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ABSTRACT 

UAVs have become an important photogrammetric measurement platform due to its affordability, easy 

accessibility and its widespread applications in various fields. The aerial images captured by UAVs are 

suitable for small and large scale texture mapping, 3D modelling, object detection tasks etc. UAV images 

are especially used for 3D reconstruction which has applications in forestry, archaeological excavations, 

mining sites, building modelling in urban areas, surveying etc. Depth in an image, defined as the distance 

of the object from the viewpoint, is the primary information required for the 3D reconstruction task. 

Depth can be obtained from active sensors or through passive techniques like image-based modelling that 

are much cheaper. The general approach in image-based modelling is to take multiple images with an 

overlapped field of view which can be processed to create a 3D model using methods like structure from 

motion. However, acquiring multiple images covering the same scene with sufficient base may not always 

be possible for complex terrains/environments due to occlusions. Single image depth estimation (SIDE) 

can not only overcome these limitations but also have various applications of its own. Estimating depth 

from a single image has traditionally been a tricky problem to solve analytically. However with recent 

advancements in computer vision techniques and deep learning, single image depth estimation has 

attracted a lot of attention. Most studies that estimate depth from a single image has been done with 

indoor or outdoor images taken at ground level. Using similar techniques to find single image depth from 

UAV images has applications in object detection, tracking, semantic segmentation, digital terrain model, 

obstacle or sensor mapping etc. It can also be used to reconstruct a 3D scene with limited images acquired 

beforehand. The problem is generally approached through supervised techniques that use pixel-wise 

ground truth depth information, semi-supervised techniques that use some information that is easier to 

obtain than depth like semantics or self-supervised techniques which doesn’t require any extra information 

other than the images. As the collection of ground truth depths is not always feasible and since the depths 

produced from self-supervised approach have proven to be comparable to that of the supervised 

approaches, self-supervised approach is preferable. Thus, this study aims to estimate depth from single 

UAV images in a self-supervised manner.  

For a deep learning model to learn in a self-supervised manner, a large number of images are required. A 

training dataset with UAV images is prepared by taking images from three different regions. The 

preparation of dataset involves undistortion and rectification to produce stereopairs.  Image patches of 

smaller size are extracted from the images to accommodate in deep learning models. Around 22000 stereo 

image patches are produced for training the deep learning model. The main objective is to find a suitable 

deep learning model for SIDE. Two models, CNN and GAN are chosen due to their proven success in 

single image depth estimation for indoor images. The network architectures are modified based on the 

specifications of the UAV images dataset. Both models take as input one image from the stereopair, 

generates a disparity and then warp it with the other image in the stereopair to reproduce the original 

image. CNN model is based on VGG architecture consisting of image loss, the difference between 

original and reconstructed image, for backpropagation. While GAN model consists of, generator and 

discriminator structure to handle the image reconstruction task. Both models are found to be capable of 

producing disparity images. The results from both the models are inter-compared qualitatively as well as 

quantitatively with reference depths from SURE. The disparity output from CNN model showed closer 

approximation to SURE depths while GAN model produced disparities with fine details reproducing 

edges of roofs etc. However, GAN model has high noises and spikes in ground surfaces which needed 

improvement. To improve the quality of the SIDE models, a third model - InfoGAN is suggested where 

additional mutual information through an added network is used to improve the model performance. The 

disparity from stereopairs and gradient information is used as mutual information in this study. The 

InfoGAN model with disparity information shows improved results that are closer to CNN. The right 
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mutual information provided through extended networks can improve the model performance even 

further.  

Keywords: Single Image Depth, 3D reconstruction, Deep learning, UAV images, CNN, GAN, InfoGAN. 
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1. INTRODUCTION 

1.1. UNMANNED AERIAL VEHICLES (UAVs) IMAGES 

 

UAVs are alternative photogrammetric measurement platforms, which has wide applications in close 

range, aerial and terrestrial photogrammetry for exploring the environment (Eisenbeib, 2009). The 

platform can be mounted with sensors to capture RGB or multispectral images, videos and also LIDAR 

devices for capturing 3D information as point clouds. UAVs are suitable for both small scale and large 

scale applications. The widespread availability of UAVs and easier access has led to the increased usage of 

UAVs for capturing data. Also, due to its low operating cost compared to other manned photogrammetric 

sources, UAVs have made the collection of high-resolution aerial images more affordable. This has led to 

the extensive use of UAV images especially for texture mapping, 3D modelling or 3D digital elevation 

models (Nex & Remondino, 2014). They can be flown in complex terrains and inaccessible areas with 

faster data acquisition and real-time processing. An image-based 3D modelling using UAVs involves flight 

planning, ground control point collection, image acquisition, camera calibration and 3D data extraction 

and reconstruction (F Remondino, Barazzetti, Nex, Scaioni, & Sarazzi, 2011). The initial step is to plan the 

flight and data acquisition procedures for the area of interest, deciding the ground sampling distance, 

camera parameters etc. The camera calibration and image orientation are important parameters for 3D 

reconstruction. They can be calculated either in-flight for low accuracy applications or can be obtained 

through post-processing after the flight. To create a 3D model using UAV images, multiple images of the 

same scene with sufficient overlap is acquired. From these images and orientation parameters, a 3D model 

can be generated through image matching techniques (Szeliski, 2010). 3D models are becoming very 

popular due to its photo-realistic denotation of the object. It has applications in various fields where the 

accurate portrayal of 3D model is needed, for example, forestry, archaeological excavation sites, geological 

mining sites, building modelling in urban areas, surveying etc (Nex & Remondino, 2014).  

1.2. 3D MODELLING AND DEPTH INFORMATION 

 

A 3D model can be generated from a depth image and can be used interchangeably for many applications. 

Depth in an image is defined as the distance from the viewpoint to the surface of scene objects with 

respect to the viewing angle. Depth is an important component in 3D visualisation to perceive the offset 

of images and to understand the geometrical patterns in a scene. Depth can enhance the performance of 

various tasks like semantic labelling, 3D-reconstruction, human body pose estimation in robotics and 

unmanned vehicle control (Amirkolaee & Arefi, 2019). Also, its societal importance can be seen from its 

importance in increasing the reliability of other scene understanding tasks like semantic segmentation, 

object recognition, topography reconstruction etc., (R. Chen, Mahmood, Yuille, & Durr, 2018). The depth 

or 3D information from an image can be estimated through active or passive techniques (S. Chen, Tang, 

& Kan, 2019). Active methods include measuring depths using dedicated instruments and sensors to 

obtain good accuracy. Although there are many depth sensors, like Microsoft Kinect, LIDARs and other 

laser sensors, they are sometimes affected by illumination, acquisition ranges, noisy images and high-cost 

factors (Liu, Shen, Lin, & Reid, 2016). On the other hand, passive techniques (image-based modelling) like 

a stereo, multi-view stereo, shape from motion, shape from shading, depth from focus etc., (Huang, Zhao, 

Geng, & Xu, 2019) rely on multiple view images or images with different lighting condition of the same 

scene to extract shape information. Due to its cheaper costs and faster generation compared to depth 
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sensors, depth extraction from images is highly preferable. They use either mathematical models or shape 

information for 3D reconstruction. Generally, in photogrammetry, depth is extracted from stereo images 

that are acquired using different camera positions for visualising the same portion of the scene. The 

camera calibration parameters along with the parallax from the stereo images are used for estimating the 

depth from images (Kang, Webb, Zitnick, & Kanade, 1999). The multiple images acquired from the same 

scene is matched through various feature detection and matching algorithms making this a robust 

approach (Repala & Dubey, 2018). However, acquiring multiple images covering the same scene with 

sufficient base may not always be possible for complex terrains/environments due to occlusions causing 

lack of features for matching images. For example, in urban regions with tall buildings, it is difficult to 

capture the required scene from multiple directions due to occlusions and inaccessibility. For evaluating 

damages in structures from available pre-damage images, single image 3D reconstruction is preferable (El-

Hakim, 2001). Also in regions where rapid response is needed with low-accuracy requirements, single 

image depth estimation could be handy. This led to developments towards alternative approaches for 

estimating depth from monocular images which is still an ill-posed ambiguous problem (Eigen, Puhrsch, 

& Fergus, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: a) Single aerial image b) Disparity image- the colour variations denote the distance of the object from point 

of view. 

 

Computer vision techniques are utilized in most fields for object recognition and image classification tasks 

with proven success. The advancement of automated algorithms in computer vision has made the 

extraction of information from scene geometry possible without the pre-knowledge of camera calibration 

parameters. The successful performance and recent advancements in deep learning techniques for 

extracting high-level features makes it a preferred tool for single image depth estimation (Amirkolaee & 

Arefi, 2019).  

1.3. DEPTH EXTRACTION FROM SINGLE IMAGE 

 

Depth can be perceived using cues like shading, gradients, texture variations and object focus etc., to 

reconstruct the geometrical information from the images (Saxena, Chung, & Ng, 2007). Amongst them, 

edges are an important source for extraction and differentiation of different objects in a scene (Hu, Zhang, 

& Okatani, 2019). The depth extraction from single images has been achieved using either supervised, 

self-supervised or semi-supervised techniques. This started with Eigen et al., (2014) where the depth was 

predicted by a supervised training approach which uses pixel-wise ground truth depth labelled images for 
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the training. Some studies have trained neural networks to deal with the estimation of depth from aerial 

images by training them using Digital Surface Models (DSM) (Amirkolaee & Arefi, 2019). The main 

challenge in supervised approaches is to obtain large training set with ground truth label or with 

corresponding DSM (Repala & Dubey, 2018). It is labour intensive and extremely time-consuming to 

match the image with its corresponding depth image at the same scale. In the semi-supervised approach, 

the training images are labelled with semantic or any other useful information that may aid in simplifying 

the computation of depth by guiding with more details about the semantics or other aspects of the scene 

(Zama Ramirez, Poggi, Tosi, Mattoccia, & Di Stefano, 2019). Although labelled semantic images are easier 

to obtain than ground truth depths, it is still an added complexity. The unsupervised or self-supervised 

technique involves computing the depth without the use of ground truth depth or any extra information 

other than an aerial image. The unsupervised depth estimation problem as proposed by Godard, Mac 

Aodha, & Brostow, (2017) is approached using rectified stereo image pairs for training the network, with 

known camera parameters to generate a disparity image through the pixel-wise correspondences. These 

stereo images acts as extra information for the model to learn disparity without directly training it with 

ground truth depth. The depth map can then be synthesised from the predicted disparity maps using the 

baseline and camera constant from the binocular stereo approach. Though these methods have proven to 

decrease the ambiguity in depth estimation from a single image, they have been applied widely only on 

indoor scenes like NYU-Depth2 (Silberman, Hoiem, Kohli, & Fergus, 2012) or outdoor scenes like 

KITTI dataset (Geiger, Lenz, & Urtasun, 2012) and not on UAV images.   

Most deep learning models use the above mentioned cues for extraction of depth from monocular images. 

Among the different techniques available for training deep learning models, acquisition of stereopairs is 

easier and much more accessible than acquiring ground truth depth data. The performance of models that 

use stereo images for training is comparable with that of those which use supervised training approach 

with ground truth depths (Pilzer, Xu, Puscas, Ricci, & Sebe, 2018). The general approach of models that 

use stereopairs is to generate a disparity map with one input image of a stereopair and then warp the 

generated disparity with the other image in the stereopair to reproduce the input image (Godard et al., 

2017). The losses between the original and reproduced input image are backpropagated through the 

network for learning to reproduce better disparity. The depth is extracted from the disparity through the 

binocular stereo concept with known baseline and camera constant. These models have proven to be 

successful in 3D reconstruction from indoor or outdoor images taken at ground level. Applying these 

models for aerial images taken from UAVs introduces added complexity due to the viewpoint being 

farther away, different perspectives, scaling issues, lack of certain depth cues etc., Unlike stereo images, 

depth from a single image not only requires local variations in images but it also needs to understand the 

global view to effectively integrate the features (Saxena et al., 2007). This necessitates the use of deep 

learning models that are capable of extracting both local and global variations within a scene.  

1.4. APPLICATIONS OF DEPTH FROM SINGLE UAV IMAGE 

 

Estimating depth from single aerial images captured from UAVs can be used to reconstruct 3D 

information of a scene without the use of multiple images of the same scene. It can be useful in places of 

natural disaster, where 3D reconstruction of the region is required with already available minimal images. 

This mechanism can also be used in tasks where regular photogrammetric block acquisition is not possible 

and in areas where it is acceptable for the 3D reconstruction to be of reduced quality. This will also open 

up new possibilities of scene explorations from the UAV images. The depth from single images can make 

the acquisition of Digital Surface Model (DSM) easier and affordable. It can provide height information 

for various tasks like object detection, tracking, semantic segmentation and Digital Terrain Model (DTM) 

generation with the limited number of images. Further, it can also be used onboard in UAVs for 
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augmented simultaneous localization mapping (SLAM) which can help in identifying the rough estimation 

of the position of the vehicle and obstacles. 

1.5. RESEARCH IDENTIFICATION 

 

The wide variety of applications and its importance in various domains makes the estimation of depth 

single UAV images an important topic of research. However, studies have been sparse due to the 

increased viewpoint complexity and difficulty in acquiring ground truths. With deep learning models 

showing promise in self-supervised monocular depth estimation for images take at indoors and at ground 

level there is an urgent need to apply these techniques to single UAV images. This study uses a self-

supervised approach for depth estimation from single UAV images without the use of ground truth 

depths which hasn’t been attempted before.  

The scope of this study is to find a suitable model that can estimate depth from single aerial images 

captured by UAVs without the requirement of ground truth depths, making use of stereopairs for training. 

A single aerial image along with generated disparity is shown in Figure 1. 

1.6. OBJECTIVES 

 

The overall scope of this study is to find a deep learning model that can extract depth from single UAV 

images with reliable accuracy. The model is to be trained using stereopairs which acts as additional 

information for the model by replacing the use of the ground truth depth data. Two deep learning models 

with different architectures are chosen for the study to find a suitable architecture which can be further 

improved by adding additional features to generate better depth images from monocular scenes. The 

objectives of this study are: 

1) Explore different deep learning models to find a suitable deep learning model for single image 

depth estimation (SIDE) from UAV images without using ground truth depth data for training. 

2) Improve the deep learning model with additional elements to extract depth with reliable accuracy. 

3) Assess the model performance and compare the results with the ground truth produced from 

different sources. 

1.7. RESEARCH QUESTIONS 

 

 This led to the formulation of the following research questions, 

1) What will be the suitable deep learning architecture for estimating depth from single UAV 

images? 

2) What parameters can be included for improving the model performance? 

3) How good the models are in relation to commonly used 3D reconstruction tools? 

 

 

The general information about the importance of this research and the overall objectives are discussed in 

this chapter. Chapter 2 reviews the different approaches suggested in the literature to handle this problem. 

The methodology along with workflow and the model descriptions are discussed in Chapter 3. The 

performance of different models and the improvements are presented in Chapter 4. While Chapter 5 gives 

the overall conclusions on the appropriate model and suggestions for future work. 
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2. LITERATURE REVIEW 

Depth estimation from images using computer vision techniques are very popular due to its successful 

performance. It includes the use of stereopairs (Alagoz, 2016), multiple image views of the same scene 

(Furukawa & Hernández, 2015; Remondino et al., 2013; Szeliski & Zabih, 2000), illumination or texture 

cues (R. Zhang, Tsai, Cryer, & Shah, 1999) etc. They follow the principle of binocular stereo vision or 

multi-baseline stereo (Kang et al., 1999) for extracting 3D information from the images.  

2.1. DEPTH FROM STEREO IMAGES 

 

To estimate depth, images with an overlapped field of view with different camera position is required. The 

cameras would be separated by a baseline distance. The images are rectified and projected on to the same 

plane to form stereopairs. From the image pair, one needs to identify the point or features for performing 

3D reconstruction.  To achieve this distinct points from one image should be identified and matched with 

the other image to find the homologous point. Matching the corresponding points from the left and the 

right image is a difficult task as distinct features or points need to be chosen to avoid confusion with the 

background scene. To find the corresponding points, sparse matching techniques or dense image 

matching techniques can be used. The sparse matching technique includes template-based matching, 

which matches the points through cross-correlation or through least squares (Szeliski, 2010). This is 

mainly used for orienting the images such that corresponding points lie along the same line. It also 

includes feature-based matching techniques which matches using key points and key descriptors. The task 

of key-point identification is done using Harris corner detector (Harris & Stephens, 1988), Förstner 

operator (Förstner & Gülch, 1987)  etc by finding large intensity variations in an image. From key points, 

the surrounding variations are extracted through key descriptors which can be used for matching the pairs. 

The key descriptors can be identified through various algorithms, like Scale Invariant Feature Transform 

(SIFT) (Lowe, 2004) which computes image gradients within a local region surrounding key points. The 

key points and key descriptors are used to match features from one image to the corresponding feature in 

other images. Once the corresponding features are identified, matched and used for orienting the images, 

the 3D depth or point cloud can be obtained. To obtain denser point clouds, dense image matching 

techniques are used. This includes window-based matching technique which slides a window to calculate 

the absolute difference between the features, scan line stereo which uses dynamic programming to find the 

lowest cost path for identifying features, semi-global matching which uses pixel-wise matching and a 

regularisation term to reduce spurious matches etc. (Szeliski, 2010).  Semi-Global Matching (SGM) 

proposed by Hirschmüller, (2005) has wider adoption in many recent computer vision tasks due to the 

quality results and its faster performance. SGM is a dense image matching technique, which matches pixel-

wise mutual information by matching cost. Instead of using intensity difference alone for matching, SGM 

uses disparity information to find the corresponding pixels in other images. 

The distance between the corresponding points from the left and right image defines the disparity map of 

the images. This disparity map can be used for 3D reconstruction. The disparity and depth information 

are related inversely as given in equation (1). 

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑋𝑙  −  𝑋𝑟  =  
𝐵𝑓

𝑑
                                                                     (1) 

where 𝑋𝑙 and 𝑋𝑟  denote the corresponding image points, B represents the baseline distance between 

cameras, f is the camera constant and d is the depth or object distance from the viewpoint. The obtained 

disparity map can be used to calculate the depth information from the images through the baseline and 

camera constant. The concept of binocular stereo is shown in Figure 2. 
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Figure 2: Relationship between different parameters baseline(b), focal length(f), disparity(d), depth(z) and ground 

point(p). Adapted from “ Multibaseline stereo system with active illumination and real-time image 

acquisition”, Kang et al., (1999)., p.3 

2.2. IMAGE-BASED APPROACHES FOR SINGLE IMAGE DEPTH 

 

The recovery of 3D information from image-based modelling is done through mathematical models as 

explained in the previous section or through shape extraction techniques called Shape from X. The shape 

can be expressed as depth, surface normal, gradient etc. X represents details like shading (Van Den 

Heuvel, 1998), texture (Kanatani & Chou, 1989), stereo, motion in 2D images (R. Zhang et al., 1999). 

Most of these techniques employ multiple images and to find corresponding points for matching is 

complex. Shape from shading developed by Horn in the 1970’s is used to compute three-dimensional 

information from a single image using the brightness difference in the surface. Even though the solutions 

from shape from shading has proved to be not unique due to ambiguity in parameters of lighting, it acted 

as a base for many of the future solutions for single image depth estimation (Prados & Faugeras, 2006). It 

used the change in image intensity to obtain the surface shape and it suffered in areas that do not have 

uniform colour or texture (Saxena, Chung, & Ng, 2005). The assumption that surfaces are smooth and the 

difficulty to calculate the surface reflectance properties lead to inaccurate depth information.  

Van Den Heuvel, (1998) proposed using the line-photogrammetric method by describing objects in an 

object model with geometrical constraints like parallels, perpendiculars among lines in objects which 

represents the edges between planar surfaces for extracting depth from single images. This model is 

mainly used for areas with man-made surfaces like buildings where the occurrence of such geometrical 

constraints are higher. El-Hakim (2001), suggested a flexible approach without object model and internal 

calibration parameters. Different types of constraints like points, surface, topology etc, for solving internal, 

external camera parameters and also obtaining 3D models are suggested. The shapes of objects are also 

combined with topological relations like parallels, perpendiculars etc. Similarly, L. Zhang, Dugas-Phocion, 

Samson, & Seitz, (2001) used a sparse set of user interactions for 3D reconstructions using constraints like 

surface normal, silhouettes etc. This algorithm yielded better results for objects with distortions forming a 

constrained optimization problem. Nagai, Ikehara, & Kurematsu, (2007) proposed a novel method for 

surface reconstruction called shape from knowledge using Hidden Markov Model (HMM). This models 

the relationship between the RGB image and its corresponding depth information. The approach is 

influenced by shape from shading mechanism but worked only for facial structures and failed to 

generalise.  
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As the research towards single image depth estimation increased, the use of constraints and 

complementary information also gets modified based on requirements. This added information for depth 

estimation is handled through three approaches based on the user influence in the model. The 

achievements in each approach are explained and the approach suitable for our task is selected. 

2.3. SUPERVISED APPROACH 

 

The analytical solutions for depth estimation from a single image like shape from X are not as good as that 

of stereo depth estimation. With recent developments in computer vision and deep learning techniques, 

there is an increasing possibility of using these techniques to overcome the limitations of analytical 

methods. This is mainly due to the success of Convolutional Neural Networks in learning depth from 

colour intensity images. Several studies have been published on depth estimation from a single image 

using ground truth depths for training deep learning models. Saxena et al., (2007) proposed the use of a 

global context of the image as local features alone will not be sufficient for single image depth estimation. 

They used Markov Random Field (MRF) to incorporate the relation between depths at different points 

within the image. They trained the model with the monocular image of both indoor and outdoor scenes 

taken at ground level, along with the corresponding ground truth depths. They followed a patch-based 

model to extract most of the features. But this model had problems with weak unconnected regions 

without global contextual information. Eigen et al., (2014) suggested the integration of both global and 

local information by using a multi-scale network for coarse and fine prediction. However, the depth image 

is inferred directly from the input image compared to other robust techniques and the generated depth 

image has lower resolution compared to the original input image. The use of deep structured learning for 

continuous depth values by unifying continuous Conditional Random Field (CRF) and deep 

Convolutional Neural Network (CNN) framework is implemented by Liu et al., (2016). Li, Yuce, Klein, & 

Yao, (2017) proposed a two streamed network for predicting depth along with depth gradients which are 

fused to form a final depth map. This helped them to capture local structures and fine detailing through 

the two-streamed network. Jafari, Groth, Kirillov, Yang, & Rother, (2017) used cross-modality influence 

for joint refinement of the depth map and semantic map through monocular neural network architecture. 

They achieved a beneficial balance between the accuracy of the network and the cross-modality influence. 

R. Chen et al., (2018) moved a step ahead, by approaching the monocular depth estimation through 

adversarial learning. They implemented a generator network to learn the global context through patch-

based information. The discriminator network distinguishes between the generated depth map and the 

ground truth depth map. These approaches are mostly implemented on indoor or outdoor datasets taken 

at ground level.  

Julian, Mern, & Tompa, (2017) compared different style transfer methods like pix2pix, cycle GAN, multi-

scale deep network for aerial images captured from UAVs. They trained the model using the UAV images 

along with depth image pairs and refined the feature-based transfer algorithm for this single image depth 

estimation purpose. Mou & Zhu, (2018) used a fully residual convolutional-deconvolutional network for 

extracting depth from monocular imagery. They used aerial images along with the corresponding DSM 

generated through semi-global matching for training the network. The two parts of the networks acts as s 

a feature extractor and height generator. Amirkolaee & Arefi, (2019) proposed a deep CNN architecture 

with an encoder-decoder setup for estimating height from aerial images by training them with the 

corresponding DSM. They extracted the full satellite image into local patches and trained the model with 

the corresponding depth and finally stitched the depths together. They faced issues for small objects with 

fewer depth variations like small vegetations, ground surfaces within the scene etc.   

Although all these methods proved to be successful, they all require huge amounts of ground truth depth 

images while training the model. Acquiring UAV images along with their corresponding DSM is 
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complicated making supervised approach less preferable compared to other approaches even though it 

produces better accuracies for single image depth estimation. 

2.4. SEMI-SUPERVISED APPROACH 

 

The supervised approaches required pixel-wise ground truth depths which is not always practical to 

acquire. To overcome this, researchers used information other than depths during training. Zama Ramirez 

et al., (2019) suggested training the network with semantic information which could effectively improve 

the depth estimation. They had a joint semantic segmentation and depth estimation network architecture, 

which uses the ground truth semantic labels for training. Even though acquiring semantic information is 

less complicated than ground truth depth, it is still an added complexity which required manual 

processing.  Amiri, Loo, & Zhang, (2019) approached this semi-supervised task differently. They used 

both LIDAR depth data and rectified stereo images at the same time during training. They also included a 

loss term, left-right consistency loss to check the consistency between the generated left and right depth 

maps. Even though the semi-supervised approach has lesser difficulties in ground truth depth data, yet it 

has other requirements which make this an equally challenging task. This shifted the interest towards an 

unsupervised or self-supervised approach which doesn’t require laborious ground truth depth 

construction. 

2.5. UNSUPERVISED/SELF-SUPERVISED APPROACH 

 

Unsupervised or Self-supervised approaches utilise the multi-view images instead of vast amounts of 

ground truth depth maps for training the neural networks. The reduced dependencies on laborious ground 

truth data collection have generated a lot of interest in these approaches. Garg, Vijay Kumar, Carneiro, & 

Reid, (2016) circumvent the problem faced by supervised learning by utilising stereo images instead of 

ground truth depth maps. They used the 3D reconstruction concept to generate a disparity image from 

stereo images and reconstruct the original image through inverse warping. They suggested that this 

approach can be continuously updated with data and fine-tuned for specific purposes. Although the model 

performed well, their image formation model is not fully differentiable. Godard et al., (2017) overcome 

this by including a fully differential training loss term for left-right consistency of the generated disparity 

image to improve the quality of the generated depth image. Repala & Dubey, (2018) based on the 

approach of reconstruction of images from disparities, suggested dual CNN with 6 losses for each 

network to train to generate a corresponding depth map. They utilised two CNN architectures one each 

for left and right images. The Generative Adversarial Network (GAN) introduced by Goodfellow, Bengio, 

& Courville, (2016) proved well capable of solving complex computer vision problems. Many 

developments in adversarial learning led to different network modifications like Conditional GAN (Mirza 

& Osindero, 2014), Deep Convolutional GAN (Radford, Metz, & Chintala, 2016), Information 

maximising GAN (X. Chen et al., 2016), Cycle consistent GAN (Zhu, Park, Isola, & Efros, 2017) etc. The 

adversarial learning models mark the current state of the art in many areas where deep learning is being 

used. A simple GAN network consists of a generator that learns to produce realistic images and 

discriminator that learns to find the difference with real images. MonoGAN by  Aleotti, Tosi, Poggi, & 

Mattoccia, (2018) used a combination of generator and discriminator network for the monocular depth 

estimation. The generator loss is combined with an image loss to improve the disparity image synthesis 

process. This simple architecture is further modified by different adversarial learning process to achieve 

the task of depth estimation from a single image. Mehta, Sakurikar, & Narayanan, (2018) used this 

structured adversarial training to improve the task of image reconstruction for predicting depth images 
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from the stereo images. The baseline between the stereopairs is varied in a sequential and organised 

manner within a range, making it crucial for the model to learn. This varying baseline is scaled with the 

generated disparity which is warped with the left image to produce the right image. To improve the image 

synthesis process, a complex GAN architecture called Cycle GAN is proposed by Pilzer, Xu, Puscas, 

Ricci, & Sebe, (2018). The model consisted of a cycle with a combination of generator and discriminator 

in each half-cycle. The half-cycle uses the right image as an input to the generator for generating a 

disparity map, warping it with the left image to produce the right image. This is compared by discriminator 

to identify the false right images from the realistic right images. The produced right image acts as an input 

for the generator in the next half-cycle to produce a left image. Since this uses a cyclic structure, the model 

is referred as cycle GAN, where the loss terms include image loss, generator loss, discriminator loss along 

with a cycle consistency loss term.  

These are some of the implementations for solving the monocular depth estimation problem from stereo 

images. Most of these models used indoor datasets or outdoor datasets taken at ground level. Our 

approach is also to use the information from stereo views to find an apt model for the aerial image dataset 

captured by UAVs.  
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3. METHODOLOGY 

This chapter details about the different UAV datasets used to prepare the training dataset. The pre-

processing step to prepare stereopairs along with the generated image quality are discussed. The overall 

workflow, with the detailed description of the different deep learning models chosen and the 

implementation of the models for our study are also presented. The tools used for reference depth 

generation are also described. 

3.1. PRE-PROCESSING AND PREPARATION OF TRAINING DATASET  

 

The deep learning models require large amounts of data for training in self-supervised approach with 

stereo images. The dataset consists of high-resolution UAV images captured over different regions the 

details of which are given in Table 1. This includes many land use/landcover features like buildings, 

vegetation etc., captured from different perspectives. The UAV images are captured sequentially over a 

region based on photogrammetric block. The images had around 90% forward overlap and about 70% 

side overlap for all the selected regions. The images with maximum overlap with adjacent images along the 

strip are selected to extract the stereo image pairs. The total number of images from each region along 

with the ground sampling distance is specified in Table 1. In order to make the dataset more 

representative and avoid overfitting of the model, it is ensured that the dataset consisted of a mixture of 

UAV images. Figure 3 shows the three photogrammetric blocks that are used for preparing the training 

dataset. 

 

Table 1: Dataset distribution 

 

Dataset 

Average Ground 

sampling distance 

(GSD) in cm 

Full images Stereopairs Image patches 

EPFL Quartier Nord, 

Switzerland 
3.05 125 100 1500 

Ruhengeri, Rwanda, 

East Africa 
3.01 1115 950 17120 

Zeche Zollern, 

Germany 
2.05 375 300 4500 
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Figure 3: Full Photogrammetric blocks a) EPFL Quartier Nord, Switzerland b) Rwanda, Africa c) Zeche Zollern, 

Germany 

3.1.1. STEREOPAIR GENERATION 

 

The UAV images are pre-processed to remove the distortion and rectify them to generate stereopairs. This 

processing is required to compute the precise depth information from the stereo images.  The images 

captured by UAVs suffer from radial distortions. The image distortion changes the real geometry of the 

image. An object looks displaced from the correct position.  This will also make it difficult to match the 

corresponding features specifically near borders of the image. This is corrected by using the camera 

b) 
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calibration parameters which is obtained during initial processing in Pix4D tool. The camera parameters 

include extrinsic, intrinsic and distortion coefficients. The extrinsic parameters represent the 

transformation of object point from the world coordinate system to image coordinate system through 

translation and rotation. While the intrinsic parameters refer to the projection of the object point to the 

ideal image point in pixel coordinates. The image coordinates are modelled for non-linear image errors like 

distortion using the equation (2). 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥𝑖𝑚𝑎𝑔𝑒 + 𝑓(𝑥, 𝑦) 

 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦𝑖𝑚𝑎𝑔𝑒 + 𝑓(𝑥, 𝑦)                                                      (2) 

Where 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 , 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 represent the undistorted image coordinates, x and y represent the distorted 

image coordinates with respect to principal distance and projection center which are added with an 

additional term to describe distortion and 𝑓(𝑥, 𝑦) represent the non-linear error function. The undistorted 

images are then rectified to make the homologous points in the generated stereopairs lie along the same 

rows (Junger, Hess, Rosenberger, & Notni, 2019). This is performed by comparing images taken from 

multiple views of the same scene with good overlap, then extracting the features and matching the 

corresponding points through the support of epipolar constraint (Szeliski, 1999; Remondino et al., 2013; 

Aicardi, Nex, Gerke, & Lingua, 2016). The epipolar geometry restricts the location of the feature in the 

second image within a line making it easier to identify the corresponding features as shown in Figure 4. 

 

 

Figure 4: Epipolar constraint for feature identification 

 

In Figure 4, 𝑋01  and 𝑋02  denote the overlapped images and x’ represent feature in image 1 and x’’ 

represent the same feature in image 2. The epipolar constraints restrict the position of the x’’ along the line 

I’’, making it easier for identification. After image matching, the images are projected and oriented onto a 

common plane where the shift of corresponding pixels of the left and right images are only in x-direction. 

This process is repeated for all the UAV images in a photogrammetric block. The stereopair generation is 

automized with MATLAB scripts. The total number of stereopairs generated from the full block of UAV 

images are given in Table 1 and samples of generated stereopairs are shown in Figure 5.  
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Figure 5: Examples of rectified Stereopairs a)EPFL Quartier Nord, Switzerland b)Rwanda, Africa c) Zeche Zollern, 

Germany 

 

The accuracy of the generated stereopairs limits the accuracy of the depth estimation model since the 

stereopairs are the only information guiding the model during training (Amiri et al., 2019.  Errors in 

stereopair might arise due to improper rectification, wrong matches while feature matching, residual 

distortions that the camera calibration could not be handled etc. This can cause the generated stereopairs 

to have homologous features not along the same row. The error in stereopair generation will add up with 

the errors produced by the model leading to the generation of poor quality disparity or depth images. 

Hence while generating the stereopairs, a condition is imposed such that the matching error between the 

corresponding points is not more than 0.2 pixels. This means that the stereopair will not be generated if 

corresponding features are shifted by more than 0.2 pixels. Also, the generated stereopairs are randomly 

selected and verified for the pixel values for the homologous points in the left and right images if they lie 

along the same row as shown in Figure 6. It is found that for the randomly selected pairs, the homologous 

features lie along the same line with the same row number and different column number. In Figure 6, 

Pixel positions (Column, Row) are shown for the left and right image. The position of the same feature in 

both images lies along the same row and different column. 
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Figure 6: Examples of rectified Stereopairs showing the homologous points (marked in yellow circle) along same row 

 

3.1.2. EXTRACTION OF PATCHES 

 

The generated stereopairs are of high resolution and feeding them directly to the model has computational 

difficulties. The resizing of the stereopairs leads to loss of details and hence to maintain the resolution 

along with the information present in the scene, the images are extracted into smaller patches. Each stereo 

image pair is divided into smaller patches by following the admissible input size of the model. From the 

total of 1300 stereopair images, 22000 image patches are generated for use in training and 600 image 

patches for testing. The process is automated using scripts written in MATLAB R2018. The 

corresponding patches from the left and right images are used to form the stereopairs for training the 

model. The size of each patch is 512 * 1024. A sample stereopair along with the extracted patches from 

the left image is shown in Figure 7. 
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Figure 7: Rectified Stereopairs a) Rwanda, Africa b) Zeche, Germany along with the extracted patches from Left 

image and Right image 

L R 

a) 

b) 
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3.2. WORKFLOW 

 
The overall workflow involves preparing a UAV image dataset which is pre-processed to generate left-

right stereo patches, training deep learning models and evaluate the accuracy of the tested image patches. 

The stereo patches are used as a replacement for ground truth depth data for training the models. The 

single image depth estimation problem is treated as an image reconstruction problem, using the encoder-

decoder deep CNN model. The model takes the left image from the stereopair to produce disparity. The 

model produced disparity is warped with the right image through bilinear sampling to reconstruct the left 

image. The right image is not directly given as input to the model but used with the generated disparity to 

produce the left image. The difference between the reconstructed left image and the input left image will 

be calculated as a loss. The model backpropagates the loss and learns to produce better disparity from the 

single left image. This is the general approach of the deep learning models used in this study for learning 

disparity in a self-supervised manner. Two models - CNN and GAN are trained using the UAV dataset to 

produce disparity from a single image.  

The internal qualities of the models are evaluated and the disparity images generated from the test images 

are inter-compared. This will help in understanding the relative difference in the performance of the two 

architectures for such ill-posed problems. They are further compared with point clouds generated through 

commercially available photogrammetric tools (Pix4D and SURE). Based on the comparison, fine-tuning 

tasks are included which involves giving additional information for the models to perform better. To 

improve the performance of SIDE model, additional information with the help of third network is 

provided. This forms architecture of third model InfoGAN which further improves the model 

performance in generating disparity maps. This overall structure is shown in Figure 8. 
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Figure 8: Workflow for single image depth estimation model 

3.3. MODELS USED 

 

The extracted patches are trained with deep learning models which differ in network architecture. Among 

available networks, two models, CNN and GAN are used for training the stereo patches. Various studies 

have proved CNN to be suitable for image reconstruction tasks which makes it preferable for this depth 

estimation problem. Similarly, GAN has shown successful performance in image generation tasks. These 

two deep learning models are chosen to study their ability in single image depth estimation from UAV 

aerial images.  

Most studies have tested these models on images taken at indoor or outdoor scenes taken at ground level 

like KITTI dataset. Using these models for aerial images introduces more complexity compared to images 

taken at ground level. In aerial view, the objects are very much far away from the point of view compared 
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to the ground level images. This makes the absolute disparity ranges to be very small as the depth from 

aerial view is large. Also, the images at ground level contain more objects and details compared to aerial 

view which makes the model learn more variations. In aerial perspective, most of the details get faded due 

to large distance from the camera and also the local variations between similar objects are difficult to 

identify.  

Dual CNN proposed by Repala and Dubey, (2018) and MonoGAN proposed by Aleotti et al., (2018) has 

been used in this study for inter-comparison as their model produced better accuracy for the benchmark 

KITTI dataset. The models are modified to take into account the differences in the characteristics of the 

dataset. Based on the model results, GAN architecture is further modified to form the third model to 

increase model performance. X. Chen et al., (2016) suggested the use of mutual information 

(complementary cues) to increase the model performance calling it InfoGAN. There are two mutual 

information’s used in this study for improving the model performance, one is stereopairs to produce 

disparity and the other is gradient information. The architecture of the improved InfoGAN model with 

both mutual information is also explained below. The overall network architecture of the four deep 

learning models and the changes made for accommodating the UAV images are explained below. All 

models are executed in Python(3.6) using TensorFlow (1.15) platform. 

3.3.1. CNN 

 

The network architecture from Repala & Dubey, (2018) - Dual CNN model is shown in Figure 9. They 

utilised two CNN architectures each for left and right images. During the training phase, the left image is 

given as an input to left CNN (CNN-L) to produce left disparity and the right image is given as an input 

to right CNN (CNN-R) to produce right disparity. The left and right images are then reconstructed using 

bilinear sampling with the obtained disparity maps. For instance, the left disparity image, generated from 

the left CNN is warped with the right image to reconstruct the left image as output and similarly, the right 

disparity image, generated from right CNN is warped with the left image to produce a right image. The 

reconstructed left and right images are compared with the original input images to calculate the losses. The 

three types of losses used for comparison are, matching loss, disparity smoothness loss and left-right 

consistency loss for each CNN architecture. The loss terms will be calculated and back-propagated to 

improve network performance. This is the main structure of the Dual CNN with 6 losses (3 for the left 

image and 3 for the right image). Also, the dual network with 12 losses is proposed by modifying the left 

and right CNN to produce two output disparities from each CNN architecture. Repala & Dubey, (2018) 

trained the model with images from KITTI dataset covering outdoor scenes taken at ground level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Dual CNN with 6 losses. Adapted from “Dual CNN Models for Unsupervised Monocular Depth 

Estimation”, by  Repala & Dubey, (2018)., p.3.  
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Implementation: 

 

Compared to indoor and outdoor images taken ground level, aerial images cover larger areas with finer 

details. In order to accommodate this information, the network needs to be tuned for the chosen training 

dataset. To optimize the computational effort, a VGG based network architecture is chosen.  A single 

CNN for left image is found to converge better for this training dataset than the two CNNs proposed by 

Repala & Dubey,(2018). This could be due to the complexity of the training images which requires a 

simpler network for minimisation of loss. The network consists of encoder and decoder structure for 

downsampling and upsampling respectively. The encoder consists of seven downsampling layers with the 

increasing number of filters in each layer. The sizes of the filters are of dimensions 7*7, 5*5 and 

predominantly 3*3 to extract fine details. This reduces the size of the original input image as it passes 

through each layer. The decoder also consists of seven layers for upsampling the input from the encoder 

to the original input size. Here, the number of filters used in each is reduced as we move through the 

layers. The dimensions of the filters are 3*3 for all layers. Further, the output from each decoder layer is 

concatenated with the convolutional output layer from the encoder from the last. For example, the first 

convolutional layer from the decoder is concatenated with the last layer of the encoder and the 

convolutional filters are applied to the concatenated feature. This is carried out to transverse the 

information through layers without losing features. From the UAV stereo patch dataset, the left patch is 

given as input to the VGG based encoder-decoder network. To maintain consistency, both left and right 

disparity are generated from the network using the left image alone. The generated left disparity is warped 

with right stereo patch through bilinear sampling to reconstruct left stereo patch and the generated right 

disparity is warped with the left stereo patch to reconstruct right stereo patch. The loss between the 

generated stereo patch and the original stereo patch is added as image loss. This is backpropagated 

through the network for improving the disparity generation.  
Repala & Dubey, (2018) utilised three losses for the reconstruction of images, however, the left-right 

consistency loss is not meaningful as there is only left CNN in the present study. A single image loss was 

then used for this study as given in equation (3) which compares the generated image with the original 

image. This image loss is in simpler terms a combination of L1 norm and Structural Similarity Index 

Metric (SSIM)  (Wang, Bovik, Sheikh, & P.Simoncelli, 2004) for left and right images as shown below. 

SSIM is used for measuring the similarity between two images where one image is considered as good 

quality compared to the other image. It compares factors like luminance, contrast, structure within widows 

of one image with others. 

𝐼𝑚𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ 𝛼

(1−𝑆𝑆𝐼𝑀(𝐼𝑖,𝑗
𝛽

,Î𝑖,𝑗
𝛽

)

2𝑖,𝑗 + (1 − 𝛼)||𝐼𝑖,𝑗
𝛽

− Î𝑖,𝑗
𝛽

||                                      (3) 

                                                                                                

Where α represents the weight between L1 norm and SSIM, I denotes the original image and the Î 

represents the warped image, β={l,r} for left and right images and i,j represents pixel position. The model 

architecture along with the loss component is shown in Figure 10. 
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Figure 10. Simple CNN architecture with Image reconstruction loss modelled 

 

This specific architecture with a single left CNN and a single loss for backpropagation is found to be 

optimal to reach convergence. Using a single CNN instead of two also makes it more realistic to compare 

results from this model with that of the GAN model. To compute the gradients Adam optimizer is used 

due to its faster convergence compared to stochastic gradient descent. From experimental tests, the 

number of epochs is fixed as 70 and the learning rate is fixed as 10-5 decaying to half that value at the final 

epoch. 

3.3.2. GAN 

 

Aleotti et al., (2018) proposed an architecture consisting of a generator and discriminator network jointly 

trained through adversarial learning for reconstructing disparity map in a cycle. The generator takes as 

input the left stereopair and generates a disparity image. This generated disparity image is then warped 

with the right image through bilinear sampling to synthesize a left image. The discriminator will try to 

distinguish between the generated left image and the original left image, producing a discriminator loss. 

The general architecture of the model is shown in Figure 11. The total loss will be the sum of the 

generator loss and discriminator loss denoting the min-max game between the two. Min-max refers to 

minimising generator loss and maximising discriminator loss simultaneously (Goodfellow et al., 2016). The 

generator competes with the discriminator to reconstruct better disparity maps and the discriminator tries 

to increase the probability of distinguishing between the original and generated images.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. MonoGAN for stereo depth estimation. Adapted from “Generative Adversarial Networks for 

unsupervised monocular depth prediction”, by Aleotti et al., (2018). 
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Implementation: 

 

VGG based network architecture similar to the CNN architecture proposed in the previous section is used 

for the generator network for feature map generation. With the generator, the second network for 

discriminator is included whose task is to distinguish between the real and fake images which is much 

easier compared to the task of the generator which has to reconstruct images. Hence the discriminator will 

have a simpler architecture with less number of feature maps generated from each of its layers compared 

to the generator. The discriminator consists of a set of 5 convolutional layers with decreasing number of 

filters to reduce the size of the input image by a factor of 2. Both the generator and discriminator are 

trained simultaneously. The generated left image and the original left image are compared by the 

discriminator. The higher probability of identifying the generated images from the original images by the 

discriminator makes the generator to increase its performance in generating more realistic images. The 

total loss in this structure will be a sum of the generator and discriminator loss as shown in equation (6). 

The generator loss is the combination of images loss and the probability of identifying the generated 

image as fake by discriminator as given in equation (4). While the discriminator loss is the probability that 

the original image and generated image is classified accordingly as given in equation (5). The model 

architecture is shown in Figure 12 with different losses combined. 

 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 =  Image Loss  +   𝛼𝑖,𝑗 ∗  𝐸Î(𝑙𝑜𝑔(𝐷(Î))                                               (4)                                                                                                                   

 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = −1/2[𝐸𝐼(𝑙𝑜𝑔(𝐷(𝐼)))] −  1/2[𝐸Î(𝑙𝑜𝑔 (𝐷(1 − Î))]                               (5)            

 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 + 𝑊𝑑 ∗ 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠                                         (6) 

 

where the Image loss is calculated similar to that given in equation (3), I is the original image and the Î is 

the warped image. The Adam optimizer is also chosen here for optimisation with a decaying learning rate 

of 10-5 due to its adaptive learning rate and momentum. In order to converge, both generator and 

discriminator models should achieve an optimal balance. In initial runs, the model suffered from collapses 

due to faster convergence of either generator or discriminator. To resolve this, several trials were required 

to identify the right balance between the generator and the discriminator. The weighted adversarial term 

(𝛼𝑖,𝑗) and the weightage (𝑊𝑑) between the generator and discriminator loss are hyperparameters that are 

tuned to achieve the best results. The discriminator loss attained saturation much faster than generator 

loss and hence the ratio at which the weights are updated are more frequent in generator than the 

discriminator. 
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Figure 12. GAN architecture with Generator and Discriminator loss 

3.3.3. InfoGAN 

 

X. Chen et al., (2016) suggested that maximising the use of mutual information with simple modifications 

in GAN network resulted in interpretable representations. This is implemented by adding a regularization 

term to the GAN equation as shown in equation (7), 

                                    minG,QmaxD Vo(G,D)=V(G,D) – λL(G,Q)                                                        (7) 

 

Where V(G,D) represents the generator and discriminator loss terms, L(G,Q) is the mutual information 

between the generator output and the latent code. The latent code is the input to the second network 

which estimates the additional parameter. This information along with the generator output acts as extra 

information to calculate the required information. The latent code can be generated in an unsupervised 

manner based on statistical distribution. The added mutual information maximises the learning between 

generator input and output and brings meaningful information within data. 

 

Implementation: 

 

GAN architecture needs additional information to improve its disparity generation mechanism. Similar to 

an infoGAN architecture, the mutual information is to be provided through a third network for increasing 

its performance. This mutual information could be any information like semantics, gradients etc that can 

be generated easily and also serve as a complementary cue for depth generation. The selection of right 

information will depend on using different details and assessing the model performance. For this study, 

the additional information chosen to be included is disparity produced from stereopairs instead of just a 

single image used to produce disparity. GAN shows the capability of reproducing features from the 

original image but lack at the task of disparity generation. The network architecture is similar to GAN with 

a generator, discriminator and a third network for mutual information similar to a generator. The third 

network is based on VGG architecture consisting of downsampling and upsampling layers, which takes 

both left and right image as input. Both images are concatenated which passes through filters of 

decreasing kernel size. Repala & Dubey, (2018) and Pilzer et al., (2018) showed that disparities produced 

by deep learning models with stereopairs are better than that of models with single images. Hence 

disparities using stereopairs from the third network is used to better train the model to produce disparities 

from single images. The loss used is shown in equation (8). The image loss is also used here, as we deal 



 

31 

with two disparity images and we are required to calculate the similarity between the two for improving 

the other. 

 

𝑆𝑡𝑒𝑟𝑒𝑜 𝐼𝑚𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ 𝛼

(1−𝑆𝑆𝐼𝑀(𝑆𝑖,𝑗
𝛽

,𝐷𝑖,𝑗
𝛽

)

2𝑖,𝑗 + (1 − 𝛼)||𝑆𝑖,𝑗
𝛽

− 𝐷𝑖,𝑗
𝛽

||                      (8) 

 

Where α represents the weight between L1 norm and SSIM, S denotes the disparity image produced by 

stereopair and D represents the disparity image produced from single image, β={l,r} for left and right 

images and i,j represents pixel position. The model architecture along with the loss component is shown in 

Figure 13. 

 

 

 

 

 

 

 

 

 

Figure 13. Proposed InfoGAN architecture with third network 

The hyperparameters for this model includes the weightage for the third loss for producing the disparities 

of stereo images and also for the difference between disparities from stereopairs and disparities from 

single images. The learning rate, batch size are similar to the previous networks. The duration for training 

the model is around 38~39 hrs due to increased computation for the third network. Also, the network is 

modified with ResNET50 architecture to assess its performance based on increased complexity. Although 

the number of parameters increased with architecture, the performance of the model remained the same 

and didn’t improve much.  

 

3.3.4. InfoGAN WITH GRADIENTS 

 

Along with the third network, the use of extra information like gradients is also explored. van Dijk & de 

Croon, (2019) discussed about various information neural networks sees while computing depth from 

monocular images. One among that is the edge information for computing depth from single images. In 

order to obtain edge information which are boundaries of objects, gradients from both horizontal and 

vertical direction are calculated using derivatives as shown in equation (9) and (10). Vertical edges are 

calculated from the horizontal gradient and horizontal edges are calculated from vertical gradients by 

taking differences between columns and rows in images respectively.  

 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝐼_𝑥 = (𝐼(𝑥 + 1, 𝑦) − (𝐼(𝑥 − 1, 𝑦))/2                                                         (9) 

 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑒𝑑𝑔𝑒𝑠 𝐼_𝑦 = (𝐼(𝑥, 𝑦 + 1) − (𝐼(𝑥, 𝑦 − 1))/2                                              (10) 
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Where I(x,y) represents the pixel position. The gradients in both x and y direction are calculated for the 

original and the generated left image. This is compared using mean squared loss and SSIM as specified in 

equation (3). 

 

Mean Squared Error = (𝐺𝛽 − 𝐺′𝛽)2                                                (11) 

 

Where 𝐺𝛽 represents gradient calculated from generated left image, 𝐺′𝛽 represents gradient calculated 

from the original left image, 𝛽 = {ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙} edges. Figure 14 shows a training image with its 

horizontal and vertical gradient. Also, the hyperparameters include the weightage of this new gradient loss 

along with the total loss of the model. 

Figure 14. a) Original image b)Vertical gradient c) Horizontal gradient 

3.4. GROUND TRUTH REFERENCE 

 

To estimate the accuracy of the depth from the single image depth estimation models, point clouds 

generated using reliable photogrammetric tools are used. To generate point clouds, multiple UAV images 

of the same scene are captured and processed using dense image matching techniques. The generated 

point clouds are used to produce a smooth DSM and are then used for quantitative assessment with the 

predicted depths from the models. The reference point clouds are produced from two reliable sources 

PIX4D (“Pix4D (version 4.4.12),” 2020) and SURE (“SURE (version 4.1),” 2020).  

 

PIX 4D mapper (4.4.12) : 

 

PIX 4D is proprietary software which uses images captured from various devices to generate point clouds, 

DSM and orthomosaics. The processing includes three steps. The initial step is to determine the camera 

position and orientations for aligning images. The full image resolution is used for initial processing. The 

next step is to generate point clouds for which also the original resolution of images is used. The final step 

is to generate DSM and orthomosaics from the point clouds of optimal density. The outputs are saved as 

*.las format. These are further scaled and extracted into patches similar to the test images used in this 

study for comparison. This software mostly acts as “black box” in specifying about the processing going 

within the models (Niederheiser et al., 2016). 
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Figure 15. Generated DSM - PIX 4D 

 

SURE (4.1) : 

 

Rothermel, Wenzel, Fritsch, & Haala, (2012) used the multi-view stereo method for dense image 

matching. The camera orientations are loaded from PIX 4D. From the oriented images, surface 

reconstruction is carried out. It takes a single image as a base image and compares it with other proximate 

images for potential overlap to form stereo models. For each stereopair epipolar images are generated. It 

uses semi-global matching (SGM)(Hirschmüller, 2005) for matching stereopairs and to calculate disparities 

dynamically. The dense matching algorithm finds corresponding pixels of the same object in stereopairs 

which involves disparity generation by minimizing the global cost function as shown in equation (12).  

 

𝐸(𝐷) = ⅀𝐶(𝑥𝑏 , 𝐷(𝑥𝑏)) + ⅀𝑃1𝑇[||𝐷(𝑥𝑏) − 𝐷(𝑥𝑁)||] = 1] + ⅀𝑃2𝑇[||𝐷(𝑥𝑏) − 𝐷(𝑥𝑁)||] > 1]       (12) 
 

Where the global cost function is calculated from the disparity estimation from base image pixels 𝑥𝑏. E is 

composed of data term 𝐶(𝑥𝑏 , 𝐷(𝑥𝑏)) for calculating pixel-wise dissimilarity measure of a pixel with 

disparity and the two terms for claiming smooth surfaces where 𝑃1 and 𝑃2 are penalty parameters. It is 

used to calculate disparity maps pixel-wise by measuring the similarity of each pixel in one stereo image 

with the other stereo image. The SGM approach is modified to include dynamic disparity search ranges. 

Then depth is estimated within the stereo models redundantly. The redundant information is used to 

increase accuracy and eliminate noises. Finally, the depth information is obtained from single stereo 

models or from disparities merged together from the stereo models with the same base image through 

triangulation. The point density is higher compared to PIX 4D and also the time for generation is reduced 

significantly. 
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Figure 16. Sample Ground truth Test images – SURE 

 

Both models are run in a system configuration of 8Gb memory capacity. The dataset with around 300 

images takes around 14~16 hrs in PIX4D and 4~6 hrs in SURE for DSM generation. DSM generated 

from both PIX 4D and SURE software’s are in the similar range as shown in Figure 15 and 16. Yet the 

DSM from SURE is much sharper and edges are clearly identifiable as compared to DSM from PIX 4D. 

Hence for further comparison of the reference ground truth depth with deep learning models results, 

DSM from SURE is used. For the reference depth, 50 images are selected from the dataset and depths 

generated from SURE are verified manually. The DSM generated are with reference to the WGS84 

coordinate system. This is converted to relative depths to ease the comparison with the results from deep 

learning models. The conversion of the disparity images produced by models to depth are explained in 

Chapter 4. 
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4. RESULTS AND DISCUSSIONS 

The disparities generated from all models (CNN, GAN, InfoGAN) are compared with each other for 

qualitative understanding and also with ground truths for quantitative estimation. CNN model took 25 

hours and GAN model took around 29 hours for training. The improved GAN model, InfoGAN and 

InfoGAN with gradients framework took around 39 hours and 43 hours for training respectively. In order 

to assess the performance of the models, 600 single images are tested to generate disparities which are 

further converted to depths. The testing of 600 single images for CNN model takes 30 seconds for 

generating 600 disparities with 0.05s/image. While for GAN, InfoGAN and InfoGAN with gradients 

models, the testing takes around 35~40 seconds for generating 600 disparities.  All the models are 

implemented and tested in a system with a single Nvidia Titan Xp GPU of 16GB memory. This chapter 

describes the results of each model separately. Then the disparities from both the models are 

intercompared and also they are converted to depth and compared with reference depth from SURE. 

Based on the results from GAN, InfoGAN model is suggested and the results of InfoGAN with disparity 

information and gradient information are discussed in the next section. In the last section, all models are 

intercompared and with reference depths. This chapter is concluded with discussion section.  

4.1. CNN 

 

The trained CNN model is used to generate disparities from single images and some of the generated 

disparities are shown in Figure 17. From the qualitative perspective, it is observed that the generated 

disparity images are smooth with large disparity range variation. The model tries to reproduce the original 

image by warping the disparity and other stereopair. The image loss as given in equation (3) is used in this 

model as backpropagation loss for producing incrementally better images of closer approximation with the 

original image. With every epoch in the training where the model reproduces better left image, the 

disparity map gets better. As the disparity is inversely related to depth, the lower the disparity values, the 

farther the object is to the camera and vice versa. In Figure 17, the disparity results can be interpreted as 

yellow regions (top of the roof) of high disparity are closer to the camera compared to blue regions 

(ground) of low disparity. The smooth transition from yellow to blue regions is also visible. The local 

variations in the ground surface are difficult to differentiate. The small shift in the roof, vegetations are 

shown in disparity maps yet the generated disparities are smoother, with fine edge information over the 

roofs is lost. 
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Figure 17. Generated single image disparities - CNN 

4.2. GAN 

 

The trained GAN model with fixed parameters are used to generate disparities from single images and 

some examples are shown in Figure 18. From the qualitative perspective, it is observed that the generated 

disparity images reproduce fine details like edges similar to original images. From Figure 18, it could be 

seen that the colour variations are slightly shifted towards blue compared to CNN. On further inspection 

of the disparity maps, it is seen that there are very low disparity values (noises and spikes) in some regions. 

This noise can be more clearly seen in depth image shown in Figure 20. This kind of noise is almost 

always seen only in ground regions and not in the roof. This leads one to believe that the GAN model’s 

ability to produce disparities with distinguishable features like roof which has prominent details is much 

better compared to ground regions with no distinguishable features. The model shows the difficulty in 

learning this ground information compared to the features with structures. The GAN model uses both 

generator and discriminator loss as specified in equation (4)-(6) for learning. The combination of the two 

losses, helps the model learn to reproduce the disparity images but the noises in the ground does not seem 

to affect the losses as much as to influence training. The losses keep on reducing throughout the learning 

process and saturates before the noises could be eliminated as other parts of the image like the roof has 

been learnt well.  
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Figure 18. Generated single image disparities - GAN 

 

4.3. INTER-COMPARISON BETWEEN CNN AND GAN MODELS 

 
The generated disparities from the two models are intercompared as shown in Figure 19. From qualitative 

observation, it could be seen that the disparity produced from CNN shows colour variations from yellow 

(high disparity) to blue (low disparity) while GAN disparity images are shifted towards the blue side of the 

spectrum. This difference in the colour variations can be attributed to more noises and spikes in GAN 

model in ground areas. Also, disparity images generated by CNN are smoother with lesser noises 

compared to GAN. While the disparities produced by GAN model shows fine details like roof edges, 

more sharply than CNN. However, the regions with shadows and low vegetations are difficult for both 

models to discriminate.  
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Figure 19. I- Generated single image disparities from CNN and GAN- a) original image -Rwanda, Africa b) CNN 

result c) GAN result 

 

 

Figure 19. II- Generated single image disparities from CNN and GAN- a) original image -Zeche, Germany b) CNN 

result c) GAN result 

 

The disparities produced from the two models are converted to depths using equation (1), where depth is 

related to disparity inversely. The dataset includes images with different focal length and baseline 

parameters and also involves a series of pre-processing steps that may affect these parameters. Hence a 

scale factor is used to convert disparities into depths as give equation (13). 

 

                 𝐷𝑒𝑝𝑡ℎ =
𝑆𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
                                                                                                                             (13) 

 

To find the value of scale factor reference depths from SURE is used. In order to compare SURE depths 

with the depths from SIDE models, relative depths are required. To convert the depth from SURE into 

relative variations for comparison, the least height within each patch is subtracted from the entire patch 

thereby shifting the datum to the lowest point within the field of view. From SURE 20 reference images 

are randomly chosen and compared with corresponding disparity maps to find the scale factor. The 
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optimal scale factor is the one which produces the least value in all of the error metrics. The obtained 

depths from SIDE models are relative depths that can be converted into absolute depths by using ground 

control points. 

To assess the performance of both the models quantitatively, various evaluation metrics are used. The 

produced depths from models along with reference depths are shown in Figure 20. For producing the 

metrics, 50 reference ground truth images taken from SURE are tested with both models. The evaluation 

of the accuracy of the generated depth is done using error metrics adopted by several previous works of 

similar nature. D’(x) represents the depth generated during testing by models and D(x) represents the 

ground truth depth produced from SURE. The error metrics includes Absolute Relative difference (Abs 

Rel) given in equation (14), Squared Relative difference (Sq Rel) given in equation (15), Root Mean Square 

Error (RMSE) given in equation (16), RMSE log (17) and d1-all given in equation (18) as reported from 

(Amirkolaee & Arefi, (2019);Repala & Dubey, (2018);Aleotti, Tosi, Poggi, & Mattoccia, (2019).  

 

                    𝐴𝑏𝑠 𝑅𝑒𝑙 =
1

𝑁
∑

|𝐷(𝑥𝑖)−𝐷′(𝑥𝑖)|

𝐷(𝑥𝑖)
𝑁
𝑖=1                                                                                      (14) 

                       𝑆𝑞. 𝑅𝑒𝑙 =
1

𝑁
∑

|𝐷(𝑥𝑖)−𝐷′(𝑥𝑖)|2

𝐷(𝑥𝑖)
𝑁
𝑖=1                                                                                      (15) 

                     𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐷(𝑥𝑖) − 𝐷′(𝑥𝑖))2𝑁

𝑖=1                                                                             (16) 

                       𝑅𝑀𝑆𝐸 𝑙𝑜𝑔 = √
1

𝑁
∑ (𝑙𝑜𝑔(𝐷(𝑥𝑖)) − 𝑙𝑜𝑔(𝐷′(𝑥𝑖)))2𝑁

𝑖=1                                                     (17)                                            

                      𝐷1 − 𝑎𝑙𝑙 =
1

𝑛
∑ 𝑏𝑎𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 100                                                                                   (18) 

 

Where, bad pixels are those which satisfies the condition, |𝐷(𝑥𝑖) − 𝐷′(𝑥𝑖)| >= 3 𝑎𝑛𝑑 (|𝐷(𝑥𝑖) −

𝐷′(𝑥𝑖)|)/𝐷(𝑥𝑖) >= 0.05. The lower the value of these metrics, the better the quality of generated depth 

maps. The units of depths as well as evaluation metrics are in meters. 

 

Table 2. Metrics on the external accuracy between the depth image from the models (CNN , GAN)and the 

reference depth (in meters) 

 

 

 

 

 

 

 

 

 

In Figure 20-I the relative depths are within a range of 0-5m in the reference data from SURE. The depths 

obtained from the models are of a range of 0-6m with some noises or spikes reaching a value more than 

8m. Based on the comparison of metrics with ground truth as shown in Table 2, it is observed that CNN 

produces depth that is much closer to reference depths than GAN. GAN is found to produce depth 

Method Abs Rel Sq Rel RMSE RMSE log D1-all 

CNN 0.693 1.772 1.852 1.898 19.78 

GAN 0.775 2.131 2.165 2.009 25.80 
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images with noises and spikes near ground regions due to its difficulty in interpreting indistinguishable 

features.  
 

 

Figure 20. I-Produced single image depth (in meters) -a) Original image-Rwanda, Africa b) Reference depth from 

SURE c) CNN depth d) GAN depth 

 

 

 

 

 

 

 

 

 

Figure 20. II-Produced single image depth (in meters) -a) Original image-Zeche, Germany b) Reference depth from 

SURE c) CNN depth d) GAN depth 
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In Figure 20 II, the relative depths are within a range of 0-12m in the reference data from SURE. The 

depths obtained from the models are of a range of 0-14m with some noises or spikes more than 14m. To 

further understand the difference between the generated depths from the model and the reference depth 

from SURE, the relative absolute pixel-wise difference for each image is required.  

The difference between the reference depth and the model depth for CNN and GAN is visualised in 

Figure 21. It is observed from Figure 21 that the difference between reference depth and model depth 

does not exceed more than 2m for both CNN and GAN. The colours here denote the depth difference, 

where yellow denotes underprediction and blue denotes overprediction of depth by the SIDE model in 

comparison with SURE. The difference map for GAN model shows that more ground regions are over 

predicted and assume higher depth values than they are which is consistent with the noise creation in 

GAN that is explained in previous sections. In most of the images, the values stick closer to 0.5-1m for 

both CNN and GAN model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 21. Absolute difference between reference depth and model depth(in meters) -a) Original image-Rwanda, 

Africa b) CNN depth c) GAN depth 

 

From the metrics, it is observed that CNN performs better in depth generation compared to GAN. Even 

though CNN produces better depths from single images GAN produces fine details and has scope for 

further improvement. To improve the performance of GAN the modification as specified in InfoGAN 

section is made to the network architecture and the results are explained below.  

 

4.4. InfoGAN 

 

As explained in chapter 3, InfoGAN uses mutual information as complementary cues for disparity 

generation. This includes information like disparities from stereo images, gradients to guide the network 
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towards disparity generation with single images.  Disparities generated by InfoGAN with additional 

information from stereo images and with gradient information are shown in Figure 22. The disparity from 

InfoGAN shows improvement in the generation of disparity compared to the simple GAN model. The 

extra information provided by stereo images is found to generate significantly better quality disparities and 

also reduce noise. However, adding gradient information along with the extra information from stereo 

images didn’t show any further improvement. The provided gradient information tends to smooth the 

image in areas other than edges thereby further reducing its capability to differentiate ground surfaces.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. I-Model disparity results a) Original image-Rwanda, Africa b)GAN c)InfoGAN d)InfoGAN with 

gradients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 22. II-Model disparity results a) Original image-Zeche, Germany b)GAN c)InfoGAN d)InfoGAN with 

gradients 
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From Figure 22, it could be observed that the disparity generation for both InfoGAN and InfoGAN with 

gradients has improved in comparison to simple GAN model. The colour variations appear almost similar 

to the disparity generated from CNN. The noises generated in GAN near the ground surface has also 

reduced which can be seen in Figure 23. The improvement from GAN is quantified using the same 

metrics given in equation (14-18). The disparities are converted to depths for comparison with the ground 

truth reference from SURE.  

 

4.5. INTER-COMPARISON BETWEEN ALL MODELS 

  

The evaluation metrics are shown in Table 3. From Table 3 it can be seen that CNN produces better 

results on all metrics. GAN results show significant divergence in metrics compared to CNN. However, 

InfoGAN shows better performance than GAN in all metrics and also shows better performance than 

CNN in Absolute Relative difference and Squared Relative difference. This means that InfoGAN not only 

shows improved performance than GAN but also gives results that are comparable with CNN. This 

validates the approach of adding mutual information to GAN architecture to improve the performance of 

the model in single image depth estimation tasks. However, including gradient information, the results 

from InfoGAN did not show much improvement. This shows that while the framework of InfoGAN i.e 

using mutual information through a third network to increase the network performance can indeed work 

desirably, finding the right complementary cue is critical for improving the model performance. This study 

used disparity from stereopairs and gradients as mutual information, while disparity from stereopairs 

showed an improvement, gradients didn’t show much improvement in model performance. Different 

mutual information through multiple networks can be added for improving the performance of InfoGAN 

will be scope for future studies. The depths along with the reference data are shown in Figure 23. 

 

Table 3. Metrics on the external accuracy between the depth image from the models (InfoGAN) and the 

reference depth (in meters) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Abs Rel Sq Rel RMSE RMSE log D1-all 

CNN 0.693 1.772 1.852 1.898 19.78 

GAN 0.775 2.131 2.165 2.009 25.80 

InfoGAN 0.666 1.60 1.87 1.91 20.43 

With_Gradients 0.73 1.97 2.05 2.02 24.3 
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Figure 23. Produced single image depth -a) Original image b) Reference depth from SURE c)GAN depth d) 

InfoGAN depth e)InfoGAN with gradients depth 

 

Also, to find further relationship between different model results and reference depth, their average mean 

and standard deviation are calculated. 

 

Table 4. Metrics on the external accuracy between the depth image for all models and the reference depth (in 

meters) 

 

 

 

 

 

 

 

 

 

 

 

The values of mean and standard deviation for all models and the corresponding reference depth are 

shown in Table 4. The mean and standard deviation of CNN and InfoGAN are more closer to SURE 

than other models.  

 

 

 

 

 

 

 

 

 

Model Average Mean 
Standard 

Deviation 

SURE  2.98 0.72 

CNN 2.74 0.84 

GAN 3.21 1.22 

InfoGAN 2.70 0.87 

InfoGAN with gradients 3.01 1.09 
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Figure 24. Absolute difference between reference depth and model depth(in meters) -a) Original image-Rwanda, 

Africa b) CNN depth c) GAN depth d) InfoGAN depth e) InfoGAN with gradients 

 

 
From Figure 24, the absolute difference between various models and the reference depth from SURE can 

be seen. It could be observed that the overprediction by GAN model in ground regions, has shown a 

significant reduction in InfoGAN model. This also shows that the use of mutual information in the form 

of disparity from stereo images has proven to improve the single image depth estimation model. 

4.6. DISCUSSIONS 

 

All the models discussed in this study are tuned for learning rates, number of epochs and weightages of 

different loss terms to produce these results. Both CNN and GAN models are able to produce realistic 

disparities from single UAV images. Whereas the disparity produced by CNN are smoothed out, GAN 

produces disparity maps that reproduces fine edges. It can be clearly seen that the GAN model is better at 

reproducing sharp edges and distinguishable features than CNN. However, there are a significant amount 

of noises in the GAN model at regions where there are a lack of distinguishable features, especially at 

ground level. The GAN model with a composition of generator and discriminator structure uses image 

loss and discriminator loss. The difference in performance between GAN and CNN may be attributed 

due to the discriminator network in GAN model which focusses on finding the probability of the 

generated image being the original image. While this architecture has a beneficial impact in reproducing 

sharp edges as in the original image, it could not reduce the noises at the ground level. The loss terms 

reach stability (for different weights) before the noises in the ground surface are removed as distinct 

features like roofs occupy a significant portion of the patch. In contrast, the simple architecture of CNN 

with just image loss seems to be better in producing single image disparities.  

The framework of InfoGAN which is to provide mutual information (depth complementary cues) 

through a third network to better the model performance shows promising results. The use of disparity 

derived from stereo images as mutual information significantly improved results from that of GAN. Based 

on the evaluation metrics it can be seen that the results are comparable to that of CNN. An attempt to 

further improve the performance of InfoGAN by providing gradients as mutual information did not yield 

the desired improvement and rather degraded the performance. This may be due to the nature of gradient 

information which is to smooth out regions surrounding the edges. This means that while the framework 
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of InfoGAN can indeed improve the performance of single image depth estimation, finding the 

appropriate mutual information to act as the complementary cue is critical.  

The depth produced from all SIDE models is compared with depth produced from SURE. An absolute 

relative difference of 0.6 to 0.9m and RMSE of 1.8 to 2m is achieved. Extracting depth from a single UAV 

image is challenging due to the limited information available. The problem can be compounded due to the 

errors introduced in various stages of pre and post-processing. Various complementary depth cues can be 

used as mutual information through additional networks within the framework of InfoGAN to increase 

the model performance even further. 

The use of scale factor instead of baseline and focal length may not be the optimal solution for the 

conversion of disparity to depth. However, due to the inaccessibility of georeferenced images (due to the 

prevailing Covid-19 pandemic) methods other than the iterative scaling used here cannot be tested for 

conversion to depth. This can be taken up once the access is gained to these images so an optimal solution 

for the conversion from disparity to depth can be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. CONCLUSIONS 

 

The primary objective of this study is to find a deep learning model that can estimate depth from single 

UAV images in a self-supervised manner. A dataset with UAV images covering different regions is 

prepared for training the deep learning models. The dataset preparation involves undistortion and 

rectification of the images to form stereopairs. From the dataset, 22000 stereo patches are extracted for 

training. Two deep learning models, CNN and GAN are trained with the UAV dataset. Both models have 

different architecture yet work on a similar training mechanism. It involves generating disparity from one 

image of the stereopair then warping the disparity with the other stereopair to reconstruct the original 

image and then backpropagating the losses between the original and reconstructed image. Both the models 

converge and can produce disparity maps from single images. The disparities are converted to depth using 

the inverse relationship and a scale factor. On comparison, GAN can reproduce distinguishable feature 

but it could not learn to reduce noise at ground level. So, to improve the GAN model, an InfoGAN 

framework is adapted where additional information in the form of depth through a third network is added 

to the architecture. This study uses disparity from stereo images and gradient information as mutual 

information. To assess the performance quantitatively, reference DSMs are generated from SURE for 

comparison with the models. It is seen that CNN and InfoGAN perform better than other models based 

on the evaluation metrics. Within the InfoGAN framework, the use of disparity from stereo images as 

mutual information increased the model performance, the use of gradient information, in addition, did not 

increase the performance any further. Hence finding the right depth cue is important for such task and 

could be critical in deciding the performance of the network. The following key conclusions are arrived 

from this study. 

• CNN model is better than GAN in terms of producing disparities with a simple architecture.  

• While GAN model shows promise in regions with distinguishable features within the scene it 

produces a significant amount of noises in other regions. 

• The framework of InfoGAN has not only improved the performance from GAN but also has the 

potential for further improvement through the use of additional network and different depth 

cues.  

 

This leads us to believe that CNN with a simpler structure is well capable of SIDE and InfoGAN 

framework with right mutual information is having a lot of capacity for improving the performance of 

single UAV image depth estimation task.  

The results demonstrate the effectiveness of the proposed SIDE model with UAV images. The model can 

be used in places where we need the depth information with the limited images captured beforehand and 

also with images that do not have camera calibration parameters. With the accuracy achieved in this study, 

the proposed SIDE models can be used in areas where a rough estimate of the terrain is needed prior to 

the actual planning of the main survey. In situations where homologous features between images could 

not be matched, the SIDE models could be an alternate solution. With SIDE it becomes possible to 

estimate depth on the fly opening up applications in visual odometry, SLAM etc. The SIDE models 

(static) can also be used as a base for video-based depth estimation. This is one of the first studies to do 

self-supervised SIDE of UAV images and with the proposed InfoGAN framework there is a significant 
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potential for increasing the accuracy of SIDE. SIDE models with better accuracy can be used in building 

DSM, 3D reconstruction, object detection and other scene understanding tasks. 

 

5.2. RECOMMENDATIONS 

 

The main recommendations from this research will be: 

• Different depth cues can be tried out to find the right mutual information for improving the 

performance of SIDE within the framework of InfoGAN. This can improve model performance 

and increase the accuracy of the proposed models. 

• Depth information is also being used in applications like semantic labelling and object detection. 

Depth extracted from SIDE models can be used for these applications and their effectiveness in 

comparison to other methods of depth extraction for the same applications can be compared. 

• One of the limitations of deep learning techniques is its transferability over different geographical 

regions. The model that learnt using images from certain regions may not be able to perform well 

on images from totally different regions. Transfer learning which is a process of using the 

knowledge learnt in one problem to solve the similar related problem is a possible way of 

overcoming this issue. The ability of the proposed SIDE models under transfer learning with 

different datasets should be tested. 

• Ways of replacing the scale factor with analytical solutions involving baseline and focal length can 

be looked into. With access to georeferenced images different methods, the use of scale factor or 

the use of baseline and focal length, to convert disparity to depth can be compared to the find the 

optimal solution.  
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