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ABSTRACT 

The information on forest biomass and carbon stock is essential to monitor and report national greenhouse 

gas (GHG) inventories to UNFCCC. Forestry is one of the crucial sectors in a national GHG inventory as 

deforestation and forest degradation is the second critical drivers of climate change. Conifer forest plays a 

vital role in the global carbon cycle by sequestering carbon dioxide from the atmosphere due to its fast 

growth. Field-based inventory and remote sensing (RS) are both recommended by UNFCCC to assess forest 

biomass and carbon stock for REDD+. RS method is considered to be more efficient over the costly 

traditional forest inventory for large scale assessments. Among widely available remote sensing data, UAV 

images allow retrieving individual tree parameters owing to its high image resolution. Studies have found 

UAV RGB imagery suitable for estimating aboveground biomass or carbon (AGB/AGC) required for 

reporting emissions related to changes in forest biomass. However, there is hardly any study on estimation 

of AGB/AGC using UAV multispectral (MS) imagery with structure from motion (SfM) technique. UAV 

MS imagery with the high spectral resolution is expected to model DBH and estimate AGB/AGC better 

than UAV RGB imagery. Therefore, this study aims to evaluate the potential of UAV MS imagery to 

estimate AGB/AGC over the UAV RGB imagery in a part of temperate conifer forest. 

The study was conducted in Snippert forest of west Lonneker, The Netherlands. Diameter at breast height 

(DBH) and tree height of 650 trees were measured in 35 plots selected based on simple random sampling 

method. UAV MS images were obtained from Parrot Sequoia MS sensor, while UAV RGB images were 

obtained from Phantom 4 RGB camera and processed using SfM technique in Pix4Dmapper. MS and RGB-

based crown diameter were derived from canopy projection area to model DBH, and their relationship was 

assessed. UAV MS and RGB tree height were derived from the respective canopy height model, and their 

accuracies were assessed using LiDAR tree height obtained from Actueel Hoogtebestand Nederland (AHN). 

Regression models were compared to determine how accurately the DBH can be estimated using UAV-

derived parameters. For regression models, field-measured DBH was used as a dependent variable and 

UAV-derived parameters such as tree height, canopy projection area, crown diameter and the combination 

of tree height and crown diameter as independent variables. The accuracy of the estimated DBH was 

evaluated using validation dataset from field-measured DBH. A species-specific allometric equation was 

used to estimate UAV-based AGB/AGC and compared with field LiDAR-based AGB/AGC. 

A set of orthomosaic, DSM and DTM were generated from respective UAV MS and RGB images. The 

study found a strong positive correlation (r = 0.98) between UAV MS and RGB-derived crown diameter, 

indicating the suitability of retrieving crown diameter from UAV MS imagery to estimate DBH. UAV MS-

derived tree height (R2 = 0.79) was slightly less accurate than UAV RGB-derived tree height (R2 = 0.83). 

However, a higher deviation was observed in RGB-derived tree height (RMSE = 2.95 m) compared to MS-

derived tree height (RMSE = 1.94 m) which is attributed to a high spatial resolution of UAV RGB images. 

Quadratic model of both MS and RGB showed the higher model performance to predict DBH. Using 

validation dataset, MS model (R2 = 0.82; RMSE = 4.36 cm) estimated DBH more accurate than RGB model 

(R2 = 0.80; RMSE = 4.53 cm). Mean AGB assessed from the field with LiDAR-measured parameter was 

8.49 Mg plot-1 (i.e. 169.83 Mg ha-1). In contrast, the mean AGB estimated from UAV MS and RGB imagery 

was 8.68 and 9.06 Mg plot-1 (i.e. 173.52 and 181.24 Mg ha-1), respectively. As expected, the accuracy of AGB 

estimated from MS-derived parameters (R2 = 0.91; RMSE = 149.71 kg) was higher than RGB-derived 

parameters (R2= 0.89; RMSE = 166.85 kg), which is explained by higher accuracy of DBH modelled from 

MS-derived parameters. Therefore, this study concludes that UAV MS imagery is suitable to estimate 

AGB/AGC, and performs better than UAV RGB imagery suggesting a promising application for REDD+ 

monitoring and forest management practices in a managed coniferous forest at a local scale. 

Keywords: AGB, AGC, UAV, Multispectral, SfM, CHM 
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1. INTRODUCTION 

1.1. Conifer forest  

Conifers forest dominantly consist of evergreen cone-bearing woody trees with scale-like leaves and cone 

shape canopies. Forest in the boreal and temperate climate zones are almost entirely of conifers, covering a 

vast area of land in North America, Europe, Asia, and other places with mountain ecosystems. There are 

some 615 species of conifer in total, including 41 species in Europe with common species such as Norway 

spruce, Scots pine, and Douglas fir (Farjon, 2018). Conifers are the largest community of gymnosperm with 

a unique shoot and canopy structure having various ecological and economic significance. They play a major 

part in the global carbon cycle (Houghton et al., 2009) by sequestering carbon dioxide (CO2) from the 

atmosphere through photosynthesis during growth and storing them in their leaves, branches, trunks, and 

roots for many years (Toochi, 2018). Thurner et al. (2014) reported higher carbon density in a temperate 

conifer forest (6.21 ± 2.07 kg C m−2) compared to temperate broadleaf/mixed forest (5.80 ± 2.21 kg C m−2) 

and boreal forest (4.00 ± 1.54 kg C m−2). Apart from carbon sequestration, conifers provide habitat for a 

wide range of terrestrial animals species. The fast growth and its wood properties make conifers a leading 

source of industrial wood (Farjon, 2018). Europe has 15% of the total exploitable conifer forest area and 

growing stock of the world. However, they account for 25% of the total industrial wood production 

(Cooper, 2003). The large share of industrial wood production with increasing demand for consumption of 

a wood product instigate forest degradation. The annual report of International Union for the Conservation 

of Nature (IUCN) Red List of Threatened Species published in 2013 noted that conifers are declining and 

34% of all conifer species are threatened with extinction (IUCN, 2013) due to logging and other human 

activities (Farjon, 2018). Therefore conservation of conifers is vital to ensure sustainable use of its ecosystem 

services.   

1.2. Need to estimate AGB/AGC 

Biomass is the amount of plant material expressed as oven-dry mass per unit area obtained through 

photosynthesis (McKendry, 2002). The aboveground biomass (AGB) comprises of the leaf, branch, and 

stem biomass above the soil (IPCC, 2003). Generally, carbon accounts for half of the biomass (Hirata et al., 

2012). Information on forest biomass and carbon stock is crucial for international climate policies, and 

conservation programs targeting for mitigation of global climate change. AGB has been regarded as one of 

the terrestrial essential climate variables of the Global Climate Observing System (GCOS) (Duncanson et 

al., 2019; Herold et al., 2019). Countries that are parties to climate change convention is obliged to report 

national greenhouse gas (GHG) inventories both at sources and sinks to the United Nations Framework 

Convention on Climate Change (UNFCCC). Forestry is one of the important sectors in a national GHG 

inventory as deforestation and forest degradation is the second critical drivers of climate change after the 

energy sector, which approximately shares 17% of total carbon emissions (IPCC, 2007). Accurate and 

periodically updated information on forest cover, AGB and carbon stock are essential for conservation 

programs, including Reducing Emissions from Deforestation and Forest Degradation (REDD) to the 

UNFCCC. Through the REDD program, countries will receive economic benefits for enhancing forest 

conservation, forested carbon stocks, and sustainable management of the forest (REDD+). However, the 

achievements of REDD+ will depend on having a robust method that is reasonably accurate, cheap, 

operational, and technically easy for measurement, reporting, and verification (MRV) system. MRV of 

carbon stock and its alteration over time for a country is indispensable to ensure that the financial 

remuneration for the reduction in carbon emission is evidence-based and transparent (Gibbs et al., 2007).  
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1.3. Challenges in estimating AGB/AGC 

Remote sensing (RS) technology is much used in forestry to retrieve forest parameters (McRobert & 

Tomppo, 2007; Mlambo et al., 2017). RS has the advantage of acquiring spatial data over a larger area that 

is not accessible by traditional field survey. However, most of the RS data are not suitable for estimating 

AGB/AGC accurately. For instance, optical RS is limited by the presence of cloud, illumination effect, and 

its ability to capture images only during daylight (Rodríguez-Veiga et al., 2017). Low and moderate-resolution 

optical data (e.g. MODIS) are less accurate and not viable for the estimation of carbon stock at a plot level 

(Baccini et al., 2008). The very high-resolution (VHR) image (e.g. QuickBird) are costly and often not 

available for all regions (Rodríguez-Veiga et al., 2017). An alternative method to address the limitations of 

optical RS is to use active RS such as Radio Detection and Ranging (RADAR) and Light Detection and 

Ranging (LiDAR). However, RADAR has dense canopy saturation (Huang et al., 2018), especially C-band, 

apart from technical complexities to process the data and relatively low spatial resolution. Although dense 

point cloud generated from LiDAR is feasible to measure tree height and crown size at tree level, airborne 

laser scanning (ALS) is a single time operation and costly to use (Gibbs et al., 2007; Mlambo et al., 2017). 

Thus, an accurate estimation of forest biomass and carbon stock necessitates cost-effective high spatial and 

temporal resolution of data to circumvent such issues. In this regard, Unmanned aerial vehicle (UAV) has a 

higher possibility of addressing most of the identified challenges.  

1.4. Advantage of UAV  

UAV, also known as the unmanned aerial system (UAS) or drone is a type of an aircraft that can be 

controlled remotely and fly without a pilot on-board. It consists of three major elements; the unmanned 

aircraft, the ground control station and the communication to command and control the aircraft (Colomina 

& Molina, 2014). It is fast emerging low altitude RS increasingly used to collect data in forestry (Puliti et al., 

2015; Torresan et al., 2017) as it has an advantage of retrieving information of the same area more frequently 

due to its mobilisation flexibility and handy to use. They can fly relatively at low altitude, collecting very high 

spatial resolution data to retrieve forest parameters at both stand and tree level (Grznárová et al., 2019; 

Guerra-Hernández et al., 2017; Lin et al., 2018; Mlambo et al., 2017; Puliti et al., 2015; Zhang et al., 2016) 

over a small area with minimal expense. At the same time, the availability of powerful photogrammetric 

software with Structure from Motion (SfM) technique provides the flexibility of processing large geospatial 

datasets making both data collection and processing a cost-effective alternative for various forestry 

application. Studies have demonstrated the capability of UAV RGB images with SfM technique (Mohan et 

al., 2017) in retrieving tree parameters such as crown size and tree height in a relatively sparse forest and 

indicated the potentiality to estimate AGB and carbon stock (Guerra-Hernández et al., 2016; Wallace et al., 

2016). The disadvantage of UAV is the lack of global coverage due to limited battery life, and surveying 

large areas like satellites and aircraft would require a hybrid UAV which is costly. Nevertheless, they are 

much cheaper than aircraft for local use, especially in developing countries. After using UAV for 20-30 

times, their cost would become almost a few Euros.  

1.5. Assessment of AGB/AGC using UAV RGB imagery 

Among different sensors mounted for use on the UAV platform, RGB camera is one of the most commonly 

used sensors at present to estimate AGB (Guerra-Hernández et al., 2017; Lin et al., 2018; Messinger et al., 

2016) and carbon stock in both tropical and temperature forest with reasonable accuracy. Both parametric 

and non-parametric methods are used to estimate forest biomass using remotely sensed data. The parametric 

approach includes regression-based models while non-parametric approaches are an artificial neural network, 

random forest, and support vector machine, to name a few among others (Kachamba et al., 2016). For 

instance, Lin et al. (2018) used the non-linear regression model to estimate AGB using UAV CHM-derived 

tree height as a predictor. González-Jaramillo et al. (2019) used CHM to predict DBH using a height 
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diameter relationship equation, and estimate AGB, while Ota et al. (2015) regressed reference AGB against 

the CHM generated from UAV, LiDAR and their combination to fit the model and estimate the AGB (Ota 

et al., 2015). Kachamba et al. (2016) used multiple regression model to estimate biomass using the canopy 

height, canopy density, and spectral variables obtained from the RGB spectral bands. Although RGB 

spectral bands are used as a predictor to estimate biomass, it is limited to the visible spectrum of 

electromagnetic radiation. Also, its products are less sensitive to vegetation characterisation processes, unlike 

the multispectral sensor. Some consumer-grade photography cameras can be modified using filters to obtain 

near-infrared (NIR) data (Lehmann et al., 2015), but the result from such data is complicated to interpret. 

Therefore, obtaining the right data is essential to achieve a meaningful result.  

1.6. Potential of UAV MS imagery to estimate AGB/AGC 

Multispectral images can be obtained by Sequoia multispectral sensor fixed on the UAV platform. Sequoia 

has two imbedded cameras to capture images in both visible and NIR wavelength: i) RGB camera (16-

megapixel rolling shutter) to capture images in red, green, blue waveband, and ii) Multispectral camera (1.2-

megapixel monochrome global shutter) to capture images in green (central wavelength: 550nm; bandwidth: 

± 40nm), red (660nm; ± 40nm), red edge (735nm; ± 10nm) and near-infrared (790nm; ± 40nm) wavebands. 

The multispectral camera has a focal length of 4 mm with horizontal, vertical, and diagonal field of views of 

70.6˚, 52.6˚ and 89.6˚, respectively (Cardil et al., 2019). Over the years, the use of multispectral imagery is 

increasing with much of its application focused on precision agriculture (Tsouros et al., 2019). In forestry, 

it has been used to estimate AGB (González-Jaramillo et al., 2019), monitor forest health (Dash et al., 2018; 

Lehmann et al., 2015), quantify defoliation (Cardil et al., 2019), evaluate forest fire severity (Carvajal-Ramírez 

et al., 2019), survey postfire vegetation area (Fernández-Guisuraga et al., 2018), estimate phytovolume 

(Carvajal-Ramírez et al., 2019), classify tree species (Gini et al., 2014), and map coastal dune vegetation (Suo 

et al., 2019).  

Multispectral images from the UAV platform can be used to acquire very high-resolution images to retrieve 

tree parameters. Multispectral images with high spectral resolution compared to RGB images is expected to 

perform better in delineating tree crown and modelling DBH. Nevertheless, the lower spatial resolution of 

MS imagery can result in low point cloud density affecting the accuracy of tree height. Since the influence 

of DBH is more pronounced than tree height in estimating AGB using an allometric equation, MS-derived 

tree parameters may perform better in estimating AGB/AGC. Shen et al. (2019) have found that 

multispectral point cloud and imagery derived structural and spectral matrics (R2 = 0.62-0.73) better in 

predicting forest structural attributes compared to RGB point cloud and imagery derived spectral and 

structural matrics (R2 = 0.56-0.64). Although not explored in this study, vegetation indices (e.g. NDVI), 

which can be generated from multispectral imagery is often used as variables to estimate the AGB (López-

Serrano et al., 2016; Zhu & Liu, 2015). 

1.7. Approach to estimate AGB/AGC 

There are several methods to estimate AGB/AGC. Field-based inventory and RS are both recommended 

by UNFCCC to assess forest biomass and carbon stock for REDD+ (Hirata et al., 2012). A typical non-

destructive way to estimate forest biomass is using an allometric equation (Kumar & Mutanga, 2017). 

Generally, diameter at breast height (DBH) and tree height are the key input to estimate AGB using an 

allometric equation. Tree height can be measured either indirectly from UAV imagery using SfM or directly 

through LiDAR. However, the stem diameter cannot be measured directly from remote sensing imagery. 

Tree parameters, such as tree height (TH) (González-Jaramillo et al., 2019), crown diameter (CD) (Berhe, 

2018; Hashem, 2019; Kustiyanto, 2019; Odia, 2018; Shah, 2011), and their combination (Guerra-Hernández 

et al., 2017; Heurich et al., 2004; Jucker et al., 2017; Popescu, 2007; Zhao et al., 2009) retrieved from remotely 

sensed data are being used to estimate DBH using an either parametric or non-parametric approach. The 

accuracy of parameters obtained from UAV imagery can be assessed by non-destructive field measurement. 
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In this research, crown diameter and tree height derived from UAV MS imagery were first used to model 

DBH. The predicted DBH and tree height was then used as an input to estimate AGB/AGC using the 

species-specific allometric equation. The UAV-derived parameters were compared with field and LiDAR-

based reference parameter using linear regression to assess their accuracies and applicability for forest 

management and REDD+ monitoring. The information on AGB/AGC is particularly crucial for REDD+ 

and conservation of the forest ecosystem. The REDD+ is a proposal to offer economic incentives to 

encourage countries to reduce deforestation and forest-related CO2 emissions below the set baseline. Since 

REDD+ is planned to kick-start its implementation phase by 2020, there is a need to identify a robust 

method for MRV, which UAV MS imagery with SfM technique may provide. The key concepts, approach, 

and application are shown in Figure 1. 
 

 

Figure 1. Conceptual diagram. 

1.8. Problem statement  

Monitoring forest biomass and carbon stock is crucial for REDD+, conservation and sustainable 

management of forest resources. For ages, assessment of forest biomass has relied on the classical forest 

inventory data despite being expensive, time-consuming and datasets often limited to a small area (Balsi et 

al., 2018; Fehrmann & Kleinn, 2006; Pouliot et al., 2002). Remote sensing method is considered to be more 

efficient for large scale assessment that is inaccessible by traditional field survey. Among remotely sensed 

data, UAV images have provided a cost-effective technique to retrieve both the 2D and 3D information 

even at tree level (McRobert & Tomppo, 2007; Mlambo et al., 2017). Very high-resolution orthophoto 

generated from UAV RGB imagery is used to delineate canopy projection area (CPA) to model DBH. 

However, delineating tree crowns using UAV RGB images are challenging, especially in an intermingling 

tree crowns with mixed tree species. Inaccurate delineation of the tree canopy can affect the accuracy of 

DBH prediction, which often has more influence on the estimation of AGB using a non-destructive 

allometric equation. Since UAV MS imagery has been reported to have a high spatial agreement of crown 

delineation (Cardil et al., 2019), the accuracy of DBH prediction from the crown diameter needs to be 

explored. Tree height is another parameter retrieved from the Canopy Height Model (CHM) produced from 
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the Digital Surface Model (DSM) and Digital Terrain Model (DTM) using SfM technique. Accuracy of tree 

height depends on the accuracy of DTM (Kachamba et al., 2016; Ota et al., 2015). Studies have found UAV-

derived DTM in a dense forest canopy less accurate as a passive sensor can hardly detect the forest floor. 

Moreover, the UAV images acquired from a different sensor with different image resolution may affect the 

output of DSM and DTM due to difference in point cloud density.  Therefore, assessing the accuracy of 

tree height derived from the multispectral sensor and RGB camera is crucial to determine the margin of 

error in tree height estimation.  

To the knowledge of this research, the MS sensor has hardly been applied in temperate conifer forest to 

retrieve tree parameters despite its potentiality to acquire a very high-resolution image. González-Jaramillo 

et al. (2019) have used UAV MS imagery to estimate AGB from Normalised Difference Vegetation Index 

(NDVI) using an equation and found less accurate due to the saturation effect of dense canopy compared 

to UAV RGB imagery using the SfM photogrammetric approach. Nevertheless, the estimation of 

AGB/AGC from UAV MS imagery using the SfM technique and its comparison with UAV RGB imagery 

is hard to find in literature. Thus, there is a need to assess the potential of tree parameters extracted from 

UAV MS imagery to estimate AGB/AGC. This research hypothesises that the estimation of AGB/AGC 

using UAV MS imagery would be more accurate than UAV RGB imagery. Therefore, this study aims to 

address the research gap relating to the potentiality of UAV MS imagery in retrieving tree crown diameter 

and tree height to estimate AGB/AGC using the SfM technique as a possible alternative for REDD+ 

monitoring and sustainable management of the forest. 

1.9. Research objective 

1.9.1. Main objective  

To evaluate the accuracy of estimating AGB/AGC in part of a temperate European conifer forest using 

multispectral senor imagery over the RGB imagery of UAV platform. 

1.9.2. Specific objective 

1. Assess the relationship between UAV MS-derived and UAV RGB-derived tree crown diameter. 

2. Assess the accuracy of tree height derived from CHM of UAV MS and RGB imagery. 

3. Model tree DBH using the crown diameter and tree height from UAV MS and RGB imagery.  

4. Estimate AGB/AGC from UAV MS, and RGB imagery. 

5. Compare the accuracy of AGB/AGC estimated from UAV MS and RGB imagery.  

1.10. Research question 

1. What is the correlation between the tree crown diameter obtained from UAV MS and RGB imagery? 

2. How accurate is the tree height obtained from CHM of UAV MS and RGB imagery?  

3. How accurate is the DBH predicted using the crown diameter and tree height as a compound 

variable from UAV MS and RGB imagery? 

4. What is the AGB/AGC estimated from UAV MS and RGB imagery? 

5. How accurate is the AGB/AGC estimated from UAV MS and RGB imagery? 

1.11. Hypothesis 

1. H0: Tree crown diameter estimated from UAV MS, and RGB imagery has no significant difference. 

H1: Tree crown diameter estimated from UAV MS, and RGB imagery has a significant difference. 

2. H0: UAV MS and RGB-estimated tree height, and LiDAR-measured tree height have no significant 

difference. 

H1: UAV MS and RGB-estimated tree height, and LiDAR-measured tree height have a significant 

difference. 
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3. H0: DBH predicted from UAV MS, and RGB-derived parameters and DBH measured in the field 

has no significant difference. 

H1: DBH predicted from UAV MS, and RGB-derived parameters and DBH measured in the field 

has a significant difference. 

4. H0: AGB estimated from UAV MS, and RGB-derived parameters and field with LiDAR-measured 

parameter have no significant difference. 

H1: AGB estimated from UAV MS, and RGB-derived parameters and field with LiDAR-measured 

parameter have a significant difference. 

5. H0: AGB estimated from UAV-derived parameters and field with LiDAR-measured parameter has 

no significant relationship. 

6. H1: AGB estimated from UAV-derived parameters and field with LiDAR-measured parameter has 

a significant relationship. 
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2. MATERIAL AND METHOD 

2.1. Study area 

Snippert forest is located in west Lonneker (52°16'17.4"N, 6°57'18.63"E), eight-kilometres northeast of 

Enschede (Figure 2). The total forest is approximately 1 × 2 km including Haagse Bos forest managed by 

the natural monument. Snippert forest is a semi-natural forest managed by a private company (Bureau 

Takkenkamp) for timber production. The study area covers 30 ha (0.3 km2) with two dominant conifer 

species, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). The area is relatively flat with an altitude 

ranging from 46 to 52 m above mean sea level. The climate is warm in summer with an average monthly 

temperature ranging from 12°C to 25°C (KNMI, 2019), while winter remains very cold and windy with 

temperature even below zero.  

 

Figure 2. Location map of the study area.  

2.2. Material 

This section includes data, equipment, and software. The data was collected using equipment in the field 

and processed using various software packages.  

2.2.1. Data 

This study used both UAV imagery and plot data collected during the fieldwork. The UAV data consists of 

MS and RGB images acquired using Parrot Sequoia multispectral sensor and RGB camera, respectively. The 

ground control points (GCPs) were distributed before the UAV flight and measured later. The plot data 

comprises of tree parameters measured during the fieldwork (Table 1). 
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Table 1. Data and sources. 

Data Source 
Coordinate of sample plot centre Global navigation satellite system real-time kinematic 

(GNSS RTK) 
Diameter at breast height (DBH) Fieldwork 
Tree height Fieldwork 
Coordinate of trees in sample plot Fieldwork 
Species  Fieldwork 
UAV MS images  Parrot Sequoia multispectral sensor 
UAV RGB images Phantom 4 RGB camera 
Ground control points (GCPs) GNSS RTK 
LiDAR data Actueel Hoogtebestand Nederland (AHN) 

2.2.2. Equipment 

The equipment listed in Table 2 were used to collect data during the fieldwork. It includes both field-based 

and UAV-based tools required to acquire primary data for this study. 

Table 2. Field equipment and purpose. 

Equipment Use 
Tree tag Number trees  
Diameter tape Measure DBH 
Distometer (Leica DISTO)  Measure the distance of each tree from the plot centre, 

and measure tree height of each tree within the plot.  
Clinometer (Suunto compass) Measure bearing of each tree from the plot centre 
Digital camera Take pictures 
Data collection sheet Record tree height, DBH, coordinate, distance, bearing, 

and trees species 
Stationery Record field data 
DJI Phantom 4 with attached Parrot 
Sequoia multispectral sensor 

Acquire UAV MS images 

AIRINOV target Calibrate (radiometric) multispectral sensor  
DJI Phantom 4 Acquire UAV RGB images 
GNSS RTK Measure coordinates of plot centre, and GCPs 
GCP markers Mark GCPs 

2.2.3. Software 

After the collection of data, the next task was to process and analyse the data. The data processing, analysis, 

and report writing were done using the software listed in Table 3.  

Table 3. Software and purpose. 

Software Use 
UgCs UAV MS flight planning and real-time monitoring of the 

drone 
Pix4DCapture & Pix4D Ctrl+DJI UAV RGB flight planning and real-time monitoring of 

the drone 
Pix4Dmapper UAV image processing 
ERDAS IMAGINE Image processing 
ArcMap  Spatial data analysis 
Microsoft Excel Data storage and analysis  
R and RStudio Data analysis 
SPSS Data analysis 
Microsoft Word Report writing 
Mendeley Desktop Citation and references  
Microsoft PowerPoint Thesis presentation  



ASSESSING POTENTIAL OF UAV MULTISPECTRAL IMAGERY FOR ESTIMATION OF AGB AND CARBON STOCK IN CONIFER FOREST OVER UAV RGB IMAGERY 

 

9 

2.3. Method 

Figure 3 shows the methodological steps of this research. It consists of five major parts: 

i) Firstly, UAV flight planning and fieldwork planning were prepared before the actual collection of 

data.  

ii) Secondly, UAV images were acquired and processed to generate DSM, DTM, and orthomosaic. 

 
Figure 3. Flowchart of research methods. 
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iii) Thirdly, ground-truth data were collected and entered in Microsoft Excel for each sample plot for 

the analysis. 

iv) Fourthly, tree crown size and tree height were extracted from orthomosaic and CHM, respectively 

to predict DBH. 

v) Finally, tree parameters were used to estimate AGB/AGC. These five steps are elaborated in Section 

2.4 – 2.7. 

2.4. Fieldwork planning  

Several issues were considered before the onset of ground-truth data collection, such as UAV flight planning, 

and sampling design. 

2.4.1. UAV flight planning  

Flight planning was prepared before the mission to ensure that the desired area is surveyed (Figure 5a). The 

flight plan parameters were set using UgCS and Pix4Dcapture application to acquire UAV MS and RGB 

images, respectively (Table 4).  

Table 4. UAV flight parameters. 

Parameters Multispectral  RGB  
Sensor  Parrot Sequoia multispectral Phantom 4 RGB camera 
Type of mission Two single grid mission (North-

South and East-West) 
Two single grid mission 
(North-South and East-West) 

Speed Slow  Slow 
Angle of the camera 90° (vertical) 80° (vertical) 
Overlap 80 % 90 % front- and 80 % side 

overlap 
Flight height North-South (NS) = 120 m, and 

East-West (EW) = 110 m 
120 m 

Ground control points  (GCPs) 9 NA 

Two single grid mission with slightly different flight height and 80% of overlap were parameterised to 

optimise camera calibration for multispectral imagery. An issue of uncalibrated images was observed when 

processing RGB images acquired using the same parameters as multispectral imagery. Therefore, the flight 

height, overlap, and angle of the camera were adjusted to enhance camera optimisation and generate the 

desired outputs. The maximum flight height of 120 m was set to acquire ground sampling distance (GSD) 

≤ 15 cm in both the case. UgCS and Pix4D Crl+DJI app were used for real-time monitoring of the drone 

(e.g. battery and position).   

2.4.2. Sampling design and plot size 

A total of 35 sample plots were surveyed in the field based on a simple random sampling method. Simple 

random sampling is preferred over a small area with a relatively homogenous population. Since every sample 

has an equal chance of being selected, it has the main advantage of minimum operator bias (Hirata et al., 

2012). The circular plot with an area of 500 m2 (0.05 ha) was considered as a plot size for the study. The 

plot size was determined by considering a radius of 12.62 meters from the plot centre (Figure 4). Circular 

plots are often used as they have a small periphery and fewer trees at the borderline as compared to other 

plot types (Köhl et al., 2006; Maniatis & Mollicone, 2010).  
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a) Spatial distribution of sample plot and GCP in 

the study area. 

b) Schematic representation of a circular plot 

with 12.62 m radius. 

Figure 4. Sample plot and sample plot size. 

2.5. Data collection 

The field data were collected between March 6 – 30, 2020. Data collection includes both UAV image 

acquisition and ground-truth data collection. 

2.5.1. UAV image acquisition  

Multispectral UAV imagery was obtained on March 6 (10:15 – 13:30 hours) using a DJI Phantom 4 

quadcopter with on-board Parrot Sequoia multispectral sensor (Figure 5b) while UAV RGB imagery was 

acquired on March 30 (12:30 – 14:30 hours), 2020 using DJI Phantom 4 quadcopter RGB camera. The flight 

planning parameters in Table 4 was used to acquire UAV MS and RGB imagery. The irradiance panels 

(AIRINOV target) was used for radiometric calibration of the multispectral sensor before the mission (Figure 

5c). A total of nine known coordinates were placed representatively over the area using the GCP marker 

prior to the acquisition of UAV MS images (Figure 4a). All GCPs were placed in an open area, and their 

coordinates were measured using GNSS RTK with centimetre accuracy (Figure 5d). 

 

a) Flight plan. 

 

b) Phantom 4 quadcopter attached with Sequoia 

multispectral sensor. 
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c) Calibration target used to calibrate the 

MS sensor. 

 

d) GCP marker and measurement of GCP using 

GNSS RTK.   

Figure 5. Planning, preparation, and collection of UAV data and GCPs in the field.  

2.5.2. Ground-truth data collection  

Ground-truth data collection includes the measurement of individual tree parameter within the plot. Online 

Google Earth mobile app was used to locate the plot in the study area. The coordinates (x, y) of the plot 

centres were recorded using GNSS RTK. All trees in the plot were marked with a series of A4 size printed 

tree tag in a clockwise direction from the magnetic north (Figure 6b). Trees at the borderline were considered 

only if half (50%) of their main trunk falls within the plot perimeter. The distance (meters) and azimuth 

(degrees) (Grznárová et al., 2019; Lisein et al., 2013) to each tree from the plot centre were measured using 

distometer (Leica DISTO D510, 200 m range, ±1 mm) and Suunto compass, respectively. The species of 

each tree was recorded in the data collection sheet (Appendix 7). The girth of each tree (diameter ≥ 10 cm) 

was measured at 1.3 m height from the ground using a diameter tape. The height of the tree was measured 

using Leica DISTO D510.  

 
a) GNSS RTK used to measure the plot centre. 

 
b) Trees marked with tree tags to measure 

the distance, bearing, diameter and 

height. 

Figure 6. A glimpse of fieldwork.  
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2.6. Data processing 

Data processing include the processing of both ground-truth data and UAV MS and RGB images. They are 

presented in the following sections. 

2.6.1. Ground-truth data processing 

The data recorded manually in the data collection sheet was entered in Microsoft Excel. Microsoft Excel, 

SPSS and R (RStudio) were used to process and analyse the data. The field-based data were used to derive 

parameters such as the location (x, y) of an individual tree within the plot, DBH (cm tree-1), tree height (m 

tree-1), and AGB (kg tree-1). The position of each tree in the plot was computed from a distance and bearing 

approach (Grznárová et al., 2019; Lisein et al., 2013) using the plot centre coordinate as a reference point. 

The calculated coordinates were imported to ArcMap to identify the trees surveyed in the field for crown 

delineation and tree height extraction. The same unique ID was used to match the trees surveyed in the field 

and their corresponding pair on the image. Descriptive statistics were used to provide summaries of sample 

measurements, while an allometric equation to estimate AGB/AGC.  

2.6.2. UAV image processing 

The photogrammetry software known as Pix4Dmapper was used to process images captured using Sequoia 

multispectral sensor and RGB camera. Pix4Dmapper software uses the SfM technique to generate 3D dense 

point cloud, DSM, DTM, and orthomosaic (Pix4D, 2017). SfM is a process to generate 3D point clouds by 

analysing a sequence of overlapping 2D images. It works by identifying keypoints in all images and matching 

the common keypoints in two or more images of the same feature (Mlambo et al., 2017; Westoby et al., 

2012). Generally, there are three steps for processing images in Pix4Dmapper; i) initial processing, ii) Point 

cloud and mesh, iii) DSM, orthomosaic and index.  

 
a) GCP and CP used to process the UAV images 

using Pix4Dmapper. 

 
b) 3D dense point cloud generated from UAV 

MS images. 

Figure 7. GCPs used for geolocation accuracy, and 3D dense point cloud generation. 

In the first step, software extract keypoints from the images, match the same keypoints from images, 

calibrate internal and external camera parameters, and position the images if GCP is provided (Figure 7). In 

the second step, the software densifies the point cloud by creating extra tie points, classify the point cloud, 

and create 3D texture mesh using densified point cloud. In the last step, the software generates DSM, 
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orthomosaic, DTM, reflectance and index map such as NDVI (Pix4D, 2017). The review of the principles, 

practices, and application of SfM in forestry can be found in Iglhaut et al. (2019). 

For UAV MS images, nine known points (6 GCPs and 2 CPs) measured in the field using GNSS RTK were 

used to enhance geolocation accuracy, and assess the quality of the result. Regarding the UAV RGB images, 

eight unique features identified from MS orthomosaic were used as known points (6 GCPs and 2 CPs). The 

coordinate (x, y) were extracted from UAV MS orthomosaic, while elevation (z) was extracted from LiDAR-

derived DTM obtained from Actueel Hoogtebestand Nederland (AHN3), respectively.  

2.6.2.1. DSM, DTM and orthomosaic generation  

DSM, DTM, and orthomosaic were generated automatically by the Pix4Dmapper software after 

densification of the point cloud. DSM represents the surface of the terrain, including both physical and 

human-made objects such as tree and building. Inverse Distance Weighting method was used to generate 

the raster DSM in Pix4Dmapper. On the contrary, the Digital Terrain Model (DTM) represent the terrain 

surface (Hirt, 2014). Classification of the point cloud is recommended in Pix4Dmapper to generate accurate 

DTM. By using the classified point cloud, the terrain is masked to create the raster DTM. The schematic 

illustration of DSM and DTM are presented in Figure 8.  

 

Figure 8. Schematic representation of, DSM, DTM and CHM. 

The orthomosaic, also known as true orthophoto is generated using a DSM based on orthorectification. 

The accuracy of orthomosaic depends on the quality of DSM produced from the densified point cloud. As 

Pix4D generate orthomosaic of the individual band (green, red, red edge, near-infrared) for multispectral 

images, ERDAS IMAGINE software was used to composite these bands into a single orthomosaic.   

2.6.3. LiDAR data processing 

LiDAR data was obtained from Actueel Hoogtebestand Nederland (AHN) (https://www.ahn.nl/). Among 

various AHN products, AHN3 LiDAR data of the study area was measured in February 2019. According 

to AHN quality description, AHN3 measured point cloud has a height accuracy of not more than five 

centimetres of standard and systematic deviation, and at least 99.7% of the points have a height accuracy of 

20 cm. Map Sheet 29cz1 that covers the study area was selected to download the LiDAR-derived raster DSM 

and DTM with a spatial resolution of 0.5 × 0.5 m. Raster calculator tool in ArcMap was used to produce 

CHM to extract the reference tree height.  

2.7. Data analysis 

Data analysis includes the accuracy assessment of forest parameters, model development to predict DBH 

and model validation. They are presented in the following sections.   

https://www.ahn.nl/


ASSESSING POTENTIAL OF UAV MULTISPECTRAL IMAGERY FOR ESTIMATION OF AGB AND CARBON STOCK IN CONIFER FOREST OVER UAV RGB IMAGERY 

 

15 

2.7.1. Crown delineation 

Multispectral and RGB orthomosaic were used to delineate each tree crowns surveyed in the field using 

manual on-screen digitisation (Figure 9). Manual on-screen digitising is preferred at a plot level as it is more 

accurate (Pouliot et al., 2002) and requires no accuracy assessment. The map scale at 1:50 was used while 

digitising the tree crowns to obtain the same detail of crown structure irrespective of the size. Those trees 

not identified on the orthomosaic due to the understory occlusion were noted to exclude for comparison 

and accuracy assessment. 
 

 
a) Crown delineation on UAV RGB 

orthomosiac. 

 
b) Crown delineation on UAV MS orthomosaic. 

Figure 9. CPA delineation using manual on-screen digitisation.  

2.7.2. Generation of crown diameter 

Manually digitised tree crown from UAV MS, and RGB orthomosaic was used to derive tree crown diameter 

using Eq. (1). The t-test was used to test the significant difference of mean crown diameter derived from 

UAV MS and RGB orthomosaic at α = 0.05. 

CD = √
CPA

π
 (1) 

Where: 

CD = crown diameter (m) 

CPA = canopy projection area (m2) 

π = ~ 3.14159. 

2.7.3. CHM generation 

CHM represents the height of the trees between treetop and the ground (Figure 8). Raster calculator tool in 

ArcMap was used to compute CHM by subtracting raster DTM from raster DSM.  
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2.7.4. Tree height extraction 

The CHM is often used to extract tree height information (Iizuka et al., 2017). The maximum value of CHM 

within the CPA was considered as the tree height. The MS and RGB-derived CPA was overlayed on the 

respective UAV CHM to extract tree height using zonal statistics tool in ArcMap. MS-derived CPA was 

used to extract the LiDAR tree height from LiDAR CHM, assuming it as a more accurate delineation of the 

tree crown. 

2.7.5. Tree height accuracy 

The common method to assess the accuracy is to pair the remote sensing estimated parameter with a 

reference parameter to quantify their consistency using statistical analysis. Linear regression was established 

between tree height estimated from UAV CHM and reference tree height from LiDAR. The Pearson’s 

correlation coefficient (r) and coefficient of determination (R2) were used to assess the accuracy of UAV-

estimated tree height, while Root Mean Square Error (RMSE) and bias were used to quantify the deviation 

of UAV-estimated tree height from the LiDAR-measured tree height as proposed by Yin and Wang (2016). 

The accuracy metrics are presented in Eq. (2) - (7) (Yin & Wang, 2016). One-way ANOVA F-test was used 

to test the significant difference (α = 0.05) among the group means of tree height. Follow-up test (Tukey 

post hoc) was used when the null hypothesis was rejected to test the significant difference between each 

group means of tree height. 

r = 
∑ ((xest - xest̅̅ ̅̅  ) (xobs - xobs̅̅ ̅̅ ̅ ))

√∑ (xest - xest̅̅ ̅̅  )2 ∑ (xobs - xobs̅̅ ̅̅ ̅ )2

 
(2) 

R2 = r2 (3) 

RMSE = √
∑ (xest - xobs)

2

(npair - 1)
 (4) 

RMSE (%) = 
RMSE

xobs̅̅ ̅̅ ̅
 × 100 (5) 

bias = 
∑ (xest - xobs)

(npair - 1)
 (6) 

bias (%) = 
bias  

xobs̅̅ ̅̅ ̅
× 100 (7) 

Where: 

xest is the estimated values 

xobs  is the observed (reference values) 

npair is the number of paired samples 

xest̅̅ ̅̅  and xobs̅̅ ̅̅ ̅  are average values of xest and xobs, respectively. 

2.7.6. Model development to predict DBH 

Different regression models were developed to predict tree DBH using parameters derived from UAV 

imagery. In all the models, DBH was used as a function of either TH, CPA, CD or the combination of TH 

and CD as a compound variable (TH × CD). TH × CD was used as a compound variable rather than two 

predictors independently to avoid the issue of collinearity (Dormann et al., 2013; Jucker et al., 2017). The 

dataset was randomly split into 60% and 40% for model development and model validation, respectively. 

The 60% (380 trees) of the DBH and its corresponding crown diameter and tree height derived from UAV 

imagery was used to establish the relationship.  



ASSESSING POTENTIAL OF UAV MULTISPECTRAL IMAGERY FOR ESTIMATION OF AGB AND CARBON STOCK IN CONIFER FOREST OVER UAV RGB IMAGERY 

 

17 

2.7.7. DBH prediction and validation 

The equation of the non-linear quadratic function from model development was used to predict the DBH. 

Linear regression was established between ground-truth DBH and predicted DBH to validate the predicted 

DBH using 40% (250 trees) of validation dataset. The r and R2 were used to assess the accuracy of the 

predicted DBH. Other metrics such as RMSE and bias was used to quantify the deviation of the predicted 

DBH from the reference DBH. The difference in observed and predicted value was treated as errors. The 

residuals were plotted on the graph against the reference DBH to provide an overview of model 

performance (Chai & Draxler, 2014).  

2.7.8. Assessment of AGB  

The typical non-destructive way to estimate forest biomass and continuous growth is using an allometric 

equation. Several allometric equations have been developed over the years based on the destructive harvest 

method. The non-destructive way is crucial to assess the temporal variation in forest biomass through a 

time-series of measurement. Since allometric equations are species-specific, Eq. (8) - (11) were used to 

estimate AGB of four conifer species (Table 5). One-way ANOVA F-test was used to test the significant 

difference (α = 0.05) among the group means of estimated AGB. 

Table 5. The species-specific allometric equation used to estimate AGB. 

Species Allometric equation n R2 Reference Eq.  

Norway 

spruce 

AGB = a Db Hc 

Where;  

a = 0.054  

b = 1.847 

c = 0.826 

254 0.98 Fehrmann and Kleinn (2006) (8) 

Scots pine AGB = a Db Hc 

Where; 

a = 0.03191 

b = 1.89823 

c = 0.89868  

52 0.99 Cienciala et al. (2006) (9) 

Douglas-fir ln (AGB) = a + b ln (D) 

Where; 

a = - 1.620 

b = 2.410 

23 0.99 Bartelink (1996) (10) 

Larix decidua AGB = a Db Hc 

Where; 

a = 0.0188 

b = 1.9093 

c = 1.0805 

96 0.98 Jagodziński et al. (2018) (11) 

Where: 

AGB is the aboveground biomass (kg tree-1) 

D is the DBH (cm tree-1) 

H is the tree height (m tree-1). 

2.7.9. Assessment of AGC  

In general, carbon accounts for half of the biomass. Therefore, 0.5 (Hirata et al., 2012) was used as a carbon 

conversion factor to estimate the AGC using Eq. (12). The conversion factor is a fraction of biomass that 

is carbon. 

C = AGB × CF  (12) 
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Where;  

C = carbon (kg)  

CF = conversion factor 

2.7.10. Accuracy assessment of AGB/AGC 

The reference AGB/AGC assessed from the field with LiDAR, and AGB/AGC estimated from UAV 

imagery were plotted on vertical (y) and horizontal (x) axis respectively to establish the linear regression. 

Through linear regression, the accuracy of the estimated AGB/AGC was assessed using a statistical indicator 

such as r and R2. Moreover, RMSE and bias were used to quantify the magnitude of deviation of the 

estimated AGB/AGC from the reference AGB/AGC. The accuracy metrics are presented in Eq. (2) - (7). 

Simple t-test was used to test the significant relationship between a field with LiDAR-based and UAV-based 

AGB using Eq. (13). 

 

Where:  

b1 = regression coefficient  

s = standard error of the regression 

(13) 
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3. RESULT 

3.1. Groud-truth result 

This section includes the result of tree parameters measured in the field. DBH and tree height of 650 trees 

in 35 plots were measured in the study area. On average, 19 trees were observed in each plot with a minimum 

and maximum of 8 and 36 trees, respectively (Figure 10).  

 

Figure 10. Plot-wise distribution of trees. 

Norway spruce constituted a maximum sample with 425 trees followed by Scots pine with 83 trees. Douglas-
fir and European larch comprised of 72 and 70 trees, respectively (Table 6). The distribution of species in 
each plot is presented in Appendix 2.  

Table 6. Descriptive statistics of field-measured DBH by species. 

Parameter Species n Minimum Maximum Mean Std. Deviation 
DBH (cm) Norway spruce 425 11 52 28.10 8.52 

Scots pine 83 12 59 39.46 10.60 
Douglas-fir 72 12 61 35.31 12.60 
Larch 70 12 44 24.49 7.78 

3.1.1. Diameter at breast height  

Mean tree DBH measured in the field was 29.96 cm with the minimum and maximum of 11 and 61 cm, 

respectively. The standard deviation of the DBH was 10.27 cm. Among the species, the highest and lowest 

mean DBH was found in Scots pine and European larch, respectively (Table 6). The histogram and normal 

Q-Q plot of field-measured tree DBH are presented in Figure 11. 

 
a) Histogram. 

 
b) Normal Q-Q plot. 

Figure 11. Histogram and normal Q-Q plot of field-measured tree DBH. 
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3.2. Field-measured tree height 

Mean tree height measured in the field was 21.26 m ranging between 6 to 35 m (Appendix 1). The standard 

deviation of the tree height was 4.59 m. The histogram and normal Q-Q plot of field-measured tree height 

are shown in Figure 12. 

 
a) Histogram. 

 
b) Normal Q-Q plot. 

Figure 12. Histogram and normal Q-Q plot of field-measured tree height. 

3.3. UAV-based result 

This section includes the result of processed UAV images such as orthomosaic, DSM, DTM, and CHM. 

Overview of results from processed UAV MS and RGB imagery is presented in Appendix 3.  

  

a) Multispectral orthomosaic. b) RGB orthomosaic. 

Figure 13. Orthomosaic of UAV MS and RGB images of the study area. 
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3.3.1. Orthomosaic 

The Amersfoort (RD New) coordinate system was used for all the spatial dataset. The spatial resolution of 

multispectral orthomosaic was 0.10 × 0.10 m (Figure 13a). The spatial resolution of RGB orthomosaic was 

resampled to 0.10 × 0.10 m (Figure 13b) from 0.04 × 0.04 m. 

3.3.2. DSM, DTM and CHM 

The spatial resolution of multispectral DSM and DTM was 0.10 × 0.10 m and 0.53 × 0.53 m, respectively. 

The cell size of MS CHM was generated the same as MS DSM (Figure 14). The mean height of the study 

area from MS DSM and DTM was 62 and 50 m, respectively.  

 

Figure 14. Multispectral DSM, DTM, and CHM.  

 

Figure 15. RGB DSM, DTM, and CHM. 
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The spatial resolution of RGB DSM and DTM was 0.04 × 0.04 m and 0.23 × 0.23 m, respectively. The cell 

size of RGB CHM was generated the same as RGB DSM and resampled to 0.10 × 0.10 m (Figure 15). The 

mean height of the study area from RGB DSM and DTM was 60 and 49 m, respectively. 

The mean height of the study area from CHM was higher for UAV MS imagery (12 m) as compared to 

UAV RGB imagery (11 m). However, the maximum frequency of tree height in MS and RGB was observed 

in 18, and 19 m,  respectively (Figure 16). 

  

a) Histogram of MS CHM. b) Histogram of RGB CHM. 

Figure 16. Histogram of UAV MS and RGB CHM. 

3.4. Canopy projection area 

The crowns of 630 trees were manually digitised from UAV MS and RGB orthomosaic. However, 20 trees 

were not identified on orthomosaic due to occlusion from the tall trees. The average height of the occluded 

trees was 12 m. 

The mean CPA digitised from the multispectral orthomosaic was 17.79 m2 with the smallest and largest 

crown size of 0.41 and 80.65 m2, respectively. The standard deviation of the MS CPA was 12.18 m2. Likewise, 

mean CPA from RGB orthomosaic was 18.51 m2  ranging from 0.62 to 78.04 m2. The standard deviation of 

RGB CPA was 12.51 m2. The histogram of MS and RGB CPA is shown in Figure 17. 

 
a) Histogram of CPA derived from UAV MS 

imagery. 

 
b) Histogram of CPA derived from UAV RGB 

imagery. 

Figure 17. Histogram of CPA digitised from MS and RGB orthomosaic. 



ASSESSING POTENTIAL OF UAV MULTISPECTRAL IMAGERY FOR ESTIMATION OF AGB AND CARBON STOCK IN CONIFER FOREST OVER UAV RGB IMAGERY 

 

23 

3.5. Crown diameter 

The mean crown diameter derived from CPA of MS orthomosaic was 2.24 m with the smallest and largest 

crown diameter of 0.36 and 5.07 m, respectively. The standard deviation of the MS crown diameter was 0.80 

m. The mean crown diameter derived from CPA of RGB orthomosaic was 2.29 m ranging between 0.44 to 

4.98 m. The standard deviation of RGB crown diameter was 0.79 m. The histogram and descriptive statistics 

are presented in Figure 18 and Table 7, respectively. 

  

a) Histogram of crown diameter derived from UAV 

MS imagery. 
b) Histogram of crown diameter derived from 

UAV RGB imagery. 

Figure 18. Histogram of the crown diameter obtained from MS and RGB CPA. 

Table 7. Descriptive statistics of crown diameter derived from UAV MS and RGB CPA. 
  N Minimum Maximum Mean Std. Deviation 
MS crown diameter (m) 630 0.36 5.07 2.24 0.80 
RGB crown diameter (m) 630 0.44 4.98 2.29 0.79 

3.5.1. Comparison of crown diameter 

A strong positive correlation (R2 = 0.96) was found between crown diameter derived from UAV MS and 

RGB orthomosaic. The standard error of crown diameter estimate was 0.16 m. The scatter plot and 

regression statistics are presented in Figure 19 and Table 8, respectively.  

 

Figure 19. Scatter plot of CPA-derived MS and RGB crown diameter. 
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Among the species, the highest correlation between MS and RGB-derived crown diameter was found in 

Douglas-fir (R2 = 0.96), and Larix decidua (R2 = 0.96) followed by Norway spruce (R2 = 0.95) and Scots 

pine (R2 = 0.93). 

Table 8. Regression statistics of UAV MS and RGB crown diameter. 

r R Square Adjusted R Square Std. Error of the Estimate 
0.98 0.96 0.96 0.17 

3.5.2. Crown diameter hypothesis testing 

T-test (assuming equal variances) showed no significant difference of mean tree crown diameter (t = -1.19, 

df = 1258, p > 0.05) derived from UAV MS and RGB imagery. The test result is shown in Table 9. 

Table 9. T-Test: Two-Sample Assuming Equal Variances of crown diameter. 

  MS CD (m) RGB CD (m) 
Mean 2.24 2.29 
Variance 0.64 0.63 
Observations 630 630 
Pooled Variance 0.64  
Hypothesized Mean Difference 0.00  
df 1258  
t Stat -1.19  
P(T<=t) one-tail 0.12  
t Critical one-tail 1.65  
P(T<=t) two-tail 0.24  
t Critical two-tail 1.96  

3.6. UAV tree height  

The mean tree height extracted from UAV MS CHM was 20.33 m ranging between 10.81 and 30.82 m. The 

standard deviation of the MS tree height was 3.48 m. Similarly, the mean tree height extracted from of UAV 

RGB CHM was 22.19 m with minimum and maximum tree height of 10.57 and 34.60 m, respectively. The 

standard deviation of RGB tree height was 3.9 m. The histogram and descriptive statistics of tree height are 

presented in Figure 20 and Table 10, respectively. 

  

a) Histogram of MS tree height. b) Histogram of RGB tree height. 

Figure 20. Histogram of tree height obtained from CHM of UAV MS and RGB imagery. 
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Table 10. Descriptive statistics of UAV derived tree height. 

 n Minimum Maximum Mean Std. Deviation 
UAV MS TH (m) 630 10.81 30.82 20.33 3.48 
UAV RGB TH (m) 630 10.57 34.60 22.19 3.90 

3.7. LiDAR tree height 

The spatial resolution of LiDAR DSM and DTM was 0.5 × 0.5 m. The cell size of LiDAR CHM was 

generated the same as LiDAR DSM (Figure 21). Mean tree height derived from LiDAR CHM was 19.75 m, 

ranging from 6.07 to 30.96 m. The standard deviation of the tree height was 4.04 m. The histogram and 

normal Q-Q plot of LiDAR-measured tree height are shown in Figure 22. 

 

Figure 21. LiDAR DSM, DTM, and CHM. 

 

 
a) Histogram. 

 
b) Normal Q-Q plot. 

Figure 22. Histogram and normal Q-Q plot of LiDAR-measured tree height. 
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3.8. Tree height accuracy 

3.8.1. Field and LiDAR-measured tree height 

Tree height measured in the field showed fair agreement (R2 = 0.73; RMSE = 2.91 m) with tree height 

derived from LiDAR. Field-measured tree height tended to overestimate tree height (bias = 9.14%). The 

scatter plot and regression statistics are presented in Figure 23 and Table 11, respectively. 

 

Figure 23. Scatter plot of field and LiDAR-measured tree height. 

 
Table 11. Regression statistics of field and LiDAR-measured tree height. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.85 0.73 2.12 2.91 14.72 1.81 9.14 

3.8.2. UAV MS and LiDAR tree height 

Tree height estimated from UAV MS CHM showed reasonable agreement (R2 = 0.79; RMSE = 1.94 m) 

with tree height derived from LiDAR. MS CHM-derived tree height tended to overestimate (bias = 2.90%) 

tree height slightly. The scatter plot and regression statistics are presented in Figure 24 and Table 12, 

respectively. 

 

Figure 24. Scatter plot of MS CHM-derived and LiDAR-measured tree height. 
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Table 12. Regression statistics of UAV MS-derived and LiDAR-measured tree height. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.89 0.79 1.86 1.94 9.83 0.57 2.90 

3.8.3. UAV RGB and LiDAR tree height 

Tree height estimated from UAV RGB CHM showed reasonable agreement (R2 = 0.83;  RMSE = 2.95 m) 

with tree height derived from LiDAR. RGB CHM-derived tree height tended to overestimate tree height 

(bias = 12.33%). The R2 of RGB CHM-derived tree height was slightly higher than MS CHM-derived tree 

height. The scatter plot and regression statistics are shown in Figure 25 and Table 13, respectively. 

 

Figure 25. Scatter plot of RGB CHM-derived and LiDAR-measured tree height. 

Table 13. Regression statistics of UAV RGB-derived and LiDAR-measured tree height. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.91 0.83 1.65 2.95 14.92 2.44 12.33 

3.8.4. Tree height hypothesis testing 

One-way ANOVA F-test (Table 14) showed a significant difference of mean tree height (F (2, 1887) = 69.90, 

p < 0.05). The follow-up Tukey post hoc tests showed a significant difference between the mean tree height 

from LiDAR and MS CHM (p < 0.05), as well as from LiDAR and RGB CHM (p < 0.05). Also, a significant 

difference was found between the mean tree height from MS CHM and RGB CHM (p < 0.05). The test 

result is presented in Table 1Table 15. 

Table 14. One-way ANOVA test of tree height. 

SUMMARY      
Groups Count Sum Average Variance 
LiDAR TH (m) 630 12445.38 19.75 16.36 
UAV MS TH (m) 630 12805.25 20.33 12.12 
UAV RGB TH (m) 630 13977.35 22.19 15.24 
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 2037.17 2 1018.59 69.90 0 3.00 
Within Groups 27498.07 1887 14.57    
Total 29535.25 1889     
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Table 15. Post Hoc test (Tukey HSD) of tree height. 

Multiple comparisons  
Mean 

Difference  
Std. Error  Sig. 

95% Confidence Interval  
Lower Bound Upper Bound 

LiDAR TH MS TH -.57* 0.22 0.02 -1.08 -0.07 
  RGB TH -2.43* 0.22 0.00 -2.94 -1.93 
MS TH LiDAR TH .57* 0.22 0.02 0.07 1.08 
  RGB TH -1.86* 0.22 0.00 -2.36 -1.36 
RGB TH LiDAR TH 2.43* 0.22 0.00 1.93 2.94 
  MS TH 1.86* 0.22 0.00 1.36 2.36 

*   The mean difference is significant at the 0.05 level. 

3.9. Estimating tree DBH from UAV imagery 

3.9.1. Multispectral model development 

A total of 380 trees were used to develop the model. Among the models, tree height × crown diameter (TH 

× CD) proved a better predictor explaining 84% of observed DBH variance compared to lone predictor 

such as TH, CPA, CD (Table 16). The quadratic model (Dpred = -0.0019 (TH × CD)2 + 0.6219 (TH × CD) 

+ 6.3708) was used to predict tree DBH since the model performance was better than other models in terms 

of both R2 and RMSE. The scatter plot and model summary is shown in Figure 26 and Table 17, respectively.  

Table 16. MS model development summary. 

Model Predictor (x) Equation R2 RMSE Bias (%) 

Linear TH y = 2.2676x - 15.546 0.589 6.428 0.002 

Linear CPA y = 0.6982x + 18.027 0.696 5.526 0.001 

Linear CD y = 10.924x + 5.9376 0.744 5.070 0.003 

Linear TH × CD y = 0.4034x + 11.447 0.825 4.198 -0.008 

Logarithmic TH × CD y = 17.418ln(x) - 34.542 0.799 4.489 0.004 

Power TH × CD y = 2.9262x0.6127 0.843 4.016 -0.934 

Quadratic TH × CD y = -0.0019x2 + 0.6219x + 6.3708 0.847 3.918 0.085 

 

 

Figure 26. Relationship between field-measured DBH and UAV MS-derived TH × CD. 

Table 17. Summary of MS model used to predict tree DBH. 

r R square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.920 0.847 3.928 3.918 12.902 0.026 0.085 

y = -0.0019x2 + 0.6219x + 6.3708
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3.9.2. RGB model development 

The power model performed slightly better by explaining 84% of observed DBH variance as compared to 

other models. However, the RMSE and bias of the power model were slightly higher than the quadratic 

model (Table 18). Moreover, the quadratic model performed slightly better in model validation than the 

power model (Appendix 4). Therefore, the quadratic model (Dpred = -0.0018 (TH × CD)2  + 0.5871 (TH 

× CD) + 5.4961) was used to predict tree DBH. The scatter plot and model summary is shown in Figure 27 

and Table 19, respectively.  

Table 18. RGB model development summary. 

Model Predictor (x) Equation R2 RMSE Bias (%) 

Linear TH y = 2.1093x - 16.195 0.629 6.108 -0.003 

Linear CPA y = 0.6883x + 17.732 0.695 5.535 0.002 

Linear CD y = 11.164x + 4.8064 0.749 5.023 -0.003 

Linear TH × CD y = 0.36x + 11.458 0.804 4.437 0.005 

Logarithmic TH × CD y = 17.655ln(x) - 37.492 0.795 4.541 0.005 

Power TH × CD y = 2.5981x0.6249 0.849 4.194 -0.931 

Quadratic TH × CD y = -0.0018x2 + 0.5871x + 5.4961 0.834 4.082 -0.384 

 

 

Figure 27. Relationship between field-measured DBH and UAV RGB-derived TH × CD. 

Table 19. Summary of the RGB model used to predict tree DBH. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.913 0.834 4.089 4.082 13.441 -0.117 -0.384 

3.9.3. Multispectral model validation 

A total of 250 trees was used to validate the model. A strong positive correlation (r = 0.91) was observed 

between DBH predicted from MS-derived parameters and DBH measured in the field. The linear regression 

showed a close agreement (R2 = 0.82; RMSE = 4.36 cm) between MS predicted and observed DBH. 

However, the predicted DBH tends to overestimate (bias = 0.80%) the DBH slightly. The scatter plot and 

the regression statistics are shown in Figure 28 and Table 20, respectively. 

Table 20. Regression statistics of MS model validation. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.906 0.820 4.333 4.361 14.291 0.244 0.801 
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Figure 28. Scatter plot of field-measured DBH and DBH estimated using parameters derived from UAV MS imagery. 

3.9.4. RGB model validation 

A strong positive correlation (r = 0.90) was observed between DBH predicted from RGB-derived 

parameters and DBH measured in the field. The linear regression showed a close agreement (R2 = 0.80; 

RMSE = 4.54 cm) between RGB predicted and observed DBH. RGB predicted DBH was found slightly 

less accurate than MS predicted DBH using validation dataset. The scatter plot and the regression statistics 

of RGB model validation are shown in Figure 29 and Table 21, respectively. 

 

Figure 29. Scatter plot of field-measured DBH and DBH estimated using parameters derived from UAV RGB imagery.  

Table 21. Regression statistics of RGB model validation. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
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3.9.5. DBH hypothesis testing  

One-way ANOVA F-test showed no significant difference of mean DBH measured in the field and 

predicted using parameters derived from UAV MS and UAV RGB imagery (F (2, 747) = 0.04, p > 0.05). 

The test result is presented in Table 22. 

Table 22. One-way ANOVA test of tree DBH. 

SUMMARY     
Groups Count Sum Average Variance 

Field DBH (cm) 250 7629.00 30.52 104.15 

MS predicted DBH (cm) 250 7689.85 30.76 95.03 

RGB predicted DBH (cm) 250 7647.80 30.59 92.86 

ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 7.77 2 3.88 0.04 0.96 3.01 
Within Groups 72717.41 747 97.35    
Total 72725.17 749     

3.10. Plot-wise AGB 

AGB was estimated using a species-specific allometric equation. The average AGB estimated from the field 

with LiDAR-measured parameter was 8.49 Mg plot-1 (i.e. 169.83 Mg ha-1). On the other hand, the average 

AGB estimated from UAV-derived parameters of MS and RGB imagery was 8.68 and 9.06 Mg plot-1 (i.e. 

173.52 and 181.24 Mg ha-1), respectively (Figure 30). For all species, AGB estimated from UAV MS imagery 

was found less than the UAV RGB imagery. The minimum and maximum field with LiDAR-based AGB 

was 3.19 and 23.50 Mg plot-1 (i.e. 63.78 and 469.93 Mg ha-1), respectively. On the contrary, the UAV MS 

and RGB AGB estimate ranged from 3.68-22.02 and 4.08-22.47 Mg plot-1 (i.e. 73.65-440.37 and 81.69-

449.34 Mg ha-1), respectively (Appendix 5).  

 

Figure 30. Plot-wise AGB estimated from the field with LiDAR and UAV-derived parameters.  

3.10.1. AGB hypothesis testing 

One-way ANOVA F-test showed no significant difference of mean AGB estimated from the field with 

LiDAR, UAV MS and UAV RGB-derived parameters (F (2, 1887) = 0.69, p > 0.05). The test result is shown 

in Table 23. 

Table 23. One-way ANOVA test of AGB. 

SUMMARY       
Groups Count Sum Average Variance 

Field & LiDAR-based AGB 630 297207.49 471.76 238996.52 

UAV MS-based AGB 630 303659.43 482.00 242088.61 

UAV RGB-based AGB 630 317174.51 503.45 232307.34 
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ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 329611.87 2 164805.94 0.69 0.50 3.00 
Within Groups 4.49E+08 1887 237797.49    
Total 4.49E+08 1889     

3.11. Plot-wise AGC 

The average AGC estimated from the field with LiDAR- measured parameter was 4.25 Mg plot-1 (i.e. 84.92 

Mg ha-1), while the average AGC estimated from UAV-derived parameters of MS and RGB imagery was 

4.34 and 4.53 Mg plot-1 (i.e. 86.76 and 90.62 Mg ha-1), respectively (Figure 31). The minimum and maximum 

field with LiDAR-based AGC was 1.59 and 11.75 Mg plot-1 (i.e. 31.89 and 234.97 Mg ha-1), respectively, 

while MS and RGB-based AGC ranged from 1.84-11.01 and 2.04-11.23 Mg plot-1 (i.e. 36.83-220.19 and 

40.84-224.67 Mg ha-1), respectively (Appendix 6).   

 

Figure 31. Plot-wise AGC estimated from the field with LiDAR and UAV-derived parameters. 

3.12. Accuracy of AGB 

3.12.1. Accuracy of UAV MS-based AGB 

The AGB estimated from MS-derived parameters showed a close agreement (R2 = 0.91; RMSE = 149.71 

kg) with the field & LiDAR-based AGB. However, UAV MS estimated AGB tended to overestimate (bias 

= 2.17%). The scatter plot and regression statistics are presented in Figure 32 and Table 24, respectively. 

 

Figure 32. Scatter plot of the field with LiDAR-based AGB and UAV MS-based AGB.  
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Table 24. Regression statistics of the field with LiDAR-based and UAV MS-based AGB. 

r R2 Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.95 0.91 147.22 149.71 31.73 10.26 2.17 

3.12.2. Accuracy of UAV RGB-based AGB 

The AGB estimated from RGB-derived parameters showed a close agreement (R2 = 0.89; RMSE = 166.85 

kg) with the field & LiDAR-based AGB. However, UAV RGB estimated AGB tended to overestimate (bias 

= 6.73%). The accuracy of the RGB estimated AGB was lower than MS estimated AGB. The scatter plot 

and regression statistics are presented in Figure 33 and Table 25, respectively. 

 

Figure 33. Scatter plot of the field with LiDAR-based AGB and UAV RGB-based AGB.  

Table 25. Regression statistics of the field with LiDAR-based and UAV RGB-based AGB. 

r R Square Std. Error of the Estimate RMSE RMSE % Bias Bias % 
0.94 0.89 162.59 166.85 35.37 31.74 6.73 

3.12.3. AGB hypothesis testing 

Simple t-test of regression coefficient showed a significant relationship between estimated field with LiDAR-

based AGB and UAV MS-based AGB (t = 79.42, df = 628, p < 0.05). Similarly, a significant relationship 

was observed between field with LiDAR-based AGB and UAV RGB-based AGB (t = 71.12, df = 628, p < 

0.05). The test results are shown in Table 26. 

Table 26. Simple t-test of regression models. 

y x b1 Std. Error t t crit P-value 

Field AGB MS AGB 0.95 0.01 79.42 1.96  0.00 
Field AGB RGB AGB 0.96 0.01 71.12 1.96 0.00 
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4. DISCUSSION 

4.1. Uncertainties of field-measured parameters 

The field-measured DBH was slightly right-skewed (.346) (Figure 11) due to the exclusion of tress with DBH 

less than 10 cm as the reference parameter. Smaller trees (DBH < 10 cm) were omitted as they were less 

dominant in the study area and make no significant difference in AGB estimation (Gibbs et al., 2007). 

Measurement of tree DBH in the field was relatively easy and faster than tree height. 

Tree height was measured in the field using laser distance meter, also known as laser ranger (Leica DISTO 

D510). The laser instrument has a tilt sensor that enables the measurement of both distance and angle within 

a specific range of accuracy. Tree height measurement in the field was most tricky as the laser instrument 

need to be targeted at the base and top of the tree. At the base point, the reflective laser target is required 

to measure the distance and tilt. However, the top point can be aimed with either pointfinder or crosshair 

without laser reflective target to measure the inclination. Targeting the base of the tree was straightforward. 

However, targeting treetop was often difficult due to occlusion and movement of treetops during the windy 

days. Since field-measured tree height was less accurate (Figure 23) due difficulty in seeing treetops, human 

bias and instrument error (Guerra-Hernández et al., 2017; Wallace et al., 2016), LiDAR-measured tree height 

was used as a reference data to assess the accuracy of UAV MS and RGB-derived tree height.  

4.2. Quality of UAV point cloud 

In this study, Pix4Dmapper was used to process the UAV images. The processing options, such as multiple 

image scale (half image size), optimal point density, and a minimum of three matches of keypoints, were 

used to generate the dense point cloud as considered by Guerra-Hernández et al. (2017). The average point 

cloud density for UAV MS and RGB imagery was 2.61 and 30.92 m-3, respectively. The difference in point 

density is evident from transect profile shown in Figure 34 and Figure 35. For instance, some part of the 

treetops in MS point cloud seems to be missing compared to RGB point cloud. Although both the MS 

sensor and RGB camera are passive sensors, the latter has more canopy penetration and better information 

on the forest floor. UAV MS imagery with lower spatial resolution compared to RGB imagery is associated 

with low point cloud density and less detailed information of the forest structure as reported by Shen et al. 

(2019). Studies have noted that the difference in point cloud density generated from UAV images using SfM 

approach may be attributed to image overlap, image resolution and algorithm used to create the point cloud 

(Dandois et al., 2015; Shen et al., 2019; White et al., 2013).  

 

 

Figure 34. Transect profile of MS point cloud. 

 

Figure 35. Transect profile of RGB point cloud. 
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4.3. Deriving crown diameter from the canopy projection area 

In the field, the crown diameter can be determined by measuring the extent of the crown in N–S and E–W 

directions at the crown base (Grznárová et al., 2019; Pouliot et al., 2002). However, it is time-consuming 

and often challenging to determine the perimeter of the tree crown. Therefore, the crown diameter in this 

study was derived from CPA manually digitised from the UAV MS and RGB orthomosaic. Visually the MS-

delineated tree crowns were less regular in shape compared to RGB CPA, which may be attributed to the 

different spectral resolution of the UAV MS and RGB images (Figure 36). However, there was no significant 

difference in mean crown diameter derived from UAV MS and RGB imagery. As expected, delineation of 

canopy outline was straightforward in MS orthomosaic for both isolated and clumped crowns compared to 

RGB orthomosaic due to high image contrast from NIR band.  

 

Figure 36. CPA digitised from UAV MS and RGB orthomosaic. 

Previous studies have found high-resolution UAV RGB images suitable to retrieve the crown diameter (R2 

= 0.95, RMSE = 0.63 m) of conifer trees (Guerra-Hernández et al., 2016). Having no significant difference 

in mean crown diameter (Table 9) and strong positive correlation (Figure 19) between UAV MS and RGB-

derived crown diameter suggest the suitability of retrieving tree crown information from UAV MS imagery. 

Crown size information derived from UAV imagery has been applied to quantify defoliation in a mix pine-

oak forest (Cardil et al., 2019). Moreover, such information can be valuable for forest management practices 

such as thinning to enhance tree growth rate (Shimano, 1997). 

4.4. Tree height accuracy 

Tree height derived from MS CHM (R2 = 0.79, RMSE 1.94 m) and RGB CHM (R2 = 0.83, RMSE = 2.95 

m) showed good agreement with tree height derived from LiDAR. The accuracy of tree height derived from 

MS and RGB CHM were higher than the result of Panagiotidis et al. (2017). They achieved reasonable 

accuracy of conifer tree heights (RMSE = 3 m) derived from UAV CHM. The considerable variation of 

UAV CHM and LiDAR-derived tree height from this study is consistent with tree height derived from UAV 

CHM (Iizuka et al., 2017), UAV point cloud (Wallace et al., 2016), and ALS (Bazezew et al., 2018; Hopkinson 

et al., 2008) point cloud data. However, the accuracy of this study is lower than that obtained by previous 

studies using UAV (Birdal et al., 2017; Guerra-Hernández et al., 2016; Guerra-Hernández et al., 2017; Krause 

et al., 2019; Lin et al., 2018; Zainuddin et al., 2016) and LiDAR (Heurich et al., 2004; Holmgren, 2004; Kwak 

et al., 2007) data, especially in a conifer forest stand.  

The accuracy of tree height estimated from RGB CHM (R2 = 0.83) was higher than tree height estimated 

from MS CHM (R2 = 0.79). The higher accuracy may be attributed to high image overlap and image 

resolution as outlined in Dandois et al. (2015), thereby affecting the generation of point cloud density, DSM 
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and DTM. For instance, the critical information on the part of tree such as treetops is less pronounced in 

MS DSM compared to RGB DSM (Figure 37). As a result, tree height from MS CHM (bias = 2.90%) tended 

to overestimate less than tree height from RGB CHM (bias = 12.33%). On the contrary, the deviation of 

estimated RGB-derived (RMSE = 2.95 m) tree height was higher than MS-derived tree height (RMSE = 

1.94 m) when they were compared with reference tree height from LiDAR. The higher deviation is attributed 

to image resolution and time difference in the collection of LiDAR and UAV images. LiDAR and UAV 

images were collected in February 2019 and February - March 2020, respectively. Increase in tree height due 

to time difference seems to be captured explicitly by the UAV RGB images due to high spatial resolution.  

RGB CHM-derived tree height was higher than MS CHM-derived tree height. Shen et al. (2019) observed 

a similar result in assessing the tree height derived from the SfM point cloud of UAV MS and RGB imagery. 

In the vegetated area, both MS and RGB DTM seems to vary by a few meters. However, on average, MS 

DTM is slightly elevated than RGB DTM (~ 1 m difference). Nevertheless, MS and RGB DTM were found 

in close agreement in the area with less or no vegetation.  

 

Figure 37. Transect profiles of MS, RGB and LiDAR-derived height models. 

 

Figure 38. Scatter plot of UAV MS and RGB-derived tree height. 
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Although there is a slight variation in DSM and DTM generated from UAV images, the tree height estimated 

from MS CHM showed high consistency (R2 = 0.89) with the tree height estimated from RGB CHM (Figure 

38). The R2 from this study is comparable with the result from Shen et al. (2019), who reported a strong 

correlation (R2 = 0.75–0.94) of tree height derived from MS and RGB point cloud. The tree height generated 

from MS CHM was on average (~ 2 m) shorter than tree height generated from RGB CHM. Tree height 

information retrieved from UAV images is crucial for forest management practices such as tree growth 

monitoring and sustainable timber production. 

4.5. Estimating tree DBH from UAV imagery 

Studies have found a strong correlation between DBH and crown size measured in the field (Gonzalez-

Benecke et al., 2014; Hemery et al., 2005; Shimano, 1997). Since the crown size information can be retrieved 

from remotely sensed images, such relationships provide the basis to estimate DBH. In this study, TH × 

CD was a good model, if not the best, to predict DBH (Table 16, Table 18). Jucker et al. (2017) found that 

TH × CD (R2 = 0.70) as a compound variable performing better in estimating DBH compared to the model 

with tree height (R2 = 0.56) and crown diameter (R2 = 0.31) as a separate predictor. The reason may be that 

the compound variable complements each other in predicting the stem diameter more accurately. Trees 

usually grow faster at an early stage to compete for the light and escape understory shade attaining the 

maximum height, while the stem diameter continues to grow at all stages (King, 2005; Sterck & Bongers, 

2001). In such a case, estimating the stem diameter from tree height alone becomes problematic since trees 

with similar height may have varying DBH. Therefore, information on crown size becomes crucial in 

differentiating trees of similar height with different stem size (Gonzalez-Benecke et al., 2014; Jucker et al., 

2017; King, 2005). The result of this study, therefore, highlights the importance of both tree height and 

crown size required to estimate DBH.  

MS model performed better than the RGB model in estimating trees DBH, although the residual plot 

showed a similar pattern without a clear trend of either underestimation or overestimation of tree DBH 

(Figure 39). The result of the both MS (R2 = 0.82, RMSE = 4.36 cm) and RGB (R2 = 0.80, RMSE = 4.54 

cm) model validation from this study is higher to that reported by Jucker et al. (2017), who used tree height 

and crown diameter from LiDAR to estimate stem diameter (RMSE = 9.7 cm; bias = -1.2%). Guerra-

Hernández et al. (2017) used UAV-derived tree height and crown area to model DBH and obtained 

comparable accuracy (R2 = 0.79, RMSE = 2.36 cm). Popescu (2007) and Heurich et al. (2004) obtained 87% 

and 85% of observed DBH variance explained by ALS-derived tree height and crown diameter with RMSE 

of 4.9 and 6.8 cm, respectively. Morevoer, Zhao et al. (2009) obtained slightly higher accuracy of DBH 

predicted from tree height, crown diameter, and crown based height in a conifer forest. Nevertheless, the 

estimation of DBH in this study performed well considering RMSE, although the R2 was slightly higher in 

some studies (Heurich et al., 2004; Popescu, 2007; Zhao et al., 2009).  

The estimation of mean DBH from UAV-derived parameters was not significantly different from the DBH 

measured in the field. The result of this study highlights the feasibility of estimating stem diameter from 

UAV MS-derived parameters such as tree height and crown diameter in a managed conifer forest. Deriving 

relationship between DBH and crown structure has several important implications such as assessment of 

forest biomass and carbon stock and understanding the complex forest dynamics (Jucker et al., 2017). Also, 

DBH information can be used as an input for tree allometry and forest stock assessment (Holmgren, 2004). 
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Figure 39. Residual plot of UAV MS and RGB DBH model validation.  

4.6. AGB 

One-way ANOVA F-test showed no significant difference in mean AGB, thereby failing to reject the null 

hypothesis. The results of this study demonstrate that UAV MS imagery is suitable for estimating AGB and 

carbon stock in a managed coniferous forest. Since the study area have a mix of both young and matured 

stand, there is a considerable variation in the estimated AGB. For instance, the field with LiDAR-based 

AGB at tree level ranged from 33 to 3973 Kg, while MS and RGB AGB ranged from 22 to 3748 kg and 21 

to 3942 kg, respectively. The estimate of this study is comparable with the result of Popescu (2007), whose 

estimate ranged from 13.02 to 3254 kg in pine trees (DBH = 8-78 cm, tree height = 9-37 m).  

To compare the estimated AGB with related studies, the plot level AGB was extrapolated to hectare level 

(Figure 40). At hectare level, the average field with LiDAR-based AGB was 169.83 Mg ha-1, while MS and 

RGB-based AGB were 173.52 and 181.24 Mg ha-1, respectively. The estimated AGB of this study is higher 

than that of Primasatya et al. (2016) in the evergreen forest (AGB = 131 Mg ha-1) in the same study area 

assessed in 2015 using a terrestrial laser scanner. Solberg et al. (2010) found the maximum AGB up to 355 

Mg ha-1 estimated using the allometric equation in Norway spruce and Scots pine forest with minimum and 

maximum tree height of 7.6 and 31.3 m, respectively. The maximum AGB estimate of this study was higher 

(470 Mg ha-1) with tree height ranging from 6 to 35 m in a mixed conifer forest.  

 

Figure 40. Plot-wise AGB extrapolated to hectare level. 
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Goal 15 (Life on land) of the United Nations Sustainable Development Goals (SDGs), and particularly the 

indicator concerning the implementation of sustainable forest management (United Nations, 2015). 

4.7. AGB accuracy 

As hypothesised, the accuracy of estimated MS AGB (R2 = 0.91, RMSE = 149.71 kg ) was higher than RGB 

AGB (R2 = 0.89, RMSE = 166.85 kg) when they are assessed using field with LiDAR-based AGB. The 

higher accuracy of MS AGB is attributed to higher accuracy of DBH modelled from MS-derived parameters. 

Although the accuracy of tree heights may have affected the accuracy of AGB estimate using an allometric 

equation, the influence is typically not as pronounced as DBH. The result of this study is better than Jucker 

et al. (2017), who used ALS-derived parameters to predict DBH and estimate AGB (RMSE = 0.86 Mg, bias 

= 27.7%). However, it is similar to that of Popescu (2007) (R2 = 0.88, RMSE = 162.72 kg), and slightly 

better than Zhao et al. (2009) (R2 = 0.80, RMSE = 237 kg), who used ALS-derived parameters to estimate 

AGB. Moreover, the result of this study is comparable with Guerra-Hernández et al. (2017), who used UAV-

derived tree height and crown area to estimate AGB (R2 = 0.84, RMSE = 117.8 kg). However, the accuracy 

of the AGB reported by Lin et al. (2018) was slightly better (R2 = 0.96, RMSE = 54.90 kg) in a sparse 

coniferous forest. 

The accuracy of estimated AGB was examined at hectare level to compare with related studies (Figure 41). 

As expected, the accuracy of estimated MS (R2 = 0.94, RMSE = 21.97 Mg) and RGB (R2= 0.91, RMSE = 

28.61 Mg) AGB was higher at hectare level compared to tree level. The result of this study is similar with 

Zhao et al. (2009) and Ota et al. (2015), who obtained R2 = 0.94, RMSE = 14.4 Mg ha-1, and R2 = 0.76, 

RMSE = 51.79 Mg ha-1, respectively. The comparable result (R2 = 0.91, RMSE = 19 Mg ha-1) was also 

obtained by Solberg et al. (2010) using parameters derived from the ALS point cloud.  

  

a) Field with LiDAR-based AGB and UAV MS-

based AGB at hectare level. 

b) Field with LiDAR-based AGB and UAV RGB-

based AGB at hectare level. 

Figure 41. Scatter plot of the field with LiDAR-based and UAV MS and RGB-based AGB. 

It is important to note that the AGB estimated from MS-derived parameters were in close agreement with 

AGB estimated from RGB-derived parameters (Figure 42). Moreover, the consistency (R2) of estimated AGB 

was similar at both tree and hectare level. Therefore, the results of this study demonstrate that individual 

tree parameters (TH, DBH, AGB) could be estimated from very high-resolution UAV MS imagery in a 

managed mixed conifer forest, suggesting promising application for REDD+ monitoring and forest 

management practices at a local scale. 
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a) MS and RGB-based AGB at tree level. b) MS and RGB-based AGB at hectare level. 

Figure 42. Scatter plot of UAV MS and RGB-based estimated AGB. 

4.8. Limitation 

In this study, only the trees with DBH of more than 10 cm were considered for AGB estimation. Although 

studies have noted that trees less than 10 cm have a negligible contribution to AGB, exclusion of trees less 

than 10 cm in a forest stand predominantly with young trees can have a significant effect. Moreover, the 

exclusion of young and undetected understory can result in higher accuracy of remotely sensed tree 

parameters.   

Measuring crown diameter in the field is time-consuming and often a challenging task. Therefore, this study 

has derived the tree crown parameter from UAV orthomosaics using manual on-screen digitisation. Studies 

have used manually digitised crown as reference data to assess the accuracy of tree crown delineated using 

algorithms such as inverse watershed segmentation, object-based image analysis, and region growing, to 

name a few. Although manually digitised tree crowns are often considered as most accurate, it has errors 

associated with human bias. Despite the challenges of measuring a crown diameter in the field, this study 

recommends measuring a few dominant trees in the plot to assess the accuracy of crown diameter derived 

from UAV images.   

Flight parameters used to acquire UAV MS, and RGB images were slightly different. Using same flight 

parameters as that of the multispectral sensor to capture UAV RGB images had an issue of uncalibrated 

images during image processing in Pix4Dmapper. The option to overcome the uncalibrated images was to 

either increase the fly height or an image overlap. Since the fly height was restricted to 120 m, the overlap 

of RGB flight was parameterised to 90% to obtain the desired output. Therefore, this study recommends a 

double grid mission with high overlap, preferably ≥ 90% to overcome such problem in a dense forest. A 

species-specific allometric equation was used to estimate AGB. Using an allometric equation different from 

this study may result in the different estimation of AGB/AGC.  
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5. CONCLUSION 

The study concluded multispectral sensor UAV imagery suitable for estimating AGB/AGC. The accuracy 

of estimated AGB/AGC using UAV MS-derived tree parameter was found slightly more accurate than UAV 

RGB-derived tree parameter. Therefore, UAV MS imagery would be helpful to provide more accurate 

information on AGB/AGC for reporting national GHG accounting and REDD+ monitoring. Accurate 

and up to date information on biomass is also essential for Goal 15 of the United Nations SDGs, and 

particularly to monitor progress towards sustainable forest management (United Nations, 2015).  

UAV MS orthomosaic with a high spectral resolution facilitated a straightforward delineation of CPA using 

on-screen manual digitisation compared to UAV RGB orthomosaic. However, a strong positive correlation 

(R2 = 0.96) and the insignificant difference between UAV MS and RGB-derived crown diameter indicates 

their ability to estimate comparable DBH. Also, crown size information derived from UAV imagery can be 

useful to quantify defoliation in a forest (Cardil et al., 2019), and support forest management practices such 

as thinning (Shimano, 1997). 

Field-measured and UAV-derived tree height had lower agreement than LiDAR and UAV-derived tree 

height. Also, a high agreement was found between the UAV MS and RGB-derived tree height. Therefore, 

SfM technique used to generate a point cloud that produces DSM and DTM to derive UAV CHM-based 

tree height in a managed conifer forest appears to be more reliable than the tree height measured in the field 

due to human bias and instrument error. Using LiDAR-measured tree height as a reference data, UAV RGB-

derived (R2 = 0.83) tree height was slightly more accurate than UAV MS-derived tree height (R2 = 0.79). A 

significant difference of mean tree height was found between all groups which may be attributed to a 

different spatial resolution of UAV MS and UAV RGB images besides time difference in the collection of 

UAV and LiDAR data. Nevertheless, tree height information derived from UAV images is crucial for forest 

management practices such as tree growth monitoring and sustainable timber production. 

To estimate DBH, UAV MS model (R2 = 0.82, RMSE = 4.36) was slightly more accurate than UAV RGB 

model (R2 = 0.81, RMSE = 4.54). However, there was no significant difference in mean DBH measured in 

the field and predicted using parameters derived from the UAV MS and RGB imagery. Therefore, UAV MS 

imagery can be used to estimate DBH to complement traditional forest inventory which is expensive and 

time-consuming. DBH is one of the essential parameters for tree allometry and forest stock assessment.  

At the plot level, mean AGB assessed from the field with LiDAR-measured parameter using species-specific 

allometric equation was less than mean AGB estimated from UAV MS and RGB imagery. There was no 

significant difference of mean AGB estimated from UAV MS, UAV RGB, and field with LiDAR-derived 

parameter. However, the accuracy of UAV MS-based AGB (R2 = 0.91, RMSE = 149.71 kg) was higher than 

UAV RGB-based AGB (R2 = 0.89, RMSE = 166.85 kg) when they were assessed using field with LiDAR-

based AGB at tree level. Therefore, the result of this study shows that UAV MS imagery is suitable for 

REDD+ monitoring and forest management practices in a managed coniferous forest at a local scale.  
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APPENDICES 

Appendix 1. Descriptive statistics of plot-wise field data. 

Plot 
Diameter at breast height (cm) Tree height (m) 

Mean Min Max SD Mean Min Max SD 

1 31.50 14.00 53.00 12.17 21.50 12.00 31.00 6.11 

2 31.35 17.00 49.00 11.73 22.29 13.00 29.00 4.59 

3 33.45 12.00 61.00 13.84 24.90 12.00 32.00 5.81 

4 33.48 23.00 41.00 5.17 22.95 20.00 26.00 1.69 

5 37.71 33.00 48.00 4.92 24.71 22.00 28.00 1.77 

6 39.69 12.00 51.00 8.61 27.69 11.00 33.00 5.04 

7 28.91 12.00 41.00 6.38 20.64 14.00 24.00 2.32 

8 33.06 12.00 53.00 10.44 22.72 16.00 32.00 3.91 

9 31.56 14.00 44.00 7.61 22.94 16.00 27.00 3.04 

10 28.44 19.00 39.00 5.98 20.50 16.00 23.00 1.82 

11 30.81 14.00 40.00 5.56 22.05 15.00 27.00 2.48 

12 35.87 26.00 46.00 5.38 22.93 19.00 25.00 1.75 

13 41.82 17.00 56.00 12.94 27.45 16.00 31.00 5.50 

14 38.15 17.00 52.00 9.53 23.69 6.00 29.00 5.78 

15 25.38 12.00 37.00 7.81 18.04 11.00 23.00 3.71 

16 28.21 12.00 47.00 11.83 18.37 6.00 25.00 4.99 

17 19.94 12.00 28.00 3.33 21.00 17.00 24.00 1.67 

18 29.79 19.00 38.00 5.34 19.89 14.00 23.00 2.16 

19 25.58 17.00 39.00 4.91 21.79 18.00 24.00 1.77 

20 22.29 11.00 32.00 5.45 17.32 12.00 21.00 2.50 

21 23.53 11.00 38.00 5.89 18.03 11.00 22.00 2.53 

22 28.36 14.00 42.00 7.55 19.64 11.00 26.00 4.63 

23 21.64 12.00 31.00 5.26 17.86 12.00 22.00 2.09 

24 25.89 15.00 40.00 6.67 18.94 14.00 23.00 2.24 

25 29.67 12.00 54.00 11.69 21.14 15.00 26.00 2.83 

26 26.30 11.00 42.00 9.50 16.90 11.00 22.00 2.85 

27 28.70 12.00 42.00 7.54 19.20 10.00 24.00 2.97 

28 39.13 12.00 52.00 13.24 23.60 10.00 35.00 7.13 

29 38.55 18.00 53.00 10.40 21.82 13.00 28.00 4.12 

30 39.94 19.00 57.00 9.78 25.12 11.00 33.00 6.48 

31 42.13 31.00 56.00 9.16 27.88 23.00 31.00 3.14 

32 37.47 12.00 57.00 12.67 23.13 9.00 30.00 5.77 

33 31.06 13.00 59.00 13.62 21.29 12.00 30.00 5.80 

34 32.71 12.00 44.00 11.41 22.29 10.00 26.00 5.57 

35 27.00 15.00 40.00 7.42 20.88 11.00 29.00 3.81 
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Appendix 2. Plot-wise tree species distribution.  

Plot Norway spruce Scots pine Douglas-fir Larix decidua Total 

1 2  14  16 

2 8 2 7  17 

3   20  20 

4 21    21 

5 14    14 

6 16    16 

7 22    22 

8 14  3 1 18 

9 16    16 

10 17   1 18 

11 21    21 

12 9   6 15 

13   11  11 

14 1 12   13 

15 23 1   24 

16 5  5 9 19 

17    36 36 

18 19    19 

19 24    24 

20 26 2   28 

21 30    30 

22 7   4 11 

23 28    28 

24 18    18 

25 3 12 6  21 

26 19   1 20 

27 20    20 

28 5 6 3 1 15 

29 4 7   11 

30 5 12   17 

31  8   8 

32 4 11   15 

33 10 7   17 

34 8   6 14 

35 6 3 3 5 17 

Total 425 83 72 70 650 
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Appendix 3. Summary of result from processed UAV images extracted from the quality report generated by Pix4Dmapper. 

 Multispectral RGB 
Summary   
Average GSD 10.69 cm 4.70 cm 
Total area 48.71 ha 52.65 ha 
Time for initial processing 01hr:13m:56s 01h:19m:37s 
Quality check   

Dataset 
3636 out of 3692 images (98%) 
calibrated 

1203 out of 1206 images (99%) 
calibrated 

Georeferencing RMSE 7 GCPs, RMSE = 0.041 m 6 GCPs, RMSE = 0.047 m 
Bundle Block Adjustment   
Mean reprojection error (pixels) 0.14 0.12 
Geolocation   
GCP RMSE (m) x = 0.013; y = 0.009; z = 0.104 x = 0.022; y = 0.030; z = 0.094 
Check point RMSE (m) x = 0.016; y = 0.065; z = 0.219 x = 0.044; y = 0.040; z = 0.393 
Coordinate Systems   
Image coordinate system WGS 84  WGS 84  
GCP & output coordinate system Amersfoort/ RD New  Amersfoort/ RD New  
Point Cloud Densification   
Number of 3D densified points 5,631,379 61,116,170 
Average point cloud density (m-3) 2.61 30.92 
Time for point cloud 
densification 17m:53s 05hr:53m:36s 
DSM, Orthomosaic, and DTM   
DSM and orthomosaic resolution 1*GSD (10.7 [cm/pixel]) 1*GSD (4.7 [cm/pixel]) 
DTM resolution 5*GSD (10.7 [cm/pixel]) 5*GSD (4.7 [cm/pixel]) 
Time for DSM generation 05m:53s 50m:46s 
Time for orthomosaic generation 55m:26s 03hr:34m:47s 
Time for DTM generation 01m:00s 07m:06s 
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Appendix 4. Model development and validation summary. 

MS model development    

Model Predictor (x)  Equation R2 RMSE RMSE (%) Bias Bias (%) 

Linear TH y = 2.2676x - 15.546 0.589 6.428 21.168 0.001 0.002 

Linear CPA y = 0.6982x + 18.027 0.696 5.526 18.199 0.000 0.001 

Linear CD y = 10.924x + 5.9376 0.744 5.070 16.695 0.001 0.003 

Linear TH x CD y = 0.4034x + 11.447 0.825 4.198 13.823 -0.002 -0.008 

Log TH x CD y = 17.418ln(x) - 34.542 0.799 4.489 14.784 0.001 0.004 

Power TH x CD y = 2.9262x0.6127 0.843 4.016 13.225 -0.284 -0.934 

Quadratic TH x CD y = -0.0019x2 + 0.6219x + 6.3708 0.847 3.918 12.902 0.026 0.085 

        

MS model validation 

Model R2 Equation S RMSE RMSE (%) Bias Bias (%) 

Power 0.815 y = 2.9262x0.6127 4.394 4.396 14.406 -0.092 -0.301 

Quadratic 0.821 y = -0.0019x2 + 0.6219x + 6.3708 4.333 4.361 14.291 0.244 0.801 

        

RGB model development    

Model Predictor (x)  Equation R2 RMSE RMSE (%) Bias Bias (%) 

Linear TH y = 2.1093x - 16.195 0.629 6.108 20.115 -0.001 -0.003 

Linear CPA y = 0.6883x + 17.732 0.695 5.535 18.228 0.001 0.002 

Linear CD y = 11.164x + 4.8064 0.749 5.023 16.542 -0.001 -0.003 

Linear TH x CD y = 0.36x + 11.458 0.804 4.437 14.613 0.002 0.005 

Log TH x CD y = 17.655ln(x) - 37.492 0.795 4.541 14.955 0.001 0.005 

Power TH x CD y = 2.5981x0.6249 0.849 4.194 13.812 -0.283 -0.931 

Quadratic TH x CD y = -0.0018x2 + 0.5871x + 5.4961 0.834 4.082 13.441 -0.117 -0.384 

        

RGB model validation 

Model R2 Equation S RMSE RMSE (%) Bias Bias (%) 

Power 0.795 y = 2.5981x0.6249 4.625 4.654 15.251 -0.048 -0.157 

Quadratic 0.805 y = -0.0018x2 + 0.5871x + 5.4961 4.520 4.537 14.869 0.076 0.247 
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Appendix 5. Plot level AGB and extrapolated hectare level AGB. 

Plot 
Field AGB 
(Mg plot-1) 

MS AGB 
(Mg plot-1) 

RGB AGB 
(Mg plot-1) 

Field AGB 
(Mg ha-1) 

MS AGB 
(Mg ha-1) 

RGB AGB 
(Mg ha-1) 

1 14.72 14.49 14.84 294.49 289.73 296.85 

2 11.45 11.61 11.55 228.93 232.15 231.09 

3 23.50 22.02 22.47 469.93 440.37 449.34 

4 9.74 8.20 11.16 194.76 163.95 223.25 

5 8.40 10.00 9.83 167.99 200.07 196.67 

6 11.60 12.82 13.52 232.03 256.30 270.35 

7 6.98 7.20 8.13 139.57 143.90 162.51 

8 12.32 14.44 15.85 246.36 288.88 317.06 

9 6.82 8.26 9.18 136.37 165.21 183.58 

10 5.94 6.18 7.01 118.85 123.68 140.28 

11 8.60 8.85 10.95 172.03 177.01 219.08 

12 7.45 8.18 8.28 149.09 163.57 165.55 

13 20.08 21.02 20.55 401.51 420.49 410.97 

14 7.55 8.28 8.82 151.03 165.66 176.41 

15 6.17 6.04 6.85 123.33 120.84 136.98 

16 10.81 10.89 10.85 216.25 217.84 217.01 

17 4.81 7.57 7.78 96.24 151.48 155.68 

18 6.10 6.60 7.07 122.02 132.00 141.34 

19 6.50 7.03 7.35 129.97 140.67 147.00 

20 4.92 4.65 5.10 98.47 93.03 101.94 

21 6.06 5.92 6.61 121.15 118.41 132.25 

22 3.19 3.68 4.08 63.78 73.65 81.69 

23 4.80 4.39 5.04 96.04 87.78 100.81 

24 4.74 4.29 4.51 94.79 85.77 90.25 

25 10.14 10.16 10.28 202.79 203.18 205.53 

26 4.80 4.17 4.57 96.09 83.44 91.31 

27 5.91 5.80 6.34 118.11 115.95 126.75 

28 13.01 13.33 12.70 260.22 266.55 254.05 

29 6.19 5.07 4.58 123.86 101.43 91.64 

30 10.63 8.43 8.17 212.52 168.57 163.35 

31 5.62 4.62 4.09 112.46 92.37 81.88 

32 8.85 8.06 7.89 177.05 161.24 157.75 

33 7.06 6.55 6.11 141.26 130.93 122.28 

34 6.38 7.11 7.23 127.57 142.12 144.65 

35 5.36 7.75 7.82 107.25 154.96 156.37 

Sum 297.21 303.66 317.17 5944.15 6073.19 6343.49 

Mean 8.49 8.68 9.06 169.83 173.52 181.24 
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Appendix 6. Plot level AGC and extrapolated hectare level AGC. 

Plot 
Field AGC 
(Mg plot-1) 

MS AGC 
(Mg plot-1) 

RGB AGC 
(Mg plot-1) 

Field AGC 
(Mg ha-1) 

MS AGC 
(Mg ha-1) 

RGB AGC 
(Mg ha-1) 

1 7.36 7.24 7.42 147.24 144.87 148.42 

2 5.72 5.80 5.78 114.46 116.07 115.54 

3 11.75 11.01 11.23 234.97 220.19 224.67 

4 4.87 4.10 5.58 97.38 81.98 111.62 

5 4.20 5.00 4.92 84.00 100.04 98.33 

6 5.80 6.41 6.76 116.01 128.15 135.17 

7 3.49 3.60 4.06 69.78 71.95 81.25 

8 6.16 7.22 7.93 123.18 144.44 158.53 

9 3.41 4.13 4.59 68.19 82.60 91.79 

10 2.97 3.09 3.51 59.43 61.84 70.14 

11 4.30 4.43 5.48 86.01 88.50 109.54 

12 3.73 4.09 4.14 74.54 81.78 82.77 

13 10.04 10.51 10.27 200.75 210.25 205.49 

14 3.78 4.14 4.41 75.52 82.83 88.21 

15 3.08 3.02 3.42 61.66 60.42 68.49 

16 5.41 5.45 5.43 108.13 108.92 108.50 

17 2.41 3.79 3.89 48.12 75.74 77.84 

18 3.05 3.30 3.53 61.01 66.00 70.67 

19 3.25 3.52 3.67 64.98 70.34 73.50 

20 2.46 2.33 2.55 49.24 46.51 50.97 

21 3.03 2.96 3.31 60.58 59.21 66.12 

22 1.59 1.84 2.04 31.89 36.83 40.84 

23 2.40 2.19 2.52 48.02 43.89 50.40 

24 2.37 2.14 2.26 47.39 42.88 45.13 

25 5.07 5.08 5.14 101.40 101.59 102.77 

26 2.40 2.09 2.28 48.04 41.72 45.66 

27 2.95 2.90 3.17 59.06 57.98 63.38 

28 6.51 6.66 6.35 130.11 133.27 127.03 

29 3.10 2.54 2.29 61.93 50.71 45.82 

30 5.31 4.21 4.08 106.26 84.28 81.67 

31 2.81 2.31 2.05 56.23 46.18 40.94 

32 4.43 4.03 3.94 88.52 80.62 78.87 

33 3.53 3.27 3.06 70.63 65.46 61.14 

34 3.19 3.55 3.62 63.78 71.06 72.32 

35 2.68 3.87 3.91 53.62 77.48 78.19 

Sum 148.60 151.83 158.59 2972.08 3036.59 3171.75 

Mean 4.25 4.34 4.53 84.92 86.76 90.62 
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Appendix 7. Field data collection sheet. 

Field data sheet 

Name of recorder ……………………… Date (dd/mm/yy) ………… Plot size radius (m) ……. 

 

Plot no. Coordinate of plot centre Elevation (m) 

 X: Y:  

 

Tree 

no.  

Species 

 

DBH 

(cm) 

Height 

(m) 

Distance 

from PC (m) 

Bearing from 

PC (degree) 

Remarks 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       

11       

12       

13       

14       

15       

16       

17       

18       

19       

20       

21       

22       

23       

24       

25       

26       

27       

28       

29       

30       

 

 

 

 

 

 


