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ABSTRACT 

Forests are affected by insect pests globally resulting in tree mortality, and in Europe, the spruce bark beetle 
(Ips typographus) is known to have a large scale detrimental impact on Norway spruce (Picea abies) forests. Bark 
beetle infestations of the spruce trees have significant economic, social, and environmental impacts. The 
conventional method of field surveying is challenging in terms of resources to identify and differentiate 
healthy and infected spruce trees. There is a need for a cost-effective remote sensing technology to identify 
the sites of the bark beetle damaged spruce trees. The ability of remote sensing methods to identify bark 
beetle infected tree would help mitigate the further spread of the infestation and manage sustainable forest 
management. The study aims to determine the applicability of the Sentinel-1 SAR data and explore the 
method to differentiate between the healthy and bark beetle infected spruce trees. 

The study was conducted inside the Eifel National Park (ENP) in the North Rhine-Westphalia state of 
Western Germany. Google Earth imagery was used to obtain the samples for both healthy and infected 
spruce trees. A single time snapshot of the Sentinel-1 SAR image of the area was analyzed to compare the 
difference in Sentinel-1 backscatter response between the healthy and infected spruce trees statistically. 
Sentinel-1 SAR and Sentinel-2 image from 2014 to 2019 were used to extract SAR backscatter and NDRE 
spectral index, respectively. Temporal profile of healthy and bark beetle infected spruce trees was developed 
based on the time series of SAR backscatter and the time series of NDRE spectral index. An independent 
site outside the study area was used to validate the annual pattern of the SAR temporal to ascertain the 
robustness of the temporal profiling technique. 

The distribution of Sentinel-1 SAR backscatter response of a healthy and infected spruce tree overlap 
substantially, limiting the potential of SAR backscatter to differentiate between them, despite a statistically 
significant difference with their mean backscatter response. The Sentinel-1 SAR temporal profile of the 
healthy spruce tree shows an annual seasonal pattern. Adaptive Savitzky-Golay filter (ASAVGOL) helped 
to produce a pronounced annual profile pattern of the healthy spruce trees. On the other hand, the SAR 
temporal profile of a bark beetle infected spruce trees shows an irregular temporal profile pattern. The 
transition from an annual seasonal pattern to an irregular pattern on a temporal profile can be interpreted 
as the moment of a bark beetle infestation. There was no field data available at each stage of the infestation 
to relate with the moment of infestation. However, the ability of the temporal profiling method to 
graphically indicate a point of infestation was verified based on an independent site outside the study area 
using a discrete set of Sentinel-1 SAR temporal profile analysis.  

The temporal profiling method is suitable to exploit the Sentinel-1 SAR to approximately identify the 
moment of infestation on the time series profile. The moment of infestation shown by the SAR temporal 
profile is likely related to the annual phenological processes of healthy living trees and bark beetles infected 
dying trees. Dense weather independent time-series Sentinel-1 images facilitated to graphically visualize an 
annual pattern on a temporal profile, while the availability of fewer cloud-free Sentinel-2 observations 
impeded in showing the annual pattern explicitly. Understanding the moment of infestation would facilitate 
to identify the bark beetle affected sites for forest management applications. It will guide timely sanitation 
fellings to limit the further spread, though it may not alert forest managers to react immediately as not every 
deviation from the expected seasonal pattern is pointing at an infestation. Similarly, we can assess whether 
a timely bark beetle mitigation measures are being implemented or not, and make informed decisions on 
the sustainable status certification of sustainable forest management. It can be applied by relevant agencies 
to make an informed decision on the entitlement of the bark beetle damage compensation. Further 
investigation is necessary to understand at what stage of bark beetle infestation can be described by the SAR 
temporal profile using field-based samples at each stage of the bark beetle infestation in spruce forests. 
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1. INTRODUCTION 

1.1. Bark beetle infestation of a spruce trees in forests 

Forests are affected by insect pests globally, resulting in tree mortality (Wermelinger, 2004). Bark beetle 
infestations in conifer forests are recorded from the temperate and boreal regions of North America and 
Central Europe (Scott et al., 1984; Siccama et al., 1982). In Europe, spruce bark beetle (Ips typographus) is 
known to have a large scale detrimental impact on Norway spruce (Picea abies) forests (Öhrn et al., 2014). 
Bark beetles feed on phloem tissues, reproduce inside the bark and infuse phloem-infesting fungi that cause 
mortality of the host tree due to disruption of the flow of water and nutrients (Solheim, 1992). When bark 
beetle populations are low, healthy trees defend by producing resin or latex which is called as an endemic 
phase but after population increases, they overwhelm the defence mechanism of trees which is termed as 
an epidemic phase or referred to as bark beetle infestations (Boone et al.,  2011; Ryan et al., 2015).  
 
Bark beetle infestations are categorized into three different stages, namely as green-attack, red-attack, and 
grey-attack (Niemann & Visintini, 2005; White et al., 2007). As per those studies, the green attack happens 
at the initial colonization of the host tree by beetles where no apparent changes appear in the forest canopies. 
The red attack was reported to occur after one to three years and the foliage of the infected tree turns into 
a reddish colour. The grey-attack stage was referred to the shedding off needle leaves of the trees. However, 
the healthy and bark beetle infected spruce trees were the two categories considered for the analysis in this 
study. Hence, spruce trees are assumed as healthy, when they appear green in the natural colour combination 
of a satellite image, but after they change their colour from green to reddish or grey, they are considered as 
bark beetle infected trees. Therefore, identifying bark beetle infestations or differentiating healthy and 
infected spruce trees refers to the ability to categorize the spruce trees into either healthy or infected trees 
within a spruce forest area based on this remote sensing study.  

1.2. Factors influencing bark beetle infestations in forests 

Bark beetle infestation is typically known to be triggered by natural disturbance such as windthrow, storm 
events, or lightening which causes physical damage of the trees and increases the availability of vulnerable 
hosts (Cailleret et al., 2014). However, some other studies (Bentz et al., 2019) also suggest that bark beetles 
usually attack trees already weakened by diseases. Biedermann et al. (2019) point out that intensification of 
forest management in Europe towards homogeneous spruce stand poses a higher risk for bark beetle 
infestation. Pureswaran et al., (2018) reported that the changing climate and global warming have increased 
the susceptibility and risk of bark beetle outbreaks. Many studies claim that weather events such as droughts 
and the rising temperature are usually followed by bark beetle outbreaks (Kolb et al., 2016; Müller, 2011; 
Pureswaran et al., 2018). Studies also show that warming climate has enhanced bark beetle reproduction and 
survival in new regions and higher altitudes (Cailleret et al., 2014; Kautz et al., 2014; Kolb et al., 2016). 
Considering the current changing climate scenario (IPCC, 2018), identifying and differentiating the bark 
beetle infected spruce tree is essential to safeguard the widespread damage of the spruce forests. 

1.3. Socio-economic impacts of bark beetle infestations of the spruce forests 

Bark beetle infestations of trees in the forests have significant economic, social, and environmental impacts 
(Hlásny et al., 2019; Langstrom et al., 2009). Boyd et al. (2013) studied that forest pests negatively affect 
ecosystem services due to a change in the structure of the forests such as biodiversity, carbon sink and 
recreation.  In Germany, Müller (2011) looked at how social unrest and political conflict is sparked with 
bark beetle disturbance of the forests in Bavarian National Park. Similarly, in Slovakia and Czech Republic, 
social unrest such as public protests and involvement of European Union authorities in forest management 
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issues were all related to beetle infestation (Hlásny et al., 2019). In Germany, from January 2018 to March 
2019, about 114,000 hectares of the spruce forest was damaged by bark beetle (Deutsche Welle, 2019). The 
Ministry of the Environment had to provision more than eight million euros for 2019 and 2020 to aid forest 
owners in reclaiming and salvaging bark beetle affected forests (Teller Report, 2019). Therefore, there is a 
growing concern among the forest managers, private forest owners, and forest governance agencies to tackle 
issues such as lack of efficient tools and information on the incidence of the bark beetle infestations to guide 
informed decision making (Hlásny et al., 2019; Kolb et al., 2016; Křivan et al., 2016; Pellizzoni, 2011). 

1.4. Methods of identifying the bark beetle infestations in a spruce forests  

According to Hlásny et al. (2019), the most effective way to reduce beetle devastation of the forest is though 
sanitation operations which are commonly practised in Europe and worldwide. Sanitation operations refer 
to finding and eliminating infected spruce trees breaking the chain of the successive beetle reproduction to 
contain further spreading to healthy trees. Currently, the most common method of identifying bark beetle 
infestation is to make extensive filed visits, surveying signs of bark beetle infestation such as observing the 
powdery dust of feeding beetle outside the bark of the infected trees (Fettig & Hilszczański, 2015). This 
conventional method of involving physical travel is likely to overlook bark beetle infestation sites and thus 
are highly unpredictable (Hlásny et al., 2019). Because, such traditional methods to identify bark beetle 
infestations are costly and challenging to cover vast areas of forest (Wulder et al., 2005), and efficient remote 
sensing method is an appropriate solution. Therefore, remote sensing methods to find out bark beetle 
outbreaks are expected to be cost-effective and suitable considering the rapid development of earth 
observation technology (Carter et al., 1998; Chen & Meentemeyer, 2016).  

1.5. Optical remote sensing data used for the bark beetle study 

Numerous remote sensing studies have used a variety of optical sensors for identifying the pest infestation 
in the forests. Carter et al. 1998 used NDVI based on airborne sensor imagery obtained over Ouachita 
National Forest, to classify beetle damage of Pinus echinatn. Coops et al. (2006) used QuickBird multi-spectral 
imagery to classify mountain pine beetle attack and validated significant relationship (r2=0.48) with 
independent field data in British Columbia. Again, in British Columbia, the high spectral resolution of EO-
1 Hyperion based moisture indices was used to identify bark beetle affected forests (White et al., 2007).   
Recently Abdullah et al. (2019a) examined that the spectral vegetation indices of Sentinel-2 (67%) are more 
accurate in detecting green attack than Landsat-8 (36%). Similarly, Yang (2019) used Sentinel-2 to effectively 
map bark beetle infestation in Sweden. However, there is a limited number of studies focused on using radar 
satellite images for forest pest infestations. Senf et al., (2017) reviewed SAR application studies and 
recommended to widen the studies to exploit spatial and temporal analysis for bark beetle infestation of 
spruce forests. 

1.6. Temporal analysis of remote sensing methods applied for forest pest study 

Latifi et al. (2014) combined 11-year time series LANDSAT and SPOT scenes and performed object-based 
classification which resulted in a clear separation of non-infected and dead trees in the Bavarian Forest 
National Park in Germany. Hais et al. (2016) analyzed the variables for spatially predicting the risks of bark 
beetle disturbance within the central part of the Šumava Mountains in central Europe using a time series of 
16 Landsat TM images. Meddens et al. (2013) compared the single date and multi-date methods using 
Landsat imageries and found that multi-temporal is more accurate to detect at intermediate levels of tree 
mortality and single data image to be better at higher tree mortality. Similarly, Yang (2019) also used a 
multitemporal classification method using the Sentinel-2 time series to detect bark beetle infestation in 
Sweden. These studies affirm that temporal profile methods possibly can identify the trajectory of 
infestations in the forests over time. However, no study has ever attempted to explore SAR temporal 
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profiling for the identification of the bark beetle infestations. This study will consider leveraging the 
temporal analysis of Sentinel-1 SAR data for differentiating the healthy and infected spruce trees. 

1.7. Synthetic Aperture Radar (SAR) data used for bark beetle study 

Studies have explored the utility of active synthetic aperture radar (SAR) sensors for studying bark beetle 
infestation. Ortiz et al. (2013) found that the combination of TerraSAR-X and RapidEye produced more 
accurate results than RapidEye alone in identifying the green attack in Germany. Rüetschi et al. (2019) 
successfully used Sentinel-1 SAR to assess the rapid windthrow of forest trees in both Switzerland and 
Germany and found that windthrow leads to bark beetle outbreaks by weakening the host trees. Likewise, 
XUE et al. (2018) found that Sentinel-1 SAR backscatter can be used to map pine forests affected by shoot 
beetles in the Yunnan area, China. Most of these studies show the ability of SAR backscatter to identify the 
affected areas of bark beetle infestations in the spruce forests. Tanase et al., (2018) reported a change of − 
1.0 dB difference of radar change ratio between pre-disturbance and post-disturbance done by wind and 
insect to the forest and radar backscatter coefficients. Hollaus & Vreugdenhil, (2019) also found a difference 
of approximately 1 dB backscatter value in the Sentinel-1 signals of the healthy trees of 2015 and the bark 
beetle infected spruce trees of 2017 and recommended the study to explore the use of dense temporal 
resolution.  
 
Considering the aforementioned studies, it is likely that Sentinel-1 SAR could perhaps be feasible to 
differentiate the bark beetle infestations of trees in the spruce forests. However, most of the past studies 
that used SAR focused solely on image classification methods for differentiating between the healthy and 
bark beetle infected spruce trees. There are inadequate studies that have investigated the methods to use 
Sentinel-1C-band SAR data for differentiating between the healthy and bark beetle infected spruce trees. To 
understand how Sentinel-1 C-band backscatter compares between the healthy and infected spruce trees, 
their backscatter response will be explored in this study. 

1.8. Potential of Sentinel-1 C-band SAR for differentiating between healthy and bark beetle infected 
spruce trees.  

The Sentinel-1 C-band SAR data has potential to serve the dearth of information on beetle infestation which 
is critical for mitigation strategy, to eliminate the infected trees before further spreading occurs and cause 
additional widespread devastation to larger forested areas (Hlásny et al., 2019; Wermelinger, 2004).  Sentinel-
1 data has only C-band SAR which has limitations for estimating forest biomass due to its limited capacity 
to penetrate through the vegetation (GFOI, 2018; Laurin et al., 2018). Nevertheless, C-band may still 
provide useful canopy information for differentiating healthy and bark beetle-infected trees, which the signal 
does not need deep penetration. Therefore, remote sensing methods of using Sentinel-1 SAR data has the 
potential to identify infected spruce trees. If the methods of using Sentinel-1 SAR to differentiate between 
the healthy and infected tree is feasible, then it would be more cost-effective than other commercial remote 
sensing sensors.  Besides, the availability of high temporal frequency, Sentinel-1 SAR has the advantage of 
collecting data irrespective of time and weather limitation over large geographic and temporal scales (ESA, 
2019). 
 
The potential of Sentinel-1 data to differentiate between healthy and infected spruce trees is expected to 
provide vital information required for effective forest management and sustainable certification of forest 
management. For example, the spatial information on bark beetle infestation would guide forest managers 
to decide strategic sanitation operations. Also, a sustainable certification institution can use to assess whether 
the forest managers followed a timely sanitation operation to be granted a sustainable status. The public 
finance can use the information to corroborate bark beetle damage compensation schemes. For this 
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purpose, it is important to examine if Sentinel-1 SAR could be used to differentiate between the healthy and 
bark beetle infected spruce trees.  
 
The systematic changes in the physiological process of the host trees to counteract bark beetle damage are 
expected to allows remote sensing sensors instruments to capture data on the symptoms of bark beetle 
incidence in the forest (Egan et al., 2016; Overbeck & Schmidt, 2012). The leaves of infected host trees 
showed the effect of water and nutrient stress after the disruption of inner bark tissues by the beetles 
(Chinellato et al., 2014; Coops et al., 2006). Studies have also confirmed that remote sensing sensors are 
sensitive to the change in leaf pigments, tissue structure, and amount of water content of leaves of the trees 
(Bright et al., 2013; Darvishzadeh et al., 2019; Fassnacht et al., 2014; Wulder et al., 2005). Radar dielectric 
constant properties of dry vegetation are comparatively lower than the living vegetation due to more water 
content in living vegetation (Attema & Ulaby, 1978; Öquist & Huner, 2003). Since the higher water content 
of the living vegetative parts influences higher dielectric constant which in turn influences more backscatter 
response, healthy spruce trees possibly will show higher backscatter response than the infected spruce trees 
(Öquist & Huner, 2003). Therefore, Sentinel-1 C-band SAR is expected to show the change processes of 
the healthy tree into an infected spruce tree as its foliage sheds off and the water or nutrients supply gets 
disrupted (Chen & Meentemeyer, 2016). Figure 1 shows the conceptual diagram for exploring the potential 
of Sentinel- 1 C-band SAR to differentiate between the healthy and infected spruce trees. 
 

 
Figure 1. The conceptual diagram for differentiating between the healthy and bark beetle infected spruce trees. Red 
and green colour indicates the variable quantifiable by Sentinel-1 SAR remote sensing data. The dotted blue line 
indicates the possible application of the study outcomes.  

1.9. Problem Statement  

Hlásny et al. (2019) emphasized the need for a user-friendly and cost-efficient remote sensing technology 
for monitoring bark beetle infestation to guide forest management. Similarly, Morris et al. (2017) also 
documented the urgent requirement of cost-effective and efficient remote sensing method to improve bark 
beetle detection and mapping that can monitor over large geographic and temporal scales. Moreover, it is a 
priority research problem unanimously identified by the ecologists, land managers and social scientists from 
North America and Europe (Morris et al., 2017). Current methods of identifying the bark beetle infestation 
are physically challenging and resource-intensive (Fettig & Hilszczański, 2015).  They include the visual field 
surveys, the use of sniffer dogs, and the use of costly optical and SAR remote sensing data (Hlásny et al., 
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2019). There is no clear understanding of the methods to use Sentinel-1 C-band SAR for differentiating 
healthy and infected spruce trees as none of the previous studies has reported on it conclusively. Therefore, 
this study considered to determine the applicability of the Sentinel-1 C-band SAR data and explore the 
method to differentiate between the healthy and bark beetle infected spruce trees. 

1.10. Objectives and research questions 

The study aims to determine the applicability of the Sentinel-1 data and explore the methods to differentiate 
between the healthy and infected spruce trees. The difference in Sentinel-1 SAR signals will be compared 
between healthy and infected spruce trees statistically. The temporal analysis will be performed to examine 
the difference in the time series patterns between the healthy and infected spruce trees.  
 
Objective 1: To find out the possibility of single time snapshot image of Sentinel-1 SAR to differentiate the 
healthy and infected spruce trees. 
Research Question 1: Does the SAR backscatter coefficients of healthy and infected spruce trees differ 
significantly? 
H0: There is no difference in the SAR backscatter coefficients of healthy and infected spruce trees. 
H1: There is a significant difference in the SAR backscatter coefficients of healthy and infected spruce trees. 
 
Objective 2: To explore temporal profiling method using Sentinel-1 SAR signals to differentiate a healthy 
and infected spruce tree. 
Research question 2: How does the temporal profiling technique with Sentinel-1 SAR help differentiate a 
healthy and an infected spruce tree? 
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2. MATERIAL AND METHODS 

2.1. Study Area 

The study area falls inside the northern part of Eifel National Park (ENP) which is located in the North 
Rhine-Westphalia state of Western Germany, between 6°23’05.08’’ E to 6°34’38.70’’ E longitude and 
50°33’09.68’’ N to 50°38’58.06’’ N latitude (see Figure 2.). The study area has about 4284 hectares of the 
ENP’s coverage. This portion of ENP was selected as the study area because the bark beetle infected spruce 
trees were not removed immediately within the national park jurisdictions, unlike the forested area outside 
park regulation. Eifel National Park was formerly a military training ground before it was established in 2004 
and then the landscape was left to natural processes where large patches of spruce forests are affected by 
bark beetle infestation  (Schmiedel, Goedecke, & Bergmeier, 2019). Therefore, the presence of standing 
infected spruce trees inside the ENP was found appropriate for obtaining samples of the infected spruce 
trees for this study purpose.  
 
Eifel National Park has gentle topography characterized by rolling plateaus and interspersed by running 
streams. The elevations of the area range from 185 to 630 m and has an oceanic climate covered by both 
deciduous and coniferous forests (Heine et al., 2019; Schmiedel et al., 2019). Major tree species are European 
beech (Fagus sylvatica), Pedunculate oak (Quercus robur), Norway spruce (Picea abies) and Scots pine (Pinus 
sylvestris). In 2018, spruce forests experienced a traumatic incidence of heavy infestation by bark beetles and 
are expected to further deteriorate in 2019 (Alamy Limited, 2019). Figure 2 shows the location map of the 
study area.  

 
Figure 2. Map showing the location of the study area inside the Eifel National Park (ENP), in Germany. 

Study area 

Bavaria

Lower Saxony

Hesse

Saxony
Thuringia

North Rhine-Westphalia

Saxony-Anhalt

Rhineland-Palatinate

Mecklenburg-West Pomerania

States of Germany

Ü

0 110 22055 KM

Legend

Eifel NP

German States

Eifel
National Park Ü

Coordinate System: WGS 1984
Phuntsho, s6040209, ITC, MSc 2018-2020

0 3 61.5 KM

Legend

Eifel National Park

Study Area



DIFFERENTIATING HEALTHY AND BARK BEETLE INFECTED SPRUCE TREES WITH SENTINEL-1 SAR DATA 

15 

2.2. Sampling  

Spruce tree samples for both healthy and bark beetle infected spruce trees were necessary to obtain their 
corresponding SAR signals observed by the Sentinel-1 images. Since it was not allowed to collect field GPS 
coordinates of the samples inside the national park, high-resolution Google Earth imagery was used as the 
basis to obtain the samples of the healthy spruce trees as well as the infected spruce trees. Few sites of the 
previously collected GPS co-ordinates of the bark beetle infected spruce tree were provided by GRAS 
GmbH, Cologne, that was located nearby the study area. These GPS coordinates of those infected spruce 
tree sites helped to visually relate and understand the colour, texture, and pattern of bark beetle infected 
spruce trees observed on the Google Earth images.  
 
Using this visual interpretation of Google Earth images, the homogeneous samples were identified and 
delineated for both healthy and infected spruce forest inside the study area. The healthy spruce trees samples 
appeared dark green colour and smaller in crown size compared to the large crown and brighter green colour 
canopy of broadleaved trees. The canopy of an infected spruce tree appeared to be reddish and greyish 
which was assumed to be as the impact of bark beetle damage. The sample polygons of the healthy and 
infected spruce trees were screen digitized based on the google earth high-resolution imagery of 5 October 
2018. A total of 100 sample polygons of healthy spruce trees and 107 sample polygons of infected spruce 
trees were delineated as key markup langue zipped (KMZ) in Google Earth. The delineated samples were 
then converted into shapefile format in Quantum GIS (QGIS) software (QGIS Development Team, 2020). 
Figure 3 shows the samples of the healthy spruce trees delineated with the green polygons and infected 
spruce trees delineated with red polygons inside the study area. 
 

 
To study the possibility of a single time snapshot image of Sentinel-1 SAR to differentiate the healthy and 
infected spruce trees, 20 by 20-meter healthy sample inside the 100 healthy sample polygons and 10 by 10-
meter infected sample points inside the 107 infected sample polygons were laying out systematically. The 
healthy sample points were allocated at a greater distance than infected samples points to obtain their equal 
count approximately as the healthy samples were more abundantly available compared to the infected 

Figure 3. The healthy spruce trees samples delineated with green polygons and the infected spruce trees samples
delineated with red polygons inside the study area.  
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sample in the study area. It resulted in a total of 2660 sample points for the healthy trees and  2342 sample 
points for the infected trees (Figure 4a). Appendix B explains the detailed process of laying out and 
generating sample points using QGIS for both healthy and infected spruce trees.  
 
To study the temporal analysis of the SAR backscatter response, a sample point at the centre of each polygon 
of both healthy and infected samples were generated (Figure 4b). The centre location of the polygon was 
considered appropriate for the temporal analysis of the Sentinel-1 SAR signals to avoid influence from 
border pixels backscatters and the uncertain time of infestation for each tree. 
 

 

2.3. Sentinel-1 SAR imagery 

Sentinel-1 is the Copernicus Programme satellite of the European Space Agency (ESA) for Synthetic-
aperture radar (SAR) remote sensing. SAR is an enhanced radar technology to obtain higher spatial 
resolution than traditional radar data measurements of the target landscape. Sentinel-1 consists of two earth 
observation satellite constellations, Sentinel-1A and Sentinel-1B, launched on 3 April 2014 and 25 April 
2016 respectively. They carry the C-band synthetic-aperture radar (SAR) apparatus for the collection of 

Figure 4. Sampling design for the study: (a) 20 by 20 meter distributed sample points inside the 100 healthy 
sample polygons, and 10 by 10 meter distributed sample points inside the 107 infected sanple polygons to analyze 
a single time snapshot image of Sentinel-1 SAR response. (b) A sample point at center of each polygons (both 
healthy and infected sample) for temporal analysis of the SAR backscatter response. 
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single or dual polarization with a revisit time of 6 days at equator. Copernicus Open Access Hub and other 
data providers allow to access two types of Sentinel-1 products, Ground Range Detected (GRD) and Single 
Look Complex (SLC). For this study, Sentinel-1 level-1 GRD products were used, covering the period from 
2014 to 2019 of the study areas. Generally available SAR data of Sentinel-1 level-1 GRD products consists 
of VV (Vertical-Transmit and Vertical-Receive) and VH (Vertical-Transmit and Horizontal-Receive) dual-
polarization channels. One additional channel was computed by calculating the ratio between VV and VH, 
using the band math function of the opensource Sentinel Application Platform software (SNAP) developed 
and distributed by ESA. Appendix C shows the screenshot of performing band math function in the SNAP. 
 
SAR scenes were filtered, selected, and downloaded using the Alaska Satellite Facility (ASF) by restricting 
spatial filter criteria to the study area. Sentinel-1A satellite products were selected considering its longer 
period of observations that started from 2014 onwards over the Sentinel-1B satellite products which started 
its mission only from 2016. Level-1 GRD was considered appropriate in comparison to SLC as 
preprocessing steps such as scene focusing, multi-looking, and projection to ground range using an Earth 
ellipsoid model has been applied by the data provider. Besides, the SAR scene was filtered to ascending orbit 
properties to avoid mixing of the different signals due to the angle and direction of observation influenced 
by differences in the satellite orbital path. Appendix A listed the steps followed on filter criteria and scene 
properties used to download the Sentinel-1A SAR for the study. 

2.4. SAR preprocessing 

SAR pre-processing is an essential procedure to prepare the SAR scene into meaningful data after applying 
essential rectification. Sentinel-1A SAR level-1 GRD images contain radiometric bias, geometric distortion, 
and raw backscatter intensity. Therefore, it is necessary to enhance the SAR scene by applying suitable 
corrections and improvements so that the pixel values of the images correspond with the actual radar 
backscatter of the target surface. To tackle this, the European Space Agency (ESA) offers open-source 
software known as the Sentinel Application Platform (SNAP) suitable for the SAR processing. 
  
Pre-processing of the Sentinel-1A SAR was carried out using the SNAP platform since it is free and open-
source. SNAP has a neater handling capability of Sentinel-1 SAR data as it is designed purposefully for it by 
the data provider (ESA).  Application of orbit file, removing thermal noise, radiometric calibration, terrain 
correction, and conversion to decibel (dB) were the preprocessing steps applied to Sentinal-1 SAR data 
using the SNAP batch processing option.  Figure 5 illustrates the Sentinel-1 SAR data processing steps 
applied for all the Sentinel-1 observations from 2014 to 2019.  
 
 
 
 

 
 

 Apply Orbit 
 Thermal noise removal 
 Calibration 
 Terrain Correction 
 Conversion to dB  

 Sentinel-1A 
 GRD 
 Ascending 

 2014 to 2019 
 Study Area 
  

Figure 5. Diagram showing the Sentinel-1 SAR processing steps applied for this study.  
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The detailed steps and logics for performing the preprocessing steps, advocated by the data provider (ESA) 
are described in the following sections.  

2.4.1. Apply orbit file 

The satellite orbit information provided along with the SAR scenes at the time of data acquisition are 
generally not accurate and need to be refined at later stages when precise orbit information becomes 
available. Metadata of the scenes are updated by obtaining the precise satellite position and velocity 
information which usually becomes available approximately after 2 weeks of data acquisition. SNAP graph 
builder was used to automatically check the availability of the precise orbit file archived in the online database 
and accordingly applied to the Sentinel-1 SAR scenes. The precise orbit file information also improves the 
SAR data analysis that requires satellite information in all other SAR processing steps.  

2.4.2. Thermal noise removal 

During the process of the Sentinel-1 SAR satellite image acquisition, the background energy created by 
imaging receiver instruments gets incorporated as thermal noise into the radar backscatter signals. To 
remove the thermal noise, the SNAP platform was used to apply thermal noise removal to Sentinel-1A SAR 
data of this study. This process uses the noise lookup tables provided with the data and enhances the SAR 
signals by avoiding skewed radar reflectivity. 

2.4.3. Radiometric calibration 

Radiometric calibration refers to the processes of refining the radar signals so that the image pixel value 
associates directly to the characteristics of the scene backscatters. The strength of the collected radar signal 
depends on considerations such as a receiver or antenna gains, system loss owing to the relative positioning 
of the resolution, and sensor that introduces significant radiometric biases in the SAR image. Radiometric 
calibration is performed by computing the backscatter coefficient known as sigma nought (Sigma0). This 
fundamental processing of SAR calibration was also successfully performed along the chains of the graph 
builder process for the SAR scenes of this study.  

2.4.4. Geometric correction 

Geometric correction or some times referred to as terrain correction is the process of orienting the SAR 
signal coordinate geometry system to an ortho-corrected coordinate system. The SAR system has side 
looking geometry system at the time of SAR scene acquisition where every landscape SAR signal obtained 
is mapped on the slant range domain that does not conform with the standard cartographic system. 
Therefore, terrain correction was also inevitably performed using a graphical builder in the SNAP platform 
for the SAR scenes of this study, to convert from slant range to ground range geometry into a defined 
coordinate system. 

2.4.5. Conversion to decibel (dB) 

The pixel values of SAR images after radiometric calibration are transformed into the SAR signals in terms 
of SAR backscatter intensity. SAR backscatter intensity of image pixel is the percentage of microwave energy 
returned from the target surface which depends on the properties of surface such as shape, size, and 
moisture content as well as the properties of sensor systems such as incident angles of the radar, polarization. 
Therefore, SAR scenes were converted to a quantifiable physical quantity called the backscattering 
coefficient measured in decibel (dB) units using the graph builder in the SNAP platform. The values of SAR 
backscatter normally range from +5 dB for the bright surface to -40 dB dark areas. The distribution between 
the SAR backscatter intensity and converted backscatter coefficient in dB units were compared (Figure 6 & 
7.) and showed a normal Gaussian distribution after conversion to dB. 
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2.5. Comparing the statistical difference of Sentinel-1 SAR backscatter response between healthy and 
infected spruce trees based on a single time snapshot of an image 

To study the possibility of a single time snapshot image of Sentinel-1 SAR to differentiate the healthy and 
infected spruce trees, the SAR backscatter response between healthy and infected spruce trees were analysed.  
For this purpose, a single time snapshot of the Sentinel-1 images of the study area was selected for the 
analysis. Pre-processed Sentinel-1 SAR image acquired on 02 October 2018 over the study area was chosen 
to analyze the SAR signals differences of each polarization between the healthy and infected spruce trees. 
The SAR image acquired on 02 October 2018 was found to be the closest with the Google Earth image 
acquisition date on the 5 October 2018 which was used for sampling the healthy and infected spruce trees. 

Figure 6. Histogram showing the distribution of SAR backscatter intensity and backscatter coefficients 

Figure 7. Histogram showing the VH SAR intensity and backscatter coefficients 
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The Sentinel-1 SAR backscatter coefficient values of VV, VH, and VV/VH ratio polarization channels were 
extracted using 2660 healthy tree samples points and 2342 infected tree sample points. SNAP software was 
used to perform the SAR backscatter coefficient values corresponding to each location of the sample points. 
Appendix D shows the detail steps of extracting the SAR signal using the SNAP platform.  
 
To study if the Sentinel-1 SAR backscatter coefficients response of a healthy differ from that of an infected 
tree significantly, the distribution and statistical student’s t-test of the mean of the backscatter response were 
performed. To graphically analyze the distribution of Sentinel-1 backscatter response between healthy and 
infected spruce trees, the histogram illustrating the distribution was prepared based on the SAR signals 
extracted using the healthy and infected sample points. The histogram was prepared using R-statistical and 
Microsoft Excel worksheets to visually compare the frequency distribution of the SAR signal between the 
healthy and infected spruce for each SAR polarization channels. An independent student t-test was 
performed between the mean of the backscatter response of healthy and infected trees separately for each 
SAR polarization channels using the R-statistical software. Statistical variance test and normal quantile plots 
were also carried out between the healthy and infected spruce trees sample data to check if the samples meet 
the assumptions of independent student t-test. Appendix E details the process of checking the assumptions 
for the independent two-sample t-test. 

2.6. Developing the temporal profile using Sentinel-1 SAR backscatter response of the healthy and 
infected spruce trees based on the time series images 

The SAR temporal profiling method was explored to study if the temporal profiling method is applicable to 
differentiate a healthy and infected spruce tree using their time-series Sentinel-1 backscatter values. The 
temporal profile was developed using the SAR backscatter response extracted using the centre point of each 
polygon samples of both healthy and infected spruce trees. R statistical software and Microsoft Excel was 
used to build a time-series graph based on the SAR backscatter values to illustrate the temporal pattern 
graphically. The temporal pattern is expected to visually display the difference between healthy and infected 
spruce trees.  
 
A representative temporal profile for healthy spruce trees was prepared based on the average backscatter 
values of the healthy polygon samples. The representative temporal profile was developed visually display 
the typical characteristics of SAR backscatter response of the healthy spruce trees. This representative 
healthy temporal profile is expected to show the sensible annual pattern of the healthy spruce trees as it was 
based on the average SAR signals of all the healthy trees sample polygons. Therefore, such a typical 
representation of healthy spruce trees would enable us to form a benchmark to compare with the temporal 
profile of the infected spruce trees. 
 
The temporal profile for infected spruce trees was developed based on the time series SAR backscatter 
response at the centre point of infected sample polygons. However, it is not logical to develop a 
representative temporal profile for the infected spruce tree as the time of the infestation of each tree may 
differ from one another. Therefore, in the case of the infected temporal profile, every pixel on SAR imagery 
or each spruce tree in the forests may show localized patterns according to the time and location at which 
bark beetle infestation might have happened. Appendix H shows the R scripts used for the temporal analysis 
of the SAR backscatter response of healthy and infected spruce trees. 

2.7. Applying Adaptive Savitzky-Golay filter (ASAVGOL) to enhance the pattern of the temporal profile  

The Adaptive Savitzky-Golay filter (ASAVGOL) algorithm is based on the least square computational 
processes to correct inconsistent time-series data by swapping each data values at a consecutive linear 
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combination over a time window (Beltran-Abaunza, 2009). The ASAVGOL filter is expected to enhance 
the annual pattern of the temporal profiles. Since SAR backscatter responses are prone to inherent noise 
such as thermal noise, radar radiometry errors, and landscape topography influences, it would be appropriate 
to apply to the representative healthy temporal profile (Ahern, Leckie, & Drieman, 1993; Rüetschi, 
Schaepman, & Small, 2017; Saatchi et al., 2013). As the representative healthy temporal profile is based on 
the averaged values of healthy SAR backscatter values, ASVGOL filter is expected to the pattern of the 
healthy spruce trees. Accordingly, the ASAVGOL filter was applied to remove inconsistent time-series SAR 
backscatter values of the healthy trees averaged across the timestamp. 
 
The correction factors were obtained for each of the timestamps by computing the difference between the 
ASAVGOL filtered backscatter response and its raw backscatter values based on the average data of the 
healthy spruce trees. The correction factor was then applied to the infected temporal profile linking each 
timestamp to remove their time-series inconsistency of the backscatter response. The output after applying 
the correction factor to the infected temporal profile is expected to remove the localized noised effect and 
produce the true backscatter response that shows the properties of the actual landscape surface. 

2.8. Verifying temporal profiling method to differentiate between healthy and infected spruce trees 

To study the ability of Sentinel-1 SAR backscatter temporal profiling method to differentiate between 
healthy and infected spruce trees, an independent site outside the study area using a different set of Sentinel-
1 SAR temporal profile analysis was performed. The bark beetle infestation period of the independent site 
was deduced from two consecutive google earth images acquisition dates between  20 April 2018 and 22 
April 2019 (Figure 8). An infected tree location was randomly chosen where the time series Sentinel-1 SAR 
backscatter values were using the Google Earth Engine platform (Gorelick et al., 2017). Based on these time 
series SAR backscatter values, a temporal profile of that location was prepared to examine the pattern 
difference before and after the infestation period. The blue star marked on the right side of the image in 
Figure 8 shows the location of the site that was used to prepare a temporal profile to verify the period of 
bark beetle infestation. Appendix G shows the Google Earth Engine java scripts used for this exercise. 
   
 
 
  

Figure 8. A spruce forest site in Rheinbrohl, Germany, showing the evidence of time taken by a bark beetle infestation 
process that can be visually interprested from healthy to an infected spruce tree. Green polygon show the healthy 
spruce trees and red polygon shows the bark beetle infected spruce tree,.  

20 April 2018 22 April 2019 
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2.9. Exploring the influence of rainfall on the temporal profile pattern of the SAR backscatter response  

Studies have found that rainfall is one of the factors that cause the change of the SAR backscatter (Rüetschi 
et al, 2017; Saatchi et al., 2013). It is essential to remove the backscatter outlier values influencing the 
temporal profile pattern that is affected by rainfall events (Tanase et al., 2018). To examine the influence of 
the rainfall on the backscatter values, the precipitation of local station data was compared with the 
backscatter response of the samples. The rainfall data were obtained from the local weather station of the 
study area. The precipitation data of Mannebach/Eifel weather station located at Rheinland-Pfalz was 
download from the data distribution websites. Accordingly, the precipitation was plotted alongside the time-
series graph of the Sentinel-1 SAR backscatter response to explore for any link between backscatter 
coefficients values and precipitation.   

2.10. Sentinel-2 Optical imagery 

As per ESA, Sentinel-2 consist of two polar-orbiting sun-synchronous satellites, Sentinel-2A and Sentinel-
2B launched on 23 June 2015 and 7 March 2017, respectively. Sentinel-2 acquires optical imagery at a high 
spatial resolution at 10 m (four visible and near-infrared bands), 20 m (six red edge and shortwave infrared 
bands), and 60 m (three atmospheric correction bands) and covers a swath width of 290 km.  
 
Sentinel-2 optical images were considered to compare the possibility of differentiating the healthy and bark 
beetle infected spruce trees between Sentinel-1 SAR images and Sentinel-2 optical images. Studies have 
found that red-edge and SWIR spectral information from optical satellite imageries can be used for the 
detection of bark beetle-infected (Abdullah et al., 2018; Abdullah et al., 2019b). Further, Abdullah et al. 
(2019a) found that the red-edge based indices and water-related indices of Sentinel-2 bands can successfully 
separate healthy from infected trees. Besides, Yang, (2019) also used a combination of vegetation indices of 
Sentinel-2 imagery for the classification of bark beetle infestation and healthy forest areas. So, the Sentinel-
2 optical imagery was also downloaded and processed for this study area from 2014 to 2019. 

2.10.1. Sentinel-2 Pre-processing 

Sentinel-2 image pre-processing was automatically performed using the sen2r platform (Ranghetti & 
Busetto, 2019). Sen2r platform is a package developed for the R Project for Statistical Computing software. 
Sen2r had downloaded and pre-processed all the Sentinel-2 satellite imageries required for this study. Sen2r 
applied atmospheric correction of the Sentinel-2 scenes and produced bottom-of-atmosphere reflectance. 
After visual inspection, only 23 of Sentinel-2 images observed by both Sentinel-2A and Sentinel-2B from 
2014 to 2019 were found to be cloud-free and usable for analysis. 

2.10.2. Preparing the Sentinel-2 NDRE Index 

Sen2r pre-processed Sentinel-2 scenes were imported into the SNAP platform for computing spectral 
indices. SNAP platform was preferred since its graph builder allows automatic batch processing of all the 
time-series images iteratively. The Sentinel-2 image indices based on red-edge spectral bands of Sentinel-2 
were prepared for temporal profiling to differentiate between a healthy and infected spruce trees to see how 
it compares with that of SAR temporal profiling. Normalized Difference NIR/Red-edge (NDRE) was 
calculated using the band math function of SNAP with the Sentinel-2 scenes of the study area. NDRE 
estimates the chlorophyll content of the leaves which can be used as an indicator of vegetation health 
(Frampton et al., 2013). NDRE was computed based on the formula shown in Equation 1. 
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Equation 1. The formula used for computing the NDRE index. 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒
 

2.11. Developing the temporal profile using the Sentinel-2 NDRE index of the healthy and infected spruce 
trees based on the time series images 

The temporal profile was also developed using the Sentinel-2 NDRE index using the centre point of each 
polygon samples of both healthy and infected spruce trees. SNAP platform was used to extract the NDRE 
spectral index values using its batch processing functions based on the centre of the sample polygons.  
Similar to SAR profiling techniques, R statistical software and Microsoft Excel was used to build a time-
series graph based on the Sentinel-2 NDRE index values to illustrate the temporal pattern graphically. The 
Sentinel-2 NDRE index-based temporal were developed for both healthy and infected spruce trees. 
 
  



DIFFERENTIATING HEALTHY AND BARK BEETLE INFECTED SPRUCE TREES WITH SENTINEL-1 SAR DATA 

24 

3.  RESULTS 

The findings of the statistical difference and temporal analysis are presented to determine the applicability 
of Sentinel-1 SAR and a method to differentiate between the healthy and infected spruce trees.  

3.1. The distribution and the statistical difference of Sentinel-1 SAR signal response between healthy 
and infected spruce trees 

 
There is a substantial overlap in the distribution of Sentinel-1 SAR backscatter response of a healthy and 
infected spruce trees across all the channels of the polarization (Figure 9a-d). However, there is a slight 
difference in the location of the mean SAR backscatter response between the healthy and infected trees as 
indicated by the whisker boxplot (Figure 9d).    
 
 

 
An independent two-sample t-test showed that there is a significant difference (p <0.05) in the mean 
Sentinel-1 SAR backscatter response between healthy tree (n = 2660) and infected tree (n = 2342) of spruce 
trees. Table 1 shows the p-values of the t-test results of different polarization. 
 

 
 
 

Figure 9 (a -d): Comparing the distribution of Sentinel-1 SAR backscatters response between healthy and infected 
trees across (a) VH polarization, (b) VV polarization, (c) VV/VH polarization and (d) VH polarization boxplot. 
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Table 1. Two-sample independent t-test comparing healthy and infected spruce trees for different polarizations. 

Sigma 
Polarization 

t-
statistics  

p-value Mean 
Healthy 

Trees (dB) 

Mean 
Infected 

Trees (dB) 

Difference 
Between Healthy & 

Infected (dB) 
VV (dB) 10.673 2.2e-16 -9.13                  -9.86 - 0.73 

VH (dB) 11.410 2.2e-16 -15.49                   -16.29 - 0.80 
VV/VH (dB) -3.3345 0.00086 0.59                 0.60 - 0.01 

3.2. Temporal profile of the healthy spruce tree shows an annual seasonal pattern 

The Sentinel-1 SAR temporal profile of the healthy spruce tree shows an annual seasonal pattern. The 
seasonal pattern a healthy temporal profile is graphically indicated by a wave across the time series (Figure 
10). The sinusoidal pattern peaks higher in the summer the months of June-July and dips lower the winter 
months of January- February throughout the annual cycle. The temporal profile shown in Figure 10 is based 
on an averaged values of all healthy SAR backscatter samples at each timestamp expected to be the 
representative profile of typical healthy trees. The green dotted line indicates the raw backscatter time-series 
signals and the green thicker line indicate the Adaptive Savitzky-Golay filter (ASAVGOL) enhanced the 
temporal profile pattern. The ASAVGOL filter has removed the extreme variability of the backscatter 
response of the healthy trees. 

 

3.3. Temporal profile of the infected spruce tree show irregular pattern  

The Sentinel-1 SAR temporal profile of the infected spruce tree shows an irregular pattern. Since the time 
of the infestation of each tree may differ from each other, a representative profile for the infected tree is 
not logical. One of the temporal profile of an infected tree (the sample no. 42 Figure 11)  was randomly 
selected to illustrate its pattern. There is no clear association between the seasons and the pattern for the 
sample no. 42 (Figure 11). In Figure 11, the seasonal pattern stops after the end of the year 2015 and then 
irregular pattern follows until the end of the year 2019 assumed as the impact of a bark beetle damage.  The 
red dotted line indicates the raw backscatter time-series signals and the red thicker line indicate the Adaptive 
Savitzky-Golay filter (ASAVGOL) filtered temporal profile pattern (Figure 11). 
 

Figure 10: The Sentinel-1 SAR backscatter temporal profile of a healthy trees. The green dotted line indicate the  
raw backscatter time series signals and the green thicker line indicate the Adaptive Savitzky-Golay filter 
(ASAVGOL) enhanced profile pattern. 
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3.4. The difference in the temporal pattern of a healthy and infected spruce trees 

The temporal profile pattern overlaid with both ASAVGOL cleaned SAR backscatter response of the 
healthy and infected spruce trees shows the difference of their profile pattern that enables to differentiate 
as a healthy and infected spruce tree (Figure 12). The transition from an annual seasonal pattern to an 
irregular pattern on a temporal profile (approximately in January 2016) can be assumed as the moment of a 
bark beetle infestation that facilitates to differentiate between a healthy and infected spruce tree (Figure 12). 

 

Figure 11: Sentinel-1 SAR temporal profile of the infeted spruce trees of the sample polygon no. 42 at the centre 
pixel location. The red dotted line indicate the raw backscatter time series signals and the red thicker line indicate the 
Adaptive Savitzky-Golay filter (ASAVGOL) enhanced backscatter values. 

Figure 12: The ASAVGOL cleaned temporal profile pattern of a healthy (red) and infected (green) spruce trees. 
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3.5. Verification of the moment of infestation with the temporal profile of an independent site 

The SAR temporal profile of a spruce forest site independent of the study area samples proves that the 
moment of bark beetle impact on the spruce trees can graphically display and show coherently the period 
of infestation. The predetermined period was based on the Google Earth image that showed a visible change 
of spruce trees canopy discolouration between 22 April 2018 and 24 April 2019 (Figure 8). Coinciding with 
the same predetermined period, the SAR temporal profile shows a pattern of the change from regular 
sinusoidal to the irregular pattern between July 2018 and January 2019 (Figure 13). Therefore, this temporal 
profile of an independent site with independent Sentinel-1 SAR analysis performed through Google Earth 
Engine (Gorelick et al., 2017), confirms the robustness of the SAR temporal profiling technique to 
differentiate between the healthy and infected spruce trees. 
 

 

3.6. The precipitation influence on the SAR temporal backscatter pattern 

No relationship can be drawn between the SAR backscatter coefficient values of the spruce trees and the 
local precipitation events. Figure 14 illustrates the comparison of the backscatter response of both healthy 
and infected spruce trees with the corresponding precipitation data on the same time series scale. In Figure 
14 (a), the green line indicates the backscatter response of healthy spruce trees, and blue bars indicate the 
precipitation events. Likewise, in Figure 14(b), the red line indicates the backscatter coefficients of the 
infected spruce trees and the blue bars indicate the subsequent precipitation events. Based on the visual 
interpretation of the graphs of Figure 14, there are no clear linkages visible between the backscatter signals 
and the precipitation events. Since there is no influence of rainfall on the backscatter coefficient, it was 
decided that there is no need to remove the expected outliers of SAR signals in the temporal profiles of the 
spruce trees.      
 

Figure 13: The temporal profile backscatter response of a known infestation process independent of study sample 
located in Rheinbrohl, towards west of Eifel NP. The canopy colour changed from normal green healthy to reddish 
infected spruce trees between 22 April 2018 and 24 April 2019, indicated by lack of seasonal pattern around September 
2018 and thereafter.  
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Figure 14(a & b ): Daily precipitation observed at Mannebach/Eifel, Germany with, (a) VH polarization of 
healthy spruce tree sample, (b) VH polarization of infected spruce sample plot No. 42. 
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3.7. Sentinel-2 NDRE index-based temporal profile of healthy and infected spruce trees 

 
The temporal profile based on Sentinel-2 Normalized Difference Red Edge (NDRE) index also shows the 
difference between the healthy and infected spruce trees.  In the case of the NDRE temporal profile of an 
infected spruce tree, the NDRE index values range from 0 to up to 0.6 (Figure 15 a). Whereas the NDRE 
temporal profile of a healthy spruce tree indicates a higher range of NDRE index value between 0.4 to 
0.7(Figure 15b). Comparing the trend between healthy and infected temporal profiles, there is decreased 
NDRE index values for the infected spruce trees around the year 2016 onwards. Such a change of the trend 
can be inferred as the infestation moment like the SAR backscatter temporal profile. However, it was found 
that only 23 timestamps of Sentinel-2 scenes were useful for building a temporal profile while rest were 
cloud contaminated for the study period from 2014 to 2019. Therefore, Sentinel-2 NDRE index-based 
temporal profile lacks a clear seasonal pattern for the healthy spruce trees. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 15 (a & b). Sentinel-2 NDRE Index temporal profile of infected and healthy spruce trees. (a) NDRE index temporal profile 
of the infected trees of the sample plot no. 30. (b) NDRE index temporal profile of the healthy spruce trees of the sampole plot 
no. 42. 
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4. DISCUSSION 

Despite significant differences in the mean SAR backscatter response, a large overlap in their distribution 
may limit the distinction between healthy and infected trees based on a single time snapshot of a SAR image. 
However, the difference in the pattern of the SAR temporal profile between the healthy and infected spruce 
trees allows inferring the difference between the healthy and infected spruce trees. 

4.1. The distribution and statistical difference between healthy and infected spruce trees  
The distribution of Sentinel-1 SAR backscatter response of a healthy and infected spruce tree overlap 
substantially, limiting the potential of SAR backscatter to differentiate between them, despite a statistically 
significant difference with their mean backscatter response. Ranson et al. (2003) also found that JERS and 
Radarsat radar data showed the differences in terms of backscatter response between the insect-damaged 
and healthy coniferous trees. However, no previous studies explored the overlap in their backscatter 
distribution.  The overlap of the SAR backscatter distribution could have impeded separability between the 
healthy and the infected spruce trees. Hence, the low separability could have resulted in poor image 
classification with the single date SAR based image of healthy and infected spruce trees. For example, 
Ranson et al. (2003) also reported a classification accuracy of 29% in a severe insect-damaged category and 
46% in the moderately insect-damaged category.  
 
The reasons for the major overlap in Sentinel-1 C-band SAR signal distribution between the healthy and 
infected spruce trees could be due to minimal change of their canopy structures. The canopy structure of 
the spruce tree remains unchanged since the bark beetle damages by interrupting water and the nutrient 
flow (Senf et al, 2017). So, the structure of the branches and twigs in the canopy remained the same after 
the infestation of the spruce trees.  On the other hand, studies have found better classification accuracy with 
different sensors and different SAR bandwidths (Ortiz et al., 2013; Tanase et al., 2018). Thus, we may expect 
better separability results from other SAR sensors such as P-band and X-band SAR data. However, unlike 
Sentinel-1 SAR data,  the cost of data acquisition associated with other SAR data may not be feasible for 
large scale monitoring of the bark beetle infestation of the spruce forests. Therefore, to leverage the rich 
temporal resolution of the Sentinel-1 SAR data rather than relying on a single snapshot of an image, the 
temporal profile was explored for differentiating between the healthy and infected spruce trees. 

4.2. Adaptive Savitzky-Golay (ASAVGOL) Filter  

Adaptive Savitzky-Golay (ASAVGOL) filter is expected to enhance the actual SAR backscatter response 
removing the noisy backscatter response of the annual profile. The enhanced annual profile after applying 
the ASAVGOL filter indicates the ability to filter out the noise and extract the actual signals of the healthy 
trees as expected. Hence, the improved annual profile has facilitated to better understand and differentiate 
between the healthy and infected spruce trees. The ASAVGOL  method of filtering of time series pattern 
is consistent with what was followed by Dostálová et al, (2018) to enhance the weaker seasonal variations. 

4.3. The annual temporal profile of the healthy and infected spruce trees  

The time series profile pattern of a healthy spruce trees differs from the time series profile of an infected 
spruce trees based on their respective Sentinel-1 SAR signal response. The difference of the profile pattern 
indicates that there is a change of backscatter coefficients response after the bark beetle infestation of the 
spruce trees. The healthy tree shows a sinusoidal pattern whereas infected trees profile exhibits an irregular 
pattern. Both healthy and infected temporal profile patterns can be attributed to their respective 
physiological processes and natural phenomena of a plant life cycle.  
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These annual backscatter profiles of the healthy spruce trees follow the plant growing season of the annual 
growth cycles (Ahern et al, 1993; Hollaus & Vreugdenhil, 2019; Senf et al., 2017). The sinusoidal patterns 
show an ascending upward trend coinciding with the summer growing period and peaks in the months of 
June-July each year. Then it drops back down and dips low in the winter months of January-February each 
year. The high backscatter coefficients of the healthy spruce trees could be explained by the increase of the 
water content of the living foliages during the summer seasons. This is consistent with what studies have 
suggested that water content in the vegetative parts of the living tree leads to the higher dielectric constant 
which produces higher radar backscatter response (Attema & Ulaby, 1978; Öquist & Huner, 2003). 
 
On the contrary to the annual profile of a healthy tree, the annual backscatter profiles of the infected spruce 
trees do not show any specific regular pattern after the infestation. The explanation for the moment of an 
infestation is relevant to the change in mean backscatter difference values after bark beetle infestation of 
the spruce trees. It was found that there was a mean backscatter coefficient difference of - 0.8 dB in VH 
polarization and -0.73 dB in VV polarization between the healthy and infected spruce trees (Table 1). The 
lowered backscatter coefficient values after the infestation moment can also be attributed to the reduced 
water content in the dying foliage of the beetle damaged tree canopy influencing the lower dielectric 
constant. Besides, the fading of the foliages of the infected spruce tree canopy might have exposed ground 
surface, contributing to erratic backscatter response as reported in other studies (Attema & Ulaby, 1978; 
Senf et al., 2017). The dead canopy of the infected trees likely allowed deeper penetration of Sentinel-1 C-
band SAR signals, picking the backscatter signals of dry or wet soil, snow, or any other ground cover. 

4.4. The moment of infestation: a transition from healthy to infected spruce tree captured by the 
temporal profile   

The availability of high temporal resolution of the Sentinel-1 SAR data enables to obtain the moment of 
transition from healthy to the infected spruce tree using the temporal profile. The profile provides insight 
on the transitions where there is a change of the annual sinusoidal pattern into an unrecognizable form of a 
pattern on the time series profile. The temporal profiling technique shows a convincing indication that dense 
Sentinel-1 SAR time series or time dimension play a vital role to trace the moments of bark beetle impact 
on the physiological processes of the spruce trees.  The ability of the temporal profile to reveal the moment 
of the bark beetle infestation is consistent with what was suggested by Hollaus & Vreugdenhil, (2019). 
Therefore, temporal profiling techniques could be deployed to understand and distinguish the moment of 
bark beetle damage at larger landscape level monitoring of the bark beetle infestations. Further, we can 
conclude that free and open availability of high temporal Sentinel-1 SAR data is applicable for monitoring 
bark beetle infestations.  
 
Sentinel-1 SAR data has an advantage over Sentinel-2 optical data for monitoring bark beetle infestation. 
Although studies (Abdullah et al., 2018, 2019a) have found that Sentinel-2 optical data could detect early 
stage of bark beetle infestation, however, optical data acquisition is hampered by could contamination. For 
instance, only 23timestamps of Sentinel-2 optical images could be collected from the year 2014 to 2019 for 
this study period. While, the duration of bark beetle infestation of the spruce trees, happens to occur within 
a short span of a few months, it impairs monitoring capability with less temporal coverage. Consequently, 
Sentinel-1 SAR data independent of cloud contamination may be far more effective for monitoring the bark 
beetle infestation of spruce forests.   
 



DIFFERENTIATING HEALTHY AND BARK BEETLE INFECTED SPRUCE TREES WITH SENTINEL-1 SAR DATA 

32 

4.5. Limitations 

This study lacked the field-based samples for both healthy and infected spruce trees. Samples were collected 
using the high resolution google earth images the visual interpretation. Thus, the samples for both healthy 
and infected are based on the critical assumption that visual interpretation truly represents actual spruce 
trees of both healthy and infected sample category. 
 
Since there was no field-based sample data, the relationship between the moment of infestation indicated 
by the temporal profile and the different stages of bark beetle infestation could not be investigated. Hollaus 
& Vreugdenhil, (2019) also mentioned about lack of available infected samples data to analyze differences 
between healthy and infected spruce backscatter using time series profile. The possible reason for the lack 
of field-based data is due to the huge requirements of field monitoring resources and difficulty in identifying 
the different stages of bark beetle infestation (Hlásny et al., 2019; Wulder et al., 2005). To understand at 
what stage of bark beetle infestation could be explained by the temporal profile, a study using field-based 
samples is necessary.   
   
The findings may be applicable to differentiate healthy and infected trees where there is pure spruce stand 
but not in a forest area with the spruce mixed with other tree species. Since the study was located within 
Eifel National Park, the study sample sites mostly contained pure spruce stands. In mixed forests, the SAR 
signal of the healthy spruce tree can mix with the other tree species and the SAR signal of infected spruce 
trees also is combined with other tree species. Such a mixed SAR backscatter response is likely to cause a 
less clear separability of healthy and infected trees. 
 
The pattern of the temporal profile was not explicitly apparent to show the difference between the healthy 
and infected category for a few of the sample plots. Speculation arises for the sensitivity of SAR backscatter 
response to local landscape environmental conditions. For this purpose, to find out the effect of 
precipitation to backscatter response, local in situ precipitation data were simultaneously plotted alongside 
the time series profile. Coherently with the previous studies (Rüetschi et al., 2019), no influence of 
precipitation was observed on the SAR backscatter response.  
 
The temporal profiling method to differentiate between healthy and infected spruce trees may not be suited 
for some purpose. For example, since not every deviation from the expected seasonal pattern is pointing at 
an infestation, this method may not work well to alert forest managers to react immediately. With the 
Sentinel-1 temporal profiling method, the moment of bark beetle damage could be pointed but it is not clear 
say at what stage of bark beetle infestation. 

4.6. Possible application 

The ability of the SAR profiling technique to identify bark beetle affected trees can be applied to guide forest 
managers to mitigate further spreading onto other healthy trees. It would serve as the cost-effective remote 
sensing technique required by forest managers and private forest owners to consistently monitor the bark 
beetle outbreaks in a spruce forests (Hlásny et al., 2019; Kolb et al., 2016; Křivan et al., 2016; Pellizzoni, 
2011). According to Hlásny et al. (2019), the most strategic forest management intervention to mitigate the 
widespread of bark beetle infestation is identifying bark beetle outbreaks and removing infected trees which 
are also known as sanitation operations. Therefore, the temporal profiling technique of differentiating 
between the healthy and infected spruce trees would guide the forest manager by identifying the bark beetle 
outbreak site for a timely sanitation operation. It would be efficient and cost-effective than the conventional 
field surveys (Fettig & Hilszczański, 2015) since Sentinel-1 SAR is openly available globally. This is in line 
with Hollaus & Vreugdenhil, (2019) who pointed out that high temporal resolution of the Sentinel-1 C-band 
has potential for monitoring the bark beetle infestations. 
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Relevant agencies can apply SAR temporal profiling techniques to identify the bark beetle infestation that 
helps make informed decisions for certifying sustainable forest management and compensation measures 
for forest owners affected by the bark beetle outbreak. For example, the German government had to allocate 
about eight million euros for 2019 and 2020 as relief support to the forest owners in reclaiming and salvaging 
bark beetle affected forests (Teller Report, 2019). The SAR temporal profiling method could be applied for 
screening the compensation of bark beetle damage claims of the local forest owners (Hlásny et al., 2019). 
Besides, this method can also be applied to examine the bark beetle mitigation measure implemented by 
forest managers for certification of sustainable forest management to be considered as sustainable status.   

4.7. Conclusion 

 
The SAR temporal profiling technique would be relevant to provide a solution for the requirement of cost-
efficient remote sensing technology for monitoring bark beetle infestation (Hlásny et al., 2019).  This method 
is also expected to serve as a solution for the requirement of a remote sensing method to improve bark 
beetle detection and mapping which was a priority research problem identified by the ecologists, land 
managers and social scientists across North America and Europe (Morris et al., 2017). This method is 
considered to be cost-efficient as the Sentinel-1 SAR data is freely and openly available. Further, it may 
substitute or at least compliment the current methods of identifying the bark beetle infestation, replacing 
the physically challenging and resource-intensive exercises (Fettig & Hilszczański, 2015). 
 
The SAR temporal profiling method is suitable than a single time snapshot Sentinel-1 SAR image to 
differentiate between healthy and bark beetle infected spruce trees. Despite a statistically significant 
difference between the means of Sentinel-1 SAR backscatter coefficients coming from healthy and a bark 
beetle infected spruce tree, there was a large overlap in their distribution that could hinder differentiation of 
their SAR signals. Hence, a workable method to use a single time snapshot Sentinel-1 image is unlikely to 
distinguish between the healthy and infected spruce trees. Sentinel-2 optical bands would be better 
alternatives for a single time snapshot image classification as studied by (Abdullah et al., 2019a; Yang, 2019). 
However, temporal profiling techniques using Sentinel-1 SAR data was found to be a useful method to 
differentiate between healthy and infected spruce trees which were not possible with Sentinel-2 image.            
 
The temporal profiling technique exploits the time dimension to churn out insightful information for remote 
sensing application. For example, Sentinel-1 SAR images were found suitable to understand the impact of 
the moment of bark beetle infestation on spruce trees by temporal profiling technique. The availability of 
high temporal Sentinel-1 SAR permits to illustrate the difference between the annual phenological activity 
of living spruce trees and the dying spruce trees infected by the bark beetles.  Furthermore, the Adaptive 
Savitzky-Golay filter improves the seasonal pattern information content of the time series backscatter 
response by removing noise and enhancing the readability of the pattern explicitly. The profiling technique 
to reveal the moment of bark beetle impact on the spruce trees was validated with the independent data. 
Therefore, we can conclude that Sentinel-1 SAR backscatter data allows exploiting the time dimension with 
temporal profiling methods to distinguish between the healthy and infected spruce trees for monitoring bark 
beetle infestation over the larger landscape.  
 
Sentinel-1 SAR images were found better than Sentinel-2 optical images in the temporal profiling method 
to understand the differences between the healthy and infected spruce trees. Since Sentinel-1 SAR data is 
not hampered by cloud contamination, it has an advantage over Sentinel-2 optical that allowed with 
numerous uninterrupted time-series data. On the other hand, Sentinel-2 based NDRE time series index was 
not able to form an annual pattern due to limited cloud-free observations. Thus, Sentinel-2 might be of 
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limited use for monitoring technique of bark beetle infestation of spruce forest in an area that remains 
mostly cloudy throughout the year. However, Sentinel-2 optical has advantages of better separability and 
detecting early-stage of bark beetle infestation as studied by Abdullah et al., (2019a).  
 
Sentinel-1 SAR temporal profiling techniques to find out the moment of bark beetle impact on the spruce 
trees would be useful for forest management and sustainable certification of forest management. It would 
provide information to guide forest managers and forest owners on the infected area for controlling further 
spreading into the entire forests (Carter et al., 1998; Chen & Meentemeyer, 2016). Sustainable certification 
institutes can use this method to assess and validate the extent of the bark beetle damage areas cost-
effectively.  For example, this method could be used by the relevant agencies that require evidence of the 
bark beetle damage to regulate the compensation of pests and diseases to forest owners (Hlásny et al., 2019). 
 
Further investigation is necessary to understand at what stage of bark beetle infestation can be described by 
the SAR temporal profile using field-based samples at each stage of the infestation processes. The future 
study using field-based sample data is expected to establish the relationship between the moment of 
infestation captured by the temporal profile and the different stages of bark beetle infestation. The 
relationship between the moment of infestation and stages of bark infestation would be useful for 
monitoring and detection of bark beetle infestation ina spruce forests.  
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APPENDICES 

Appendix A. Using Alaska Satellite Facility or Vertex DAAC data search for obtaining Sentinel-1 
SAR data  
 

1. Use ASF web interface for filtering, selecting and setting downloading criteria (ASF). 
2. Datasets: Sentinel 1 A 
3. Draw box encompassing Eifel National Park and the study area polygon marked shown by yellow 

bounding box 
4. In Additional filter: 
5. File: L1Detected High-Res Dual-Pol (GRD-HD) 
6. Beam mode: IW 
7. Polarization: VV+VH 
8. Direction: Ascending  
9. SubType: SA 
10. Path and Frame Filters: Start Path 88 
11. Downloaded using python scripts and run the python script from the folder where the scripts have 

been saved and the data are downloaded into the same folder. 
12. Organize and arrange downloaded sentinel 1 imageries: directory label S1A_P88_ACD 
13. Separate yearly basis directory in order to ease the batch processing: 2014 to 2019 
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Appendix B. Using QGIS to generate sample points inside the infected and healthy sample 
polygons. 
 

1. Convert the sample polygons digitized in Google Earth from KMZ format to shapefile format 
using any GIS software. 

2. Use QGIS, Vector, research tools and regular points to generated distributed points of 20 m X 20 
m across the healthy sample polygons. 

3. Distribution of sample points for healthy samples was considered at a larger distance than infected 
sample since infected sample areas were comparatively smaller and not abundant as healthy samples.  

4. Similarly, use QGIS, Vector, research tools and regular points to generated distributed points of 10 
m X 10 m across the infected sample polygons. 

5. Use QGIS, processing tools, point on the surface to generate the centre point of infected and 
healthy sample polygons to be used for extracting time-series SAR signals. 

6. Centre point of the polygon was considered for time series analysis of SAR signal to avoid influence 
border pixels other than spruce trees. 
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Appendix C. SAR Band math computation in SNAP 
 

 
 
Screenshot of how to compute ratio polarization using band math function in SANP platform.  
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Appendix D. Extracting SAR signal using sample points for analysis 
 

1. Load the SAR scene into the SNAP platform. 
2. Go to Raster>Export>Extract pixel values. 
3. Click on the + sign to add all the time series SAR images. 
4. In the Input/Output tab checkmark the option to select all to add all the images for extracting their 

pixel values or SAR signals. 
5. Checkmark the time extraction and use the pattern as follows: *_*_*_*_*_*${startDate}*_* 
6. In the parameter tab, click to add the sample points with latitude and longitude text file coordinates. 
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Appendix E. Checking the assumptions for t-test between infected and healthy samples 
 

1. Test of equal variance assumption between infected and healthy sample spruce trees 
F test to compare two variances 
data:  MyData1$VH_dB by MyData1$Infestations 
F = 0.92835, num df = 2341, denom df = 2659, p-value = 0.06401 
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
 0.8582843 1.0043408 
sample estimates: 
ratio of variances  
         0.9283525 
The test fails to reject H0: there is no difference of variance between healthy and infected samples at 
the 0.05 threshold level since the p-value is 0.06 or greater than the threshold level. 
 
 
2. Test of normality assumption using normal QQ plots for infected and healthy sample spruce trees 
 

 

 
 

 
Although there are not many outliers but the majority of the data fall along the line which is safe to 
assume that data follows normal distributions. 
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Appendix F. A comparison of different speckle filters influence over the distribution of backscatter 
values between the healthy and bark beetles infected spruce trees. 
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Appendix G. Google Eath Engine Java Scripts to extract SAR backscatter values to validate the 
bark beetle infestation moment. 
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Appendix H. R scripts for  SAR backscatter analysis 
 
knitr::opts_chunk$set(echo = T, message=FALSE, warning = F) # Message is set to `FALSE` to suppress the
 message being displayed in the output report  

library(readxl)     # R package to read the excel data output from the SNAP  
library(ggplot2)    # R package to make the graphs 
library(scales)     # R package to prepare different measurement scales of the data for ggplot 
library(lubridate)  # R package to handle date and time  
library(tidyverse)  # for data munging  
library(captioner)  # Label the figures and tables 
library(knitr)      # Kniting Markdown documents 

#read data sentinel 1 SAR pixel information of the sample  
MyData1 <- read_excel("data/Backscatters1.xlsx") 
 
#check the preview of fist 6 rows of data tables 
head(MyData1) 

# attaching data to r environment so that variable store in the columns of data frame can be accessed 
attach(MyData1) 

hist(Gamma0_VV, freq = F, density = 20) 
lines(density(Gamma0_VV)) 

hist(Gamma0_VV_dB, freq = F, density = 20) 
lines(density(Gamma0_VV_dB)) 

par(mfrow = c(1,2)) 
 
hist(Gamma0_VH, freq = F, density = 20) 
lines(density(Gamma0_VH)) 
 
hist(Gamma0_VH_dB, freq = F, density = 20) 
lines(density(Gamma0_VH_dB)) 

. 
# Gamma0_VV_dB 
n <- MyData1 %>% 
  ggplot( aes(x=Gamma0_VV_dB, fill=Infestations, stat(density))) + 
  geom_histogram( color="#e9ecef", alpha=0.75, position = 'identity') + 
  scale_fill_manual(values=c("#00ff40", "#ff4000")) + 
  xlim(-17, -1) + 
  #theme_ipsum() + 
  labs(fill="")+ 
  theme(legend.position = c(0.2, 0.7)) 
n 

 

# Gamma0_VH_dB 
n <- MyData1 %>% 
  ggplot( aes(x=Gamma0_VH_dB, fill=Infestations, stat(density))) + 
  geom_histogram( color="#e9ecef", alpha=0.75, position = 'identity') + 
  scale_fill_manual(values=c("#00ff40", "#ff4000")) + 
  xlim(-21, -7) + 
  #theme_ipsum() + 
  labs(fill="")+ 
  theme(legend.position = c(0.2, 0.7)) 
n 

# compare basckatters of infestations and healthy trees 
#boxplot(Gamma0_VH_dB~Infestations) 
# Change box plot line colors by groups 
p<-ggplot(MyData1, aes(x="", y = Gamma0_VH_dB, color=Infestations) ) + 
  geom_boxplot(outlier.shape = 23, outlier.color = "black") + 
  scale_color_manual(values=c("#00ff40", "#ff4000")) + 
#theme_ipsum() + 
  labs(fill="", color = "Spruce tree class") + 
  theme(legend.position = c(0.9, 0.2)) 
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#p <- p + coord_fixed(ratio = 0.06) 
p 

. 
## compare difference of meam to infestation 
 
#signal <- cbind(Gamma0_VH, Gamma0_VV,Gamma0_VH_dB,Gamma0_VV_dB,Gamma0_VH_CR_VV,Gamma0_VHdB_CR_VVdB,Gam
ma0_VH_diff_VV) 
 
signal <- cbind(Gamma0_VH, Gamma0_VV,Gamma0_VH_dB,Gamma0_VV_dB ) 
bc1 <- manova(signal~Infestations) 
summary(bc1) 

##                Df Pillai approx F num Df den Df    Pr(>F)     
## Infestations    1 0.2562    430.3      4   4997 < 2.2e-16 *** 
## Residuals    5000                                             
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

sar_ht <- read_excel("data/sar_ht.xlsx",  
    col_types = c("text", "date", "numeric",  
        "numeric")) 
sar_it <- read_excel("data/sar_it.xlsx",  
    col_types = c("text", "date", "numeric",  
        "numeric")) 
 
head(sar_ht) 

# Healthy trees 
ht_VH <- sar_ht %>% 
  select(Name, Date, Sigma0_VH_db ) %>%  
  spread(Name, Sigma0_VH_db) 
ht_VV <- sar_ht %>% 
  select(Name, Date, Sigma0_VV_db ) %>%  
  spread(Name, Sigma0_VV_db) 
 
# infected trees 
it_VH <- sar_it %>% 
  select(Name, Date, Sigma0_VH_db ) %>%  
  spread(Name, Sigma0_VH_db) 
it_VV <- sar_it %>% 
  select(Name, Date, Sigma0_VV_db ) %>%  
  spread(Name, Sigma0_VV_db) 
 
#Join by Date column for each VV and VH dB Polarization 
df_VH <- full_join(ht_VH, it_VH, by="Date") 
df_VV <- full_join(ht_VV, it_VV, by="Date") 

VH_data <- df_VH %>% 
  select(Date, Healthy30, Infected42) %>% # Subsitude any sample of choice HERE 
  gather(key = "status", value = "value", -Date) 
 
g <- ggplot(data = VH_data,  
            aes(x = as.Date(Date), y = value,color = status)) + 
  scale_color_manual(values = c("#00ff40", "#ff4000")) + 
  #geom_line() + 
  geom_smooth(span=0.08, se=F) + 
  scale_x_date(breaks = date_breaks("1 years"), date_labels = "%Y") 
g <- g + coord_fixed(ratio = 150) + 
  theme(axis.text = element_text(face = "bold", size = rel(.8))) + 
  labs(title = "SAR temporal profile of healthy and bark beetle infected tree", 
       x = "Year", 
       y = "SAR VH backscatter (dB)", 
       color = "Tree status") 
scale_y_continuous(labels = function(a) paste0(a/1,"dB")) 
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Appendix I. Temporal profiles of healthy and infected centre points of their sample polygon 
 

 

 


