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ABSTRACT 

To cope up with the current demand and supply chains of agricultural products, monitoring the food 

production capacity via the national or regional level agricultural database on forecasted crop productions 

is necessary. The location and extent of cultivated cropped area is the critical input for mapping precise 

crop yields. Current remote sensing methods addressing the combined use of the open-source satellite 

data are very few and are efficient for northern countries but cannot be adopted where Arable Fields Area 

(AFA) is typically characterized as irregularly shaped and difficult to distinguish. Recent remote sensing-

based available global land cover products are inconsistent across the globe. They do not address the 

complexity of agriculture landscapes, and it majorly focuses on the use of high or very high spatial 

resolution images (<5m). 

Hence, this research has focused on identifying the potential of freely available earth observation data 

based satellite image features for estimating probabilities of AFA in the African agricultural landscape 

(Eastern region in Ghana as a case study). Higher temporal MODIS images are used for capturing long-

term vegetation climatology pattern to stratify the landscape. Based on which dry and wet seasons and 

strata with cropping intensity via Crop Productive Zones (CPZs) on the regional level has been derived. It 

has addressed the landscape heterogeneity at the pixel level via homogenous stratification. The use of the 

median composite of Sentinel-1 (S1) and Sentinel-2 (S2) images across the dry and wet seasons and, over 

the years (2017-2019), is exploited due to its spatial, temporal, spectral, and polarimetric capability to 

differentiate AFA with other vegetated and non-vegetated areas. In lines with it, topographical and 

textural image features are also examined for explaining additional local and regional level arable field 

distribution. In this study, one temporal (CPZs), two topographic (Slope and Elevation), 14 spectral 

(optical and red-edge vegetation indices), ten polarimetric (Dry and Wet VV, VH, VV/VH, VV+VH, VV-

VH) and 110 texture (Dry and Wet S1 & S2 variance, homogeneity, dissimilarities, entropy, contrast) 

image features have been studied extensively. The relevant image features have been identified for 

mapping AFA and its probabilities have been mapped using the RandomForest (RF) algorithm. 

A total of 36 important features have been selected, out of which 33 features are texture features (majorly 

Variance texture), one is topographic (Elevation), one is temporal (CPZs), and one is polarimetric (Dry 

VV) image feature. Where topographic and texture features, in general, improve prediction by reducing

0.14 to 0.10%, temporal CPZs feature reduces 0.05%, and polarimetric feature reduces 0.04% error in

Brier Score (BS). In general, the topographic elevation and, optical and radar-based texture feature

outperformed the spectral features. It also outperformed a temporal and polarimetric image features in a

way as well. It is also important to note that the challenge of extreme cloud cover in optical images have

been addressed via the median composite of the images over long-term (three years) (2017-2019) and

seasonal changes (different dry and wet period) for the different region within the study area have been

identified and implemented well. However, the performance of RF for predicting the extremes

probabilities is skeptical or leveraged at extreme points, and it needs further improvement via the change

in sampling design and image processing (especially image integration).

Keywords: Sentinel-1, Sentinel-2, MODIS, SRTM, Texture, Topography, Temporal, Spectral, 

Polarimetric, Arable field area 
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1. INTRODUCTION 

1.1. Background and motivation 

 

 
The world is facing a continuous rise in global hunger due to the increasing global population, which puts 

pressure on the current global food production capacity and demands it to be double in the future. Not 

only day by day increasing population, but also the recent climatic variabilities like changes in rainfall 

pattern, its distribution, seasons, temperature make it even harder to reach out to the global food security 

targets (FAO, IFAD, UNICEF, 2018). Moreover, as per the equation Farm Production = Crop yield x Crop 

acreage, the location and extent of cultivated cropped area is the critical input to ultimately map precise 

yields and help decision-makers to prevent the threats related to food production (FAO, 2003; Kahubire, 

2002). Therefore, to cope up with the current demand and supply chains of agricultural products, 

monitoring the food production capacity via the national or regional level agricultural database on 

forecasted crop productions is necessary. Also, for better monitoring of the current food production 

system and capacity, information on crop yields, cultivated areas, and their locations are key elements to 

locate the agricultural risk involved due to climate change. It can also be used for early warnings in food 

production monitoring systems, for example, FAO Global Information and Early Warning System 

(GIEWS), Global Monitoring for Food Security (GMFS) (Waldner, Fritz, Di Gregorio, & Defourny, 

2015). Global crop extent maps can not only be helpful for food security but also be considered as added 

value for climate models, understanding crop behaviors for various agro-systems, its impact on the 

environment, hydrological models, international trade, etc. (Hannerz & Lotsch, 2008). 

Zooming to sub-Saharan Africa, mapping the crop extent is very important as agriculture holds major 

shares in development (Hannerz & Lotsch, 2008; Vancutsem, Marinho, Kayitakire, See, & Fritz, 2012). 

Specifically, countries like Ghana, where the majority share is of rain-fed agriculture, and 90% of its 

cultivated lands under smallholder farms (Ministry of Food and Agriculture, 2011) adds in the risk related 

to climate change. These rainfed subsistence agriculture areas are highly affected by the variability of 

spatial-temporal rainfall distribution due to frequent climatic extremes in past years (Connolly-Boutin & 

Smit, 2016). Crop location information for countries like Ghana is crucial where the share of agriculture in 

Gross Domestic Product (GDP) has been consistently more than 21% from 2013 to 2017 (Ghana 

Statistical Service, 2019) yet difficult to collect this information due to complex geography. The 

conventional way to collect information about the annual crop area is agricultural surveys or censuses 

carried out by agriculture extension officers, which have most likely data quality challenges (The World 

Bank, 2017). The challenges are mostly because of inconsistent on-ground surveying methods, and 

biennial or mixed cropping patterns followed in the fragmented landscape. Annual surveys are also cost 

and labor-intensive; moreover, surveys based crop area information is in tabular form, which is 

incompatible due to its limitation of locating farms at a detailed spatial scale and various temporal scale 

(Kahubire, 2002). To overcome these social or on-ground problems, remote sensing-based earth 

observation imageries provide consistent, efficient, affordable, and reliable information for large scale 

mapping of the agriculture areas (Atzberger, 2013). 

Earth observation-based satellite images contain information at multiple spatial (very high or high : <5m, 

moderate: 10-30m, lower: >100m), temporal (high: 1-5 days, moderate: 15-30 days), and spectral 
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resolutions. Higher-temporal images capture the seasonal and interannual variations of crop fields due to 

its high revisit frequency (1-5 days) in time and long term (more than 15 years) availability at a coarser 

spatial resolution. Freely available images like Moderate Resolution Imaging Spectroradiometer (MODIS), 

provide long records from 2000 to present in visible (VIS), Near-Infrared (NIR), Shortwave Infrared 

(SWIR), and Thermal Infrared (TIR) bands, which helps to analyze climatic behavior of vegetation over 

the years. These long-term time-series based temporal profiles can be summarized on an annual basis via 

median or mean. Due to MODIS’ frequent and longer cloud-free records smooth annual temporal profiles 

can be achieved and further used to stratify heterogeneous landscape into homogenous strata with 

common attributes shared (Khan, de Bie, van Keulen, Smaling, & Real, 2010; Mohammed, Marshall, de 

Bie, Estes, & Nelson, 2020). Based on these strata vegetation types like the forest, agriculture, natural 

vegetation can be differentiated by identifying changes in temporal profiles. For example, forest areas will 

have marginal variation throughout the years compared to agriculture areas with a distinct increase and 

decrease in temporal satellite records as per cropping seasons (Khan et al., 2010; Mohammed et al., 2020). 

Long-term climatology temporal pattern can be used not only for stratification of landcover types but also 

be used to stratify within agriculture types via stratified Crop Productivity Zones (CPZs) or agro-

ecological zones for a given landscape. It gives insights about cropping seasonality, frequency, and type at 

the landscape level (Khan et al., 2010). For example, arable agriculture with different cropping intensity 

expressed in the percentage of cropped area at coarser spatial resolution can be calculated via 

disseminating the district level crop area statistics. However, it fails to accurately map the 1 ha (100 x 

100m) fields or small fields due to lower spatial resolution (L.D. Estes et al., 2016).  

Higher Spatial (HS) resolution images capture detailed spatial variation, which is very useful for accurate 

crop area demarcation but has a lower revisit time. Moreover, HS resolution images have higher 

heterogeneous but merely similar pixels that impede the modeling process. On the other hand, the 

stratification of landscape reduces the complexity in the images by homogenous strata. An open-source 

mission like Sentinel-2 (S2) (A+B) by European Space Agency (ESA) captures optical passive sensor 

based images at 10m to 20m with a temporal resolution of 5 days interval from 2017 to present and are 

very useful in delineating the field’s area (Watkins & Niekerk, 2019). S2 images also provide additional 

spectral information compared to Landsat's mission via narrow Red Edge (RE) bands at 700nm, which is 

sensitive to chlorophyll and nitrogen content in the plant canopy (Clevers & Gitelson, 2013). Due to its 

sensitivity to plant canopy content, it helps to differentiate agriculture vs. other types of vegetation as 

arable fields have higher nitrogen and chlorophyll content compared to natural vegetation. However, 

single date optical satellite sensors based image has limitations because of optical sensors’ incapability of 

penetration through the clouds due to shorter wavelengths resulting in cloudy images during the crop 

growth cycle. The impact of clouds can be reduced using a median composite or averaging long-term (3-5 

years) images over the dry and wet season which also shows the distinct difference in the wet and dry 

season for arable agriculture area than other landcover types (Debats, Luo, Estes, Fuchs, & Caylor, 2016; 

Mohammed et al., 2020). Although compared to Landsat's mission, S2 has a higher temporal resolution, 

which indicates the higher potential of S2 cloud-free images over the seasons. 

Microwave active sensor-based radar (Radio Detection and Ranging) images provide accurate and timely 

updates on ground measurements due to the capability of the longer wavelength to penetrate through 

clouds compared to optical sensor based shorter wavelength (N. D. Herold, Haack, & Solomon, 2005). 

Sentinel-1 (S1) (A+B) mission of ESA based freely available radar images are useful to capture crop 

phenological changes accurately in dry and wet seasons due to cloud-free data. These Synthetic Aperture 

Radar (SAR) images contain information about backscattered energy from the earth's surface feature, 

which is characterized by phase and amplitude. The reflected backscatter value is sensitive to canopy 

moisture content, volume, and roughness, as well as sensor view angle, and topography (Tadesse & 
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Falconer, 2014). Besides, S1’s backscattered energy in dual-polarization (Vertical and Horizontal) has a 

strong correlation with growing crop biophysical properties due to its sensitivity of surface and volume 

scattering (Abdikan, Sekertekin, Ustunern, Balik Sanli, & Nasirzadehdizaji, 2018). Vertical transmit and 

Vertical receiver (VV) polarization is useful for mapping crop height, and Vertical transmits and 

Horizontal receiver (VH) are useful for mapping crop canopy structure. The use of radar images requires 

expert skills in terms of processing and visual interpretation (N. D. Herold et al., 2005). Moreover, due to 

noisy data and recent data acquisition, it is still a less explored area (Xu, Zhang, Wang, Zhang, & Liu, 

2018). 

Topographic and texture information derived from open-source Earth observation data adds in the value 

for crop mapping by considering the topography expressing field distribution and texture expressing 

additional spatial dependencies and variation in neighborhood pixels (Recio, Hermosilla, Ruiz, & 

Fernández-Sarría, 2010). Shuttle Radar Topography Mission (SRTM) based Digital Elevation Model 

(DEM) image by National Aeronautics and Space Administration (NASA) at 30m resolution provides 

topographical information like elevation from above sea level, from which, the slope can also be derived. 

For mapping, the fields, topographic can play a crucial role as it explains the distribution of the fields in 

the landscape (Marshall et al., 2011).  

Textural images can also be significant for agriculture fields mapping, as it gives an idea of the spatial 

distribution of pixel intensity values in the surrounded pixels (Debats et al., 2016b). One of the most 

frequent techniques like Grey-Level Co-Occurrence Matrix (GLCM) based image textures, give an idea 

about canopy’s structural component and its arrangement. For example, crop canopy will have relatively 

lower contrast, dissimilarity, and high homogeneity within the fields than the forest canopy (Haralick, 

Dinstein, & Shanmugam, 1973).  

Not only the data characteristics but also classification techniques influence the mapping accuracy. The 

small and large arable fields can be mapped using manual digitization using very high spatial resolution 

images, although, its time consuming, subjective and inefficient due to land cover dynamics (Tokarczyk, 

Wegner, Walk, & Schindler, 2015). As an alternative, pixel-based supervised classification, which uses field 

observations as a training sample (Mohammed, 2019), and unsupervised classification, which is based on 

error function (Enderle & Weih, 2005), has been used to assign each pixel under one land cover class 

category. Unsupervised classification models like ISODATA clustering, K-nearest neighbor are useful to 

apply in the unknown area as it does not require prior knowledge of study area and creates homogenous 

clusters, despite that, it is time-consuming to assign the labels to these clusters afterward (Xiong, 

Thenkabail, Gumma, et al., 2017). The machine learning-based non-parametric algorithms like Random 

Forest (RF) have been used as supervised classification techniques as it is more efficient. Unlike the 

statistical model, it does not assume the pre-distribution data patterns (Rogan, Chen, & Rogan, 2004), and 

it can also handle large multiple feature datasets and noise (Belgiu & Drăgu, 2016). 

In a way, remote sensing-based different types of satellite image features are helpful for crop field 

mapping. Higher-temporal images capture climatology of the vegetation, although its limitation of coarser 

spatial resolution can be addressed via HS resolution of S1 and S2 images with multi-spectral data. Not 

only S1 and S2 based cloud-free spectral and polarimetric image features, but also topographic and texture 

image features provide advanced information for mapping various vegetation types and their distribution. 

However, current RS methods addressing the use of these open-source data together are rare, or none and 

the majority focused on northern countries using few image features. Still, it cannot be adopted where 

Arable Fields Area (AFA) is typically characterized as irregularly shaped and difficult to distinguish 

because of fragmentation in sub-Saharan-Africa (Debats, Luo, Estes, Fuchs, & Caylor, 2016a). Not only 

clouds and characteristics of AFA, but landscape heterogeneity also cause spectral, spatial, and temporal 

overlap with natural vegetation leads to an overestimation of mapped AFA. Due to the fragmented 
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landscape, identifying AFA at moderate spatial resolution (30m) and separating it from natural vegetation 

at moderate spectral resolution can be difficult. Also, weeds and other natural vegetation show temporal 

variation during rainy seasons at a finer spatial scale, especially in rain-fed agriculture, which can be 

resulted in the false mapping of AFA.  

1.2. Problem Statement 

 

Remote sensing-based currently available global land cover products are inconsistent across the globe. 

They do not address the complexity of agriculture landscapes like field distribution, cropping pattern & 

seasonality, cloud cover during the growing season, spectral similarities with natural vegetation, which are 

important considerations for crop area mapping (Waldner et al., 2015). Especially the use of these crop 

area maps is limited in sub-Saharan Africa due to small and irregularly shaped fields. Yet, it is very 

important as the food production per capita is declining, and the population keeps increasing rapidly in 

sub-Saharan Africa compared to the world (Brown, Funk, Galu, & Choularton, 2007). In the proposed 

study, only arable agriculture or Arable Field Area (AFA) has been focused on mapping. AFA is defined 

by the Food and Agriculture Organization(FAO), as, “land under temporary crops (double-cropped areas 

are counted only once) or temporary meadows for mowing or pasture” and modified for this study as per 

“land under temporary crops (double-cropped areas are counted only once) or temporary meadows for 

mowing or pasture which have sowing and harvesting cropping season in past three years”. Therefore, 

tree crops like cocoa and oil palm present in the landscapes are not focused to map. 

AFA can be mapped accurately in geographically complex regions by human pattern recognition based 

crow-source platform and very high spatial (VHS) resolution optical (PlanetScope (PS), world-view; <5m) 

images due to its ability to distinguish small fields (L.D. Estes et al., 2016). Although, processing of VHR 

images is time and cost consuming. Due to the higher costs, it has limited usage for researchers in Africa.  

Additionally, many remote sensing methods focus on the sub-pixel approach for mapping crop areas using 

VHS resolution images, which may not be efficient in West African AFA (Vintrou et al., 2012).  

On the other hand, individual open-source satellite data have their advantage and disadvantage for AFA 

mapping, but it can be used together for accurate mapping of AFA. For example, open-source satellite 

images like S2, have relatively moderate spatial & temporal resolution, which can help to map AFA with 

minimal cost. Despite that, due to west African monsoon, countries like Ghana have continuous cloudy 

weather during the whole year (Lohou et al., 2014), resulting in limited available cloud-free images in the 

growing season, which challenge the use of only S2 images. To overcome the clouds, S1 radar images 

capture the crop phenology in both growing and off-growing seasons due to penetration capabilities 

through clouds & sensitivity towards crop growth volume, which can be used as a valuable source for 

AFA mapping. Moreover, topographic open-source satellite image features are also likely to improve 

mapping AFA due to complex terrain and field distribution in the landscape (Marshall et al., 2011b). 

Concerning landscape organization, classical raw image bands do not make sufficient use of spatial 

concepts of the neighborhood, proximity, or homogeneity in surrounded pixels (Burnett and Blaschke, 

2003). Several authors used texture analysis to classify VHS resolution images for crop area mapping (e.g., 

Kayitakire et al., 2006; Peddle and Franklin, 1991), but very few studied possibilities of using the texture of 

moderate spatial resolution (10-30m) images in landcover classification (see Tsaneva et al. (2010) for one 

example). In a way, very few studies have focused on using one or two of these open-source image 

features to map AFA in West Africa, where areas have persistent cloud cover and fragmented landscape.  
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1.3. Research Objectives and Questions 

Hence, this research proposed to identify relevant image features and, to develop an accurate and robust 

method to estimate AFA with freely available Earth observation data for the African agricultural 

landscape. For which, higher temporal MODIS images are used capturing long-term vegetation 

climatology pattern, to stratify landscape, based on which dry and wet seasons and strata with cropping 

intensity via CPZs on the regional level have been derived. The use of the median composite of S1and S2 

images across three years (2017-2019) and two seasons (dry and wet seasons) are exploited due to its 

spatial, spectral, and polarimetric capability to differentiate AFA with other vegetated and non-vegetated 

areas. In lines with it, topographical slope and elevation and textural image features are also examined for 

explaining additional local and regional level arable field distribution.  

Based on the above discussion and reasoning, the main research aim of the proposed study is to identify 

most discriminate satellite image features for mapping AFA and to map AFA probabilities using 

RandomForest (RF) multi-source freely available earth observation satellite-based image features as 

mapping predictors at 30m in the fragmented agriculture landscape of Eastern region, Ghana. The detailed 

objectives and research questions of the study areas discussed below: 

1. To identify dry and wet vegetation seasons for NDVI strata based on frequent and longer-

temporal MODIS images based landscape stratification from 2003 to 2009 

2. To evaluate the performance of CPZs as temporal features based on frequent and longer-

temporal MODIS images based landscape stratification for estimating AFA probabilities 

a. To what degree higher-temporal 250m MODIS Terra+Aqua NDVI images base 

stratified homogenous CPZs improve the estimation of AFA?  

3. To evaluate the performance of S1 radar images and S2 optical images based polarimetric, spectral 

and textural features for estimating the AFA probabilities 

a. To what degree S1 based polarimetric (VV, VH) image features improve the estimation 

of AFA significantly? 

b. To what degree S2 based spectral image (optical and red-edge vegetation indices) features 

to improve the estimation of AFA significantly? 

c. To what degree S1 & S2 based texture image (Variance, Contrast, Homogeneity, 

Dissimilarity, Entropy) features improve the estimation of AFA significantly? 

4. To evaluate the performance of SRTM based DEM and slope as topographical image features for 

estimating the AFA probabilities 

a. To what degree topographic SRTM (Elevation, Slope) based image feature significantly 

improves the probabilities of AFA mapping? 
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2. RELATED WORK 

2.1. Remotely sensed higher-temporal NDVI time series & CPZs 

Rather than raw bands, vegetation indices (VI) like Normalized Difference Vegetation Index (NDVI), 

which is the ratio of red and NIR bands, is more sensitive to vegetation due to the plant chlorophyll 

content (Geerken, Zaitchik, & Evans, 2005) and less sensitive to soil background, topography and 

atmosphere. Based on these long-term temporal profiles, cropping intensity based on annual seasonality 

like monomodal, bimodal, or multimodal can also be identified and effectively used to characterize 

location or area-specific dry and wet seasons. To delineate the seasonality from the temporal profiles, 

Reed (1994), has found the simple and quick method to characterize the seasons by moving the average 

model with an ideal four months window size. The same techniques have been widely used in west-Africa 

for seasonal characterization (Mohammed et al., 2020).  

Based on these annual dry and wet seasons, long-term mean dry and wet images can be synthesized. Khan 

et al. (2010) in Spain & Ali (2014) in Ghana found a further correlation between these annual vegetation 

temporal profiles and government surveyed crop area statistics to stratify CPZs in terms of % probabilities 

of cropped area per each pixel. In a way, these CPZs show the cropping intensity per pixel and can also 

help to identify the type of crops. Mohammed (2019) used this % of crop area probabilities as a 

categorical predictor to classify the crop area probabilities at 30m using Landsat 8 data, and it is found that 

these coarser-resolution based field fractions explain the majority deviance in a geographically complex 

region of Ethiopia. He also concluded that extracting temporal features like long-term averaged wet and 

dry NDVI images from long term NDVI profiles based wet and dry seasons are also very important, 

which contains seasonal-spectral information of different vegetation types.  

Therefore, in the proposed study, MODIS satellite-based higher-temporal NDVI will be used to 

categorize the location-specific seasons and extract % crop area fractions or CPZs as one of the temporal 

images features as mapping predictor.  

2.1. Spectral and Polarimetric image features for AFA mapping 

S2 (a+b) satellite images are freely available with the moderate temporal and spatial resolution with multi-

spectral bands, among which three red-edge (RE) bands and two SWIR bands are very useful for crop 

area mapping due to its sensitivity towards vegetation types and water content in the plant. Immitzer, 

Vuolo, & Atzberger (2016) have found that band B5, B6 (RE bands) and B11 (SWIR) bands of S2 as 

promising spectral channel for crop area and crop types mapping as red-edge bands show the sharp 

difference in between red and NIR region based on canopy pigment and nitrogen content in the plant. 

Rather than raw spectral channels, derived vegetation indices are prominent image features. Normalized 

difference indices based on narrow RE and NIR of S2 bands, as proposed by Fernández-Manso, 

Fernández-Manso, & Quintano (2016), have shown better adequacy for mapping burnt area and bare soil 

or also can be inferred as stressed vegetation area. He has proposed a simple difference band ratio of S2 

narrow band B8A and B5 as NDVIre1, band ratio of  B8A, and B6 as NDVIre2 and band ratio of B8A 

and B7 as NDVIre3, which have proved well suitability of S2 band for vegetation mapping. Similar kind 

of ratio index between NIR band (800 nm) and a red-edge band (710 nm) as red-edge chlorophyll index, 

which have a linear increase in reflectance value with an increase in plant canopy chlorophyll has been 

proposed by Gitelson, Gritz, & Merzlyak (2003). Later, S2 bands’ suitability for calculating these indices 
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and their prominent contribution for mapping different types of crops has been proven by Clevers & 

Gitelson (2013). Not only vegetation sensitive but also canopy water content-sensitive indices like 

Normalized Difference Water Index (NDWI) can be used efficiently to discriminate green and dry 

vegetation (Gao, 1996). In the usual case, natural vegetation has more stressed conditions compared to 

crop, which can be useful to identify via NDWI. Large scale level crop area mapping project like 

Sent2Agri and other studies also incorporate spectral indices like NDWI and Brightness, brightness is the 

square root of the sum of the square of the individual spectral band, to improve discrimination between 

vegetated and non-vegetated areas (Valero et al., 2016; Ouyang et al., 2017; Sevillano Marco et al., 2019). 

Not only spectral aspects of S2 but also temporal aspects are important to discuss. Mohammed (2019) has 

used Landsat 8 data to map ACA probabilities. However, the Sentinel-2 mission provides denser time-

series at a higher spatial resolution, which increases the chances of getting good quality images in growing 

seasons. To create an annual basis, clear dry and wet season images over the Africa region require to 

merge more than one type of optical datasets. For example, GSFAD30AFCE by USGS 30m cropland 

product over Africa merges Landsat 8 + Sentinel 2 over fixed seasons (Xiong, Thenkabail, Tilton, et al., 

2017) and also Sen2Agri product by ESA uses Sentinel-2, Landsat 8 and multiple image dataset to create 

monthly cloud-free composites. However, it is time-consuming and not promising in the extremely high 

cloudy region. 

On the other hand, multi-sensor based radar images (RADARSAT, Sentinel-1) combined with optical 

images at moderate spatial resolution also shows improvement in mapping accuracy by 3-4% due to its 

sensitivity to crop growth volume and cloud-free images (Blaes, Vanhalle, & Defourny, 2005; Van Tricht, 

Gobin, Gilliams, & Piccard, 2018). The radar backscatter measurements are not affected by clouds but are 

sensitive to surface roughness and moisture content, from which the structure of the feature can be 

depicted. The complex structured features like the forest scatter back most of the energy and appear 

brighter due to dense trunk, leaves, and branches. In contrast, bare soil appears darker features as it sends 

most of the signal away from antenna in a different direction (ESA, 2020). Talking about the moisture 

content in the material, materials with higher water content have higher dielectric constant and reflect a 

higher amount of energy appearing darker in the images (ESA, 2020). The Horizon 2020 project ECoLaSS 

(Evolution of Copernicus Land Services based on Sentinel data) also uses S1 and S2 images features like 

NDWI, NDVI, Brightness, VV/VH (radar) features for agriculture mapping and monitoring purpose. 

The added radar images with optical images in complex African landscapes are proven to be efficient for 

landcover characterization. Yet, the use of newly available S1 and S2 satellite data is less explored 

(Symeonakis, Higginbottom, Petroulaki, & Rabe, 2018).  

2.2. Topographic image features for AFA mapping 

The farming practices on the ground lead to certain distribution patterns of fields which can be explained 

based on terrain characteristics of the geographical area, for example, if the slope is steeper it is lower 

likely to have the farming practices on the ground and vice versa (Husak et al., 2008a). There are few 

studies have been found which used the topographic elevation and slope images to map and describe the 

crop distribution on the ground (Marshall et al., 2011a; Mohammed et al., 2020). Marshall et al., (2011) 

have found out that the elevation, which explains the position of the feature on the landscape, has 

explained 13% of deviance (more than slope) in expressing the arable crop area distribution across west 

Africa. While Mohammed et al., (2020) have found out that slope has explained more deviance than the 

elevation in arable field distributions. 
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2.3. Texture image features for AFA mapping 

 
The human eye uses three fundamental image characteristics, textural, spectral, and contextual for 

identifying objects out of which, this study includes GLCM textures developed by Haralick et al., (1973). 

GLCM textures are easy and efficient for implementation and capture accurate texture tonal variation for 

central pixels, considering the surrounded pixels lie withing a window size. He proposed a total of 14 

different texture features based on grey-level or single image-based spatial dependencies of pixels, out of 

which mainly five texture features have been used for crop mapping, those are variance, contrast, 

homogeneity, dissimilarity, entropy and variance (Clausi & Zhao, 2002; Gebejes et al., 2016; Haralick et al., 

1973; Kim & Yeom, 2014). The variance texture feature indicates a variation in pixel intensity in the 

original image. The contrast texture feature indicates local variation based on the number and types of 

objects present in the pixel window. Homogeneity texture features indicate the higher values for bigger 

and continuous objects implying smooth or similar objects present in the pixel window and lower values 

for multiple different objects present in the pixel window. In a way, homogeneity texture features indicate 

the closeness of the pixel intensity values, while dissimilarity texture features indicate the opposite of it. 

The entropy texture feature indicates disorder in pixel intensity values meaning the homogenous area has 

lower entropy values. Still, on the border of the geographic object, the entropy values will be higher. These 

texture features help the model to improve performance by capturing finer or larger changes in the image.  

There are several studies have been found focusing on using texture features for mapping crop using VHS 

resolution images (For example, (Kim & Yeom, 2014; Neigh et al., 2018; Tokarczyk et al., 2015)) but very 

few studies have used texture features on moderate spatial resolution (10-20m) images. Nathaniel D. 

Herold, Haack, & Solomon (2004) have used RADARSAT data for mapping landcover in West Africa and 

found out that texture features are very important for identifying different landcover types, especially 

variance texture feature. Haack & Bechdol (2000) have used optical and radar images for mapping 

vegetation types in the East African landscape. He has found that both optical and radar image features 

can differentiate landcover types with similar accuracy, and for both images, texture features (especially 

variance texture) are very important.   

2.4. Probabilistic Modelling & Mixel approach 

Not only the image characteristics but also the classification techniques influence the mapping accuracy. 

Pixel-based supervised classification, which uses training samples (Mohammed, 2019), and unsupervised 

classification, which is based on error function (Enderle & Weih, 2005), assume the pixel as pure or 

homogeneous (Pan, Hu, Zhu, Zhang, & Wang, 2012; Smith & Fuller, 2001), meaning the only pixel 

represents only one type of geographic object on the surface. While mapping the crop area using this hard 

classification approach in fragmented and complex landscapes of Africa would have higher uncertainties 

due to heterogeneity within the pixel (Murmu & Biswas, 2015; Pan et al., 2012; Tran, Julian, & De Beurs, 

2014). As opposed to hard classification methods, soft classification approach, or probabilistic outcomes 

provide better results in spectral mixture properties of pixels (Pan et al., 2012) and also explain 

uncertainties of classified spatial extents. The probability-based crop area maps can also be a critical input 

for agriculture, ecology, and water modeling applications.  

As a probabilistic classification, machine learning-based algorithms like Random Forest (RF) are more 

efficient as, unlike the statistical model they do not assume the pre-distribution data patterns (Rogan et al., 

2004) and handles the large feature datasets and noise (Debats et al., 2016a) which can improve ACA 

probabilities mapping. RF model is also more robust towards over-fitting compared to other machine 

learning algorithms due to the bagging of feature space and bootstrapping of weak learners (Breiman, 

2001) and can show better predictions with easy implementation (Belgiu & Drăgu, 2016; Biau, 2012). Not 
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only predicting the target output accurately, but also it can identify important discriminant variables in 

high dimensional data with efficient feature selection techniques (Gregorutti, Michel, & Saint-Pierre, 

2017). RF uses the feature selection method based on the performance of the model during the learning 

process, which can also be referred to as an embedded feature selection method. Breiman (2001) proposed 

three matrices (premutation importance, Z-score & Gini Impurity Decrease) to test and evaluate the 

performance of the model and finally selects relevant variable from the feature samples. Out of which 

permutation importance is very useful in high dimension data due to existed chances of correlations 

between the features (Gregorutti et al., 2017). Apart from higher prediction power and feature selection 

technique, machines learning-based models requires a large amount of training samples which can be cost 

and labor intensive.   

There have been very few studies found which have used RF as a probabilistic algorithm explaining the 

class membership probabilities for mapping vegetation cover or uncertainty in mapping. Cui, Sun, Wang, 

Li, & Xu (2019) have tried mapping the percentage of vegetation cover via spectral unmixing of pixel 

based on explained probabilities. He has compared linear and non-linear regressors for mapping 

percentage of vegetation cover based on cost-effectiveness and found out that RF performs as equal as 

other probability-based algorithms with similar error rates reported. While Loosvelt et al. (2012), have 

used RF classifier for landcover classification using SAR images and explained uncertainties mapped using 

the estimated class probabilities. He claimed that using RF algorithm based probabilities is easy to 

implement, and it explained lower probabilities (biased predictions) for mixed pixels. Not only for 

explaining uncertainties, but also RF class membership probabilities are also efficient as it helps to correct 

the misclassified area for mapping crop extent in complex and fragmented agriculture landscapes 

(Crespin-Boucaud, Lebourgeois, Lo Seen, Castets, & Bégué, 2020). Crespin-Boucaud et al., (2020) have 

used different spectral and topographic image features to classify irrigated crop area. He has found out 

that disagreements per pixel can be mapped and corrected easily via estimated multi-class RF probability 

and spatial-temporal rules. RF-based multi-class probabilities have also been used to map different crop 

types accurately, and optimized feature selection of spatial and temporal image features using RF (Yin, 

You, Zhang, Huang, & Dong, 2020).  

2.5. Multi-source Image Features for AFA mapping 

Considering the pros and cons of the different optical, radar, texture, and topographic image features, few 

studies have been found which asses the combined image features for mapping crop. Lebourgeois et al., 

(2017) have used optical simulated S2 based spectral, topographical, and texture features for mapping crop 

fields and have found out that high-resolution spectral image features and texture features are most 

prominent than the VHS (<5m) resolution based spectral, textural and topographical features. Yin, You, 

Zhang, Huang, & Dong (2020) have also found S2 based SWIR and RE bands are most prominent for 

mapping crop types. Vintrou et al., (2012) have used spectral, textural, temporal, and spatial optical 

features and found out that texture features are the most discriminant features for mapping crop areas in 

the West African complex landscape. On the other hand, (Marshall et al., 2011b; Mohammed et al., 2020) 

have used spectral and topographic features for mapping arable crops in the West African area and found 

out that spectral and topographic features are the more prominent explaining distribution of fields in the 

landscape. Although, none of the studies has been found out which uses all spectral, polarimetric, texture, 

and topographic features using open-source data for crop area mapping in complex sub-Saharan African 

landscape, which can be considered as a novelty of the conducted research. 
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3. STUDY AREA & DATA USED 

3.1. Study Area 

Ghana has a wide gradient of vegetation difference from north to south, which involves more forest 

conserved areas in the southern regions like Ashanti, Eastern, and Central. While more agriculture areas in 

the northern regions like Northern and Upper West. Ghana is located approximately 152 meters above sea 

level, bordering south shore to the Gulf of Guinea (Worldatlas, 2017). The chosen study area for the 

proposed research is the Eastern region of Ghana as it has a wide variety of topography, different types of 

crops and watering regimes (irrigated & non irrigated ), and different land covers from north to south as 

shown in Figure 1. The Eastern Region is on the southeast side of the country, covering approximately 

19,000 square km area. The Eastern Region was also the major producer of cassava and yam food crop in 

the years 2014-2016 (Ministry of Food and Agriculture (MoFA), 2017), which is also a staple food of 

Southern Ghana. 

The region includes part of Lake Volta, which approximately divides the region in half, i.e., North (Afarm 

plains) and South. In the South area of the Eastern region, agro-forestry mixed landcover is dominant with 

the majority of cocoa, oil palm tree crops with cassava and maize arable crops. In this study, only the 

arable area (maize, cassava, rice) has been studied. In the Eastern region, out of total crop area, 42% area 

is under maize, 55% area is under cassava, and 3% area is under rice in 2016 (Ministry of Food and 

Agriculture (MoFA), 2017). As one can see in CPZs in Figure 1, the South area has CPZs with higher 

arable cropping intensity on a spatial scale comparing to Afarm plains, mainly because of wet climate or 

higher rainfall in southern Eastern region (Baidu, Amekudzi, Aryee, & Annor, 2017). In Afarm plains, the 

major landcover is agriculture and water area, where CPZs with moderate cropping intensity can be 

observed near Lake Volta and slightly high elevated areas implying the drier climate.  

Due to the described landcover types across the region, the South area has higher rainfall intensity 

comparing to Afarm plains. As a result of this rainfall distribution, the South area has major rain-fed 

agriculture, while Afarm plains have irrigated agriculture (based on surface water). Based on the rainfall 

pattern, there are mainly two cropping seasons that have been followed. Those are major seasons: from 

March to June and minor season: from July to November. Mostly, there are no crops on arable fields 

during the Hamatan season across the whole region due to no rain. The Hamatan season is from 

November to February due to excessive heat, lack of irrigation facilities, or higher water requirement of 

the cops. Although, in the South area, two seasons have been followed with the intermediate dry season 

while in Afarm plains, due to irrigation, agriculture area near Lake Volta have the long wet season with no 

intermediate dry season which will be discussed further in the Results section. In this study, pixel specific 

MODIS temporal profiles based strata specific seasons have been included, therefore, to synthesis dry and 

wet seasonal images, the strata specific dry (Hamatan and intermediate short dry season), and wet seasons 

(major, minor) have been considered. 

There is a clear difference between the Afarm plain and the south parts of the region due to high elevated 

mountain areas in the middle of the Eastern region, which are less suitable for agriculture. Additionally, 

the South area will have more hills compared to flat Afarm plains. Due to various AFA seasonality, its 

types, cropping patterns, and variations in elevation in the Eastern region of Ghana are well suited to 

understand the different behavior of satellite image features for this study. 
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Figure 1 Study Area Map 

3.2. Mapping Predictors and Reference Data 

Table 1 shows a summary of the different satellite data assessed for mapping AFA. Detailed information 

can be found below. 
Table 1 Satellite Data Used 

Dataset 

& Source 

Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage 

(Study 

Specific) 

Spectral 

Information 
Properties 

Sentinel-2 
10m & 

20m 

5 days 

(S2a +S2b) 

2017- 

2019 

VIS (490 – 

665nm), NIR 

(842nm) & Red-

Edge bands (705 – 

783nm) 

More sensitive to 

plant chlorophyll 

and less sensitive 

to topography, 

soil background & 

atmosphere 

Sentinel-1 10m 
6 days 

(S1a +S1b) 

2017 - 

2019 

C band  IW with 

VV+VH 

polarisation 

More sensitive to 

surface roughness 

and water content  

SRTM 30m - 2002 - 
Sensitive to 

topography 

MODIS 250m 

16 days composite 

based on daily 

observations 

2003 - 

2009 

VIS (459 – 

670nm) & NIR 

(841 – 876nm) 

Sensitive to 

vegetation 

(NDVI) 
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3.2.1. MODIS for temporal image features 

MODIS Terra and MODIS Aqua composed NDVI satellite time-series images with Maximum Value 

Composite (MVC) of 16-day intervals, which was synthesized based on daily satellite images, from 1st 

January 2003 to 31st December 2009 have been used to derive seasons and CPZs which was developed by 

Ali et al., (2013). The spatial resolution of both Terra+Aqua images is 250m, although they sense the 

earth's surface on two different periods in a day with similar spectral channels (NIR, VIS, TIR) (Ali et al., 

2013). He has used Vegetation Index Quality (VIQ) band to masked out haze, clouds, and other 

atmospheric effects to synthesize clear and denser temporal profiles per pixel. For further details, please 

follow the research carried out by Ali et al., (2013). In this study, MODIS Terra+Aqua pre-processed 

(smoothed) NDVI temporal profiles from 2003 to 2009, as developed by Ali et al., (2013) has been used 

to further stratification of the landscape into homogenous strata. 

3.2.2. Sentinel-1 & Sentinel-2 for polarimetric, spectral and texture image features 

Sentinel-1a and Sentinel-1b C band Level-1 Ground Range Detected (GRD) SAR images with dual 

polarisation Vertical transmit Vertical receiver (VV), and Vertical transmit Horizontal receiver (VH) 

(VV+VH) in Interferometric Wide swath (IW) acquisition mode has been used from the year 2017 to 

2019. The temporal resolution of the S1a+S1b images is six days with a spatial resolution of 10m. For the 

Eastern region, only ascending images are available and included in the research. S1 (a+b) GRD images 

contain only information about amplitude detected, not phase information due to multi-looking 

processing in earth ellipsoid WGS84 projection. No additional pre-processing has been done on S1 image 

as Google Earth Engine (GEE) provides pre-processed S1 GRD images with GRD border noise removal, 

thermal noise removal, radiometric calibration, and terrain correction. The three years of images from 

GEE have been further used to create a dry and wet median composite of VV and VH images to create 

polarimetric and texture features.  

In this study, Sentinel-2a and Sentinel-2b with five days interval with all bands at 20m (VIS, SWIR, RE) 

from the year 2017 to 2019 have been used. Due to the next launch of S2b, only S2a images are available 

for the study from 1st January to 1st April 2017 with ten days interval. The use of GEE for processing S2 

images is limited as GEE and Copernicus; both do not provide atmospherically corrected level2A (L2A) 

images form the year 2017 to November 2018. Therefore, the S2 image has been manually processed 

using the Sen2Cor L2A processor and python. S2 L1C images for the year 2017 and 2018 have been 

downloaded from Earth Explorer1, and S2 L2A images for 2019 have been downloaded from Copernicus 

sentinelsat API2. The atmospheric correction has been done on images of 2017 and 2018 via the Sen2Cor 

L2A processor provided by the Copernicus program. On the other hand, downloaded L2A images of 

2019 are already processed by the Sen2Cor L2A processor by Copernicus. Later, the Scene Classification 

(SC) image at 20m is used to mask out the cloud, cloud shadow, haze, etc. to synthesis dry and wet 

spectral and texture image features.  

3.2.3. SRTM for topographic image features 

Shuttle Radar Topography Mission (SRTM) which uses two antennae based using interferometric 

synthetic aperture radar (InSAR) technology in a single pass to map elevation at one arc second or 

approximately 30m spatial resolution image of the year 2000 has been downloaded from the United States 

Geological Survey (USGS) to derived topographic image features. The DEM based elevation image has 

been further used for calculating slope in percentage.  

 
1 https://earthexplorer.usgs.gov/ 
2 https://scihub.copernicus.eu/dhus 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus
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3.2.4. Reference data set 

There are two reference data set has been used in this study, one is crop area statistics to identify higher 

temporal MODIS based stratified NDVI strata containing cropping intensity via CPZs, which give % of 

AFA probabilities at the coarser spatial resolution, and the second one is digitized crop labels for training 

and evaluating the performance of RF model. For stratification of the MODIS temporal profiles, the 

averaged cropped area from the year 2005 to 2009 of main crops in Eastern regions like cassava, maize, 

and rice per each district from MoFA has been used. In terms of digitized crop labels, the labels have been 

adopted from the DIYlandcover crowdsource platform (Estes et al., 2015) and re-modified in terms of 

correcting mislabelled or omitted arable fields by own visual interpretation using seasonal PlanteScope 

(PS) images. These labels are generated based on visual difference occurs for arable fields (crop on fields 

and no crops on fields) using PS images of the year 2018-2019 seasonal images in which, May to 

September have considered as a wet season and December to February has been considered as a dry 

season. Due to VHS resolution and seasonal information from PS images, the identification of arable 

fields was at ease. There were approximately 600 sample digitized grids with approximately 500m x 500m 

(same as DIYIandcover crowdsource platform) size that has been digitized with identified AFA as one 

and non-AFA as 0. As stratified random sampling techniques followed in this study, it is necessary to have 

samples in each CPZs to include to landscape-level crop intensity. Therefore, the CPZs where the 

digitized sample grid was not there, newly grids were generated randomly and manually digitized (see 

Figure 2). These sample digitized grids have been used to create pixel-level 30m sample units or polygons 

in the form of % of AFA present per pixel, which ranges from 0 to 1 in the form of continuous data via 

intersecting the sample polygon grid (30m reference grid) and digitized sample grid.  

Moreover, additional validation data has been included to test the robustness of the model based on a field 

visit in 2020 to the southern middle Eastern region. On the ground, digitized boundaries of arable crops 

and non-arable crops or tree crops have been included.   

 

 
Figure 2 Sample Digitized Grids 
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4. METHODOLOGY 

Discussing the methodology in general, as shown in Figure 3, the first step is to categorize the dry and wet 

seasons using MODIS long-term temporal profiles based on NDVI strata, NDVI strata is a group of 

pixels which have similar climatology of vegetation. Later, the strata with similar seasons have been 

grouped. The second step is to map cropping intensity in % of AFA via distributing the district wise crop 

area statistics using regression to identify strata that have an arable cropped area and to estimate AFA 

probabilities at 250m resolution, also called CPZs. Using the identified dry and wet seasonal period for 

individual NDVI strata, the long term (3 years) median dry and wet S1 and S2 images have been created. 

Before doing so, S1 and S2 images have been pre-processed to remove image artifacts and clouds. As an 

example of creating a single band dry season image, the dry season period (for example, January-March & 

November-December) of the individual NDVI strata is used to create a median composite image on a 

pixel by pixel basis from three years (2017-2019) of images. The process was followed for each stratum, 

and then pixel-wise masking (or merging the different strata specific dry season images into one image) on 

these seasonal dry median images has been carried out to create a single band-specific median image of the 

dry season. The same process has been followed for each band, to create dry and wet raw bands images of 

S1 & S2. These dry and wet raw bands images have then processed further to extract different spectral, 

polarimetric, texture features and snapped to 30m reference grid of DEM image at 30m resolution using 

different resampling techniques. SRTM based elevation image was used and processed to derive slope in 

% and, used as topographic features. These 30m image features’ performance has been evaluated using a 

probabilistic RF classification algorithm to estimate probabilities of AFA per pixel further. The target map 

is % of probabilities of AFA, not the field boundaries as for crop yield or crop area estimation can be 

derived from pixel-level % probabilities with minimum cost and time required. 

 
Figure 3 Generalized Flow Chart 
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4.1. Temporal Image Features 

The higher-temporal MODIS NDVI satellite images have been used to derive two main information, one 

is, location-specific or strata specific dry and wet seasons, and the second one is, CPZs as % of probability 

of arable cropped area as a temporal image feature. To derive the dry and wet season, long-term 

climatology of vegetation based annual temporal profiles for the year 2003 to 2009 has been used as 

developed by Ali et al., (2013). Although no major or drastic land use land cover changes have happened is 

the main assumption for these long-term average temporal profiles based dry and wet season of the year. 

Ali et al., (2013) has created Maximum Value Composite (MVC) NDVI images based on temporal profiles 

with 16 days interval by merging Terra+Aqua images for the whole country of Ghana. He has used the 

Savitzky–Golay filter to smoothen these temporal profiles. To stratify the landscape into homogenous 

strata, ISODATA clustering has been performed, and 63 NDVI strata have been created with similar 

temporal profiles or seasonality throughout seven years (2003-2009). Afterward, the annual basis average 

temporal profiles have been calculated by averaging out the records of the same day with 16-days intervals 

using strata specific long-term climatological temporal profiles. These annual 63 temporal profiles later 

have been merged using time-series based hierarchical clustering based on Euclidean distance to identify 

unique seven different NDVI strata with different seasonality through the year, as an example showed in 

Figure 4 Merged temporal profiles of NDVI Figure 4. The complexity in processing the images has been 

reduced by the additional merging of these similar stratified NDVI strata. The individual strata specific 

NDVI profile then has been used to characterize the dry and wet season using the moving average model 

as suggested by Reed et al., (1994) and shown in Figure 5. The moving average of six windows (i.e., three 

months) has been used considering minor cropping season (from July to November) followed in the 

Eastern region. To calculate the moving average for the last three months of the year (October to 

December), the first three months (January to March) of record have been added. If the moving average 

intersects with the original temporal profile in an upward direction, then it is characterized as dry season 

until it intersects again in the downward direction. Then again, from downward to the upward direction, it 

is the wet season, as shown in Figure 5. 

 

 
Figure 4 Merged temporal profiles of NDVI strata 
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Figure 5 Moving Average for season characterization 

There were total 63 strata have been created using ISODATA clustering out of which major two 

generalizations have been made, one is by grouping the strata which have similar temporal profiles using 

time series hierarchical clustering to characterize dry and wet season per each pixel, the second one is 

based on crop area statistics which give % of probabilities per pixel. For example, seasonal strata seven 

may have seasonal variation similar on a time scale with a different magnitude, which depicts the seasonal 

strata seven may have pixels of the arable area plus natural vegetation or sometimes forest with understory 

also shows variation but that strata will have zero probabilities of the crop area.  

Secondly, the 63 NDVI strata have been used for the identifying CPZs or strata with % probabilities of 

arable cropped area in the landscape, for which, the iterative stepwise regression has been used between 

district wise averaged crop area statistics of the year 2005 to 2009 (as the independent variable) and 

calculated district-wise area of each NDVI strata falls within the district (as dependent variable) (see Figure 

6). In this study, district wise area statistics of main crops like rice, maize, cassava have been included, and 

iterative stepwise regression has used for each crop individually and then later merged. For example, 

identifying strata with % probabilities of rice area, the beta coefficient has been fitted for each stratum. 

This fitted beta coefficient shows strata specific % probability of specific cropped area as a result of area-

based stepwise regression. Since the fitted beta coefficient indicates cropped area probabilities, the 

negative beta coefficient is not relevant; therefore, it is necessary to remove those strata and re-run the 

stepwise regression. The same process has been followed for each iteration of regression until all the beta 

coefficients are non-negative. This whole process has been followed again for rice, maize, and cassava and 

identified the final % of probabilities of each cropped area in each stratum. Later, only significant beta 

coefficient with p-values < 0.05 are included. Since this study does not focus on mapping crop types, the 

significant % of cropped area per strata (rice, maize, cassava) have been merged as % of the arable 

cropped area as CPZs. It is important to note that stepwise regression has been used on country level area 

statistics and later clipped only to study area to increase the confidence in the mapped beta coefficient. 

The strata which are not identified as significant (Confidence Inteval:95%) % of the arable cropped area 

are included as 0% of probabilities of the cropped area. These MODIS based 250m CPZs have been 

snapped to 30m reference grid of DEM images at 30m using the nearest neighborhood resampling 

technique.   
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Figure 6 NDVI strata & Crop Area 

4.2. Spectral Image Features 

Top of the Atmosphere (TOA) S2 (a+b) images of the years 2017 and 2018 have been downloaded and 

atmospherically corrected using the Sen2Cor L2A processor to create Bottom of the Atmosphere (BOA) 

images using command line operator. Downloaded images of 2019 images have already been 

atmospherically corrected. The atmospheric correction results in VIS & NIR bands at 10m, excluding RE 

and all bands at 20m, including RE. In this study, 20m, all bands images have been masked out to remove 

the cloud, cloud shadow, and haze using 20m Scene Classification (SC) images, which are classified map of 

the individual scene by L2A processor.  

Each NDVI strata (total seven seasonal grouped strata) specific dry and wet season images of each band 

have been created by taking the median of all the 2017, 2018, and 2019 images using Python. In the end, a 

total of 9 bands of the dry season and nine bands of wet season images have been created. These 18 

images have later been snapped to 30m reference grid of DEM images by bilinear resampling method, 

which averages out nearest four pixels. The original images of S2 images are in UTM projection, which 

has been re-projected to Ghana Metre Grid local projection (EPSG:25000). 

As discussed in 2.1, raw bands of dry and wet season images have used to create spectral image features by 

ratio different band combinations, as shown in Table 2, which are widely used in crop area mapping. 

Therefore, there is a total of 14 spectral features have been used in the model to evaluate its performance. 
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Table 2 Spectral Feature Equation 

Spectral Feature Equation Reference 

Normalized Difference 

Vegetation Index NDVI =
NIR B8 − Red B4

NIR B8 + Red B4
 (Tucker, 1979) 

Normalized Difference 

Vegetation Index red-edge 

1 narrow 

𝑁𝐷𝑅𝐸1 =
NIR B8A − Red Edge B5

NIR B8A + Red Edge B5
 

(Fernández-Manso et 

al., 2016) 

Normalized Difference 

Vegetation Index red-edge 

2 narrow 

𝑁𝐷𝑅𝐸2 =
NIR B8A − Red Edge B6

NIR B8A + Red Edge B6
 

(Fernández-Manso et 

al., 2016) 

Normalized Difference 

Vegetation Index red-edge 

3 narrow 

NDRE3 =
NIR B8A − Red Edge B7

NIR B8A + Red Edge B7
 

(Fernández-Manso et 

al., 2016) 

Chlorophyll Index red 

edge 
CLre =

Red Edge B7

Red Edge B5
− 1 (Gitelson et al., 2003) 

Normalized Difference 

Water Index 
NDWI =

NIR B8A − SWIR B12

NIR B8A + SWIR B12
 (Gao, 1996) 

Brightness 

 

Brightness = sqrt of (
Red x Red

Green x Green
)/2 

 

(Escadafal, Girard, & 

Courault, 1989) 

 

4.3. Polarimetric Image Features 

Pre-processing and creating seasonal S1 images have been done using Google Erath Engine (GEE). Since 

S1 GRD VV and VH ascending images are available at 10m resolution by GEE and have already been 

processed by radiometric and terrain correction, no additional further pre-processing has been done. 

NDVI strata-specific dry and wet zone seasonal VV and VH images have been created with similar 

process steps followed for S2 images. The speckle filtering of S1 images has not been included as a pre-

processing step. Still, it can be considered in the way of snapping dry and wet VV, VH bands to 30m 

reference DEM grid by cubic convolution resampling techniques which average out nearest 16 pixels.    

As shown in Figure 7(b), the S1 radar image shows very bright pixels on the edges of the high terrain area 

due to the viewing geometry of the satellite images Figure 7(a). Therefore using the SRTM based DEM 

image, slope, and aspect has been calculated. The mask of the potential foreshortened pixel at 30m 

resolution has been created, as shown in Figure 7(c). The mask has been created using GEE as developed 

by Kakooei, Nascetti, & Ban, (2018). These masked VV and VH images, including difference (VV-VH), 

addition (VV+VH), and the ratio (VV/VH) of these two bands, have included a total of 10 polarimetric 

image feature. 

 
Figure 7 Radar Foreshortening & Mask at 30m, (a) is adopted from (Kakooei et al., 2018) 
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4.4. Textural Image Features 

The GLCM techniques based optical and radar image features have been calculated on raw 9 bands of S2 

images and VV, VH images of S1 images at 30m resolution for the dry and wet season. Zakeri, Yamazaki, 

& Liu (2017) have tried several window sizes from 3x3 to 21x21 in the complex landscape for landcover 

mapping using S1 images and showed that there we minimal changes in improvement in accuracy after the 

11x11 window size. Therefore, the window size of 11 has been considered to include neighborhood pixel 

intensity for the heterogeneous landscape. Also, in terms of considering pixel intensity in all angles of the 

surrounded pixels concerning central pixel, average values in all angles with one angular displacement 

value have been calculated considering the fragmented geographic landscape. Rather than raw averaged 

quantizer, a probabilistic quantizer based on actual occurrences of pixel intensity values has been used and 

provided by SNAP. To calculate texture features, only raw bands of S1 (VV, VH) and S2 (VIS, RE, SWIR) 

images have been considered, the modified spectral or polarimetric based features may give the similar 

texture intensity value, therefore, not included to avoid extra computational efforts.  

There are usually five main GLCM textures that have been considered for AFA mapping those are, 

Homogeneity, Dissimilarity, Contrast, GLCMvariance, and Entropy (Haralick et al., 1973; Kim & Yeom, 

2014). Therefore, in this study as well, a total of five GLCM texture per each band and seasons have been 

calculated. In total, there 110 texture features have been included in the study. There is no need for 

additional snapping as the raw snapped bands of S1 & S2 at 30m have been used. 

4.5. Topographical Image Features 

SRTM based DEM images at 30m have been downloaded, from which slope in % have been calculated. 

The slope in percentage has been calculated using ee.Terrain package provided by GEE, which used 

elevation and aspect. Further details can be found here3.  Since the target resolution of the AFA map is 

30m, the DEM image been used as a reference grid in the study, other images like S1 and S2 images have 

been snapped to the DEM grid. The elevation (m) and slope image were used as a topographic image 

feature.  

4.6. Mapped Cropped Labels 

As discussed earlier, approximately 600 sample digitized grids with AFA (value 1), and non-AFA (value 0)  

labels have been used to derive 30m pixel-level samples showing % of AFA. The 30m samples showing % 

AFA (continuous data) have been derived by intersecting the sample digitized grids with a 30m sample 

polygon grid (reference 30m DEM grid). To derive, pixel-level % AFA samples, as a first step, non-

overlapped or partially overlapped 30m grid cells (from sample polygon grid) on individual sample 

digitized grid have been discarded. These grid cells are mostly at the boundary of the sample polygon grid 

and do not always include underneath the digitized sample grid fully. Afterward, the 30m sample polygon 

grid has been intersected with the digitized sample grid to calculate the % AFA area, as shown in Figure 8. 

There are approximately 93,230 pixels or samples that have been used in the model. The majority of the 

pixels are either 0% or 100% probability of AFA. In the end, there was a total of 59,980 samples for 

training and 25,631 samples for testing. 

Additional validation dataset or ground truth boundaries have been collected, and a similar process has 

been followed. A total of 67 sample points have been used as independent validation data for assessing the 

robustness of the RF model.  

  

 
3 https://developers.google.com/earth-engine/tutorial_api_03 

https://developers.google.com/earth-engine/tutorial_api_03
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Figure 8 30m Sample Grid 

4.7. Probabilistic Random Forest Model 

Ensemble RF algorithm has gained more popularity in ML as it is less prone to over-fitting with lower bias 

& variance due to multiple decision trees and random sub-sampling of features and observations (also 

called bagging) (Belgiu & Drăgu, 2016). Because of multiple decision trees, the lower bias on the training 

sample and lower variance on testing samples can be achieved, which increases the accurate predictions. In 

this study, the RF algorithm has been used not only because of its higher prediction power, but also it is 

easy to implement, understand, and has capabilities to identify relevant feature space in high dimensional 

feature space. 

As discussed in section 2.4, few studies have used RF regressors to estimate the percentage cover of 

vegetation per pixel. In contrast, other studies have used RF classifier based probabilities via spectral 

unmixing for mapping vegetation per pixel. In this study, as discussed in 4.6, the majority of the pixel at 

30m resolution follows under the 0% actual probabilities or 100% actual probabilities of AFA and very 

minimal (only 10% pixels out of all pixels) sample does not have pure actual probabilities per pixels. While 

predicting % probabilities per pixel using RF regressor based on the mean of all tree-based predictions can 

be misleading where sample data falls near binomial distribution. On the other hand,  % probabilities of 

per pixel (p(i)) using RF classifier, have been defined by the following equation,  

 

𝑝(𝑖) =
𝑘(𝑖)

𝑘
 

 

(1) 

Where k(i) is the total no of trees with positive prediction, i.e., class 1 or AFA, and k is the total no of 

trees used in the model. Since the sample data follow the approximate binomial distribution of the 

probabilities, the model can be more accurate for predicting 0 and 1 and assuming that, remaining 

uncertainty or mixed the pixels can be better explained via mapped probabilities based on class 
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membership probabilities rather than considering every number of trees predictions in regression trees. 

That is why, in this study, the RF classifier has been used to map % probabilities of AFA, which uses 

binomial distribution as a tree split criterion. 

In this study, RF classification has been used as a binomial classifier to map the probability of AFA per 

pixel. As discussed in 4.6, the only samples with 0 (non-AFA) and 1 (AFA) have been considered. These 

sample data have further split into a 70%-30% ratio as training and testing data. Due to the high 

dimensionality of the feature space with a total of 137 image features, it was necessary to select relevant 

and valuable features and train the final model with only important features. RF model provides three 

matrices to evaluate variable importance. Those are permutation importance, Z-score, and Gini Impurity 

Decrease (Breiman, 2001). Among which permutation importance and Gini Impurity Decrease are 

popular for relevant feature selection. Permutation importance shows the direct link between independent 

feature and the target feature via explaining the decrease in error rate due to individual features for 

prediction of the target response. The decrease in error rate can be calculated via predicting out-of-bag 

samples (OOB) (samples which are not used for training the specific tree), by removing the variable from 

OOB feature space. 

On the other hand, Gini Impurity Decrease is based on the quality of the splitting of the feature space for 

training the model (Hastie, Trevor, Tibshirani, Robert, Friedman, 2009a). For the feature space with high 

dimensions have higher chances of correlated features for which permutation importance matrix can be 

relevant as it directly shows the change in the target response variable (Gregorutti et al., 2017). Therefore, 

to select relevant image features, premutation importance has been implemented as a recursive feature 

elimination (RFE) technique with a surrogate or dummy RF model trained with 5 fold cross-validation 

and 500 number of trees.  

Since the target output is predicted probabilities of AFA rather than classified labels per pixel, the feature 

selection surrogate RF model has used loss function based on probabilistic Brier Score (BS), BS score 

explains uncurtaining, and reliability based on the difference between actual and predicted probabilities. 

Predictions. BS can be interpreted as the means squared error (MSE) between actual and predicted 

probabilities (Brier, 1950; Brownlee, 2018). Therefore, in this study, the relevant features have been 

selected based on the model trained with a mean decrease in BS per each fold. 

Based on the outcome of the feature selection process, relevant features are then used for training the final 

model. The final RF model has been trained with two hyper-parameters (parameters which can change the 

model performance), those are, total 500 number of trees, and the maximum feature to select for random 

sub-sampling is the square root of total feature, as suggested by Belgiu & Drăgu (2016). Since as discussed 

in 4.6, the sample data frame is highly imbalanced, meaning it has 10 times more samples of non-AFA 

compared to AFA samples. That is why the model has been trained using cost-sensitive learning (higher 

weight to wrong predictions of AFA area) base on class weights given to non-AFA and AFA as 0 and 3, as 

suggested by Chen & Liaw (2004). The weights are derived based on class frequency in total sample data.  

The model performance has been evaluated on a 30% testing dataset and additional validation data set, 

which is based on ground measurement in the year 2020. The mapped probabilities have been normalized 

to 0 and 1. The mapped probabilities map has been masked with the Global Human Settlement (GHS) 

layer of 2015 at 30m to mask out urban and water areas. The model has been evaluated on dummy class 

labels using Area Under Curve (AUC) Receiver Operating Characteristics (ROC), error matrix with 

precision, and recall. The mapped probabilities have been evaluated based on BS and pseudo R2. The 

pseudo R2 has been calculated based on percentage variance explained in observed and predicted 

probabilities, as mentioned in Coulston et al., (2012). Partial Dependence Plots (PDP) have also been 

plotted to understand the relationship between image features and mapped AFA probabilities (Hastie, 

Trevor, Tibshirani, Robert, Friedman, 2009b). PDP explains the partial behavior of the dependent variable 

(here image feature) with the change  in independent feature (AFA probabilities) over a selected range.   
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5. RESULTS  

5.1. Temporal Image Features 

 

As discussed in Methodology, the higher temporal MODIS based long-term averaged annual NDVI 

temporal profiles have been used to identify a total of seven different NDVI strata or agro-ecological 

zones which have to distinguish seasonal changes identified using time-series based hierarchical clustering 

of total 63 NDVI strata. Although in general, the starting of the wet or sowing season usually starts in 

March and ends in either June or November, as shown in Figure 9. In some areas there were two dry 

seasons in the year have been observed which is in starting and ending of the year, however in few regions 

there will be intermediate dry seasons (July or August) can be observed (strata 5 & 6), especially where 

irrigation facilities are obscured due to subsistence farming and seasonal rivers. 

 

 
Figure 9 Strata's Seasons 

Continuing with the NDVI strata, the NDVI annual temporal profiles explaining dry and wet season also 

reflects an on-ground arable farming system in a specific agro-ecological zone. For example, as shown in 

Figure 10, the area near Lake Volta, i.e., strata 7, usually have a long wet season from March to November 

due to the availability of surface water for irrigation. The irrigated arable area in the north or near lake 

follow the start and end of the season same as non-irrigated area in the south, however, in the south 

(strata 6) usually, two seasons have been followed, that is major (March to June). Minor season (August to 

November) with the intermediate dry season (June-July) as the majority of the area is rain-fed agriculture. 

Based on Figure 9 & Figure 10, the different dry and wet seasons have been followed across all-region. 

Getting a seasonal variation is very important to the map AFA area that is why agroecological zone-

specific seasons have been used to create dry and wet season texture, spectral and polarimetric image 

features. 
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Figure 10 Seasons & NDVI strata 

Higher temporal based NDVI strata were also used to derive probabilities of AFA at 250m from MODIS 

images combined with district wise AFA area statistics using stepwise regression as discussed in 

Methodology. There were a total of 19 NDVI strata have been found significant (p values=<0.05) 

combined with rice, maize, and cassava crop probabilities. There are few strata (52 & 59), which have 

significantly explained probabilities for all crops. In the research, summed up probabilities of rice, maize 

and cassava have been considered, which gives a total of 15 unique CPZs or merged NDVI strata derived 

from 19 NDVI starts. For example, NDVI starts with similar AFA probabilities like strata 9, and 10 are 

merged and considered as one CPZs with 5% probabilities of AFA.  
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Table 3 CPZs (NDVI strata + significance) 

NDVI 
Strata 

Rice 
Probabilities 

Maize 
Probabilities 

Cassava 
Probabilities 

Total AFA 
probabilities 

(%) 

Significance 
(p-value =< 0.05) 

3 3  - - 3 0.03 

4 9.3  - - 9 0.00 

8  - 11.2 - 11 0.01 

9 - 5.3 - 5 0.04 

10 4.5 - - 5 0.00 

14 - - 8.1 8 0.01 

25 3 - - 3 0.00 

27 - 10.2 - 10 0.00 

33 - - 20.4 20 0.00 

35 - - 15.1 15 0.00 

37 3.4 - - 3 0.04 

44 - - 51.1 51 0.00 

45 - 16.6 - 17 0.00 

46 - 22.7 - 23 0.01 

50 - - 16.6 17 0.00 

51 - 13.8 - 14 0.05 

52 - 34.1 37.3 71 0.00 (Maize), 0.00 
(Cassava) 

54 - 23.5 - 24 0.00 

59 5.1 14.4 23.5 43 0.00 (Rice, Maize), 0.00 
(Cassava) 

 

As shown in Figure 11, a different 15 CPZs have been identified. The higher intensity of arable crops 

observed in southeast and areas near Lake Volta and lower intensity of arable crops observed in the 

northern area. The main reason is a rainfall distribution over the region where Afarm plains have lower 

rainfall intensity indicating a dry hotter climatic region. In comparison, the southern area has higher 

rainfall intensity. 
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Figure 11 Crop Productive Zones (CPZs) 

5.2. Spectral, Texture and Topographic Image Feature 

 

One of the major problems with optical sensor image is cloud cover, which has been addressed by taking 

a median of the 2017 to 2019 S2 images. The median of the images has been taken over the NDVI strata 

specific seasons to create wet and dry season images, as shown in Figure 12, resulting in cloud-free images 

in West Africa with clear pixels change for AFA in the dry and wet season. As an example, a part of the 

Easter area has been zoomed in the image, and the area lies within NDVI strata 5. 
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Figure 12 S2 cloud-free Dry and Wet Season True Colour Composite (TCC) 

Apart from temporal, S2 based spectral and S1 based polarimetric features, S1 and S2 raw bands based 

five texture features have been used. Each texture feature has distinguished characteristics, as shown in 

Figure 13, where the PS False Colour Composite (FCC) image (for clear visualization purpose) with five 

different texture features have included in part of the Eastern area. In the image, forest area or tree crops 

have lower variance, contrast, dissimilarity, and entropy due to smooth or compact homogenous pattern 

resulting lower variation are considered a group of pixel window, while for cropped and urban areas are it 

is opposite due to heterogeneity in agriculture landscape. Out of these texture features, variance texture 

features showed clear edges and differences between different types of vegetated areas. 
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Figure 13 Texture Features (SWIR band) 

Topographic elevation and slope features also showed unique insights into the landscape; for example, the 

southern areas have lots of hills compared to the northern area, which can be observed in Figure 14. 

Although, the steepness of these hills is marginal (0-10%) except only in the high elevated area 

(approximately >550m), which has steepness more than 35%. In general, no crops can be conserved on 

higher elevated areas, whereas in lower elevated or hilly areas in southern areas generally have cassava and 

maize crops. In contrast, in the northern or flat areas have maize, rice, or vegetable crops.  

.  

 
Figure 14 Topographic Image Features 
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5.3. Important Mapping Predictors 

As discussed in Methodology, the AFA at 30m target resolution has been estimated using RF. RF 

algorithm is a very handful in terms of feature engineering or selecting the relevant variables as unlike the 

traditional filter-based methods (commonly used one is Pearson correlation coefficient) the decision trees 

select the relevant features based on learning algorithm performance by splitting the feature space 

randomly by rows and columns (Gregorutti et al., 2017). In this study, there are a total of 137 (1 temporal, 

2 topographic, 14 spectral, 10 polarimetric, and 110 texture) image features that have been included.  

Therefore, as suggested by Gregorutti (2017), RFE technique with 5 fold cross-validation has been used as 

a wrapper method to identified stable and discriminant relevant features in high dimensional and 

correlated feature space. The BS (as explained in Methodology) has been used as a scoring metric to train 

and test each fold. Permutation importance or Mean Decrease in Error (MDE), showing a mean decrease 

in probabilistic BS score by individual variable, has been considered to select relevant features. As shown 

in Figure 15, there are total 36 variable has been selected for estimation of AFA, after the 36 features, the 

marginal increase in BS error can be observed, implying that the rest of the features are not relevant 

discriminants or act as noise features for estimating probabilities of AFA and are further leading to 

overfitting of the model.  

 
Figure 15 Mean Decrease in BS Error and Feature Selection 

Total 36 important features have been selected out of which 33 features are texture features (majorly 

Variance texture), 1 is topographic (Elevation), 1 is temporal (CPZs), and 1 is polarimetric (Dry VV) 

image feature. These features, in general, can be grouped (see Table 4) where topographic and texture 

features, in general, improve prediction by reducing 0.14 to 0.10%, temporal CPZs feature reduces 0.05%, 

and polarimetric feature reduces 0.04% in BS score. The values of BS scores range from 0 to 1; therefore, 

the percentage decrease (reduced BS score * 100) reduces in error and has values between 0% to 1%. 
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Table 4 Important Image Feature 

Group No Feature Names 
% decrease in  

(BS score) 
Type of Feature 

1 
Elevation & Wet SWIR (B11) Variance 

Texture 
0.11 – 0.14% 

Topographic & 

Texture 

2 
Wet B12 & Dry B12, B11, B07, B06 

Variance Texture 
0.06 – 0.10% Texture 

3 
Wet VV & Dry VV,B8A Variance 

Texture, CPZs 
0.05% Texture & Temporal 

4 

Dry B02, B05 & Wet B04, B05 

Variance Texture, Wet B07 & Dry B06 

Entropy Texture, B06 Homogeneity 

Texture, Dry VV 

0.04% 
Texture & 

Polarimetric 

 

As shown in Figure 16, elevation has been found the most important variable, 0.14% MDE. One of the 

main reasons could be the terrain characteristic of area and farming practices followed on hilly areas in the 

Eastern region. Considering MDE, following to elevation, the next important 9 image features are 

variance texture features, among which wet SWIR bands (B11, B12), dry narrow RE & NIR bands (B6, 

B7, B8A), dry and wet VV bands are most important as it has improved model performance by 

approximately 0.06% to 0.10% decreased error in BS score. Out of total 36 features, majority dry season 

based image features, which are in total 18, plays an important role followed by wet season based image 

features, which are in total 16. As observed in Figure 16, there is minimal difference in MDE and shows 

almost equal importance for a group of features, for example, dry, and wet VV variance, dry B8A variance, 

and wet B06 homogeneity and CPZs have similar MDE score with very few decimal changes and are 

approximately equally important for estimating AFA. The same conclusion can be made for another group 

of features as well from the graph or above table.  

In general, the topographic elevation and optical and radar-based texture feature outperformed the 

spectral features. It also outperformed a temporal and polarimetric image features in a way as well. 
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Figure 16 Feature Importance: Mean Decrease in Error 

5.4. Estimating AFA fractions at 30m 

The fitted RF classification model has been used to predict the probability of AFA per pixel. The derived 

probability has been calculated by dividing the number of trees with a positive prediction by the total 

number of trees’ prediction or also called ‘Class Membership Probabilities.’ The model performance has 

been tested on two individual data set, one is a testing dataset which is based on manual digitization of 

AFA area on PS images through visual interpretation, and the second one is the validation dataset, which 

is based on the digitized ground boundary of AFA present in 2017-2019.  As observed in the given 

confusion matrix for testing and validation dataset (Table 5 &  

 

 

Table 6), both datasets have a vast difference in the total number of samples because of the time and cost 

involved in collecting on-ground measurements (validation dataset). Although, both datasets have lower 

AFA observations comparing to non-AFA observations representing imbalance in both datasets. The 

classification of the pixels into specific AFA or non-AFA category is based on estimated probabilities as 

well, in which probabilities of AFA more than 0.5 are classified as AFA and vice versa for non-AFA. 

These confusion matrices have been further used to calculate ROC AUC and error matrix to test the 

quality of model for class prediction and, BS and pseudo R2 have been used to test the quality of model for 

predicting the probabilities of AFA per pixel. 

 
Table 5 Confusion Matrix for Testing Dataset 

 Non-AFA AFA Total 

Non AFA 22,818 46 22,864 

AFA 328 2439 2767 
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Table 6 Confusion Matrix for Validation Dataset 

 Non-AFA AFA Total 

Non AFA 48 0 48 

AFA 6 7 13 

The ROC AUC on the testing data set was 0.93, and on the validation dataset was 0.76 showing the 

robustness of the model performing approximately similar with marginal error on both dataset, although 

due to imbalanced dataset and predicting single class label based ROC AUC based interpretation can be 

misleading. Table 7 shows the error matrix stating the precision, recall, and f1-score for both testing and 

validation datasets. Precision shows the total relevance or confidence in the prediction, and recall explains 

the total correct class prediction out of all specific class samples or completeness of the predictions.  Both 

confidence and completeness for predicting non-AFA are high compared to AFA predictions with 0.99 

precision and 1.00 recall rate testing dataset for the non-AFA area. While predicted, AFA has high 

confidence with 0.98 precision rate on a testing dataset but has more omissions of AFA samples with a 

0.88 recall rate. The similar behavior for predicting AFA on the validation dataset can be observed with a 

1.00 precision rate and 0.54 recall rate, showing higher confidence in prediction AFA but have a higher 

fall-out rate of sample points. Although it is necessary to interpret these results with caution as changing 

the probability threshold of 0.5 for final class label prediction can change the error matrix. It is also 

important to note that the final results of the research are continuous probabilities map of AFA and not a 

single class label, for which pseudo R2 and BS has been used to evaluate the model performance. 

 
Table 7 Error Matrix 

 Testing Dataset Validation Dataset 

 Precision Recall f1-score Precision Recall f1-score 

Non AFA 0.99 1.0 0.99 0.89 1.00 0.94 

AFA 0.98 0.88 0.93 1.00 0.54 0.70 
 

The pseudo R2 for the testing dataset is 0.78, and for validation, the dataset is 0.50. The lower variation 

explained based pseudo R2 in mapped probabilities for validation dataset could be because of the small 

sample size of the validation dataset and limit the interpretation of the result. Moreover, it also questions 

the robustness of the model for predicting % probabilities in mixel. The stated R2  values are leveraged by 

extremes, meaning the model is predicting 0% to 0.5% probabilities for non-AFA and 0.5% to 1% 

probabilities for AFA. The confidence or error remained in predicting probabilities explained via BS. BS 

explains mean squared error in the actual vs. predicted probabilities, therefore the lower the error, the 

better predictions of probabilities can be interpreted. BS with value 1 shows the worst predictions, and 0 

shows the perfect predictions, it can also be considered as a cost function where the score penalizes higher 

weights for the higher difference between actual and predicted probabilities. Here, the BS has been 

analyzed for positive probability prediction or probabilities of AFA prediction as it is the target output. 

The BS score on testing data was 0.01, and on the validation dataset was 0.1, indicating the close 

predictions of probabilities for AFA with the actual probabilities have been achieved on both testing and 

validation datasets.  

To understand the behavior pattern of image features for estimating probabilities of AFA can be 

described in brief via Partial Dependence Plot (PDP), as shown in Figure 17. The plot explains the 

relationship of change in probabilities of AFA with the change in mapping predictor or image feature with 

AFA probabilities. Here only a few distinct variables, and its behavior have been explained for 

understanding the PDP of all 36 variables used in the model (see Appendix B). Based on Figure 17, it can 

be inferred that lower elevated (0-200m) or valley areas in the region have lower AFA probabilities 

compared to the hilly areas (200 – 400m). Meanwhile, AFA probabilities decrease with higher values of 
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VV band in dry seasons, which is obvious as the higher value of VV bands shows the taller vertical 

features like trees or forest while lower values indicate bare soil. Not only topographic and polarimetric 

but also temporal image features, that is, CPZs, indicating an increase in AFA probabilities with higher 

intensity CPZs. There were a total of 15 CPZs have been used, out of which only three zones have higher 

cropping intensity, that is above 30%, only these zones have explained increased probabilities of AFA at 

30m resolution. As shown in Figure 13, the forest area or area with homogenous pattern have lower 

variance compared to fields or urban area. Similar implications can be derived based on PDP, where dry 

and wet SWIR (B11) variance shows a decrease in probabilities and slowly linear increase in probabilities 

with increasing variance. Also, it is important to observe that there is a sudden hike showing increasing in 

AFA probabilities by increasing the variance in wet seasons B11 variance comparing to dry seasons due to 

the difference between bare soil and crop area present on AFA.  

 

 
 

Figure 17 Partial Dependence Plots 

One of the main reasons could be the terrain characteristic of area and farming practices followed on hilly 

areas in the Eastern region. The main reason could be the arable fields’ characteristics and similarity in 

temporal and spectral characteristics with natural vegetation. Figure 18 shows the AFA probabilities at 

30m resolution (for more example, see Appendix C). The total AFA area (maize, cassava, rice) in Eastern 

region was reported by Ministry of Food and Agriculture (MoFA) in 2016 was 2742 km2 area while 

considering all the % estimated probabilities per pixel of AFA in this study the total estimated AFA is 

10,000 km2 (considering probabilities more than 0.5). The overall model shows the overestimation of the 

cropped area; however, this result should be interpreted with caution as even lower probabilities have 

been considered in reported statistics.  
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Figure 18 AFA probability map at 30m 

Considering the mapped probabilities map (Figure 18), Figure 19 shows the example of optical (RE B6) 

and radar (VV) variance texture features of the dry and wet season for mapping probabilities. As observed 

homogenous areas like water have lower variance, highly cropped areas have moderate variance in texture, 

and heterogeneous areas near water boundaries with mixed vegetation and bare areas have higher variance 

in both optical and radar texture features. Zooming into only AFA or cropped areas, the radar variance 

texture feature shows a lower increase or change in the wet season compared to the dry season than 

optical texture features, one of the main reason can be the sensitivity of VV radar backscatter to water 

content in vegetation and optical height of the crop. For example, if crop height can fluctuate with the 

increase or decrease water content over the wet season resulting in sometimes marginal changes in VV 

backscatter. Although, optical RE bands have sensitivity towards plant chlorophyll content, which keeps 

increasing over growing season with increasing photosynthetic activities. Because of it, the higher 

discrimination between wet and dry optical variance features can be observed compared to marginal 

discrimination of radar variance features.  
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Figure 19 Texture Features and Mapped Probabilities 
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6. DISCUSSION 

In this research effort of mapping, AFA has carried out in an intense cloudy region with a heterogeneous 

agricultural landscape of West Africa with the elegant machine learning modeling (RF) technique. The 

research comprehensively studies freely available satellite-based temporal, spectral, polarimetric, and 

topographic image features (total 137 features) to identify physical factors explaining AFA distribution as 

the main aim of the research. These physical image features reflect insights into the ongoing farming 

activities or other land use changed induced actions in the imageries with moderate spatial and temporal 

resolution images (S1&S2). Out of these image features, topography based elevation has been found very 

useful in explaining the AFA distribution at the large scale or landscape level which is also inclined with 

previous findings (Husak et al., 2008b; Marshall et al., 2011a). Therefore, it can be implied that topography 

is the most important image feature in complex terrains. After topography, optical and radar-based texture 

features have been found important mapping predictors for AFA, implying texture features are more 

important than spectral, temporal, and polarimetric features inclined with findings by Vintrou et al., 

(2012). Regardless of cloud-free measurements captured by S1, long-term median composite (3-years) of 

S2 optical texture image features, specially SWIR and RE bands, have explained more variation compared 

to radar texture features in complex agriculture landscape. However, the combined use of optical and 

radar texture features is important, and radar texture features do improve the model performance by a 

marginal increase inaccuracy. Similar observations have been made by Van Tricht et al., (2018) and Yin et 

al., (2020). Followed by texture features, temporal and polarimetric image features are identified as 

important mapping predictors as well for AFA mapping. While, none of the spectral features has been 

found important compared to texture, topographic, temporal, and polarimetric image feature.  

Mapped probabilities do align with the overall CPZs and rainfall distribution, showing lower (0-30%) or 

moderate probabilities (40-50%) in the northern area (drier climate) and higher probabilities in southern 

areas. Although it also has an exception like a lower area in the southern part, it has CPZs with higher 

cropping intensity than a highly elevated ( >550m) area. This consideration is also included by the model 

and can be seen in the final crop probabilities. In general, the area has lots of hills rather than steeper 

mountains, as you can see in Figure 14, the Afarm plains (north part) are relatively flat (elevation) than the 

middle areas near Lake Volta which are highly elevated (>550m elevation) and the southern areas have 

lots of hills (0-450m elevation). Though the area has a higher variation in elevation, it does not have much 

steeper topography, as shown in Figure 14. The steepest area is in the between south and north Easterner 

region with the highest elevation while in the south and Afarm plains, the area has very little steepness (0-

10%). Moreover, based on the on-ground observations, these higher elevated and stepper area has rocks 

while other hilly areas in the south and Afarm plains are with red or clay soil, making low altitude or hilly 

area more suitable for farming, in this study only topography has been considered and found most 

important mapping predictor in complex topographical agriculture landscape. It explains the lower 

probabilities of the area having arable fields in lower altitude drier areas (here: Afarm plains, areas far from 

lake Volta) due to rainfall intensity (lower), temperature (higher), and lack of irrigation facilities. On the 

other hand, very high altitude areas (here: >550m) also have lower probabilities of AFA mainly because of 

high steepness, rocky soil, and high temperature, which are well explained by elevation image feature. The 

area with moderate elevation (here: 0-400m) has higher probabilities of AFA, which is also one of the 

reasons for explaining elevation as more discriminant features compared to the slope. The low steeped 

area with (majority slope: 0-10%) or hills does not help to determine the probability of the location being 

AFA while the position of the location (higher elevated or lower elevated) does. Elevation does not only 
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helped to capture AFA on the regional scale but also on a local scale showing higher probabilities of AFA 

on hilly area comparing to valley area (near Lake Volta in Afarm plains), as valley area get flooded in the 

heavy monsoon season due to which it has lower suitability for farming practices. 

They are considering the combined group 2 (optical texture features) & group 3 (radar texture features) as 

per Table 4 of the discriminant image features helps to improve mapping AFA with a 0.05-0.06% decrease 

in BS error. It shows that consideration of neighborhood pixel intensity is more useful than spectral 

rationing or spectral image features in heterogenous complex landscapes by considering the geography of 

the area. Within the texture features as well, optical (RE & SWIR) S2 based texture features have 

outperformed the radar S1 based texture features. However, radar texture features are added value for 

mapping AFA explaining a 0.01% decrease in BS error. It does not imply that radar texture features are 

not important, but optical texture features explain unique variation by individual band compared to radar 

texture features. One of the main reasons for it is the sensitivity of radar backscatter towards topography. 

As topography has been included as an individual mapping predictor, it explains the majority of the 

variation in AFA distribution. Second, due to viewing geometry as well, foreshortened masked S1 radar 

images are unable to capture the distribution of AFA in high elevated areas or stepper areas. 

Moreover, it is sensitive towards moisture and vegetation water content, which explains the biophysical 

parameters (height, biomass) or crop conditions during the growing season. The frequent fluctuations in 

rainfall and temperature over and within the dry and wet seasons affect crop conditions heavily, which 

reflects lower variation in the median composite of radar image features of the dry and wet season. On the 

other hand, optical (SWIR & RE) images are sensitive to plant pigment (chlorophyll, nitrogen) content, 

which keeps increasing during the growing season, which is also less sensitive to biophysical conditions of 

crops.  

Considering the S2 based optical texture features, narrow spectral bands like SWIR (B11, B12), RE (B6, 

B7) and NIR (B8A) based texture features are more important than other bands (VIS) due to sensitivity of 

SWIR to the moisture content in soil and vegetation, the sensitivity of RE & NIR to the plant chlorophyll 

and nitrogen content into the plant, also observed by Yin et al., (2020). Not only the biochemical structure 

of vegetation but also the difference in physical structure between AFA and tree crops has been captured 

via radar-based VV band texture features, which capture the difference in the height of the vegetation, also 

observed by Harfenmeister, Spengler, & Weltzien (2019). Within the texture features only, variance texture 

features have more predicting power compared to homogeneity, contrast, entropy, and dissimilarity as the 

variance of specific pixel window (here: 11x11) reduces the complexity or randomness of the pixels 

observations via preserving edges and geography of the surface features, which is also found in relative 

studies (Braun, Lang, & Hochschild, 2016). Based on this study and visual interpretation, it is suggested to 

implement the calculation of texture features using raw backscatter values of S1 and surface reflectance 

values of S2 bands without any pre-smoothing or speckle filtering at 30m helps to capture the finer 

geographic features like small and sparse arable fields. It is also important to note that the challenge of 

extreme cloud cover optical images have been addressed via the median composite of the images over 

three years (2017-2019), which indirectly strengthens the capabilities of S2 texture images to capture 

vegetation difference in dry as well as the wet season. 

After topographic and texture features, CPZs temporal image feature shows a 0.05% decreased in BS 

error. CPZs based on long-term MODIS NDVI temporal profiles show regional level variation in AFA 

probabilities by capturing the difference in the distribution of AFA. This depicts that CPZs with higher 

probabilities of AFA helps to predict AFA with better compared to CPZs with lower probabilities of 

AFA. Incorporating, lower spatial resolution CPZs with a moderate spatial resolution (30m) topographic 

and texture features explain the regional and local variation of AFA distribution well. Although it is 

necessary to interpret the results as in this study consciously, CPZs are derived from 2003 to the 2009 year 

data assuming that not any drastic landcover change happened. The minor changes in results can be 

expected using the latest MODIS data.  
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In a way, texture-based dry VV variance and wet VV variance shows better prediction capabilities than 

polarimetric dry VV image feature (0.04% decrease in BS error) considering the neighborhood pattern of 

pixels reduces the complexity of fragmented agricultural landscapes. However, the polarimetric dry VV 

image feature shows more discrimination in AFA distribution than wet VV image features due to 

similarity in biophysical parameters of arable fields and natural vegetation during the wet season. Countries 

like Ghana, where rain-fed agriculture is prominent, and farm mechanization is less adopted, S1 based 

radar measurement in wet season may show similar stress or health condition (moisture content-based) 

and similar height between natural vegetation and arable crops due to dependency of rainfall intensity and 

radar backscatter sensitivity toward water content. Besides, in dry season difference in measurements due 

to crop height of S1 backscatter between vegetated (natural vegetation) and non-cropped (bare soil or 

plowed fields) area are captured.  

Not only identifying relevant image features and its predicting power for mapping AFA are studied but 

also developing an elegant mapping approach that is easy to adopt for mapping AFA in complex 

agriculture landscape is one of the endeavors tried out in the research. West African countries often have 

extreme, and longer rainfall intensity showing due to which there is an extreme cloud cover can be 

observed, which challenges the use of optical images. Therefore, in this study, the median composite of 

three years (2017-2019) of images has been used to create cloud-free optical S2 images. A similar 

methodology applies to radar S1 images, which smooth out the backscatter values over the period 

showing less randomness in the pixels. Using this simple approach, creating cloud-free images is easy, and 

it is necessary as the majority of the important image features are S2 SWIR and RE based texture features.  

Since the target class is AFA, capturing seasonal changes is very important to differentiate AFA with other 

vegetation like tree crops and natural vegetation, which have been introduced via simple prototyping of 

agroecological zone-specific dry and wet season using moving average method. There are few studies 

which have used single dry and wet season period fixed for the whole region to map agriculture area, 

although in this study reveals that the vegetation seasons do changes across the region mainly because of 

farming practices, farm mechanization, and rainfall distribution and, therefore it is important to consider 

agroecological zone-specific seasons to synthesis moderate spatial resolution (30m) based dry and wet 

season image feature. It is important to note that, in this study, the dry and wet annual seasons have been 

characterized based on long-term higher temporal MODIS based averaged NDVI profiles from 2003 to 

2009, assuming that there are no significant changes in farming practices (sowing & harvesting) in the 

region. This assumption has also tested with on-ground surveys and interviews with farmers and 

agriculture officers in 2020. 

The mapping probabilities of AFA in this study is carried out by the probabilistic RF algorithm as it is easy 

to implement and easy to understand. The study uses a dummy RF algorithm trained on BS loss function 

to identify the mean decrease in error rate by individual mapping predictor. Based on the resulted 36 

important image features, It is implied that the RF is very efficient in identifying the discriminant image 

features in high and correlated feature space. However, mapped AFA probabilities, in general, tend to 

overestimate the AFA per pixels due to lower confidence in prediction for AFA than the non-AFA. The 

major reason behind that could be the lower number of samples for AFA compared to non-AFA, and also 

RF algorithms are sensitive to sample design (Belgiu & Drăgu, 2016). Though it is easy to adopt, it may 

require higher computational resources and larger feature space or sample size. Also, to mapping AFA, the 

trained model performs well on hold-out or testing data but does not perform well on the validation 

dataset (explained by lower R2 value for validation dataset). Also, in terms of the testing dataset, mapped 

probabilities are leveraged for extreme values (0 and 1 value), meaning not exact predictions like 0 – 0.3 

for values 0 and 0.8 to 1 for value 1 are made. A similar pattern can also be observed on the validation 

dataset. This model performance implies that the trained model is not stable and is not transferrable; in 

other words, not robust to a great extent. The possible reasons behind that can be RF does not support 

the quasibinomial distribution based learning mechanism where actual data follows beta distribution 
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(continuous 0 to 1 values) of  AFA. It can be improved by a beta distribution based RF model or further 

possible reasons like over smoothing due to the cubic convolution resampling technique, criteria used 

(binomial) for RF that should be improved. Additionally, hyper-parameter tuning and localization of the 

regional model can also be used for marginal improvements.     

In this study, the random sampling combined with stratified sampling per CPZs has been adopted to 

manually digitized arable fields based on seasonal PS images. The sample size included in the research is 

huge (93,000 approx. samples) yet biased (only 17,000 pixels have % of AFA) with an efficient approach 

to derive mapped probabilities per sample polygon grid from digitized labels. However, the imbalance in 

sample size between classes (non-AFA and AFA) has a huge difference, which can be addressed by 

including only AFA samples and beta distribution based RF or by increasing intensive sampling in the 

AFA area compared to non-AFA which may also help to improve confidence and completeness (precision 

and recall) for predicting probabilities for AFA.  
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7. CONCLUSION 

This study focuses on finding the potential of open-source S1 and S2 data via these long-term median 

composites to map the AFA area. And it is found out that due to the amount of noise present in the data 

S1 data and complex geography of the landscape shows fewer prediction capabilities than S2 based SWIR 

and RE channels. Among possible image features, topographic and texture features are essential for 

mapping AFA in complex terrain and fragmented agricultural landscape. Although, it does have shown 

discriminant power to map AFA. The study also addresses the challenge with the addition of identifying 

relevant image features which are capturing the accurate seasonal changes by introducing the agro-

ecological zone-specific seasons, cloud cover by considering the median of the image composite over 

three year periods of time, spectral unmixing of the pixels by explaining AFA probabilities per pixel using 

multi-source image features. Additionally, the RF algorithm is efficient in mapping AFA by capturing the 

non-linearity in the data and identifying discriminant image features. It can also be used for regional level 

mapping and modify easily to develop an automized mapping system. However, important considerations 

like resampling and splitting criteria are necessary to improve the robustness of the model to map % of 

probabilities of AFA. On border terms, the location-specific probabilities of the AFA map can be a 

valuable input to the other modeling application like hydrological, agriculture monitoring, or can be used 

as a based map for area frame sampling at the regional level. The developed methodology and the end 

product are easy to derive; therefore, it can be used by the local African government or NGO’s.  
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APPENDIX A 

Due to the high dimensionality of the data, correlated features have been observed based on the 

correlation matrix (below image). The first 110 image features are texture features (upper left corner), and 

from 110 to 124 features are spectral features (lower right corner), among which the high correlation has 

been identified.  
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APPENDIX B 

Partial Dependence Plot(s) of all relevant image features and mapped AFA. 
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APPENDIX C 

In this appended, FCC of PS images vs. mapped probabilities at 30m has been shown as various examples. 

Where darker green color shows higher probabilities and lighter yellow or red color probabilities shows 

(<0.5) probabilities.  
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