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ABSTRACT 

Rapeseed is one of the most important oilseed crops in the world, which has been used in many ways as 

edible oil, industrial oil, and feed. As croplands vary over space and time, accurate and updated maps of 

rapeseed fields are needed for studies of food security. The conventional field survey method for crop 

mapping is time and labor-consuming. Remotely sensed data has been proved as a credible source for 

crop mapping. Although optical imagery can be used to map rapeseed fields, it is highly influenced by 

cloud cover. This study assessed the feasibility of weather independent space-borne Synthetic Aperture 

Radar (SAR) Sentinel-1 data for mapping and monitoring rapeseed fields in a cloudy area of China. 

Backscatter coefficients (VH and VV) and decomposition features (i.e., entropy, anisotropy, angle) of 

Sentinel-1 time-series data were used in this study. Both Support Vector Machine and Random Forests 

classifiers were employed to classify rapeseed fields and their performances have been compared in terms 

of overall accuracy as well as kappa statistic. It was found that the highest classification accuracy was 

achieved by using Sentinel-1 time-series data, with overall accuracy greater than 99% and a kappa 

coefficient greater than 0.98 through both Random Forests and Support Vector Machine classifiers, which 

are significantly higher than those derived from mono-temporal Sentinel-1 data. However, it was also 

found that there was no statistically significant difference in classification accuracy between the use of  

Sentinel-1 multi-temporal data (i.e., images obtained from April and May) and Sentinel-1 time-series data. 

Moreover, the changing pattern and change hotspot of rapeseed fields in the Hanzhong basin between 

2017 and 2019 have been successfully quantified and identified. The results from this study demonstrate 

that multi-temporal Sentinel-1 SAR images can be used for accurate and timely rapeseed field mapping 

and monitoring.  

Keywords: rapeseed, Sentinel-1, random forest, support vector machine, time series, multi-temporal 
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1. INTRODUCTION 

1.1. Background 

Oilseed rape (Brassica napus L.), also known as rapeseed, is a member of the family Brassicaceae (Hall et al., 

2002). Rapeseed has seeds with high oil content (~40%) (Zafar et al., 2019) and because of its oil-rich 

property, rapeseed is now the third-largest source of vegetable oil in the world right after soybean oil and 

palm oil. It and accounting for 16% world’s edible oil (Eskin and Przybylszi, 2003) and therefore plays an 

essential role in securing edible oil worldwide. Besides its edible property, rapeseed is also often used as 

industrial renewable oil owing to its biodegradable property (Saka & Kusdiana, 2001). The rapeseed and its 

derivatives are essential commodities and closely related to the lives of people in the world. Thanks to its 

multiple uses, rapeseed is cultivated all over the world. Based on the statistics from the Food and 

Agricultural Organization of the United Nations (FAO), the global cultivated area of rapeseed has 

increased dramatically since the mid-twentieth century till the beginning of the twenty-first century (FAO, 

2019). Leading producers in rapeseed production are China, Canada, and the EU (Woz´niak et al., 2019). 

 

However, global rapeseed production has declined in recent years. According to FAO statistics, the area 

under rapeseed cultivation around the world was 34,377,958 hectares. That is 1,869,605 hectares less than 

that in 2015, which is almost a decrease of 6% (FAO, 2019). The cultivated area of rapeseed has declined 

by 8.3% in the EU in 2019 (Krautgartner et al., 2019). An up to date crop map generated by the Center for 

Ecology & Hydrology (CEH) and RSAC Ltd shows an overall 15% decrease in fields of rapeseed planted 

across Britain in the last 3 years (CEH, 2017). 

 

Turning the perspective to China which is the biggest producer of oilseed rape and accounting for 20% of 

total rapeseed approximately, the planted area of rapeseed remains stable in recent years (Hu et al., 2017). 

However, the interest of rapeseed farmers in China is declining as the years go by due to increased labor 

and input costs (Fu, 2016). Also, under the trend of a sharp decline in international acreage, the cultivated 

area of rapeseed in China is particularly important and needs to be maintained in supporting the sufficient 

supply of rapeseed. Therefore, to help the decision making in meeting the yield consumption, the 

distribution of rapeseed in China urgently needs to be mapped accurately in both spatial and temporal 

dimensions (Liu et al., 2018).   

 

Agricultural mapping plays an essential role in monitoring as well as the management of land cropping 

(Vaudour et al., 2010). For instance, agricultural mapping can be used in yield estimation (Awad., 2019) 

and the evaluation of the provision of ecosystem services (Koschke et al., 2013). field surveying is the 

conventional method in monitoring and mapping crops. However, despite the high accuracy provided by 

the field survey, the limitations are time-consuming, expensive, labor-intensive, and hard to be applied to a 

large area (Huang et al., 2012). 

1.2. Remote Sensing of Crops 

The use of remote sensing data in agricultural mapping started in the 1970s. Compared to field survey 

methods, using remote sensing data to map crops can be applied at a larger scale with a lower cost. 

Consequently, remote sensing has been widely used in agricultural classification (Atzberger, 2013). 

Commonly, remotely sensed mapping and monitoring of crops could be divided into two classes: the 

optical remote sensing and radar technology. Optical remote sensing has many applications in crop 
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mapping such as rice (Dong & Xiao, 2016; Song et al., 2018; Zhang & Lin, 2019) and wheat (Nagy et al., 

2018; Tao et al., 2017; Sánchez et al., 2014). Vaudour et al. (2015) used very high-resolution Pleiades 

images in the early season to map rapeseed fields and get 87% classification accuracy. Wang et, al (2018) 

produced a regional distribution map of rapeseed fields in China and achieved 85% overall accuracy. But 

in these studies, due to the big overlap between the rapeseed growing season and the rainy season, the 

cloud-cover problem exists and highly influences the optical imagery(Myneni et al., 1995). 

 

Radar technology is a good alternative in mapping and monitoring crops. Compared to optical remote 

sensing, the microwave wavelengths used by radar can stride through clouds. An active remote sensing 

technology like the Synthetic Aperture Radar (SAR) can acquire data during the night (Richards,  2015). 

Besides, Stankiewicz (2006) demonstrated that backscattered radar signals of the agricultural fields are 

determined by soil conditions, surface roughness, biomass structure, and water content in both soil and 

leaves. Furthermore, Choudhury and Chakraborty (2006) concluded that the different backscattered 

signals of cropland could be regarded as a function of growth time.  

 

Many studies demonstrated the relevance of SAR data for crop monitoring (Aschbacher et al., 1995; Jiao 

et al., 2014; Wu et al., 2011). In terms of rapeseed, several studies have shown the value of SAR data for 

identifying rapeseed growth stages. Lampropoulos et al., (2015) demonstrated that rapeseed growth stages 

could be detected by SAR polarimetric parameters such as scattering diversity and polarization methods. 

In light of this discovery, the phenology of rapeseed in Canada has been estimated successfully (McNairn 

et al., 2018). These applications showed the potential of SAR technology in rapeseed mapping. 

 

SAR sensors can vary in bands and polarization methods. Radar polarization is the orientation of the 

electric field. The transmitted and received signal can be either horizontally (H) or vertically (V) polarized 

(ESA, 2015). Thus, four possible combinations of orientations of transmitted and received exist HH, VV, 

VH, and HV. In crop mapping, single-polarization (VV) can be used in detecting vertical changes such as 

vegetation height with the crop growing (McNairn & Brisco, 2004). Cookmartin et al. (2000) 

demonstrated that Sigma VV is sensitive to vegetation wetness. The cross-polarization is robust in 

distinguishing the scattering mechanism in the canopy (Cloude, 2007). However, (Ferrazzoli et al., 2013) 

pointed out the shortages of using single-polarization methods and single orbit-pass, and that the use of 

dual-polarization leads to a significant increase in the final classification accuracy. Therefore, studies used 

dual-polarization SAR data for wetland vegetation mapping (Fu et al., 2017), vegetable classification (Li & 

Bijker, 2019), polluted vegetation mapping, and so on. The selection of the band needs to adapt to the 

surface targets, and which parts of the target interact with SAR signals need to be considered (Cloutis, 

1999; McNairn & Brisco, 2004). As shown in Figure 1, the band with shorter wavelengths such as X-band 

reflects at the top of the canopy while the longer wavelength C-band interacts with the canopy and the 

bands with the longest wavelengths such as P-band and L-band can go across the canopy. Most of the 

studies focused on detecting crops using X-band and C-band sensors to get the backscattered signals less 

influenced by the underlying soils (Wang et al., 2019). The capability of C-band in detecting backscattered 

signals from crops as well as crop classification has been proved (McNairn et al. , 2009; Cai et al., 2019).  
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Figure 1: The interaction between canopy and signals with different wavelengths.   

  (source:  http://www.intelligenceairbusds.com/files/pmedia/edited/r15796_9_eij_radarimagery_finalarticle.pdf) 

SAR decomposition can also provide information related to the contributions of different scattering 

mechanisms (Cloude et al., 1996). In terms of vegetation canopies, scattering mechanisms are related to 

the biomass and vegetation structure (Mcnairn et al., 2009). Fang et al. (2018) used GF-3 polarimetric SAR 

data to classify 7 land-cover classes and was able to obtain an 83.20% overall accuracy. Denize et al. (2019) 

achieved 71.7% overall accuracy in winter land-use classification by using Sentinel-1 polarimetric SAR 

data. Therefore, in this study, the combined use of backscatter coefficients and polarimetric information in 

rapeseed mapping was assessed.  

 

Considering the seasonal variation in backscatter SAR signals caused by changes in biomass structure and 

the water content in both soil and leaves with vegetation growth, increasing numbers of vegetation 

classification applications used multi-temporal or time-series images instead of mono-temporal data 

(Stendardi et al., 2019). Kavats et al. (2019) pointed out using time-series SAR data helps to improve the 

separability of crop types compared with using mono-temporal SAR data. Applications using multi-

temporal SAR images in urban, forest, and agriculture land cover classification can be easily found (Le 

Toan et al., 1989; Pellizzeri et al., 2003). Besides, Wu et al. (2011) used three RADARSAT-2 images 

obtained before and after rice harvesting and get 88.91% overall accuracy in rice classification. Similarly, 

Hütt et al. (2017) used five TerraSAR-X images in crop classification and achieved nearly 90% overall 

accuracy. Sharp changes in terms of vegetation structure between growth stages (i.e. before and after 

harvesting) were captured by the SAR sensor, therefore, high classification accuracy was achieved (Veloso 

et al, 2017). 

 

1.3. Problem Statement 

As an important rapeseed cultivation country, Chinas rapeseed planted area, and its changes are strongly 

related to the supply of edible oil globally. Thus, the rapeseed distribution in China needs to be mapped 

accurately. Especially in areas such as the Hanzhong basin which is one of the most important rapeseed 

production areas and a scenic famous for its vast “rapeseed flowers sea”. However, in such an essential 

rapeseed cultivated area, the understanding of rapeseed planted area and its changes spatially and 

temporally was limited due to the lack of rapeseed distribution maps in China on a regional scale (Wang et 

al., 2018).  
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Time-series SAR data can identify different land-cover types by comparing the temporal performance of 

backscatter coefficients (Bruzzone et al., 2004) and therefore improve the ability to distinguish land-cover 

classes. It is hard to use a mono-temporal image in the crop classification due to the similarity in 

backscatter coefficients which is caused by the resemblance in scattering mechanism, vegetation structure, 

etc. between different land-cover classes. Besides, the results of some studies showed a high classification 

accuracy when using multi-temporal data of some certain growth stages of vegetation. Thus, it is worth 

exploring the optimal multi-temporal combination of rapeseed mapping. 

 

C-band SAR data has been widely used in vegetation mapping. Sentinel-1 data has great potential for 

rapeseed mapping thanks to its improvements in terms of temporal resolution and spatial coverage (ESA, 

2013). Many studies used Sentinel-1 images in analyzing rapeseed in terms of phenological stages (Mercier 

et al., 2020; d’Andrimont et al., 2020), and studies that used the combination of Sentinel-1 images with 

optical data in rapeseed classification can be found as well (Lussem et al., 2016).  However, only a few 

studies mapping rapeseed use only Sentinel-1 SAR data. Therefore, it is worth further exploring the use of 

Sentinel-1 images to map rapeseed fields in the Hanzhong basin. 
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1.4. Research Objectives 

The overall objective of this study is to map and monitor rapeseed fields in the Hanzhong basin in China 

using Sentinel-1 SAR data. The specific objectives of this research are as follows: 

 

1. To understand how the Sentinel-1 radar signals respond to the growth of rapeseed. 

 

2. To determine the optimal timing for mapping rapeseed fields using mono-temporal, multiple 

temporal, and time-series Sentinel-1 images. 

 

3. To compare the rapeseed field mapping accuracy between the use of the random forest classifier 

and the support vector machine classifier. 

 

       4.   To quantify the change of the rapeseed fields in the Hanzhong basin in China between 2017 and 

2019. 

 

1.5. Research questions   

1. How do the Sentinel-1 radar signals respond to the growth of rapeseed?  

 

2. What is the optimal timing for mapping rapeseed fields using Sentinel-1 data?  

 

3. Is there a significant difference in rapeseed field mapping accuracy between the use of the random 

forest model and the support vector machine model using Sentinel-1 data?  

 

4.  How do the rapeseed fields change in the Hanzhong basin in China between 2017 and 2019？  

 

1.6. Research hypothesis 

1)  

H0: There is no statistically significant difference in rapeseed mapping accuracy between the use of single 

date, multiple dates, and time-series Sentinel-1 data.   

 

H1: The rapeseed mapping accuracy in using time series is significantly higher than that using a Mono-

temporal date and multi-temporal data. 

 

2) 

H0: There is no significant difference in rapeseed mapping accuracy between the use of the random forest 

model and the support vector machine model. 

 

H1: The rapeseed mapping accuracy derived from the random forest model is significantly higher than the 

one derived from the support vector machine model. 

 

3) 

H0: There is no significant change in the area of rapeseed fields in the Hanzhong basin between 2017 and 

2019. 
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H1: The area of the rapeseed fields has been changed significantly in the Hanzhong basin between 2017 

and 2019. 
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2. MATERIALS AND METHODS  

2.1. Study Area 

The Hanzhong basin is located in between Qinling Mountain and Daba Mountain (32°08′54″ 

N~33°53′16″N, 105°30′50″E~108°16′45″E) and belongs to Shaanxi province, China. The Hanzhong 

basin lies a typical north subtropical monsoon climate zone. The prevailing climate of this basin is 

temperate and humid, with an average temperature of 14.33°C and 853 mm precipitation annually (Xiao et 

al., 2019). The terrain of the Hanzhong basin is gradually decreasing from north to the south. The forest 

coverage rate reached 52% with a high species diversity thanks to the excellent ecological environment. By 

2017, the population in the basin was 3.44 million, the GDP 133 billion, the total crops cultivated area was 

more than 2000 km2, and the agricultural production per year was 1 million tons (Sun et al., 2020). Thus, 

the Hanzhong basin is called the “land of Fish and Rice” and “land of abundance”. 

  

 

Figure 2 The location of the study area in China (display in RGB band) 

In China, rapeseeds are mainly planted in areas near the Yangtze River (Zhang & He, 2013). Han River is 

the biggest river in the Hanzhong basin as well as the largest tributary of the Yangtze River (Xiao et al., 

2019). Thanks to the unique geographical advantages of the Hanzhong basin and the strong support of 

the local government, rapeseeds have been vastly planted in the Hanzhong basin. The “rape flower sea” is 

attracting tourists from all over the world and is regarded as a huge support for the local tourism industry. 

Also, benefit by the relatively flat terrain of the Hanzhong basin, the Radar distortions such as radar 

shadow and foreshortening in radar images caused by rugged terrains will barely happen. Therefore, it is 
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very representative to choose the Hanzhong basin as the study area using Sentinel-1 images to map and 

monitor rapeseed fields and have a basic understanding of rapeseed in China. 

2.2. Data 

2.2.1. Sentinel-1 Image And Pre-processing 

The Sentinel-1 mission, as a European Radar Observatory of Copernicus, was co-promoted by the 

European Commission and the European Space Agency (ESA). It is contained by two constellation 

satellites: Sentinel-1A and Sentinel-1B. Sentinel-1A was launched in April 2014 while Sentinel-1B was 

launched in April 2016. As a SAR C-band sensor, Sentinel-1 provides free accessible data with four 

possible polarizations: single-polarization (VV, VH) and dual-polarization (VV+VH, HH+HV). The data 

is acquired in four modes, i.e., SM (StripMap), IW (Interferometric Wide swath), EW (Extra-Wide swath), 

WV (Wave). Sentinel-1 data has three-levels: level-0 raw data, level-1 geo-referenced time-tagged data 

(Single look Complex, Grand Range Detected), and level-2 ocean-use data with 12 days temporal 

resolution (ESA, 2013). The metadata of collected Sentinel-1 IW images is shown in Table 1. 
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Table 1 Overview of Sentinel-1 data 

Parameter  Interferometric Wide swath 

Polarization 
 

     Dual VV+ VH 

Azimuth Resolution       <20 m 

Ground Range resolution       <5 m 

Azimuth and range look      Single 

Swath       >250 km 

Maximum NESZ      -22dB 

Radiometric stability 
 

     0.5 dB 

Radiometric Accuracy  1 dB 

Phase Error      50 

Acquisition Date 2018. 10. 7/ 2018. 10. 19/ 2018. 10. 31/  

2018. 11. 12/ 2018. 11. 24/ 2018. 12. 06/  

2018. 12. 18/ 2018. 12. 30/ 2019. 01. 11/ 

2019. 01. 23/ 2019. 02. 04/  2019. 02. 16/ 

2019. 02. 28/ 2019. 03. 12/ 2019. 03. 24/ 

2019. 04. 05/ 2019. 04. 17/ 2019. 04. 29/ 

2019. 05. 11/ 2019. 05. 23/ 2019. 06. 04/ 

2017. 04. 03/ 2017. 04. 15/ 2017. 04. 27/ 

2017. 05. 09/ 2017. 05. 21/ 

Table 1  

 

In this study, the standard level 1 product of Single Look Complex (SLC) collected in IW mode and 

polarized in VH and VV was selected. As shown in Table 1, to map rapeseed fields in 2019, 21 images 

collected from October 7th of 2018 to June 5th of 2019 were selected. As for mapping rapeseed fields in 

2017, 5 images collected from April 1st of 2017 to May 28th of 2017 were selected. By using the Sentinel 

Application Platform (SNAP) Toolbox developed by ESA, images can be converted from digital 

number(DN) values to selected variables. In addition to Sigma VH and Sigma VV, two backscatter indices 

were calculated, namely Sigma VV – Sigma VH, and normalized difference polarization index (NDPI) 

(Cao et al., 2018). The potential of two backscatter indices in vegetation classification has been proved (Li 

and Bijker, 2019). The calculation of NDPI is: 

 
𝜎𝑣𝑣 − 𝜎𝑣ℎ
𝜎𝑣𝑣 + 𝜎𝑣ℎ
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In this study, two pre-processing methods were used. To get Sigma VH, Sigma VV, VV-VH, and NDPI, 

the specific processing steps are as follows: 

 

1) Apply orbit file. In SAR source products, the orbit information is generally inaccurate. Thus, the 

accurate orbit information auto-downloaded by SNAP needs to be applied. 

 

2) Split. The Sentinel-1 IW images were stored in split sub-swath. This step helps to zoom into the study 

area by selecting the sub-swath of interests. 

 

3) Thermal noise removal. SAR products are highly influenced by thermal noise, especially in the cross-

polarization channel. The thermal noise removal step helps to reduce thermal noise. 

 

4) Calibration. RADAR calibration is a process that transfers the digital pixel values to calibrated SAR 

backscattered singles. In this step, backscatter singles are saved in Sigma format. 

 

5) De-burst. The purpose of this step is to remove the gaps between each selected sub-swath. 

 

6) Speckle filter. In SAR images, speckles refer to granular noise caused by interference of waves that are 

reflected from all kinds of elementary scatters. The speckle filter was applied to the SAR images to 

decrease influences caused by speckles and enhance the quality of images. The Refined Lee filter with a 3 

by 3 window size was used in this study owing to its capability in speckle removing while the edge 

information reserves. 

 

7) Terrain correction. In SAR images, geometry distortions caused by side-looking occur frequently. The 

Range Doppler Terrain correction method with SRTM 3ec DEM was applied to the SAR images and the 

images were reprojected to the Universal Traverse Mercator coordinate system (UTM zone 48N, WGS 

84).  

 

8) From linear to dB. The source backscatter coefficients were stored in unitless values and converted to 

dB using a logarithmic transformation.  

 

9) Band math. After eight pre-processing steps above, Sigma VH and Sigma VV can be obtained and the 

values of VV-VH and NDPI can be calculated through band math.  

 

In addition to backscatter coefficients, features (entropy, alpha, and anisotropy) derived from Sentinel-1 

SAR data through SAR H-Alpha Dual-Polarization decomposition were used. H-Alpha Dual-Polarization 

is modified for dual-polarized data (Cloude and Pottier, 1997). Entropy-Alpha plane is commonly used in 

representing the relation between decomposition features and scattering mechanisms through a nine-zone 

segmentation (Table2) (Yonezawa et al., 2012). 

 

 

 

 

 

 

 

 
 



MAPPING AND MONITORING OILSEED RAPE FIELDS USING SENTINEL-1 TIME-SERIES DATA 

11 

Table 2 The entropy-alpha plane partitioned into nine zones. 

Zone Entropy Alpha Scattering type 

1 0.9-1 55–90 High Entropy Multiple 

Scattering 

2 0.9-1 40–55 High Entropy 

Vegetation Scattering 

3 0.9-1 0-40 High Entropy Surface 

Scattering 

4 0.5-0.9 50-90 Medium Entropy 

Multiple Scattering 

5 0.5-0.9 40-50 Medium Entropy 

Vegetation Scattering 

6 0.5-0.9 0-40 Medium Entropy 

Surface Scattering 

7 0-0.5 47.5-90 Low Entropy Multiple 

Scattering 

8 0-0.5 42.5-47.5 Low Entropy Dipole 

Scattering 

9 0-0.5 0-42.5 Low Entropy Surface 

Scattering 

 

To get entropy, anisotropy, and alpha, the specific pre-processing steps are as follows (note that repeated 

pre-processing steps are not explained in detail): 1) Apply orbit file. 2) Split. 3) Calibration. In this step, 

backscatter singles are saved in complex output. 4) De-burst. 5) Polarimetric Matrix generation. To 

generate the scattering matrix backscatter singles are stored in complex numbers and the polarimetric 

matrix needs to be applied using the default c2 method through SNAP. 6) Speckle filter. 7) Terrain 

correction. 8) Polarimetric decomposition. To obtain entropy, anisotropy, and alpha, the polarimetric 

decomposition needs to be applied in the H-Alpha Dual-Pol decomposition method through in SNAP. 

After that, all chosen bands are resampled to 20-meter spatial resolution using the nearest neighbor 

method. Figure 3 shows the pre-processed Sentinel-1 data obtained on April 29 th , 2019. 
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F

 
Figure 3 Features derived from Sentinel-1 data (April 29th of 2019). 

2.2.2. Topographic Data 

In this study, topographic information including DEM, aspect, and the slope was extracted from 30m 

SRTM Digital Elevation Model (DEM) Version 2 released by the ministry of economy, trade, and industry 

(METI) and the United States national aeronautics and space administration (NASA) on October 17th of 

2011. The DEM data were geometrically co-registered with Sentinel-1 images using nearest-neighbor 

interpolation. The topographic modeling tool provided by ENVI software (version 5.3) has been used in 

extracting aspect and slope.  
 

 

 
 

 

 

 

 

 

 

 

Figure 4 Features derived from DEM data. 



MAPPING AND MONITORING OILSEED RAPE FIELDS USING SENTINEL-1 TIME-SERIES DATA 

13 

2.2.3. Field Data 

The sampling method used in this study is stratified random sampling. Compare to normal random 

sampling, stratified random sampling highlights the differences between strata, rather than treat all 

population as equal. Two strata were defined a) rapeseed fields and b) non-rapeseed. In the non-rapeseed 

strata, 5 land cover types were selected 1) Waterbody 2) Forest 3) Wheatfields 4) Build-up area 5) Bare 

soil, and 6) Vegetable (Sun et al., 2014). The rapeseed fields data for training and validation in the 

Hanzhong basin in 2019 were obtained from the field. Fieldwork was conducted in August 2019, which is 

not a local rapeseed growing season. However, with the help of local experts and high-resolution 

RapidEye images obtained in the rapeseed growing season（April 14th 2019), fields in which rapeseed was 

planted last season can still be distinguished. Central points of rapeseed fields that reached a size of 

50m*50m were collected as sample points and GPS positions of these central points were obtained. The 

GPS position of non-rapeseed points was collected using the same method. In total there are 180 rapeseed 

sample points and 180 non-rapeseed sample points collected. 2/3 of rapeseed and non-rapeseed ground 

truth data was randomly selected for training, and the remaining 1/3 of ground truth data was used for 

validation.  

The ground truth data for training and validation in the Hanzhong basin in 2017 was based on visual 

interpretation of a high-resolution RapidEye image （11 April 2017. Similarly, 180 rapeseed sample points 

and 180 non-rapeseed sample points were selected and 2/3 of rapeseed and non-rapeseed ground truth 

data were used for training while 1/3 of rapeseed and non-rapeseed ground truth data were used for 

validation. Figure5 and Figure6 show the distribution of selected training and validation points of 2017 

and 2019 respectively. Besides, to reduce the inconsistency in sample selection between 2017 and 2019 

and to make the classification accuracy of 2017 and 2019 comparable, an extra 60 rapeseed fields sample 

points and 60 non-rapeseed sample points that have no change between 2017 and 2019 were selected 

through visual interpretation, and, all these 120 sample points were be used for validation (Shown in 

Figure7).  

 

 

Figure 5 Training and sampling points used for rapeseed mapping in the Hanzhong basin in 2017 
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Figure 6 Training and sampling points used for rapeseed mapping in the Hanzhong basin in 2019 

 

 

Figure 7 Additional 120 sample points of rapeseed and non-rapeseed in the Hanzhong basin 
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2.2.4.  Crop calendar for rapeseed  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  

 

The local crop calendar of rapeseed was acquired from local experts and rapeseed planters. According to 

the calendar, the planting period of rapeseeds in the Hanzhong basin is from mid-October of the first year 

to the mid-May of the second year. The specific periods of different growth stages are 1) Pre-emergence 

stage and seeding stage: From mid-October to mid-January 2) Rosette stage and bud stage: From mid-

January to start of March 3) Flower stage: From the start of March to mid-April 4) Ripening stage: From 

mid-April to mid-May.  

 

The scattering mechanism between the radar signals and the rape field can be generated in three ways: 1) 

volume scattering, 2) double-bounce scattering, and 3) surface scattering. Volume scattering occurs when 

SAR signals interact with the rapeseed canopy, double-bounce scattering is present when SAR signals are 

backscattered by the boundary of the field while surface scattering happens when signals go through the 

canopy and are backscattered by the soil (Ustuner & Sanli, 2019).  

 

The growth stages of rapeseed can be combined with the scattering mechanism. At the pre-emergence and 

seeding stage (figure 4, stages 1 and 2), the rapeseed can hardly be distinguished, and the field behaves 

similarly to bare soil, and therefore the dominant scattering method is surface scattering. At the rosette 

and bud stage (figure 4, stages 3 and 4), with the rapeseed growth, leaves and stems begin to appear, 

volume scattering happens and is mixed with the surface scattering.  Also, some slight double-bounce 

scattering occurs in this stage. At the flower and ripening stage (figure 4, stages 5 and 6), the height of 

rapeseed reaches its peak. The dominant scattering is volume scattering, surface scattering barely happens. 

After harvesting, all the rapeseed is removed, and surface scattering becomes dominant again.  
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Figure 8Growth stages in rapeseed and local crop calendar of rapseed (Source: https://www.canolacouncil.org/canola-
encyclopedia/crop-development/growth-stages/) 
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2.3. Classification methods 

In this study, the land cover of the Hanzhong basin was classified into two classes (rapeseed and non-

rapeseed) using the Random Forest classifier and Support Vector Machine classifier based on Sentinel-1 

time-series data and topographic data.  Ground truth data used for training and validation was obtained 

from the Hanzhong basin. The main process of this study can be divided into five parts: Random forest 

classification, Support vector machine classification, Parameter tuning, accuracy assessment, and 

comparison.  
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Figure 9 Flowchart of research methodology 
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2.3.1. Random forest algorithm 

Random forest (RF) classifier is a popular and efficient ensemble supervised classification approach and 

has been widely used in remote sensing classification (Lu & Weng, 2007). The RF classifier equipped three 

main advantages. Firstly, the random forest is a non-parametric model. Compared to the parametric 

classification model such as Maximum likelihood, the RF classifier can operate with non-parameter 

distributed data, and data obtained from different remote sensing sensors can be incorporated (Belgiu & 

Drăguţ, 2016). Secondly, high classification accuracy can usually be provided by random forest classifier 

compared to other machine learning classifiers (Shang & Chisholm, 2014). Also, variable importance can 

be provided by random forest classifier (Chan et al., 2012). Besides, random forest classifier can deal with 

small sample size and is comparatively less influenced by noise (Chan & Paelinckx, 2008a). Owing to these 

advantages, RF classifier has been widely used in analyzing crop phenology (Wang et al., 2019), crop 

classification (Li et al., 2020; Tatsumi et al., 2015), and land cover mapping (Haas & Ban, 2014；Colditz & 

Roland, 2015). However, despite all the above-mentioned advantages of the RF classifier, the computation 

complexity and the long training period are always regarded as disadvantages (Zhou et al., 2020).  

 

The random forest classifier is an ensemble of decision trees (Zhou et al., 2020). Each of these decision 

trees was established based on a bootstrapped sample of the training set and hold certain discriminative 

criteria. After trees grow, each tree will split based on user-defined reduced numbers of input variables 

(mtry). And, each tree will vote for the best input variable using bootstrapped samples, then the final result 

will be provided based on the majority of votes (Ho, 1998). In each tree, one-third of samples were 

selected as in-bag- samples that are used for training while the rest were selected as out-of-bag samples 

which are used for internal cross-validation to estimate model accuracy through out-of-bag error (Millard 

& Richardson, 2013).  

2.3.2. Support vector machine algorithm 

The support vector machine (SVM) is a classification method trying to solve classification problems by 

building a hyperplane. The hyperplane is based on input features from different classes and then based on 

the hyperplane, the unlabelled points assigned to classes (Evgeniou and pontil, 2014). The SVM classifier 

has its advantages in working with a small sample size, solving the problem caused by data that cannot be 

linearly separated and is working with high dimensional data. The SVM classifier was proposed in the late 

70s and has been wildly used in solving all kinds of classification problems in the last decade. The 

application of the SVM classifier in crop classification such as rice, wheat, maize, and so on can be easily 

found. On the contrary, the difficulty in hyperparameters tuning and long training time consumed in terms 

of a large dataset are disadvantages of the SVM classifier.  

 

In this study, the routine procedure of the SVM classifier contains 2 steps. Firstly, build a hyperplane that 

can separate input data based on kernel function, cost value, and gamma value. And secondly, based on 

the hyperplane to classify the pixels of input data.  

2.3.3.  Parameter tuning 

In this study, the input predictive variables used by the RF classifier and the SVM classifier are retrieved 

from Sentinel-1 images and topographic data. Both the RF model and SVM model were applied in R 

statistical software. The specific predictive variables are Sigma VH, Sigma VV, VV-VH, NDPI, slope, 

aspect, elevation, entropy, anisotropy, and alpha. To implement these two classifications in R software, the 

dplyr package, e1071 package, caret package, and raster package were installed and used.  In the RF 

classifier, there are two uncertain parameters, the number of decision trees (ntree) and the number of split 
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variables in each node (mtry). The ntree was set using the default value 500 and mtry was set to 57 based 

on the out-of-bag error. In the SVM classifier, three essential parameters need to be defined: the kernel 

function, cost value, and gamma value. The default radial kernel was selected in this study, while the cost 

value and gamma value needed to be further determined. 

 

The K-fold cross-validation was proposed to determine the cost value (SVM) and gamma value (SVM). 

Cross-validation is a popular validation method in model selection as well as parameter tuning. The 

routine procedure of k-fold cross-validation contains 3 steps: Firstly, split training data into k equal parts. 

Secondly, run the model under a particular parameter value; in this model, the first will be fold used for 

training while the remaining portion will be used for accuracy testing. Then the second fold will be used 

for training while the remaining part will be used for accuracy testing. Likewise, all folds will be used for 

training (shown in Figure 10). Finally, previous steps are repeated for all possible parameter values, and 

the most appropriate parameter can be found. Based on the parameters tuning results, the cost value was 

set to 5, the gamma value was set to 0.004.  
 

 

 

 

 

 

 

 

 

 

2.4.  Accuracy assessment 

The performance of different rapeseed fields distribution maps from RF classifier or SVM classifier using 

either single data, multi-temporal or time-series images will be evaluated based on overall accuracy and the 

kappa coefficient. The overall accuracy is the most direct way to evaluate classification accuracy. However, 

in this study, there are only two classes (rapeseed fields, non-rapeseed) and problems of chance agreement 

in overall accuracy may occur. Thus, it is not rigorous to only use overall accuracy in accuracy evaluation. 

To overcome the limitation of chance agreement in overall accuracy, the chance-corrected measure 

Cohen’s kappa coefficient (Cohen, 1960) was used in this study. Cohen’s kappa can measure the 

agreement between classified land cover classes and true land cover classes while avoiding the chance 

agreement, therefore regarded as a more rigorous way of accuracy assessment compared to overall 

accuracy (Li & Chen, 2005). In the kappa coefficient, a value of 0 means no agreement exists while a value 

of 1 indicates a perfect agreement (Tang et al., 2015). In this study, the performance of models was 

assessed based on criteria proposed by Landis and Koch (1977). Specifically, the performance of models 

was divided into five categories: poor (kappa<0), slight (kappa:  0-0.2), fair (kappa: 0.21-0.40), moderate 

(kappa: 06.1-0.8), almost perfect (kappa: 0.81-1). 

 

Both the overall accuracy and kappa coefficient of different classified rapeseed maps will be compared for 

the significant difference by pairwise z-statistics (Congalton, 1991). The result will be regarded as 

statistically significantly different when z value larger or equal to 1.96 (95% confidence level). Consider the 

pixel-based classification method used in this study, to make sure classified rapeseed maps in 2017 and 

Training set 

Figure 10 Illustration of K-fold cross-validation (https://scikit-
learn.org/stable/modules/cross_validation.html) 
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2019 are comparable, an additional McNemar’s test was applied, the result will be regarded as statistically 

different when chi-square greater than 3.84 (95% confidence level, degree of freedom=1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAPPING AND MONITORING OILSEED RAPE FIELDS USING SENTINEL-1 TIME-SERIES DATA 

21 

3. RESULTS 

3.1. Temporal Behavior of Sentinel-1 Radar Signatures Over Rapeseed Fields 

From Figure 11 to Figure 14 shows the box and whisker plot of Sigma VH, Sigma VV, VV-VH, and 

NDPI from October 7th of 2018 to June 4th of 2019, 21 images in total. For each step the observed 180 

values of a related parameter included. 

 

Figure 11 Box plot temporal profiles of Sigma VH 
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Figure 12 Box plot temporal profiles of Sigma VV 

  

 

Figure 13 Box plot temporal profiles of Sigma VV – Sigma VH 
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Figure 14  Box plot temporal profiles of NDPI 

 

 

Figure 15 H-Alpha plane in 11th of May ( figure illustrate rapeseed for the yellow color, non-rapeseed for blue color) 
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As shown in Figure 15, the entropy of rapeseed points mainly distributed in the range between 0.8-1 while 

the alpha mainly distributed in the range between 20-40, indicated that on the 11th of May in the 

Hanzhong basin, the dominant scattering mechanisms of rapeseed fields are medium-high entropy surface 

scattering (Table 2). 
 

3.2. Classifier comparison for mapping rapeseed fields using Sentinel-1 time series 

3.2.1. Random forest classification 

According to the confusion matrix (Table 3), the overall accuracy was 99.1% and the kappa coefficient 

was 0.98, Indicated an almost perfect performance model performance proposed by Landis and Koch 

(1977). 

 
Table 3 Confusion matrix of the classification result using Sentinel-1 time-series data through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 54 1 55 98.18% 

rapeseed  0 54 54 100% 

Total 54 55 109  

Producer accuracy 100% 98.18%   

Overall accuracy = 99.1% 

Kappa statistic = 0.98 

 

    

3.2.2. Support vector machine classification 

According to the confusion matrix (Table 4), the overall accuracy was 99.1% and the kappa coefficient 

was 0.98, Indicated an almost perfect performance model performance proposed by Landis and Koch 

(1977). 

 
Table 4 Confusion matrix of the classification result using Sentinel-1 time-series data through support vector 

machine classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 53 0 53 100% 

rapeseed  1 55 56 98.21% 

Total 54 55 109  

Producer accuracy 98.18% 100%   
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Overall accuracy = 99.1% 

Kappa statistic = 0.98 

    

3.2.3.  Accuracy comparison 

 
Table 5 The Z-statistic comparison of random forest and support vector machine for rapeseed mapping in the 

Hanzhong basin 

Classification method Random forest Support vector machine 

Random forest -  

Support vector machine 0 - 

 

The result of Z-statistic is smaller than 1.96 (95% confidence level), indicates that there is no significant 

difference between classification accuracies of random forest and support vector classifier in rapeseed 

mapping using Sentinel-1 time-series data. 
 

3.3.  Variable importance  

The Gini index displayed in Table 1 shows the variable importance of the Random Forest classifier when 

using the entire 21 images as input. According to Table 1, the Sigma VH value from April 17th of 2019 

contributes the most to the classification, followed by anisotropy and entropy of the same day while the 

Aspect value on December 30th of 2019 contributes the least to the classification accuracy.  
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Table 6  Variable importance plot of classification result using time-series Sentinel-1 SAR data based on Gini index 

 

0           0.5         1.0            1.5           2.0            2.5   



MAPPING AND MONITORING OILSEED RAPE FIELDS USING SENTINEL-1 TIME-SERIES DATA 

28 

 

0              0.5           1.0            1.5           2.0            2.5   



MAPPING AND MONITORING OILSEED RAPE FIELDS USING SENTINEL-1 TIME-SERIES DATA 

29 

 

 

0            0.5            1.0            1.5           2.0            2.5   



MAPPING AND MONITORING OILSEED RAPE FIELDS USING SENTINEL-1 TIME-SERIES DATA 

30 

3.4.  Rapeseed mapping accuracy based on mono-temporal Sentinel-1 data  

Figure 16 shows the classification result of rapeseed or non-rapeseed uses the Sentinel-1 SAR image 

obtained from the 17th of April only. The classification map illustrates rapeseed for green color while non-

rapeseed for yellow color. Through visual interpretation, the rapeseed covered almost half of the area, also 

many forests in the mountain region and city areas were misclassified to rapeseed fields. The map appears 

noisy and distribution patterns of rapeseed fields are hard to be distinguished. 
 

 

Figure 16 Classification result in the Hanzhong basin using mono-temporal Sentinel-1 image obtained on 17th of 
April,  2019 through random forest classifier 

 

 

 

 

 

 

 

 

 

 

 
According to the confusion matrix (Table 7), the overall accuracy was 82.6% and the kappa coefficient 

was 0.65, Indicated a moderate performance model performance proposed by Landis and Koch (1977). 
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Table 7 Confusion matrix of the classification result using Sentinel-1 mono-temporal image obtained on April 17th, 

2019 through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 41 6 47 87.23% 

rapeseed  13 49 62 79.03% 

Total 54 55 109  

Producer accuracy 75.93% 92.45%   

Overall accuracy = 82.57% 

Kappa statistic = 0.65 

 

    

Figure 17 shows the classification result of rapeseed or non-rapeseed use the Sentinel-1 SAR image 

obtained from the 11th of May only. Through visual interpretation, the map still appears noisy and 

distribution patterns of rapeseed fields are hard to be distinguished. Still, many forests in the mountain 

region and urban areas were misclassified into rapeseed fields. 

 

 

Figure 17 Classification result in the Hanzhong basin using mono-temporal Sentinel-1 image obtained on May 11th, 
2019 through random forest classifier 
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According to the confusion matrix (Table 8), the overall accuracy was 99.1% and the kappa coefficient 

was 0.68, Indicated moderate performance model performance proposed by Landis and Koch (1977). 

 

 
Table 8 Confusion matrix of the classification result using Sentinel-1 mono-temporal image obtained on 11th of May, 

2019 through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 43 6 49 87.23% 

rapeseed  11 49 60 79.03% 

Total 54 55 109  

Producer accuracy 75.93% 92.45%   

Overall accuracy = 84.40% 

Kappa statistic = 0.68 
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3.5. Rapeseed mapping accuracy based on multi-temporal Sentinel-1 data 

 

 

Figure 18 Classification result in the Hanzhong basin using multi-temporal Sentinel-1 images obtained on April 17th  
and May 11th of 2019 through random forest classifier 

 

Figure 18 shows the classification result of rapeseed or non-rapeseed use multi-temporal Sentinel-1 SAR 

images obtained from April 17th and May 11th. Through visual interpretation, the misclassified in terms of 

forests and urban areas occurs less often compared to the results of using mono-temporal data. The 

distribution pattern of rapeseed can be distinguished preliminarily. 

 
Table 9 Confusion matrix of the classification result using Sentinel-1 multi-temporal image obtained on April 17th 

and May 11th of 2019 through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 53 7 60 88.33% 

rapeseed  1 48 49 97.96% 

Total 54 55 109  

Producer accuracy 98.14% 87.27%   
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Overall accuracy = 92.66% 

Kappa statistic = 0.85 

 

    

According to the confusion matrix (Table 9), the overall accuracy was 92.66% and the kappa coefficient 

was 0.85, Indicated an almost perfect performance model performance proposed by Landis and Koch 

(1977). 
 

 

Figure 19 Classification result in the Hanzhong basin using multi-temporal Sentinel-1 images obtained on April 17th, 
May 11th, and Map 23rd of 2019 through random forest classifier 

 

Figure 19 shows the classification result of rapeseed or non-rapeseed use multi-temporal Sentinel-1 SAR 

images obtained from April 17th, May 11th, and Map 23rd of 2019. This classification map has a better 

performance compared to classifier maps shown before, only a few urban areas were misclassified as 

rapeseed fields.  
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Table 10 Confusion matrix of the classification result using Sentinel-1 multi-temporal image obtained on April 17th, 
May 11th, and May 23rd of 2019 through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 51 2 53 96.23% 

rapeseed  3 53 56 94.64% 

Total 54 55 109  

Producer accuracy 94.44% 96.36%   

Overall accuracy = 95.41% 

Kappa statistic = 0.91 

 

    

According to the confusion matrix (Table 10), the overall accuracy was 95.41% and the kappa coefficient 

was 0.91, Indicated an almost perfect performance model performance proposed by Landis and Koch 

(1977). 
 

 

Figure 20 Classification result in the Hanzhong basin using multi-temporal Sentinel-1 images obtained on April 5th, 
April 17th, April 29th, May 11th, and Map 23rd of 2019 through random forest classifier 
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Figure 20 shows the classification result of rapeseed or non-rapeseed use multi-temporal Sentinel-1 SAR 

obtained on April 5th, April 17th, April 29th, May 11th, and Map 23rd of 2019. Obviously, this map 

performance better than mono-temporal images or other multi-temporal images. The boundary of urban 

areas can be easily distinguished which means the misclassified problem related to urban areas was solved. 

Also, only a few rapeseed fields occurred in the mountain region which conforms to the facts that 

rapeseed also planted in the relatively flat area inside the mountain region.  

 

 
Table 11 Confusion matrix of the classification result using Sentinel-1 multi-temporal image obtained on April 17th, 

May 11th, and May 23rd of 2019 through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 52 1 53 96.23% 

rapeseed  2 54 56 94.64% 

Total 54 55 109  

Producer accuracy 94.44% 96.36%   

Overall accuracy = 97.24% 

Kappa statistic = 0.94 

 

    

According to the confusion matrix (Table 11), the overall accuracy was 97.24% and the kappa coefficient 

was 0.94, Indicated an almost perfect performance model performance proposed by Landis and Koch 

(1977). 
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Table 12 The z-statistic comparison of selected temporal combinations for rapeseed mapping in the Hanzhong basin. 
Significantly different accuracies with 95% confidence interval are indicated by * 

Temporal 

dimensions 

Mono-

temporal 

April 17 

Mono-

temporal  

May 11 

Multi-

temporal 

(2 images) 

Multi-

temporal 

(3 images) 

Multi-

temporal 

(5 images) 

Time-series 

Mono-

temporal 

April 17 

      

Mono-

temporal  

May 11 

0.36      

Multi-

temporal 

(2 images) 

2.26 1.91     

Multi-

temporal 

(3 images) 

3.02       2.70 0.86    

Multi-

temporal 

(5 images) 

3.59      3.28 1.54 0.72   

Time-seris 4.22 3.93 2.38        1.66 1.00  

3.6. Change Detection of Rapeseed Field Between 2017 and 2019  

3.6.1. Classification of rapeseed fields in 2017 

Figure 21 shows the classification result of rapeseed or non-rapeseed use multi-temporal Sentinel-1 SAR 

images obtained on April 3, April 15, April 27, May 9, and May 21 of 2017. Similar to Figure 20, the 

distribution pattern of rapeseed fields can be distinguished.  
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Figure 21 Classification result in the Hanzhong basin using multi-temporal Sentinel-1 images obtained on April 3, 
April 15, April 27, May 9, and May 21 of 2017 through random forest classifier 

 

 
Table 13 Confusion matrix of the classification result using Sentinel-1 multi-temporal image obtained on April 3, 

April 15, April 27, May 9, and May 21 of 2017 through random forest classifier 

Referenced data     

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 53 2 55 96.36% 

rapeseed  1 53 54 98.14% 

Total 54 57 109  

Producer accuracy 98.14% 92.98%   
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Overall accuracy = 97.24% 

Kappa statistic = 0.94 

 

    

According to the confusion matrix (Table 13), the overall accuracy was 97.24% and the kappa coefficient 

was 0.94, Indicated an almost perfect performance model performance proposed by Landis and Koch 

(1977). 
 

 

 

 

Table 14 and 15 shows the classification accuracy of rapeseed fields in the Hanzhong basin in 2017 and 

2019 using additional 120 validation points respectively. Both of these two results indicated as almost 

perfect model performance.  
Table 14 Confusion matrix of classification using addition 120 validation points of 2017 

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 58 0 58 100% 

rapeseed  2 60 62 96.78% 

Total 60 60 120  

Producer accuracy 96.67% 100%   

Overall accuracy = 98.33% 

Kappa statistic = 0.96 

 

    

 

 

Table 15 Confusion matrix of classification using addition 120 validation points of 2019 

Classifier data  Non-rapeseed Rapeseed Total  User accuracy 

Non-rapeseed 58 1 59 98.30% 

rapeseed  2 59 61 96.72% 

Total 60 60 120  

Producer accuracy 96.67% 98.33%   

Overall accuracy = 97.50% 

Kappa statistic = 0.95 

 

    

 

Table 16  z-statistic and Chi-square of McNemar’s test 

Chi-square  0.33 

Z-statistic 0.14 
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As shown in Table 16, the z-statistic between classification result between 2017 and 2019 is 0.14 (<1.96, 

95% confidence level) while Chi-square is 0.33 (<3.84, 95% confidence level, df= 1), indicated that there 

is no test of significant differences of classification accuracy between rapeseed distribution maps in 2017 

and 2019.  

 

 

 
 

3.6.2. Change detection 

 

 

Figure 22 Change detection map of rapeseed fields in the Hanzhong basin between 2017 and 2019 

 

Figure 22 shows the change of rapeseed fields in the Hanzhong basin between 2017 and 2019. The change 

detection map illustrated rapeseed fields loss for red, stable areas for grey, and rapeseed gain for green. 

Through visual interpretation, a rapid change of rapeseed fields can be found. Moreover, a huge increase 

in rapeseed fields can be found in the middle and middle west part of the Hanzhong basin. According to 

the pixel-based statistic, the total area of rapeseed fields in the Hanzhong basin was 134.39km2 in 2017, 

and 128.39 km2 in 2019 which means the area of rapeseed fields in the Hanzhong basin decreased 6km2. 
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4. DISCUSSION 

4.1. Accuracy and feasibility of Sentinel-1 SAR data for mapping rapeseed fields 

This study accesses the capacity for Sentinel-1 dual-polarization SAR data for rapeseed mapping and 

monitoring. Twenty-one Sentinel-1 images in 2019 were acquired, and both pixel-based random forest and 

support vector machine classifiers were performed on these data. The classification results led to an 

overall accuracy of 99.1%, and a kappa coefficient of 0.98 in both the random forest model and support 

vector machine model. Compared to the result of Vaudour et al. (2015) (87% Overall accuracy) and Wang 

et al. (2018) (85% overall accuracy) and many other studies that only used optical imagery in rapeseed 

mapping, this study achieved higher classification accuracy (Waldhoff et al., 2017; Esch et al., 2014). 

Furthermore, the rainy (cloudy) weather condition, which frequently occurs at growth stages of rapeseed 

encourages the use of Sentinel-1 data in rapeseed mapping. Also, compared to many other studies that 

used combinations of Sentinel-1 and optical images in monitoring rapeseed, this study gets a similar 

classification accuracy without adding additional optical imagery (Mercier et al., 2020; Lussem et al., 2016). 

The reason may be as follows:  only the central points of rapeseed fields that reached 50m x 50m size were 

selected and thanks to homogeneous rapeseed fields, rich backscatter information was provided. At the 

same time, it was easier to distinguish rapeseed fields. The regular and distinct land rotations of rapeseed 

in the Hanzhong basin make the backscatter signal observable, thus contributing to the classification. The 

results of this study proved the potential of Sentinel-1 data for rapeseed mapping.  

 

From the result kappa z-test, it can be found that there is no significant difference among the classification 

resulted from either the use of random forest classifier or the use of support vector machine classifier. In 

studies that used Sentinel-1 data in land cover classification (Jamali, 2020), urban area extraction (Jamali 

and Rahman, 2019) through random forest and support vector machine classifiers also showed similar 

results. This Proves that the Sentinel-1 data is not sensitive to these two classifiers.  

 

Thanks to the significant correction between SAR backscatter coefficients with rapeseed growth stages 

(Zhang et al., 2018), this study achieved a high classification accuracy. VH, VV remain stable before 

rosette. During the rosette and bud stage, the value of VH and VV slightly increases with the rapeseed 

growth as well as the increase in biomass. During flowering (start of March-start of April), VH keeps 

increasing while VV starts decreasing gradually. The trend of decreasing in VV can be explained by the 

decrease of vertical transformation from dense rosette to a thin flowering stalk. Both VV and VH showed 

a dramatic increase at the start of ripening (start of April-mid of May), which was also observed in many 

other studies (Wiseman et al., 2014; Fieuzal et al ., 2013). The increase was caused by the huge 

development of rapeseed structure while stems have no preferred orientations during this period. This 

leads to more complex geometry and results in a strong volume-scattering (Betbeder et al., 2016). During 

ripening (mid of April-start of May), both VV and VH showed a slight decrease attributable to the 

reduction of water content in both the soil and the top layer of rapeseed. Similar results were also found in 

many other studies (Mercier et al., 2020; Veloso et al., 2017). After harvesting (mid of May-start of June), 

both VV and VH decreased dramatically. The selected backscatter indices VV-VH showed an opposite 

trend compared to VV and VH, while the NDPI changed rapidly through growth stages. Therefore, it is 

hard to explain the correction between VV-VH and NDPI with rapeseed growth stages. 

 

As shown in Figure 15, the Entropy-Alpha plane indicated that on the 11th of May in the Hanzhong basin, 

the dominant scattering mechanisms of rapeseed fields are medium-high entropy surface scattering. 

However, according to the local crop calendar (Figure 8), the rapeseed is in the ripening stage during this 

period which means the vegetation volume scattering should be the dominant scattering mechanism. This 
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may be caused by less information related to scattering objects that can be provided by dual-polarization 

compared to full-polarimetric data (Sugimoto et al., 2013). Similiar, Li and Bijker (2019) summarized that, 

in Sentinel-1 imagery, Sigma VV and Sigma VH are robust in vegetable classification while features 

acquired through decomposition did not add additional value to the classification result.   

4.2. Optimal timing for mapping rapeseed fields using Sentinel-1 SAR data 

Despite the high classification accuracy provided by the use of Sentinel-1 time-series images in the 

rapeseed classification, the huge size of the entire dataset (21 images, containing 210 bands in total) limited 

the implementation of the classification. To reduce the input data size, the performance of using mono-

temporal and multi-temporal Sentinel-1 images in rapeseed classification has been explored and compared.  

 

The variable importance, an essential concept in machine learning classification models, provides a 

scientific way in both understanding and explaining models. In this study, all variables were retrieved from 

Sentinel-1 data and DEM data, indicated the biomass production, vegetation structure, moisture content, 

and topographic information of rapeseed fields. According to the variable importance table, DEM, slope, 

and aspect generated from DEM data contribute the least to the classification, which is understandable 

because DEM data is regarded as supportive data assumed no change in 2019. Within each day, Sigma VH 

and SigmaVV more likely to get the highest Gini value to conform with the previous conclusion that 

Sigma VH and Sigma VV closely related to the growth of rapeseed.  

 

According to the variable importance table, the importance of variables provided by April and May 2019 

contributes most to RF classification. Among them, the variables retrieved from April 17 of 2019, and 

May 11  of 2019 contribute the most to the classification result. Hence, to reduce the input data size, the 

classification performance of mono-temporal (17th of April, 11th of May) and multi-temporal were 

displayed and compared. The result showed classification accuracies of using two mono-temporal images 

are significantly lower than that using time-series images. This was caused by less information on growth 

stages that can be provided by mono-temporal images compared to time-series images. The classification 

accuracies of multi-temporal using two or three images are higher than that using mono-temporal images. 

Especially when the image obtained on the 23rd of May added because the sharp change of rapeseed fields 

between before and after harvesting was captured. The classification accuracy (overall accuracy= 95.41, 

kappa statistic= 0.91) of using multi-temporal that contains three images (17th of April, 11th of May, 23rd of 

May) has no significant differences compared to that using time-series images. However, the classified 

rapeseed distribution did not match the high-resolution optical images perfectly. This circumstance may be 

caused by the selection of sample points. In the sample points selection, only the central pixels of the 

rapeseed fields reaching 50mx50m  size were selected. Thus, the classification accuracy only showed 

whether the central pixels of the rapeseed fields were correctly classified rather than whether entire 

rapeseed fields were correctly classified. The lack of image segmentation and the inability to generate 

homogenous image objects' is the main disadvantage of pixel-based classification over object-based 

classification (Liu, et al. 2010). By contrast, rapeseed fields extraction using all 5 images obtained in April 

and May of 2019, achieved the highest classification accuracy among the use of multi-temporal images, 

and the classified results matched the rapeseed fields in the high-resolution optical image almost perfectly. 

In Sentinel-1 data obtained from April and May, backscatter information related to the end of the 

flowering stage, the ripening stage, and the harvesting stage can be provided. Unique structural changes of 

rapeseed in these stages were captured, therefore achieved a high classification accuracy.  

 

It is also worth mentioning that despite features acquired from the 17th of April contribute the most to the 

classification result. The classification accuracy (overall accuracy = 82.57%, kappa statistic = 0.65) of using 

the image obtained on the 17th of April is lower than that use the image obtained on the 11th of May 
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(overall accuracy = 84.40%, kappa statistic = 0.68). The dramatic change in both Sigma VV and Sigma VH 

between the 5th of April and 17th of April was captured by the classifier, therefore get high rank in mean 

decrease Gini.  

4.3. Spatial and temporal changes of rapeseed fields in the Hanzhong Basin  

Indicated by the change map of rapeseed between 2017 and 2019, the total size of the rapeseed field in 

2019 is 6 km2  less than that in 2017, which means the rapeseed fields in the Hanzhong basin remains 

stable between 2017 and 2019. 

 

The change detection map shows a high frequency of land rotation. The land rotation can be regarded as 

an effective way of both controlling the pest problems as well as a remedy for soil productivity (Spencer, 

et al.2008). In the Hanzhong basin, the rapeseed field is mainly rotated with the wheat field, which proved 

a mature way of land management in the Hanzhong basin, it maximizes the productivity of the field and 

reduces the impact of pests while meeting the primary yield supply of both wheat and rapeseed.  

 

The Hanzhong basin transformed into a vast sea of rape flowers from mid-March to mid-April, known as 

the most beautiful rape flower sea in China. The extraordinary scenery of the broad area of rape flowers 

attracts thousands of tourists and becomes the most essential part of the local tourism industry. Thus, the 

“rape flower festival”, dominated by the Hanzhong municipal government, aimed at through the medium 

of rape flowers and promote the development of local tourism emerged. “The main venue” was set up to 

highlight the theme “rape flower sea” of the festival and changed among counties annually. Rapeseed 

fields in a county tend to be more aggregated when hosting the main venue. Also, the size of the rapeseed 

fields where the main venue was located will increase. In 2017 the main venue was set in Mian county 

while in 2019 the Hantai district was hosting the festival. The change of the main venue explained the 

change of aggregated fields of rapeseed. In 2017 when the main venue set in the Mian county, the 

aggregated dense rapeseed fields occur in the north-west corner of the study area, while in 2019 the 

aggregated dense rapeseed fields occur in the central part of the study area. In consequence, the north-

west corner of the change map shows a massive decline in aggregated rapeseed fields while in the central 

part, there is a considerable increase. Fitness between the rapeseed fields changed the map, and the actual 

situation also proved the accuracy of classification.  
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

In this study, rapeseed fields were mapping over Hanzhong Basin in Shaanxi Province, China using the 

Sentinel-1 SAR time series and digital terrain data by applying two classification algorithms: Random 

Forests and Support Vector Machine. The optimal timing for mapping rapeseed fields was investigated, 

and the changes of rapeseed fields in the study area between 2017 and 2019 were also quantified. The 

study showed that the Sentinel-1 SAR data can successfully be used to map rapeseed fields with a  very 

high classification accuracy, no matter which classification algorithm was applied. The optimal timing for 

mapping rapeseed fields in Hanzhong Basin is in April and May. The rapeseed fields change hot spot was 

found to be consistent with the host place of the Rapeseed Flowers Festival in the study area, although a 

slight decline of the rapeseed fields, as well as a high frequency of crop rotation with other crops (i.e., 

winter wheat), has been observed between 2017 and 2019. Given the very good accuracy obtained and the 

fact that Sentinel-1 SAR data is free and open access, it is believed that the Sentinel-1 SAR time series may 

be used for mapping and monitoring of rapeseed fields over large areas such as national and continental 

levels. 

5.2. Recommendation  

Rapeseed plays an essential role in securing edible oil worldwide. Rapeseed fields in the Hanzhong basin 

were statistically analyzed with pixel-based random forest classifier. The results show a high classification 

accuracy. However, the marginal area of rapeseed fields did not be correctly classified occasionally. For 

further research, the object-based classification is suggested.  

 

The capacity of Sentinel-1 backscatter coefficients was proved by this study, while features acquired from 

SAR decomposition contribute less to the classification. For further research, the use of backscatter 

coefficients is suggested, and,  the use of Full-polarimetric data is suggested if decomposed features are 

needed. 
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