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ABSTRACT 

Mobile eye-tracking has enabled GI user studies to be conducted in real-world environments, where the 

usability of mobile applications presenting spatio-temporal information and the cognitive process during 

the interaction with the information can be studied in a realistic context. But the dynamics in the real-

world environments challenge the analysis of the data, and the standard solutions provided by eye-tracker 

vendors don’t necessarily fit the need of GI user research. This thesis attempts to develop a prototype 

solution that assists the analysis of mobile eye-tracking data collected with a mixed-methods approach in 

GI user research. 

The development of the prototype solution follows the user-centered-design approach. Requirements are 

formulated based on a literature review on the application of mobile eye-tracking in GI user studies, the 

current analysis practice, and existing analytical solutions. The implemented first-stage prototype solution 

consists of a fixation mapping component, a screen-recording processing component, and a think-aloud 

data processing component, and provides possibilities for synchronizing the processed data. It attempts to 

automatically map fixations to real-world objects and screen contents, and (semi-)automatically process 

the think-aloud data with a transcription-segmentation-encoding pipeline. The results from these 

components, and location data (GPS measurements during the eye-tracking session), can be synchronized 

and analyzed together. The prototype solution is demonstrated and preliminarily evaluated with a case 

study. The case study data was originally collected to evaluate a mobile application aiming to assist 

geography fieldwork education. In the case study, mobile eye-tracking data, together with screen recording 

videos, think-aloud audios and GPS recordings are processed and analyzed with the prototype in an 

exploratory study that aims to describe the interaction between the application and the environment, and 

to discover usability issues with the application. The analysis explores the distribution and sequence of 

fixations, identifies usability issues from think-aloud protocols, and describes the test person's fieldwork 

learning process with synchronized fixation-verbalization-location data. 

The prototype solution is able to map fixations and encode think-aloud protocols with reasonable 

consistency compared with manual processing results. By processing and integrating data collected with a  

mixed-methods approach, it can assist the exploration of the linking process between the environment, 

the representation of it, and the mental map as people interact with geographic information in a real-world 

environment. 
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1. INTRODUCTION 

1.1. Motivation and problem statement 

Before the developments of wearable eye-trackers, studies have been performed in labs with screen-based 

fixed eye-trackers where the cognitive aspects of map reading are investigated via visual attention 

(Krassanakis & Cybulski, 2019). These studies have proven the value of eye-tracking data (often combined 

with data collected within a mixed-methods approach) in studying interface design or spatial knowledge 

acquisition even though the experiments could not always be held in realistic contexts of use. The 

development of wearable mobile eye-trackers has enabled the interaction with geographic information to 

be studied in the real environment, where the participants solve location-based spatial tasks, possibly 

interacting with spatio-temporal information presented on a mobile display. Mobile eye-tracking has been 

applied, for instance, to evaluate the usability of mobile navigation applications and interfaces (Bauer & 

Ludwig, 2019; De Cock et al., 2019; Ohm, Müller, & Ludwig, 2017), to investigate the influence of 

landmark and navigation aids on wayfinding behaviors and strategies (Brügger, Richter, & Fabrikant, 2017, 

2019; Schnitzler, Giannopoulos, Hölscher, & Barisic, 2016), and to model the process of spatial 

knowledge acquisition such as self-localization (Kiefer, Giannopoulos, & Raubal, 2014) and route-learning 

(Wenczel, Hepperle, & von Stülpnagel, 2017). The data has provided insights of visual behaviors and 

strategies by revealing the allocation of visual attention while participants perform a spatial task. Together 

with other data collected within a mixed-methods approach, the discoveries in visual attention can be 

further supported and explained, and a more comprehensive view can be obtained regarding the visual 

and physical behaviors, as well as the mental process during task execution.  

Although manually inspecting the recorded video can also lead to useful observations and insights (e.g. 

Koletsis et al., 2017), many studies perform qualitative or quantitative analysis on eye-movement metrics 

derived from the data (for example, the statistical tests in Schnitzler et al., 2016 and the mixed linear 

model approach in Wenczel et al., 2017). Such analysis needs support from a processing – analysis pipeline 

that transforms raw gaze data to meaningful metrics. The problem is that the constantly changing 

environment has brought challenges to the processing and analysis of mobile eye-tracking data. Unlike 

screen-based eye-tracking where screen-coordinates can be extremely helpful at identifying the map or 

geographical features being looked at on both static and dynamic/interactive maps (Göbel, Kiefer, & 

Raubal, 2019; Ooms et al., 2015), there is no such common reference frame in mobile eye-tracking data, 

making it much more difficult to record what is being looked at – which is often the starting point of the 

succeeding analysis. The standard analysis solutions provided by eye-tracker vendors, aiming for more 

general purposes, do not necessarily fit the analytical needs in order to answer research questions related 

to e.g. map use or spatial knowledge acquisition. For example, the metrics calculation and analytics 

modules of the vendors’ software suites are often based on areas of interest (AOIs) as a collection of pixel 

locations (SensoMotoric Instruments GmbH, 2017; Tobii Pro, 2019b), whereas the focus of GI science 

research is often on the object level (i.e. the objects present in the environment and their correspondents 

on the mobile display). Manually registering every fixation into the corresponding pixel location on 

reference images and delineating AOIs on them can be very laborious and time-consuming (Ohm et al., 

2017; Wenczel et al., 2017). While automated fixation mapping tools are offered by some eye-tracker 

vendors, such as Tobii’s Real World Mapping and SMI’s Automated Semantic Gaze Mapping 

(SensoMotoric Instruments GmbH, 2017; Tobii Pro, 2019b), they have been reported to fail to map 
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fixations when the scene is dynamic (Herlitz, 2018; Utebaliyeva, 2019), which is very common in GI user 

research, for example when the participant performs a navigation task in the environment. In screen-based 

eye-tracking studies, other data collected within the mixed-methods approach (e.g. screen-logging, 

thinking aloud) has directly assisted the analysis of eye-tracking data by associating fixations with map or 

geographic features (Göbel et al., 2019; Ooms et al., 2015) or supporting discoveries in the eye-tracking 

data (e.g. Jones & Weber, 2012). Such integration, or synchronized analysis, is not supported by the 

currently available solutions either. A more automated and integrated analysis process targeting the needs 

of GI science research will ease some labor off the analysis and possibly extract more information from 

the data that leads to insights regarding the use and interaction with geographic information in the 

environment.  

The research problem of this thesis can be described as a gap between the existing analytical solutions for 

mobile eye-tracking data and the required information to answer the research questions related to map use 

or spatial knowledge acquisition that are being addressed with the help of mobile eye-tracking data. This 

thesis will focus on the development of a first-stage prototype solution to facilitate the analysis of mobile 

eye-tracking data for GI science research purposes. The prototype solution aims to add automated 

elements and attempts to integrate and analyze data within a mixed-methods approach involving mobile 

eye-tracking data, and a case study will be carried out as a proof-of-concept demonstration and 

preliminary evaluation of the prototype solution.  

1.2. Research objective and questions 

The overall objective of this thesis is to develop a first-stage prototype solution to help analyze mobile 

eye-tracking data collected for GI user research. The overall objective can be achieved by answering the 

following research sub-questions. 

1. What are the requirements for the solution in order to enable it to facilitate analyzing mobile eye-

tracking data for GI user studies following a mixed-methods approach? 

- What are the typical research questions being addressed with the help of mobile eye-tracking data 

in a mixed methods approach and what kind of information is needed to answer those research 

questions? 

- What is the current state-of-the-art analysis practice and what kind of information can be derived 

with it? What are the limitations of existing analytical solutions? 

- What additional functionalities are needed for an improved prototype solution in order to 

facilitate the analysis?   

2. How can a prototype solution be designed and implemented in order to address the identified 

requirements? 

3. How can the prototype solution assist the analysis of mobile eye-tracking data to answer the relevant 

research questions?  

- What information can be extracted with the prototype solution and what is its advantage in 

extracting the information comparing to the existing analytical solutions? 

- How can the prototype solution be used in the analysis of mobile eye-tracking data to answer the 

relevant research questions?  

1.3. Organization of the thesis 

To achieve the research objective and answer the research questions, the methods applied will be based on 

a User-Centered Design approach (van Elzakker & Wealands, 2007). A prototype solution will be 

developed based on requirements identified from literature, and it will be demonstrated and preliminarily 

evaluated with a case study.  
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The rest of the thesis consists of 6 chapters.  

The following chapter is a literature review that discusses the application of mobile eye-tracking in GI 

science and the current analysis practice regarding mobile eye-tracking data. It also provides an overview 

of existing analytical solutions. By presenting some typical research questions in the geoscience domain 

and the existing analytical solutions, it provides a background for the thesis and serves as a starting point 

for the prototype development. The third chapter presents the adopted methodology framework of this 

thesis, including a brief introduction to the case study. The fourth chapter describes the design and 

implementation of the prototype. It starts from formulating the requirements based on the literature 

review. These identified requirements are transformed into a design of the prototype: the components 

needed to process eye-tracking data and the possible processing and integration of other data within the 

mixed-methods approach. And then the implementation details of the prototype are also discussed, 

including the supporting technologies that the implementation is based upon. The fifth chapter 

demonstrates the use of the proposed solution and with a case study where mobile eye-tracking data 

collected in another GI user study project is analyzed with the prototype solution. The chapter presents 

the information derived with the help of the prototype, and demonstrates how the information can be 

visualized and analyzed to answer the research questions of the original project. The sixth chapter presents 

a preliminary (technical) evaluation on the functionalities of the prototype solution where the prototype 

solution is compared with the current analysis practice and evaluated for its performance. Further analysis 

possibilities beyond the case study and limitations of the prototype are also discussed in this chapter. The 

final (seventh) chapter summarizes the thesis work by presenting conclusions, answering the research 

questions and providing recommendations for further research and solution development. 
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2. MOBILE EYE-TRACKING IN GI USER RESEARCH: 
APPLICATION AND ANALYSIS PRACTICE 

2.1. Introduction  

This chapter is a literature review on the application of mobile eye-tracking in GI user research and on the 

available solutions to analyze mobile eye-tracking data for such purposes. It will serve as a starting point to 

identify the needs and requirements for the prototype solution to be developed later in the thesis. This 

chapter starts with a brief introduction of mobile eye-tracking (Section 2.2). It is followed by a review on 

the applications of the mobile eye-tracking technique in GI user research, mainly focusing on the research 

questions they try to answer and the analytical approach they take regarding the mobile eye-tracking data 

(Section 2.3 and 2.4). A summary of available analytical solutions, both proprietary and open-source, is 

presented at the end (Section 2.5).  

2.2. Mobile Eye-tracking 

The eye-mind hypothesis suggests that cognitive processes and strategies can be reflected through visual 

attention (Just & Carpenter, 1976). Eye trackers can record the movement of the eyes and have been used 

to study visual attention allocation. There are two types of eye-trackers: screen-based and mobile. As 

opposed to screen-based eye-trackers where the stimuli are displayed on a screen and the test persons are 

fixed in front of it (Figure 2-1a), mobile eye-trackers are wearable devices that enable the test persons to 

move freely in the environment while their visual attention is recorded together with a scene video of what 

they see (Figure 2-1b). Due to its mobility, mobile eye-trackers have been used in different fields of studies 

that require in-situ experiments, for example in marketing, sports and human-machine interactions (Wan, 

Kaszowska, Panetta, A Taylor, & Agaian, 2019).  

 

  

Figure 2-1 Screen-based and wearable eye-trackers. a) a screen-based eye-tracker fixed at the bottom of the screen; b) 
a mobile (wearable) eye-tracker  (source for both pictures: Tobii Pro, 2015a) 

Eye-trackers record the basic eye movements as gazes. Gaze points are recorded as the instantaneous 

location of regard on the stimulus (Tobii Pro, 2015c). The frequency of gaze points registration depends 

on the sampling rate of the eye-tracker. To better interpret the eye movements, raw gaze point data are 

often filtered (classified) into eye movement events such as fixations, saccades, smooth pursuits and 

blinks. Among these events, fixations are the most commonly used event in mobile eye-tracking studies.  

- Fixation: A fixation represents a cluster of gazes when the eye stays relatively still on a target. Each 

fixation has a spatial location on the image plane, a start timestamp, and a duration. Although they 

are “reconstructed” from gaze points by a mathematical algorithm (i.e., fixation filter) instead of 

directly measured, they are considered as meaningful episodes of attention. The target being 

fixated corresponds to the target currently being processed (Just & Carpenter, 1976). 
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- Saccade: A saccade is a rapid eye movement that happens between fixations where the attention is 

switched to a new target (Fischer & Ramsperger, 1984). Because of the fast movement of the eye 

during a saccade, information intake and processing mostly don’t take place. The sequence of 

saccade-fixation-saccade is defined as scan-paths, which are often used to measure information 

search (Goldberg & Kotval, 1999).  

- Smooth pursuit: A smooth pursuit takes place when the eye follows a moving target. Saccades are 

often coupled with the pursuits to pick up and follow a moving target (Kowler, 2011).   

- Blink: A blink is an involuntary closure of the eye. Blinking usually cause 5-10% loss of data (raw 

gaze points) during a recording session (Tobii Pro, 2019b). Blink rate and latency are also used to 

indicate mental effort and cognitive load (Zagermann, Pfeil, & Reiterer, 2016).   

2.3. Mobile Eye-tracking in User Research in GI Science 

As spatio-temporal information is often communicated through mobile displays, user research of such 

applications and the interactions with them is also conducted in realistic use contexts where people solve 

spatio-temporal tasks in a real environment. Mobile eye-tracking is used to record the visual attention of 

people interacting with these products to answer research questions regarding the use and interactions 

with geographic information and spatial knowledge acquisition in the environment.  

There are generally two types of research questions that are addressed with the help of mobile eye-

tracking: one focuses more on the design aspects of the applications communicating spatio-temporal 

information (often on a mobile display), the other focuses more on the cognitive aspect as people interact 

with these products in a real environment.  

The first type of research questions mainly addresses map or application design issues and evaluates the 

usability of different map or application designs. They focus on the elements being inspected, such as 

which element receives more visual attention and which kind of map design results in higher cognitive 

workloads during use. Ohm et al. (2017) used the amount of visual attention to the screen as an indicator 

of efficiency to evaluate abstract navigation interfaces. Bauer and Ludwig (2019) compared detailed maps 

with schematic maps in indoor wayfinding by comparing the visual attention spent on the navigation 

instructions and the time needed for orientation. Apart from maps, written and photo-based navigation 

instructions and the corresponding mobile applications were also studied and evaluated for usability (De 

Cock et al., 2019), in which eye movement measures (e.g. mean fixation durations, revisits counts) were 

used as indicators for mental efforts.  

The second type of research questions mainly looks into the cognitive processes and strategies as people 

solve a spatial task in a real environment with or without a map as aid. They focus on describing, 

explaining and modelling the process. They investigate the external and human factors that influence the 

strategies and performance, and how the influence is reflected through visual attention. Apart from what 

is being looked at, the procedure of such attention allocation, and the cognitive interplay to associate the 

environment and the display are also at focus. Kiefer et al. (2014) studied the distribution and sequence of 

visual attention between map symbols and visible landmarks during the self-localization process (“given 

spatial scenery, identify one’s position in a spatial reference frame”), and concluded that more matches 

between map symbols and corresponding landmarks resulted in more successful task completion, 

suggesting a more successful self-localization strategy. Wenczel et al. (2017) studied the effect of learning 

intentions (incidental or intentional) on gaze behaviors during outdoor navigation. Visual attention to 

landmarks, as indicated by total fixation durations, was compared to indicate different spatial knowledge 

acquisition strategies under different learning intentions. Schnitzler et al. (2016) compared visual behavior 

and wayfinding decisions as people navigate with mobile maps, paper maps or no maps. They used the 
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distribution and frequency of fixations to depict the interplay between the navigator, the navigation device 

and the environment during an indoor wayfinding experiment, and looked into the characteristics of 

decision points and navigation devices that led to more attention for navigation aids. Franke and 

Schweikart (2017) compared navigation performance using maps with and without landmark information 

to study whether having landmarks on maps results in more attention for the corresponding landmarks in 

the reality and a more sustainable imprint on the cognitive map. Brügger et al. (2017) studied aided and 

unaided wayfinding by comparing the egocentric directions of participants’ visual attention during the 

processes. They compared the directional distribution of visual attention to conclude that during unaided 

wayfinding people looked backwards more in order to re-construct the spatial scene they had travelled 

during the previous aided navigation phase. A similar aided-unaided navigation experiment setup was later 

used to study the influence of automation level of navigation system behavior on human navigation 

behavior where the duration of fixations was used to indicate the cognitive function level along the 

navigation route (Brügger et al., 2019).  

For both types of research questions, the underlying cognitive process can be described as a mental 

process that links the reality (i.e., environment), the representation of it (e.g. a map on a mobile phone) 

and the cognitive map of the person (Delikostidis, 2011). This process is largely supported by visual 

attention, such as looking for clues in the environment. The attention allocation process between the 

environment and the representation can be reflected directly by eye movements. While the interaction 

with the cognitive map cannot be directly measured by eye-tracking data, it can be inferred from other 

data such as think-aloud recordings or mental map drawing.  

Indeed, mobile eye-tracking is often applied within a mixed-methods approach to be able to better answer 

such research questions. Thinking aloud can be used alongside mobile eye-tracking to help discover 

intentions and strategies of the test persons. Both concurrent and retrospective thinking aloud have been 

applied to compare navigation strategies between groups (Koletsis et al., 2017; C. Wang, Chen, Zheng, & 

Liao, 2019). Verbal protocols of think-aloud sessions also provide information to explain both visual and 

physical behaviors such as why a participant missed a target or got lost (Koletsis et al., 2017). As the 

studies are often conducted outdoor and involve locomotion, location data (GPS recordings) can also be 

collected to integrate locomotion and spatial context into the analysis. Kiefer, Straub, and Raubal (2011, 

2012) demonstrated an analysis of location-based mobile eye-tracking, where GPS data helped to reveal 

map reading behaviors. They mapped locations where a map was most needed, and explored the 

locomotion speed during map reading as an indicator of map use strategy. Unlike screen-based studies 

where the screen stimuli are automatically recorded and user interactions, such as mouse and keyboard 

events, can be logged and integrated into the analysis (e.g. Ooms et al., 2015), so far, screen-recording of 

the mobile display and user interaction logging are relatively rare in existing mobile eye-tracking studies, 

even though the content on the mobile display is often of interest. Some studies incorporated user-logging 

elements in their test applications and participants were asked to click a button once they understood the 

navigation instruction or successfully oriented themselves (Bauer & Ludwig, 2019; Ohm et al., 2017). This 

kind of user-logging has provided important information regarding the completion time of sub-tasks. 

Other user research methods, such as interviews (Franke & Schweikart, 2017), questionnaires (Bauer & 

Ludwig, 2019; De Cock et al., 2019) and memory recall tests (Franke & Schweikart, 2017) are also 

performed and their results can be referred to the results from mobile eye-tracking to support and 

complement each other and to discover relationships.   
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2.4. Analytical practice to for mobile eye-tracking data in GI user studies 

A typical analytical pipeline for raw gaze data usually starts with de-noising and filtering gazes into 

fixations (also known as eye-movement event detection or classification), followed by the collation of 

fixation-related information and then a visual or statistical analysis of the fixation data (Kiefer, 

Giannopoulos, Raubal, & Duchowski, 2017). Gazes are filtered into fixations based on whether the eye 

stays relatively still. For example, the I-DT dispersion threshold filter detects a fixation when the 

consecutive gaze points are distributed within the dispersion threshold; the I-VT velocity threshold filter 

detects a fixation when the (angular) velocity of eye movement is under a given threshold (Salvucci & 

Goldberg, 2000). This computation is based on the coordinate system of the eye-tracker (i.e., the 

movement of the eye is calculated independent of the movement of the target being looked at). In many 

fields of studies where mobile eye-tracking is applied, gaze filtering is not of primary interest to the 

researchers, as they are more interested in questions such as what is being looked at, instead of how the eyes 

move in respect to the head of the participant (Niehorster, Hessels, & Benjamins, 2020); they often work 

on “fixations detected by the software” (for example, in Franke & Schweikart 2016; Wenczel et al. 2017). 

Similar to the analysis of screen-based eye-tracking data on interactive map use, the analysis of mobile eye-

tracking data can also be classified into the two major categories: content-independent and content-

dependent analysis (Göbel et al., 2019). In the case of mobile eye-tracking, the difference between these 

two types of analysis lies in whether fixations are mapped to the objects (both in the environments and on 

the mobile display) being looked at.  

The first type of analysis is performed with aggregated metrics without distinguishing the targets of 

fixations. For example, in the study of Brügger et al. (2019), the data was segmented to sections based on 

sections along the task route and fixation metrics were aggregated per section without considering what 

the visual attention was allocated to. In their study, the descriptive summary statistics showed that mean 

fixation durations could be used to identify different behaviors and cognitive function levels along the 

route.  

On the other hand, in many studies the object being inspected is at focus, especially when maps are 

involved, as it is often of core interest to the study to know what is being looked at as people associate 

objects in the environments with the representations of them on the visual displays. In these cases in 

which the analysis is content-dependent, each fixation is associated with a target object before metrics are 

calculated. Because objects continue to change positions in the scene video and might move out of view, 

fixations are often mapped to one or more static reference images (also known as “snapshots”) where all 

objects of interests are present. Although the software suite from eye-tracker vendors provide some 

degrees of automation in doing this, the mapping process is still mostly manual and laborious (Kiefer et 

al., 2017).  

One approach to map fixations is to use a scene image (i.e., a frame from the video recording) as reference 

and register each fixation to its corresponding location on the reference. Areas of Interest (AOIs) can then 

be defined on the reference image and AOI-based metrics can be calculated for succeeding analysis. 

Visualizations such as heatmaps and gaze plots can also be created on the reference image (see Section 2.5 

and Figure 2-4). Yet due to the dynamics of the recordings, often too many scene images are needed to 

address all the objects that appeared in the video. Identifying AOIs manually on the excessive amount of 

reference scene images adds to the labor of fixation mapping (Ohm et al., 2017). At the same time, pixel-

level precision is not always needed when the focus is on the objects being looked at. Another approach is 

to use a schematic image as reference, in which abstract representations, such as “placeholder” boxes, 

represent different objects or object categories, both in the environment and on the mobile display. In 
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order to study the allocation of visual attention as people associate real-world objects with their 

representations, the mobile display itself often stands out as an object of particular interest. The display 

can be treated as a whole (Schnitzler et al., 2016), or divided into different sections (e.g. map section and 

navigation instruction section; Bauer & Ludwig, 2019; Ohm et al., 2017). Sometimes, fixations are also 

mapped to the exact corresponding locations or map symbols on the (paper) map for a more detailed 

analysis when the accuracy of the eye-tracker allows it (Franke & Schweikart, 2017; Kiefer et al., 2014). On 

the environment side, objects of interests are usually potential landmarks, including but not limited to 

buildings and signages (De Cock et al., 2019; Franke & Schweikart, 2017; Schnitzler et al., 2016; Viaene, 

Vansteenkiste, Lenoir, De Wulf, & De Maeyer, 2016). Nonetheless, both approaches of fixation mapping 

are laborious and time-consuming due to the huge amount of fixations to be mapped, which has also 

become a constraint for the number of participants recruited and, in turn, this is restricting the application 

and credibility of statistical methods (Bauer & Ludwig, 2019). 

Although, e.g. for discovering usability issues and formulating research hypotheses, the analysis of mobile 

eye-tracking data can be qualitative through inspecting the videos and annotating high level behaviors (e.g. 

looking at map, confirming landmark, as in the study of Koletsis et al., 2017), the eye-movement data is 

often analyzed with metrics and statistics. Fixation-related metrics are often used as measures for the 

visual interpretation process. Fixations can be analyzed by their distribution and sequence (Kiefer et al., 

2014). Distribution related metrics, such as fixation counts, frequency, total and mean fixation durations, 

can suggest what parts of the map or the environment are attended more (Bauer & Ludwig, 2019; Kiefer 

et al., 2014; Ohm et al., 2017; Schnitzler et al., 2016; Wenczel et al., 2017) and may be indicative of the 

cognitive function level when processing the information (Brügger et al., 2019; De Cock et al., 2019). The 

sequence of fixations describes the process of obtaining and processing such information and is often 

depicted by metrics such as (map) revisit counts (De Cock et al., 2019),  and number of matches between 

object in the environment and the corresponding map symbols (Kiefer et al., 2014). Although saccade-

related metrics are often used in screen-based eye-tracking studies as a measure of visual search (Liao, 

Dong, Peng, & Liu, 2017), they are less common in the analysis of mobile eye-tracking data due to the 

difficulty to distinguish saccades and smooth pursuits when both the head and the stimuli are moving in a 

dynamic setup (De Cock et al., 2019; Schnitzler et al., 2016). Because the detection of eye-movement 

events is based on the movement of the eye in the coordinate system of the eye-tracker, it can be prone to 

error when the object and/or the head is moving. Especially, when the eye follows a moving object, 

smooth pursuits are often classified as saccades or fixations (Olsen, 2012; Tobii Pro, 2019b).  

While visual analysis approaches such as heat maps and scan-path visualizations are common for screen-

based studies apart from statistical analysis (Blascheck et al., 2017), they are less commonly used to analyze 

mobile eye-tracking data because these visualizations often require high-precision fixation mapping where 

fixations are registered into the exact corresponding points on scene images. 

The processing and analysis of other data collected within the mixed-methods approach are often carried 

out independent of the analysis of eye-tracking data until their results are referred to each other. For 

example, think-aloud protocols are processed (mostly manually) with the transcription-segmentation-

encoding workflow, and the coding results can be analyzed with code frequency (Koletsis et al., 2017; C. 

Wang et al., 2019); the transcripts are also directly used to discover and support findings in the eye-

tracking data in exploratory analysis (Koletsis et al., 2017; Utebaliyeva, 2019).   
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2.5. Available analytical solutions 

Eye-tracker vendors provide software suites that process and analyze the collected data, and they are often 

the choice of analysis of researchers. SMI and Tobii are two popular solutions used by researchers from 

varying backgrounds (Wan et al., 2019). Table 2-1 lists the main functionalities provided by Tobii Pro Lab 

and SMI BeGaze.  

Table 2-1 Vendors' analytical solutions 

Functionality 

Group 

Tobii Pro Lab (v1.123) SMI BeGaze (v3.7) 

Recording replay gaze (fixation) video overlay on 

stimulus 

gaze (fixation) video overlay on 

stimulus 

Gaze and fixation 

mapping 

manual mapping and automated 

mapping of raw gazes and filtered 

fixations to snapshots 

manual mapping and automated 

mapping of raw gazes and filtered 

fixations to snapshots  

AOI definition static: static shape defined on image 

stimuli or snapshots;  

dynamic: shape defined on video 

keyframes and interpolated on frames 

in between 

gridded: static content-independent 

grids overlaid on stimuli/snapshot;  

static: static shape defined on image 

stimuli or snapshots;  

dynamic: shape defined on video 

keyframes and interpolated on frames 

in between  

AOI-independent 

metrics  

saccade metrics (saccade count, peak 

velocity of saccade, saccade amplitude, 

time to first saccade) 

fixation metrics (fixation count, 

fixation frequency, fixation duration);  

saccade metrics (saccade count, 

saccade duration, saccade amplitude, 

saccade velocity, scan path length);  

blink metrics (blink count, blink 

frequency, blink duration)  

AOI-independent 

visualization 

heatmap, gaze plot. heatmap, focus map, bee swarm, scan 

path  

AOI-based 

metrics  

fixation metrics (fixation duration, 

fixation count, time to first fixation, 

duration of first fixation);  

visit and glance metrics (visit duration, 

visit count, glance duration, glance 

count);  

saccade metrics (saccade count in AOI, 

time to entry/exit saccade, peak 

velocity of entry/exit saccade) 

fixation metrics (fixation duration, 

fixation count, first fixation duration, 

time to first fixation);  

visit and glance metrics (visit time, 

revisit count, glance duration, glance 

count, diversion duration);  

saccade metrics (time to first saccade);  

sequence metrics (AOI visit sequence, 

AOI transition matrix)  

AOI-based 

metrics 

visualization 

not natively supported AOI sequence chart, binning chart, 

proportion of looks chart 

Think-aloud 

recording and 

processing 

not natively supported includes recording module for 

retrospective think-aloud, no analysis 

functionalities. 
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In recording replay, fixations (gazes) are overlaid on the scene camera video. Researchers can add events 

to the replay timeline, which allows them to add annotation about e.g. higher-level behaviors, comments, 

codes for think-aloud protocols, or time of interest (TOI). It can facilitate the visual interpretation of the 

recordings. An example of the recording replay and timeline annotation is shown in Figure 2-2. In the 

replay view, the fixation is represented by a cyan circle. In the timeline, there is one TOI 

“walking_to_target”, and a customized event “keyword”.  

 

Figure 2-2 Example of recording replay in Tobii Pro Lab, including fixation overlay, TOI, timeline and customized 
event 

Gaze and fixation mapping is an important functionality that allows researchers to associate gazes and 

fixations with stimuli in the real world. Gazes and fixations are registered to a reference image (a 

snapshot). Manual mapping is normally performed on fixations due to the relatively smaller amount of 

fixations to be mapped, with respect to gaze points. During manual mapping, each fixation in the 

recording video is manually mapped to a reference image. The reference image can either a scene image or 

a schematic image. An example of manual mapping to a schematic reference image in Tobii Pro Lab is 

shown in Figure 2-3a. Automatic mapping, as the example of Tobii’s Real World Mapping (RWM) tool, 

utilizes image-matching algorithms that find the corresponding part of the reference image in the frames 

of eye-tracking videos (Herlitz, 2018). It is performed on gaze points, and fixations can be calculated on 

the snapshot based on the mapped gazes. It is estimated that automated mapping is approximately 5 to 10 

times faster compared to manual mapping for fixations (Tobii Pro, 2015b). To maximize its performance, 

flat (i.e., without perspective) and high-resolution reference images are preferred (Tobii Pro, 2019a). The 

mapping workload can be reduced significantly with automated mapping when the target in the video is 

relatively big, planetary and stable, for example, a paper map (Li, 2017; C. Wang et al., 2019). However, the 

accuracy of such automated mapping tools might be far from ideal in some cases with more head 

movements and perspectives in the recordings (Herlitz, 2018) and Tobii’s RWM has been reported to be 

not useful when the environment is highly dynamic (e.g. when the participant is walking; Herlitz, 2018) 

and the target is relatively small (e.g. a smartwatch; Utebaliyeva, 2019). An example of the automated 

mapping in Tobii Pro Lab is shown in Figure 2-3b.  
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a)  

 
b)  

Figure 2-3 Manual and automated fixation mapping in Tobii Pro Lab. a) manual mapping to a schematic reference 
image; b) automated mapping to a paper map (adapted from Li, 2017) 

AOI-independent visualizations are provided in two categories: density visualizations (heatmap, focus 

map) and scatter visualizations (gaze plot, scan path, bee swarm). For mobile eye-tracking data, these 

visualizations are only available after gazes and fixations have been mapped to a reference image. 

Heatmaps and focus maps are kernel density estimations of gazes or fixations that show the distribution 

of visual attention by changing the color or transparency of the background image based on the amount 

of attention received (e.g. measured by fixation count or fixation duration). Gaze plots, scan path, and bee 

swarm visualize individual gazes or fixations. Bee swarm plots show raw gazes as colored circles or other 

cursor shapes. Gaze plots and scan path graphs show the sequence of visual attention in which the 

fixation sequence is represented as numbered point symbols connected by saccade lines, where the sizes 

of the point symbols may be made proportional to the duration of the fixation, and the color of the point 

symbols can represent different participants. Examples of the AOI-independent visualizations are shown 

in Figure 2-4.   

 

 

 

a) b) 
 

 

  
c) d) 

Figure 2-4 Examples of AOI-independent visualizations. a) heatmap of mapped fixations on a floor plan (Source: Li, 
2017); b) focus map of visual attention on a flow map  (Source: Dong, Wang, Chen, & Meng, 2018); c) bee swarm on 
an image (Source: SensoMotoric Instruments GmbH, 2017); d) gaze plot on a floor plan (Source: Li, 2017). 
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For mobile eye-tracking data, it is possible to define AOI on the scene camera video or the reference 

image. Static AOIs defined on the video will remain static, independent of the change of video content, 

which makes it less useful in a dynamic setting. Dynamic AOIs are defined on the video keyframes and 

the shapes are interpolated for video frames in between, also independent of the video content and rarely 

used. Defining AOIs on the reference image enables metrics calculation on mapped fixations. Once AOIs 

are defined, metrics measuring dwell and transitions between the areas can be calculated and exported. 

AOI-dependent metrics can be visualized to show the distribution and sequence of visual attention among 

the defined AOIs. Figure 2-5 shows examples of standard visualizations provided by SMI BeGaze.   

 

 

 

 

 

a) b) 

Figure 2-5 Examples of visualization of AOI-dependent metrics produced with SMI BeGaze. a) AOI-sequence graph 
that shows the visual attention sequence of two participants in four AOIs along a timeline; b) binning chart that 
shows relative AOI fixation time on four AOIs along a timeline (Source of both charts: Merino, Riascos, Costa, Elali, 
& Merino, 2018). 

The software suites from eye-tracker vendors provide little support for other data collected with the 

mixed-methods approach. Although the hardware (e.g. Tobii Pro Glasses 2 and SMI ETG) allows the 

recording of audio data simultaneously with the video, the analysis of such data is not natively supported. 

The lack of an automated approach to integrate think-aloud data is also reported as a problem in the 

analysis of mobile eye-tracking data in general, not limited to GI user research (Wan et al., 2019). Screen-

recording of the display during a mobile eye-tracking session is not supported in the vendors’ suites either.  

 

The open-source and research communities have also produced analytical solutions for mobile eye-

tracking data. They can be vendor-independent and can process data from different eye-tracker models. 

Apart from reproducing the processing tools of the vendors' software suite (e.g. gaze denoising and eye 

movement detection), some solutions focus on specific aspects of the analysis such as fixation mapping or 

automated AOI generation. An inventory of these solutions is shown in Table 2-2.  

Table 2-2 Other available solutions 

Solution Presented 

as 

Supported 

eye-tracker 

specification 

Main 

functionalities 

Additional 

information 

TobiiGlassesPySuite 

(processing module) 

(De Tommaso & 

Wykowska, 2019) 

Python 

library 

Tobii parsing and 

extracting gaze 

data; recording 

management and 

gaze filtering  

The full solution has a 

controller module for 

the controlling of Tobii 

Pro Glasses 2, to form 

a collection-processing 

pipeline.   
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UXI.GazeToolKit 

(Konopka, 2019) 

C#/.NET 

library with 

console 

application 

no 

specification 

gaze filtering and 

data validation  

It does not directly 

depend on SDK from 

eye-tracker vendors.  

GlassesViewer 

(Niehorster et al., 2020) 

MATLAB 

program 

with 

graphic user 

interface 

Tobii parsing, extracting 

ad viewing gaze 

data; gaze filtering 

Multiple data streams 

(pupil size, gyroscope, 

accelerometer, etc.) can 

be viewed.  

GazeCode (Benjamins, 

Hessels, & Hooge, 2018) 

MATLAB 

program 

with 

graphic user 

interface 

SMI, Positive 

Science, Tobii, 

and Pupil Labs 

manual fixation 

mapping 

The interface is 

optimized so that 

manual mapping 

fixation to object 

categories is reported 

to be approx. two times 

faster with than with 

Tobii Pro Lab   

Mobile Gaze Mapping  

(Macinnes, Iqbal, 

Pearson, & Johnson, 

2018) 

Python 

command-

line tool 

no 

specification 

automated fixation 

mapping based on 

feature-matching 

Gazes are mapped to 

corresponding 

locations on a target 

stimulus (i.e., an object 

on a reference image). 

The reference image 

needs to be cropped to 

only include the target 

stimulus to ensure the 

performance.  

Visual Analytics Tool  

(Kurzhals, Hlawatsch, 

Seeger, & Weiskopf, 

2017) 

program 

with 

graphic user 

interface 

(closed 

source) 

no 

specification 

dynamic AOI 

generation with 

image clustering 

and interactive 

labelling 

 

This approach mainly 

focuses on the analysis 

of hypothesis-driven 

experiments in which 

AOIs can be pre-

defined (e.g. poster-

viewing) 

Computational Gaze-

Object Mapping 

(cGOM) (Wolf, Hess, 

Bachmann, Lohmeyer, & 

Meboldt, 2018) 

Python 

command-

line tool 

no 

specification 

automated fixation 

mapping to object 

AOIs with image 

instance 

segmentation 

(Mask-RCNN; He, 

Gkioxari, Dollár, & 

Girshick, 2017) 

The model was trained 

with only 72 annotated 

images, and over 4000 

fixations were mapped 

to object AOIs with 

approx. 80% accuracy. 

It demonstrated the 

potential of object-

based semantic fixation 

mapping using a neural 

network with only a 

relatively small set of 

training data. 
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2.6. Summary 

This chapter provided the background of the thesis. It reviewed the application of the mobile eye-tracking 

technique in GI user research and the typical research questions addressed with it, and summarized the 

current analytical practices and available solutions. The typical research questions are mainly related to the 

usability and design aspects of mobile application, and the cognitive process of spatial knowledge 

acquisition. The current analytical practices for the mobile eye-tracking data is often based on fixation 

metrics after manually mapping the fixations to real-world objects and screen-contents of the mobile 

display. Other data collected with the mixed-methods approach is often analyzed independently of the 

analysis of mobile eye-tracking data. The currently available analytical solutions are not all useful when it 

comes to answering the research questions related to interface design and the cognitive process in GI user 

research: automatic mapping of fixations to real-world objects is not well supported, the screen content on 

the mobile display cannot be automatedly incorporated into the analysis, and there is no automated 

processing and integration approach for other data collected with the mixed-methods approach, in 

particular, think-aloud audio data, to be analyzed together with eye-tracking data. This thesis research will 

build upon these existing analytical solutions and aims to address the gap by assisting fixation mapping 

processes with automation that associates fixations to real-world objects and screen display contents, and 

to integrate data from the mixed-methods approach to the analysis. The needs and requirements identified 

from existing research will be the starting point of the development of the prototype solution. The next 

chapter will introduce the general methodology adopted in the thesis regarding the development of the 

prototype solution.  
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3. METHODOLOGY OUTLINE 

3.1. Introduction 

This chapter outlines the research methodology of the thesis. The thesis adopts the User-Centered Design 

(UCD) approach (van Elzakker & Wealands, 2007) for the development of the prototype solution. A case 

study is applied to demonstrate the functionalities as a proof-of-concept and to preliminarily evaluate the 

prototype. Section 3.2 outlines the adopted UCD approach. The background of the case study is 

introduced in Section 3.3.   

3.2. User-centered design and application development  

The UCD framework has become one of the guiding principles for designing usable technologies and is 

often employed in the design of various geoinformation products (Haklay, 2010; Roth et al., 2017). The 

framework guides the development of applications, taking into account how the application/product can 

directly support the work of the users. Haklay (2010) presented the UCD cycle for geospatial technologies 

(Figure 3-1). The project starts with the planning: gathering information on what is needed to ensure the 

usability of the end product, usability of existing applications, and ideas for new product development. 

The design and development of the application is an iterative process. It starts with the analysis of user 

requirements, including the tasks, contexts of use and characteristics of the users, followed by a first-stage 

prototype of the design, and an evaluation of whether the design satisfies the requirements defined in the 

first stage. Iteration takes place when the requirements are not fully met: user requirements are then 

refined, and prototyping and evaluation will follow. The product ready for deployment is the outcome of 

the iteration process after the requirements are satisfied.  

 

 

Figure 3-1 A UCD cycle for geospatial technologies (Haklay, 2010, p100) 

Usability engineering translates the usability concepts into actions and criteria for developers. For example, 

the criteria for usable computer programs include effectiveness, efficiency, error-tolerance, learnable and 

satisfaction (Haklay, 2010). These criteria, often translated to more specific measurements, guide the 

development process. The main stages of the application development process are in line with the main 
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stages of the UCD cycle: gathering requirements and needs, development of the application, evaluation 

with typical/potential users, and finally deployment when the needs of the users have been addressed. 

Many methods and techniques have been developed for all three stages of the process (see Haklay, 2010, 

and Delikostidis, 2011 for reviews and summaries on methods and techniques) 

The first stage is analyzing and developing requirements. The functionalities of the application should be 

derived from the needs of the user. An understanding of the potential users is needed in order to develop 

functionalities for them. The techniques of collecting user needs includes questionnaires and interviews 

with potential users, and analysis of existing data and statistics, especially when the goal is to improve an 

existing application (rather than developing a new one; Haklay, 2010).  An understanding of the use 

context is also needed, which can be acquired from qualitative methods such as direct observation. An 

understanding of the tasks undertaken by the users is often needed to design functionalities to support 

those tasks. 

The prototype solution aims to allow researchers in the GI domain who use mobile eye-tracking to answer 

their research questions about the use of geospatial technologies in the environment. Because the 

proposed solution is built upon existing analytical solutions, an analysis of existing literature is the main 

source of the requirements. The analysis is conducted with a literature review (Chapter 2). A review of the 

use of mobile eye-tracking in GI user research identifies the typical research questions (the goal: what they 

use it for), the desired information to solve these questions and the current analysis practice to derive the 

information from the data (the tasks: what they do with it), and the difficulties of deriving the desired 

information with available solutions. Requirements for the prototype are formulated based on these 

findings. 

The second stage is the development of the application. During this stage, usability guidelines and design 

principles in literature can be a reference for the development (e.g. style guide for Tensorflow 

development; TensorFlow, 2015). A special consideration in this stage is about which parts of the 

application can be open for customization, and which parts should be encapsulated and hidden from the 

users, to minimize potential errors during use (Haklay, 2010). During the development stage, limited 

evaluation and testing can help determine the key elements (e.g. data model, workflow) of the application, 

especially when the user interfaces have a strong link with the core functionalities of the application. 

The first-stage prototype to be developed in the thesis will not include (graphic) user interfaces. Its main 

focus is the processing of the data (mobile eye-tracking, with other data collected with a mixed-methods 

approach) and providing the possibilities to derive (additional) information more efficiently compared to 

the existing analytical solutions. The prototype solution addresses the problem from two aspects: the 

processing and analysis of mobile eye-tracking data, and the processing and integration (analysis) of other 

data collected within the mixed-methods approach. It aims to encapsulate the functionalities, but will also 

provide open source code so that everything can potentially be customized for expert users. 

The evaluation stage tests if the developed application meets the requirements stated in the earlier stage. A 

wide range of frameworks, methods, data analysis and collection techniques are available for this stage 

(MacDonald & Atwood, 2013). Case study is one of the major empirical frameworks for evaluation, where 

a single use case is intensively examined to yield results that can be generalized to more similar units. The 

explorative nature of case studies makes them suitable for research applications, and they are often 

performed when the depth of the examination is preferred over the broadness (Gerring, 2004). The depth 

is preferred for example to understand the use of existing systems (Haklay, 2010).  
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For this thesis, the case study is the main method for the evaluation. It includes a proof-of-concept 

demonstration of the use of the prototype and a preliminary technical evaluation that compares the 

prototype with the current analytical solutions. The major focus is functionality and reliability (i.e., if the 

prototype solution can help to answer the research question of the case study; and how it compares to the 

state-of-art analysis methods). Actual user testing is not conducted because of the preliminary status of the 

prototype and it does not (yet) have a graphic interface.  

3.3. The GeoFARA case study 

The case study in this thesis is the eye-tracking session of the evaluation study of mobile application 

GeoFARA (X. Wang, van Elzakker, Kraak, & Köbben, 2017). GeoFARA (“Geography Fieldwork 

Augmented Reality Application”) is a mobile application designed to support fieldwork in human 

geography education by combining visualizations (mobile maps) and mobile augmented reality (AR). As a 

“context-aware” learning tool, its main goal is to assist students to improve their geographical 

understanding of an urban area. Points of interest (POIs) related to the fieldwork (e.g. buildings) are 

overlaid through AR, and also marked on an interactive map, so that the user can have both the POI 

overview on the map and the POI live view through the AR (as floating labels). The information (e.g. text 

and images) attached to the POIs can be displayed on demand. The AR and map are displayed on a split-

screen (Figure 3-2a), which allows the user to perceive the information of the surroundings with the AR 

and the map at the same time. When the user clicks the POIs on the AR or the map, detailed information 

of the POIs is displayed (Figure 3-2b), it can contain text, photos, old maps etc.. The user can also take 

notes or photos, and view the saved notes and photos. The details of the design of GeoFARA can be 

found in X. Wang, van Elzakker, & Kraak (2017) 

 
a) 

 
b) 

Figure 3-2 Two main interfaces in the operation prototype of GeoFARA. a) augmented reality and map on a split-
screen, POI “ITC” is shown as the green label in the AR view and the orange marker on the map view; b) detailed 
information on the POI (source: Wang, 2018) 

The operational prototype of GeoFARA was evaluated with fieldwork sessions representing the scenario 

of human geography fieldwork in higher education. The evaluation study was conducted in 2017. The full 

evaluation session was a combination of pre-fieldwork spatial ability survey and mental map drawing of 

the fieldwork area, a fieldwork session with mobile eye-tracking, and think-aloud, and post-fieldwork 

interview and mental map drawing. The goal of the evaluation session was to find out the utility and the 

usability of GeoFARA in assisting the student to meet the fieldwork objectives (i.e. improving the 

geographical understanding of an urban area). (The detailed procedures of the evaluation session can be 

found in X. Wang, 2020).  

The goal for the mobile eye-tracking part was to investigate the fieldwork learning process assisted by 

GeoFARA (i.e., the simultaneous interaction with the environment and GeoFARA) and to discover its 

usability issues. The eye-tracking session was conducted with Tobii Pro Glasses 2. Audio data were 
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recorded simultaneously by the eye-tracker. GeoFARA was run on an Android phone. The screen content 

of the phone was not recorded. The evaluation study was conducted with 3 pilot test persons and 14 

formal test persons. The first pilot study was conducted during the development phase of GeoFARA, and 

the other two pilot studies after the development had been completed. The pilot studies had the same 

procedure as the formal test.  

The fieldwork area was the Schuttersveld area in Enschede, The Netherlands. The area has a history of 

usage by the textile industry. Although the textile industry has largely collapsed in Enschede, some visible 

remnants of the industry are still present (e.g. new buildings built on the site of the old textile factories, 

villa of the factory owner). These remnants are included in GeoFARA as POIs.  

A map showing the fieldwork area with the POIs is shown in Figure 3-3. The task for the test persons 

during the fieldwork was open-ended: to discover the remnants and visible influence of the formal textile 

industry in the Schuttersveld area. Test persons were expected to discover the remnants of the formal 

textile industry, compare them with the current geography, and look for visible clues of the influence of 

the textile industry on the current spatial layout of the area. There were no fixed routes, and test persons 

could explore the entire area in their own order and at their own pace. During the fieldwork session, test 

persons were encouraged to speak their thoughts aloud. Because test persons were informed that they 

would draw their mental maps of the Schuttersveld area before and after the fieldwork session, active 

engagement of the mental map could be expected during the fieldwork (instead of passively following 

instructions presented on the app, they were expected to actively explore both the area and the various 

information offered by the app).  

 

Figure 3-3 Fieldwork area of the GeoFARA evaluation study, Schuttersveld, Enschede 
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The GeoFARA evaluation study is chosen as the case study because it resembles the typical mobile eye-

tracking studies in GI user research: test persons moved in the environment while interacting with a 

mobile app providing spatio-temporal information and trying to relate the current reality with the (current 

and historical) representation with active engagement of their own mental maps; regarding data collection, 

mobile eye-tracking was carried out in a mixed-methods approach together with concurrent think-aloud. 

The research question of the GeoFARA evaluation also fits into the typical research questions identified in 

the previous chapter (i.e., evaluate user interface, investigate the cognitive process).  

The evaluation sessions had been completed before the start of this thesis project but the research 

questions (regarding the mobile eye-tracking part) had not been answered yet. The data reflected an 

authentic status of data collection from a real researcher in GI user research.  

3.4. Summary 

This chapter presented an overview of the research methodology adopted in the thesis. The design and 

development of the prototype solution are based on the UCD approach. The requirements source from 

an analysis of existing literature. A first-stage prototype will be developed based on the requirements on 

functionalities (processing needs) and will not include a graphic interface. The functionalities of the 

implemented prototype will be primarily evaluated with a case study. In the case study, mobile eye-tracking 

data collected from the evaluation session of GeoFARA will be processed and analyzed with the 

prototype solution, and the prototype solution will be evaluated on functionality and reliability. The case 

study aims to make generalizations on the potential use of the prototype solution in a wider context of GI 

user research. The next chapter will present the requirements, design and implementation of the prototype 

solution.  
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4. A PROTOTYPE SOLUTION 

4.1. Introduction 

This chapter presents the design and implementation of the prototype solution. Section 4.2 formulates the 

requirements for the prototype solution based on the literature review in Chapter 2 and presents the 

design of the prototype. The implementation framework and the implementation details (including the 

supporting technologies) are discussed in Section 4.3.  

4.2. Requirements  

Based on the literature discussed in Chapter 2, the typical research questions being addressed with the help 

of mobile eye-tracking (in a mixed-methods approach) are mainly related to the usability and design 

aspects of mobile application, and the cognitive process of spatial knowledge acquisition. Mobile eye-

tracking are used in these studies to: a) describe the use and discover usability issues of a mobile 

application presenting spatial-temporal information; and b) reveal the user’s cognitive process as they 

make interactions between the environment, the representation of the environment and their mental map 

while performing a spatial task. The literature review has also identified the information needed to achieve 

these purposes as well as the gap in the analytical solutions. A list of the desired information to be 

collected, the problems with performing analysis with the current solutions, and the corresponding aspects 

that need to be considered in the prototype solution is presented in Table 4-1.  

Information on visual attention (real-world objects and screen content), mental process and geographical 

context is needed. The analysis of visual attention is often based on real-world objects and their semantics. 

Among the objects, the mobile display is an object of particular interest as it presents the geographical 

information. Apart from whether the attention is on the mobile display, researchers also want to know 

what on the mobile display is being looked at. To answer the typical research questions, information is 

needed not only on what is being looked at, but also why these things are looked at and what is the test 

person thinking about when making the interactions. Although visual attention can help infer mental 

processes, the test person’s own verbalization provides direct insights from his/her own perspective. It 

helps to support and explain the visual and physical behavior, it can also reveal issues that not directly 

visible from visual attention alone, such as difficulties experienced by the test person. And because the 

experiments are conducted in the real-world environment, the geographical context and locomotion are 

often heavily involved. Existing analytical solutions are not supporting these needs effectively, especially  

regarding the fixation mapping and the processing and integration of data from the mixed-methods 

approach.  
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Table 4-1 From desired information to prototype design 

Desired 

information 
Explanation 

Problems with 

existing solutions 

Aspects to consider in 

prototype 

Visual attention 

on real-world 

objects 

The analysis of the 

distribution and the 

sequence of visual 

attention is based on real-

world objects; among the 

them, the mobile device is 

an object of particular 

interest (What object is 

being looked at, for how 

long, and in which order?) 

Mapping fixations to 

real-world objects is 

manual and laborious, 

and current automated 

mapping solutions 

cannot handle dynamic 

scenes well.  

A less laborious approach 

to attach semantic 

information to gazes or 

fixations that associates 

them with objects in 

reality.  

Visual attention 

on the content of 

the mobile display 

The content on mobile 

display is often of 

particular interest because 

of the spatio-temporal 

information presented on 

it. (When the person is 

looking at the mobile 

display, what content is 

being looked at?) 

The screen content is 

often dynamic due to 

user interactions, and 

there is no available tool 

that supports 

synchronized and 

automated analysis of 

screen content and 

mobile eye-tracking 

data.  

Recording of the screen 

content and interactions 

on the mobile display 

(e.g. as video or action 

logs), processing of the 

recorded data and 

associating the result with 

the fixations. 

Mental process 

from the test 

person's 

perspective 

It includes the intention of 

(visual and physical) 

behaviors, comments and 

explanations. (Why does 

this person look at these 

things in such a manner? 

What is this person trying 

to do?) 

The current analysis of 

verbal protocols is 

largely manual, and it is 

not integrated with the 

analysis of eye-tracking 

data.  

An integrated way to 

perform process and 

analyze think-aloud data 

(semi-)automatedly and 

link it with the mobile 

eye-tracking data. 

Geographical 

context and 

locomotion 

The context of the (visual 

and physical) behaviors 

and mental processes as 

the test person constantly 

interacts with the 

environment (Where do 

these behaviors take 

place?) 

Location data is rarely 

recorded during the 

execution of 

experiments and not 

included in the analysis. 

Recording of location 

data (e.g. as GPS 

measurements) and the 

integration of it in the 

analysis. 

 

In light of these kinds of desired aspects in typical eye-tracking GI user studies, the following additional 

components are proposed and will be implemented in the prototype solution:   

- Automated object-based fixation mapping 

- Screen-recording video processing 
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- (Semi-)automated think-aloud data processing that includes transcription, segmentation, and 

encoding 

- Synchronization of mobile eye-tracking data, think-aloud data, screen-content data, and GPS 
recordings  

The automated object-based fixation mapping component should be able to process the scene camera 

video with the fixation data and identify the object of regard of every fixation. It should also be able to 

identify a wide range of objects that are of interest in GI user research (e.g. the cell phone as the mobile 

display). It is decided to map fixations instead of raw gaze points because the same is conducted during 

manual mapping (also in some automated mapping practice such as Wolf et al., 2018), and it significantly 

reduces the load of data processing.  

Screen-recording video is chosen instead of activity logs because screen-recording is easier to acquire 

during an experiment. Action logs often need to be explicitly coded during the development of the mobile 

application, making them less easy to acquire. Actions logs are also very application-specific in terms of 

log items and log structure thus require tailored processing procedures. The recording and processing of 

screen-recording videos is a more generic procedure with an easier data-collection setup that could be 

applied in different experiment setups. The screen-recording processing component should be able to 

describe and identify the screen content at a given moment. The result of this component should be 

directly integrated into the result of the automated fixation mapping component.   

The think-aloud data processing component follows the three typical steps in verbal protocol analysis:  

transcription, segmentation and encoding (Ericsson & Simon, 1993; Yang, 2003). The think-aloud audio 

will be processed into transcripts, protocol segments, and encoded protocols. The encoding should allow 

some degrees of flexibility of code definition (i.e. the researcher should be able to define coding schemes, 

instead of having to use a set of codes pre-defined by the prototype). The (intermediate) result of the 

process should also have an easy-to-access structure (e.g. with timestamps) that will allow it to be 

synchronized with other (processed) data. The results should also have a readable structure for humans in 

case they are qualitatively studied.  

Each data-processing component should be able to produce results independently, but their results should 

also have a structure that allows them to be synchronized and integrated with others. The synchronization 

component provides an opportunities to bring together the processed data for integrated analysis. 

Commonly used metrics and visualizations (e.g. discussed in Chapter 2) can be generated with the 

individual or integrated datasets.  

A graph illustrating the relationship between the source data, the proposed components and the desired 

information to be derived is shown in Figure 4-1.  



A SOLUTION TO ANALYZE MOBILE EYE-TRACKING DATA FOR USER RESEARCH IN GI SCIENCE 

 

23 

 

Figure 4-1 Requirements: deriving desired information with proposed components. 

4.3. Implementation  

4.3.1. Implementation framework 

The implementation mainly consists of a fixation mapping component, a screen-recording processing 

component, and a think-aloud data processing component. The result from the components, together 

with GPS recordings, can be synchronized and analyzed together if needed. The implementation 

framework is shown in Figure 4-2. The prototype is implemented in Python as command-line tools. The 

following sections will explain the implementation details of each component. Information on the source 

code repositories and instructions to run the prototype solution  is provided in Appendix A. For this first-

stage prototype, the implementation is based on and limited to Tobii’s hard- and software (data structure).  

 

Figure 4-2 Implementation framework 

4.3.2. Object-based fixation mapping 

The task of the fixation mapping component can be described as: given an image (i.e., a frame from the 

scene video) and a pair of pixel coordinates (i.e., the fixation on the frame), find the object in the image 
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that this pixel belongs to. This task can be supported by image segmentation models. The implementation 

workflow is shown in Figure 4-3.  

 

Figure 4-3 Workflow for mapping fixations to real-world objects 

The automated mapping is performed on pre-filtered fixations exported from Tobii Pro Lab. During the 

mapping, each fixation is represented by its middle frame (i.e., the video frame closest to the middle 

timestamp of the fixation, similar to the procedure taken by Wolf et al., 2018) The middle frame is 

extracted from the scene video recording using the timestamp information of the fixation. The frame 

image is then segmented by the panoptic segmentation model, and the fixation is mapped to the objects 

given the object masks and the fixation coordinates. If the fixation is mapped to object “cell phone” (the 

mobile display), the screen coordinates of the fixation is then estimated. Since the prototype solution is 

built upon Tobii’s services and file formats, the inputs are required to follow the Tobii data export file 

format. 

4.3.2.1. Panoptic segmentation and the trained model 

A pre-trained panoptic segmentation model from the Detectron2 platform is adopted for the fixation 

mapping task. Detectron2 is a platform powered by the PyTorch deep learning framework that 

implements state-of-art object detection algorithms and provides flexible customization to the models 

(Wu, Kirillov, Massa, Lo, & Girshick, 2019). The model is pre-trained with the COCO (Common Object 

in Context) panoptic dataset (Caesar, Uijlings, & Ferrari, 2016). Detailed configurations of the model are 

provided in Appendix B.  

A panoptic segmentation model is chosen for the fixation mapping task because of its ability to coherently 

segment the entire scene, which enables it to address the most interesting objects (e.g. the mobile display, 

buildings, backgrounds) at the same time in a coherent manner. In image segmentation, the objects are 

generally grouped into two major categories: things (countable objects with well-defined shapes), and stuff 

(amorphous regions such as sky or grass; see Caesar et al. [2016] for the discussion of thing and stuff in 

segmentation tasks). In the application of mobile eye-tracking in GI user research, the objects of interest 

include both things and stuff. For example, the mobile display (cell phone or tablet) is a countable object 

(thing), while many objects in the environment such as buildings and roads are amorphous regions (stuff). 

Traditionally, these two categories are treated with different segmentation tasks: stuff is addressed with 

semantic segmentation where each pixel in the image is assigned a class label (semantic segmentation treats 

thing classes as stuff); things are typically addressed with instance segmentation where each object instance is 

detected and delineated with a segmentation mask. Although they seem related, these two tasks are very 

different. They are performed with different models, datasets, evaluation metrics, etc., and they cannot be 

directly integrated to achieve a complete and harmonious segmentation of an entire image. Instance 

segmentation cannot address stuff classes; semantic segmentation models perform well on bigger stuff 
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(e.g. sky), but tend to perform poorly on thing classes (Zhou et al., 2019). Panoptic segmentation is a 

recently proposed task that unifies the two traditional segmentation tasks (i.e., semantic segmentation and 

instance segmentation) by assigning each image pixel a semantic (class) label, as well as an instance label if 

a countable object is detected, providing a way to coherently segment the entire image (Kirillov, He, 

Girshick, Rother, & Dollár, 2018). An example of an image and the segmentation results from a semantic 

segmentation model, an instance segmentation model, and a panoptic segmentation model is shown in 

Figure 4-4. The example image (a) shows a typical scene where a map is shown on a cell phone in an 

outdoor environment with buildings, traffic, and other surrounding objects. The semantic segmentation 

model (b) is relatively good at segmenting big amorphous regions such as sky and buildings but performed 

poorly with countable objects such as person (the hand) and cell phone. The instance segmentation model 

(c) can detect objects and delineate object instances masks very well but cannot address the amorphous 

regions. The panoptic segmentation model (d) addresses both categories harmoniously with reasonable 

performance.  

    
a) b) c) d) 

Figure 4-4 An example of different segmentation models. a) the original image; b) semantic segmentation with 
UperNet101 network trained on the ADE20K dataset (UperNet101: Xiao, Liu, Zhou, Jiang, & Sun, 2018; ADE20K: 
Zhou et al., 2016), c) instance segmentation with Mask R-CNN trained on COCO dataset (He et al., 2017); d) 
panoptic segmentation with panoptic FCN trained on COCO panoptic dataset. 

A pre-trained model is preferred against training a new model because the prototype solution aims for a 

more generic application within the scope of GI science, and the pre-trained model already covers a large 

number of categories that are also common for such applications. Training a model from scratch will 

require a huge number of labeled data and is extremely time and resource consuming. Re-training the pre-

trained model with a new set of segmentation targets can make the model specialize on those targets; re-

training is only needed in very case-specific circumstances when the target objects are relatively 

uncommon and not included in the pre-train model (such as object “syringe” in Wolf et al. 2018). The 

COCO dataset is one of the widely-used annotated image datasets that are used to train and validate 

segmentation models. The COCO panoptic dataset has 80 thing categories and 91 stuff categories. It 

covers many common objects that are of interest in the application of GI user research (such as cell 

phone, building and various building parts, indoor landmarks). A list of categories in the COCO panoptic 

dataset is provided in Appendix C. 

4.3.2.2. Estimation of screen-coordinates of fixations on mobile display 

The mobile display itself is often an object of particular interest. Together with information from screen-

recording videos (Section 4.3.3), estimating the screen-coordinates of fixations might help to determine 

what is being looked at on the mobile display. However, it is important to notice that due to the precision 

and accuracy of the mobile eye-tracker itself, the calibration procedure of the experiments, and the 

assumptions made during the estimation, the estimated screen-coordinates are approximates that cannot 

be treated as an equivalent to the screen-coordinates of fixations in screen-based eye-tracking studies.  

The estimation of screen-coordinates is based on two basic assumptions. Firstly, it is assumed that when 

the fixation lands on the screen, the entire screen is in the field of view of the scene camera. Secondly, 

when the fixation lands on the screen, the device is held in a relatively “upright” position where the screen 
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is relatively perpendicular to the line of sight (Figure 4-5a). From visually examining the video from the 

case study, the first assumption is likely to hold for smaller devices such as mobile phones, but might not 

be true for larger tablets. The second assumption also generally holds for smaller devices because the 

device is often needed to be held in a relatively upright position for the user to be able to read the screen 

content (Figure 4-5b). These assumptions, as well as the errors that they might introduce, will be further 

discussed later in the evaluation (Section 6.2.2).  

 
a) 

 
b) 

 
c) 

 
d) 

Figure 4-5 Estimating screen-coordinates of fixations on the mobile display. a) assumption of the phone in “upright” 
position, content is clear to read;  b) phone in a tilted position, content is difficult to read; c) fixation (green dot) on 
object mask for the “cell phone” instance; d) a rotated bounding box is calculated for the mask to estimate the 
screen-coordinates of the fixation 

Once a fixation is mapped to the category “cell phone,” it is passed on to the coordinates-estimation unit. 

The object mask of the cell phone is extracted, where a rotated bounding box (minimal bounding 

rectangle) is calculated based on the mask. The fixation point is then used to calculate relative distances to 

the edges of the bounding box to get relative/proportional coordinates. With additional knowledge of the 

size of the device, absolute screen-coordinates estimations can be calculated. An example of this is shown 

in Figure 4-5 (c and d).   

4.3.3. Screen-recording processing 

In an ideal experiment setup, the screen-recording video is made simultaneously with the eye-tracking 

video. Once the videos are synchronized (see section 4.3.5 on synchronization procedure), every fixation 

that lands on the phone can be further mapped to the content of the phone (i.e., a frame from the screen-

recording video) at that moment.  

The goal of the screen-recording processing component is to determine the screen content at a given 

moment. The screen-recording processing component performs a content-based image retrieval (CBIR) 

task: given a query image, it finds the most similar image from a pool of (pre-defined) candidate images 

(Figure 4-6). The task is executed in two phases: the indexing phase and the search phase. In the indexing 

phase, representative frames (e.g. screen contents of particular interest) from the screen-recording video 

are manually selected as candidates. They are passed to a feature descriptor, where their feature vectors are 

calculated, indexed and stored in a file. This indexing operation is independent of the eye-tracking data. 

During the search phase, for each fixation mapped to the cell phone, a frame from in the screen-recording 

video is extracted using the timestamp of the fixation as the query image. The same set of features of the 

query image is also calculated with the descriptor, and the feature vector of the query image is compared 

to those of the candidate frames with a distance metric (in this case, the Euclidean distance). The best-

matching candidate with the smallest distance is assigned as the screen content of the fixation.  
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Figure 4-6 Content-based image retrieval for screen-recording processing 

The descriptor used in the prototype solution is (3D) HSV histograms. Because screen-recording videos 

are not subjected to changes in lighting conditions or camera angles, color histograms are able to capture 

image features stably without too much noise. Compared to the RGB color space, the HSV color space is 

more similar to the human perception of color and is relatively computationally simple compared to 

sophisticated systems such as the CEILab color space. The underlying assumption of using color 

histograms as the descriptor is that images with similar color distributions are considered to have similar 

contents. Because the mobile display often consists of regular-shaped sections (e.g. the instruction section 

and map section in Ohm et al., 2017) with different content and color distributions, instead of calculating 

one histogram for the whole image, the image is divided into four sections: upper left, upper right, lower 

left, and lower right, and histograms are calculated for every section. The resulting feature vectors contain 

histogram information for all four sections. The bin number of the histograms determines the sensitivity 

of the comparison. The more bins, the more detailed the histograms are, the more detailed the 

comparison and matching can be. But a larger number of bins also significantly increases computation 

time. Determining the number of bins will depend on the perceived similarity among the candidate 

images, and the expected level of detail in the comparison. Tuning the bin number is an experimental and 

iterative process. The prototype script allows the user to define the number of bins for each of the H, S, V 

channels, but it offers a default number for a relatively detailed comparison.   

4.3.4. Think-aloud processing 

In this processing component, think-aloud audio data is processed with a semi-automated transcription – 

segmentation – encoding workflow enabled by Amazon Web Services (AWS). Apart from the audio data 

input, a list of vocabularies should be provided for the transcription, and a coding scheme with example 

utterances should be provided for the encoding. Transcripts, segments and coded protocols are produced 

as output.  Figure 4-7 shows the workflow. The processing procedure can be performed in the AWS web 

console by manually configuring the various services or from scripts that chain the services as a cloud 

workflow (Section 4.3.4.2).  

 
Figure 4-7 Workflow for think-aloud audio processing 
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4.3.4.1. Transcription and segmentation 

Audio data is transcribed with Amazon Transcribe (Amazon Web Services, 2020c), an automated service 

that performs speech-to-text tasks. Transcripts are returned as JSON files that consist of both full 

transcripts and precise timestamps for each distinguishable word. The full transcript is easily readable for 

the human, and the word timestamps offers convenience for further processing of the transcripts and 

synchronization with eye-tracking data. A drawback here in comparison to manual transcription is that 

speaking accents can significantly influence the quality of the transcription. Audios with strong accents 

cannot be accurately transcribed. 

Custom vocabularies are used to enhance automated transcription. Custom vocabulary, often with custom 

pronunciation definitions, is a list of words (i.e., often domain-specific or proper nouns) that can be 

defined to help improve the quality of the transcript (Amazon Web Services, 2020c). Defining custom 

vocabulary is often necessary when proper nouns such as place names are present in the audio and when 

these words are of particular interest, which is often the case in GI user studies. 

Transcriptions are then segmented into sentences by sentence tokenizing. The segments should contain 

enough information to be allocated with a code (Ericsson & Simon, 1993), and the length of sentences is 

considered sufficient. Sentence-level segmentation is also used in GI user research such as C. Wang et al. 

(2019) and Viaene, Vanclooster, Ooms, & De Maeyer (2015). The timestamp information is preserved 

during the segmentation. 

4.3.4.2. Encoding 

The encoding unit in the prototype assigns codes to protocols based on a custom coding scheme using a 

chatbot service. The encoding of think-aloud segments can be regarded as a text classification task. The 

conventional solutions for such classification problems often involve complex machine learning models 

performing natural language understanding (NLU) tasks. Such solutions require training of a deep learning 

model on a huge amount of labeled data with massive demands on time and infrastructure. Implementing 

or training such models only for the encoding of think-aloud protocols, which are often of a much small 

amount comparing to the data needed to train the model, is not efficient. And because there are no unified 

coding schemes for think-aloud protocols, implementing and training one model with one coding scheme 

that can only be used in one study is not efficient either. To make the encoding process more automated 

and more general, an alternative is proposed using existing chatbot services.  

Chatbots are intended to offer reasonable and engaging human conversations through text or audio. Web 

service providers such as Amazon now offers customizable, deployable chatbots as services. These 

chatbot services are powered by pre-trained NLP and NLU models and transfer learning technologies at 

the backend, so they can learn to predict new classes faster with much fewer training samples (Metallinou, 

2018).  The job of a chatbot can be simplified as detecting the “intent” of an input utterance and 

providing a pre-defined response to it. An intent is the category of the meaning of an utterance. For 

example, both utterances of “how should I go to building X?” and “what’s the route to building X?” have 

the intent of “asking for direction.” The chatbot returns a response once it recognizes an intent in the 

input utterance. It can return a piece of pre-defined text or perform an operation. If it cannot recognize 

the intent in the input utterance, the pre-defined “fallback” intent is activated and the chatbot will return 

the pre-defined fallback response. Chatbot services allow users to create customized intents with sample 

utterances and customized responses.   

In the case of coding think-aloud protocols, each protocol segment is an input utterance, and the coding 

scheme are the intents. For each code, a number of sample utterances are given to train the chatbot. After 
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the chatbot is trained, protocol segments are passed as input and codes are allocated via the responses. 

Although the segments are not coded in a random order, because the chatbot reacts to each input 

independently, the encoding of the segments is independent and thus can be considered as “context-free” 

(Ericsson & Simon, 1993). Because intents cannot overlap, each sentence is only allowed to be allocated 

with one code. To deal with protocols that are irrelevant to the analysis (i.e., irrelevant to the coding 

scheme), a fallback intent and a corresponding response are defined so that the chatbot returns 

“unclassified” when it cannot recognize the intent of a given sentence.  

The encoding unit is implemented with Amazon Lex chatbot service (Amazon Web Services, 2020b). It 

takes protocol segments as input and returns these segments with codes allocated to them according to 

the coding scheme. To prepare for the encoding, the coding scheme is defined and sample utterances 

under each code category are developed. Then a customized chatbot is built using the coding scheme and 

the sample utterances. After that, segments can be passed into the chatbot and codes can be allocated. The 

timestamp information (start and end timestamps for each sentence) of the protocol segments is preserved 

in the output.  

The major advantage of using a chatbot service for encoding is the low cost of training, which enables the 

classification targets to be very flexible, where researchers can define their own coding scheme easily. The 

amount of sample utterances needed to train an Amazon Lex chatbot is significantly smaller than the 

number of labeled sentences needed to train a text classification model, and the training time is 

significantly lower. The quotas for sample utterances per intent is 1500 in Amazon Lex, but normally only 

a few dozen are provided in practice (e.g. the official Lex examples have less than 10 utterances), and it is 

recommended that using fewer utterances may increase Lex’s ability to better recognize inputs outside the 

provided utterance set (Amazon Web Services, 2020e). However, since the chatbot service is offered in 

the form of a black box, it’s not possible to fine-tune parameters or customize the backend model. 

Monitoring training and prediction performance are also less systematic.  

4.3.4.3. A cloud workflow 

The procedures described in the previous sections can be configured manually in the AWS web console of 

the corresponding services. To perform batch processing of think-aloud audios without manually 

configuring every step the console, a workflow enabled by Amazon’s cloud infrastructure and services is 

implemented with the AWS Boto3 API. The workflow consists of 3 scripts: transcription, bot-building 

and encoding. The workflow and its infrastructure are shown in Figure 4-8. It utilizes AWS’s storage (S3), 

transcription (Transcribe), chatbot (Lex), serverless computing (Lambda) and access management services 

(IAM). Input audios are first stored in an S3 bucket. The transcription script starts Transcribe jobs for the 

audio files and stores the output transcripts to an S3 bucket. The storage of a transcription file triggers a 

Lambda function that tokenizes the transcript into sentence segments (this operation is not performed 

locally, but on Amazon’s server). The Lex chatbot is built with the build_bot script. The encoding script 

will iterate through the S3 bucket and encode every segment file by invoking the encoding Lambda 

function that passes sentences to the Lex chatbot and retrieves responses, the coded protocols are saved 

back into the S3 bucket. IAM service is involved throughout the workflow to manage access among the 

services (e.g. reading and writing into S3 buckets, invoking Lambda).  
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Figure 4-8 Cloud workflow for think-aloud data processing with AWS 

Although it’s technically possible to chain the entire workflow in one script, it is decided to have three 

separate scripts to allow space for human intervention in between the steps to enable supervision and 

modification. After the automated transcriptions, transcripts can be checked for quality so that the custom 

vocabularies can be modified if certain words are not successfully identified. After bot-building and before 

passing all protocol segments to encode, the Lex chatbot can also be tested and re-trained (in the AWS 

web console) until the responses are satisfactory to code all the protocol segments.  

4.3.5. Synchronization and integrated analysis 

4.3.5.1. Synchronization 

The results from the previous processing components, together with the GPS recording data, are 

synchronized based on their timestamps. The goal of the synchronization is not to have all the data in one 

data table, but to provide a possibility to bring different datasets together to present different aspects of 

the interaction process between the environment, the mobile display and the mental map. And the result 

will not be one unified data table with all the data from different sources. Instead, multiple synchronized 

data tables can be produced. The synchronized data tables can be used to calculate metrics for quantitative 

analysis, it can also be visualized to support exploratory analysis. The synchronization is based on the 

temporal characteristics of the datasets (Table 4-2).  

Table 4-2 Temporal characteristics of the datasets 

Data source Timestamp precision Duration of an event 

Scene video 1ms 40ms* 

Screen-recording video 1ms 20-40ms** 

Mapped fixations 1ms ~50ms- ~1s 

Think-aloud protocol segments 0.01s Several seconds 

GPS recording 1s N/A 

*Scene videos are recorded in 25fps with Tobii Pro Glasses 2, might vary for other hardware. **It can an vary depending on the 

configuration of the screen-recording.  

To synchronize eye-tracking data (scene video and fixation data) with screen-recording video in order to 

map fixations to screen contents, a time offset (i.e., the difference between the start of the screen-

recording video and the eye-tracking recording) is needed. This time offset can be manually determined by 



A SOLUTION TO ANALYZE MOBILE EYE-TRACKING DATA FOR USER RESEARCH IN GI SCIENCE 

 

31 

manually inspecting the scene video to locate the time when the screen-recording started. It can also be 

directly extracted from the eye-tracking data if the Tobii sync port is used during the experiment, the sync 

port is a hardware feature in Tobii Pro Glass 2, where a TTL 3.3V signal can be communicated between 

the Tobii recording unit and an external device, the signal is registered as an event in the eye-tracking data. 

Details of the sync ports can be found in the user manual (Tobii Pro, 2016).  

Because think-aloud protocols normally have a duration of several seconds, multiple fixation events can 

take place during the time span of one protocol segment. To associate fixations with protocols, all 

fixations with the middle timestamp that fall between the time interval of the protocol segment are 

assigned to that segment. Because audio is simultaneously recorded with the eye-tracking video by the eye-

tracker, no time offset is needed here.  

Mapped fixations can be synchronized with GPS recordings by assigning the most frequent fixation target 

to each GPS point. Fixation are assigned to a GPS point when their middle timestamp falls within the 

GPS measurement interval. The most frequent fixation target among the fixations assigned to one GPS 

point can be used to represent the target of the visual attention at that location. A time offset is needed to 

determine the time difference between the start of the GPS timestamp and the eye-tracking timestamp. 

The offset can be determined by manually inspecting the video or automatically using the sync port.  

GPS points are assigned to think-aloud protocol segments when the timestamp of the measurement falls 

between the time interval of the protocol segment. Each think-aloud protocol segment can correspond to 

multiple GPS points.   

4.3.5.2. Some possibilities for successive analysis 

The resulting synchronized data tables might be used for exploratory or quantitative analysis. The actual 

analysis will depend on the specific research questions and study design. This subsection presents some 

possible analysis that can be carried out with the data produced in previous steps.  

After fixations are mapped to objects and screen-contents, eye-movement metrics such as fixation count, 

duration, mean fixation duration can be calculated, visualized, and used for statistical analysis, and  

sequence of the visual attention can be qualitatively explored with visualizations (Figure 4-9; Göbel et al., 

2019) or quantitatively compared with sequence analysis (e.g. the sequence analysis for screen-based eye-

tracking in Çöltekin, Fabrikant, & Lacayo, 2010). The mapped fixations might also be used for data-driven 

analysis such as the inference of user tasks (as suggested by Liao, Dong, Huang, Gartner, & Liu, 2019).  

 

Figure 4-9 An example of visualizing the distribution and sequence of fixation (source: Göbel et al., 2019) 
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The processed think-aloud protocols (transcripts, segments, coded protocols) might be used for protocol 

analysis (e.g. Viaene et al., 2015). When synchronized with mapped fixations, the relationship between 

verbalizations and eye-movements can be explored (e.g. by calculating the percentage objects mentioned 

in verbalization segments that are also fixated on, as in Viaene, Ooms, Vansteenkiste, Lenoir, & De 

Maeyer, 2014). It can also be used to assist exploratory purposes (e.g. as synchronized exploration with 

fixation data). 

When GPS data is synchronized with mapped fixations or think-aloud protocols, the spatial distribution 

of visual attention or utterances along the route can be jointly explored (for example, using heatmaps to 

reveal the spatial distribution of map usage as in Kiefer et al., 2011, Figure 4-10); and visual attention can 

be associated with locomotion (e.g. relating map reading with walking speed in Kiefer et al., 2011). Spatial 

analysis such as viewshed analysis can also be possible given a 3D data model of the (urban) environment 

(e.g. OSM buildings).  

 

Figure 4-10 An example of exploring the spatial distribution of visual attention: point density heatmap to highlight 
the usage of the map along the route, red color indicates high accumulated map usage time (Source: Kiefer et al., 
2011) 

4.4. Summary 

This chapter presented the design and implementation of the prototype solution. Based on the discussion 

in Chapter 2, the requirements for the analytical solutions were formulated to acquire the desired 

information on visual attention, mental processes and geographical context. In the implemented prototype 

solution, the fixation mapping component used panoptic segmentation to map fixations to real-world 

objects in the environments, it also estimated the screen-coordinates for fixations landing on the mobile 

display; the screen-recording processing component used histogram matching to help associate fixations 

with screen contents on the mobile display; the think-aloud data processing component transcribed, 

segmented, and encoded think-aloud protocols in a cloud workflow enabled by Amazon Web Services; the 

result from these components, with location data (GPS recordings), could be synchronized and analyzed 

together. The next chapter will demonstrate the functionalities of the prototype solution with the 

GeoFARA case study. 
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5. DEMONSTRATION: THE GEOFARA CASE STUDY 

5.1. Introduction 

This chapter demonstrates the functionalities of the prototype solution with a case study. The proof-of-

concept case study performs an exploratory analysis with the data collected for the evaluation study of 

GeoFARA. It will try to answer the questions about the use and usability of GeoFARA with a 

combination of mobile eye-tracking, screen-recording, think-aloud and location data.  

5.2. Data 

The GeoFARA evaluation session was conducted with two pilot test persons and 14 formal test persons. 

The recordings of the two pilot tests of the GeoFARA evaluation study were used in the demonstration. 

They were chosen because they had relatively good think-aloud data. There was too much silence in the 

recordings of the actual test persons, and the actual tests persons had stronger accents which made 

transcription difficult. Also, doing the simulation for data not collected on-site (described later in this 

section) was only feasible for a very limited number of recordings. The recording of pilot A was 65 

minutes in length with 75% overall gaze samples (percentage of correctly identified gazes); the recording 

of pilot B was 31 minutes in length with 74% overall gaze samples.  

Because the fieldwork area was relatively large, it was divided into five sub-areas (Figure 5-1). The 

recordings were also split into scenes, and each scene covered part of the fieldwork area (Table 5-1). 

Originally a total of 8 scenes were included, but due to low (local) sampling rate, part of the recordings 

(approx. 12 minutes in length, with approx. 50% sampling rate) from Pilot B was discarded. The five 

scenes from pilot A were in sequential order. The approximate routes of the test persons are also shown 

in Figure 5-1.  

    

Figure 5-1 Sub-areas and walking routes of the test persons in the case study. Walking routes were manually 
delineated according to video recording to give an impression of where the test persons had been to. 



A SOLUTION TO ANALYZE MOBILE EYE-TRACKING DATA FOR USER RESEARCH IN GI SCIENCE 

34 

Table 5-1 Scenes of recordings in the case study 

Scene Pilot Person* Duration (mm:ss) Sampling rate 

East A 11:07 86% 

Villa A 09:32 82% 

Store A 16:13 64% 

Wall A 11:21 71% 

Corner A 14:28 81% 

Middle B 14:29 87% 

*The following analysis in the chapter will only be based on scenes, and will not distinguish between the two pilot persons 

Screen-recording and GPS data were not collected as part of the original data during the execution of the 

GeoFARA evaluation study. For the purpose of demonstrating the functionality of this prototype 

solution, the data was collected with simulations. For the screen-recording, the video recording was played 

on the computer, and the author replicated the test persons’ interaction with GeoFARA by operating the 

phone following the test person in the video recordings. The content on the phone screen was recorded 

with a screen-recording app. Due to safety concerns (this highly-focused operation was not possible when 

walking in live traffic), the simulation was conducted indoor instead of outdoor walking in the original 

study area. The simulation was conducted for all six scenes. For the GPS recording, the author played the 

video recording and followed the same routes of the test persons with a mobile phone recording GPS 

measurements with a frequency of 1 per second. The simulation was conducted with four scenes, except 

the villa and the wall scenes, because the villa was not publicly accessible anymore of the time of the 

simulation, and the wall scene involved a road crossing with traffic lights, which made it impossible to 

replicate the route with the same pace as the test person.  

5.3. Analyzing visual attention: real-world objects, screen contents and screen coordinates 

The raw gaze data was filtered with the Tobii I-VT Attention filter and exported from Tobii Pro Lab. The 

fixations were then mapped to real-world objects with the panoptic segmentation model (as described in 

Section 4.3.2.1). The target objects were classified into four categories: cell phone, building, surroundings, 

and others. Because all POIs shown in GeoFARA were buildings or built-up objects, these objects were 

grouped to the building category. The surroundings category includes other common objects in the 

environments that are not buildings. The first three categories (i.e., phone, building and surroundings) 

should include most of the objects that might be present in the scenes. The category “others” would catch 

any unexpected predictions from the segmentation model (e.g. objects like “paper” or “suitcase” that are 

not expected to appear in this particular fieldwork context). A list of objects in each category is shown in 

Table 5-2. It should be noted that since buildings are segmented as amorphous areas, individual buildings 

could not be identified.  

Table 5-2 Categories of real-world objects for fixation mapping 

Category Objects Explanation 

cell phone cell phone the mobile display 

building building, house, wall, window, ceiling, wall-brick, 

wall-stone, wall-wood, bridge 

buildings, built up objects and 

parts of buildings 

surroundings tree, fence, sky, pavement, grass, dirt, rock, road, 

water, river, sand, person, bicycle, car, motorcycle, 

bus, train, truck, traffic light, stop sign, parking meter 

objects in the environment that 

don't belong to buildings (e.g. 

traffic, road, nature etc.) 
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The distribution of the fixations were measured with total fixation count, total fixation duration and mean 

fixation duration. Figure 5-2 shows the total fixation count and duration on each object category, and 

Figure 5-3 shows the mean fixation duration on each object category.  

 

Figure 5-2 Distribution of fixation on object categories, total fixation count and total fixation duration 

 

 

Figure 5-3 Mean fixation duration for object categories 

For all six scenes, the test person paid much attention to the cell phone. Fixations on the cell phone take 

up nearly half of the total fixation count and over 60% of total fixation duration. It shows that the test 

persons generally relied on the app during the fieldwork. The surroundings are the second biggest target 

of attention, which could be explained by the attention on the ground and traffic during walking (Amati, 

Ghanbari Parmehr, McCarthy, & Sita, 2018). The distribution of fixations might be influenced by the 

environmental context. The villa area and the southern area had more trees, while the eastern, store, and 

wall areas were mainly built-up with fewer vegetations. It could result in relatively more attention on the 

surroundings (which includes trees) than buildings in scene villa, corner, and middle. The numbers of 

fixations classified to the “others” category are relatively low across the scenes, the percentage ranging 

from 1.08% to 2.26%, which indicates that most predicted objects were indeed included in the three main 

categories.  
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Mean fixation duration can indicate the processing demand of the stimuli (Gog, Kester, Nievelstein, 

Giesbers, & Paas, 2009). And important, interesting, or salient features can lead to longer fixations in 

scene perception (De Cock et al., 2019). In all six scenes, the mean fixation duration on the cell phone is 

relatively long. It shows that the test persons spent more effort in processing the information on the 

phone, possibly from reading the text or studying the map. The mean fixation duration on buildings and 

surroundings are similarly shorter. It indicates that the buildings were not perceived as more important or 

interesting than the surrounding environment. It could also indicate that the test persons had no 

difficulties recognizing the buildings. However, because individual buildings are not distinguishable, the 

results cannot show the difference in the attention spent on buildings that are remnants (POIs) and other 

building objects. This information can only be acquired with manual fixation mapping.  

 

For each screen-recording video, representative screenshots were taken as candidate images. The 

candidate images were grouped into 7 categories: map-AR, full map, info, old map, take note, take photo, 

and view note. Figure 5-4 shows an example image for each category. The actual number and composition 

of candidate images for each scene can vary. For example, the candidate pool might consist of multiple 

screenshots of different info screens belonging to different POIs; and if the info was scrollable, multiple 

screenshots were taken; sometimes multiple screenshots were taken for the map-AR screen as well. 

Depending on the scene, not all seven categories were present in the candidate images.  

 
Map-AR 

 
Full map 

 
Info 

 
Old map 

 
Take note 

 
Take photo 

 
View note 

Figure 5-4 Example image for each category of screen-content 

After the screen-recording video and the eye-tracking data were synchronized, the fixations on the cell 

phone could be mapped to screen contents (Section 4.3.3). Figure 5-5 shows the distribution of fixations 

on different screen contents in terms of total fixation count and total fixation duration, Figure 5-6 shows 

mean fixation durations on the screen contents.  
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Figure 5-5 Distribution of fixation on screen contents, total fixation count and total fixation duration 

 

Figure 5-6 Mean fixation duration on screen contents 

The distribution of fixations on different screen content can reflect the use of GeoFARA. Map-AR, info, 

and take-note screens were viewed in all six scenes. The test persons took time to read the information on 

the info screens. In the scene east, the test person spent more time on the map-AR screen, the reason 

might be that it was the very beginning of his fieldwork and he was not very familiar with the application, 

which could be confirmed by the recording video. In scene middle, the test person spent a large amount of 

time taking notes. Based on the recording, it was partly because he spent a lot of time trying to voice-type 

and correcting the voice input. The difference in mean fixation duration on screen contents is not as big as 

the difference between the phone and objects in the environment. The test persons generally had relatively 

long fixations on all screen contents. Among all the screen contents, the mean fixation durations on the 

map-AR screen and the info screen tended to be longer than others, which could be a result of studying 

the map and reading the text on the info screen. The mean fixations on the take-note screen tended to be 

shorter, which could be explained by the action of typing, with frequent switch of attention between the 

keyboard and the note content.  

Because the first five scenes (east, villa, store wall and corner) were in temporal sequence, the data also 

provides insights on how this test person changed his use of the app during the fieldwork session. He 
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mostly relied on the map-AR screen for navigation at the beginning but also started to use the full-map 

screen towards the later part of the fieldwork. His mean fixation duration on the old maps was longer in 

the first two scenes than the later ones. It might be a result of getting familiar with the same set of old 

maps.  

 

Switch frequency was calculated as an indicator of the interaction between the phone and the 

environment. A switch is defined as a change of fixation target. A switch of attention between the phone 

and the environment can be an indication of the test person connecting the information on the phone 

with the environment. Since buildings are of special interest, the number of switches between the phone 

and buildings were calculated separately from the number of switches between the phone and other 

objects. The number of switches was calculated per minute for the six scenes. The results are shown in 

Figure 5-7.  

 

Figure 5-7 Switch count per minute between the phone and the environment 

Generally, there are more switches between the phone and other objects than between the cell phone and 

buildings. While switches between cell phone and environment indicates more visual connections of 

information from the app and the environment and might indicate learning process, walking with a phone 

might lead to more switches in general, as compared to standing.  

The pattern found in Figure 5-7 is further explored by plotting the fixation sequence on a timeline. The 

sequence includes both object categories and screen-contents. Figure 5-8 shows an example of the fixation 

sequence of minute 4 and 5 from scene villa. During minute 4 (180s to 240s), the test person spent 

continuous attention on the info and old maps (which resulted in a relatively lower number of switches 

between phone and environment). While in minute 5, he made more switches between the info screen and 

the surroundings. The recording video shows that during minute 4, the test person was standing in front 

of the Bistro building and reading the info screen; and during minute 5, he was mostly walking towards 

the next POI (Villa) while glancing the info screen. 
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Figure 5-8 Fixation sequence: minute 4 and 5 from scene villa 

Figure 5-9 shows the fixation sequence of minute 8 and 9 from scene store. During minute 8 (420s to 

480s), the test person mainly looked at the old maps, and made a few interactions with the building, but 

there were not many interactions between the phone and the environment in general; during minute 9 

(480s to 540s), the switches first took place between the phone (map-AR and info screen) and the 

surrounding, then between the phone (info screen) and building. The recording shows that during minute 

8, the test person was mostly standing still, studying the old maps and wondering if the building Mason 

Manon was built on former factories. During minute 9, he first walked to the next POI (Leen Bakker) and 

stood in front of the building to read the info screen, comparing the building with the textile store 

described on the info screen.   

 

Figure 5-9 Fixation sequence: minute 8 and 9 from scene store 

The exploration with other scenes shows similar results. Walking tends to result in more switches between 

the phone and the environment. These switches are mainly between the map-AR screen and the 

surroundings (when the test person used the map/AR for navigation), and between the info screen and 

the surroundings (when the test person did not need navigation). More switches between the phone and 

the building are often associated with learning about a particular building with the info or old maps. 

During the learning, there is often continuous attention on the phone, fixations on the phone are longer, 

and there are fewer switches between the phone and the environment.  In these scenes fewer overall 

phone-environment switches but relatively more phone-building switches might be an indicator of the 

“learning” process. However, because the prototype cannot distinguish between individual buildings, it is 

not known which building the test person was looking at a certain moment. Context knowledge and manual 
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inspection of the recordings are needed to make interpretations of the patterns found in the fixation 

sequences.  

 

The map-AR split-screen is one of the most important features of GeoFARA, it shows the POIs with an 

overview on the map and a live view through the AR at the same time. To investigate how the test 

persons use the map-AR split-screen, heatmaps were made using the screen coordinates of the fixations 

mapped to the map-AR screen. Because the actual content of the map-AR screen changes throughout the 

recording, an example image of the map-AR screen was chosen as the background image for all the 

heatmaps (Figure 5-10). (The test person changed the layout of the map-AR screen in scene corner, thus the 

background image for the heatmap was changed accordingly.) The heatmap are intended to give a rough 

indication of which part of the screen was viewed more, but not on detailed screen features (e.g. the labels 

in the AR or the icons on the map). So it was not known if the test person looked at a particular label or 

icon before opening the info tab. If this information is needed, it might be collected by logging of app 

interactions.  

 
East 

 
Villa 

 
Store 

 
Wall 

 
Corner 

 
Middle 

Figure 5-10 Heatmaps on map-AR screen. Because the actual content of the map-AR screen changes throughout the 
recording, a sample image of the map-AR screen was chosen as the background image for all the heatmaps. 

The heatmaps show that the test persons utilized the AR as well as the map in all scenes. But in scene villa, 

store and wall, the map was used more than the AR. In scene corner, the AR part of the screen was expanded 

and the heatmap shows a lot of attention on the AR part of the screen. The recording video showed that 

the test person decided to use the AR more (“I'm gonna try to do that and look through [AR] just to see if 

that's more helpful”), and he also relied on the AR to navigate to the POI “Stichting 55+” when the map 

didn’t give enough navigational assistant (“so this is an example where the augmented was helpful because 

I didn't have enough base map context”).  

5.4. Processing think-aloud protocols: identifying usability issues  

This section demonstrates the procedure of using think-aloud protocols to discover the usability issues of 

GeoFARA. Using think-aloud protocols to explain visual behaviors is discussed in the next section. 

The think-aloud audios were first transcribed and segmented (Section 4.3.4). A list of custom vocabularies 

was created to assist the transcription. The list consists of POI names and other words of interest to the 

task is shown in Table 5-3.  
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Table 5-3 Custom vocabularies 

Category Vocabulary 

POI names ITC, Menzis, Bistro, Het Koesthuis, Schuttersveld, Leen Bakker, 

Princess Beatrix, KPN, Maison-Manan, Kwantum, POCO, Praxis, 

Toy-champ, Fit For Free, Volkspark, Stichting,  

Other words of interest textile, remnant, factory, Enschede, villa, wall, van Heek, tunnel 

 

After the audios were transcribed and the protocols were tokenized into sentence segments, an Amazon 

Lex chatbot was built with four intents to encode the protocols (as described in Section 4.3.4). The coding 

scheme is shown in Table 5-4. The coding scheme was developed by basic themes that were expected in 

the protocols. Four in-scope codes (I – app interaction, M – movement and navigation; T – task-related 

and Y – usability comments) and one out-of-scope code (U – irrelevant and unknown) were defined, each 

code correspond to one intent in the chatbot. Each in-scope intent was provided with approx. 20 sample 

utterances. The sample utterances were not subsets of the protocols, they were generated independent of 

the actual protocols based on code definition and context knowledge (i.e., the expected verbalizations 

under the theme and their variations). A complete list of sample utterances is provided in Appendix D. 

Protocols outside the coding scheme were classified as "out of scope" (the U code) using a fallback intent 

(Amazon Web Services, 2020a). When the chatbot receives an input that it cannot recognize (e.g. 

protocols irrelevant to the defined coding scheme that it has not learnt before), the fallback intent is 

activated and a pre-defined response is given as the output. The fallback intent does not have sample 

utterances.  

Table 5-4 Coding scheme  

Code / Intent Explanation Example 

I – app interaction Protocols describing the 

interactions with the app 

"click this button"; "now I'm 

looking at the map" 

M – movement Protocols about movement and 

navigation. 

"I'm going to..."; "I'm crossing 

the street."; "I'll turn left here" 

T – task-related Protocols about the content of 

the fieldwork (.e., whether a 

building is a remnant) 

“this building belongs to the old 

factory” 

Y – usability comments Protocols about the app's 

usability issues, including 

comments and 

recommendations 

“the labels keep moving and it 

makes me dizzy”; “It would be 

better if you provide more 

information here” 

U – out of scope (irrelevant and 

unknown) 

Fallback code for protocols that 

the chatbot fails to recognize, 

including protocols that don’t 

belong to the I/M/T/Y codes, 

and  

N/A 

 

To discover the usability issues, all protocols with code Y were extracted and usability issues were then 

manually identified and categorized based on their themes. Usability issues were reported in the most 

commonly viewed screens: the map, the AR and the take-note screen; additional information on POIs 
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were requested to better understand the past of the area; some recommendations were made regarding 

functionalities of the app. The following list summarizes the identified usability issues. A detailed result 

table with supporting protocols is provided in Appendix E.  

Table 5-5 Usability issues discovered with the chatbot and manually grouped into themes 

Theme        Issues raised by test persons 

AR - AR labels were unstable and should be attached (anchored) better. 

- AR was showing labels for POIs that were not visible (obscured by 

other objects). 

Compass and map - Compass failed multiple times. 

- The test person wanted a planimetric map and didn’t like that it kept 

turning into oblique; satellite image was suggested as an alternative 

base map. 

- A traffic layer was suggested. 

- The test person suggested to show buildings as footprints instead of 

points. 

Note-taking - The test person didn’t like the default title of “my note” because he 

had to delete it every time 

- The test person suggested to have a “save” button for the notes, 

instead of using the “back” button to save the note 

Additional information 

for POIs 

- More contextual information on the POIs was needed to understand 

the history. 

- The old maps should be annotated to highlight the remnants. 

- Some photos in the info page were taken from an angle that made the 

subject hard to recognize from other angles. 

Restriction and safety - The test person wanted information on which areas were open to the 

public and which were not. 

- The fieldwork led to an area without a sidewalk and the test person 

raised safety concerns.   

Recommendations on 

functionalities  

- Recommended ordering of the POIs; marking of the POIs that have 

visited 

- Directions to POIs in AR. 

5.5. Integration: exploring mapped fixations with think-aloud protocols 

Think-aloud protocols were also used to find possible explanations for patterns and interesting spots 

found in fixation data. After synchronization, the protocols were plotted along the same timeline with the 

fixations and can be interactive explored (e.g. with interactive plotting libraries such as Plotly; Plotly 

Technologies Inc., 2015). An example of using the timeline for interactive exploration is shown in Figure 

5-11. Apart from the fixation sequence, the timeline for protocol segments is added at the bottom (gray), 

and the content of the protocol segment is shown on mouse hover. In this example, the test person 

verbalized about a building being a formal textile store before switching his fixation from the info screen 

to the building.  
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Figure 5-11 An example screenshot of interactive exploration of fixation sequence and think-aloud protocols. The 
test person verbalized about “this building might be the same as the textile store”, while he read about the textile 
store described in the info screen of GeoFARA, and looked at the building at the same time.  

Think-aloud protocols were used to discover possible explanations for the difference in switch frequency 

(Figure 5-9). Recording segments (1 minute in length each, corresponding to the minutes in Figure 5-9) 

with high overall switch count (≥20) and high phone-building switch count (≥5) were examined. It shows 

that high overall switch frequency is often related to movements: protocols can suggest the test person 

was walking to the next spot (e.g. “I'm first going to the villa Schuttersveld.”). In those scene segments, 

interactions mainly happen between the map-AR screen and surroundings. Sometimes it is between the 

info screen and the surroundings when the person already knew the route to his next spot and already 

started to look at the info screen on the way there. And because of the walking, the fixations on the phone 

tend to be shorter, and there tend to be more switches between the phone and the non-building 

surroundings. At the same time, high phone-building switch frequency is often related to learning about 

the buildings and comparing the present and historical layout. The test person was often reading out the 

content on the info screen, comparing the building with the old map (e.g. “Sounds like this building 

actually was the same building as textile store”), or verbalizing about his understandings of the area’s 

textile past (e.g. “Okay, so I see a cafe and bar, so that seems more like factory town type of locations”). It 

often involves longer fixations on the phone, especially on the info and old maps, which indicates a more 

careful reading of the information, instead of glancing while walking. 

The protocols also give insight into the possible reasons for the change in the use of GeoFARA. For 

example, before switching from the map-AR to full map, the test person mentioned “… I don't really get 

a lot of value from the augmented part, so I think I'm just gonna close it.” And when he returned to the 

map-AR screen later, he mentioned: “so this is an example where the augmented was helpful because I 

didn't have enough base map context.” Locating these protocols to find explanations for discoveries 

found in fixation patterns is much easier when the protocols are synchronized and explored together with 

the fixations.  

5.6. Integration: exploring mapped fixations and think-aloud protocols with location data 

After synchronizing the timestamp of the fixations and the simulated GPS recordings, each GPS point 

could correspond to a list of mapped fixations. The most frequent fixation target in the list was assigned 

to the GPS point. The four scenes (east, store, corner, middle) with simulated routes and mapped fixations are 

shown in Figure 5-12.  
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The accuracy of the GPS measurements was not consistent during the simulation, especially under the 

tunnel, around trees, or next to big buildings. But the accuracy is considered sufficient for qualitative 

interpretation with the help of context knowledge.  

Figure 5-12 shows the spatial distribution of the fixations along the routes. Fixations on the info and old 

maps often took place close to the POIs, note-taking often took place after a POI had been explored. It 

indicates that the learning took place when the POI was in sight and the information on the app could be 

directly associated with the POI in reality. The relationship between fixation and locomotion can also be 

preliminarily explored with the clusters of the points. The test persons mostly used the map-AR while 

walking, and stopped to take notes; the info screen were viewed both when walking and standing. 

However, because the pace of walking in the simulation was not exactly the same as the pace of walking 

during the actual fieldwork session, more detailed analysis on locomotion could not be done with this 

data.  

The map shows that the environmental context might have an impact on the fixation patterns. The test 

persons had more fixations on buildings when they were surrounded by POI buildings (e.g. in the store 

area) than when the surrounding was less built-up (the area around KPN and Stichting 55+). When the 

environment context was the same, the difference in fixation patterns can provide insights on the tasks the 

test person was performing. This can be examined when the test person walked the same road more than 

once: the fixation patterns along that road (to and back from a POI) can be different because the test 

person was performing different tasks. In scene east, the test person had more interactions between the 

app and building when he walked towards the Menzis building and the tunnel (actively learning about the 

POIs); but barely looked at the app when he passed the same building on his way back after finished the 

learning. Similar pattern can be found in the corner scene: on his the way to Volkspark Tunnel, the test 

person looked at the info screen more, but on the way back mainly he paid more attention to the map-AR 

screen and the surroundings. Based on the recording, he was reading about the tunnel while walking 

towards it, since he already knew the location of the tunnel and didn’t need navigation, and was not 

focusing on the fieldwork task but commenting on the AR functionalities on his way back. However, also 

in the corner scene, the fixation patterns are similar on the route to and back from the Stichting building: 

the test person looked mostly on the map-AR screen and the environment both ways. Based on the 

recording video, on the way to the Stichting building, he was relying on the AR to navigate to the building 

(because “the map was unclear”), and he only started to read the info screen when he was almost directly 

in front of the Stitching building. This case also shows the usefulness of the AR of helping the test person 

to associate the information shown in the app with the POI in reality.  

It should be noted that, because the GPS points were assigned with the most frequent fixation target in 

the time span of the GPS measurement (1s), finer fixation patterns (e.g. quick switch of fixations) are not 

visible in the maps. Also, the sequence of the fixations becomes more difficult to find when the test 

person slows down or stops walking. The maps cannot replace the fixation sequence and they should be 

explored together in order to have a better understanding of the visual and physical behaviors.  
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Figure 5-12 Mapped fixations and simulated GPS recordings after synchronization  
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The protocols can be explored in a similar manner with interactive plots. Figure 5-13 shows an example 

screenshot of interactive exploration of mapped fixations, think-aloud protocols and GPS recordings. The 

same exploration was conducted with the four scenes with GPS simulations. It shows that the test persons 

often verbalize about the fieldwork task (e.g. if a building belonged to the old factories) when they were 

close the POIs. This corresponds to the fixation patterns and indicates that the learning took place when 

they saw the POI in reality and associated it with the information provided by the app. Demands of more 

or clearer information on the POIs were often verbalized during the learning process close to the POIs. 

Recommendations on app functionalities were often verbalized during the walk between POIs, when the 

test person was less occupied with actual fieldwork activities.  

 

Figure 5-13 An example screenshot of interactive exploration of mapped fixations, think-aloud protocols and GPS 
recordings. The test person was looking at the old map in front of the Kwantum building, and verbalizing about if 
this building was the most northern one on the old map 

5.7. Summary and mini-conclusion for the GeoFARA case study 

This chapter demonstrated the functionalities of the protype solution with the GeoFARA case study as a 

proof-of-concept. Simulations were conducted for the screen-recordings and location data that had not 

been collected on-site during the original experiment. Fixations were mapped to four object categories: 

cell phone, building, surroundings, others; and seven screen-content categories (screens). The distribution 

and sequence of the fixations were explored. Think-aloud protocols were used to identify usability issues, 

and were explored together with eye-tracking data to support and explain the patterns and findings of the 

visual behavior. The location data was explored together with mapped fixations and think-aloud protocols, 

it provided spatial and environmental context to the exploration of visual attention and verbalizations.   

The demonstration analysis of the six scenes resulted in the following findings regarding the use and 

usability of GeoFARA:  

- The use of GeoFARA and the learning during fieldwork: the most frequently viewed screens were map-

AR (for navigation), info, and note-taking. Both the map and the AR were used for navigation. 

But the two test persons were depending more on the map to discover the remnants, the AR was 

used more when the map couldn’t provide enough navigational information. When learning about 

the history of the area, the test persons relied on the info screen. Old maps were also studied to 

learn about the historical layout. They discovered and decided on the next destination (POI) with 

the map, used the map or the AR to navigate to it, read and took notes about it when they 

reached it. Reading the info often happened while the test persons were standing close to the 

POI, sometimes while walking towards the POI; looking at the old maps mainly happened when 
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the test person stood close to the POI. GeoFARA helped guide the test persons to discovered the 

remnants, and helped to engage the buildings in reality with the remnants from the historical 

industry.  

- Usability issues of GeoFARA: The AR labels should be more stably anchored, and should only 

appear when the actual POI is visible. More information on the POIs is needed to provide more 

context, and the photos attached in the POI info should be taken from an angle that allows the 

user to quickly connect the photo with the POI in reality. More annotations on the old maps are 

needed, for example highlighting the currently visible remnants, to help the user relate the current 

building in reality with the building on the old maps.  

The next chapter will carry out a preliminary evaluation on the performance of the prototype in this case 

study. The limitations and the possibilities for more generic use of the prototype will also be discussed. 
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6. PRELIMINARY EVALUATION AND DISCUSSION: 
GEOFARA AND BEYOND 

6.1. Introduction 

This chapter presents an evaluation and discussion about the prototype solution. A preliminary technical 

evaluation is performed with the data from the GeoFARA case study (Section 6.2). The automated 

fixation mapping results are compared with the results of manual mapping; the protocols coded with the 

chatbot are compared with manual encoding; the execution time during the case study is presented as a 

general indication of the time performance of the prototype. The discussion (Section 6.3) addresses the 

information that can be derived with the prototype, the limitation in the prototype and possibilities for 

future work. The discussion has its basis on the case study, but it also aims at a wider context of using 

mobile eye-tracking in GI user research.  

6.2. Preliminary technical evaluation with case study data 

6.2.1. Mapping fixations to real-world objects and screen contents  

The fixation mapping results from panoptic segmentation were compared with manual mapping. Because 

of the manual workload, not all scenes were manually mapped. Three scenes (villa, store, wall) were selected 

for the comparison. The villa and the store scenes were selected because they involve some most typical 

POIs (the Villa, and store buildings on old factory sites). The wall scene was selected because it includes a 

unique scenario where the POI Left Wall was partly covered with ivy, which could introduce errors in 

fixation mapping. A total of 3120 fixations were involved in the comparison. For this comparison, and the 

other comparisons later in this chapter, the purpose was to give a preliminary indication of the 

performance of the prototype in the scenario of the case study instead of precisely measuring the accuracy 

and efficiency, so only one human operator was involved for the manual operations. 

For fixation mapping to real-world objects, the comparison was based on the four object categories. The 

consistency between fixation mapping with panoptic segmentation and manual mapping in the three 

selected scenes is shown as confusion matrices in Table 6-1, 6-2, and 6-3. In the manual mapping, the 

“others” category was not involved because all fixations were semantically mapped to cell phone, building, 

or surroundings. 

Table 6-1 Confusion matrix: manual and automated fixation mapping to real-world objects, scene villa 

 

 

              auto

manual building cell phone surroundings others total recall

building 44 0 27 3 74 0.59

cell phone 1 427 11 1 440 0.97

surroundings 7 2 326 6 341 0.96

others 0 0 0 0 0 n/a

total 52 429 364 10 855

precision 0.85 1.00 0.90 0 consistency 0.93
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Table 6-2 Confusion matrix: manual and automated fixation mapping to real-world objects, scene store 

 

 

Table 6-3 Confusion matrix: manual and automated fixation mapping to real-world objects, scene wall 

 

In the three selected scenes, the automated approach is relatively consistent with the manual approach 

with overall consistency above 0.9. The cell phone is very well recognized by the automated approach in 

all three scenes, with both recall and precision above 0.97. Part of the inconsistency here might be caused 

by the manual mapping error of the fixations landing on the edge of the phone. There is some confusion 

between building and surroundings. By reviewing the video and comparing the result, it is found that 

inconsistency often happens when the building is far, and/or when there are obstructions (e.g. trees) in 

front of the building. The confusion between the building and surroundings categories in the villa scene 

(0.59 recall for building) mainly happens when the building is far away and less identifiable without 

context knowledge (Figure 6-1a). The inconsistency between building and surroundings in the wall scene 

(0.77 recall for building) is mainly because fixations landing on the ivy on the wall were mapped to “tree” 

and further grouped to the surroundings category (Figure 6-1b). 

 
a) 

 
b) 

Figure 6-1 Examples of misclassified fixations (red circle in the images). a) fixation on far, blurry building; b) 
fixations on ivy on the wall 

The screen contents identified by the automated approach were also compared with manual fixation 

mapping. The confusion matrices from the same three scenes are shown in Table 6-4, 6-5 and 6-6. The 

results show that screen contents are generally distinguishable by the automated approach in the three 

scenes (consistency scores of 0.71, 0.89, and 0.83 respectively). The info screen is relatively well-identified 

by the automated approach in all three scenes, the old-map screen is well identified in the store and wall 

scenes. The take-note screen scores high in recall in all three scenes (over 0.9), but has a low precision 

            auto

manual building cell phone surroundings others total recall

building 167 0 23 11 201 0.83

cell phone 1 790 7 2 800 0.99

surroundings 24 5 201 20 250 0.80

others 0 0 0 0 0 n/a

total 192 795 231 33 1251

precision 0.87 0.99 0.87 0 consistancy 0.93

            auto

manual building cell phone surroundings others total recall

building 206 0 49 11 266 0.77

cell phone 2 503 2 0 507 0.99

surroundings 16 1 222 2 241 0.92

others 0 0 0 0 0 n/a

total 224 504 273 13 1014

precision 0.92 1.00 0.81 0 consistency 0.92
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score in the villa section (0.55). This might be caused by a small human error during the simulation of the 

villa scene, where the take-note page was mistakenly opened.  

Confusion can happen between similar-looking screen contents, for example between the map-AR and 

take-photo screen. Because the AR part of the map-AR screen is the live feed from the camera, part of the 

features vector (HSV histograms) of the map-AR screen might be similar to that of the take-photo screen. 

And when the simulation was conducted indoor, the scene from the camera was relatively similar 

throughout the simulation. It could make these two screens appear more similar than they would be 

during the actual fieldwork.   

Table 6-4 Confusion matrix: manual and automated fixation mapping to screen contents, scene villa 

 

 

Table 6-5 Confusion matrix: manual and automated fixation mapping to screen contents, scene store 

 

 

Table 6-6 Confusion matrix: manual and automated fixation mapping to screen contents, scene wall 

 

 

Human errors were introduced during the simulation, and would later result in the inconsistency between 

the manual and automated approach. The manual and automated mapping results were compared on a 

timeline and errors and delays in the simulation were be examined. Figure 6-2 shows an example of the 

timeline for a section in scene store. The green dots are fixations that were mapped consistently by the 

manual and automated approach; when the results are not consistent, blue dots are the result from 

automated mapping and orange dots are the result of manual mapping. There were many actions involved 

            auto

manual map-ar full map info old map take note take photo total recall

map-ar 155 0 6 5 28 24 218 0.71

full map 3 0 0 0 0 2 5 0.00

info 6 0 73 7 3 0 89 0.82

old map 0 0 5 13 2 0 20 0.65

take note 3 0 0 0 52 3 58 0.90

take photo 16 0 0 0 10 11 37 0.30

total 183 0 84 25 95 40 427

precision 0.85 n/a 0.87 0.52 0.55 0.28 consistency 0.71

             auto

manual map-ar info old map take note total recall

map-ar 221 13 10 17 261 0.85

info 19 189 1 8 217 0.87

old map 1 5 109 6 121 0.90

take note 3 0 0 188 191 0.98

total 244 207 120 219 790

precision 0.91 0.91 0.91 0.86 consistency 0.89

            auto

manual map-ar full map info old map take note take photo total recall

map-ar 53 2 11 3 1 8 78 0.68

full map 0 74 7 2 12 0 95 0.78

info 7 9 141 1 3 0 161 0.88

old map 0 0 1 39 4 0 44 0.89

take note 0 1 0 0 92 0 93 0.99

take photo 11 1 0 0 2 18 32 0.56

total 71 87 160 45 114 26 503

precision 0.75 0.85 0.88 0.87 0.81 0.69 consistency 0.83
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in a 15-minute long simulation session, where mistakes could happen. As a result, not every action shown 

in the eye-tracking video recording had been correctly captured in the simulation, especially when the test 

person performed a sequence of actions in a relatively short time (e.g. open a page then quickly close it). 

The delay in simulation actions can cause inconsistency at the beginning or end of periods of continuous 

attention. But these errors would not be a problem when the screen-recording video is recorded on-site, 

simultaneously with the eye-tracking data.    

 

Figure 6-2 An example of visualizing the inconsistency between manual and automated fixation mapping to screen-
contents, from scene store 

6.2.2. Mapping fixations to screen-coordinates of the mobile display  

The assumptions on the visibility and position of the phone (Section 4.3.2.2) were examined by manually 

inspecting the recordings. The recording shows that the phone was held relatively upright and the entire 

phone was in the camera view most of the time. When the phone was held very close to the person, part 

of the phone might go out of the camera view, but it was not common in the recordings.  

The estimated screen-coordinates were compared to the manually-mapped results. For the villa and wall 

scenes, fixations on the map-AR screen were manually mapped to the corresponding locations on a 

reference image. A total of 359 fixations were involved in the comparison. The result is shown in Figure 6-

3. The X and Y coordinates are not absolute coordinates, but relative coordinates in proportion to the 

width and length of the screen. They are compared separately because the phone is rectangular, and the 

same amount of error in relative proportion will be different in screen-coordinates expressed in pixels. It 

should be noted that manually mapping fixation to exact screen coordinates is not very precise either, 

especially when the reference image could not always be exactly the same with the screen content in the 

recording due to dynamic user interactions, the results are only used to indicate the agreement between the 

two methods, they are not meant to evaluate the accuracy of either manual mapping or the automated 

estimation.  
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a) proportional X coordinates 

 

 
b) proportional Y coordinates 

Figure 6-3 Comparison of estimated and manually mapped (proportional) screen-coordinates. X and Y coordinates 
are compared separately because the phone is rectangular, and the same amount of error in relative proportion will 
be different in screen-coordinates expressed in pixels 

The automated estimation of fixation screen-coordinates generally agrees with manual mapping (X: mean 

difference=0.03, SD=0.10; Y mean difference=0.04, SD=0.06). The automated estimation tends to agree 

with manual mapping around the center of the screen and deviates more towards the edges. The estimated 

coordinates tend to drift towards the center of the screen. The (0, 0) origin is in the upper left corner. The 

estimated X and Y coordinates tend to be larger than the manually mapped towards the left and upper 

edges, and smaller than the manually mapped towards the right and lower edges of the screen. This could 

be caused by the non-upright position of the phone (Section 4.3.2.2 and Figure 4-5). A tilted phone will 

result in a non-rectangular mask and distort the minimum rectangular bounding box. The estimated 

coordinates of the fixation based on a distorted bounding box may drift towards the center, while the 

actual direction of the drift depends on the location of the fixation. The distortion and drift will increase 

with the tilt angle of the phone. The generally agreeing result being automated and manual mapping also 

suggest that the drift is not drastic, which in turn indicates that the assumption of no drastic tilt of the 

phone was generally satisfied. It was also discovered that sometimes the protective cover of the phone 

disturbed the panoptic segmentation and resulted in a distorted phone mask (Figure 6-4).  
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Figure 6-4 An example when the protective cover of the phone caused distortion of the instance mask (the mask was 
larger than it should be when part of the protective cover was also segmented as “cell phone”). Note: semantic 
masks are not plotted in this figure.  

The agreement between the automated and manual approach shows that the automated estimation of 

fixation screen-coordinates is reasonable enough to be used to indicate which part of the screen (e.g. 

upper left, lower right) is being attended. However, because of the accuracy of the eye-tracker and 

potential errors introduced during calibration, the screen-coordinates of fixations (both manually mapped 

and automatedly estimated) might not be accurate enough to identify the exact screen feature (e.g. map 

symbols) on the mobile display.  

6.2.3. Coding think-aloud protocols 

The encoding by the chatbot was compared with manual coding. Because the chatbot encoding is context-

independent, the comparison with manual coding will not distinguish between the scenes.  Manual coding 

was also performed context-independently, where the human coded protocols in a random order to 

minimize the influence of contextual information. A total of 333 protocols were involved in the 

comparison (from scene villa, store and wall). The result is shown in Table 6-7.  

Table 6-7 Confusion matrix: manual and automated coding of protocols 

 

 

The encoding of the chatbot is not very consistent with manual encoding (overall 0.62 consistency with 5 

classes). But given the relatively low volume of sample utterances used to train the chatbot, the result is 

reasonably acceptable. The major reason for the low consistency is that the chatbot had trouble predicting 

out-of-scope data (the U class, with 0.54 recall). It tried to allocate a code even when the input sentence 

was irrelevant to the defined coding scheme. It performed reasonably well with the in-scope predictions 

(consistency of the four in-scope class [I, M, T, Y] was 0.73). Meanwhile, out-of-scope prediction 

(identifying the “unknown” class) is a challenging problem in general: while state-of-art models such as 

fine-tuned BERT can achieve high accuracy on in-scope predictions, their performance can be 

significantly lower (approx. 0.5 recall) on out-of-scope predictions (Larson et al., 2019). Among the in-

            auto

manual I M T Y U total recall

I 16 0 3 3 4 26 0.62

M 6 21 2 5 3 37 0.57

T 3 3 63 17 11 97 0.65

Y 5 1 7 45 4 62 0.73

U 11 5 13 22 60 111 0.54

total 41 30 88 92 82 333

precision 0.39 0.70 0.72 0.49 0.73 consistency 0.62
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scope code classes, M (movement) and T (task-related) score relatively higher precision (0.70, 0.72 

respectively); Y (usability comments) has higher recall (0.73). It indicates that approx. 3/4 of the usability 

issues in the verbalization were successfully identified by the chatbot. An inspection of the result shows 

that the chatbot was also able to make inferences over protocols that are not explicitly stated in the sample 

utterances. For example, the sample utterances for the T class focus on general expressions on whether a 

building is a textile remnant, but don’t contain any specific POI names, but the chatbot was able to 

correctly classify many specific POI-related sentences as task-related (e.g. “So I wonder, is Schuttersveld 

the name of the person within this [Jan] van Heek purchased it…” and “Okay, so this was, uh, barren's 

house, and it seemed as though there were two different people that owned this”). 

The sample utterances could have an influence on the encoding result. It is found that the chatbot 

performs relatively well with shorter simple sentences, and sometimes has difficulties with longer, 

compound sentences (e.g. sentences that make a statement then explain reasons). This might be a result of 

the sample utterances only having shorter sentences. The complex sentences were not included in the 

sample utterance because the original idea was that sample utterance would try to capture characteristics in 

the language that are directly linked with the intent, and compound sentences that include 

reasoning/explanation contain information not directly linked with the intent might confuse the chatbot. 

However, since compound sentences are a part of natural speaking, including examples for complex 

sentences on top of the simpler ones might help to improve the encoding result by making the training 

samples more similar to the actual protocols to be coded. 

On top of the sample utterances, the quality of transcription and segmentation of the protocols can have a 

direct impact on the encoding. Errors in transcription can leads to the misclassification of the protocols. 

Although sentences can be considered as a suitable unit for segmentation, it might not be suitable for all 

the protocols, as some sentences may contain multiple meaning-units. For example, consider the following 

protocol directly extracted from the transcription result: “That's kind of unclear from the description, but 

whereas these other buildings look like they're older, look like they're newer, this one possible.” The two 

clauses in the sentences have different intentions (usability comments: pointing out unclear information, 

and task-related: making inferences about the buildings), but only one code will be allocated because they 

belong to the same sentence.  

6.2.4. Execution time 

The actual execution time of the prototype solution depends on the hardware configuration. Table 6-8 

gives an indication of the time performance under the hardware configuration during the case study. The 

case study was performed on a Windows 10 laptop computer with NVIDIA Quadro P1000 GPU and 

Intel i7-8750H (2.20GHz) CPU, 16GB RAM. The time performance of fixation mapping and screen-

recording processing mainly relies on GPU capabilities; the processing of think-aloud audios is performed 

remotely with AWS and is less influenced by the local hardware configuration.  

Table 6-8 Indications for execution time 

Processing element Time indication 

Fixation mapping to real-world objects 0.7 second / fixation 

Fixation mapping to screen contents 1 second / fixation  

Encoding protocols 0.5 second per protocol 

 

The speed of mapping fixations to real-world object is influenced by the resolution of the input image 

video frame. In the prototype solution, the frame is not resampled. If needed, the speed of fixation 
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mapping can be further improved by resampling the frame image to a lower resolution. The prototype 

makes use of the state-of-art panoptic segmentation model, but very recently, a novel single-shot panoptic 

segmentation model is proposed that is claimed to be able to perform at 21.8 frames per second (FPS) 

(Weber, Luiten, & Leibe, 2019). With the fast progress in computer vision and segmentation models, 

making use of such novel models will dramatically enhance the time performance of mapping fixations to 

real-world objects. Mapping fixations to screen contents take two steps: indexing the candidate images and 

searching for a best-match (Section 4.3.3). The indexing phase will take extra time, but one set of 

candidate images only needs to be indexed once. The speed of indexing and searching depends heavily on 

the number of bins used to calculate the histograms and the size of the images, the indication given in the 

table is based on the HSV bin configuration of (20, 20, 30).  

6.3. Discussion 

6.3.1. Deriving information with the prototype solution 

6.3.1.1. Linking the reality, the representation of the reality, and the mental map 

The proof-of-concept case study shows that the requirements discussed in Section 4.2 have been 

addressed: fixations can be automatically mapped to real-world objects and screen contents on the mobile 

display; think-aloud audios can be processed with a semi-automated workflow, and the result can be linked 

with eye-tracking data; the location data can be linked with the eye-tracking and think-aloud data and 

analyzed together.  

The case study demonstrates that the prototype enables information about visual attention to be derived 

without laborious manual annotations. By mapping fixations to real-world objects and screen-contents, 

the fixations are directly associated with object semantics without using a reference image. The 

distribution and the sequence of visual attention can be extracted more easily with fixation-based metrics. 

The distribution metrics (e.g. counts and durations) indicate the amount of attention spent on the display 

and the environment (e.g. the excessive amount of attention on the phone in the GeoFARA case); they 

can highlight the salient or interesting objects in the environment, as well as the frequently used screens on 

the mobile application, and suggest the cognitive function level during information processing. The 

sequence metrics (switches, revisits, etc.) show the change of attention between the reality and the 

representation (over time). They can indicate the processes such as search and learning. In the GeoFARA 

case, higher switches frequencies between buildings and phone might be associated with the learning 

process. With the prototype, a timeline can be easily produced with the mapped fixations and the 

sequence can be easily explored, which provide insights into the search and learning strategy, and can also 

suggest the change of the strategies over time.  

The think-aloud protocols provide immediate insights into the mental process as the test person interacts 

with the reality and its representation. The chatbot was able to perform a classification task on think-aloud 

protocols with reasonable accuracy, especially considering the dramatically lower volume of training 

(sample utterances) compared to conventional natural language classification solutions. It successfully 

identified a large part of the usability issues, and also showed the potential to generalize over the given 

sample utterances and make predictions out of the given samples. It shows a possibility to process the 

protocols and derive information with semi-automated assistance instead of going through the entire 

transcript manually. After the transcription-segmentation-encoding pipeline, the protocols can be used to 

identify usability issues experienced or comments made by the test persons, which might not be directly 

visible from the eye-tracking data. The verbalizations also provide insights on the mental map of the test 

person, and how that mental map is “updated” as the test person processes the information from the 
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mobile display and the environment (e.g. discovering a new remnant of the textile industry). Combining 

the protocols with eye-tracking data and exploring them on one timeline, the patterns and discoveries in 

the fixation can be supported and explained by the verbalizations.   

The location data adds context to the visual behaviors and verbalizations. In addition to what is looked at 

and verbalized about, it provides information on where the test person is looking and verbalizing from. In 

the case study, the where part can directly indicate how the test person used/learnt with GeoFARA. 

Reading the info screen in front of the POI and reading the info screen on the way to it suggest two 

different kinds of learning: whether the learning about the POI took place when the POI was in sight (i.e., 

whether there were active visual interactions between the POI described on GeoFARA and the actual 

object in reality). As the test person solves a spatial problem in the real-world environment, the visual and 

physical behaviors and the verbalizations (mental processes) are influenced by both the task and the 

environment. For example in the GeoFARA case, more attention on buildings in some areas could be 

related to the area being more built-up, and not necessarily because the test person was intentionally more 

focused on the buildings (e.g. the store scene versus the villa scene). The location data adds the spatial and 

environmental context into the analysis of fixations and verbalizations, and can assist the exploration of 

this environmental influence. It also combines locomotion into the analysis, which also provides 

intentions, and might be included in sequence-based analysis of the visual attention (Kiefer et al., 2011).   

6.3.1.2. Beyond GeoFARA: some possibilities for other types of analysis 

The case study mainly demonstrates the prototype in qualitative exploratory analysis for a less constrained, 

exploratory experiment. But it can also support quantitative/statistical analysis on more constrained, 

quantitative experiments. With exploratory analysis, the main role of the prototype is to assist the 

discovery of potential patterns and unique spots in the data, and reduce the amount of manual inspection 

of the recording video. Instead of inspecting the entire video to find commonalities and unusual 

behaviors, the summarized statistics plots can already give hints on the general patterns and potential 

outliers, and the recording videos can be reviewed with focus. The exploration of synchronized fixation-

verbalization-location data can provide the overview (of a single test person or an entire group of test 

persons), as well as the details of the interaction between the environment, the representation and the 

mental process. For quantitative analysis, the data generated by the prototype can be directly used for 

statistical purposes. And because of the automation, the manual workload would be less constraining on 

the number of test persons recruited in an experiment, which provides more opportunities to apply 

quantitative methods. The processed data can be analyzed with other analytical software or in GIS. The 

case study shows an example of performing independent analysis on a few scenes. But the prototype can 

also support analysis between groups in group experiments. Apart from analyzing the data per participants 

or recording scenes, the data generated by the prototype can also be merged and queried based on fixation 

targets (e.g. querying dwell time of a certain object to get an overview of how the object is inspected by 

test persons of different groups). It will facilitate the comparison between groups (e.g. groups with 

different interface designs or navigation assistants, for example, Schnitzler et al., 2016). 

6.3.2. Limitations and possibilities 

6.3.2.1. Fixation mapping: real-world objects, screen contents, and screen coordinates 

The evaluation shows the result of the automated fixation mapping (to object categories) has good 

consistency with manual mapping. However, the case study only represents one scenario in an outdoor 

urban environment with a relatively simple object categorization (cell phone, building, surroundings). The 

performance and the suitability of the proposed method still need to be tested in other scenarios with 
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other categorization schemes. In particular, the indoor scenario might be potentially more complicated. 

Segmentation models tend to have lower performances on indoor objects (door, stairs, etc.) than outdoor 

“stuff” classes (sky, road, building, etc.) (Zhou et al., 2019). And when mapping fixations to object 

categories, the overall accuracy of the fixation mapping does not only depend on the accuracy of the 

segmentation model on individual object classes, the categorization of the objects will also have an impact. 

Indoor landmarks are often grouped into more categories (for example, Viaene et al., [2016] defined 19 

categories for indoor landmarks), which will potentially bring more challenges to accurate fixation 

mapping.  

One observation from the case study is that the semantic information obtained from the panoptic 

segmentation model (after categorizing to the four object categories) is not always consistent with the 

semantic information obtained with manual fixation mapping. For example, in the case study, a fixation 

was mapped to “paper”, and was then grouped to the “others” category. The recording shows that the 

fixation was indeed on a piece of paper lying on the ground. However, with manual mapping, this fixation 

would be considered as a part of “ground”, in the “surroundings” category. A similar situation happened 

in the wall scene, where the fixations landing on the ivy on the wall were mapped to “tree” and further 

grouped to the “surroundings” category; with manual mapping, because the ivy was on the wall, these 

fixations should be semantically mapped to the wall (building category). Although these cases are not very 

common the case study, it implies a discrepancy in fixation semantics between the object-based automated 

(segmentation) method and manual mapping: when the fixation is automatically mapped correctly to the 

object, it might not be mapped with the same semantics as compared with manual mapping.  

In the case study, one major problem with the object-based fixation mapping is that individual buildings 

cannot be distinguished (i.e., the semantic information is on the “building class” level), and it is not certain 

whether the building the test person was interacting with was a POI (remnant of the textile industry). In 

this particular case study, with GPS recordings, context and background information, sometimes the 

individual building being viewed can be inferred. But in a different scenario, for example, a navigation 

experiment in a built-up area, only knowing the fixation is on “a building object” might not be sufficient. 

For example, in the study of Kiefer et al. (2014), individual buildings were considered as different AOIs. 

In some cases, such as in Hollander et al. (2019), the AOI is not an entire building, but a part of the 

building (e.g. a potentially salient part of the building). In these cases, when the "building category" needs 

to be broken down into "identifiable building instances" and 'identifiable parts of the building", more 

semantic information is needed for the fixations. However, this information might not necessarily come 

directly from image segmentation models, because in common practice, buildings are still amorphous 

areas that are not suitable for instance segmentation. For example, Ogawa & Aizawa (2019) proposed a 

method that builds upon the results from image segmentation models to delineate building instances on 

street view images with the help of a map and the location and camera position information attached to 

the street view image. It is an example where the semantic information obtained from image segmentation 

models can be enhanced with other data, and provides an opportunity for enhancing semantics in fixation 

mapping, especially when the location data can be recorded in outdoor research.  

During manual mapping, the human decision on fixation semantics is based not only on what object it is but 

also where the object is in the scene and with respect to other objects: the ivy on the wall is part of the wall; 

the building on one side of the street is different from the building on the other side. The automated 

mapping solutions based on image and feature-matching algorithms (e.g. the Tobii RWM) focus more on 

the where part of the semantics by first transforming image coordinates from video frames to the reference 

image, then attaching semantic information to the reference image by defining AOIs on it. The object-

based mapping solution focuses on the what part of the semantics by performing image segmentation and 
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object detection directly on the video frames. An integration of object-based and feature-matching 

methods (e.g. matching segmentation results with street view images) might be considered in the future to 

map fixations with richer semantics that are more consistent with human scene-understanding.  

 

Regarding the screen-content on the mobile display, the methods used in the prototype are demonstrated 

to be suitable for multi-screen applications such as GeoFARA, but may not be as suitable when the screen 

only shows one interactive map (for example in the study of Brügger et al., 2019). It will be more difficult 

to define discrete candidate images on such continuous interactive maps, and the differences between the 

candidate image might be relatively small for the algorithm to distinguish them effectively. Its performance 

with other kinds of screen contents still need to be further investigated. And image descriptors such as  

shape-matching-based descriptors could also be considered here.  

It should be noted that there is a difference between the screen content a fixation is mapped to and what 

the test person is actually looking at. The screen content is a representation that describes the screen as a 

whole, while the test person only looks at one screen feature at a time. To establish the link between the 

reality and the representation, sometimes more detailed information on what exactly is viewed on the 

screen (e.g. a particular map feature) is needed. In order to support this, the estimation of the fixation 

screen coordinates has to be further improved. The current estimation of fixation screen coordinates can 

indicate which part of the screen the fixation lands on (e.g. the upper left corner), but it is not accurate or 

precise enough to pinpoint the map features being viewed. The case study shows that using a mobile 

phone without a protective cover might help to improve the quality of the estimation. Having the test 

person hold the phone as upright as possible throughout the entire experiment will also likely improve the 

estimation, but it is not realistic and contradicts the goal of using mobile eye-tracking to capture natural 

behaviors in the real-world environment. Methods that help to orient the position and rotation of the cell 

phone might still be considered, including placing small markers on the corners of the phone (as done by 

Müller, Buschek, Huang, & Bulling, 2019). Combining user logging might also help identify the features 

being viewed on the mobile display. Similar to the methods of Göbel et al. (2019) and Ooms et al. (2015) 

on screen-based eye-tracking, when a web map is used on the mobile phone, if the user interactions with 

the mobile web map (e.g. pan, zoom) are logged detailed enough, these interactions can be reconstructed 

after the eye-tracking session, where the extent of the web map can be calculated, then the map feature 

being viewed can be queried given the estimated screen coordinates of the fixation. This approach will 

likely require good calibration of the eye-tracker, good estimations of fixation screen coordinates, as well 

as preparation (programming) on the mobile device to log user interactions intensively. 

 

One overarching issue regarding the mapping is that the prototype works with filtered fixation data 

instead of raw gazes, as the same is usually practiced in manual mapping. But the configuration of the 

fixation filter might bias the mapping result (Göbel et al., 2019; Tobii Pro, 2019b). When the object is 

moving, the same gaze filter can yield different results when processing gazes in the coordinate systems of 

the eye-tracker (gazes in the scene camera video) and gazes in the coordinate system of the object (gazes 

mapped to snapshots). The effect of gaze filtering on fixations on reference images (snapshots) have been 

discussed (a more detailed description on the gaze filter issue can be found in Tobii Pro, 2019). But the 

influence of gaze filtering on fixations mapped with object-based mapping still needs investigation (e.g. 

how can gazes be aggregated based on their dispersion or velocity when they are mapped to an “object 

class” without coordinates information?). On the other hand, operating on raw gaze data will take a much 
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longer time because of the large volume of gaze data, but it yields “raw” results that allow researchers to 

compute fixations with their own parameter configurations.  

6.3.2.2. Processing think-aloud protocols 

Although the chatbot had a reasonable performance encoding the think-aloud protocols in the case study, 

they are not originally intended for this kind of use, and more testing with more protocols and different 

coding schemes are needed to determine whether they are robust enough to be used beyond the 

GeoFARA case study, in a wider context of think-aloud data collected in GI user research. Although state-

of-art natural language processing models take much more effort to train and prepare, they can provide 

more robust performance when the amount of protocols to be encoded is large and the demand for 

encoding accuracy is high.  

However, if a chatbot is used as an off-the-shelf protocol-encoder, improving the quality of the sample 

utterances can further improve the performance. The quality of sample utterances can have two aspects: 

how well they represent their corresponding intent, and how well can they represent the protocols to be 

encoded. The sample utterances can be generated based on theory and context knowledge (e.g. by 

analyzing the task and predicting what the test person may say), or by sampling the protocols and labelling 

them, or a mixture of both. Including the real utterances from the protocol might help the chatbot to 

learn the characteristics of them and improve the encoding result. Further, similarity metrics (e.g. cluster 

validation metrics such as cohesion and separation) can be used as a guideline to assess the quality of the 

sample utterances prior to building the chatbot, and the sample utterances can be improved if the sample 

utterances from different intents are too similar (Google Cloud, 2020). Nonetheless, because chatbots are 

offered as a black-box service which makes tuning and monitoring impossible, and the intention of using 

chatbots as a protocol encoder is to make use of an easily accessible solution and not to tune a “perfect” 

model, finding the “right” set of sample utterances will probably still remain a trial-and-error process.   

The prototype performed context-free encoding with mutually exclusive code categories. It was 

considered as a simpler classification task (compared to context-aware or multi-class classification) for this 

prototype, as chatbots haven't been used for this kind of purposes before. However, depending on the 

experiment, the encoding process is not necessarily context-free, and the coding schemes might not be 

mutually exclusive (Yang, 2003). Such encoding will be more challenging to address with chatbots. 

Although the recent development in dialog systems is enabling chatbots to be more context-aware, such as 

by storing and modelling previous inputs (Aujogue & Aussem, 2019), modelling the context in chatbot 

services is not as straightforward as modelling the intents, since the “context” in think-aloud protocols 

cannot be directly modelled into a series of attributes (for context management in Lex, see Amazon Web 

Services, 2020d). Dealing with overlapping coding schemes is also currently challenging with chatbot 

services because generally intents should not overlap (i.e. a “utterance conflict” will be flagged when an 

sample utterance maps to two or more intents, Amazon Web Services, 2019).  

6.3.2.3. Integrating data within the mixed-methods approach 

The accuracy of the location measured by the mobile phone is acceptable for visual interpretation and 

exploratory analysis in the case study. But it still needs investigation whether the measurements are good 

enough for more quantitative analysis, especially in more built-up environments where tall buildings can 

impact the GPS signal. The case study only used the location-fixation data for visual interpretation and 

exploratory purposes. The main reason was that both GPS measurements and screen-recording videos 

were the result of simulation instead of on-site data collection. The errors from multiple sources 

introduced by the simulations propagated during the integration of mapped fixations and location data, 
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and the resulting error was hard to estimate. The propagation of the error needs to be quantified and 

evaluated first before further quantitative analysis can be conducted with the integrated data. In an ideal 

situation where the GPS and screen-recording video are acquired simultaneously with the eye-tracking 

data, the error sources will be more manageable and the propagation can be easier estimated.  

With the GPS recordings, the location of the test persons is known, but the location of the fixation target 

is still not known. Knowing the location of the fixation target can be necessary when the targets are 

investigated based on the characteristics of their locations and their surroundings. For example, in the 

study of Wenczel et al. (2017), acquiring landmark structural salience requires information on whether the 

landmark is close to a corner and whether it is in or against the turning direction of the test person. In 

order to have this information, more data on head and body position is needed. Together with 3D city 

models (e.g. OSM buildings), the integration of location data, motion sensing, and eye-tracking data would 

enable the fixations to be mapped to individual buildings or other features. Although head-tracking is not 

currently supported in the mobile eye-trackers, alternative methods of acquiring the information still 

provide some possibilities. For example, the bearing of the mobile phone can be measured with built-in 

sensors, and solutions have been proposed with additional inertial measurement units (IMUs) mounted on 

the test person (Lander, Herbig, Löchtefeld, Wiehr, & Krüger, 2017; Tomasi, Pundlik, Bowers, Peli, & 

Luo, 2016). However, these methods are not yet commonly practiced in (geo) applications and their 

accuracy and suitability still need to be investigated (e.g. Lander et al. [2017] reported disturbance to the 

head-mounted IMU due to electromagnetic induction when the eye-tracker was running).  

In the case study, data from the mixed-methods approach (eye-tracking, think-aloud, GPS recordings) was 

mainly used qualitatively for exploratory purposes. With more test persons and a more constrained 

experiment, the prototype can be tested with more quantitative analysis. Also considering the volume of 

the gaze data, data-driven and data-mining approaches might also be considered, for example, task 

inferences (Liao et al., 2019) and landmark inference (Lander et al., 2017). 

6.3.2.4. Using the prototype solution 

Because the first-stage prototype mainly aims at functionalities instead of interfaces and interactions, it was 

developed without graphic interfaces and has not been evaluated with heuristic evaluation or user testing 

yet. Its usability aspects cannot be concluded yet. However, from the perspective of development, and 

observations during the case study, some major limitations can already be spotted.  

The solution is a prototype based on eye-tracking data collected with Tobii Pro Glasses 2 and pre-

processed (i.e. fixation filtered) with Tobii Pro Lab. The structure of the input data is strictly constrained 

to the Tobii format. To be able to process data collected with other hardware models, processing modules 

(gaze filtering etc.) for different input formats are needed.  

The prototype is currently implemented as Python command-line tools. Although the scripts are 

companied with documentation, it can still pose a challenge to users with little coding experience. The 

prototype also runs on many dependencies, which adds to the difficulties. For example, the Detectron2 

framework used in the fixation mapping module (Section 4.3.2.2) originally built to run on macOS/Linux, 

and it cannot be directly installed on Windows machines without special configurations (changing the 

source code, using C++ build tools etc.). But on the other hand, Tobii Pro Lab requires Windows 

systems. This can cause a major inconvenience in using this prototype solution, especially among 

researchers without software development experience. The configuration of Amazon Web Services for the 

processing of think-aloud protocols can also be confusing. To make the prototype a usable analytical tool, 
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the dependency configurations need to be further simplified, the scripts need to be further encapsulated, 

and the modules need to be integrated into a graphic user interface.   

6.4. Summary 

In this chapter, the prototype was preliminarily evaluated using the data from the case study. The 

automated approach of mapping fixations to the object categories was consistent with the manual 

approach, and the cell phone was very accurately identified. The automated approach of mapping fixations 

to screen-contents was reasonably consistent with the manual approach: the automated approach was able 

to accurately identify some screens (i.e., the screens showing info and old maps), but inconsistency 

happened between similar-looking screens. The estimation of fixation screen coordinates was not very 

precise but generally agreed with the manually mapped results. The estimated fixation screen coordinates 

were not precise or accurate enough to pin-point the screen feature being viewed, but they could give a 

rough indication of which part of the screen is being viewed. The encoding of the chatbot was not very 

consistent with manual encoding and suffered from out-of-scope inputs, but it was able to identify a large 

proportion of the protocols describing usability issues.  

The prototype has addressed the requirements and is able to assist the analysis of mobile eye-tracking data 

for GI user research by associating the visual attention with the environment and the representation on 

the mobile display, and assisting the linking the visual attention with the mental process with processed 

think-aloud protocols and location data. The case study has demonstrated the use of the prototype in an 

exploratory task, but it also has the potential to support more quantitative analysis. Potential future work 

includes mapping fixations with richer semantics, and further integration of location data and other data, 

such as screen-logging and motion sensors. Furthermore, to make the solution usable for users with 

different coding experience, the prototype can be further encapsulated and developed into integrated 

interfaces. 
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7. CONCLUSIONS 

7.1. Summary of the thesis 

Mobile eye-tracking has enabled GI user studies to be conducted in real-world environments to study the 

usability of mobile applications presenting spatio-temporal information and the cognitive process during 

the interaction with the information. But the dynamics in the real-world environments have posed 

challenges the effective analysis of the data, and the standard solutions provided by eye-tracker vendors 

don’t necessarily fit the need of GI user research. This thesis addressed the problem by developing a 

prototype solution to help analyze mobile eye-tracking data collected (within a mixed-methods approach) 

for GI user research.  

The implemented first-stage prototype solution (Chapter 4) consist of a fixation mapping component, a 

screen-recording processing component, and a think-aloud data processing component, and provided 

possibilities to synchronize the data and analyze them together. The fixation mapping component used 

panoptic segmentation to map fixations to real-world objects in the environments, it also estimated the 

screen-coordinates for fixations landing on the mobile display. The screen-recording processing 

component used histogram matching to help associate fixations with screen contents on the mobile 

display. The think-aloud data processing component transcribed, segmented, and encoded think-aloud 

protocols in a cloud workflow enabled by Amazon Web Services. The result from these components, with 

location data (GPS recordings), could be synchronized and analyzed together.  

The prototype solution was demonstrated the GeoFARA case study as a proof-of-concept (Chapter 5). In 

the case study, mobile eye-tracking data, together with screen recording videos, think-aloud audios, and 

location data (GPS recordings) were processed and analyzed in an exploratory study that aimed to describe 

the process of fieldwork learning with GeoFARA and to find the usability issues of the application. The 

analysis explored the distribution and sequence of visual attention, identified usability issues from think-

aloud protocols and described the process of fieldwork learning with GeoFARA with synchronized 

fixation-verbalization-location data. The preliminary evaluation with the case study data (Chapter 6) 

showed that automated approaches in the prototype solution was able to map fixations to real-world 

object categories and screen contents, and it could be used to identify usability issues from the think-aloud 

protocols.  

The prototype has addressed the requirements and is able to assist the analysis of mobile eye-tracking data 

for GI user research by associating the visual attention with the environment and the representation on 

the mobile display, and assisting linking the visual attention with the mental process with processed think-

aloud protocols and location data. Although it is only demonstrated with an exploratory task in the case 

study, it also has the potential to support more quantitative analysis. 

7.2. Answering the research questions 

1. What are the requirements for the solution in order to enable it to facilitate analyzing mobile eye-

tracking data for GI science research following a mixed methods approach? 

 

- What are the typical research questions being addressed with the help of mobile eye-tracking data in a mixed-

methods approach and what kind of information is needed to answer those research questions? 
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The typical research questions being addressed with the help of mobile eye-tracking in a mixed-

methods approach are mainly related to the usability and design aspects of mobile application, and the 

cognitive process of spatial knowledge acquisition. They aim to describe the use and discover usability 

issues of a mobile application presenting spatial-temporal information; and to study the cognitive 

process as the user makes interactions between the environment, the representation of the 

environment and the mental map while performing a spatial task in the environment. 

To answer those research questions, information on visual attention based on real-world objects and 

screen contents of the mobile display, mental process, and geographical context are needed. The 

visual attention includes the target, the duration, and the sequence of the attention. The target should 

include objects in the environment, as well as features or contents on the mobile display. The mental 

process refers to the test person’s thoughts during the visual and physical behaviors. The geographical 

context refers to the context of the visual and physical behaviors and mental processes as test persons 

interact with the environment.  

 

- What is the current state-of-the-art analysis practice and what kind of information can be derived with it? What 

are the limitations of the current analytical solutions? 

Apart from manually inspecting the recording video to make discoveries, the current analysis practice 

of mobile eye-tracking data is centered around manually mapping fixations to reference images and 

defining AOIs on them. After the manual mapping, metrics (count, duration, revisit, etc.) are 

calculated with the mapped fixations and are further analyzed with qualitative or quantitative means. 

The processing and analysis of other data collected within the mixed-methods approach, in particular 

think-aloud data, are often carried out manually and independent of the analysis of eye-tracking data 

until their results are referred to each other.  

Some major limitations of the current analytical solutions are: little support for automatic fixation 

mapping to real-world objects and object categories; no automated incorporation of screen contents 

on the mobile display into the analysis; not enough support for automated processing of think-aloud 

audio data and integrated analysis with mobile eye-tracking data; little support for the integration of 

other sensor data such as location data.  

 

- What additional functionalities are needed for an improved prototype solution in order to facilitate the analysis? 

An automated approach to associate fixations with semantic information on objects in the 

environment and screen features on the mobile display; automated approach to process think-aloud 

data and integrate it with the analysis of mobile eye-tracking data; integration of other data from the 

mixed-methods approach such as location data.   

 

2. How can a prototype solution be designed in order to address the identified requirements? 

Scene segmentation algorithms can be applied to directly attach object semantics to fixations. The 

panoptic segmentation model can be suitable because of its ability to coherently segment the image. 

For the mobile display, screen-recording videos can be processed to identify the screen content being 

viewed when a fixation is mapped to the screen.  

The transcription of think-aloud audio can be done with available web services. Customizable 

chatbots services, supported by underlying natural language processing and understanding models, can 

act as a quick customizable off-the-shelf classifier for the encoding of the protocols.  
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The mapped fixations and processed protocols can then be synchronized with location data with their 

timestamps, and they can be explored and analyzed together with statistics or visualizations.   

 

3. How can the prototype solution assist the analysis of mobile eye-tracking data to answer the relevant 

research questions?  

 

- What information can be extracted with the prototype solution and what is its advantage in extracting the 

information comparing to existing analytical solutions? 

The distribution and the sequence of visual attention (e.g. fixation-based metrics) can be extracted 

more easily without manual fixation mapping. It’s easier to know what object being looked at and how 

the environment and the mobile display are visually explored and linked. With the processed think-

aloud protocols, usability issues can be discovered more easily without manually going through the 

entire transcript. And when the protocols are synchronized with mapped fixations and explored 

simultaneously, they can directly support the patterns and discoveries in the fixation data and provide 

insights on the test person’s mental process. The synchronized location data adds the spatial and 

environmental context into the analysis of fixations and verbalizations, and they can be explored and 

analyzed together.  

The main advantages of the prototype solution are automation of fixation mapping and think-aloud 

data processing and possibilities for synchronized analysis of data collected by the mixed-methods 

approach.  

 

- How can the prototype solution be used in the analysis of mobile eye-tracking data to answer the relevant research 

questions?  

The prototype solution can help to discover and describe the interaction between the reality, the 

representation and the mental map by automizing some of the laborious operations and integrating 

the data from the mixed-methods approach. For exploratory and qualitative analysis, it can produce 

summary statistics and visualizations that provide clues on potential patterns and unique spots in the 

mobile eye-tracking data, and reduce the amount of manual inspection of the recording videos; it can 

support the exploration of synchronized fixation-verbalization-location data to provide a more 

comprehensive view of visual and physical behaviors, and mental processes as people interact with 

applications presenting the spatio-temporal information or solve a spatial task in the real-world 

environment. For more quantitative analysis, metrics can be calculated from the data without 

laborious manual work.  

7.3. Further testing, development, and research 

The current first-stage prototype can be further tested and developed. It needs to be further tested with 

different experiment setups, including different environments (especially the indoor scenario), different 

kinds of screen contents, and different tasks for the test persons. It should also be tested and evaluated 

with different analytical tasks (e.g. quantitative between-group analysis, encoding protocols with different 

coding schemes) performed by real researchers. Improvements in compatibility with different eye-trackers 

and data formats is also needed: modules that process raw gaze data is needed to make it compatible with 

mobile eye-tracking data collected with other hardware in different data formats. To make the prototype a 

usable analytical tool, the dependency configurations need to be further simplified, the scripts need to be 

further encapsulated, and graphic interfaces can be developed. 
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Further research in such analytical solutions can consider fixation (gaze) mapping, think-aloud processing 

and the integration of data in the mixed-methods approach. Fixations need to be mapped with richer 

semantics to make the automated mapping more comparable to human scene understanding during 

manual mapping. The integration of object-based and featuring-matching fixation mapping methods can 

be explored. Methods to improve the estimation of fixation screen coordinates and to identify screen 

features being viewed can also be explored. (Semi-)automated encoding of the protocols can be further 

explored, both with state-of-art natural language processing and understanding models and emerging off-

the-shelf services. More complex encoding tasks can also be explored, for example, encoding with context 

information. More methods can be included in the mixed-methods approach and be integrated into the 

analysis of mobile eye-tracking data, including but not limited to action logging and motion sensing. The 

resulting data might also be used for data-driven analysis.   
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APPENDIX A  CODE REPOSITORIES AND INSTRUCTIONS (README) 
FOR THE PROTOTYPE SOLUTION 

The source code and (mini) examples can be found in the following repositories: 

- Automated fixation mapping with screen recording processing:  

https://github.com/myhjiang/et_mapping 

- Think-aloud processing with Amazon Web Services: 

https://github.com/myhjiang/aws_ta 

- Synchronization and mini examples for integrated analysis: 

https://github.com/myhjiang/mobile_et_example 

 

A copy of the instructions (readme files can be found in the following pages. It’s recommended to access 

them via the repositories (to better access inline links and potential changes in the future).  

The following pages contain:  

- Readme: Fixation Mapping for Mobile Eye-Tracking: to Real-World Objects and Screen 

Contents 

- Readme: Simple think-aloud data processing with Amazon Web Services 

- Readme: Mini Examples for Analyzing Mobile Eye-tracking Data In A Mixed-Methods 

Approach 

  

https://github.com/myhjiang/et_mapping
https://github.com/myhjiang/aws_ta
https://github.com/myhjiang/mobile_et_example
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APPENDIX B  CONFIGURATION DETAILS OF DETECTRON2 PANOPTIC 
SEGMENTATION MODEL 

Model: panoptic_fpn_R_50_1x 

Model metrics url:  https://dl.fbaipublicfiles.com/detectron2/COCO-

PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json 

Model configuration:

CUDNN_BENCHMARK: False 

DATALOADER: 

  ASPECT_RATIO_GROUPING: True 

  FILTER_EMPTY_ANNOTATIONS: True 

  NUM_WORKERS: 4 

  REPEAT_THRESHOLD: 0.0 

  SAMPLER_TRAIN: TrainingSampler 

DATASETS: 

  PRECOMPUTED_PROPOSAL_TOPK_TEST: 
1000 

  PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 
2000 

  PROPOSAL_FILES_TEST: () 

  PROPOSAL_FILES_TRAIN: () 

  TEST: ('coco_2017_val_panoptic_separated',) 

  TRAIN: ('coco_2017_train_panoptic_separated',) 

GLOBAL: 

  HACK: 1.0 

INPUT: 

  CROP: 

    ENABLED: False 

    SIZE: [0.9, 0.9] 

    TYPE: relative_range 

  FORMAT: BGR 

  MASK_FORMAT: polygon 

  MAX_SIZE_TEST: 1333 

  MAX_SIZE_TRAIN: 1333 

  MIN_SIZE_TEST: 800 

  MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800) 

  MIN_SIZE_TRAIN_SAMPLING: choice 

MODEL: 

  ANCHOR_GENERATOR: 

    ANGLES: [[-90, 0, 90]] 

    ASPECT_RATIOS: [[0.5, 1.0, 2.0]] 

    NAME: DefaultAnchorGenerator 

    SIZES: [[32], [64], [128], [256], [512]] 

  BACKBONE: 

    FREEZE_AT: 2 

    NAME: build_resnet_fpn_backbone 

  DEVICE: cuda 

  FPN: 

    FUSE_TYPE: sum 

    IN_FEATURES: ['res2', 'res3', 'res4', 'res5'] 

    NORM: 

    OUT_CHANNELS: 256 

  KEYPOINT_ON: False 

  LOAD_PROPOSALS: False 

  MASK_ON: True 

  META_ARCHITECTURE: PanopticFPN 

  PANOPTIC_FPN: 

    COMBINE: 

      ENABLED: True 

      INSTANCES_CONFIDENCE_THRESH: 0.5 

      OVERLAP_THRESH: 0.5 

      STUFF_AREA_LIMIT: 4096 

    INSTANCE_LOSS_WEIGHT: 1.0 

  PIXEL_MEAN: [103.53, 116.28, 123.675] 

  PIXEL_STD: [1.0, 1.0, 1.0] 

  PROPOSAL_GENERATOR: 

    MIN_SIZE: 0 

    NAME: RPN 

  RESNETS: 

    DEFORM_MODULATED: False 

    DEFORM_NUM_GROUPS: 1 

    DEFORM_ON_PER_STAGE: [False, False, 
False, False] 

    DEPTH: 50 

    NORM: FrozenBN 

https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json
https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json
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    NUM_GROUPS: 1 

    OUT_FEATURES: ['res2', 'res3', 'res4', 'res5'] 

    RES2_OUT_CHANNELS: 256 

    RES5_DILATION: 1 

    STEM_OUT_CHANNELS: 64 

    STRIDE_IN_1X1: True 

    WIDTH_PER_GROUP: 64 

  RETINANET: 

    BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) 

    FOCAL_LOSS_ALPHA: 0.25 

    FOCAL_LOSS_GAMMA: 2.0 

    IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] 

    IOU_LABELS: [0, -1, 1] 

    IOU_THRESHOLDS: [0.4, 0.5] 

    NMS_THRESH_TEST: 0.5 

    NUM_CLASSES: 80 

    NUM_CONVS: 4 

    PRIOR_PROB: 0.01 

    SCORE_THRESH_TEST: 0.05 

    SMOOTH_L1_LOSS_BETA: 0.1 

    TOPK_CANDIDATES_TEST: 1000 

  ROI_BOX_CASCADE_HEAD: 

    BBOX_REG_WEIGHTS: ((10.0, 10.0, 5.0, 5.0), 
(20.0, 20.0, 10.0, 10.0), (30.0, 30.0, 15.0, 15.0)) 

    IOUS: (0.5, 0.6, 0.7) 

  ROI_BOX_HEAD: 

    BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) 

    CLS_AGNOSTIC_BBOX_REG: False 

    CONV_DIM: 256 

    FC_DIM: 1024 

    NAME: FastRCNNConvFCHead 

    NORM: 

    NUM_CONV: 0 

    NUM_FC: 2 

    POOLER_RESOLUTION: 7 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 

    SMOOTH_L1_BETA: 0.0 

  ROI_HEADS: 

    BATCH_SIZE_PER_IMAGE: 512 

    IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] 

    IOU_LABELS: [0, 1] 

    IOU_THRESHOLDS: [0.5] 

    NAME: StandardROIHeads 

    NMS_THRESH_TEST: 0.5 

    NUM_CLASSES: 80 

    POSITIVE_FRACTION: 0.25 

    PROPOSAL_APPEND_GT: True 

    SCORE_THRESH_TEST: 0.5 

  ROI_KEYPOINT_HEAD: 

    CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 
512) 

    LOSS_WEIGHT: 1.0 

    MIN_KEYPOINTS_PER_IMAGE: 1 

    NAME: KRCNNConvDeconvUpsampleHead 

    
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINT
S: True 

    NUM_KEYPOINTS: 17 

    POOLER_RESOLUTION: 14 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 

  ROI_MASK_HEAD: 

    CLS_AGNOSTIC_MASK: False 

    CONV_DIM: 256 

    NAME: MaskRCNNConvUpsampleHead 

    NORM: 

    NUM_CONV: 4 

    POOLER_RESOLUTION: 14 

    POOLER_SAMPLING_RATIO: 0 

    POOLER_TYPE: ROIAlignV2 

  RPN: 

    BATCH_SIZE_PER_IMAGE: 256 

    BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) 

    BOUNDARY_THRESH: -1 

    HEAD_NAME: StandardRPNHead 

    IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6'] 

    IOU_LABELS: [0, -1, 1] 

    IOU_THRESHOLDS: [0.3, 0.7] 

    LOSS_WEIGHT: 1.0 

    NMS_THRESH: 0.7 

    POSITIVE_FRACTION: 0.5 
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    POST_NMS_TOPK_TEST: 1000 

    POST_NMS_TOPK_TRAIN: 1000 

    PRE_NMS_TOPK_TEST: 1000 

    PRE_NMS_TOPK_TRAIN: 2000 

    SMOOTH_L1_BETA: 0.0 

  SEM_SEG_HEAD: 

    COMMON_STRIDE: 4 

    CONVS_DIM: 128 

    IGNORE_VALUE: 255 

    IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] 

    LOSS_WEIGHT: 0.5 

    NAME: SemSegFPNHead 

    NORM: GN 

    NUM_CLASSES: 54 

  WEIGHTS: 
E:\Play\eye_tracking\workflow\model\model_final
_dbfeb4.pkl 

OUTPUT_DIR: ./output 

SEED: -1 

SOLVER: 

  BASE_LR: 0.02 

  BIAS_LR_FACTOR: 1.0 

  CHECKPOINT_PERIOD: 5000 

  GAMMA: 0.1 

  IMS_PER_BATCH: 16 

  LR_SCHEDULER_NAME: WarmupMultiStepLR 

  MAX_ITER: 90000 

  MOMENTUM: 0.9 

  STEPS: (60000, 80000) 

  WARMUP_FACTOR: 0.001 

  WARMUP_ITERS: 1000 

  WARMUP_METHOD: linear 

  WEIGHT_DECAY: 0.0001 

  WEIGHT_DECAY_BIAS: 0.0001 

  WEIGHT_DECAY_NORM: 0.0 

TEST: 

  AUG: 

    ENABLED: False 

    FLIP: True 

    MAX_SIZE: 4000 

    MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 
1100, 1200) 

  DETECTIONS_PER_IMAGE: 100 

  EVAL_PERIOD: 0 

  EXPECTED_RESULTS: [] 

  KEYPOINT_OKS_SIGMAS: [] 

  PRECISE_BN: 

    ENABLED: False 

    NUM_ITER: 200 

VERSION: 2 
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APPENDIX C  LIST OF OBJECTS IN COCO PANOPTIC DATASET 

Stuff classes and their stuff ids: 

{"1": "banner", "2": "blanket", "3": "bridge", "4": "cardboard", "5": "counter", "6": "curtain", "7": 

"door-stuff", "8": "floor-wood", "9": "flower", "10": "fruit", "11": "gravel", "12": "house", "13": 

"light", "14": "mirror-stuff", "15": "net", "16": "pillow", "17": "platform", "18": "playingfield", "19": 

"railroad", "20": "river", "21": "road", "22": "roof", "23": "sand", "24": "sea", "25": "shelf", "26": 

"snow", "27": "stairs", "28": "tent", "29": "towel", "30": "wall-brick", "31": "wall-stone", "32": "wall-

tile", "33": "wall-wood", "34": "water", "35": "window-blind", "36": "window", "37": "tree", "38": 

"fence", "39": "ceiling", "40": "sky", "41": "cabinet", "42": "table", "43": "floor", "44": "pavement", 

"45": "mountain", "46": "grass", "47": "dirt", "48": "paper", "49": "food", "50": "building", "51": 

"rock", "52": "wall", "53": "rug"} 

Thing classes and their thing ids: 

{"0": "person", "1": "bicycle", "2": "car", "3": "motorcycle", "4": "airplane", "5": "bus", "6": "train", 

"7": "truck", "8": "boat", "9": "traffic light", "10": "fire hydrant", "11": "stop sign", "12": "parking 

meter", "13": "bench", "14": "bird", "15": "cat", "16": "dog", "17": "horse", "18": "sheep", "19": 

"cow", "20": "elephant", "21": "bear", "22": "zebra", "23": "giraffe", "24": "backpack", "25": 

"umbrella", "26": "handbag", "27": "tie", "28": "suitcase", "29": "frisbee", "30": "skis", "31": 

"snowboard", "32": "sports ball", "33": "kite", "34": "baseball bat", "35": "baseball glove", "36": 

"skateboard", "37": "surfboard", "38": "tennis racket", "39": "bottle", "40": "wine glass", "41": "cup", 

"42": "fork", "43": "knife", "44": "spoon", "45": "bowl", "46": "banana", "47": "apple", "48": 

"sandwich", "49": "orange", "50": "broccoli", "51": "carrot", "52": "hot dog", "53": "pizza", "54": 

"donut", "55": "cake", "56": "chair", "57": "couch", "58": "potted plant", "59": "bed", "60": "dining 

table", "61": "toilet", "62": "tv", "63": "laptop", "64": "mouse", "65": "remote", "66": "keyboard", 

"67": "cell phone", "68": "microwave", "69": "oven", "70": "toaster", "71": "sink", "72": "refrigerator", 

"73": "book", "74": "clock", "75": "vase", "76": "scissors", "77": "teddy bear", "78": "hair drier", "79": 

"toothbrush"} 
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APPENDIX D  LIST OF SAMPLE UTTERANCES TO BUILD AMAZON LEX 
CHATBOT IN THE CASE STUDY 

Intent I – app interaction 

- "zoom in", "zoom out", "I'm zooming to here", "click this", "open the tab", "I'll remove it",  

"close the tab", "click this button", "hit the button", "click the icon", "I'm zooming in further", 

"take a photo", "take a note", "I'm looking at the map", "I'm looking through the AR", "check out 

the map", "I can make a note here" 

Intent M – movement and navigation 

- "now I'm walking to", "I'm going to", "let's go to", "let's move on to", "I'm navigating to", "I'm 

walking on the street", "I'm crossing the road", "I'll go across", "let's go to the other side", "I'll 

turn right", "I now turn left", "walk straight ahead", "keep walking", "cross the street", "walking 

past it" 

Intent T – task related  

- "they are factories", "it was built on the old factory", "it is the old site", "It looks like a former 

factory", "it was from the textile industry", "this is not a factory", "I don't know if this was the 

textile industry before", "it is an original building from the textile industry", "it is a new building 

built on the site of old factories", "it seems related with the old industries", "this is a remanence of 

the original factory", "it was a remnant", "the building is still here", "the road structure is still the 

same", "this building was there already", "there is no remnant", "this building is new", "this 

building is interesting" 

Intent Y – usability issues and comments 

- "this is not helpful", "you should add a button", "it would be helpful if you have it", "it would be 

good to", "there's a problem with it", "it's difficult to use", "I don't like that", “I like it when”, "it 

would have been nice to", "it's nice to have more information about", "I would like to have more 

information about", "I need more information on that", "There's something wrong with the app", 

"it has stopped working", "it stops working", "it is not working", "something is wrong here" 
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APPENDIX E  USABILITY ISSUES OF GEOFARA IDENTIFIED FROM 
THINK-ALOUD PROTOCOLS 

Type of issue Item Protocols (from original automated transcript) 

difficulties / 

fault with app 

VR and label It's being chased off the screen as I turned, and so it should be in 

front of me. But the actual icon is being pushed off, making me think 

I should go this way when I know I should be going this way. 

So again, the actual augmented reality is  not helpful in this case. And 

the map is not as helpful either. 

And if the labels were attached better to things and it could be more 

useful. 

Okay, so again, the method logical problem gonna actually try to look 

at Yeah, this is really hard to be looking at this view while walking, 

especially because the labels are changing so much that it's like almost 

making me dizzy. 

So this is an example where the augmented was helpful because I 

didn't have enough basemap context And so, as I'm using this, I'm 

realizing I'm relying on the map as much as I possibly can to navigate 

and to a lesser extent, my prior knowledge of the area and on Lee 

using the augmented when there's something that I can't determine. 

map and 

navigation 

It looks like actually, my navigation, the direction Arrow has stopped 

working on the man. 

So something's wrong with the compass. 

I don't like that it keeps going to non planemetric to oblique angle. 

And because this is not an ego centric view, I don't think a plan a 

metric or an oblique view is appropriate.  I think we should only 

switch to oblique if it made it forward facing meaning the map always 

stayed forward.  I think you should stay in a planet metric view and 

only do oblique when you have, ah, ego centric view. 

note Once again, you probably could tell I tried  to hit the locate me button 

when I meant to open the notes, and so something  that would be a 

clear you I would be good. 

I don't like that My note comes up every time because you actually 

have to delete it. 

Okay, So that note I did something wrong with that note. 

Okay, once again, hitting back is a weird way to save a comment. 

others  It's getting windy out here, making a little more challenging to use 

this application. 
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need for 

additional 

information 

base map This is a case where a satellite image would  be really helpful for the 

base map. 

It would have been helpful to rather than have a point on the map to 

have the actual footprint of the thing because sometimes the shape of 

the building um it's helpful to connect what I'm seeing with what's on 

the map. 

And so it doesn't give me a sense of the Kwantum is actually the 

things that I should be looking at here. 

And really, one thing I found is to have just points could be 

problematic. 

I think maybe if it's a layer you can turn on and off. 

additional 

POI 

information 

So it's a little confusing that I didn't get any context about that 

because cruises a restaurant today, but I don't know  what this actually 

was. 

Maybe including this banner would help Thio make this landmark 

more salient in the landscape where you could actually confirm where 

you're going.  If I knew what I was looking for, a banner that would've 

been helpful, I would've looked up rather than at my phone. 

So something that related this particular building to factories in the 

past would be helpful. 

(would)  be interesting if these maps were annotated when you come 

to the specific site with kind of, ah, where what you're looking at. 

Okay , It would have been helpful to have this Praxis sign up and 

somewhere in here to confirm. 

So an image not from that far side but from this side would be 

helpful. 

And so, if you need to be able to see this first in some way, and then 

look at the modern , the modern buildings and how they've been 

either Tauron down on or re facade ID because the more. 

It would have been good to actually annotate these maps with the 

boundary of the wall so I can confirm exactly where I am. 

And so as I mentioned back there, a new photograph should be taken 

from that point s so that you have the correct photo from where 

you're standing. 

And then when you pull up the images, it would be good to actually 

mark on these images.  Yeah, And do it every time consistently to 

make it so that there's a cognitive association between the historic 

image. 
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Just because it doesn't tell me it doesn't give me any context about 

how it relates to textiles. 

So some clarification about the history would be interesting, because 

right now I feel like I'm walking it pretty far away to see a tunnel. 

I wonder if there's any information about the architecture that could 

be given here. 

I'd be interested to know how it relates and again and be helpful , 

actually, have it on the map maps here to be able to relate all the maps 

together. 

restriction But one thing of having some sort of  understanding of where I can 

go in where I shouldn't go on the map would be helpful.  

So it's another situation would be helpful to know where you can and 

can't go And what time of day. 

The tour is also taking me in a location where there's not a sidewalk , 

which sometimes avoiding locations that don't have a sidewalk, might 

be a good way to make sure that you don't. 

recommendation 

on functionality  

  So one thing that would be really neat is if the app signaled which 

locations you've already been to. Both that you've already clicked 

information, but also were sort of geo fence was in a particular area so 

that you know that you've actually physically been there because that 

would help me determine which points I haven't been to yet. 

So on ordering might actually be helpful, recommended ordering 

might actually be  helpful. 

And so the fact that I can't see the age a store from here, if you better 

maybe if I was being led on the ground with a direction, an arrow to 

it. 

 

 

 

 

 

 

 


