTM derived from several platforms could be used 

for flood modeling and consequently flood prediction, this is very important as it points out that the 

resolution and accuracy of the DTM directly affect the flood simulation. 

This research involves three methods in HEC-RAS, namely (i) hydrological modeling, (ii) hydraulic 

modeling, and (iii) flood mapping. Figure 11 shows the workflow for the 2D flood simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.6.1. Data preparation 

3.6.1.1. Rainfall  

The rainfall data needed as an input in the hydrological model was of a period at which the study area 

experienced flooding, in this case, the month of May 2019 (WorldBank, 2019). Rainfall data was 

downloaded from the NASA website as a text file; this was after selecting the area of interest and time 

step (temporal resolution of half-hourly). After that, using the script shown below. Wget software was 

used to download actual rainfall data from the NASA Giovanni internet protocol. 

wget --http-user=kats2050 --http-password=methodGEO2020 --load-cookies .urs_cookies --save-cookies .urs_cookies --keep-session-

cookies --auth-no-challenge -r --reject "index.html*" -np -e robots=off --content-disposition -i Dar_UAV.txt 

Figure 11: Workflow for the 2D flood simulation in HEC-RAS 
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This script is run through the command prompt. A total of 1440 images (NetCDF format) were obtained 

for May; this is the cumulative rainfall in mm/hr. Figure 12 is a sample of downloaded data from the 

website, which has a grid size of 11km. These images cover the whole world, and hence the area of 

interest had to be masked from it. 

 

Figure 12:standard downloaded rainfall data from NASA 

 

 

The next step was to convert the images from the netCDF format to Tiff. After that, using the ArcGIS 

model builder, a model was created which clips out the area of interest where the study area is located and 

uses the shapefile of the area of interest to mask the rainfall data. See Figure 13. 

 
Figure 13: Model for clipping and masking rainfall data 

 

Figure 14 shows the output of the masking operation, displaying the values for the two rainfall grid cells 

which cover the study area  . The mask used was the study area polygon, the units are mm/hr for the 

rainfall, the same as the original netCDF files, but the format is now Tiff, and grid size maintained at 

11km. 
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Figure 14:Sample Rainfall data on study area 

 

3.6.1.2. Rainfall value extraction 

Using the masked polygon, the rainfall values of the study area were extracted utilizing an R code (shown 

in Appendix A).  The area of interest has longitude 39.2 and latitude -6.8, so cell values at this specific 

location were extracted; in total, 1440 masked images were obtained. Figure 15 shows the plot of the 

rainfall values obtained from the extraction. 
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Figure 15:Plot of precipitation in May 2019 

 

The processed direct precipitation was entered in the HEC-RAS hydrological model. 
 

 

3.6.1.3. Landcover 

The landcover map used for this study was downloaded from the RCMRD Geoportal site 

(http://geoportal.rcmrd.org/), which has open geospatial datasets and maps for Eastern and Southern 

Africa. The landcover map is of the year 2016, and this map was clipped using the 2D flow area shapefile, 

before being used in HEC-RAS, the map is shown in figure 16. The legend is the same as the one from 

the original classified dataset, and the classification codes with their corresponding Manning’s number are 

shown in Table 3. 

 

The manning’s values for the study area are based on the tables by  Chow (1959) and Syme (2008). The 

Manning’s n values on the various landcover depict how the flow is affected, and these can give the 

simulation a more realistic depiction of how water flows (Dorn et al., 2014). Kalyanapu, Burian, & 

McPherson, (2009) state in their paper that the Manning’s roughness coefficient is used to represent 

surface roughness in hydrological models, to show that runoff is connected to the Manning’s value. 

http://geoportal.rcmrd.org/
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Further, they stated that when dealing with larger catchments, Landuse/Landcover is used to assign 

corresponding manning’s values. 

Therefore, Landuse is included in the hydraulic model to have specific Manning’s number for the surface 

roughness because the flow, infiltration, etc. are affected by this. These values are obtained from standard 

tables with values corresponding to Landuse/Landcover.  

 
 

Table 3: Manning's Roughness Coefficient for different Landuse (Chow,1959; Syme,2008) 

Value Landcover Manning’s n 

1 Trees cover areas 0.16 

2 Shrubs cover areas 0.1 

3 Grassland 0.035 

4 Cropland 0.035 

5 Vegetation aquatic or regularly flooded 0.07 

7 Bare areas 0.025 

8 Built-up areas 0.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16:Landcover map 2016 clipped to 2D flow Area 
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3.6.1.4. DTM 

 

The DTM as an input in both the hydrological and hydraulic models was generated in Lastools, from both 

LiDAR and DIM data. A total of 61 DTMs were used in the flood simulation, these covering the 

subsections, effect of optimized parameters, the effect of resolution on flooding, and the effects of 

different parameters on flooding. 

 

3.6.2. 2D flow Simulation in HEC-RAS 5.0.7 

3.6.2.1. Hydrological Modelling 

Since the study area has no flow information, this had to be modeled from the precipitation. This involved 

modeling runoff hydrograph of the precipitation applied to the catchment.  In the HEC-RAS manual, it is 

stated that the Precipitation boundary condition can be directly applied to the hydrological model to any 

2D flow area (Brunner, 2016). In this study, the prepared rainfall data used to generate the flow 

hydrograph. The rain-on-grid model simulation time was for 16 hours, with the starting time 11:00 AM, 

9th of June 2023. The hydrograph data was then used as input when conducting the hydraulic analysis. 

The rain-on-grid model will have the same components as the ones described in the hydraulic model in 

the next section. The significant difference is in the placement of the boundary conditions, an internal 

boundary condition which acts as a breakline is the considerable difference; this is shown in figure 17. 

This is where the hydrographic data was extracted for the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: 2D flow mesh with internal and external boundary condition 
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3.6.2.2. 2D Hydraulic Modelling 

For the HEC-RAS model used for the simulation, three input data sets used were DTM, Runoff 

hydrographs, and Landcover. There are several steps when implementing the 2D flow modeling, and these 

are highlighted below, and they can also be found in the HEC-RAS River Analysis system user manual 

(Brunner, 2016). Before creating the geometric data, the projection system for the project had to be set to 

WGS84 UTM zone 37S; this reference system for the HEC-RAS model was obtained from the spatial 

reference website (https://spatialreference.org/). 

1. Geometric data 

The geometric data component of HEC-RAS is where the 2D flow area, breaklines, boundary conditions 

were defined. A grid size of 10 was determined and a mesh computed, also the Msimbazi river centreline 

was added as a breakline and reinforced, this was used for all the models created. Two boundary 

conditions are defined in this case; both are external boundary conditions on the upstream and 

downstream. The near and far grid size for the breakline was put at 20 and 30, respectively.  Figure 18 

shows the created 2D mesh of the flood area with a breakline and boundary condition. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18:2D flow breakline and external boundary condition for hydraulic model 

https://spatialreference.org/
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Figure 19: unsteady flow hydrograph 

2. Breaklines 

The Msimbazi river centreline was drawn and used as a breakline. As a general rule, any place which either 

hinders or controls flow should have a breakline added to it, and these breaklines can even be added after 

the mesh computation by simply enforcing it (Brunner, 2016). 

3. Boundary conditions 

The boundary condition used for the modeling is the flow hydrograph generated from the hydrological 

modeling. The flow hydrograph brings flow into the 2D flow area, and this was used at the upstream 

boundary, while for the downstream boundary condition, normal depth was used, which takes flow out of 

the 2D flow area (Brunner, 2016). For the unsteady flow hydrograph data, a multiplier of 10000 was used 

on flow to increase the amount of flooding in the study area. A time date interval of 30 minutes was used 

because the rainfall data used to generate the flow was of the same time step; this is shown in the figure 

19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Manning’s roughness coefficient 

To have a spatially varying manning’s roughness coefficient for the 2D flow area, a landcover map of 2016 

was used for the study area. The landcover must be associated with the Geometry data before the 

Manning’s values can be assigned for each landcover type. The values for the Manning’s n were given with 

reference to the landcover; consequently, landcover was combined with the mesh in the 2D flow area for 

the computations (Dorn et al., 2014). If this were not done, a single value manning’s n would have been 

assigned to the 2D flow area (Brunner, 2016). The Landuse for creating the varying manning’s values is 

the same as shown in figure 16. 
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5. Running the Model 

The model is run by creating a plan in the unsteady flow analysis. The start and end time of the simulation 

was entered; in this study, the model simulation time was from 9th June to 11th June 2023 for all the 

models created. This should correspond to the duration of the hydrograph information in the hydrograph 

boundary condition. Figure 20 shows the primary inputs of the unsteady flow analysis. 

 

 

 
 
 
 
 
 

 
 
 
 
 

3.6.2.3. Flood Mapping 

 

After the unsteady flow computation is complete, RAS Mapper was opened to view the results. Four flood 

maps were generated, namely flood extent, floodwater depth, flow velocity, and water surface elevation. 

These maps were exported and further analyzed in ArcGIS so that information could be extracted. These 

outputs were generated from both LiDAR and DIM data for the various filtering parameter settings. And 

a comparison of the results was done to investigate the effect of optimized parameters, the effect of 

resolution on flooding, and the effects of different parameters on flooding. After that, a conclusion was 

made as to which data set is most appropriate for the Msimbazi river basin.  

 
 

 

  

Figure 20:Unsteady flow analysis 
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4. RESULTS AND DISCUSSION 

4.1. Filtering parameter optimization LiDAR point cloud 

 

Table 4: Default Parameters for 5 Lastools switches 

 Step[m] Sub Spike[m] Bulge[m] Stddev[cm] Offset[m] 

Town 10 6 1 1 10 0.05 

City 25 7 1 2.5 10 0.05 

Wilderness 3 4 1 0.6 10 0.05 

Metro 50 8 1 5 10 0.05 

Nature 5 5 1 1 10 0.05 

Note that the default for Lasground is nature 

 

Using the ground points from the various switches as shown in Table 4, lascontrol was then used to check 

the quality of the TIN generated from the ground points as an indication of the quality of final DTM 

produced. The produced Hillshaded DTMs were visually inspected, and the results of the lascontrol 

indicated which switch’s default parameters could be the starting point for the optimization. Table 5 

shows the lascontrol results of the various switches. 
 

Table 5: RMSE and Standard deviation of switches 

Switch RMSE (m) Standard deviation (m) 

City 0.339 0.313 

Metro 0.346 0.323 

Nature 0.224 0.195 

Town 0.339 0.313 

Wilderness 0.291 0.301 

 

From the Table, nature gave a lower RMSE; hence these parameters can further be tuned to investigate 

how to obtain a DTM whose height is closer to the actual terrain elevation. These, in combination with 

the step size of 25m from city, is ideal for this study area because it can filter out the big warehouse 

buildings in the study area. Therefore, using the step of 25 and the other default parameters for nature, the 

optimization process was carried out, as explained in the next section.  
 
 

4.1.1. Parameter Tuning LiDAR 

To examine the influence of the six parameters in the Lasground algorithm, a visual hillshade view analysis 

was carried out on the generated surfaces per parameter. Table 6 shows the surfaces generated with their 

corresponding parameters, and the best representative surface as compared to the orthophoto of the area 

was chosen. The same area was processed 41 times using different parameter settings for step, spike, 

bulge, standard deviation, offset, and sub, each combination of these yielding a single surface per run. The 

effect of the different parameter combinations had to be checked on the DTM surfaces as a whole. The 

resultant surface is analyzed to check whether it’s ideal for flood modeling or not by looking at how the 

river banks, curbs, embankments, etc. are preserved and also whether non-ground objects like buildings, 

vegetation, and bridges are filtered. 
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Table 6: LiDAR Parameter tuning 

 
 

Parameter DTM_surface STEP[m] SPIKE[m] BULGE[m] STDDEV[cm] OFFSET[m] SUB

surface1 50 1 1 10 0.05 5

surface2 25 1 1 10 0.05 5

surface3 10 1 1 10 0.05 5

surface4 5 1 1 10 0.05 5

surface5 25 2.5 1 10 0.05 5

surface6 25 2 1 10 0.05 5

surface7 25 1.5 1 10 0.05 5

surface8 25 1 1 10 0.05 5

surface9 25 0.5 1 10 0.05 5

surface10 25 0.25 1 10 0.05 5

surface11 25 0.1 1 10 0.05 5

surface12 25 0.05 1 10 0.05 5

surface13 25 0.01 1 10 0.05 5

surface14 25 2 3 10 0.05 5

surface15 25 2 2.5 10 0.05 5

surface16 25 2 2 10 0.05 5

surface17 25 2 1.5 10 0.05 5

surface18 25 2 1 10 0.05 5

surface19 25 2 0.5 10 0.05 5

surface20 25 2 0.25 10 0.05 5

surface21 25 2 0.1 10 0.05 5

surface22 25 2 1.5 10 0.05 5

surface23 25 2 1.5 6 0.05 5

surface24 25 2 1.5 3 0.05 5

surface25 25 2 1.5 1 0.05 5

surface26 25 2 1.5 0.5 0.05 5

surface27 25 2 1.5 0.2 0.05 5

surface28 25 2 1.5 no_stddev 0.05 5

surface29 25 2 1.5 1 0.01 5

surface30 25 2 1.5 1 0.02 5

surface31 25 2 1.5 1 0.05 5

surface32 25 2 1.5 1 0.1 5

surface33 25 2 1.5 1 0.2 5

surface34 25 2 1.5 1 0.5 5

surface35 25 2 1.5 1 1 5

surface36 25 2 1.5 1 0.1 3

surface37 25 2 1.5 1 0.1 4

surface38 25 2 1.5 1 0.1 5

surface39 25 2 1.5 1 0.1 6

surface40 25 2 1.5 1 0.1 7

surface41 25 2 1.5 1 0.1 8

SUB

STEP

SPIKE

BULGE

STDDEV

OFFSET
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The Sub parameter comprises the switches extra coarse, coarse, fine, extra-fine, and ultrafine, and it is for 
the initial search for the ground. Figures 21 and 22 show some output from the step and standard 
deviation analysis. 
 

 
Figure 21:LiDAR Step parameter optimization 

 

The step size of 25 was the one that gave a better outcome because it was able to filter out the big 
buildings in the study area. The step of 50 gave a distorted surface in some areas, so this was not chosen. 
As earlier indicated, the whole area must be looked at when investigating the effect of a parameter. 
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Figure 22: Standard deviation parameter optimization 

 

 

The effect of the standard deviation is such that it removes objects that are close to the ground but are still 

not part of the ground. Hence, in this case, a smaller standard deviation gave a good result. The optimised 

parameters for the LiDAR data set were found to be: Step : 25, Spike: 2, Bulge: 1.5,Stddev: 1, Offset: 0.1, 

Sub: 5. The sub of 5 was chosen because the study area is a flood plain, so it is relatively flat. 
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4.1.2. Display of LiDAR ground classified point cloud in Fugroviewer 

Figure 23 shows the classified ground points in purple and the non-ground in green of a river cross-
section indicated by the grey line. The profile depicts the separation of ground and non-ground points. 
 

 

 

 

 

 

 

 

 

Figure 23: Cross-section profile ground and non-ground classified points 

 

4.2. Filtering parameter optimization DIM point cloud 

4.2.1. Parameter Tuning of DIM point cloud 

The parameter tuning for the DIM point cloud was done the same way the LiDAR was, as described in 

section 4.1.1. also, in this case, a total of 41 surfaces corresponding to different parameter settings were 

generated. The modified batch script for the processing is found in appendix B. Table 7 shows the 

surfaces generated with their corresponding parameters. The optimised parameters for the DIM data set 

were found to be: Step: 25, Spike: 2.5, Bulge: 1.5, Stddev: 10, Offset: 0.1, Sub: 5.  

 
The visual representation of the bulge and standard deviation parameter surfaces are shown in figures 24 

and 25.  
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Table 7: DIM Parameter tuning 

 
 

 

 

Parameter DTM_surface STEP[m] SPIKE[m] BULGE[m] STDDEV[cm]OFFSET[m] SUB

surface1 50 1 1 10 0.05 5

surface2 25 1 1 10 0.05 5

surface3 10 1 1 10 0.05 5

surface4 5 1 1 10 0.05 5

surface5 25 2.5 1 10 0.05 5

surface6 25 2 1 10 0.05 5

surface7 25 1.5 1 10 0.05 5

surface8 25 1 1 10 0.05 5

surface9 25 0.5 1 10 0.05 5

surface10 25 0.25 1 10 0.05 5

surface11 25 0.1 1 10 0.05 5

surface12 25 0.05 1 10 0.05 5

surface13 25 0.01 1 10 0.05 5

surface14 25 2.5 3 10 0.05 5

surface15 25 2.5 2.5 10 0.05 5

surface16 25 2.5 2 10 0.05 5

surface17 25 2.5 1.5 10 0.05 5

surface18 25 2.5 1 10 0.05 5

surface19 25 2.5 0.5 10 0.05 5

surface20 25 2.5 0.25 10 0.05 5

surface21 25 2.5 0.1 10 0.05 5

surface22 25 2.5 1.5 10 0.05 5

surface23 25 2.5 1.5 6 0.05 5

surface24 25 2.5 1.5 3 0.05 5

surface25 25 2.5 1.5 1 0.05 5

surface26 25 2.5 1.5 0.5 0.05 5

surface27 25 2.5 1.5 0.2 0.05 5

surface28 25 2.5 1.5 no_stddev 0.05 5

surface29 25 2.5 1.5 10 0.01 5

surface30 25 2.5 1.5 10 0.02 5

surface31 25 2.5 1.5 10 0.05 5

surface32 25 2.5 1.5 10 0.1 5

surface33 25 2.5 1.5 10 0.2 5

surface34 25 2.5 1.5 10 0.5 5

surface35 25 2.5 1.5 10 1 5

surface36 25 2.5 1.5 10 0.1 3

surface37 25 2.5 1.5 10 0.1 4

surface38 25 2.5 1.5 10 0.1 5

surface39 25 2.5 1.5 10 0.1 6

surface40 25 2.5 1.5 10 0.1 7

surface41 25 2.5 1.5 10 0.1 8

SUB

STEP

STDDEV

SPIKE

BULGE

OFFSET
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Figure 24: DIM bulge parameter optimization 
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Figure 25:DIM standard deviation parameter optimization 
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4.2.2. Filtering Quality check 

 

To check the quality of the filtering, four (4) areas were identified, namely built-up, forest, pavement, and 

high vegetation. Two of the areas are where the researcher thinks the filtering worked well, and the other 

two are where it is suspected that the filtering did not work well. Only ground points were considered for 

this analysis. Figure 26 shows the selected areas for quality checking of the filtering. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CloudCompare, together with the lasview tool, was used to inspect the filtered point cloud in these four 

regions visually. The LiDAR point cloud, according to the analysis, showed the filtering worked well. 

However, the DIM point cloud though most of the buildings were removed, showed some 

misclassification as some roofs were classified as part of the ground. Overall, the filtering in this region is 

satisfactory, and the datasets performed as expected, this can be seen in figure 27(a). The forest area is 

where the filtering did not work well as there are a lot of huge mismatches between the LiDAR ground 

and the DIM ground. The LiDAR could not capture a lot of ground points in this region because the tree 

canopy was too dense for it also. The DIM for lack of penetration through the tree canopy was only able 

to capture the top of the trees. Interpolating in these areas to create a DTM creates a lot of spikes. This 

complicated landscape comprising a hill and some thick forest was too complicated for the algorithm 

when dealing with DIM data. This is seen in figure 27(b). 

 

The concrete pavement was one area where it was expected that the filtering would work well, and figure 

27(c) shows that the LiDAR and DIM data were filtered well. This was expected as this concrete surface is 

relatively flat and free from obstructions. Finally, the high vegetation cover area brings out a fascinating 

scenario as the pattern of the DIM ground points was a bit uneven, showing that there might be some 

Forest 

High Vegetation 

Pavement 

Built-up 

Figure 26: Areas for checking quality of filtering 
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vegetation cover in the area. This might have caused the filtering of DIM data not to work well. This is 

seen in figure 27(d). 

 

 
Figure 27: Profile sections of check areas for filtering quality check 
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4.3. Point cloud and DTM accuracy assessment 

4.3.1. LiDAR Noise analysis in CloudCompare 

This section reports on the noise analysis of 10 surfaces,5 LiDAR and 5 DIM, as derived from tuning the 
offset parameter in Tables 6 and 7. For these surfaces, all other parameters were kept constant except for 
the offset. The Root Mean Square (RMS) values obtained in this analysis are shown in Table 8, which 
shows how the parameter optimization affects the internal accuracy of the point cloud. 
 
 

Table 8: RMS for offset parameter of LiDAR and DIM surfaces 

DTM surface LiDAR RMS (m) DIM RMS (m) 

surface29 0.086 0.093 

surface30 0.086 0.093 

surface31 0.090 0.093 

surface32 0.097 0.093 

surface33 0.103 0.093 

 

From the analysis, it can be deduced that LiDAR surface29 and surface30 gave a small value,0.086m for 
the RMS, this according to the CloudCompare is the quadratic mean between the plane and point cloud. 
This error could also include noise in the point cloud. The values for the LiDAR increased as the value of 
the offset was being increased. For the DIM, it showed a minor change of an increase between the first 
and second surfaces, and then it was constant for the last three surfaces, but these were only observable to 
the 5th decimal place. At mm accuracy (3 decimals), this minor change is not noticeable. The reason for the 
LiDAR behaving like that might be that as the value of the offset increases, points with height variations 
and noise get added to the ground points, and eventually, the RMS tends to increase also.  
 
 The results from CloudCompare for surface29 for LiDAR and DIM are shown in figure 28. 
 

 

 

 

 

 

 

 

 

 

 



COMPARE UAV LASER DATA AND IMAGE DATA FOR FLOOD MODELLING 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Cloud to Mesh accuracy assessment 

 

Figure 29 shows the test sites, namely test area 1 and test area 2, which are vegetated and built-up, 

respectively. The LiDAR point cloud was taken as the reference, so a mesh was created on the point 

clouds and then compared to the DIM to investigate the distances. The results from this analysis show 

that most of the differences between UAV LiDAR and DIM point clouds are found where there is some 

considerable vegetation. Generally, the performance of the two data sets in relatively flat terrain is almost 

the same, the green colour depicts this, the blue is for the DIM, and the red represents the high values of 

the LiDAR, this is seen in figure 30. 
 

Table 9 shows the behavior as the bulge parameter is being tuned in the test sites. The mean distances for 

the two sites was different as it showed that in test site 1 it reduces by values 0.058m and 0.044m before 

increasing by 0.009m at bulge parameter 0.25m. The behavior in test site 2  shows that the pattern is 

different as it showed an increase of 0.009m, then reductions of 0.037m and 0.036m. Overall the behavior 

Figure 28: CloudCompare internal assessment of surfaces 



COMPARE UAV LASER DATA AND UAV IMAGE DATA FOR FLOOD MODELLING 

40 

of the mean values and standard deviation is such that they are lower in the built-up area than the 

vegetated one because of the differences caused by the filtering.  
 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30: cloud to Mesh distance 

 

 

 

Figure 29:Orthophoto of subset 

Test Area 1 

Test Area 2 
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Table 9: Mean distance and standard deviation for bulge parameter C2M analysis 

Parameter Section Mean Distance  

(m) 

Standard deviation 

(m) 

Bulge 

Test Area 1 

surface15 

0.253 0.453 

 

Test area 1 

surface18 

0.195 

 

0.333 

 

Test Area 1 

surface19 

0.151 

 

0.221 

 

Test Area 1 

surface21 

0.160 

 

0.193 

 

Bulge 

Test area 2 

surface15 

0.142 

 

0.404 

 

Test area 2 

surface18 

0.151 

 

0.295 

 

Test area 2 

surface19 

0.114 

 

0.161 

 

Test area 2 

surface21 

0.078 

 

0.144 

 

 

4.3.3. Cross-section accuracy assessment 

This section analyses the nature of the terrain of LiDAR and DIM by looking at their cross sections in 

four landcover classes; built-up, vegetated, bare/open-grassland, and man-made/pavement. These cross-

sections are shown in figures 31 to 34. 

4.3.3.1. Built-up area 

The built-up profile of the LiDAR and DIM has some similarities in their patterns. This shows that 

though they are obtained by different systems, the similarity of the pattern indicates that either of them 

can be used in this type of environment. However, this is dependent on how large the area is, the cost 

budget, and several other factors. Figure 31 shows the differences between the two DTMs. 
 
 

Figure 31: Built-up profile 
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4.3.3.2. Vegetated  

The pattern in the vegetated area produced profiles that were very different from each other, as can be 
seen in figure 32. The DIM surface had a lot of points below or above the LiDAR. This is because DIM 
data performs poorly in areas of high vegetation hence the significant differences between the two DTMs. 
Also, the differences in profiles can be attributed to the dates of acquisition, and one was taken when the 
vegetation was less (September) and the other when the vegetation was grown (March). 
 
 

4.3.3.3. Bare/open grassland 

This area, like the vegetated one, produced profile patterns that are very different from each other, see 
figure 33. This was unlike what was expected because, in such areas, the LiDAR and DIM data should 
produce similar patterns. This might have been due to some shrubs which formed some sort of closed-
canopy, thereby preventing DIM ground capture.  
 
 
 
 
 
 

Figure 32: Vegetated profile 

Figure 33: Bare/open grassland 
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4.3.3.4. Man-made concrete pavement 

The surfaces obtained on the concrete pavement produced profile patterns that have similarities. This 

indicates that either LiDAR or DIM data can be used in regions with these same characteristics as this 

region. How the two surfaces compare to each other are shown in figure 34. 
 
 
 

4.3.4. DEM of difference 

The LiDAR DTM was taken as the reference, so the Z value of the DIM DTM was subtracted from the 

LiDAR pixel by pixel. This yielded a surface that shows the differences between the two. This difference 

map displays the areas where the LiDAR and DIM data differ, and where there is little or no difference, as 

shown in figure 35. The areas where there is no difference indicate that either LiDAR or DIM data could 

be used in those areas. The areas where the significant differences suggest that only LiDAR can give the 

best results there because ground surface points are not easily captured by the Photogrammetric method. 

In this case, the areas with Red and green on the difference map are the ones where the LiDAR performs 

better than the DIM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34:Man-made profile 
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4.3.5. DTM comparison using correlation coefficient  

Correlation is a technique for investigating the linear relationship between two quantitative, continuous 

variables. Pearson’s correlation(r) is a measure of the strength of the association between the two variables 

(Boslaugh, 2012). From Table 10, it can be seen that built-up and man-made areas gave quite high 

correlation coefficient values, which means that in these areas, both the performance of LiDAR and DIM 

are quite similar. Therefore, either of them can be used to conduct further analysis. The y-intercept in the 

linear regression denotes a level of bias; built-up has a value of -0.415m, which means that when the 

LiDAR data does not have a value in Z, the DIM will have a value of -0.415. The vegetated area gave a 

very high value; this means the bias is vast, in this area, the DIM performs very poorly. 

 

The vegetated area gave the least value, which in this case makes sense because due to the vegetation 

cover in this area, LiDAR always outperforms DIM data because of its ability to penetrate through 

vegetation. The bare region was expected to yield a relatively high correlation, but the analysis yielded a 

lower one. This might be due to the presence of some low shrubs in the focus area. Gerard, Prospection, 

& Wiley (1999) used the correlation coefficient to compare how the heights in two DEMs compare to 

each other. Similarly, an evaluation of open-source DEM and LiDAR using the correlation coefficient was 

used by (Khalid et al., 2016). Therefore, the correlation coefficient is an excellent way to evaluate the 

differences between the two DTMs. 

 

 

 

Figure 35:LiDAR and DIM DEM of Difference subset 
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Table 10: LiDAR and DIM Correlation coefficient 

 No. of sampled points Correlation Coefficient (r) Y-intercept 

Bare 195 0.354 -10.054 

Built-up 200 0.986 0.237 

Man-made 200 0.764 -4.918 

Vegetated 200 0.072 -17.799 

 

 

4.4. DTM filtering Quality check through Flood simulation  

4.4.1. Effect of optimized filtering parameters on flooding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 shows the flooding extents of the study area, using the optimized filtering parameters for 

LIDAR and DIM at DTM resolution of 1m. The flooding extent areas for the comparison shows that the 

LiDAR filtering parameters DTM shows more flooding than for the DIM DTM, as indicated in Table 11. 

In an area like the Msimbazi river basin characteristic of vegetation cover, which prevents 

photogrammetry from seeing some ground points, this is expected because, in this case, only the canopy 

cover is captured, not the ground. This inability of DIM data to contain ground points in these regions of 

high vegetation has a considerable impact on the DTM created. The produced DTM can have areas that 

Figure 36: LiDAR flood extent with river and vegetated cross section 
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can block or divert flooding because the objects above the ground were not filtered well (Abdullah, 2012). 

These differences are further highlighted by the depth, velocity, and water surface elevation (WSE) in 

Table 11. 

From Table 11, the maximum depth for the LiDAR is 1.977m, and that of DIM is 2.608m. These values 

were extracted from the river cross-section profile, which has a total length of 126.871m. This difference 

might be caused by the ground filtering around the region of the profile under investigation. The velocity 

along this profile line shows that the DIM surface has a higher one than the LiDAR; they have 0.186m/s, 

and 0.148m/s mean velocity, respectively. This might be caused by the DIM surface showing a lot of 

variation of slopes than the LiDAR. Figure 37 compares the WSE between the LiDAR and DIM profiles, 

which verifies that there is more flooding on the LiDAR surface than DIM because most of the terrain is 

inundated. 

 

Table 11: Velocity, Depth, WSE and Inundation Area 

  Velocity(m/s) Depth(m) WSE (m) Inundated Area 

(Ha) 

LiDAR 

Max 0.000 0.000 -20.674  

Min 0.261 1.977 -20.121  

Mean 0.148 0.575 -20.491 162.423 

DIM 

Max 0.000 0.000 -20.477  

Min 0.590 2.608 -19.243  

Mean 0.186 0.562 -20.237 142.265 

 

 

4.4.2. Effects of different LiDAR and DIM DTMs resolutions on flooding  

This section shows the effects of flooding caused by different resolutions of DTMs, 1m, 5m, 10m, and 

20m. These DTMs were generated from the final optimized filtering parameters, for both LiDAR and 

DIM. The inundation area increases as the resolution of the DTM reduces from 1m to 10m, and then it 

decreases slightly at 20m resolution. As the resolution (cell size) of the DTM decreases, the generalization 

Figure 37: Flood water level of LiDAR and DIM surfaces on River cross section profile 
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of the surface occurs, which makes it deviate from the actual topography of the area under investigation. 

Hence, at the lower resolution, the flooding effects might be more exaggerated than at higher ones, 

because the estimated surface at higher resolution is closer to the actual terrain on the ground. Therefore, 

for flood modeling, it is observed that higher resolutions are the best. But for situations where it is not 

possible to obtain high-resolution data, then lower resolution DTMs can be used to have a rough estimate 

of the flooding effects. Figures 39 and 40 show how the generalization of the terrain occurs as the grid 

size increases in both the LiDAR and DIM DTM.  

From Table 12, it can be observed that the lower the standard deviation for both LiDAR and DIM, the 

higher the inundation area. The DIM standard deviation is showing a trend where it is fluctuating, i.e., 

increase followed by a decrease, while the LiDAR standard deviation indicates a gradual decline, then 

increase. This might be because a higher standard deviation means there are some outliers, which means 

there are more significant deviations from the mean value, hence denoting surface roughness. However, 

regardless of the resolution, it can be observed that the inundation area for LiDAR was always higher than 

for DIM, as depicted in figure 38.  

These observations on the effect of the resolution are similar to what Sithole & Vosselman (2004) stated 

that it is harder to separate ground and non-ground as the resolution of the data reduces. Further, Werner 

(2001) also showed that as the resolution becomes coarser, neighboring heights may be averaged. Hence, 

things such as embankments and riverbanks may be lost, thereby impacting on flood extent.  

 

Table 12: WSE of 1m, 5m, 10m and 20m DTM at River cross-section profile 

 WSE (m) 1m DTM 5m DTM 10m DTM 20m DTM 

LiDAR 

Max -20.121 -20.393 -20.432 -20.075 

Min -20.674 -20.642 -20.482 -20.559 

Mean -20.491 -20.481 -20.452 -20.499 

stddev 0.066 0.052 0.012 0.110 

DIM 

Max -19.243 -19.243 -19.562 -19.562 

Min -20.477 -20.442 -20.383 -20.382 

Mean -20.237 -20.239 -20.183 -20.159 

stddev 0.222 0.229 0.174 0.258 

NB: WSE is the water surface elevation or flood water level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 38: Inundation vs DTM resolution 
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Figures 39 and 40 show how the terrain and flood water level changes as the resolution of the DTM is 

reduced. The terrain tends to be generalized when the grid size increases or resolution is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: LiDAR and DIM 1m,5m resolution at River cross section profile 
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4.4.3. Effects of the optimized parameters on flooding 

This section shows the differences between the optimized parameter DTMs from LiDAR and DIM. As 

the parameters are being optimized, this influences the inundation area, as shown in figure 41.  As objects 

are being added or removed to the ground, this might affect flood depth, WSE, flood extent and velocity 

of the flood water by either increasing or decreasing them. This is so because objects being added or 

removed may make the surface smoother or coarser. 

 

The central concept of the filtering is the inclusion or non-inclusion of points to either be part of the 

ground or not. In this vein, the more significant effect on the flooding in the LIDAR processing is on the 

standard deviation; this is because it changed from a value of 10cm to 1cm, which means that there was a 

reduction to the objects being included as part of the ground. This would eventually increase on the 

flooding extent, as can be seen in figure 42. This was an inundation area increase of 18.464 hectares. 

For the DIM processing, the most significant change happened on the offset parameter. This is because 

this value changed from 0.05m to 0.1m, which means some objects which were not part of the ground get 

included as ground. This explains the reduction of flood extent because the flooding would encounter 

more resistance from the added objects which were not there before. The decrease in the inundation area 

is 21.638 hectares. 

 

Figure 40: LiDAR and DIM 10m,20 resolution at river cross section profile 
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The choice of the profile, which is a river cross-section, was chosen to show that as the filtering is being 

done, the riverbank should be preserved as this is very vital when the resultant DTM is for flood 

modeling. Some of the filtering parameters end up flattening the riverbanks, curbs, etc. thereby increasing 

the flood extent, velocity, and adversely affecting the flood depth. The other parameter comparisons are 

shown in Appendix D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41:Comparison of bulge and stddev in LiDAR and DIM at river cross section profile 

Figure 42:Inundation area vs optimised parameter 
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4.4.4. Effects of different parameters on flooding 

 

In this section, the profile used is the vegetation profile. This profile was chosen to investigate the 

differences between LiDAR and DIM in terms of the effects of filtering on flooding in an area with a lot 

of tree cover. Silva et al. (2018)  found that some ground filtering algorithms performed poorly in forest 

areas, as they tended to undervalue the DTM elevations, they further state that the most significant 

differences between the different algorithms also occurred in areas of steep slopes. This explains how the 

Lasground algorithm performed around this area with vegetation cover. Before any filtering is done in 

Lasground, the step size must be decided. The default for Lasground is 5m but various switches give 

defaults depending on the terrain characteristics of the study area. 

Step parameter 

The step parameter determines the size of non-ground objects that can be filtered. From figure 43, it can 

be observed that as the step size reduces, the filtering capability of the algorithm is affected because it is 

not able to filter out the bigger trees or buildings. This is very noticeable in the DIM DTM. The LiDAR 

parameter shows more flooding in the study area because ground points can easily be identified than in 

the DIM. As this parameter is being tuned LiDAR inundation area reduced by 3.197ha, 9.504ha and 

1.439ha between step size 50m to 25m, 25m to 10m and 10m to 5m, respectively. The DIM also exhibits 

the same trend as it reduces by 14.662ha, 3.033ha and 3.986ha between step size 50m to 25m, 25m to 10m 

and 10m to 5m, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 43:Step parameter inundation area 
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Spike parameter 

The spike parameter determines at what height above and below spikes get removed, the below value is 

usually 10 times the above spike. The effect of the spike parameter is such that most of the terrain is 

inundated in the LiDAR scenario as opposed to the DIM, which again shows the advantage of LiDAR in 

such terrain. Figure 44 shows how the spike parameter affects the inundation areas. In the LiDAR, the 

area reduces by 0.606ha, increases by 0.552ha, and finally increases by 5.030ha. The DIM shows a similar 

trend of reduction, increment, and increment with values of 0.993ha,2.444ha, and 0.963ha, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bulge parameter 

The bulge parameter determines the acceptable bulge that the TIN surface can handle as points are being 

added to it during tuning. The default is one-tenth of the step when the step is 5m and one-fifth when the 

step size is less than 5m (Rapidlasso, n.d.-a). The bulge parameter in the LiDAR increases by 0.242ha, 

6.045ha, and 18.731ha between bulge sizes 2.5m,1.5m,1m, and 0,25m. DIM increases by 2.167 between 

bulge 2.5m and 1.5m, then reduce between 1.5m and 1m by 2.265ha, then the inundation area increases by 

10.727ha between 1.5m and 0.25m; this is highlighted in figure 45. This is because at lower values of the 

bulge, the algorithm only includes objects that fall within the small bulge threshold, and these would not 

impact so much on the flooding because they do not block the flow of the water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44:Spike parameter inundation area 



COMPARE UAV LASER DATA AND IMAGE DATA FOR FLOOD MODELLING 

53 

Figure 45:Bulge parameter inundation area 

Figure 46: Standard deviation parameter inundation area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard Deviation parameter 

The effect of the standard deviation on the inundation is such that for the LiDAR, it is constant between 

10cm and 6cm. It increases by 3 hectares between 6cm and 1cm; after that, the area does not change 

between 1cm and no standard deviation. For the DIM, it reduces by 1 hectare both between 10cm to 6cm 

and 6cm to 1cm, after which it remains constant; this is depicted in figure 46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Offset parameter 

The offset parameter is a threshold that determines the maximum height above the ground that points get 

included to the ground and has a default value of 0.05m. The effect of the offset parameter on the 

flooding seems to be more on the DIM than the LiDAR, though both show that there is a gradual 

decrease in inundation as the offset increases. This is shown in figure 47. In LiDAR there is a reduction of 
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0.868m,0.05m and 3.055m between offset 0.02m, 0.05m, 0.1m and 0.5m, respectively. The DIM data 

behaves differently as it reduces by 0.837ha,1.864ha,6.530ha between offset 0.02m,0.05m,0.1m, and 0.5m, 

respectively. The mean change in the inundation area for LiDAR and DIM is 1.324ha and 3.077ha, 

respectively. This is because a lot of objects are included as part of the ground as the offset value is 

increased, some of which might hinder the flow of water. An example of such a scenario is shown from 

the flooding extents of offset value 0.02 and 0.5 in figure 48, and the difference in flooding area is 

3.972ha.  
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub parameter 

The sub parameter denotes the initial search for the ground, and it ranges from coarse to extra fine 

corresponding to flat to very steep slopes. The effect of the sub parameter on the inundation is such that 

for the LiDAR, it increases by 0.448ha between sub3 and sub5, then reduces by 0.260ha between sub 5 

and sub 6, then increases by 0.172ha between sub 6 and sub 8. The DIM reduces by 0.249ha between sub 

3 and sub 5, then increases by 1.277ha between sub 5 and sub 6; finally, it decreases by 0.298ha between 

sub 6 and sub 8.  This is seen in figure 49. The choice of which parameter to use is heavily dependent on 

the terrain in the study area(Silva et al., 2018). 

Figure 47:Offset parameter inundation area 

Figure 48:Flooding scenario at Lidar offset 0.02m and 0.5m 
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Example showing the effect of spike parameter on flooding 

Figures 50 and 51 show the effect of the spike parameter on flooding along the vegetation profile. It can 

be seen that a comparison of the LiDAR and DIM in this area shows that the ground points are not easily 

seen in the DIM data; hence there is little flooding along this profile compared to the LiDAR, which has 

considerable flooding as the parameters are being adjusted. A comparison of the other parameters is 

shown in appendix E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: Sub parameter inundation area 

Figure 50: Effect of different DIM spike parameters on flooding 
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Figure 51: Effect of different LiDAR spike parameter on flooding 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

In this study, an investigation was conducted to ascertain whether UAV LiDAR or UAV DIM data could 

be used for flood modeling. Lasground parameters of step, spike, bulge, standard deviation, offset, and 

sub were optimized to produce a DTM that meets the requirements of having ramps, curbs, dividers, and 

riverbanks preserved. At the same time, macro objects like buildings, vegetation, and bridges should be 

removed to have a bare earth DTM.  

The findings from the comparison of the LiDAR and DIM DTMs and point clouds indicate that as the 

parameters are being tuned, this heavily influences what gets added to the produced surface. For example, 

when analyzing the LiDAR offset parameter, it showed that as the value of the offset increases, the RMS 

also increases. This means as more points are being added to the ground surface, the noise of the filtered 

surface and its distance also increases. Further, results from the cloud to cloud analysis on the bulge 

parameter showed that as the value of the parameter increases, so does the mean value and standard 

deviation. This gave mean distance and standard deviation values of 0.160m and 0.193m, and 0.078m and 

0.144m for surface 21 in both test areas, respectively.  

The analysis also showed that different landcover influence parameter settings. In vegetated areas, the 

difference between the LIDAR and DIM point clouds was higher than in the built-up. The relatively flat 

pavement showed no significant differences. Further, the high vegetation cover shows some significant 

differences also. This difference might be due to the season in which these data sets were captured; one 

was captured during the wet season (LiDAR) and the other during the dry season(DIM). This was likely to 

affect the vegetation cover and, consequently, on the filtering as well. 

The analysis on grid size or resolution of the DTMs showed that as the resolution of the DTM is reduced, 

the flooding extent increased. That the flooding extent is significant is no sign that the model is good, it 

merely means that as the elevation in a coarser DTM is more generalized and hence the possibility of 

objects which either block or direct flow being removed are more in the coarser DTM. Thus this accounts 

for the more flooding in both LiDAR and DIM data. So, according to this analysis, the smaller resolutions 

can depict the flooding better because the produced DTMs are closer to the actual terrain characteristics. 

This means that to obtain a point density of at least 1.5 points/m2 using LiDAR, the UAV flights have to 

be flown at reduced heights to meet this requirement of producing a high-resolution DTM (Hsieh et al., 

2016; Luo et al., 2016).  

The flood simulation was able to show that different parameter settings either increase or decrease the 

flooding effects. From the analysis based on the mean flood extent areas for both LiDAR and DIM, six 

parameters were identified as those which influence flood modeling. These are bulge, step, spike, standard 

deviation, sub, and offset. It was observed that the effects of these parameters are different on the LiDAR 

and DIM data (Green, 2015). For the LiDAR data, the parameter with the most significant influence is the 

bulge with a mean flood area of 8,339 hectares. 

In contrast, for DIM data, the one with the most significant influence is step with a mean area of 7.227 

hectares. The bulge parameter, which is a measure of the acceptable bulge that the TIN surface can handle 

as points are being added. This parameter is much more flexible because of the curvature the TIN surface 

makes. Changing this value helps to improve ground classifying of particularly DIM data (Rapidlasso, n.d.-

a). When tuning the DIM data, the parameters which seem to be very sensitive because of their high mean 

flood extent values are step, bulge, and offset. Hence, when processing the DIM data, the data processor 

should pay more attention to these, as a first guide. The LiDAR parameters most sensitive to the data are 
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bulge, step, and spike, so equally the processor when dealing with LiDAR data should pay more attention 

to these when tuning the filtering algorithm. 

Therefore, apart from having different acquisition methods, LiDAR and DIM also have different ways in 

which the parameters affect the processing of the data. However, it should be noted that among all the 

parameters of the Lasground algorithm, the step parameter should be set before any other because this 

determines the size of non-ground objects to be filtered out (Green, 2015). 

 

The results have shown that in open areas with low vegetation cover, the DIM data can be used for flood 

modeling. Also, the results have shown that parameter optimization of the ground filtering algorithm is 

essential as this adversely affects flooding depth, extent, and velocity. Further, the results have shown that 

parameter optimization is terrain dependent as the filtering has to suit the conditions of the local surface. 

5.2. Recommendations  

Data from gauging stations for checking the flood depth and for calibrating the model would be beneficial 

if this can be incorporated in future works. For a more realistic representation of the flood, and for 

obtaining a smoother DTM probably Lasground could be used in combination with another algorithm 

that can altogether remove bridges and low vegetation.  
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APPENDICES 

Appendix A : Rainfall Data extraction script in R 

 

library(raster) 

library(rgdal) 

library(spatial) 

install.packages("") 

getwd() 

dir() 

setwd("G:\\Msc_Thesis\\openLISEM\\rainfall4_may2019_N\\output_new1") 

Rain_data <- list.files(path = ".", pattern = "tif$", full.names = FALSE) 

Rain_Stack <- stack(Rain_data) 

rainfall <- c(1, Rain_data) 

# Checking the data source / information  

Rain_Stack[[1]] 

 

# Plot data for individual raster 

 

plot(Rain_Stack[[1]]) 

plot(Rain_Stack[[2]]) 

 

# Getting the cell  

colFromX(Rain_Stack, 39.2) 

rowFromY(Rain_Stack, -6.8) 

cellFromRowCol(Rain_Stack, 1, 2) 

 

# Getting cell data  

Rain_Stack[2] 

View(Rain_Stack[285]) 

 

#putting the cell data in a vector 

x <- c(Rain_Stack[2]) 

 

#plot the vector 

plot(x,xlab="Time step (min)", ylab="Rainfall (mm)", main="May 2019 rainfall") 

lines(x, lty=1) 
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Appendix B 

Appendix B-1 : Modified Batch Processing script for DIM data 

 

:: a batch script for converting a photogrammetry points into a 

:: number of products with a tile-based multi-core batch pipeline 

:: add LAStools\bin directory to PATH to run script from anywhere 

 

set PATH=%PATH%;C:\software\LAStools\bin 

 

:: specify the number of cores to use 

 

set NUM_CORES=4 

 

:: create a lasinfo report and a 0.5 m RGB raster for input LAZ file 

 

rmdir .\1_quality /s /q 

mkdir .\1_quality 

 

lasinfo -i 0_photogrammetry\*.laz ^ 

        -cd ^ 

        -o 1_quality\Dar_UAV.txt 

 

lasgrid -i 0_photogrammetry\*.laz ^ 

        -step 0.5 ^ 

        -rgb ^ 

        -fill 1 ^ 

        -o 1_quality\Dar_UAV.png 

 

:: use lastile to create a buffered tiling from the original 

:: photogrammetry points of Msimbazi river basin. we use '-tile_size 200' 

:: to specify the tile size and request a buffer of 30 meters 

:: around every tile with '-buffer 30' and '-flag_as_withheld' 

:: all the buffer points so they can easily be dropped later. 

:: the '-olaz' flag requests LASzip compressed output tiles to 

:: lower the I/O bottleneck. 

 

rmdir .\2_tiles_raw /s /q 

mkdir .\2_tiles_raw 

 

lastile -i 0_photogrammetry\*.laz ^ 

        -tile_size 200 -buffer 30 -flag_as_withheld ^ 

        -o 2_tiles_raw\Dar_UAV.laz -olaz 

 

rmdir .\3_tiles_temp1 /s /q 

mkdir .\3_tiles_temp1 

 

:: give the point closest to the 20th elevation percentile per 

:: 90 cm by 90 cm cell the classification code 8 (but only do 
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:: this for cells containing 20 or more points) using lasthin 

lasthin -i 2_tiles_raw\*.laz ^ 

        -step 0.9 ^ 

        -percentile 20 20 ^ 

        -classify_as 8 ^ 

        -odir 3_tiles_temp1 -olaz ^ 

        -cores %NUM_CORES% 

:: considering only points with classification code 8 (ignoring 

:: those with classification code 0) change to code from 8 to 12 

:: for all "overly isolated" points using lasnoise. the check 

:: for isolation uses cells of size 200 cm by 200 cm by 50 cm  

:: and marks points in cells whose neighbourhood of 27 cells has 

:: only 3 or fewer points in total (see lasnoise_README.txt) 

 

rmdir .\3_tiles_temp2 /s /q 

mkdir .\3_tiles_temp2 

 

lasnoise -i 3_tiles_temp1\*.laz ^ 

         -ignore_class 0 ^ 

         -step_xy 2 -step_z 0.5 -isolated 3 ^ 

         -classify_as 12 ^ 

         -odir 3_tiles_temp2 -olaz ^ 

         -cores %NUM_CORES% 

:: considering only the surviving points with classification 

:: code 8 (ignoring those with classification code 0 or 12) 

:: change their classification code from 8 either to ground (2) 

:: or to non-ground (1) using lasground. the temporary ground 

:: surface defined by the resulting ground points will be used 

:: to classify points below it as noise in the next step. 

 

rmdir .\3_tiles_temp3 /s /q 

mkdir .\3_tiles_temp3 

 

lasground -i 3_tiles_temp2\*.laz ^ 

          -ignore_class 0 12 ^ 

          -step 25 -spike 2.5 -bulge 1.5 -stddev 10 -offset 0.1 -sub 5 ^ 

          -odir 3_tiles_temp3 -olaz ^ 

          -cores %NUM_CORES% 

:: classify all points that are 20 cm or more below the surface 

:: that results from Delaunay triangulating the temporary ground 

:: points as noise (7) and all others as unclassified (1) 

 

rmdir .\4_tiles_denoised /s /q 

mkdir .\4_tiles_denoised 

 

lasheight -i 3_tiles_temp3\*.laz ^ 

          -classify_below -0.2 7 ^ 

          -classify_above -0.2 1 ^ 
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          -odir 4_tiles_denoised -olaz ^ 

          -cores %NUM_CORES% 

 

:: classify the lowest points per 25 cm by 25 cm cell that is *not* 

:: noise (i.e. classification other than 7) as 8 using lasthin  

 

rmdir .\5_tiles_thinned_lowest /s /q 

mkdir .\5_tiles_thinned_lowest 

 

lasthin -i 4_tiles_denoised\*.laz ^ 

        -ignore_class 7 ^ 

        -step 0.25 ^ 

        -lowest ^ 

        -classify_as 8 ^ 

        -odir 5_tiles_thinned_lowest -olaz ^ 

        -cores %NUM_CORES% 

 

:: classify points considering only the points with classification code 8  

:: (i.e. ignore classification 1 and 7) into ground (2) and non-ground (1)  

:: points using lasground with options '-town -extra_fine -bulge 0.1'  

 

rmdir .\6_tiles_ground /s /q 

mkdir .\6_tiles_ground 

 

lasground -i 5_tiles_thinned_lowest\*.laz ^ 

          -ignore_class 1 7 ^ 

          -step 25 -spike 2.5 -bulge 1.5 -stddev 10 -offset 0.1 -sub 5 ^ 

          -odir 6_tiles_ground -olaz ^ 

          -cores %NUM_CORES% 

 

:: interpolate points classified as 2 into a TIN and raster a 1m DTM 

:: but cutting out only the center 200 meter by 200 meter tile but not 

:: rasterizing the buffers. the DTM raster is stored as gridded LAZ for 

:: maximal compression 

 

rmdir .\7_tiles_dtm /s /q 

mkdir .\7_tiles_dtm 

 

las2dem -i 6_tiles_ground\*.laz ^ 

        -keep_class 2 ^ 

        -step 1 ^ 

        -use_tile_bb ^ 

        -odir 7_tiles_dtm -olaz ^ 

        -cores %NUM_CORES% 

 

:: we merge the gridded LAZ files for the DTM into one input and create 

:: a 1m hillshaded DTM raster in PNG format 
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blast2dem -i 7_tiles_dtm\*.laz -merged ^ 

          -hillshade ^ 

          -step 1 ^ 

          -odir 7_tiles_dtm -o dtm_hillshaded.png 

 

:: create clean folder for the final DTM raster 

 

rmdir .\8_tiles_dtm_final /s /q 

mkdir .\8_tiles_dtm_final 

 

blast2dem -i 7_tiles_dtm\*.laz -merged ^ 

 -elevation ^ 

             -step 1 ^ 

            -odir 8_tiles_dtm_final -o final_dtm_UAV.tif 
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Appendix B-2 : Modified Batch Processing script for LiDAR DIM data 

 

:: a batch script for processing LiDAR data into 

:: a number of products with a tile-based multi-core batch pipeline 

:: include LAStools in PATH to allow running script from anywhere 

 

set PATH=%PATH%;..; 

 

:: specify the number of cores to use 

 

set NUM_CORES=4 

 

:: create clean folder for the raw tiles with buffer 

 

rmdir .\1_tiles_raw /s /q 

mkdir .\1_tiles_raw 

 

:: use lastile to create a buffered tiling from the original 

:: flight strips. the flag '-files_are_flightlines' assures 

:: that points from different flight lines will get a unique 

:: flight lines ID stored in the 'point source ID' attribute 

:: that makes it possible to later identify from which points 

:: belong to the same flight strip. we use '-tile_size 200' 

:: to specify the tile size and request a buffer of 30 meters 

:: around every tile with '-buffer 30'. this buffer helps to 

:: reduce edge artifacts at tile boundaries in a tile-based 

:: processing pipeline.  

 

lastile -i 0_strips_raw\*.laz -files_are_flightlines ^ 

        -tile_size 200 -buffer 30 ^ 

 -utm 37south -vertical_wgs84 ^ 

        -o 1_tiles_raw\dar.laz -olaz 

 

:: create clean folder for the ground-classified tiles 

 

rmdir .\2_tiles_ground /s /q 

mkdir .\2_tiles_ground 

 

:: use lasground to find the bare-earth points in all tiles 

:: with the optimisation parameter values for step, spike, bulge,stddev,offset and sub 

:: (initial ground estimate) 

:: (see: lasground_README.txt). 

 

lasground -i 1_tiles_raw\*.laz ^ 

          -step 25 -spike 2 -bulge 1.5 -stddev 1 -offset 0.1 -sub 5 ^ 

   -compute_height ^ 

          -odir 2_tiles_ground -olaz ^ 
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          -cores %NUM_CORES% 

:: create clean folder for the denoised tiles 

 

rmdir .\3_tiles_denoised /s /q 

mkdir .\3_tiles_denoised 

 

:: use lasheight to remove low and high outliers that are often 

:: just noise (e.g. clouds or birds). by default lasheight uses 

:: the points classified as ground to construct a TIN and then 

:: calculates the height of all other points in respect to this 

:: ground surface TIN. with '-drop_above 40 -drop_below -3' all 

:: points that are 40 meters above the ground or 3 meters below 

:: the ground are removed from the output LAZ tiles that are to 

:: be stored in the '3_tiles_denoised' folder. if we have multiple 

:: input files this process runs on %NUM_CORES% many cores. 

 

lasheight -i 2_tiles_ground\*.laz ^ 

          -drop_above 40 -drop_below -3 ^ 

          -odir 3_tiles_denoised -olaz ^ 

          -cores %NUM_CORES% 

 

:: create clean folder for the classified tiles 

 

rmdir .\4_tiles_classified /s /q 

mkdir .\4_tiles_classified 

 

:: use lasclassify to identify buildings and trees in all denoised 

:: tiles.  

 

lasclassify -i 3_tiles_denoised\*.laz ^ 

     -ignore_class 7 ^ 

            -odir 4_tiles_classified -olaz ^ 

            -cores %NUM_CORES% 

 

:: create clean folder for the final tiles (stripped of the buffer) 

 

rmdir .\5_tiles_final /s /q 

mkdir .\5_tiles_final 

 

:: use lastile to remove the buffer from the classified tiles which 

:: is requested with the option '-remove_buffer'. 

 

lastile -i 4_tiles_classified\*.laz ^ 

        -remove_buffer ^ 

        -odir 5_tiles_final -olaz 

 

:: create clean folder for the raster DTMs in ESRI ASCII format 
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rmdir .\6_tiles_dtms /s /q 

mkdir .\6_tiles_dtms 

 

:: run las2dem on the ground-classified tiles to create raster DTMs 

:: in bil format for each individual tile. important 

:: is the '-keep_class 2' flag that activates a filter letting only 

:: the points classified as 'ground' through. in addition we use the 

:: '-thin_with_grid 0.5' filter to have only one ground point per 

:: 0.5m by 0.5m area. this assures that we construct and sample a 

:: TIN appropriate for the output resolution of 1.0m by 1.0m that is 

:: set by '-step 1.0'. very important is the '-use_tile_bb' parameter 

:: that limits rasterizating the TIN to the tile area *without* the 

:: buffer added by lastile in the 'tile_based_lidar_preparation.bat' 

:: batch script thereby avoiding any potential edge artifacts along  

:: the tile boundaries.  

 

las2dem -i 2_tiles_ground\*.laz ^ 

        -keep_class 2 -thin_with_grid 0.5 -step 1.0 -use_tile_bb ^ 

        -odir 6_tiles_dtms -obil ^ 

        -cores %NUM_CORES% 

 

:: create clean folder for the hillshaded DTM rasters 

 

rmdir .\7_tiles_hillshaded_dtms /s /q 

mkdir .\7_tiles_hillshaded_dtms 

 

:: use blast2dem to create individual 1m hillshaded DTM rasters from the 

:: LiDAR points that were classified as ground in each tile. . 

 

blast2dem -i 6_tiles_dtms\*.bil -merged ^ 

        -step 1.0 -hillshade -utm 37south -vertical_wgs84 ^ 

        -odir 7_tiles_hillshaded_dtms -opng ^ 

        -cores %NUM_CORES% 

 

:: create clean folder for the final DTM raster 

 

rmdir .\8_tiles_dtm_final /s /q 

mkdir .\8_tiles_dtm_final 

 

:: use blast2dem to create a single tif TM raster from on-the 

:: fly merged bil rasters.  

 

 

blast2dem -i 6_tiles_dtms\*.bil -merged ^ 

        -step 1.0 -elevation -utm 37south -vertical_wgs84 ^ 

        -odir 8_tiles_dtm_final -o dtm_liDAR.tif 
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Appendix C : R script for calculating correlation coefficient and Y-intercept 

 

# correlation coefficient for Vegetated area 

 

vegetated <- read.csv('vegetated_corr.csv') 

head(vegetated) 

cor.test(vegetated$lidar,vegetated$dim) 

mymodel <- lm(vegetated$dim ~ vegetated$lidar) 

summary(mymodel) 

 

# correlation coefficient for built-up area 

 

builtup <- read.csv('builtup_corr.csv') 

head(builtup) 

cor.test(builtup$lidar,builtup$dim) 

mymodel1 <- lm(builtup$dim~builtup$lidar) 

summary(mymodel1) 

 

# correlation coefficient for bare area 

 

bare <- read.csv('bare_corr.csv') 

head(bare) 

cor.test(bare$lidar,bare$dim) 

mymodel2 <- lm(bare$dim~bare$lidar) 

summary(mymodel2) 

 

# correlation coefficient for man-made area 

 

man_made <- read.csv('man_made_corr.csv') 

head(man_made) 

cor.test(man_made$lidar,man_made$dim) 

mymodel3 <- lm(man_made$dim~man_made$lidar) 

summary(mymodel3) 
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Appendix D: Effects of optimised parameters on flooding 

Appendix D-1 : WSE from Optimised parameters DTMs :left LiDAR Step & spike and right DIM step 

& spike (River cross-section profile) 
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Appendix D-2 : WSE from Optimised parameters DTMs :left LiDAR bulge & stddev and right DIM 

bulge & stddev (River cross-section profile) 
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Appendix D-3 : WSE from Optimised parameters DTMs :left LiDAR offset & sub and right DIM offset 
& sub (River cross-section profile) 
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Appendix E: Effects of different parameters on flooding 

Appendix E-1: LiDAR Step parameter effect on inundation (Vegetation profile) 
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Appendix E-2: DIM Step parameter effect on inundation (Vegetation profile) 
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Appendix E-3 : LiDAR Spike parameter effect on inundation (Vegetation profile) 
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Appendix E-4 : DIM Spike parameter effect on inundation (Vegetation profile) 
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Appendix E-5: LiDAR offset parameter effect on inundation (Vegetation profile) 
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Appendix E-6: LiDAR Step parameter effect on inundation (Vegetation profile) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


