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ABSTRACT 

Crop mapping in smallholder farm systems has been hindered by the unavailability of high spatial 

resolution images. Sentinel-2 images have provided a sigh of relieve for mapping crops in smallholder 

farms systems due to improved spatial resolution. The emergency of PS images has presented new and 

attractive data product to maps crops in smallholder farm systems. Thus, the study makes use of PS 

images to map crop types in smallholder farms systems using TWDTW and tcDTW. The two classifiers 

were trained using the same data for comparison of the classification results. The comparison between the 

resulting overall classification accuracies from the two classifiers was tested using McNemar’s test. The 

usability of the PS images was evaluated for spatial, spectral and temporal resolutions. The object-based 

classification results showed a slightly higher overall accuracy (78.08%) than pixel-based classification with 

an overall accuracy of 75.78%. McNemar’s Chi-square test showed that the results of the two 

classifications were statistically significant different. Spatial suitability of PS images made use of the 

segmentation goodness. The spectral suitability made use NDVI generated from red edge bands of S2 

images. The temporal resolution evaluation of PS images made use of the temporal nature of PS images. It 

was concluded that the object-based classification produced better classification overall accuracy and a 

more homogeneous crop type map. Additionally, from the vegetation indices generated from the red edge 

bands, NDVIREA1, NDVIREA2, and NDVIREA4 produced better overall accuracy than classical NDVI 

hence can be used to improve classification accuracy. Contrary, the other vegetation indices generated 

from red edge bands (NDVIREA3, NDVIren1, NDVIren2, NDVIren3, NDVIre1, NDVIre2 and 

NDVIre3 resulted to overall accuracy equal to or lower than the one obtained using classical NDVI hence 

did not improve the classification accuracy.  

 

Keywords: PS images, NDVI time series, TWDTW, tcDTW, red edge. 
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1. INTRODUCTION 

1.1. Background information 

Agriculture plays a vital role in the achievement of Sustainable Development Goals (SDGs): End poverty 

in all its forms everywhere and End hunger, achieve food security and improved nutrition and promote 

sustainable agriculture (UN News Centre, 2015). However, climate change, amongst other prevailing 

factors, poses a threat to the realisation of these goals. Additionally, the fast increasing population puts 

pressure on the existing natural resources due to increased demand for food production, with the world 

population estimated to be 9.8 billion by 2050 (U.N. Dept. of Economic and Social Affairs, 2017).  

It is estimated that globally there are more than 475 million smallholder farms that provide food for 

almost a third of the world’s population (Wegner and Zwart, 2011; Lowder et al., 2016). These farmers 

practise their agriculture in smallholder farms. Smallholder farms in this study are defined as farms less 

than 2 hectares(ha) Thapa (2010). Smallholder farms are usually subdivided in different fields. These farm 

fields may contain the same crop or different crops at the same rainy season. Persello et al. (2019) defined 

the agricultural(crop) field as an area of land used for agricultural purpose on which a specific crop or a 

crop mixture is cultivated. 

Smallholder farmers remain as critical players in realisation of SGDs as they are believed to produce 70-

80% of food consumed globally (Maass, 2013).  Moreover, they are categorised as significant contributors 

to national and global food security as well as key contributors to economic growth (UNCTAD, 2015). 

However, these farmers are faced with challenges of low capital and erratic rainfall since they are mostly 

reliant on rain-fed agriculture and, hence, profoundly affected by climatic variability. Thus, availing 

appropriate and accurate classification and mapping methodologies for smallholder farmer systems will 

help in the generation of quality crop type information. The information will inform decision-makers on 

the formulation of policies that help boost agricultural production amongst these farmers hence reducing 

poverty and hunger. 

Mostly, agricultural information is gathered during the national population census. Thus, the use of Earth 

Observation data to map smallholder crops types will come handy in providing timely, comprehensive, 

transparent, and accurate agricultural information (Becker-Reshef et al., 2010). Earth Observation 

methods are cheaper than the census method for data collection (Delrue et al., 2013) as they help to 

identify the crop types planted in specific regions remotely. Moreover, they help generate information on 

crop statistics within a particular area which is essential in planning and resource allocation such as import 

and export of foods from one locality to another and even at the national level (Li et al., 2007). Hence, 

agricultural crop mapping will help with detailed monitoring of smallholder cropping to understand food 

(in)security in particular areas and the nation as a whole. Besides, updated crop statistics will also help the 

agriculture departments to estimate the country's food production.  

There has been increased use of Earth Observation in agriculture motivated by a large number of freely 

available satellite images such as Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Sentinel. Landsat images have been extensively used for agricultural land cover mapping at regional and 

national levels. An example of a national level mapping is a study done by Turker and Arikan (2005) 

employing Landsat 7 images to map crops in Turkey. On regional mapping,  Xiao et al. (2005) used 

MODIS images to map rice paddy fields at provincial and county level in Southern China. Sentinel-1 (S1) 

and Sentinel-2 (S2) images provide better spatial resolution as compared to Landsat and MODIS images. 
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Due to their high spatial resolution, S2 data has been adopted in crop mapping in smallholder farms  

(Maponya et al., 2020;  Lambert et al., 2018;  Jin et al., 2019).  

Although S2 data provides better spatial resolution than the other free sensors to map smallholder farms, 

heterogeneity within the smallholder farm systems requires higher spatial resolution to map. Previous 

studies made use of costly high-resolution satellite images such as WorldView images either to map the 

smallholder farms’ field boundaries (Persello et al., 2019) or to identify cropped areas (McCarty et al., 

2017; Neigh et al., 2018). Unfortunately, these studies cannot be replicated in other study areas because of 

the prohibitive costs, i.e. the costs for WorldView images are greater than $10 per km2 (McCarty et al., 

2017). Therefore, cost-efficient solutions are required for identifying crop types in smallholder farms.  

Thus, emergency of PS images represents a relatively new and very attractive data product for agriculture 

mapping due to the spatial resolution of 3 m and temporal resolution of one-two days.  The short revisit 

time proves essential for the production of multitemporal images which have been shown to provide 

better accuracy than single-date images in pixel-based classification ( Murthy et al., 2003; Mtibaa and Irie, 

2016). The costs for accessing these images are much lower ($1.28 per km2) than other high-resolution 

data products such as WorldView. PS images have been used in agriculture to map Striga weed within 

plantations (Mudereri et al., 2019). The authors proved that PS images achieve better results in detecting 

the weeds than S2 images. Despite the clear advantages of these images, they have not been exploited to 

their full potential for smallholder farms mapping. 

Therefore this study will make use of multitemporal PS images to map crop types in smallholder farm 

systems using Time-weighted Dynamic Time Warping (TWDTW) (Maus et al., 2016) and time 

constrained Dynamic Time Warping (tcDTW) (Csillik et al., 2019).  

1.2. Research Objective 

The overall objective of this work is to investigate a suitable method to classify crop type in smallholder 

farm systems from multitemporal PlanetScope data 

1.2.1. Specific objectives 

1. To compare object-based and pixel-based classification approaches to map crops in smallholder 

farms 

2. To evaluate the suitability of PlanetScope images empirically to map crops in smallholder farms 

1.2.2. Research questions 

1. How do pixel-based classification and object-based classification perform in terms of 

computational efficiency and classification accuracy in mapping crop types in smallholder farms 

using high spatial and temporal resolution images? 

2. How does the spatial, spectral and temporal resolution of PS images enable discrimination of crop 

types in smallholder farmer systems in terms of classification accuracy? 
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2. LITERATURE REVIEW 

This chapter captures relevant technical and application on smallholder crop mapping. 

2.1. Multitemporal images in crop mapping 

Multitemporal images have proven to provide better classification than single date images for mapping 

crops as they provide crops information at different phenological stages (Lunetta and Balogh, 1999; 

Murthy et al., 2003). Using SkySat imagery, Jain et al. (2016) were able to predict smallholder wheat yield 

and concluded that increased frequency of the temporal images helped in improving the accuracy of the 

predictions. They further noted that high spatial-temporal data could be used to map field-level yield 

statistics. Conrad et al. (2014), on the other hand, experimenting on the optimal number of acquisition 

dates to attain high classification accuracy using RapidEye images learnt that an increasing number of 

images does not necessarily improve classification accuracy. The authors found out that better 

classification results can be obtained by using an optimal number of images based on the phenological 

cycles of the crops to be mapped. Asgarian et al. ( 2016) were able to map crop types and study the 

dynamic agricultural fields in Iran using Landsat 8 multitemporal images. The crop type map generated 

proved to be important in providing agricultural information to the decision-makers on crops grown. In 

exploring ways to improve crop type classification accuracy, Liu et al. (2014) used synthetic and real 

images, to integrate low and high-resolution images. Their results showed that better crop type maps were 

achieved using low spatial resolution images.  Further, high classification accuracy was attained when more 

than one images were used and when images used are from times when the crops are most distinguishable.  

Inglada et al. (2015) used 12 study sites to represent different global landscapes to experimented on the 

production of crop type maps using  SPOT4, Landsat8 and RapidEye imagery.  They found that the 

quality of crop maps were affected by the crop classes and the number of images available.  

S1 & S2, Landsat8 images have been used to study the potential of multisource images in crop mapping, 

where the authors conclude that S1 images were weaker to identify crops than optical images Sun et al. 

(2019). They also noted that red-edge bands were more sensitive to vegetation than the standard bands. 

Meng et al. (2020) worked on establishing a temporal window which is most important for crop mapping. 

The authors concluded that the performance of crop mapping could be improved with the use of data 

from the middle and later stages of the growth cycle. Vuolo et al. (2018) assessed the impact of 

multitemporal data on crop type classification using S2 data. The authors found out that use of 

multitemporal increased the crop type classification accuracy significantly. 

2.2. Crops mapping using Normalised Difference Vegetative Index (NDVI) 

NDVI has been extensively used in crop mapping (Asgarian et al., 2016; Ashourloo et al., 2019; Belgiu and 

Csillik, 2018; Celik et al., 2015; Csillik et al., 2019; Foerster et al., 2012; Guan et al., 2016; Ouzemou et al., 

2018; Pan et al., 2015; Skakun et al., 2017; Zheng et al., 2015) due to its sensitivity to chlorophyll and 

hence its correlation with crop phenological changes. Schuster et al. (2012) studied the use of red edge 

NDVI and red NDVI from RapidEye images to improve overall land use classification in west Berlin, 

Germany for classes such as agricultural areas, water bodies, vegetation and urban surfaces. The authors 

found out that improvement in land use classification results when using red edge NDVI, depended on 

the classes being investigated. Thus, the effects of red edge NDVI are class-specific and based on the 

chlorophyll content within the leaves for the class. The study by Gerstmann et al. (2016) revealed that red 

edge NDVI could better discriminate between winter barley and winter wheat than the classical NDVI. 
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Comparing classical NDVI with red edge NDVI for corn yield prediction during early and late stages of 

growth, Sharma et al. (2015) concluded that in the early growth stage, the two indices did not have a 

difference in prediction. In contrast, in the late growth stages, red edge NDVI showed better corn yield 

prediction results than classical NDVI. The difference was due to the high sensitivity of red edge bands to 

low chlorophyll concentration (Gitelson and Merzlyak, 1997). Skakun et al. (2017) used MODIS NDVI 

time series data to map winter cropping for a large area. They concluded that the use of NDVI ensured 

robustness in the processing since the input data was little.  

Similarly, MODIS NDVI time series was used to map three main crops (maize, soy and cotton) in Mato 

Grosso (Chen et al., 2018).  Wardlow and Egbert, (2010) compared NDVI and Enhanced Vegetation 

Index (EVI) to map crops accurately using MODIS data in US central plains. They found out that the two 

vegetation indices had almost the same classification accuracies for irrigated and non- irrigated crops. Gao 

et al. (2000) found out that NDVI is more sensitive to chlorophyll and more advantageous than EVI to 

portray biophysical properties applicable across different canopies. The study using the RapidEye 

vegetation indices on crop type classification and their influence on classification accuracy concluded that 

red edge NDVI resulted in higher classification accuracy (Ustuner et al., 2014) 

2.3. Pixel-based and object-based classification comparison 

Duro et al. (2012) examined pixel-based and object-based classification ability to map land cover using 

decision trees, Random Forest (RF) and Support Vector Machine (SVM) and concluded that there was no 

statistically significant difference between pixel-based and object-based classification. They also found the 

segmentation process to be time consuming; hence object-based classification took more time.  

The potential of both pixel and object-based classification to map crop systems using five supervised 

classification algorithms has been studied as well as the effect of improved spatial resolution on 

classification (Castillejo-González et al., 2009). The study concluded that object-based classification 

outperformed pixel-based classification in terms of accuracy. Additionally, improvement in spatial 

resolution led to an increase in classification accuracy. Robertson and King, (2011) compared the 

classification accuracy between pixel-based classification and object-based classification in land use/land 

cover mapping in Canada using Landsat Thematic Mapper. The authors concluded that the overall 

accuracies of the two classifiers were not significantly different using McNemar’s test.    

Belgiu and Csillik (2018) studied the performance of TWDTW in cropland mapping using S2 images for 

both pixel and object-based classification in three study areas. In their conclusion, they noted that object-

based classification outperformed pixel-based classification in terms of quality of the output products as 

well as the computational time. Additionally, when comparing RF with TWDTW, the authors found that 

RF produced better classification results than TWDTW in the region with high within-field heterogeneity. 

The study by Valero et al. (2016) focused on comparing pixel and object-based classification to determine 

binary cropland mask using the framework of Sen2Agri using 12 test sites using SPOT4, RapidEye and 

Landsat8 as a proxy to S2. The authors concluded that the two methods yielded similar results. Yet, 

object-based classification resulted in less noisy classification maps.    

2.4. Dynamic time warping (DTW) for crop mapping 

DTW has been used in agriculture mapping in different forms. Maus et al. (2016) studied DTW for land 

cover and land use classification using remote time series and the importance of time temporal constraint. 

In their study, they concluded that although DTW works well for shape matching; TWDTW improves on 

DTW by generating a better classification accuracy for land use and land cover classification using remote 

sensing time series.  Petitjean et al. (2012) introduced DTW to deal with irregular time series for land use 

and land cover mapping. The authors concluded that DTW was able to solve the main challenges arising 

from high temporal resolution satellite image series such as irregular sampling in temporal dimension and 
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comparison of pairs of time series having different number of samples. Belgiu and Csillik, (2018) studied 

the performance of TWDTW method to map cropland in different agroecosystems. The authors 

compared the results of TWDTW method using pixel-based and object-based analysis with the results 

from RF; TWDTW was proved to be less sensitive to training samples. The tcDTW has been used for 

crop mapping, whereby the classification using tcDTW was compared with DTW without constraints 

(Csillik et al., 2019). The authors concluded that tcDTW resulted in higher overall classification accuracy 

than DTW. Manabe et al. (2018) adopted the use of TWDTW and EVI from MODIS to develop a 

framework for integrated crop and livestock (ICL). They found out that the framework was able to map 

ICL areas within Sinop, Mato Grosso region. However, there were misclassifications between pasture and 

crops. Li and Bijker, (2019) used TWDTW dissimilarity measure with SPRING search strategy (twDTWS) 

to study the use of both scatter coefficients and features decomposed from Sentinel-1A(S1A) dual-

polarization to map vegetables. The authors discovered that using twDTWS, it was possible to classify 

vegetable from S1A, decomposed features from S1A did not affect overall accuracy, and twDTWS had 

low sensitivity to relative weights between time factor and feature similarity.  

Guan et al. (2016) used DTW-distance-based similarity to map rice growing in Vietnam. They found that 

the results generated had a high correlation with the statistical data as proof that the results produced were 

reliable.  

Dong et al. (2020) used phenology TWDTW to map winter wheat in a large area of  North China based 

on NDPI ( calculated by replacing red band in equation(1) with red-SWIR bands to minimise sensitivity to 

soil background; snowmelt effect (Wang et al., 2017)). The classification achieved an overall accuracy of 

89.98% with the planting area generated from the classification agreeing with the municipal census data.    

Due to its ability to calculate optimal alignment between two-time series, DTW was adopted to map rice 

in Japan (Chen et al., 2015). The authors were able to map rice and damages caused by the Tsunami on the 

crop. The resulting information from the classification showed a high correlation of 0.77 with the area's 

statistics.  

Guan et al. (2018) made use of open-boundary locally weighted dynamic time warping (OLWDTW) to 

classify rice paddy and dryland crops. The authors observed that OLWDTW resulted in higher 

classification accuracy than usual DTW.  Although the OLWDTW had a higher overall accuracy, it 

produced low accuracy for dryland crops due to the small plots of dryland crops.  

DTW was applied to map single cropping, double cropping and horticulture in India using MODIS 

NDVI (Mondal and Jeganathan, 2018). The authors compared the use of  Euclidean distance (ED) with 

DTW results; DTW gave better overall classification accuracy than ED. The authors found out that DTW 

gave better results in classifying single and double cropping than for horticulture.   

2.5. Use of  PS and S2 images in agricultural mapping 

Mudereri et al. (2019) evaluated the strength of S2 and PS images to map Striga weed within maize 

plantation. They concluded that S2 and PS images produced high classification accuracies in detecting 

Striga weeds though PS images showed slightly higher classification accuracy. PS images were used to 

establish a sample size sufficient to estimate humus content in the soil for precision agriculture in Japan 

(Odagawa et al., 2019). The authors were able to produce high accuracy models to estimate humus content 

using PS images. Houborg and McCabe (2016) evaluated the suitability of PS images for mapping alfalfa, 

corn, carrots and other vegetables in the irrigated area in Riyadh; Saudi Arabia. They found out that the 

high spatial resolution increases the ability to discriminate within-field variability in the growth period of 

crops.  

The efficiency of S2, PS images, Geo-Eye-1, WorldView-2 and WorldView-3 on estimating sorghum yield 

was recently assessed (Lobell et al., 2020). The authors concluded that the satellite sensors exhibited 

similarity in their performance (Lobell et al., 2020). Liu et al. (2019) used PS images to develop a model to 
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map forage production in California. The study demonstrated the utility of satellite images to generate 

spatially explicit and near real-time forage estimates as the generated models agreed well with field 

measurements with R2 of 0.8.  Breunig et al. (2020) used PS images to delineate agricultural management 

zones in Brazil based on the assumption that above-ground biomass of cover crops (white oats, forage 

turnip and rye) are correlated to cash crop (maize and soybean) yields. The authors conclude that the 

generated management zones maps can guide farmers before cash crop farming.  Their analysis also 

concluded that there was a high correlation between cover crops and cash crops with correlation 

coefficient (r) values of more than 0.7 for all cover crops.   

2.6. Smallholder farm mapping 

Different approaches which range from machine learning to deep learning,  have been adopted to map 

smallholder farms using remotely sensed images. Persello et al. (2019) mapped smallholder farms using 

Worldview-2/3 imagery to delineate agricultural fields using fully convolutional networks. They were able 

to segment the study areas into different agricultural fields, obtaining an F-score of 0.7 and 0.6 for the two 

study sites. Lambert et al. (2018)  estimated smallholder farms crop production at the village level using S2 

images in Mali cotton belt. They learned that S2 provided an opportunity to map smallholder crop types 

with high classification overall accuracy, i.e. 80%. To overcome the challenge of smaller smallholder farms 

(i.e. smaller than the resolution of the freely available images)Neigh et al. (2018) used Worldview-1/2 

imagery to map smallholder crop area in the Tigray area of Ethiopia. The authors were able to estimate 

37% of cropped area in the study area. In mapping smallholder farming, Jin et al. (2017) evaluated crop 

yield estimates using Skysat, RapidEye and S2 images in western Kenya. This study revealed that the 

generated model was able to capture within and between field heterogeneity. In an attempt to measure 

smallholder yields at national and global scales, Jin et al. (2019) generated countrywide 10m resolution 

maize yields maps for Kenya and Tanzania using S1 and S2 imagery. Aguilar et al. (2018) adopted the use 

of a cloud-based ensemble classifier to map smallholder systems in West Africa using Worldview-2 data. 

Their experiments proved that ensemble classifiers (Maximum Entropy model (MaxEnt), SVM with the 

linear kernel (SVML), SVM with the polynomial kernel (SVMP) and SVM with Gaussian kernel (SVMR)) 

could be adopted to map smallholder farms in West Africa, where the classier attained an overall accuracy 

of 75.9%. Jain et al. (2017) worked on an automated method to map winter cropped area in smallholder 

farms in India. The authors used MODIS data. They found out that although the automated method was 

able to map winter cropped area for the country, the overall accuracy of the classification varied largely as 

per the level of heterogeneity within the smallholder farms. Xie et al. (2019) made use of deep 

convolutional neural networks(CNN) to map smallholder farms in four areas in China using GaoFen-1 

images. This study showed that CNN produced better classification accuracy than RF classifier.  
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3. STUDY AREA  AND MATERIALS 

This part of the report gives details on the study area and materials used in the study. 

3.1. Study Area 

The study area is located in Diepenheim, the Netherlands. It is located in Hof van Twente municipality in  

Overijssel province, as shown in  

 
Figure 1. Diepenheim is one of the areas in the country with smallholder farms. According to the data 

obtained from National geo register, both winter and summer crops are cultivated (Kadaster, n.d.). The 

main crops grown in the area include corn, summer and winter barley, winter wheat and potatoes. Corn is 

usually planted in April/May and harvested in September; potatoes are as well planted in April and May 

for half-late and late potatoes and harvested in September and October respectively. Winter barley and 

winter wheat are sown in October and mid-February respectively and harvested in August. Summer barley 

is planted in around February/March and harvested in August. The crop calendar shows the planting and 

harvesting time of the crops (Figure 2). The study area is approximately  63.66 km2.  
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Figure 1: Diepenheim study  Area showing crops grown in the year 2018 

 

 

Figure 2: Crop calendar for crops grown in Diepenheim 

Source: Brink et al., 2008; Darwinkel, 1997; “Gerst - Wikipedia,” n.d., “Potato - Wikipedia,” n.d. 

3.2. Material 

3.2.1. Satellite data 

PS satellite images were downloaded from PlanetScope labs portal 

(https://www.planet.com/products/planet-imagery/). Area of interest (AOI) was created using Google 

Earth. 

The AOI was converted to Keyhole Markup Language (KML) file format and uploaded in the portal to 

mark the download area. Then, filters for cloud cover and coverage was defined at 0% and 100% 

respectively. The available PS Analytic Ortho Scene product 4 spectral bands (blue, green, red, near-

infrared) images were downloaded, as shown in Table 1. PS analytic ortho scene was selected for the 

study. The images were already radiometrically and geometrically corrected (Planet, 2019). The PS images 

downloaded were captured in scenes with small tiles for the same date. Complete image for each date, as 

shown in Table 1 was realised by mosaicking two PS image tiles for that specific date. This process was 

repeated for all images downloaded for all months. Due to the availability of winter crops within the study 

area, more images were sought for January, November and December. January image had a cloud cover of 

Month

Weeks I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV I II IIIIV

Corn

Potatoes

Summer barley   

Winter barley 

Winter wheat 

Key Early-season Mid-season Late-season

crop 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

https://www.planet.com/products/planet-imagery/


Mapping crops in smallholder farm systems from high-spatial-resolution and multi-temporal satellite 

images  

 

15 

40%, whereas the November image had a cloud cover of  1%. December images had a cloud cover of 

over 45%.  From the metadata of the PS image tiles fitting (selected) the study area had 0.36% cloud 

cover, 0.01% cloud cover for November image and over 45% for the December images. Hence, the 

December image could not provide useful information for the current study. 

Cloud free images were downloaded for February, March, April, May, June, July, August September and 

October for the year 2018. The summary in Table 1 shows the used images.  

 

Other images were downloaded for evaluation of the suitability of temporal capability of the PS images. 

The filter for cloud cover was set at 5% and area coverage at 100%. More dense images were needed to 

evaluate the temporal suitability of PS images to map crops in smallholder farm systems; hence additional 

PS images downloaded are as shown in Table 2.  

 

Table 1: Time series data (PS images) showing cloud cover (C.C), Date of the year (DoY), months and 

specific dates for the images used in  Diepenheim study area  

 

Table 2: Additional PS images to assess the suitability of the temporal nature of PS Images to map crops 
in smallholder farm systems 

 

S2 images were downloaded to evaluate the suitability of PS bands for crop mapping in smallholder farms. 

Ten images acquired by multispectral instrument (MSI) sensor onboard S2 platform (Table 3) were 

downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).  

PlanetScope Images for Area around Diepenheim 

Months date C.C %  DoY 

January 21-Jan 0.36 21 

February 16-Feb 0 47 

March 20-Mar 0 79 

April 18-Apr 0 108 

May 08-May 0 128 

June 30-Jun 0 181 

July 01-Jul 0 182 

August 02-Aug 0 214 

September 25-Sep 0 268 

October 28-Oct 0 303 

November 15-Nov 0.01 319 

Extra PlanetScope Images for Area around Diepenheim 

Months date C.C %  DoY 

March 2-Mar 0.08 61 

March 31-Mar 0.04 90 

May 28-May 0.01 148 

June 6-Jun 0.01 157 

July 16-Jul 0.00 197 

August 07-Aug 0.02 217 

September 05-Sep 0.05 248 

October 12-Oct 0.05 285 

https://scihub.copernicus.eu/
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Table 3: S2 images to spectrally evaluate the suitability of PS images for crop mapping in smallholder 

farms  

S2 Images for Area around Diepenheim 

Months Date C.C %  DoY 

January 08-Jan 41.89 8 

February 07-Feb 1.29 38 

March 19-Mar 1.5 78 

April 18-Apr 43.23 108 

May 08-May 0.79 128 

June 07-Jun 6.74 158 

July 27-Jul 7.67 208 

August 06-Aug 0.69 218 

September 30-Sep 4.9 273 

October 10-Oct 0.4 283 

3.2.2. Reference data 

The reference data were downloaded from the Dutch National geo-register. The Dutch National geo-

register is the source of geoinformation in the Netherlands where 6833 datasets, services and maps are 

stored. The Dutch National geo-register contains data in different categories such as geoscientific data, 

agriculture and livestock height, amongst others. Basic registration crop plot (BRP) data was downloaded 

(https://bit.ly/2URJ2HU) for the year 2018. The files were provided in ESRI format file database under 

the terms of use for open data that allows data to be used by both private individuals and companies in 

their own applications (http://www.rijksoverheid.nl/opendata/voorwaarden). The data contained both 

agricultural plots and cultivated crops. The boundaries of the agricultural plots are based on Dutch 

agricultural area, while cultivated crops are shared by the farmers (Kadaster, n.d.).  

3.2.3. Software used in the study 

The main softwares used in this work are depicted in Table 4. 

Table 4: Software used in the data processing 

Software Type Analysis 

ArcGIS 10.7.1 Commercial Co-registration 

Crop mask preparation 

eCognition Commercial Object-based classification 

ERDAS imagine 2018 Commercial Mosaicking PS images 

Visual interpretation of pixel 

alignment 

Visual interpretation of 

segmentation 

ENVI 5.5 Commercial Segmentation evaluation 

QGIS3.10.0 Open-source Image pixel alignment 

Resampling of  S2 images 

R Open-source Programming 

Codes adopted in the study: Maus et al. (2016); Marpu et al. (2010); Csillik et al. (2019) and codes used in 

GFM course practicals. 
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4. METHODOLOGY 

4.1. Pre-processing 

This part of the report gives details on the pre-processing done on the data sets acquired for the study. 

4.1.1. Crop data set and PS data co-registration  

The crop dataset was projected in “Rijksdriehoekscoördinaten” (RD) New coordinates (Dutch national 

coordinate system) (EPSG, 2005) and Amersfoort datum. PS images were projected in Universal Traverse 

Mercator (UTM) zone 32 North (N) coordinates and WG84 datum.  Thus, a misalignment of the two 

datasets arose. Therefore, crop dataset was projected to geographic coordinate WGS1984 datum and then 

re-projected to UTM zone 32N. After this process, the two datasets were co-registered. The AOI  was 

realised by visually observing small irregular-shaped fields which have not been put under land 

consolidation. Land consolidation refers to changes in the property resulting from the performance of 

works or arrangement of land use in order to meet particular objectives (Brink, 2004). Land consolidation 

is a planned process of aggregating smallholder farms to aid agricultural mechanisation for high 

agricultural production. Additionally, land consolidation is a statutory tool used to resolve Netherlands 

land-use resolutions at both national and provincial levels (Brink, 2004).  The tool allows for land 

acquisition, land exchange and land development.  

Before calculation of NDVI values, all images were co-registered. This was done using ERDAS Imagine 

software, where one of the images was used as a reference image. The rest of the images were checked for 

alignment of pixels against it.  

4.2. Sampling strategy 

An internal buffer of 10 meters was generated within each polygon (crop field)  to avoid border effect. 

Due to border effect, crops at the centre of a plot have different growth pattern from the one at the 

borders. The border effect might result in growth difference either due to a mixture of different crops or 

less or no fertiliser reaching the boundaries. After extracting the buffer zone from each polygon, points 

were randomly generated within.             

The random points generated were then joined with their respective polygons. Stratified random sampling 
was used since it allows for the creation of strata for each crop (Foody, 2009). These strata allowed every 
crop to be selected in the sample data.  A 50 pixels sample was extracted for each crop polygon. For the 
training data sample, the first crop polygons for each crop were selected. The polygons used to generate 
training data were excluded for the sampling done for validation data. This was done to separate the 
training data from the validation data clearly. The validation data was generated from the remaining 
polygons, where 50 samples were sampled for each class  (Congalton, 2001).  
Initially, corn had three classes that are corncob mix, corn cutting and corn grain. Similarly, potatoes had 

three different classes; starch potatoes, seed potatoes and consumption potatoes. The three classes for 

corn and potatoes were merged to form corn and potatoes class respectively. This is the reason why these 

two crops have more than 50 samples. The merge was motivated by the fact that the crops had almost the 

same resemblance in their temporal profiles. The distribution of training and validation data is shown in 

Table 5. The spatial distribution of the training and validation data is depicted in Figure 3. 
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Table 5: Training and validation data 

Label Training samples (pixels) Validation samples (pixels) 

Corn 150 150 

Potatoes 150 150 

Summer barley 50 50 

Winter barley 50 31 

Winter wheat 50 50 

Total 450 450 

 

 
Figure 3: PlanetScope image and  spatial distribution of training and validation samples 

4.3. NDVI time series 

NDVI has been proven to be a reliable vegetation index for crop mapping using satellite image time series 

( Belgiu and Csillik, 2018). Due to its sensitivity to chlorophyll, NDVI can explain the crop phenology at 

different development stages. For example, if there is no crop present on the field the NDVI values will 

be near zero or negative, as soon as the crop starts growing the NDVI values increase gradually until they 

reach a value close to one when the crop is fully grown, and then they start decreasing at the crop 

senescence. Therefore, NDVI is successfully used to discriminate different crops. In addition, NDVI 

reduces the dimensionality of the data, hence reducing the computational cost for the classifier. NDVI 

was calculated for the 11 PS images acquired, using the NDVI formula (Rouse et al., 1973) provided in 

equation(1): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
        equation(1) 

Where;  NIR is the reflectance in the near-infrared band(NIR) 

red is the reflectance in the red band 
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Then, NDVI was calculated for the 11 PS images and resulting NDVI layers were stacked together to 

form a PS NDVI time series stack which was used for classification of the crops.  

4.4. Crop mask 

The crop mask is a binary map containing cropped areas and non-cropped areas.  The crop data extracted 

from geo-register was used to make a crop mask for the study area. A shapefile containing all crops was 

generated. The crop mask was used to eliminate non-crop areas within the PS NDVI time series stack.  

The masked PS NDVI time series stack was then supplied to the classifiers for classification.  

4.5. Segmentation 

This study adopts the use of mean-shift segmentation algorithm (Wu and Yang, 2007). Mean shift is a 

non-parametric algorithm for segmentation. The mean-shift procedure runs iterations initialized at each 

data point to have each mode define a segment, with all points that converge at that point belonging to the 

same segment (Hennig et al., 2015). The algorithm does not require prior specification of the clusters, but 

they are automatically determined. Mean shift segmentation has been proved to be successful in image 

segmentation in agriculture (Jantakat et al., 2019; Ozdarici-Ok and Akyurek, 2014; Su et al., 2015; Xu et al., 

2019).  

The parameters used for this segmentation are kernel bandwidth (h), Nearest neighbours(nN) and the 

number of iterations. The kernel bandwidth defines the size of the window. Increasing values of h ensure 

that two segments located closer than initial h are merged to form one segment. Therefore, large values of 

h lead to larger segments. nN is useful in speeding up the approximation of the kernel density estimate. 

Thus, large values of nN lead to longer computations. Iterations are defined to give the lower bound of 

the mean shift vector to stop the iterations since the mean shift has infinite convergence when using a 

uniform kernel (Comaniciu and Meer, 2002).  

These segmentation parameters were manually tuned. First segmentation was done with single date PS 

images as input data. The parameters were tuned manually using different values. That is h =200, 100, 50,  

2, 1, 0.5 ,0.05 nN = 7 10, 15,  and 100, 300, 400 , 700 , 1000  iterations. Through visual interpretation of 

the output segments against the original images, parameters h = 0.05, nN =15 and 1000 iterations were 

chosen as the best results. In the next step, segmentation was performed on a stack of all 11 available PS 

images. Same parameters were tuned using the values tested in the previous segmentation. By visual 

interpretation, the best result was obtained with the following parameters: h= 0.05, nN=15 and 1000 

iteration.  Segmentation using 11 images was found to provide a better fit to the field boundaries than the 

previous segmentation obtained using single PS image. Thus, the segmentation using the 11 images was 

used for object-based classification.  

4.6. TWDTW  

This study makes use of TWDTW classifier. DTW method (Sakoe and Chiba, 1978) accounts for the non-

linear shifts in vegetation index curves caused by a variety of factors such as different weather conditions 

and different agricultural practices. It has previously been successfully used for agricultural mapping 

(Petitjean et al. 2012; Belgiu and Csillik, 2018; Li and Bijker, 2019) and to assess similarities between 

different climatic zones (Netzel and Stepinski, 2018). The classifier has also been used in the study done 

by Maus et al., (2016) for land use and land cover mapping. TWDTW searches all the patterns on time 

series and similar matches periods that are associated with the respective class (Simoes et al., 2017). 

Logistic TWDTW  classifier is used in this study since it provides better accuracy than the linear logistic. 
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4.6.1. DTW 

DTW matches a sequence of time series associated with each pixel location to the sample of the expected 

class. Below is an illustration of how DTW algorithm is applied for each pixel: Consider two time series 

matrices P and Q. Let the length of P be t; such that P= {p1,p2,………. Pt} and the length of Q be s; 

such that Q = {q1,q2,……….qs }. The DTW algorithm will begin by constructing a matrix (M) t x s; that is 

Mt x s. From the computed matrix M, whose absolute elements are the difference between p and q defined 

as p ∈ P ∀ i = 1, ..., t and q ∈ Q ∀ i = 1, ..., s the DTW algorithm will compute an accumulated cost 

matrix N by the recursive sum of the minimal distances such that : 

𝑛𝑖𝑗 = 𝑀𝑖𝑗 +𝑚𝑖𝑛{𝑚𝑖−1,𝑗𝑚𝑖−1,𝑗−1𝑚𝑖,𝑗−1}     equation(2) 

 

𝑛𝑖𝑗 =

{
 
 

 
 

𝑀𝑖𝑗              𝑖 = 1, 𝑗 = 1

∑ 𝑀𝑘𝑗
𝑖

𝑘
       1 < 𝑖 ≤ 𝑡, 𝑗 = 1

∑ 𝑀𝑖,𝑘
𝑗

𝑘
       𝑖 = 1,1 < 𝑗 ≤ 𝑠

            equation(3) 

The DTW algorithm runs iteration within the N to finds the matches between P and Q  using the shortest 

cost distance between the two time series. Time-weighted extension of DTW introduced by Maus et al. 

(2019) adds a temporal cost to matrix M.  Temporal cost can be computed in using both linear and 

logistic model. In this study, the logistic model with parameters alpha and beta is preferred as gives better 

accuracy than the linear model (Maus et al., 2016). DTW matches each pattern to input time series 

independently from the others; thus, the patterns with lowest DTW distance are used to generate a 

landcover map (Maus et al., 2016).   

4.6.2. Pixel-based classification  

The dtwSat implemented by Maus et al. ( 2019) in R was used in the processing. From the PS NDVI time 

series stack and the timeline vector (with image acquisition dates), a PS raster time series was generated.  A 

time series of the reference data (Table 5) was extracted from PS raster time series.  

The extracted training time series was used for generation of the temporal patterns and to classify the PS 

raster time series. Using a  temporal frequency of 2 for smoothed cycles and a Generalized Additive 

Model (GAM) (Wood, 2011) smoothing formula (y ~ s(x, k=7)) the temporal patterns shown in Figure 4 

was created. Several parameters were tried for logistic weight function, for  alpha =-0.1, 0.1 and beta = 80, 

90, 100 and 120. The best accuracy results were realised when the parameters were set as for alpha = -0.1 

and beta =90. Thus, alpha= -0.1 and beta = 90 is adopted for the pixel-based classification. 

Using TWDTW analyses, each pixel location in the PS raster times series was assigned into a class using 

temporal profiles generated from the training data. Subsequently, the output generated was used to classify 

the raster into different crop types from the shortest cost distance (unique value). 

Explanation on the following parts of the classifier; codes source: Maus et al., (2019) 

(i) 

\temporal_patterns <- createPatterns(training_ts, freq = 2,  

formula = y ~ s(x, k=7))  

 

The function createpatterns is used to produce temporal patterns based on training samples (Maus et al., 

2016).  

where;  training_ts is a time series object.  
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freq is the sampling frequency of the output patterns 

y ~ s(x, k=7)   

is a general additive model which is the sum of a smooth function of the variables  

where;  k is the basis of dimension 

x is the design matrix, Wood, (2017) 

The models use splines to reduce approximation error. A spline is a curve formed by cubic polynomials 

joined together by knots. k sets the maximum number of degrees of freedom allowed for the model.  

From createPatterns method, temporal profiles were extracted from PS NDVI time series raster for the 

five main crops (corn, potatoes, summer barley, winter barley and winter wheat), as shown in Figure 4 

 

Figure 4: Temporal profiles of NDVI  summer barley, corn, potatoes, winter barley and winter wheat 
generated using the training data 

(ii) 

\log_fun <- logisticWeight(alpha = -0.1, beta = 90)  

Logistic weight function builds a time-weighted logistic function to compute the TWDTW  local matrix  

Where;  beta is the time constraint 

 alpha is the steepness of the logistic weight 

The logisticWeight adds a time constraint (time-weight) to DTW analysis. In this case, beta gives the time 

constraint in days. For example, if beta = 90, it means that a constraint of 90 days was defined. The 

constraint allows the classifier to provide less weight for time warps less than 90 days and higher cost for 

more than 90 days hence, better performance of the TWDTW classifier(Maus et al., 2016).  

4.6.3. Object-based classification 

The object-based classification was done using a tcDTW algorithm implemented in eCognition Developer 

software (Csillik et al., 2019).  The difference between TWDTW and tcDTW is that TWDTW a linear or 

logistic weight to the model while for tcDTW all elements within a time delay are considered in 

computation(Csillik et al., 2019; Maus et al., 2015). The tcDTW algorithm is intended to limit the 

computational cost of the DTW matrix to a predefined time delay.  An element of the matrix is computed 

only when the date difference between the two dates of the compared sequences is small or equal to a set 
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time delay (Csillik et al., 2019).  The tcDTW works on a stack of layers, objects of a segmented image and 

the training data whereby, the objects are classified to classes into which, each object has minimum 

dissimilarity value (Csillik et al., 2019).  

Using tcDTW single band classification, the time delay was put at 50, 65, 70, 80 and 90 days. These values 

were used in consideration of temporal profiles generated for all crops in the study. The best accuracy was 

attained at a time delay of 65 and 70 days. Therefore, the 65 days was used for this classification. 

4.7. Accuracy Assessment 

The accuracy of both pixel-based and object-based classification is performed using the 450 validation 

samples presented in Table 1. The confusion matrix generated will help generate the producers and users 

accuracy as well as overall accuracy (Congalton, 1991).  Evaluation of classification results for pixel-based 

and object-based classification was done using McNemar’s test (McNemar, 1947). McNemar’s test is a 

nonparametric statistical test for paired data. The test assumes a Chi-square (χ2) test for comparing the 

classification results and applied on a 2x2 contingency table.  For instance, using model 1 and model 2 and 

their correct and incorrect class allocation, as shown in  Table 6. 

Table 6: Comparison of classification results between model 1 and model 2 

 
Model_2 

correct incorrect 

Model_1 correct a b 

Incorrect c d 

McNemar’s Chi-square test can be computed as shown in equation (4) (Foody and Mathur, 2004): 
      

𝑥2 =
(𝑏−𝑐)2

𝑏+𝑐
         equation(4)  

If the calculated χ2 is less than 0.05 p-value at 95% confidence, it can be concluded that the output of the 

two classification methods are statistically significantly different. Else, if the calculated χ2 is greater than 

0.05, the two classifications are not statistically significantly different. 

4.8. Assessment of the suitability of PS images for mapping smallholder farm systems 

Spatial, temporal and spectral suitability of PS images to map crops in smallholder farm systems were 

studied.  The section entails the quantitative evaluation of the segmentation as well as of the temporal and 

spectral resolutions of PS images. 

4.8.1. Spatial resolution 

Segmentation goodness was analysed in order to evaluate the suitability of spatial resolution of PS images 

to map crops. Segmentation goodness is defined as how well the segmentation splits sets of the objects of 

interest (Clinton et al., 2010). The goodness of segmentation was assessed based on the level of under-

segmentation and over-segmentation. According to Marpu et al. (2010), over-segmentation occurs when 

the objects of interest are segmented into smaller sub-objects, whereas under-segmentation occurs if 

segmentation results in parts of an object become part of another object.  The segmentation evaluation is 

based on the definition of over-segmentation and under segmentation. The evaluation makes 

consideration of sub-objects that overlap with 55% pixels from the reference object as useful. Figure 5 

illustrates the concept of lost and gained pixels in the segmentation.  

Extra pixels, as shown in Figure 5, are the ones that are part of the sub-object that has an adequate 

number of pixels from the reference object but are not part of that reference object (Marpu et al., 2010). 
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Lost pixels are those pixels that are part of the reference object, but are also part of the sub-objects that 

do not contain the sufficient number of pixels (55%) from the reference object. 

Over-segmentation was evaluated based on the percentage of the biggest area after excluding extra and 

lost pixels. In contrast, under-segmentation was assessed based on lost pixels, extra pixels and the number 

of reference objects that lost or gained more than 25% of their area. (Marpu et al., 2010).   

The segmentation evaluation was based on criteria highlights below: 

• Percentage of the area of the biggest sub-object  

• Percentage area of the lost pixels 

• Percentage area of the extra pixels 

• The number of reference objects that lost more than 25% of the pixels 

• The number of objects which gained more than 25% of the pixels  

 
Figure 5: An illustration of extra and lost pixels. The yellow box shows a reference object (polygon) 
overlaid with the segmentation 

The reference objects for over-segmentation and under-segmentation evaluation were the polygons used 

to generate the crop mask.  

4.8.2. Temporal resolution 

To evaluate temporal resolution, 18 images instead of 11 images as previously used in classification were 

considered for testing the advantages of having a larger number of images as input. NDVI was calculated 

for the additional images and stacked together with the initial NDVI forming a time series of 18 NDVI 

layers. The crop areas were masked from the NDVI time series. The resulting NDVI was used to classify 

crop types within the study area using the pixel-based method of classification. The parameters adopted 

for the classification were alpha = -0.1 and beta = 90.  
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4.8.3. Spectral resolution  

PS images have four spectral bands: red, blue, green and NIR. For evaluation of the suitability of the 

spectral resolution of PS images to map crops in smallholder farm systems, S2 images are used. The 

evaluation made use of the red band, NIR and red edge bands.  The red edge bands are believed to be 

sensitive to chlorophyll, which varies highly across different crops (Xie et al., 2018). In order to evaluate 

the suitability of the spectral resolution of PS images to map crops, this study compares the classification 

accuracy generated using classical NDVI with those obtained using red edge NDVI. Red edge NDVI was 

calculated using three different equations; equation(5) (Fernández-Manso et al., 2016), equation(6) 

(Gitelson and Merzlyak, 1994) and equation(7) (own). S2 images were downloaded, as shown in Table 3. 

For calculation of classical NDVI, only band4 (red) and band8 (NIR) were used.  Since band4 and band8 

have a 10-metre resolution (t.ly/pZGKn), they were resampled to 20-metre spatial resolution (resolution 

of red-edge bands) using the nearest neighbour resampling method.  

The red-edge bands were used to calculate NDVI using both NIR (band 8) and narrow NIR (band 8A) 

(Fernández-Manso et al., 2016). The formula for calculation of red edge NDVI (NDVIren) using narrow 

NIR as suggested by Fernández-Manso et al. (2016) is shown below: 

𝑁𝐷𝑉𝐼𝑟ⅇ𝑛 =
𝐵𝑎𝑛𝑑8𝐴−𝑖

𝐵𝑎𝑛𝑑8𝐴+𝑖
;    𝑤ℎ𝑒𝑟𝑒 𝑖 = band5, band6, band7   equation(5) 

The calculation for red edge NDVI using NIR (NDVIre) was performed as per the formula proposed by  

Gitelson and Merzlyak (1994):  

𝑁𝐷𝑉𝐼𝑟𝑒 =
𝐵𝑎𝑛𝑑8−𝑖

𝐵𝑎𝑛𝑑8+𝑖
;    𝑤ℎ𝑒𝑟𝑒 𝑖 = band5, band6, band7             equation(6) 

The pixel alignment for the S2 images was inspected. It was found that for January, February, March, 

April, June and October images, the pixels were aligned. However, for  May, July, August and September, 

images pixels had a minor shift when visually inspected against the other image pixels.  Using June image 

as a reference image, these images were aligned using QGIS raster alignment tool. Then, the classical 

NDVI was calculated for the ten images using the formula in equation(1). Further NDVIREA was 

calculated by replacing the NIR band in equation(1) with rede edge and narrow NIR  bands, as shown in 

equation (7).  

𝑁𝐷𝑉𝐼𝑅𝐸𝐴 =
𝑖−red

𝑖+red
;    𝑤ℎ𝑒𝑟𝑒 𝑖 = band5, band6, band7, band8A       equation(7) 

All NDVI time series generated from S2 images were supplied to the TWDTW classifier under the same 

parameters (alpha = -0.1, beta = 90). The results of the classifications were used for comparison between 

the output of classical NDVI and NDVIren, classical NDVI and NDVIre and classical NDVI and 

NDVIREA for crop mapping.  Table 7 shows the equations used to calculate all red edge NDVI. 
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Table 7: Summary of equations used to compute spectral indices for red-edge bands 

General initial Band specific Initial Equation 

NDVIren NDVIren1 
𝑁𝐷𝑉𝐼𝑟𝑒𝑛1 =

Band8A − Band5

Band8A + Band5
 

      

NDVIren2 
𝑁𝐷𝑉𝐼𝑟𝑒𝑛2 =

Band8A − Band6

Band8A + Band6
 

 
NDVIren3 

𝑁𝐷𝑉𝐼𝑟𝑒𝑛3 =
𝐵𝑎𝑛 ⅆ8𝐴 − 𝐵𝑎𝑛ⅆ7

𝐵𝑎𝑛ⅆ8𝐴 + 𝐵𝑎𝑛ⅆ7
 

 
NDVIre NDVIre1 

𝑁𝐷𝑉𝐼𝑟𝑒1 =
Band8 − Band5

Band8 + Band5
 

     

NDVIre2 
𝑁𝐷𝑉𝐼𝑟𝑒2 =

Band8 − Band6

Band8 + band6
 

   

NDVIre3 
𝑁𝐷𝑉𝐼𝑟𝑒3 =

Band8 − Band7

Band8 + Band7
 

 
NDVIREA NDVIREA1 

𝑁𝐷𝑉𝐼𝑅𝐸𝐴1 =
Band5 − Band4

Band5 + Band4
 

 
NDVIREA2 

𝑁𝐷𝑉𝐼𝑅𝐸𝐴2 =
Band6 − Band4

Band6 + Band4
 

 
NDVIREA3 

𝑁𝐷𝑉𝐼𝑅𝐸𝐴3 =
Ban7 − Band4

Band7 + Band4
 

    

NDVIREA4 
NDVIREA4 =

Band8A − Band4

Band8A + Band4
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5. RESULTS AND DISCUSSION 

This chapter shows the results obtained from the implementation of the described methodology in order 

to realise the objectives of this study and their discussions. The results entail the results of both pixel-

based and object-based classifications as well as the suitability of PS images to map smallholder farm 

systems.  

5.1. Pixel-based classification results for TWDTW 

The overall accuracy for the pixel-based classification was 75.78%, as shown in Table 8. Winter wheat was 
best classified with UA of 80%, followed by summer barley and corn with 79.49% and 76.06% UA 
respectively. Winter barley recorded the lowest UA due to confusion with winter wheat. Combining winter 
wheat and winter barley resulted in UA of 89.58% and 1.78% increase of OA to 77.56%. Winter barley 
demonstrated less heterogeneity with a PA of 92%, whereas summer barley exhibited the highest 
heterogeneity with PA of 62%. The crop map resulting from the pixel-based classification is shown in 
Figure 7.  Through visual inspection of the resulting crop type map and the crop type map generated from 
data obtained from the Dutch National georegister data (Figure 6), it was evident that most crop types 
were correctly mapped. However, the crop type map generated by TWDTW exhibits  “salt” and “pepper” 
classification effect since each pixel is treated independently by the classifier (Lu and Weng, 2007). 
Further, due to the similarity in temporal patterns (Figure 4), it was challenging to discriminate corn from 
potatoes. Thus, corn was classified as potatoes and vice versa. Although summer barley showed distinct 
temporal pattern from winter wheat and winter barley (Figure 4), there were misclassifications amongst 
the three crops due to spectral similarity between wheat and barley (Gerstmann et al., 2016). This is 
evident from the comparison between crop type map from pixel-based classification (Figure 7) and Figure 
6.  

Table 8:  Accuracy assessment results for Pixel-based based classification using NDVI times series 
generated from PS images; where UA, PA and OA stands for user accuracy, producer accuracy and overall 
accuracy, respectively. 

 
Cor

n 

Potatoe

s 

 Summer 

barley 

 Winter 

barley 

 Winter 

wheat 

 Total UA 

(%) 

Corn 108 26 8 0 0 142 76.06 

Potatoes 38 124 5 0 0 167 74.25 

Summer 

barley 

2 0 31 0 6 39 79.49 

Winter barley 2 0 2 46 12 62 74.19 

Winter wheat 0 0 4 4 32 40 80 

Total 150 150 50 50 50 450 
 

PA (%) 72 82.70 62 92 64 OA 

(%) 

75.78 

 

 



Mapping crops in smallholder farm systems from high-spatial-resolution and multi-temporal satellite 

images  

 

27 

 
Figure 6: Crop type map  generated from data obtained from the Dutch National georegister 

 
Figure 7: Crop type map generated from the pixel-based classification (TWDTW) using PS images 

5.2. Segmentation multi-temporal PS images 

The segmentation applied using the parameters h = 0.05, nN =15 and 1000 iterations yielded the best 

results when visually compared with the agricultural plots.  These parameters yielded the best 
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segmentation results while using single images and multiple images. Comparing segmentation results 

obtained using single images and multiple images, the multiple images one produced better segmentation 

results. Thus, segmentation using multiples images were adopted for this study (Figure 8). However, the 

left upper part of the study area showed larger segments compared to the lower and upper right area, 

which showed many small segments (over-segmentation). Over-segmentation is more preferred than 

under-segmentation ( Yan and Roy, 2016; Csillik et al., 2019). Since over-segmentation is easier to correct 

than under-segmentation. The results of the segmentation agree with results obtained by Su et al. (2015) 

whereby the mean shift algorithm resulted in over-segmentation of the crop fields.  

 
Figure 8: Mean shift segmentation results at h=0.05, nN= 15 and 1000 iterations for PS images 

5.3. Object-based classification results using PS images 

The resulting overall accuracy for object-based classification was 78.08%, as shown in Table 9. Corn 
recorded the highest UA with 88.89%, followed by summer barley at 88.24 %.  Even though corn had 
confusion with potatoes (9 samples) and summer barley (2 samples), the confusion did not affect much 
the obtained user’s accuracy since only a few samples were misclassified. Winter barley recorded the 
lowest user accuracy of 67.61% due to confusion with winter wheat. Combining winter wheat and winter 
barley to form winter grains resulted in UA of 90.11% and OA increase of 1.34% to 79.42%. The crop 
map obtained from the object-based classification is represented in Figure 9. The crop type map is more 
homogeneous than the one obtained by pixel-based classification. The homogeneity in the classification 
can be explained by the fact that objects were used as spatial input units for the classification (Belgiu and 
Csillik, 2018). 
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Table 9: Confusion matrix for object-based classification 

 
Cor
n 

Potatoe
s 

Summer 
barley 

Winter 
barley 

Winter 
wheat 

Total UA 
(%) 

Corn 88 9 2 0 0 99 88.89 

 Potatoes 51 140 0 0 0 191 73.30 

Summer 

barley 

6 0 45 0 0 51 88.24 

Winter barley 1 0 0 48 22 71 67.61 

Winter wheat 3 0 2 2 28 35 80 

Total 149 149 49 50 50 447   

PA (%) 59.0

6 

93.96 91.84 96 56 OA 

(%) 

78.08 

 

 
 

 
Figure 9: Crop type map generated from the object-based classification (tcDTW) 

5.4. Comparing pixel-based and object-based classification  

The study has evaluated the application of TWDTW (Maus et al., 2016) and tcDTW (Csillik et al., 2019) 

methods in mapping crops in smallholder farm systems in Diepenheim using PS NDVI time series data.  

In comparing pixel-based and object-based classification, the used computers had the following 

configurations: server system (Intel(R) Xeon(R) CPU E5-2643v3 3.04GHz 3.39 GHz (2 processors) and 

128 GB RAM generating 24 cores), used for the pixel-based classification and personal computer system 

(Intel(R) Core(TM) i7-8750H CPU @2.20GHz 2.21GHz (2 processors) and 16 GB RAM generating 12 

cores ) used for object-based classification.  Although a more powerful computer (server) was used for 

processing in pixel-based classification, the process took 9.9 hours, whereas the object-based classification 

took  3 hours. These results are in agreement with the study done by Belgiu and Csillik, (2018), where 
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pixel-based classification took longer computational time than the object-based classification. Pixel-based 

classification took long because the classifier (TWDTW) analysis was applied to each of the pixels. The 

object-based classification was computationally more efficient (took less time) since tcDTW algorithm 

used objects as spatial inputs were fewer as compared with pixels.  

Corn class recorded high UA for object-based classification at 88.89%, followed by summer barley at 

88.24% (Table 10).  There was a slight decrease of 0.95% for class potatoes UA from the one attained 

using pixel-based classification. Winter wheat remained at UA of 80% for both pixel and object-based 

classification, whereas, there was a decrease of 6.58%  in UA when using object-based classification.  

The object-based classification resulted in higher overall accuracy than the pixel-based classification. The 

results of the study were in agreement with the results of studies by Belgiu and Csillik (2018) and 

Castillejo-González et al. (2009).   

Table 10: Comparison between classification accuracies of pixel-based and object-based classifications 

 
Corn Potatoes  Summer 

barley 

 Winter 

barley 

 Winter 

wheat 

  

Classificat

ion 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

OA 

(%) 

Pixel-based 72 76.06 82.7 74.25 62 79.49 92 74.19 64 80 75.78 

Object-

based  

59.06 88.89 93.96 73.3 91.84 88.24 96 67.61 56 80 78.08 

 

McNemar’s Chi-square test was used to compare the classification results of TWDTW and tcDTW (Table 

11). The chi-squared (χ2) of 6.12  and p-value of  0.0133 was calculated (Table 11). The resulting p-value 

was less than 0.05; hence, the conclusion that the classification results by TWDTW were statistically 

different from the classification results generated by tcDTW.  

Table 11: Classification results comparison using McNemar's Chi-square test 

Classifications χ2 p-value 

Pixel-based 
TWDTW 

Object-based 
tcDTW 

6.12 0.0133 

Comparing the crop type classification maps, object-based classification (Figure 9) resulted in less noisy 

classification map than pixel-based (Figure 7) (Valero et al., 2016).  The results were obtained in this study 

an indication that TWDTW and tcDTW can be used to map crops ins smallholder farm systems using PS 

images. However, the models did not achieve high classification accuracies as the one obtained by Belgiu 

and Csillik, (2018) (TWDTW) and Csillik et al. (2019) (tcDTW) since most cops showed similar spectral 

characteristics as shown by the temporal patterns (Figure 4) 

5.5. Suitability of PS images to map crops in smallholder farm systems 

The results realised after the evaluation of suitability of PS images to map crops in smallholder farms in 

terms of spatial, temporal and spectral resolutions are shown below:  

5.5.1. Spatial resolution suitability of PS images to map crops in smallholder farm systems 

The results of the segmentation evaluations show that the average maximum biggest sub-object after 

elimination of extra pixels is 82.61%, as shown in Table 12. This is an indication that there was over-

segmentation. The percentage of lost pixels and extra pixels were recorded at 0% and 0.34% respectively 

for the evaluation result, which shows that there was minimal under segmentation in the segmentation of 

the PS images. Further, under segmentation can be evaluated by the number of lost pixels that exceeds 
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25% of the reference object.  The assumption is that if over 25% pixels of the reference object is lost to 

the neighbouring object(s), then there is a possibility that the reference area will be distorted after 

segmentation which would affect its shape. Therefore the number of distorted reference objects can as 

well be used to show under segmentation. The results show that there was neither object lost nor 

deformed objects due to extra pixels. Segmentation evaluation results from PS images were compared 

with segmentation results from S2 images. Segmentation for S2 images was realised using parameters 

h=17, nN= 20 and 1000 h. The average maximum sub-object using S2 images was 83.04% and extra 

pixels at 0.77%, as shown in Table 12. Comparing the segmentation evaluation results between PS images 

and S2 images shows that the is minimal difference in in the results. Under-segmentation is minimal for 

both segmentation; hence the segmentation evaluation agrees with results obtained by Csillik et al. (2019).  

Table 12: Segmentation  evaluation results for mean shift segmentation  

 

Criteria Results 

PS images S2 images 

Avg. % max Area:   82.61 83.04 

Lost pixels (%):  0 0 

Extra pixels (%):  0.34 0.77 

No. of lost objects:      0 0 

No. of deformed objects due to extra pixels:       0 0 

5.5.2.  Temporal resolution suitability of PS images to map crops in smallholder farm systems 

Increasing PS images from the 11 images to 18 images lead to lower overall accuracy. The resulting OA of 

54.89% (Table 13) was 20.89% less than the initial accuracy of  75.78% (Table 8). The results agree with 

the results obtained by Conrad et al. (2014) that showed that increasing the number of images may not 

lead to an increase in classification accuracy.  Further, the results obtained from the classification 

contradicts Jain et al. (2016) argument that increasing the temporal frequency of the imagery will result in 

high classification accuracy.  This study confirms that more images do not guarantee better classification 

output, but better classification results can be realised the use of optimal images per clop calendar (Conrad 

et al., 2014). Further, Meng et al. (2020) argued that optimal images to improve crop mapping 

classification could be realised by the use of middle and later stages of the growth cycle. However, 

multitemporal images increase the chances of obtaining cloud-free images.  

Table 13: Confusion matrix for the NDVI time series from extra images 

 
Cor

n  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

Total  UA 

(%) 

Corn  51 33 5 0 0 89 57.30 

Potatoes  95 117 7 0 0 219 53.42 

Summer 

barley  

3 0 35 0 17 55 63.64 

Winter barley  1 0 2 16 5 24 66.67 

Winter wheat  0 0 1 34 28 63 44.44 

Total  150 150 50 50 50 450 
 

PA (%) 34 78 70 32 56 OA 

(%) 

54.89 
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5.5.3. Spectral resolution suitability of PS images to map crops in smallholder farm systems 

The results were obtained when TWDTW classifier parameters were set at alpha = -0.1 and beta = 90. For 

the classical NDVI, an OA of 58.67%  was achieved, as presented in Figure 10. The tabular results for the 

classification accuracy assessment are presented in appendices( Table 14-Table 24). The highest OA (74%) 

was achieved using NDVIREA1 and the least using NDVIre with 32.44% (Figure 11). Using NDVIREA1, 

the highest UA was recorded by winter barley 85.19%, followed by corn at 80.60% while winter wheat 

recorded lowest UA of 50.70% since it was confused with all the other classes.  

Although NDVIREA2 and NDVIREA4 recorded lower OA than NDVIREA1, they showed an improvement 

in OA from the one achieved from classical NDVI (Figure 10). Corn had the highest UA of 74.32% when 

using NDVIREA2, whereas winter barley had the highest UA of 73.1% when using NDVIREA4 (Figure 11). 

Corn sample showed high heterogeneity hence recording the lowest PA of 36.67% and 33.33% for 

NDVIREA2 and NDVIREA4 respectively.     

Using NDVIREA3, an OA 58.67% similar to the one realised using classical NDVI was recorded (Figure 

10). However, higher UA was realised for classes summer barley (58.18%), winter barley (67.27%) and 

winter wheat (53.57%) with low UA recorded for classes corn and potatoes than when using classical 

NDVI where UAs for summer barley, winter barley and winter wheat were 56.67%, 59.62% and 44.44%  

respectively Figure 11.  

The varied OA, UA and PA is an indication that NDVI from the red edge may lead to an improvement in 

accuracy. The accuracy improvement is class-specific based on the chlorophyll content in the leaves 

Schuster et al. (2012). This can be reflected in the results obtained using NDVIREA1, which means band5 is 

more sensitive to crops than the other S2 bands used in the study. 

Use of NDVIren1 resulted in OA of 58.00% (Figure 10), which was the highest classification accuracy for 

NDVIren and 0.67 % less than OA for classical NDVI. The UAs for summer barley, winter barley and 

winter wheat were higher than ones calculated from classical NDVI by  2.9%, 29.02% and 15.08% 

respectively (Figure 11).  Using NDVIren2 for the classification, the OA reduced by 13.56% from 58.67 

realised using classical NDVI to 45.11% (Figure 10). However,  the UAs for potatoes and winter wheat 

increased by 3.7% and 32.03% respectively (Figure 11). Classification using NDVIren3 resulted in an OA, 

2.67%  lower than the one achieved through classical NDVI (Figure 10). The NDVIren3 resulted in 

increasing in UAs of summer barley, winter barley and winter wheat by 3.33%, 9.47 and 9.95% 

respectively (Figure 11). The results obtained using NDVIren1 and NDVIren3 concurs with the results 

obtained by Gerstmann et al. (2016), where they were able to distinguish between winter barley and winter 

wheat using red edge NDVI.   

Classification using NDVIre resulted in OAs of 55.56%, 50.67%, 32.44% for NDVIre1, NDVIre2 and 

NDVIre3, respectively (Figure 10). These results (OAs) were lower than the one obtained using classical 

NDVI by 3.11% for NDVIre1, 8% for NDVIre2 and 26.23% for NDVIre3 (Figure 10). Only UA for 

winter barley was better than the one obtained using classical NDVI by 6.23% for NDVIre1. Similarly, for 

NDVIre2, only winter wheat had higher UA than the resulting one from classical NDVI by 19.92%.  
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Figure 10: Comparison of OAs between classical NDVI and NDVI calculated using red edge bands 
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Figure 11: Summary of user’s and producer’s accuracies for classical NDVI and NDVI calculated using 
red edge bands 

For results obtained using TWDTW  to evaluate spectral suitability of PS images to map smallholder 

farms in Diepenheim using S2 red edge bands NDVI time series, band5 performed better than all the 
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other red edge bands within each category (NDVIren, NDVIre and NDVIRE). The results obtained using 

NDVIRE were in agreement with Ustuner et al. (2014) results, which recorded higher classification 

accuracy when using the red-edge bands. Using NVDIre and NDVIren, the results obtained were on the 

contrary to the ones obtained by Sun et al. (2019) as they had lower overall accuracy than classical NDVI 

one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mapping crops in smallholder farm systems from high-spatial-resolution and multi-temporal satellite 

images  

 

36 

6. CONCLUSION AND RECOMMENDATIONS 

This chapter presents the conclusion, limitations of the study and recommendations for future study 

6.1. Conclusion 

The study made use of PS images to map crops in smallholder farm systems using multitemporal images 

and S2 images to evaluate the suitability of PS images to map smallholder farm systems. From the results 

obtained for the study, it can be concluded that: 

▪ Object-based classification based on tcDTW took less time to compute than pixel-based 

classification using TWDTW. 

▪ As well, object-based classification resulted in slightly higher OA (78.08%) than pixel-based 

classification with OA of 75.78%.  

▪ The classification results generated using TWDTW and tcDTW classifiers were found to be 

significantly different using McNemar’s Chi-square test.    

▪ NDVIREA resulted in better classification results than classical NDVI when using band5 and 

band6, except when using band7. Thus, the use of NDVIREA improved crop type classification 

results 

▪ NDVIren and NDVIre resulted in lower classification results than the classical NDVI hence did 

not improve classification results. 

6.2. Study limitations 

The study area did not exhibit heterogeneity like the ones exhibited in other smallholder farms such as the 

ones in Sub-Saharan Africa to be able to fully utilise the potential of the high spatial resolution of PS 

images to map crops in smallholder systems. 

6.3. Recommendations 

Similar future study may consider below recommendations: 

▪ Study be done on a heterogeneous study area to fully exploit the high spatial resolution of PS 

images and its utility to map crops in smallholder farms  

▪ The study can be implemented on a mixed cropping agricultural landscape. 
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7. APPENDICES 

Table 14: Accuracy assessment results for pixel-based classification based on S2 Classical NDVI 

 
 

Corn  

Potatoe

s  

Summer 

barley  

 Winter 

barley  

 Winter 

wheat  

 Total  UA 

(%) 

Corn  47 15 0 0 0 62 75.10 

Potatoes  93 128 1 0 0 222 57.66 

Summer 

barley  5 0 34 0 21 60 56.67 

Winter barley  3 4 9 31 5 52 59.62 

Winter wheat  2 3 6 19 24 54 44.44 

Total  150 150 50 50 50 450  
PA (%) 

31.33 85.33 68 62 48 

OA 

(%)  58.67 

 
Table 15: Accuracy assessment results for pixel-based classification based on  NDVIREA1 

 
Cor

n  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

 Total  UA 

(%) 

Corn  108 23 2 0 1 134 80.60 

Potatoes  32 118 1 0 0 151 78.15 

Summer 

barley  

2 0 25 0 13 40 62.50 

Winter barley  3 3 2 46 0 54 85.19 

Winter wheat  5 6 20 4 36 71 50.70 

Total  150 150 50 50 50 450 
 

PA (%) 72 78.67 50 92 72 OA 

(%) 

74 

 

 
Table 16: Accuracy assessment results for pixel-based classification based on  NDVIREA2 

 
Cor

n  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

 Total  UA 

(%) 

Corn  55 17 1 0 1 74 74.32 

Potatoes  86 127 1 0 0 214 59.35 

Summer 

barley  

2 0 30 0 17 49 61.22 

Winter barley  3 3 9 31 2 48 64.58 

Winter wheat  4 3 9 19 30 65 46.15 

Total  150 150 50 50 50 450 
 

PA (%) 36.6

7 

84.67 60 62 60 OA 

(%) 

60.67 
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Table 17: Accuracy assessment results for pixel-based classification based on  NDVIREA3 

 
Cor

n  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

 Total  UA 

(%) 

Corn  46 23 2 0 1 72 63.89 

Potatoes  93 119 0 0 0 212 56.13 

Summer 

barley  

5 0 32 0 18 55 58.18 

Winter barley  3 5 9 37 1 55 67.27 

Winter wheat  3 3 7 13 30 56 53.57 

Total  150 150 50 50 50 450 
 

PA (%) 30.6

7 

79.33 64 74 60 OA 

(%) 

58.67 

 

 
Table 18: Accuracy assessment results for pixel-based classification from NDVIREA4 

 
Cor

n  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

 Total  UA 

(%) 

Corn  50 21 2 0 1 74 67.57 

Potatoes  91 123 0 0 0 214 57.48 

Summer 

barley  

2 0 32 0 18 52 61.54 

Winter barley  3 3 9 41 0 56 73.21 

Winter wheat  4 3 7 9 31 54 57.41 

Total  150 150 50 50 50 450 
 

PA(%) 33.3

3 

82 64 82 62 OA 

(%) 

61.56 

 
 

Table 19: Accuracy assessment results for pixel-based classification using NDVIren1 

 

Table 20: Accuracy assessment results for pixel-based classification using NDVIren3 

 
 

Corn  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

Total  UA 

(%) 

Corn  40 21 2 0 4 67 59.70 

 
 Corn  Potatoes  Summer barley  Winter barley  Winter wheat   Total  UA(%) 

Corn  51 31 4 0 5 91 56.04 

Potatoes  98 118 9 1 0 226 52.21 

Summer barley  0 1 28 0 18 47 59.57 

Winter barley  1 0 2 39 2 44 88.64 

Winter wheat  0 0 7 10 25 42 59.52 

Total  150 150 50 50 50 450 
 

PA(%) 34.00 78.67 56.00 78.00 50.00 OA(%) 58.00 
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Potatoes  104 119 6 2 0 231 51.52 

Summer 

barley  

0 1 24 0 15 40 60.00 

Winter barley  3 8 6 38 0 55 69.09 

Winter wheat  3 1 12 10 31 57 54.39 

Total  150 150 50 50 50 450 
 

PA (%) 26.67 79.33 48.00 76.00 62.00 OA 

(%) 

56.00 

 

 

 

 

Table 21: Accuracy assessment results for pixel-based classification using NDVIren2 

 
 

Corn  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

Total  UA 

(%) 

Corn  71 38 21 23 4 157 45.22 

Potatoes  27 81 10 0 14 132 61.36 

Summer 

barley  

3 2 12 1 7 25 48.00 

Winter barley  49 25 7 26 12 119 21.85 

Winter wheat  0 4 0 0 13 17 76.47 

Total  150 150 50 50 50 450 
 

PA (%) 47.33 54.00 24.00 52.00 26.00 OA 

(%) 

45.11 

 

 
 

Table 22: Accuracy assessment results for pixel-based classification using NDVIre1 

 
 

Corn  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

Total  UA 

(%) 

Corn  47 16 4 1 1 69 68.12 

Potatoes  102 131 9 0 2 244 53.69 

Summer 

barley  

0 3 27 0 18 48 56.25 

Winter barley  1 0 2 27 11 41 65.85 

Winter wheat  0 0 8 22 18 48 37.50 

Total  150 150 50 50 50 450 
 

PA (%) 31.33 87.33 54.00 54.00 36.00 OA 

(%) 

55.56 

 

 

Table 23: Accuracy assessment results for pixel-based classification using NDVIre2 

 
 

Corn  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

Total  UA 

(%) 
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Corn  88 57 21 14 6 186 47.31 

Potatoes  41 83 12 7 7 150 55.33 

Summer 

barley  

8 4 16 1 8 37 43.24 

Winter barley  12 5 0 14 2 33 42.42 

Winter wheat  1 1 1 14 27 44 61.36 

Total  150 150 50 50 50 450 
 

PA (%) 58.67 55.33 32.00 28.00 54.00 OA 

(%) 

50.67 

 

 

 

Table 24: Accuracy assessment results for pixel-based classification using NDVIre3 

 
 

Corn  

Potatoe

s  

Summer 

barley  

Winter 

barley  

Winter 

wheat  

Total  UA 

(%) 

Corn  52 40 16 5 2 115 45.22 

Potatoes  22 34 3 0 2 61 55.74 

Summer 

barley  

46 40 21 16 18 141 14.89 

Winter barley  9 11 3 15 4 42 35.71 

Winter wheat  21 25 7 14 24 91 26.37 

Total  150 150 50 50 50 450 
 

PA (%) 34.67 22.67 42.00 30.00 48.00 OA 

(%) 

32.44 
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a) b) 

  
c) d) 

 

 

e) Legend 

Figure 12: Temporal profiles generated a) using classical NDVI and  NDVIREA for b) NDVIREA1, c) NDVIREA2, d) NDVIREA3 and e) NDVIREA4 from S2 images 
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