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ABSTRACT 

Acquiring reliable and accurate information on tree species is of great importance for effective forest 

monitoring including assessing biodiversity and ecosystem services, building resilience to climate change, 

and conserving endangered or critical tree species. In view of this, this study aimed at classifying and 

mapping tree species using UAV-RGB images and machine learning  algorithms  in a mixed temperate 

forest, Haagse Bos, Netherlands. For this purpose, the UAV-RGB images captured in September 2019 (leaf-

on season) and February 2020 (leaf-off season) were used. A combination of leaf-on and leaf-off season 

UAV-RGB images were also applied to classify tree species. The object-based image analysis in conjunction 

with the Support Vector Machine (SVM), K-nearest neighbour (KNN) and Random Forest (RF) classifiers 

were used to separate seven tree species, three from the broadleaved and four from the coniferous ones. 

The UAV-RGB image captured in the leaf-on season were used to compare all the three classifiers, and to 

assess the tree crown segmentation accuracy in the young and mature mixed forest stands using a single 

Orthophoto and combinations of canopy height model (CHM) and Orthophoto. The accuracy of the multi-

resolution segmentation (MRS) algorithm in segmenting tree crown was assessed using three evaluation 

performance metrics: over segmentation, under segmentation and total segmentation error. Regarding the 

tree species classification, comparison of classifiers were made based on the overall accuracy and kappa 

coefficient which were determined from the confusion matrix developed from the 5-fold cross validation. 

The best classifier was subsequently applied in the leaf-off and combinations of seasons of UAV-RGB 

images for classifying tree species. 

Results showed that a single Orthophoto and combinations of Orthophoto and CHM in mature (young) 

forest stands produced an overall segmentation accuracy of 82 % (73%) and 83% (76%), respectively. The 

UAV-derived CHM improved the tree crown segmentation of young forest stand by 3%, but it slightly 

reduced the segmentation accuracy of the mature forest stand by 1%. Among the classifiers, the SVM 

classifier outperformed the RF and KNN and produced an overall accuracy of 78.94% and a kappa 

coefficient of 0.75. All the classifiers except KNN produced low values of producer and user accuracies for 

classifying all coniferous tree species as compared to the broadleaved tree species. The combinations of 

UAV-RGB images improved the leaf-on and leaf-off season tree species classification by 3.7% and by 11.3 

%, respectively. Overall, applying cost-effective UAV-RGB images acquired at different seasons improves 

the tree species classification in a mixed temperate forest as compared to using a single season UAV-RGB 

image. This study suggests to use SVM classifier in the study area to classify tree species for assessing the 

above ground biomass at species level and  for utilizing the natural resource in sustainable manner. 

Keywords: UAV-RGB image; Leaf-on season; Leaf-off season; object-based image analysis; Machine 

learning algorithms; Haagse Bos 
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1. INTRODUCTION 

1.1. Background 

 
Forest plays a significant role in providing ecosystem, social, and economic services. It protects biodiversity 

by providing nursing and breeding for different plant and animal species, preventing the effect of erosion 

and floods through their rooting system.  Forests also sequester carbon by capturing carbon dioxide from 

the atmosphere and contribute a lot to reduction of carbon emissions and to combating climate change 

(Bonan, 2008). Nowadays, forests cover approximately 30% of the land surface in temperate and boreal 

regions and 42 million km2 in tropical lands of the earth surface. In Europe, forest covers more than 40% 

of the land surface (Eurostat, 2018) and comprises different tree species grouped under the coniferous and 

broadleaved types. 

Acquiring reliable and accurate information on tree species is of great importance for effective forest 

monitoring including assessing biodiversity and ecosystem services, building resilience to climate change, 

and conserving endangered or critical tree species (Wietecha et al., 2019). Such information gives insight for 

decision-makers to develop and implement appropriate policies and strategies for protecting forest 

biodiversity (Barredo José et al., 2015) and for Reducing Emissions from Deforestation and Forest 

Degradation (REDD+). Tree species information can be acquired during field inventories. However, this 

requires a high cost and a lot of human resources. Furthermore, the lack of accessibility in some forest areas 

makes the field investigation more challenging (Modzelewska et al., 2020). Currently, remote sensing has 

become an essential source of information for mapping individual tree species. Compared to the 

conventional field measurements, data acquired from satellite imagery can provide real-time and cost-

effective information (Thomas et al., 2018).  

Many researchers have been using different satellite imageries and classifiers to map tree species in different 

geographic and climatic regions.  For example, Kovacs et al. (2010) used IKONOS sensor and unsupervised 

classifier to separate tree species in Guinea, West Africa, and their results showed that the unsupervised 

classifier shows a good result in classifying four tree species with an accuracy of more than 78%. Viennois 

et al. (2016) used Ikonos, GeoEye, QuickBird, and WorldView-2 sensors in conjunction with Maximum 

likelihood classifier to discriminate three tree species in Bali, Indonesia and their results revealed that tree 

species were more easily discriminated by imagery acquired from WorldView-2 sensors than other sensors. 

This is mainly associated with the spatial resolution of the sensors. In addition, they found an accuracy of 

66%-80% from these satellite imageries. Wang et al. (2018) employed pixel-based and object-based 

classification approaches to differentiate five tree species in Dongzhaigang, China, using Pleiades-1 sensor 
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combined with random forest classifier. They reported that the machine learning algorithms used in the 

object-based image analysis showed a better accuracy result (78%) in classifying tree species than pixel-based 

image analysis. In general, relative to the spatial resolution of the unmanned aerial vehicles (UAV), the 

aforementioned researchers used a low spatial resolution satellite imagery in their studies, which might affect 

the tree classification accuracy result. 

UAV based tree species classification and mapping have recently received more attention from the scientific 

communities. This is mainly due to the fact that UAV has a potential to capture high-resolution data, and 

its flexibility to acquire data within a short time, and its low operational costs (Otero et al., 2018). Several 

UAV studies have used multi-resolution segmentation (Xie et al., 2019) and simple linear iterative clustering 

(Effiom et al., 2019) approaches in conjunction with supervised and machine learning algorithms to classify 

individual tree species.  They attempted to extract object feature variables such as spectral, spatial and tree 

height, from the segmented image to classify tree species. For example, Xie et al. (2019) and  Cao et al. 

(2018) applied multi-resolution for segmentation of a UAV hyperspectral image along with Maximum 

Likelihood classifier (MLC), and machine learning classifiers including Classification and Regression Trees 

(CART), Support Vector Machine (SVM), K-nearest neighbour (KNN ) and Random forest (RF) so as to 

identify tree species in  China. The authors found that machine learning algorithms outperformed the 

supervised classifiers (MLC) to differentiate tree species from other land cover classes. The MLC cannot 

fully exploit the texture and tree height variables obtained from the high spatial resolution imagery, but its 

performance is better using spectral (band) features only. They conclude that machine learning algorithms 

and multiple source data improved tree species classification. Heinzel and Koch (2012)  also used UAV data 

and SVM classifier to differentiate four temperate tree species (Pine (Pinus sylvestris), Spruce (Picea abies), Oak 

(Quercus petraea) and Beech (Fagus sylvatica). They found a good classification accuracy result, 83.1%-90.7% 

using the machine learning algorithms as well.  

In addition to the machine learning algorithms and different features such as spectral, texture and tree height 

variables, satellite images captured at different seasons improve the tree species classification by providing 

information on the phenological properties of a tree.  Specifically, in a temperate forest, some of the tree 

species change their leaf colours, and their leaf drops in autumn and they expand their leaf in the spring. 

These changes considerably affect the tree species classification results as the tree species are showing 

different spectral reflectance in those seasons (Delpierre et al., 2016; Grabska et al., 2019; Madonsela et al., 

2017; Persson et al., 2018). In view of this, Natesan et al. (2019) classified tree species using UAV-RGB 

images captured in different seasons in combination with deep learning algorithms. They reported that 

multi-temporal images outperformed a single season spectral image in discriminating tree species. Xie et al. 

(2019) and  Hill et al. (2010) found a similar result by using different satellite imageries and classifiers. Wessel 

et al. (2018) and Persson et al. (2018) also used multi-temporal Sentinel-2 imagery and two machine learning 

(SVM and RF) algorithms to classify coniferous and broadleaved tree in two forest areas of Germany, and 
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Sweden, respectively and they also found that the multi-temporal image improves tree species classifications 

compared to a single season image. 

1.2. Problem statement 

 
Tree species mapping can be employed using field survey, manual interpretation of aerial photographs, and 

remote sensing techniques. The first two conventional approaches are time-consuming, laborious, and costly 

with limited spatial and temporal sampling (Modzelewska et al., 2020). In contrary, remote sensing 

approaches provide reliable and timely information on tree species at the required spatial and temporal 

scales.  

Remote sensing plays a vital role in classifying tree species for effective forest assessment and monitoring. 

However, the accuracy of tree species classification is highly affected by the spatial resolution of remotely 

sensed imageries, the applied segmentation methods, choice of the classifiers, seasons and feature variables 

considered for image classification. These resulted in uncertainties in the classification accuracy result. In 

this regard, object-based image analysis (OBIA) in high spatial resolution satellite imagery believed to 

improve the classification accuracy results (Cao et al., 2018; Modzelewska et al., 2020). In addition to this, 

remotely sensed imagery acquired in different seasons could also improve tree species classification as the 

tree species are showing different spectral reflectance for different seasonal images, which is used to 

discriminate tree species (Persson et al., 2018; Wessel et al., 2018). Specifically, in a temperate forest, the 

spectral signature of broadleaved tree species become different, when these species are colourful in autumn 

(leaf-on season), drop their leaf in winter (leaf-off season), and they bloom in the summer season. However, 

studies on the application of cost-effective UAV-RGB images for classifying tree species in a temperate 

forest under the leaf-on and leaf-off conditions are limited. Moreover, a comparison of a single date and a 

combination of two seasonal UAV-RGB images in classifying tree species found in a mixed broadleaved 

and coniferous forest stand has rarely been explored. This understanding benefits the biodiversity, above 

ground biomass estimation, and ecosystem service studies.  

Even though multiple source data (e.g. spectral, spatial and tree height (CHM) variables), as input for 

different classifiers, considerably improved the classification accuracy result (Cao et al., 2018), selection of 

appropriate classifier is still a challenging issue in a remote sensing based tree species classification. Several 

studies often used  KNN, RF and SVM  algorithms to discriminate tree species in temperate and tropical 

forests (e.g. Xie et al., 2019; Cao et al., 2018; Modzelewska et al., 2020; Pham et al., 2019). However, the 

performance of these classifiers varies from region to region and from species to species, and thus must be 

assessed on a local basis. Furthermore, little information has been documented on the accuracy of these 

classifiers to differentiate tree species in a mixed temperate forest using UAV-RGB image. 
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1.3. Research objectives 

1.3.1. General objectives 

The general objective of this study is to classify and map tree species using UAV-RGB images, and machine 

learning  algorithms  such as SVM, RF and KNN. 

1.3.2. Specific objectives 

The specific objectives of this study are to: 

1. assess the segmentation accuracy in mature and young forest stands using a single Orthophoto and 

a combination of CHM and Orthophoto, 

2. assess the performance of machine learning classifiers to differentiate tree species using the leaf-on 

season UAV-RGB image,  

3. examine the accuracy of tree species  classification using the leaf-on and leaf-off season UAV-RGB 

images and compare the results, and 

4. assess the combined effect of leaf-on and leaf-off season UAV-RGB images on tree species 

classification. 

1.3.3. Research question 

1. How accurately can the tree crowns be delineated by multi-resolution segmentation?  Does a 

combination of UAV derived CHM and Orthophoto improve the segmentation accuracy result in 

mature and young forest stands? 

2. Which classifiers (SVM, RF and KNN) perform best in differentiating tree species using September 

2019 UAV-RGB image (leaf-on season)? 

3. How accurate are tree classification results obtained from leaf-on and leaf-off season UAV-RGB 

images? 

4. Does the tree species classification accuracy result improve when the combinations of leaf-on and 

leaf-off season UAV-RGB images are used? 

5. Which UAV-RGB image (leaf-on, leaf-off, and/or combinations) yields best tree species 

classification result? 

1.3.4. Research hypothesis 

Q1: Ho: A combination of Orthophoto and CHM does not improve the tree crown segmentation 

result in mature forest stand  

Ha: A combination of Orthophoto and CHM improves the tree crown segmentation result in 

mature forest stand  

Ho: A combination of Orthophoto and CHM does not improve the tree crown segmentation result 

in young forest stand  

Ha: A combination of Orthophoto and CHM improves the tree crown segmentation result in young 

forest stand  

Q2: Ho: RF outperforms SVM in classifying tree species using leaf-on season UAV-RGB image  

Ha: SVM outperforms RF in classifying tree species using leaf-on season UAV-RGB image  
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Q4: Ho: The combinations of leaf-on and leaf-off season UAV-RGB images does not improve the 

tree species classification result compared to a single season spectral image. 

Ha: The combinations of leaf-on and leaf-off season UAV-RGB images improve the tree species 

classification result compared to a single season UAV-RGB image 
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2. LITERATURE REVIEW  

2.1. Pixel-based and object-based image analysis in classifying tree species 

 
A pixel-based and object-based approaches are the two most widely applied technique in remote sensing-

based tree species classification.  Several studies have been undertaken to compare these two approaches by 

using different classifiers and satellite imageries. The results of these studies are reviewed and given as 

follows; 

Using SPOT-5 HRG imagery, Duro et al. (2012) evaluated pixel-based and object-based approaches for 

classifying land cover classes using three machine learning algorithms: SVM, RF and Decision Tree (DT). 

Their results revealed that pixel-based and object-based image analysis showed insignificant difference when 

the same machine learning algorithms were applied for these approaches. In contrast, other studies showed 

that object-based image analysis (OBIA) outperformed pixel-based image analysis in classifying land cover 

classes in high spatial resolution of remotely sensed imageries (e.g. Yan et al., 2006; Yu et al., 2006; Platt & 

Rapoza, 2008 ; Myint et al., 2011). For example, Yan et al. (2006) used Terra Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) imagery in conjunction with MLC and KNN classifier for 

pixel-based and object-based image analysis, respectively. They found an overall classification accuracy result 

of 83% and 46% from the object-based and pixel-based image analysis, respectively.  Similarly, Yu et al., 

(2006) applied the same machine learning algorithms in object-based and pixel-based image analysis to 

classify land cover classes from a high resolution airborne imagery, and their results showed that object-

based image classification considerably outperformed pixel-based classification by 17%. Using Multispectral 

IKNOS images, Platt and Rapoza (2008) compared pixel-based and object-based approaches by applying 

KNN and MLC algorithms. Their results showed that object-based KNN classification had a better 

performance result (78%) than a pixel-based MLC classification (64%). Myint et al., (2011) have also 

attempted to compare pixel-based MLC classification and object-based KNN classification to classify urban 

land covers using Quickbird imagery.  They reported that object-based classification (90%) showed the 

highest accuracy result as compared the pixel-based (67%). In general, as compared to OBIA, the 

classification accuracy results obtained from a pixel-based approach is poor for high spatial resolution 

imagery because of the “salt-and-pepper” effects associated with pixel-based image analysis.  Because of 

these reasons, this study was used object-based image analysis in classifying tree species using different 

machine learning algorithms.  

Object-based image analysis (OBIA) has become increasingly applied to analysis of high spatial resolution 

imagery over the last ten years (Blaschke et al., 2008). In OBIA, image segmentation is an important step 

and a prerequisite as the accuracy of the classification results mainly depends on the accuracy of the 

segmentation (Mountrakis et al., 2011; Su & Zhang, 2017). Three different image segmentation methods 
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have been widely applied in different fields. These methods are Edge-based segmentation (Y. Lu & Jain, 

1989; Zhou et al., 1989), Region-based segmentation (Ohta et al., 1980; Pal & Pal, 1987; Pong et al., 1984), 

Hybrid Method (Fan et al., 2001). In edge-based segmentation, the boundaries/edge of object are identified 

first and then the detected boundaries/edges transformed into closed boundaries using different algorithms.  

In contrast, region-based segmentation uses the opposite approach, and it starts from the inside of an object 

and increases until the boundaries of the object meet (Zhang et al., 2018). To overcome the limitation of 

the Region and Edge-based segmentation, some of the researchers use hybrid segmentation methods. The 

reader can refer to (Hossain & Chen, 2019) for further information about the pros and cons of the 

mentioned segmentation methods. 

In this section, the Multi-Resolution Segmentation (MRS) method, one of the most widely applied methods 

in the literature, are reviewed. Basically, this segmentation method is categorized under region-based 

segmentation methods. The premise of MRS is to segment images to object images based on the scale, shape 

and compactness parameters. The key challenges of this method is setting appropriate parameters to define 

the object segments. Among the mentioned parameters, selecting a suitable scale takes the lion share. To 

optimize this parameter, several studies have been used different approaches: Genetic algorithms (Saba et 

al., 2016); fuzzy logic and iterative optimization (Esch et al., 2008); Statistical Region Merging and Minimum 

Heterogeneity Rule (Li et al., 2008) and integrated graph-based segmentation (Gu et al., 2018). Some studies 

also used supervise and unsupervised methods to select optimal parameters. Under the supervised methods, 

several authors applied trial and error methods to optimize parameters by comparing segmentation results 

obtained from the MRS  and the manually delineated ones (Ghosh & Joshi, 2014; Wang et al., 2018). 

Comparison/evaluation of segmentation result were then employed by computing the overlap area (Clinton 

et al., 2010) and by correctly matching the number of objects (Liu & Wang, 2014). In contrast, in the 

unsupervised methods, intra-segment homogeneity and inter-segment heterogeneity were estimated using 

estimation of scale parameters (ESP) tool and then the optimized parameters were selected (Drǎguţ et al., 

2014; Zhang et al., 2008). 

2.2. High spatial resolution remotely sensed imagery and machine learning algorithms for tree 
species classification  

Acquiring accurate and reliable classification of individual tree species from the remotely sensed imageries 

remains challenging because of different factors such as the spatial resolution of the data source, the choice 

of the classifiers, selection of features variable (spectral, spatial and temporal ) used for classification, and 

similar spectral characteristics of the species. In this regard, the classifiers, sensors and feature variables used 

by the previous studies for classifying tree species are summarized in Table 1. Using a single season  spectral 

image and combinations of bands from different seasons, numerous studies were undertaken to classify tree 

species, and their major finding are presented as follows; 

Using a single season spectral image, Zhang et al. (2018) attempted to discriminate four mangrove species 

in Hong Kong using WorldView-2 and radar data in combination with rotation of forest (Rof) classifiers. 
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Their results showed that multi source data (spectral, texture and tree height) improves the tree species 

classification accuracy result instead of applying the spectral bands alone. Cao et al. (2018) tried to classify 

six mangrove species in Oiao Island, China, using UAV imagery and two machine learning algorithms, SVM 

and KNN. The performance of these classifiers were also evaluated by applying the spectral, texture and 

tree height information. They used UAV data, and digital surface model (DSM) generated from UAV 

imagery to delineate the tree crowns using MRS.  The segmentation parameters were optimized by trial and 

error, and they found a good segmentation accuracy results. Moreover, their study results revealed that the 

classification result obtained from the machine learning algorithms were much improved when combining 

the spectral, texture and tree height variables instead of using a single variable.    

Table 1:  Summary of machine learning algorithms and high spatial resolution satellite imageries used for 

tree species classification.  

Classifier  Sensor  Features variables 
used for 
classification 

Identified Species  Season Reference  

Rotation of 
Forest  

WorldView-3 
and Radarsat-2 

Spectral and texture  Four mangrove species: 
Kandelia obovate, Avicennia 
marina, Acanthus ilicifolius  
and Aegiceras corniculatum  

SS Zhang et al., 2018 

SVM, KNN UAV 
hyperspectral 
images  

Spectral, texture and 
tree height  

Six Mangrove species  SS Cao et al., 2018 

DT LiDAR Spectral White Birch Sugar 
mapleAspenJack 
pineWhite Pine 

SS Hu, 2012 

NDVI UAV-
Hyperspectral 

Spectral Beach, Fir and Spruce SS Brovkina et al., 
2018 

Tree-Crown 
Object  

UAV- RGB  Spectral  Metasequoia, Platanus 
,Platanus and Camphora  

SS Feng & Li, 2019 

SVM and 
RF 

Sentinel 2 Spectral  Oak and Beech  SS and 
CS  

Wessel et al., 2018 

RF Sentinel 2 Spectral Norway spruce, Scots 
pine, Hybrid Larch, 
Birch and Pedunculate 
Oak  

SS and 
CS  

Persson et al., 
2018 

MLC, RF,  
SVM, KNN 
and 
Decision 
Tree(DT), 
ANN  

ZiYuan-3 
multispectral and 
stereo images 

Spectral, texture and 
tree height 

Larch, Chinese Pine, 
Mongolia Scotch pine, 
red Pine, Birch, aspen,  
Andelm 
 

SS and 
CS  

Xie et al., 2019 

SS stands for single season spectral image; CS stands for the combination of two or more seasons(multi-temporal) of spectral 

image. 
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In addition to the classification of the coniferous species, previous studies have also been attempted to 

classify deciduous tree species using high spatial resolution imagery and machine learning algorithms. On 

one hand, these studies used a single season spectral image. On the other hand, they applied multi-temporal 

datasets to classify deciduous and coniferous tree species (Table 1). Using a single season spectral image, 

Hu, (2012) applied light detection and ranging (LiDAR) data and decision tree algorithms to classify mature 

coniferous and deciduous trees in the complex Canadian forest.  The individual tree crown were delineated 

using multi-scale crown delineation segmentation approaches, and their results showed that LiDAR were 

effective to identify mature deciduous and coniferous tree species.  Tree species classification using UAV-

RGB images captured on a single have also been undertaken (Feng & Li, 2019) and their results show that 

the applicability of UAV-RGB image in classifying tree species was promising. Wessel et al. (2018) used 

Sentinel-2 imagery and two machine learning (SVM and RF) algorithms to classify deciduous and 

broadleaved tree in two forest areas of Germany. Their results showed that applying multi-temporal datasets 

improve the classification accuracy results for both classifiers and the SVM classifiers outperformed RF 

using this dataset. Persson et al. (2018) also attempted to classify mature coniferous and deciduous tree 

species in central Sweden forest using multi-temporal (spring, summer and fall) Sentinel-2 in combined with 

the RF classifier. Their result showed that the combination of all bands from all seasons considerably 

improved the classification accuracy result (97%) compared to a single season spectral image. Compared to 

summer and fall seasons, the spring season gave a better classification result (80%) in classifying coniferous 

and deciduous species. Overall, they conclude that multi-temporal satellite imagery improves the tree species 

classification as the tree species are showing different spectral signature for different seasons. 

Xie et al. (2019) have also applied multi-temporal multispectral and stereo images to classify tree species in 

China. They used spectral bands and textures variable, canopy height, slope and elevation from the stereo 

images as input to MLC, KNN, SVM, RF and DT classifiers. Tree species classification substantially 

improved by 6% to 12% while applying a combination of leaf-on and leaf-off seasons. In addition, the SVM 

and RF outperformed the remaining classifiers. Overall, the results of the aforementioned studies (Table 1) 

showed that the tree species classification accuracy results, particularly for deciduous and coniferous tree 

species, improved while applying combinations of all bands from different seasons. However, there is a 

research gap on the application of cost effective UAV-RGB image in classifying tree species a mixed 

temperate forest under the leaf-on and leaf-off conditions. 
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3. MATERIAL AND METHOD 

3.1. Description of the study area 

 
This study was undertaken in Haagse Bos, one of the oldest forest in the Netherlands. It is geographically 

located between 476500m N to 477700m N and 261000m E to 262000 m E (Figure1) and found 

approximately 8km away from the centre of Enschede, Netherlands. Haagse Bos forest is currently managed 

by the private company and mainly provides environmental, economic, social, and ecosystem services. This 

forest has covered a total area of 43 ha. The forest consists of mature and young mixed broadleaved and 

coniferous species: Scot Pine (Pinus Sylvestris), Douglus Fir(Pseudotsuga menziesii), Norway Spruce(Picea abies), 

European Larch(Larix Decidua), European Beech(Fagus sylavatica), Oak (Quercus robur), European white birch 

(Betula pendula)  and Alder (Figure1). The broadleaved tree species are dominant in the study area.  Based on 

tree crown projection area and ages of trees, the study area is divided into two forest stands: mature mixed 

broadleaved and coniferous tree (Figure 1: polygon outlined with red colour) and young mixed broadleaved 

and coniferous tree (Figure 1: polygon outlined with yellow colour) and there area coverage is 24 and 2.4 

Ha respectively. 

The study area received a total annual rainfall of 841mm. The highest rainfall is recorded in the month of 

November, which accounts for 10% of the total annual rainfall. The average annual maximum and minimum 

temperature of the study area is 13.50C and 6.60C, respectively.  The warmest month is August whereas the 

coldest one in February.  

 

Figure 1: Location map of the study area along with the spatial distribution of the tree species in 

mature and young mixed broadleaved and coniferous forest stands.  
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3.2. Datasets  

 
The datasets used in this study include UAV-RGB images acquired in September 2019 and February 2020 

and field survey data. Moreover, Google earth image was also used to assist the data collection. The list of 

equipment used for collecting the primary data is presented in Table2. Similarly, the following software were 

used for processing and analyzing the collected data; 

• ArcGIS 10.6.1 for  spatial data analysis and mapping,   

• eCognition 9.2.1 developer for image segmentation and object features extraction, 

• Pix4D for Photogrammetry pre-processing including DSM and DTM  creation,  

• Cloud compare for 3-D point cloud visualization, 

• R statistical packages for implementing machine learning algorithms for tree species classification. 
 

Table 2: List of field equipment used in this study. 

Equipment  Purpose 

Digital camera Taking  pictures of trees and others related information 

Handheld Garmin GPS Locating  tree species  

Field datasheet and pencil Data recording 

GNSS RTK Collect ground control points(GCPs) 

Ground control point (GCP) markers Mark GCPs 

 

3.3. Methods  

The methodology applied in this study comprises five major parts: (1) UAV data acquisition and field survey; 

(2) Photogrammetric image pre-processing; (3) Image processing including generation of Orthophoto, 

Digital Surface Model (DSM) and Digital Terrain Model (DTM) from the 3D point clouds; (4) Object-based 

image analysis includes image segmentation, feature extraction, and classification; and (5) accuracy 

assessment of segmentation and tree species classification. The detailed description of each part is presented 

in subsequent sections.  The overall workflow of the study is shown in Figure 2.   
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Figure 2: Workflow of the study. 

RQ1 

RQ2 

RQ3&4 
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3.3.1. Field Data Collection  

The field survey was conducted in the study area from the end of February to mid-March, 2020. The GPS 

coordinates of tree species from the young and mature mixed coniferous and broadleaved forest stands 

were collected. In this study, a combination of purposive and random sampling techniques were applied to 

collect the data. Purposive sampling were employed to collect tree locations data from a homogeneous 

cluster of the same species. Efforts were also made to randomly collect the location of individual tree species 

in areas where a homogeneous clustering of a tree is missing. Moreover, the GPS coordinates of other land 

cover types such as open area, water and road, were also collected and categorized as non-tree area.  As a 

result, a total of 293 sample coordinates of which 252 sample coordinates from the mature forest stand and 

41 from the young forest stand were collected (Table 3).   

About eight tree species were identified during the field survey: Scot Pine, Douglas Fir, Norway Spruce, 

European Larch, European Beech, Oak, European white Birch and Alder. The first four species are 

coniferous trees, and the remaining are the broadleaved ones. The broadleaved tree species are the dominant 

trees in the study area. The distribution of the number of ground truth data collected in the young and 

mature forest stand is presented in Table 3. Since the number of Alder species trees in the study area is very 

small (Table 3), this species was excluded in tree species classification. Moreover, we have also excluded the 

young forest stand because all the identified tree species are not existed in this forest stand and the sample 

size of the classes is too low for tree species classification. Because of this reason, the tree species 

classification were undertaken in the mature mixed forest stand alone. To this end, about 247 tress sample, 

excluding Alder, were used for tree species classification (Table3).  However, it is very important to note 

that the tree crown segmentation accuracy assessment were performed in both the young and mature forest 

stands. 

 

Table 3:Distribution of the number of ground truth data in the young and mature forest stands. 

 Category  Tree species Distribution of tree species(No.) Total  

Young forest stand Mature forest stand  

Coniferous  Scot pine 7 22 29 

Douglas Fir - 41 41 

Norway Spruce 4 29 33 

European Larch 8 18 26 

Broadleaved  Oak 5 44 51 

European White Birch  9 17 26 

European Beech 8 40 48 

Alder - 5 5 

Non –tree area - 36 36 

Total  41 252 293 
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3.3.2. UAV Image Acquisition 

 

Two UAV-RGB images acquired in September 2019 and February 2020 were used to classify tree species 

under the leaf-on and leaf-off conditions. In this study, September 2019 and February 2020 UAV images 

represent autumn (leaf-on) season and winter (leaf-off) seasons, respectively. These seasonal classifications 

were made based on the leaf-phenological stages of the broadleaved tree species, which are colourful in 

autumn (the leaf-on season) and tend to drop their leaves in winter (leaf-off season). Moreover, a 

combination of leaf-on and leaf-off season UAV-RGB images, a combination of all the bands (6 in number) 

of the two seasons UAV-RGB image, were also used to classify tree species.  The UAV-RGB image that 

was lately captured in May 2020 also used to support the discussion parts of this study but not used for tree 

species classification. In order to ensure consistent comparisons between the three UAV-RGB images 

captured at different seasons,  efforts were made to apply the same UAV flight height, flight pattern, overlap 

areas and angle of the camera as presented in Table 4. However, we found different the spatial resolution 

for September 2019 (4.6cm) and February 2020 (4.9cm) images. To match these resolutions, the spatial 

resolution of September 2019 image were up-scaled from 4.6 cm to 4.9cm using nearest neighbour 

resampling method, one of the most widely resampling method that preserve the spectral properties of a 

pixel. 

Table 4: UAV flight parameters and their corresponding values. 

UAV flight Parameters Value 

Flight Pattern Double grid 

The angle of  the camera(Phantom4) 80 degree 

Speed Slow 

Front Overlap 90% 

Side Overlap 80% 

Flight Height 120m 

Spatial resolution (pixel size) 4.6cm for Sep, 4.9cm for Feb, and 4.58cm for 

May images. 

 

3.3.3. UAV Data Processing and Generation of Orthophoto, DSM and DTM 

 

The UAV data were processed using Pix4D software by applying a technique called structure for motion 

(SFM), a photogrammetric process of establishing a three-dimensional scene from a set of multiple 

overlapping two dimensional UAV images. In these processes, the position of the camera and the geometry 

of the scene were established simultaneously by automatically identifying matching features in multiple 

images.  Random Sample Consensus (RANSAC) algorithms were used to match these features (Fischler & 

Bolles, 1981). Taking a minimum of two tie-points in three images, 3-D point clouds having a relative 
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coordinate system were generated, and their coordinates were transformed into real-world (absolute) 

coordinate system. For the absolute orientation of 3-D point clouds, about six ground control points (GCP) 

were collected using Real-Time Kinematic Global Navigation Satellite System (RTK GNSS), and three 

GCPs were used for the checkpoint. The quality report result revealed that the Root Mean Square error 

(RMSE) error of  0 m (Figure3) and 0.001 (Annex1) were reported for September 2019 and February 2020 

UAV-RGB images, respectively. These results are close to 0 and acceptable for transforming the relative 

coordinates of the 3D point clouds to real-world coordinates.  

  

Figure 3: A quality report generated by Pix4D mapper for UAV data processing of September 2019 UAV-

RGB image. 

3.3.4. Calculation of CHM 

 
Once the dense point clouds were constructed through aerial triangulation, Digital surface Model (DSM), 

Digital Terrain Model (DTM) and Orthophoto were generated. Using the generated DTM and DSM, the 

Canopy Height Model (CHM) for September 2019 UAV-RGB image was estimated by subtracting DTM 

of February from the DSM of September image and its value ranges from -4.8 to 41.8 cm (Figure 4). We 

used DTM of February 2020 UAV-RGB image (leaf-on) because of the highest accuracy of the DTM were 

acquired in the leaf-off season than in the leaf-on season. Note that in the leaf-on season, UAV cannot 

penetrate the leaves so that few points hit the ground which lead to produce less accurate DTM. In contrast, 

in the leaf-off season, more points hit the ground as the broadleaved tree species, the dominant tree in the 

study area, drops their leaves in this season. 
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Figure 4: Canopy Height Model (CHM) map  

3.3.5. Object-Based Image Analysis  

Compared to pixel-based approach, Object-Based Image Analysis (OBIA) showed the highest accuracy 

result in classifying tree species from the very high spatial resolution remotely sensed imageries (Wang et al., 

2018; Kamal & Phinn, 2011). Because of this, OBIA was selected and applied in this study. OBIA was 

performed in three steps, namely image segmentation, feature extraction, and image classification.   

3.3.5.1. Image segmentation  

Image segmentation is the first step in OBIA with the aim of segmenting an image into homogeneous 

objects. In this study, the Multi-Resolution Segmentation (MRS), one of the most widely used segmentation 

methods in the literature (see section 2.1), was employed in eCogntion developer software. Because of the 

difficulty in applying the same segmentation parameters for objects of very different sizes, the study area 

was stratified into two strata: mature and young forest stands.  Different rulesets were applied in the two 

forest stands. 

To assess the tree crown segmentation accuracy of the two strata, the UAV imagery captured in September 

2019 (leaf-on) was used. This is because the trees have a leaf-on in this season which makes the crown clearly 

visible. In this study, MRS were applied to segment the tree crowns of the two forest stands by using a 

combination of CHM and Orthophoto, and Orthophoto only. We have included CHM as a segmentation 

parameter because CHM can affect the delineation of individual tree crown as tree species exhibit different 

height (Jakubowski et al., 2013). 
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The UAV-RGB image captured in September 2019 (leaf-on) was segmented iteratively with the following 

set (54 combinations) of segmentation parameters: scale (50, 75, 100, 125, 150 and 175), shape (0.4, 0.6, and 

0.8) and compactness (0.4, 0.6, and 0.8). In addition to these parameters, CHM layer weight (1, 2, and 3) 

were also applied so as to assess the effect of combining CHM and Orthophoto (UAV-RGB) on tree crown 

segmentation. To fix the aforementioned initial scale parameter, the Estimation of Scale Parameter (ESP) 

tool were used. The ESP tool is integrated with MRS in eCogniation software and segments image object 

by increasing scale parameters step wisely. ESP tool has user-defined step size parameter, which enables us 

to increase the segmentation parameters step wisely (Drǎguţ et al., 2014). It also calculates the local variance 

by segmenting each image object in to three levels of homogeneity (from courser to finer). As the scale 

parameter is not directly associated with certain object size, a trial and error method were employed get the 

final appropriate scale parameters (Dra, 2010). The graphical user interface of the ESP2 tool which consists 

of all the parameters is presented in Figure 5. The local variance graph obtained from ESP tool is illustrated 

in Figure 6. In this study, we used the scale parameter value (red circle in Fig 6) as the initial scale parameter. 

 

Figure 5: The graphical user interface of ESP2 tool in eCognition software. 

Based on the leaf-on season UAV-RGB image, the best segmentation parameter combinations for each 

forest stand were selected using trial and error.  For this, the automatically delineated polygons by MRS were 

compared against the manually digitized reference tree crown using different segmentation evaluation 

metrics such as over segmentation, under segmentation and total detection error metrics (for details see 

section 3.5.1). The combined effect of CHM and Orthophoto on tree crown segmentation were evaluated 

based on the aforementioned metrics. After this, the best set of segmentation parameters obtained from 

leaf-on season UAV-RGB image were applied for February 2020 (leaf-off), and a combination of leaf-on 
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and leaf-off UAV-RGB images. The propagation of the segmentation errors in to the tree species 

classification may be reduced. 

 

Figure 6: Initial scale parameters estimated by ESP. 

3.3.5.2. Shadow Masking and Watershed Transformation  

Once the image objects have been created, shadows were separated from trees using the mean brightness 

value of the segments (96 in our case). Merging algorithms were applied to mask the shadow. After this, the 

watershed transformation algorithm was employed to solve the under segmentation problems. This under 

segmentation problem most often occurred when there is an overlapping of tree crowns as it was evident 

in our study area, particularly in the broadleaved tree species.   

In the watershed transformation, the UAV-RGB image is considered as a topographic surface. This 

algorithm basically applies the basic principle of watershed hydrology, which comprises of three basic 

notions such as local maxima (tree tops), catchment basins and watershed lines (Chen et al., 2012). The 

distance of each pixel to the image object border is calculated so as to develop the inverse distance map.  

Based on the developed map, a pixel which is very far from the image border is identified and considered 

as the local maxima. Subsequently, the under segmented objects were divided into smaller units based on 

the given distance of the local maxima or tree top as it is fixed by the size of the largest tree crown. In this 

study, it was found that the maximum size of trees crown were approximately 7 m, which is 152 pixels in 

the UAV-RGB image.  By giving this threshold value (152 pixels), the cluster of trees (the under segmented 

tree crowns) were separated, and their individual tree crown were delineated. 
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 Figure 7: Masking shadow from the tree. The red circles are shadow 

3.3.5.3. Feature extraction  

 
Prior to classifying the tree species using machine learning algorithms, it is very important to extract variables 

(features) of image objects which are used to separate classes. In this study, a combination of spectral, 

texture, and CHM variables were selected because multiple features have substantially improved the 

classification accuracy result as reported in previous studies (Cao et al., 2018; Xie et al., 2019; Zhang et al., 

2018).  The list of extracted features used for tree species classification under the leaf-on (September 2019), 

leaf-off (February 2020), and a combination of seasons are presented in Table 5.  

     Table 5: Selected features for tree species classification.  

Seasons  Features/variables  

Leaf-on (September 2019) Mean Reds, Mean Greens, Mean Blues, Std. Reds, Std. Greens, Std. 

Blues, Mean CHMs, Std.CHMs, T-hom-Reds, T-hom-Greens, T-con-

Reds, T-con-Greens, T-ent-Reds,  T-ent-Greens , T-cors –Reds, and T-

cor-Greens 

Leaf-off (February 2020) Mean Redf, Mean Greenf, Mean Bluef, Std. Redf, Std. Greenf, Std. 

Bluef, Mean CHMf, Std. CHMf, T-hom-Redf, T-hom-Greenf, T-con-

Redf, T-con-Greenf, T-ent-Redf,  T-ent-Greenf , T-cor–Redf, and T-

cor-Greenf 

A combination of seasons 

(Sep+Feb) 

All the aforementioned variables 

Where: s stands for September; f stands for February; std for standard deviation; T for texture; 

Hom for Homogeneity, con for contrast,  ent for entropy;  and cor stands for correlation. 
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In addition to the spectral and CHM variables, the texture of the image object was extracted. The textural 

features extracted from the segmented object are homogeneity, entropy, correlation and contrast. These 

statistical features were extracted from the UAV-RGB images using the Gray-Level Co-occurrence Matrix 

(GLCM) as proposed by (Haralick et al., 1973). GLCM is a statistical approach used to characterize the 

texture of an image by calculating the spatial relationship of pixels. Accordingly, the homogeneity measures 

the closeness of the distribution of elements in the GLCM to the GLCM diagonal. Meaning, pixels belonging 

to one class will have high homogeneity value. The contrast measures the differences in the GLCM which 

provides information about the heterogeneity of the classes. Similarly, the correlation reflects the joint 

probability occurrence of the specified pixel pairs, whereas entropy measures the degree of disorder or non-

uniformity present in the GLCM. In this study, the texture was extracted from the segmented polygon 

instead of applying a fixed window such as 3X3 or 5X5, which is commonly applied in pixel-based image 

analysis. Applying a fixed window size in OBIA may degrade the effectiveness of texture in separating the 

classes as the texture is highly influenced by the patch size of the given land cover types (Lu et al., 2014). 

After image segmentation, all the object features were exported and used for the classification. To do this, 

a rule set was developed in eCognition under the new processing tree. Export image algorithm was used to 

extract and export each feature as a separate tiff file since exporting many object features in a batch mode 

is impossible in eCognition software. About 20 object features from both the leaf-on and leaf-off seasons 

and 40 object features from the combination of leaf-on and leaf-off season (Table5) were extracted and 

exported. The object feature values were rescaled to change the values of the features into a common scale 

so that the effects of higher range feature values on the classification can be reduced (Hsu et al., 2010). In 

addition to this, the machine learning classifiers perform faster when the data is scaled/normalized. Scaling 

is a prerequisite in this study as some of the raw data of the extracted features values (e.g. correlation and 

entropy texture) have lower range values as compared to the spectral and CHM feature values. This analysis 

was implemented in the R statistical package. 

Figure 8 shows the spatial distribution of extracted features from the leaf-on (September 2019) season UAV-

RGB image, which were rescaled using equation 1. As indicated in Figure 8, the rescaled mean green feature 

values range from -3 to 3 in which the grassland shows the higher value (greenish colour) than the other 

land cover classes. Moreover, this value was different among the tree species to be classified. This indicates 

that the mean green will partly contribute its parts to separate the class. Similarly, we found that all the image 

objects have different feature values so that these features contribute their parts in classifying tree species 

by applying the machine learning  algorithms. See Annex 2 and 3 for extracted features for February 2020 

and a combination of two UAV-RGB images as well. 

𝑋 =
(𝑋𝑖 − 𝜇)

𝜎
− − − − − − − − − − − − − − − − − − − − − − − − − −𝑒𝑞1 
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Where X is the scaled image object; Xi is the actual image object values for each feature; 𝜇 is the mean value 

of each feature, 𝜎 is the standard deviation value of each feature. 

 

Figure 8: Spatial distribution of features values of image objects extracted from September 2019 UAV-

RGB image. 

3.3.5.4. Image Classification 

Once the image object features are extracted from UAV imageries for different seasons, the next step is 

classifying tree species using different machine learning algorithms. In this study, three different machine 

learning algorithms were applied to classify seven tree species, three from the broadleaved and four from 

the coniferous species. These machine learning algorithms include Support Vector Machine (SVM), Random 

Forest (RF) and K-Nearest Neighbours (KNN) classifiers. These algorithms were selected because of their 

effectiveness in producing high classification accuracy result in a mixed forest compared to other machine 

learning algorithms (e.g. Xie et al., 2019).  

Using the UAV-RGB image captured in September 2019 (leaf-on season), all the machine learning 

algorithms were applied to classify tree species found in a mature mixed broad leave and coniferous forest 

stand, and their sensitivity for different training sample size was also analysed.  Based on the tree 

classification accuracy assessment metrics (section 3.5.2), comparisons of these classifiers were then made 
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to identify the best classifiers. Subsequently, the best classifier was applied for February 2020 UAV images 

(leaf-off season) and a combination of leaf-on and leaf-off season UAV-RGB images so as to analyse the 

seasonal effect on tree species classification. Note that all the extracted feature variables were used as input 

for all the machine learning algorithms to classify tree species. In this study, we used a combination of 

spectral, texture, and CHM features because a single feature cannot separate all the eight classes very well. 

For example, by using the spectral UAV-RGB image alone, it is very difficult the separate the coniferous 

tree species that shows similar spectral signatures in the leaf-on season (for details, see section 5.2). 

All three machine learning algorithms required the ground truth data to train and test the classifiers. For this 

purpose, k-fold cross-validation, a statistical method used to estimate the classification skills of machine 

learning model, were used to reduce human induced bias that may often arise while categorizing the samples 

in to subsamples (training and testing). In k-fold cross validation, the ground truth data were randomly 

partitioned into k equal size subsamples.  The first k fold is applied to test the classifier, and the remaining 

k-1 folds are used for the training. In this study, 5-fold cross validation was chosen based on the sample size 

of the training and test data (247 in our case) we have. In addition, this cross validation has been widely 

applied in the field of machine learning algorithms. Out of the 5 folds, the 4 folds are used to train the 

classifier, and the remaining 1 fold is used for testing. In our case, the collected 247 samples were grouped 

into five equal subsamples of which each subsample comprises around 49 samples. The distribution of each 

class in the partitioned training and test data were also checked prior to run the classifiers in R statistical 

package. 

A) Support vector machine (SVM)   

SVM is a supervised machine learning algorithms which can be used for image classification (Cao et al., 

2018; Xie et al., 2019). This algorithm works to separate a number of classes (n-classes) by finding the 

optimal hyperplane boundary in high dimensional space (Figure 9). SVM use support vectors, data points 

selected from the training set, that lie closest to the hyperplane boundary. These vectors would help us to 

build the model and to separate the classes by applying different kernels such as linear, radial basis, sigmoidal 

and polynomial functions. Using different kernels, the non-linear separable challenges are solved by 

projecting the data into high dimensional feature space (Bruzzone & Persello, 2009). These kernel tricks 

make the classifier to be more popular and acceptable in remote sensing fields. Among these kernels, the 

radial kernel basis function (RBF) were used in this study because of its effectiveness and robustness in 

separating classes in a higher-dimensional space. In addition, in RBF the non-linearity within the classes are 

separated better than in the other kernel types (Lin et al., 2005). RBF uses two essential parameters, cost of 

constraint (C) and gamma (g), to maximize the margin between data points and the hyperplane. C is the 

regularization parameter that controls the errors of misclassification arising from the training data. The 

minimal C value indicates the model is poorly fitted while the high value of C shows the problems of 

overfitting. The other parameter in RBF is gamma, which indicates how far the influence of support vectors 
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on the decision boundary. Meaning, a high value of gamma means  support vectors close to the decision 

boundary, whereas the low values show the support vectors are far away from the decision boundary 

(Bruzzone & Persello, 2009). This implies that finding optimal values of C and gamma is indispensable to 

classify tree species using SVM model. In this study, the C and gamma parameter were fine-tuned using grid 

search algorithm and 5-fold cross validation in R statistical package. We used C parameter ranges from 10-2 

to 102 and gamma parameter ranges from 0.15 to 2. The optimal values of C and gamma value were selected 

based on the overall accuracy result as estimated from the confusion matrix (see the attached code in Annex 

4 for details). 

 

 
Figure 9: Possible hyperplane (A) and Optimal hyperplane (B) to separate two classes in SVM using a 
linear kernel. Source: (Towards Data Science, n.d.) 

B) K-Nearest Neighbours (KNN) 

KNN is one of the simplest supervised machine learning classifiers and widely used for high spatial 

resolution satellite imageries (Cao et al., 2018; Xie et al., 2019). This machine learning algorithm assigns 

classes by examining the distance between the K neighbouring samples and unknown object in the feature 

space (Figure10). If the unknown object is very close to the K neighbouring sample of the known class, this 

object belongs to the same class.  The basic idea behind the classification is that “if you tell me who your 

neighbours are, I will tell about you”. The accuracy of the KNN classifiers mainly depends on the K 

parameter value. Assigning a small value of K results in higher noise where as a larger value makes the KNN 

model computationally expensive. Therefore, finding optimal K value is of great importance to acquire best 

classification result. In this study, optimal K value was automatically determined based on the classification 

accuracy result as obtained from the different set of K values. The K value, which yields the highest accuracy 

result, was selected as an optimal K value and then used in object-based KNN classification. The code used 

in this study is presented in Annex 5.  
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Figure 10: Classification procedure in KNN. Source: (GitHub - artifabrian/dynamic-knn-gpu: Dynamic k-
Nearest Neighbours using TensorFlow with GPU support!, n.d.) 

C) Random forest (RF) 

The RF was developed by Leo Breiman and Adele Cutler, which is mainly used for classification and 

regression (Breiman, 2001). Its application for natural resource management, including tree species 

classification, is enormous (Cao et al., 2018; Xie et al., 2019). The workflow of random forest-based 

classification is presented in Figure 11. Random forest classifier is an ensemble classifier that comprises a 

large number of individual decision trees. The prediction of each individual each tree were averaged to 

determine the final prediction of random forest (Belgiu & Drăgu, 2016). As can be shown in Figure 11, each 

individual tree predicts a class, and the class with the most votes were chosen as a random forest model 

prediction. The advantage of this classifier is that its robustness to handle many feature /input/ without 

deletion, its capability to provide variable importance and high classification accuracy result, and its capability 

to control overfitting.  

In random forests, a bootstrap sample from the training set was created randomly to construct an 

uncorrelated individual tree. About two-thirds of the samples, the bootstrap sample, are used to construct 

Nth tree. The remaining samples (one-third) are considered as out-of-bag (OOB) samples. This OOB data 

is used to estimate the unbiased classification error and variable importance. The two important varaibles 

of the random forest are ntree and mtry. The ntree indicates the number of uncorrelated trees to grow, 

whereas the mtry shows the number of variables randomly sampled as candidates at each split.  The mtry is 

the square root of the number of features used to split the node.  In this study, the optimal value of the 

ntree was obtained by fined tuning the model iteratively. The optimal Nth tree gave the lowest OOB error. 

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#ooberr
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Based on the 20 features extracted from the leaf-on and leaf-season and 40 features from the combination 

of leaf-on and leaf-off seasons, the corresponding mtry value for those seasons is equal to 4 and 6. Moreover, 

the variable importance, one of the important components of the random forest classifiers, were determined 

using the mean decrease in Gini (MDG) and mean decrease accuracy (MDA) metrics. MDG estimates how 

much a variable reduces the Gini impurity metric in a particular class (Lim et al., 2019). The Gini impurity 

of a node shows the numbers of incorrectly labelled samples (features) in a node from a randomly selected 

sample in the corresponding node. The MDA considers the difference OOB error which is resulted from 

the original dataset and from random variation of the value of different variable. Based on the variable 

importance results, the most important variables or features were selected by observing the MDG results. 

This result enable us to get best tree species classification result. For details, kindly see the script in annex 

6. 

 

 

Figure 11: Classification procedure in a random forest (adapted from Liarokapis et al., 2013). OOB stands 
for out-of-bag. 

3.4. Data analysis  

3.4.1. Segmentation accuracy assessment  

Following Clinton et al., (2010), the area estimation technique was used to assess the segmentation accuracy 

of tree crowns delineated from a combination of CHM and Orthophoto, and Orthophoto only. The over 

segmentation, under segmentation and total detection error (segmentation error), were quantified for both 

mature and young forest stands (Eq1-3). The ideal value of the over segmentation, under segmentation and 
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total detection error is 0. The reference polygons (tree crowns) were manually digested in ArcGIS for two 

forest stands and then applied to quantify the segmentation error. 

𝑜𝑣𝑒𝑟 𝑠𝑒𝑔𝑒𝑚𝑎𝑡𝑖𝑜𝑛(𝑋) =  1 − (
(𝑎𝑟𝑒𝑎(𝐴𝑆𝐼 ∩ 𝐴𝑀𝑃)

𝑎𝑟𝑒𝑎(𝐴𝑆𝐼)
) − − − − − − − − − − − − − − − − − 𝑒𝑞1 

  𝑢𝑛𝑑𝑒𝑟  𝑠𝑒𝑔𝑒𝑚𝑎𝑡𝑖𝑜𝑛(𝑌) =  1 − (((𝑎𝑟𝑒𝑎(𝐴𝑆𝐼 ∩ 𝐴𝑀𝑃))/𝑎𝑟𝑒𝑎(𝐴𝑀𝑃) ) − − − − − − − − − −e𝑞2 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟(𝑠𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟)  =  √
(𝑋2 + 𝑌2)

2
− − − − − − − − − − − −𝑒𝑞3 

Where; 

 ASI is an area of the segmented object by multi-resolution segmentation algorithms (MRS) 

 AMP: area of the reference polygon (tree crown) which is manually digitized in ArcGIS  

Area (ASI ∩AMP): area of manually delineated polygon correctly identified by MRS 

 

3.4.2. Classification Accuracy Assessment  

The accuracy of SVM, RF and KNN classifiers in classifying seven tree species and one non-tree class were 

examined using the confusion matrix. The overall, the producer, and the user accuracy were quantified from 

confusion matrix that were developed fron the K-fold validation. For this, we used 5-fold cross validation 

that produces one confusion matrix for each fold. The tree species classification accuracy assessment were 

employed based on the final confusion matrix by adding all the five confusion matrix. 
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4. RESULTS 
 

4.1. Tree Crown Delineation by Combining  September 2019 Orthophoto and CHM 

   
In this section, results related to tree crown segmentation using Multi-resolution segmentation algorithm, 

including a selection of the best combination of segmentation parameters, and segmentation accuracy 

assessment in the two forest stands are presented. 

4.1.1. Selection of the best segmentation parameter combinations  

After a thorough trial and error, the best segmentation parameter combinations in delineating tree crowns 

of mature and young forest stands were identified, and results are presented in Table 6. Using the September 

Orthophoto only, the best scale, shape and compactness parameters for mature (young) forest stands were 

150 (50), 0.6 (0.6) and 0.8 (0.6), respectively. The same scale and compactness parameter values were 

identified in delineating the tree crowns of the two forest stands when combining Orthophoto and CHM. 

In addition to this, the tree crown segmentation were also performed by changing the weight given to the 

CHM layer. We found the best segmentation result when the CHM layer weigh was given as 1. As indicated 

in Figure 12 and 13, based on our visual inspection, the tree crown segmentation accuracy worsened as the 

CHM layer weight increased from 1 to 3 in both forest stands. As a result, over segmentation prevails in 

both forest stands (Figure 12 and 13). 

Table 6: Best segmentation parameter combinations in delineating tree crowns of the two forest stands. 

Forest 

stand  

Species 

group 

Orthophoto only  Combinations of Orthophoto and CHM 

Scale Shape Compactness Scale Shape Compactness CHM weight 

Mature  Broadleaved  150 0.6 0.8 150 0.4 0.8  

1( optimal 

weight) 

Coniferous  150 0.6 0.8 150 0.4 0.8 

Young Broadleaved  50 0.6 0.6 50 0.4 0.6 

Coniferous  50 0.6 0.6 50 0.4 0.6 

 

Since scale is the most sensitive parameter that considerably affects the segmentation accuracy result (Drǎguţ 

et al., 2014; Zhang et al., 2008), we evaluated the effect of scale on tree crown segmentation by changing 

shape, compactness and CHM weight parameters for the given scale. Figure 14 shows results of the over 

segmentation, under segmentation and total detection error (segmentation error) of the tree crown 

segmentation in a changing scale parameters. This analysis was performed in the mature forest stand as this 

forest stand produced the highest segmentation accuracy result (Table7). The boxplot results showed that 

the tendency of over segmentation decreases as the scale parameter increase from 50 to 150, but it shows 

an increasing trend as the scale parameter increases from 150 to 175. In contrast, the under segmentation 

increase as the scale parameter increase from 50 to 100 and then reached maximum when the scale parameter 

is 100.  The lowest total detection error was recorded when the scale parameter were given 125, 150 and 
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175, and their corresponding median value is 0.22, 0.186, and 0.218, respectively. Similarly, the lowest over 

segmentation result was produced when the scale parameter is about 125, 150 and 175 with a median value 

of 0.19, 0.17 and 0.21, respectively. In contrast to this scale, the lowest under segmentation errors were 

reported when we applied the scale parameter of 50, and 75 with a median value of 0.14 and 0.18, 

respectively. 

 

 

Figure 12: Tree crown segmentation using a combination of Orthophoto (leaf-on) image and CHM.  The 

weight of CHM layer were given to 2 (A) and 3 (B) in the mature forest stand. The red circle shows the 

observed difference in segmentation in varying CHM layer weight based on our visual inspection 

assessment. 

 

 

Figure 13: Tree crown segmentation using a combination of Orthophoto and CHM in a changing CHM layer 

weight from 2 (A) to 3 (B) in young forest stand. The red circle shows the observed difference in 

segmentation based on our visual inspection assessment. 
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Figure 14: Segmentation accuracy in the mature forest stand in a changing scale parameter using the leaf-on 

season (September 2019) UAV-RGB image. The horizontal line of the box plot shows the median values, 

whereas the top and bottom lines indicate 25th and 75th percentile. The black dots show the outlier. 

4.1.2. Segmentation accuracy assessment  

The tree crown segmentation accuracy of the two forest stands using a combination of Orthophoto and 

CHM, and a single Orthophoto is presented in Table 7 and Figure 15. Results revealed that combining 

Orthophoto and CHM improved the tree crown segmentation of the young mixed forest stand by 3% 

whereas their performance were reduced by 1% in the mature forest stand.  Specific to the broadleaved and 

coniferous tree species of the two forest stands, the combination of CHM and Orthophoto improved the 

tree crown segmentation of coniferous species by 1% and by 9% in mature and young forest stands, 

respectively. However, they did not improve the tree crown segmentation of the broadleaved species, the 

dominant tree in the study area. This is mainly associated with the accuracy of the UAV derived CHM, 

which is lower in a mature mixed forest stand than in the young forest stand. The low accuracy of CHM in 

the mature forest stand may be attributed to the accuracy of digital terrain model. 

On average, both Orthophoto and a combination of CHM and Orthophoto produced the highest tree 

crown segmentation result in a mature forest stand than in young forest stand. In mature broadleaved and 

coniferous forest stand, tree crowns were better delineated by single Orthophoto (83%) than by a 

combination of CHM and Orthophoto (82%) (Figure15).  In contrast, the tree crown delineation of the 

young forest stand was improved when we are combining CHM and Orthophoto instead of applying 

Orthophoto only. In general, the lowest segmentation accuracy were reported from the young mixed forest 

stand. This is mainly attributed to the existence of the randomly distributed mature deciduous and 

coniferous species in the young forest stand, which in turn affect the optimized scale parameters assigned 
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for this forest stand. Based on the aforementioned findings, we reject the null hypothesis for the young 

forest stand as a combination of Orthophoto and CHM improves the tree crown segmentation result in 

young forest stand by 3%. In contrast, we accept the null hypothesis for mature forest stand as a 

combination of Orthophoto and CHM doesn’t improve the tree crown segmentation. 

Table 7: The tree crown segmentation accuracy assessment result based on September 2019 (leaf-on) 

Orthophoto. The numbers in bracket indicate the segmentation accuracy result obtained by combining CHM 

and Orthophoto.  

Forest stand  Species group Segmentation Accuracy Assessment Metrics  

Over  

segmentation  

Under 

Segmentation  

Total Detection 

Error 

Accuracy (%) 

Mature  Broadleaved  0.12 (0.14) 0.23 (0.26) 0.18 (0.21) 82 (79) 

Coniferous  0.13 (0.16) 0.22 (0.12) 0.18 (0.14) 83 (84) 

Young Broadleaved  0.13 (0.08) 0.17 (0.25) 0.15 (0.18) 85 (82) 

Coniferous  0.08 (0.08) 0.55 (0.43) 0.39 (0.3) 61(70) 

 

Figure 15: Overall tree crown segmentation accuracies of the two forest stand using a combination of 

Orthophoto and CHM, and Orthophoto only.  

  
Combination of Orthophoto and CHM in 

mature forest stand(Overall accuracy: 82%) 

Orthophoto only in mature forest stand 

(Overall accuracy: 83%) 

  
Combination of Orthophoto and  CHM in 

young Forest stand (Overall accuracy: 76%) 

Orthophoto only in young  forest stand   

(Overall Accuracy: 73%) 
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4.2. Comparison of machine learning algorithms in classifying tree species using leaf-on  UAV-RGB 
image, September 2019 image 

 
Table 8 shows results of Random Forest (RF), Support Vector Machine (SVM) and K-nearest neighbour 

(KNN) object-based classification by using a combination of spectral, texture and CHM object variables. 

Results show that the SVM outperformed the KNN and the RF classifiers. The SVM object-based 

classification produced the highest performance with an overall accuracy (OA) and a kappa coefficient of 

79% and 0.75, respectively. As compared to KNN and RF, the SVM classifier gave the highest producer 

accuracy for all tree species except for Larch, which showed the highest producer accuracy result in Random 

Forest. 

Table 8: Summary of tree species classification accuracies using Random Forest, Support vector machine 

and K-nearest neighbour object-based classification for the leaf-on season UAV-RGB image. The best result 

obtained from these machine learning algorithms for each tree species and species group are in bold. 

 Species group Classified tree 

species 

Random Forest Support Vector Machine K-Nearest Neighbour 

PA% UA% PA% UA% PA% UA% 

Coniferous Douglas fir 69.56     78.04 76.08     85.36 64.15    82.92 

Pine 38     23 54  32 50.00     23 

Spruce 54.54 33.33 68.75     61.11 63.15   66.66 

Larch 80 .00    55.17 72.72     55.17 57.14     41.37 

Broadleaved 

 

Oak 68.96    90.90 73.07     86.36 62.71     84.09 

Beech 95.00     95.00 100     95.00 96.55     70.00 

Birch 88.23     90.31 94.11 92.17 82.35     84.21 

Non-tree 76.19     55.17 79.06     94.44 84.61     91.66 

OA % OA for both spp.:74.4 

OA for conf: 53.63 

OA for Broad: 92.07 

OA for Both: 79 

OA for conf.: 62.72 

OA for Broad: 91.08 

OA for both spp.:70.85 

OA for conf: 73.38 

OA for Broad: 67.46 

Kappa 0.7 0.75 0.66 

 

Similarly, the SVM classifier has also produced the highest user accuracy (UA) result for all tree species 

except, Oak which is best classified (best user accuracy) in Random Forest. Compared to the broadleaved 

tree species, SVM and RF reported low values of overall accuracy in classifying Coniferous tree species, but 

KNN produced the highest accuracy for this species. The reason for the low performance result of 

coniferous species in all machine learning algorithms is that the canopies of coniferous species are covered 

by the dominant broadleaved tree species. Moreover, the performance of all classifiers was poor in 

discriminating Pine species and gave a producer accuracy (PA) result ranges from 38% to 54% and a user 

accuracy ranges from 23% to 32%. This is mainly associated with the resembled spectral reflectance of this 

species with other coniferous species such as Douglas fir, Spruce and Larch (see the discussion part 

particularly the spectral profile image, Figure 22). In addition, the overall accuracy of each classifier per 

species group is indicated in Table 8. Results showed that the broadleaved tree species are best discriminated 
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by random forest algorithms whereas the KNN model shows the highest accuracy for coniferous species 

group. However, in a mixed coniferous and broadleaved forest stands, SVM produced optimal results to 

classify all the tree species. Specific to the individual tree species, we found the highest producer and user 

accuracy for Beech species in all machine learning algorithms except KNN which produced low user 

accuracy for this species. Similarly, Spruce was best separated in SVM and KNN object-based classification 

with the highest producer accuracy of 69%, and user accuracy of 67%, respectively. For Larch species, 

random forest produces the highest producer (80%) and user accuracy (55%) which is similar to SVM 

classification. Overall a cost effective UAV-RGB image has a capability to discriminate tree species as 

explained by an overall accuracy of greater than 70%.  

Fine tuning of model parameter and variable importance were also performed and results are presented 

from figures 16-18. The cost and gamma parameters of the SVM classifier was fine-tuned between 0.15 and 

2 for gamma, and from 0.01 to 100 for cost in R statistical package. We found the highest tree species 

classification result when the cost is 10 and gamma is 0.32. The total support vectors produced by SVM are 

about160 of which 26 for the non-forest area,  23 for beech, 18 for Spruce, 25 for pine, 21 for Douglas Fir, 

10  for Oak and 14 for Larch. These support vectors were used by the model for based-object based tree 

species classification. For RF classifier, the most important variables among the 20 object feature values 

were selected, and the result are shown in Figure 16. Based on the mean decrease accuracy and Gini index 

results, the mean red, mean blue, entropy green, entropy red and CHM mean are the most important 

variables for the RF object-based classification. Moreover, one of the multiple decision trees (500) used by 

the random forest classifier is also shown in Figure 17. RF use the average prediction of those 500 trees to 

predict the classes. Similarly, in KNN classifiers, the highest K (neighbour) value was selected based on the 

overall accuracy as shown in Figure18. The confusion matrix produced by each machine learning algorithm 

are attached in Annexes 8 to 11. The area coverage of each tree species classfied by SVM classfier using leaf-

on season UAV-RGB image is presented in Annex12. 

 
Figure 16: Variable importance result from the random forest classification. 
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Figure 17: One of the decision trees produced by the random forest. The numbers at the bottom of the tree 

indicated the classes (non-tree area (1); Beech (2), Larch (3), Pine (4): Douglas fir (5): Oak (6): Birch(7) and 

Spruce(8)).  

 

Figure 18: Fine-tuning of K (neighbours) in the KNN classifier. The red circle shows the optimized K value 

(K=5) used for object-based KNN trees species classification. 

Figure 19 shows the spatial distribution of the classification results obtained from the RF, KNN and SVM 

object-based classification. The performance of all the classifiers in terms of representing the actual 
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distribution of seven tree species were outstanding. As per our visual inspection, SVM produced better 

spatial distribution map similar to the original image. In general, the overall accuracy result is sufficient to 

reject the null hypothesis and accept the alternative hypothesis set in this study “SVM outperforms RF in 

classifying tree species using the leaf-on season UAV-RGB image.” 

 

 

 
Figure 19: Spatial distribution of tree species classification under the leaf-on condition using RF, KNN, and 

SVM classifiers. 
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4.3. Accuracy of tree species classification using UAV-RGB images of Leaf-on and Leaf-off seasons 

 
The result of SVM object-based tree species classification under the leaf-on and leaf-off conditions is 

presented in Table 9. Note that September 2019 UAV and February 2020 UAV-RGB images represent the 

leaf-on and leaf-off seasons, respectively. Prior to comparing the seasonal effect on tree species classification 

accuracy result, the February image was segmented using a different set of parameter combination including 

the best segmentation parameter combinations obtained from UAV September 2019 image. Based on our 

visual inspection assessment, fortunately, the best segmentation parameter combinations obtained from 

September UAV-RGB image (scale=150, shape=0.6 and compactness=0.8) gave an accurate segmentation 

result for February 2020 UAV-RGB image as well. Subsequently, about 20 object features were extracted 

from February 2020 to classify tree species using SVM classifier. Results show that SVM object-based 

classification produced the highest overall accuracy of 65% for coniferous species in the leaf-off season 

(February 2020 UAV-RGB image).  The optimized values of cost and gamma parameters of the model fine-

tuned from the February image are 15 and 0.5, respectively. As expected, the leaf-off season improves the 

classification of coniferous species groups as compared to the leaf-on season.  

Table 9: Summary of tree species classification accuracies using SVM for leaf-on and leaf-off seasons. The 

best performance evaluation result for each tree species and species group are in bold. 

Species group Classified tree 

species 

Leaf-on season 

(September 2019 image) 

Leaf-off season 

(February2020  image) 

PA UA PA UA 

Coniferous Douglas fir 76.08     85.36 76.74 80.48    

Pine 53.84     31.81 62.50     45.45 

Spruce 68.75     61.11 66.66   44.44 

Larch 72.72     55.17 80.0     68.96 

Broadleaved 

 

Oak 73.07     86.36 62.06     81.81 

Beech 100     95.00 73.17     75.00 

Birch 94.11 92.17 62.50     58.82 

Non-tree 79.06     94.44 80.55     80.55 

OA(%) OA for both species: 78.94 

OA for Coniferous: 62.72   

OA for broadleaved:91.08 

OA for both species: 71.25 

OA for Coniferous:   64.54 

OA for broadleaved: 75.24 

Overall Kappa 0.70 0.65 

 

The leaf-off season improved the coniferous tree species classification by 1.82% because of the absence of 

the dominant broadleaved tree species in this season. Most of the tree species grouped under coniferous 

types showed the highest producer and user accuracy in the leaf-off season than in the leaf-on season. In 

contrary, the leaf-off season did not improve the broadleaved species group as compared to the leaf-on 

season. Specific to the coniferous species, all coniferous species except Spruce are better separated in the 

leaf-off season than in the leaf-on season. Pine and Larch are best differentiated in the leaf-off season UAV-
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RGB image with a producer accuracy of 63%, and 80 %, respectively and a user accuracy of 45% and 69%, 

respectively.  In general, based on the overall accuracy results, the leaf-on season outperformed the leaf-off 

season in classifying all tree species except the coniferous ones.  The coniferous species particularly Pine 

and Larch are well discriminated in the leaf-off season whereas the broad leaf species are separated better 

in the leaf-on season than in the leaf-off season. 

Figure 20 shows the spatial distribution of the classified tree species under the leaf-on (September image) 

and leaf-off (February image) conditions. Results revealed that the distribution of broadleaved tree species 

in the leaf-off season is similar to the leaf-on season. However, the distribution of coniferous tree species 

in the leaf-on and leaf-off season varied spatially. Based on our visual inspection, the distribution of 

coniferous tree species were best represented in the leaf-off season than the leaf-on season. Some of the 

non-forest areas were mixed with broadleaved tree species in the leaf-off season which may be attributed to 

the similarity of the spectral characteristics of broadleaved tree species and the non-forest area.   

 

 

Figure 20: Spatial distribution of tree species classification using SVM classifier for leaf-off (February) and 

leaf-on (September) image. 

4.4. A combination of Leaf-on and Leaf-off  season UAV-RGB images in classifying tree species 

 
The classification result obtained from a combination of two seasonal UAV-RGB images is presented in 

table 10 and the results are compared with the leaf-on and leaf-off season UAV-RGB image. Based on the 

overall accuracy result, a combination of two UAV-RGB images, a combination of all bands from a different 
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season, produced an overall accuracy of 83% and a kappa coefficient of 0.75. This indicates that a 

combination of two UAV-RGB images improves the classification accuracy result as compared to a single 

date UAV-RGB image. It improves the leaf-on season (September 2019 UAV-RGB) and the leaf-off season 

(February 2020 image) tree species classification by 3.7% and by 11.3%, respectively. Most of the coniferous 

species are better identified in a combination of two UAV-RGB images than a single date image (February 

2020 or September 2019). For instance, considering the user accuracy results obtained from the leaf-on 

season, the separability of Douglas fir were improved from 85% to 93% when a combination of leaf-on and 

leaf-off season UAV-RGB images used. Similarly, Pine species was improved from 32% (leaf-on) and 45% 

(leaf-off) to 48%. Similarly, a combination of two UAV-RGB images improved the producer accuracy results 

obtained from a single date UAV-RGB image. Moreover, Pine tree species cannot be easily identified when 

a single date UAV-RGB images (leaf-on and leaf-off) or a combination of two UAV-RGB images used. 

This may be associated with a similar spectral reflectance of this species with the remaining tree species.  

Table 10: Comparison of a combination of seasonal UAV-RGB image against the leaf-on and leaf-off season 

UAV-RGB image in classifying tree species using SVM classifier. 

Species 

group 

Classified 

tree species 

Leaf-on season Leaf-off season Combination of 

Seasons 

PA % UA% PA % UA % PA% UA % 

Coniferous Douglas fir 76.08     85.36 76.74 80.48    81.25 92.85 

Pine 53.84     31.81 62.50     45.45 55.14 47.67 

Spruce 68.75     61.11 66.66   44.44 92.30 66.66 

Larch 72.72     55.17 80.0     68.96 80.95 58.62 

Broadleaved 

 

Oak 73.07     86.36 62.06     81.81 78.72 84.09 

Beech 100     95.00 73.17     75.00 86.04 92.50 

Birch 94.11 92.17 62.50     58.82 83.33 88.23 

Non-tree 79.06     94.44 80.55     80.55     88.88 88.88 

OA % OA for both spp.:78.94 

OA for Conf: 62.72   

OA for broad: 91.08 

OA for both spp: 71.25 

OA for Conf:  64.54 

OA for broad: 75.24 

OA for both:82.59 

OA for conf: 75.45 

OA for broad: 88.11 

Kappa 0.70 0.65 0.75 

 

In general, the combination of two UAV-RGB images improved the overall classification accuracy, and this 

improvement is more pronounced for coniferous tree species group. Using a combination of leaf-on and 

leaf-off UAV-RGB image, we found an overall accuracy of 75% for coniferous and 88% for broadleaved 

species group. Compared to the leaf-on season UAV-RGB image, the combination of two UAV-RGB 

images did not much improve the broadleaved species. 

Figure 21 shows the spatial distribution of all tree species classification in a combination of leaf-on and leaf-

off season UAV-RGB images. Results revealed that the spatial distribution of Douglas fir (Orange colour) 

were considerably varied in September 2019 UAV-RGB image (leaf-on) than in February image (leaf-off) 

and a combination of two UAV-RGB images. This result is explained by the producer and user accuracy as 
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indicated in Table 10. According to the overall accuracy and kappa coefficient results, the null hypothesis is 

rejected in support of the alternative hypothesis that the combinations of leaf-on and leaf-off season UAV-

RGB images improve the tree species classification result as compared to a single season UAV-RGB image. 

 

 
 

Figure 21: Spatial distribution of tree species classification using SVM classier for leaf-on, leaf-off and for 

the combination of leaf-on and leaf-off season UAV-RGB image. 
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5. DISCUSSION 

5.1 Tree Crown delineation using Multi-resolution segmentation (MRS)  

 
Image segmentation is a critical step in object-based image analysis (OBIA) as it affects the classification 

result considerably (Hossain & Chen, 2019). Finding the best combinations of segmentation parameters for 

MRS is a prerequisite to improve the segmentation result and to reduce the propagation error of 

segmentation into the classification result (Drǎguţ et al., 2014; Zhang et al., 2018). The best scale, shape and 

compactness parameters for mature and young forest stands were determined iteratively. The values of the 

corresponding parameters for mature forest stand are 150, 0.6 and 0.8, while for the young forest stand are 

50, 0.6 and 0.6. Among these parameters, we found that scale is the most sensitive parameter which 

substantially affects the segmentation result, and this result is consistent with the findings of the previous 

studies (e.g., Cao et al., 2018; Drǎguţ et al., 2014; Ghosh & Joshi, 2014; Ming et al., 2015). We also found 

different segmentation parameters for the two forest stands. This discrepancy mainly associated with the 

difference in canopy coverage, forest structure and a difference in spectral properties of tree species.  

 

The MRS proved to be an effective segmentation algorithm in the mature mixed forest stand as explained 

by the highest overall accuracy of 83% when a combination of Orthophoto and CHM used, and 82% when 

a single Orthophoto used.  Similarly, MRS produced a good segmentation result in young mixed forest stand 

using a combination of CHM and Orthophoto (76%) and single Orthophoto (73%). The lower 

segmentation accuracy in the young forest may be attributed to the random distribution of mature deciduous 

and coniferous species which in turn affects the optimized scale parameters assigned for this forest stand. 

In addition, intermingled leaves and the small size of the crown may partly affect the accuracy of 

segmentation result as well. Multi-resolution segmentation produced the higher segmentation accuracy result 

in the mature forest stand than in the young forest stand. Moreover, a combination of UAV-derived CHM 

and Orthophoto slightly underestimates the tree crown segmentation of the mature forest stand but 

improves the young forest stand by 3%. This discrepancy may be associated with the accuracy of UAV 

derived CHM which is better in the young forest stand than in mature forest stand.  The possible reason for 

the betterment of UAV derived CHM in young forest stand is that this forest stand may yield better DTM 

as compared to mature forest stand. In this study, note that, the DTM of the two forest stands were 

determined using the leaf-off season UAV-RGB image in which the broadleaved species, the dominant trees 

in the study area, drops their leaves in this season. However, a few number of coniferous species were 

observed in the young forest stand than in mature forest stand and this  may partly contribute its parts to 

improve the accuracy of DTM in young forest stand as UAV derived DTM mainly depends very much on 

the canopy openness (Obeng-manu, 2019). 
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Compared to the previous studies who reported that tree height improves the segmentation accuracy in 

mixed forest stand (Guo et al., 2017; Sankey et al., 2018), we found inconsistent result. This discrepancy is 

mainly associated with the difference of the data source used by these studies to derive CHM. For example, 

Guo et al., (2017) used UAV born LiDAR data to derive CHM for forest mapping, and they found that the 

UAV born LiDAR system produced high accuracy of DTM. Similarly, Sankey et al., (2018) applied UAV 

LiDAR data for vegetation mapping, and they found that UAV LiDAR showed the highest accuracy in 

generating DTM as Lidar penetrate the canopy but UAV cannot. Moreover, LiDAR data is a measurement 

while UAV data is an output of the Orthophoto mosaic of many images in SFM process. This indicates that 

further improvement of UAV derived CHM would be necessary by integrating UAV data with LiDAR. 

5.2. Comparison of machine learning  algorithms  

 
The best machine learning algorithms for classifying seven tree species in a mixed temperate forest would 

be characterized by high overall accuracy and high kappa coefficient. Taking this into account, the SVM 

outperformed RF and KNN classifiers (Table 8) and produced the highest overall accuracy and kappa 

coefficient in a mixed temperate forest. This result comparable with findings of Wessel et al. (2018): SVM 

showed the highest performance in separating broadleaved and coniferous tree species in a temperate forest, 

Germany. However, the accuracy of all the three classifiers considerably varied when we considered their 

performance in classifying four tree species from the coniferous and three species from the broadleaved 

tree types separately. 

 

All the classifiers produced the lowest performance in separating the species within coniferous tree species 

group when compared to the broadleaved ones. This is mainly due to the fact that the coniferous tree species 

(4 in number) have similar spectral characteristics. Though the performance of these classifiers to separate 

tree species in temperate forests varies from region to region and from species to species (e.g. Cao et al., 

2018; Modzelewska et al., 2020; Xie et al., 2019), we found that SVM is the best classifier in this study region 

as compared to RF and KNN. The low performance of random forest compared to SVM may be partly 

caused by the number of samples (training and test) used (Luan et al., 2020). As presented in Table 11, the 

overall accuracy of the SVM and KNN classifiers are less sensitive to sample size. In contrast, the RF 

classifier is highly sensitive to the number of samples which in turn affects its accuracy in classifying tree 

species. This result is consistent with the findings reported by Thanh et al. (2017) and Luan et al. (2020) 

who found that the accuracy of RF is increased as sample size increase. The RF may outperform all the 

remaining machine learning algorithm when the sample size is very large and thus, further studies could be 

needed to validate RF classifier by taking more than 247 samples. Overall, the sensitivity result obtained 

from this study is comparable with the findings of Qian et al. (2015) as well. 
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Table 11:  Sensitivity of machine learning algorithms for different size of sample sizes.  

Sample 

Size 

SVM RF KNN 

Cost Gamma Accuracy% Ntree Mtry Accuracy % K Accuracy % 

50 35 0.24 77.3 70 5 61.8 3 72.1 

100 25 0.21 78.4 50 5 64.4 3 72.8 

150 18 0.31 77.5 200 5 67.9 5 73.1 

200 8 0.28 78.8 320 5 70.3 5 72.9 

247 10 0.32 78.9 500 5 74.4 5 73.4 

5.3. Seasonal effects on tree species classification 

 

Tree species classification based on the combination of leaf-on and leaf-off season UAV-RGB images 

showed that dataset from the different seasons could improve the classification result, especially in a mixed 

temperate forest. This is mainly due to the fact that the combination of two UAV-RGB images take the 

advantage of tree species classification under the leaf-on and leaf-off conditions. Meaning, the leaf-on season 

improved the classification of the broadleaved species whereas the leaf-off season improves the coniferous 

species classification. These results are consistent with the findings of the previous studies who reported 

that leaf-on and leaf-off LiDAR images improved the broadleaved and coniferous tree species classification 

(Kim et al., 2009). Similarly, we also found comparable result with the findings of Wessel et al. (2018) and 

Persson et al. (2018)  who classified these species using multi-temporal Sentinel image.  

 

The leaf-off season (February) UAV-RGB image performs poorly to separate broadleaved tree species as 

the broadleaved species tend to drop their leaves in this season. The leaf-on season outperforms the leaf-

off and the combination of leaf-on and leaf-off season in identifying broadleaved tree species but not for 

coniferous species. A good performance of the broadleaved tree species classification in the leaf-on season 

is mainly attributed to the dissimilarity of spectral reflectance of the trees species in this season.  As can be 

shown in Figure 22, most of the broadleaved species exhibit higher variabilities of spectral reflectance in the 

leaf-on (September) season than in the leaf-off (February) season, and this factor makes the broadleaved 

tree species to be separated well.  In contrast, all the coniferous species can be more separated in the leaf-

off season than in the leaf-on season. The fact that the coniferous species tend to show higher variabilities 

of spectral signature in the leaf-off season than in the leaf-on season as explained below. 

 

In general, the classifiers showed poor performance in separating Pine species that are highly confused with 

Douglas Fir. However, the leaf-off season gave better classification result for Pine species, which is mainly 

attributed to the highest variabilities of the spectral profile. For example, the digital number (DN) value of 

Pine (Douglas Fir) species on the red band is 75 (110) in the leaf-off and 130 (148) in the leaf-on season. 

Despite Larch is a coniferous species, it behaves like the broadleaved tree species which tends to drop its 
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needle leaves in winter and looks white in this season. As a result, the spectral reflectance of this specie is 

very high (220) which can  easily  be separated in the leaf-off season as compared to the remaining tree 

species. However, Larch species exhibit similar spectral characteristics with the coniferous species especially 

with Spruce species. Overall, the spectral variability of the coniferous species is very high in leaf-off season 

than in the leaf-on season. Moreover, the spectral bands alone cannot separate all the tress species accurately 

as explained by the spectral profile illustrated in Figure 22, which showed similar spectral characteristics. 

Therefore, it is very important to consider multiple features such as spectral, texture and tree height as input 

for the classification. 

 

 

Figure 22: The average spectral reflectance curve of the tree species under the leaf-on (A) and leaf-off (B) 

conditions. Band 1, 2 and 3 refer Red, Green, and Blue. The first four species listed in the legend are 

coniferous species, and the remaining are the broadleaved ones. 

Using a combination of two UAV-RGB images, we found a good tree species classification accuracy result 

in a mixed temperate forest, and we believe that this classification performance may be improved when we 

are using multispectral images that comprises the infrared and red edge bands (Deng et al., 2017). Moreover, 

despite efforts were made to consider additional UAV-RGB images captured in spring season for tree 

species classification, we did not perform the analysis as we obtained the spring season UAV-RGB image, 

Mid-May 2020, lately. However, based on our visual inspection assessment, the Orthophoto shown in Figure 

23 may not improve the classification result as the tree species exhibit similar spectral characteristics, and 

most of them look like green. But still, there might be a chance to differentiate some of the tree species 

which have different shades of greenness which shows different spectral characteristics. This study suggests 

to use UAV-RGB image captured in the leaf-onset season (April but not May) UAV-RGB image which may 

improve the tree classification accuracy result. 
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Figure 23: UAV-RGB image captured in May 2020 

5.4. Implication for Natural Resource Management 

 
The findings of this study are important to monitor Haagse Bos in a sustainable manner. This study suggests 

to use SVM classifier to classify tree species in a mixed temperate forest like Haagse Bos and has its own 

implication in estimating the above-ground biomass at the species level, in managing forest ecosystem, in 

assessing the biodiversity and ecosystem services, and in conserving endangered or critical tree species. 

Moreover, this tree species classification result would provide valuable information to natural resource 

managers to utilize/sell woods from the identified species.  
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6. CONCLUSION AND RECOMMENDATION 

6.1. CONCLUSION 

This study aimed at classifying and mapping tree species using UAV-RGB images and machine learning  

algorithms  in a mixed temperate forest, Haagse Bos  Netherlands. For this purpose, the UAV-RGB images 

captured in September 2019 (leaf-on season) and February 2020 (leaf-off season) were used. A combination 

of leaf-on and leaf-off season UAV-RGB images were also applied to classify tree species. The object-based 

Support Vector Machine (SVM), K-nearest neighbour (KNN) and Random Forest (RF) classifiers were 

used to separate seven tree species, three from the broadleaved and four from the coniferous trees. The 

UAV-RGB image captured on the leaf-on season were used to compare all the three classifiers, and to assess 

the tree crown segmentation accuracy in the young and mature mixed forest stands using a single 

Orthophoto and combinations of canopy height model (CHM) and Orthophoto. The accuracy of the multi-

resolution segmentation (MRS) algorithm in segmenting tree crown were assessed using three evaluation 

performance metrics: over segmentation, under segmentation and total segmentation error. Regarding the 

tree species classification, comparison of classifiers were made based on the overall accuracy and kappa 

coefficient, which were determined from the confusion matrix developed from the 5-fold cross validation. 

The best classifier was subsequently applied in the leaf-off and combinations of seasons of UAV-RGB 

images for classifying tree species. 

Based on the findings of this study,  the following conclusions can be drawn for each research question; 

Question1: How accurately can the tree crowns be delineated by multi-resolution segmentation?  Does a 

combination of Orthophoto and UAV derived CHM improves the segmentation accuracy result in mature 

and young forest stands? 

• The MRS proved to be a powerful tool in segmenting the tree crown of the mature forest stand as 

explained by the highest overall accuracy of 83% when a combination of Orthophoto and CHM 

used, and 82% when a single Orthophoto used. MRS produced an overall accuracy of 76% and 

73% segmentation accuracy in young forest stand when a combination of CHM and Orthophoto, 

and a single Orthophoto used, respectively. These indicate that we found a better segmentation 

result in mature forest stand than in young forest stand. 

• The UAV-derived CHM improved the tree crown segmentation of young forest stand by 3% but 

it slightly reduced the segmentation accuracy of the mature forest stand by 1%. This discrepancy 

may partly be associated with the accuracy of UAV derived CHM. 

Question2: Which classifiers (SVM, RF and KNN) perform best in differentiating tree species using 

September 2019 UAV-RGB image (leaf-on season)? 
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• Among the machine learning algorithms, using the leaf-on season UAV-RGB image, the SVM 

object-based classification produced the highest performance in classifying tree species with an 

overall accuracy and a kappa coefficient of 79% and 0.75, respectively.  

• Results showed that the broadleaved tree species are better discriminated by RF whereas the KNN 

model produced the highest accuracy in classifying tree species categorized under coniferous species 

group. In general, the users can use RF classifier to classify the broadleaved tree species if they are 

interested to classify the broadleaved tree species alone. Similarly, they can use KNN for coniferous 

species classification. However, in a mixed temperate forest like Haagse Bos, we suggest to use 

SVM to classify tree species.  

Question3: How accurate are tree classification results obtained from leaf-on and leaf-off season UAV-

RGB images? 

• The tree species classification under the leaf-off condition produced the lowest results as compared 

to the leaf-on season, and a combination of leaf-on and leaf-off season UAV-RGB image.  

However, coniferous tree species are best separated in the leaf-off season. In contrary, the 

broadleaved species are better differentiated in leaf-on season image. 

Question4/5: Does the tree species classification accuracy result improve when the combinations of leaf-

on and leaf-off season UAV-RGB images are used? Which UAV-RGB image (leaf-on, leaf-off, and/or 

combinations) yields best tree species classification result? 

• The combination of leaf-on and leaf-off seasons UAV-RGB image, a combination of all bands (6) 

from different seasons, produced an overall accuracy of 83% and kappa coefficient of 0.75. This 

indicates that a combination of leaf-on and leaf-off seasons UAV-RGB image improves the 

classification accuracy result as compared to the classification result obtained from a single date 

UAV-RGB image. It improves the leaf-on and leaf-off season tree species classification by 3.7% 

and by 11.3 %, respectively. 

6.2. RECOMMENDATION 

This study suggests to use SVM classifier in Haagse Bos to estimate the above-ground biomass at the 

species level and to manage endangered or critical species. Despite a combination of two UAV-RGB 

image produced a reasonable classification result (83%), further studies would be necessary to improve 

the classification accuracy result either using UAV multispectral or hyperspectral sensors or by 

incorporating additional UAV-RGB image captured in spring and summer seasons. It is important to 

acknowledge that the findings of this study may be limited by the number and distribution of training 

dataset used.  
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ANNEX 

Annex1: Quality report for the February image 
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Annex 2: Feature extracted from February 2019 UAV-RGB image 

 
 

Annex 3: Feature extracted from the combination of two seasonal images  
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Annex 4:  SVM code for classification 

Path="E:/reserach/pix4d_new/Feb_data/sep+feb" 

setwd(Path) 

### SVM 

setwd(Path) 

files<-

c("meanSR.tif","meanSG.tif","meanSB.tif","meanFR.tif","meanFG.tif","meanFB.tif","stdSR.tif","stdSG.tif

","stdSB.tif","stdFR.tif","stdFG.tif","stdFB.tif","homoSR.tif","homoSG.tif","homoSB.tif","homoFR.tif","

homoFG.tif","homoFB.tif","entroSR.tif","entroSG.tif","entroSB.tif","entroFR.tif","entroFG.tif","entroF

B.tif","corrSR.tif","corrSG.tif","corrSB.tif","corrFR.tif","corrFG.tif","corrFB.tif","contraSR.tif","contraS

G.tif","contraSB.tif","contraFR.tif","contraFG.tif","contraFB.tif","stdCHM.tif","meanCHM.tif") 

A<-stack(files) 

A<-scale(A) 

plot(A) 

VTS <- readOGR(dsn=Path, layer="train3",  stringsAsFactors = FALSE) 

B<-data.frame(VTS@data,extract(A,VTS)) 

head(B) 

selectfea<-c(3:40) 

 

set.seed(100) 

## K-fold validation; splitting training and testing dataset 

j <- kfold(B, k = 5, by=B$class) 

table(j) 

x <- list() 

for (k in 1:5) { 

  train <- B[j!= k, ] 

  test <- B[j == k, ] 
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  SVM.lin.model <- svm(x=train[,selectfea],y=train$class,  type="C-classification", kernel = "radial", cost 

=2.99 ,scale = TRUE) 

  y=predict(SVM.lin.model,test[,selectfea]) 

  # create a data.frame using the reference and prediction 

  x[[k]] <- cbind(test$class, as.integer(y)) 

} 

y <- do.call(rbind, x) 

y <- data.frame(y) 

colnames(y) <- c('observed', 'predicted') 

conmat <- table(y) 

# number of cases 

n <- sum(conmat) 

n 

##  

# number of correctly classified cases per class 

diag <- diag(conmat) 

# Overall Accuracy 

OA <- sum(diag) / n 

OA 

 

# observed (true) cases per class 

rowsums <- apply(conmat, 1, sum) 

p <- rowsums / n 

# predicted cases per class 

colsums <- apply(conmat, 2, sum) 

q <- colsums / n 

expAccuracy <- sum(p*q) 

kappa <- (OA - expAccuracy) / (1 - expAccuracy) 

kappa 

 

###Producer and user accuracy  for SVM 

 

# Producer accuracy 

PA <- diag / colsums 

# User accuracy 

UA <- diag / rowsums 

outAcc <- data.frame(producerAccuracy = PA, userAccuracy = UA) 

outAcc 

summary(SVM.lin.model) 

 

##plotting and summary SVM classification  

summary (SVM.lin.model) 

SVMpred<-predict(A,SVM.lin.model) 

writeRaster(SVMpred,filename="SVM_feb+sep.tif") 

plot(SVMpred) 
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###Fine tuning of  SVM radial model 

OA <- sum(diag) / n 

OA 

C.vec=10^seq(0,3,len=20) 

OA.vec=rep(0,20) 

OAtr.vec=rep(0,20) 

NSV=rep(0,20) 

 

for (i in 1:length(C.vec)){ 

  SVM.lin.model <- svm(x=train[,selectfea], y=train$class,  type="C-classification", kernel = "radial", cost 

= C.vec[i],gamma = 0.32, scale = TRUE) 

  ypred=predict(SVM.lin.model, test[,selectfea]) 

  CM=table(prediction=ypred,truth=test$class) 

  OA=sum(diag(CM))/length(test$class) 

  print(OA) 

  OA.vec[i]=OA 

   

  ytr.pred=predict(SVM.lin.model, train[,selectfea]) 

  CM=table(prediction=ytr.pred,truth=train$class) 

  OAtr=sum(diag(CM))/length(train$class) 

  OAtr.vec[i]=OAtr 

  NSV[i]=SVM.lin.model$tot.nSV 

} 

 

best.C=C.vec[which.max(OA.vec)] 

best.C 

SVM.lin.model <- svm(x=train[,selectfea], y=train$class,  type="C-classification", kernel = "radial", cost 

= best.C, scale = TRUE) 

ypred=predict(SVM.lin.model, test[,selectfea]) 

CM=table(prediction=ypred,truth=test$class) 

OA=sum(diag(CM))/length(test$class) 

OA 

summary(SVM.lin.model) 

###other ways to fine tune cost and gamma 

x<-subset(B,select=-class) 

y<-B$class 

svm2<-tune(svm,train.x = x,train.y = y,kernel="radial",ranges = list(cost=10^(-1:2), gamma=c(0.5,1,2)), 

           tunecontrol=tune.control(nrepeat = 5,sampling = "cross",cross = 5)) 

svm2 

Annex 5 : KNN code used for classification 

Path="E:/reserach/pix4d_new/Feb_data/sep+feb" 

setwd(Path) 

### KNN 

setwd(Path) 

files<-

c("meanSR.tif","meanSG.tif","meanSB.tif","meanFR.tif","meanFG.tif","meanFB.tif","stdSR.tif","stdSG.tif
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","stdSB.tif","stdFR.tif","stdFG.tif","stdFB.tif","homoSR.tif","homoSG.tif","homoSB.tif","homoFR.tif","

homoFG.tif","homoFB.tif","entroSR.tif","entroSG.tif","entroSB.tif","entroFR.tif","entroFG.tif","entroF

B.tif","corrSR.tif","corrSG.tif","corrSB.tif","corrFR.tif","corrFG.tif","corrFB.tif","contraSR.tif","contraS

G.tif","contraSB.tif","contraFR.tif","contraFG.tif","contraFB.tif","stdCHM.tif","meanCHM.tif") 

A<-stack(files) 

A<-scale(A) 

plot(A) 

VTS <- readOGR(dsn=Path, layer="train3",  stringsAsFactors = FALSE) 

B<-data.frame(VTS@data,extract(A,VTS)) 

head(B) 

## K-fold validation ;splitting training and testing dataset 

j <- kfold(B, k = 5, by=B$class) 

table(j) 

x <- list() 

for (k in 1:5) { 

  train <- B[j!= k, ] 

  test <- B[j == k, ] 

  ctrl <- trainControl(method="repeatedcv",repeats = 3) #,classProbs=TRUE,summaryFunction = 

twoClassSummary) 

  knnFit <- train(class ~ ., data = train, method = "knn", trControl = ctrl,  tuneLength = 

20,na.action="na.omit") 

   

  y=predict(knnFit,test) 

  # create a data.frame using the reference and prediction 

  x[[k]] <- cbind(as.factor(test$class) , as.factor(y)) 

} 

knnFit 

plot(knnFit) 

 

#accuracy assesement 

y <- do.call(rbind, x) 

y <- data.frame(y) 

colnames(y) <- c('observed', 'predicted') 

conmat <- table(y) 

conmat 

# number of cases 

n <- sum(conmat) 

n 

##  

# number of correctly classified cases per class 

diag <- diag(conmat) 

# Overall Accuracy 

OA <- sum(diag) / n 

OA 

 

# observed (true) cases per class 



TREE SPECIES CLASSIFICATION USING UAV-RGB IMAGES AND MACHINE LEARNING ALGORITHMS IN A MIXED    

TEMPERATE FOREST: A CASE STUDY OF HAAGSE BOS, NETHERLANDS 

 

  

52 

rowsums <- apply(conmat, 1, sum) 

p <- rowsums / n 

# predicted cases per class 

colsums <- apply(conmat, 2, sum) 

q <- colsums / n 

expAccuracy <- sum(p*q) 

kappa <- (OA - expAccuracy) / (1 - expAccuracy) 

kappa 

###Producer and user accuracy for KNN 

# Producer accuracy 

PA <- diag / colsums 

# User accuracy 

UA <- diag / rowsums 

outAcc <- data.frame(producerAccuracy = PA, userAccuracy = UA) 

outAcc 

KNN_predictt<-predict(A,knnFit) 

writeRaster(KNN_predictt,filename="newf_knn.tif") 

plot(KNN_predictt) 

Annex 6: Random forest code applied in this study  

rm(list=ls(all=TRUE)) 

require(rgdal) 

require("e1071") 

library(MASS) 

require(kernlab) 

library(dismo) 

library(randomForest) 

library(sp) 

library(tcltk) 

library(rasterVis) 

library(class) 

library(ISLR) 

library(caret) 

# Change this accoording to your data folder path 

Path="E:/reserach/pix4d_new/Feb_data/sep+feb" 

setwd(Path) 

### randomforest 

setwd(Path) 

files<-

c("meanSR.tif","meanSG.tif","meanSB.tif","meanFR.tif","meanFG.tif","meanFB.tif","stdSR.tif","stdSG.tif

","stdSB.tif","stdFR.tif","stdFG.tif","stdFB.tif","homoSR.tif","homoSG.tif","homoSB.tif","homoFR.tif","

homoFG.tif","homoFB.tif","entroSR.tif","entroSG.tif","entroSB.tif","entroFR.tif","entroFG.tif","entroF

B.tif","corrSR.tif","corrSG.tif","corrSB.tif","corrFR.tif","corrFG.tif","corrFB.tif","contraSR.tif","contraS

G.tif","contraSB.tif","contraFR.tif","contraFG.tif","contraFB.tif","stdCHM.tif","meanCHM.tif") 

A<-stack(files) 

### random forest 

A<-scale(A) 
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plot(A) 

VTS <- readOGR(dsn=Path, layer="train3",  stringsAsFactors = FALSE) 

B<-data.frame(VTS@data,extract(A,VTS)) 

head(B) 

selectfea<-c(3:40) 

set.seed(500) 

## K-fold validation ;splitting training and testing dataset 

j <- kfold(B, k = 5, by=B$class) 

table(j) 

x <- list() 

for (k in 1:5) { 

  train <- B[j!= k, ] 

  test <- B[j == k, ] 

  rf.mdl<-randomForest(x=train[,selectfea],y=as.factor(train$class),ntree = 500, importance = TRUE, 

                       proximity = FALSE) 

  y=predict(rf.mdl,test[,selectfea]) 

  # create a data.frame using the reference and prediction 

  x[[k]] <- cbind(test$class, as.integer(y)) 

} 

###plotting and variableimportance for RF 

rf.mdl 

varImpPlot(rf.mdl) 

y<-predict(A,rf.mdl,filename="new_RF.tif", 

type="response",na.rm=TRUE,progress="window",overwrite=TRUE) 

plot(y) 

writeRaster(y,filename="new_RF.tif") 

par(xpd=FALSE) 

plot(y,legend=FALSE,col=c("lightcyan3","royalblue","forestgreen","coral3"), 

     xaxt="n",yaxt="n",main="RF Classification") 

par(xpd=TRUE) 

legend("bottom",legend=c("ki","abe","fu","me"), 

       fill=c("lightcyan3","royalblue","forestgreen","coral3"),horiz = T, 

       inset = 0.075) 

y <- do.call(rbind, x) 

y <- data.frame(y) 

colnames(y) <- c('observed', 'predicted') 

conmat <- table(y) 

conmat 

# number of cases 

n <- sum(conmat) 

n 

##  

# number of correctly classified cases per class 

diag <- diag(conmat) 

# Overall Accuracy 

OA <- sum(diag) / n 
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OA 

# observed (true) cases per class 

rowsums <- apply(conmat, 1, sum) 

p <- rowsums / n 

# predicted cases per class 

colsums <- apply(conmat, 2, sum) 

q <- colsums / n 

expAccuracy <- sum(p*q) 

kappa <- (OA - expAccuracy) / (1 - expAccuracy) 

kappa 

###Producer and user accuracy for RF  

# Producer accuracy 

PA <- diag / colsums 

# User accuracy 

UA <- diag / rowsums 

outAcc <- data.frame(producerAccuracy = PA, userAccuracy = UA) 

outAcc 

 

Annex7: RF confusion matrix 

 
Annex8: SVM confusion matrix 

 

predicted total UA

observed NON_FOREST BEECH SPRUCE PINE FIR OAK BIRCH LARCH

NON_FOREST 32 0 0 4 0 0 0 0 36 0.888889

BEECH 0 38 0 1 0 1 0 0 40 0.95

SPRUCE 2 0 6 1 2 4 2 1 18 0.333333

PINE 7 0 2 5 4 3 0 1 22 0.227273

FIR 0 1 2 1 32 3 0 2 41 0.780488

OAK 0 1 0 0 3 40 0 0 44 0.909091

BIRCH 1 0 0 0 0 1 15 0 17 0.882353

LARCH 0 0 1 1 5 6 0 16 29 0.551724

184 247

OA 0.744939

TOTAL 42 40 11 13 46 58 17 20

PA 0.761904762 0.95 0.545455 0.384615 0.695652 0.689655 0.882353 0.8

OAC 53.63

OAD 92.07

predicted total UA

observedNON_FORESTBEECH SPRUSE PINE FIR OAK BIRCH LARCH

NON_FOREST 34 0 0 2 0 0 0 0 36 0.944444

BEECH 1 38 0 1 0 0 0 0 40 0.95

SPRUSE 0 0 11 0 3 1 1 2 18 0.611111

PINE 8 0 1 7 2 3 0 1 22 0.318182

FIR 0 0 3 1 35 1 0 1 41 0.853659

OAK 0 0 0 1 3 38 0 2 44 0.863636

BIRCH 0 0 0 0 0 1 16 0 17 0.941176

LARCH 0 0 1 1 3 8 0 16 29 0.551724

195 247

OA 0.789474

TOTAL 43 38 16 13 46 52 17 22

PA 0.790698 1 0.6875 0.538462 0.76087 0.730769 0.941176 0.727273

OAC 62.72

OAD 91.08



TREE SPECIES CLASSIFICATION USING UAV-RGB IMAGES AND MACHINE LEARNING ALGORITHMS IN A MIXED 

TEMPERATE FOREST: A CASE STUDY OF HAAGSE BOS, NETHERLANDS 

55 

Annex9: KNN confusion matrix 

 
 

 

 

Annex 10: February image confusion matrix 

 
 

Annex11: Combination of the two seasonal images confusion matrix 

 
 

predicted total UA

observed NON_FOREST BEECH SPRUCE PINE FIR OAK BIRCH LARCH

NON_FOREST 28 0 1 5 0 4 1 1 40 0.7

BEECH 0 14 0 0 0 2 0 1 17 0.823529

SPRUCE 0 0 34 3 0 1 1 2 41 0.829268

PINE 0 0 8 12 0 8 0 1 29 0.413793

FIR 0 0 0 0 33 1 2 0 36 0.916667

OAK 0 0 5 1 0 37 1 0 44 0.840909

BIRCH 0 1 4 0 6 4 5 2 22 0.227273

LARCH 1 2 1 0 0 2 0 12 18 0.666667

175 247

OA 0.708502

TOTAL 29 17 53 21 39 59 10 19

PA 0.965517241 0.823529 0.641509 0.571429 0.846154 0.627119 0.5 0.631579

OAC 73.38

OAD 67.46

predicted total UA

observed NON_FOREST BEECH SPRUCE PINE FIR OAK BIRCH LARCH

NON_FOREST 29 0 0 3 1 1 0 2 36 0.805556

BEECH 0 30 0 1 0 9 0 0 40 0.75

SPRUCE 1 0 8 0 7 1 1 0 18 0.444444

PINE 3 3 0 10 1 4 0 1 22 0.454545

FIR 2 1 3 1 33 0 0 1 41 0.804878

OAK 1 3 0 1 0 36 3 0 44 0.818182

BIRCH 0 2 0 0 0 4 10 1 17 0.588235

LARCH 0 2 1 0 1 3 2 20 29 0.689655

176 247

OA 0.712551

TOTAL 36 41 12 16 43 58 16 25

PA 0.805555556 0.731707 0.666667 0.625 0.767442 0.62069 0.625 0.8

OAC 64.54

OAD 75.24

 predicted total UA

observed NON_FOREST BEECH SPRUCE PINE FIR OAK BIRCH LARCH

NON_FOREST 32 0 0 3 0 0 0 1 36 0.888889

BEECH 1 37 0 2 0 0 0 0 40 0.925

SPRUSE 0 1 12 0 5 0 0 0 18 0.666667

PINE 1 2 0 15 0 1 2 0 21 0.714286

FIR 0 0 0 0 39 1 0 2 42 0.928571

OAK 1 2 0 1 3 37 0 0 44 0.840909

BIRCH 1 0 0 0 0 0 15 1 17 0.882353

LARCH 0 1 1 0 1 8 1 17 29 0.586207

204 247

OA 0.825911

TOTAL 36 43 13 21 48 47 18 21

PA 0.888888889 0.860465 0.923077 0.714286 0.8125 0.787234 0.833333 0.809524

OAC 75.45

OAD 88.11
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Annex12: The area coverage of each tree species classfied by SVM classfier using leaf-on season UAV-

RGB image 

Species group Classified tree species Area coverage (Ha) 

Coniferous Douglas fir 2.62 

Pine 3.80 

Spruce 0.90 

Larch 1.40 

 Sub-Total 7.80 

Broadleaved 

 

Oak 6.33 

Beech 4.64 

Birch 0.50 

                            Sub-Total 11.50 

Non-tree 3.82 

Total 23.95 
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