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It was a piece of cake. Almost.1

1For those reading whom are not so much into mathematics: x is an approximation of 1
π . y

describes Euler’s number (e). Thus, process = 1
8∗ ∼ πe ie. a part of something approximately pie.
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Chapter 1

Introduction

Approximate computing is shown to be a promising strategy for developing a solution
to combat the increasing energy consumption of computer chips. With this strategy
an improvement on area and power performance is traded off against computational
accuracy [1]. It has been demonstrated that a variety of algorithms and applica-
tions exists that can tolerate a non-accurate result. Examples of such applications
include machine learning, data mining and image processing [1], [2]. Approximate
computing exploits this tolerance to balance maximum power and area savings with
minimal loss of accuracy [1]–[4].

For algorithms like addition [5], [6], multiplication [7], [8], multiply accumulate
(MAC) [9] and square accumulate (SAC) [10] examples exist that show the feasibility
of the application of approximation strategies. All of these design proposals use
a variety of approximation techniques to find the optimal balance between saving
power while introducing errors.

Error correction mechanisms are sometimes applied in order to reduce the error
introduced by the original approximation. The downside of these mechanisms is
that they tend to increase the area of the approximated design, and consume more
power. A solution to add error correction without increasing the area was proposed
in [10] for a SAC operation. This solution of self healing proposes the use of two
parallel SAC units with inverse mean error. By summing the results of these parallel
units, the error of the result of the complete operations is reduced.

1.1 Problem statement

In research, the approximate multiply accumulators are always equipped with some
form of error correction. This correction is performed by either single multiplier de-
signs with static error correction [9], or parallel designs that utilize self healing [11].
When self healing is applied to MAC, only absolute mirror multiplier designs ex-
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2 CHAPTER 1. INTRODUCTION

ist. These absolute mirror designs include two parallel multipliers, which are each
other’s perfect opposite. For every inputs a and b, if one multiplier gives an error of
+x, the other will give an error of −x. This is a nice property that assures that the
error behaviour of both multipliers is similar. These absolute mirror multipliers are
generally designed together. Designing an absolute mirror for any random approx-
imate multiplier found in literature is not always straightforward. Moreover, some-
times these absolute mirror designs have even worse area or power characteristics.

A possible improvement can be made by combining two multipliers into a self-
healing MAC design which are not each other’s perfect mirror, but have some similar
error properties. By exploiting some statistical and self healing properties of the
iterative MAC algorithm, and with a large enough number of inputs, a design might
be possible that is not absolute in mirroring each other’s multiplicative behaviour.
The idea is that those multipliers mirror each other’s mean error and possibly other
error characteristics. Therefore, when the number of inputs is large enough, the self
healing MAC could still perform better than the absolute mirror designs. This type of
multiplier pairs is referred to as mean error mirror multipliers. The central question
this thesis attempts to answer will be, when considering parallel MAC structures,
whether a self healing design utilizing the mean error mirror principle can perform
better than similar designs using the existing strategies as mentioned before.

In this research, some absolute mirror multiplier MAC designs will be compared
to a proposal for a mean error mirror MAC design. In this mean error MAC both
multipliers have an equal but opposite mean error, but the two multipliers do not
mirror each other’s multiplicative behaviour exactly.

1.2 Contributions

This thesis contributes a proof of concept of a new self healing MAC design method
that is an addition to the pareto optimal curve of existing self healing MAC designs.
The applied method is the mean error mirror method for two multipliers. The main
aim is a design which has a significantly smaller area, and a good area/error tradeoff
compared to other design methodologies, given that the number of inputs is large
enough.



1.3. OVERVIEW OF DOCUMENT 3

1.3 Overview of document

This document first goes into the background of the field of research in chapter
2. In chapter 3, various options for multipliers suitable for approximate MAC are
designed, simulated and implemented. These multipliers are then utilized in approx-
imate MAC designs in chapter 4, where the results of four MAC design strategies
are implemented and analyzed. This chapter also includes a proof of concept of
the proposed mean error mirror design strategy. Finally, conclusions are drawn from
these results in chapter 5.
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Chapter 2

Background

In the research field of digital integrated circuit (IC) design, an increasingly relevant
challenge is the reduction of energy consumption by logic circuits. Multiple strate-
gies have been developed over time in order to meet this challenge. A promising
and recently reappearing strategy is approximate computing. A simple idea where a
reduction of energy consumption is traded off against a loss of computational accu-
racy in the algorithm that solves a particular problem. This approximate computing
challenge entails two major subjects.

The first focuses on the applicability of approximate computing to certain algo-
rithms. Not every algorithm is equally susceptible to the application of a form of an
approximate approach. However, many applications are at least partially approx-
imable without major impact on the final result of the performed task. Applicable
fields are for example image processing, neural networking and data processing
where the input data is subject to significant input noise. Identifying these par-
tial structures of an algorithm has been subject of research in the past. A recent
overview of several of these techniques is given in [2], but it is not further elaborated
on in this thesis.

The second subject focuses on the methods to achieve such approximations.
Approximate techniques exist at both software and hardware level. Since this re-
search focusses on approximate MAC designs, the hardware level techniques are
evaluated in greater detail in this thesis.

2.1 Terminology

Certain words and phrases will reappear in various places throughout this thesis.
Some of these words can have an ambiguous meaning when left unexplained.
Therefore, a few key terms are explained here, so that they can be clearly under-
stood in the further reading of this document. The definitions are based on [11].

5



6 CHAPTER 2. BACKGROUND

2.1.1 Quality

The term quality is referring to the error behaviour of a design. If a certain design
A is of higher quality than a competing design B, this means that design A has a
smaller error than design B for the specified error metric. Design A having a better
error behaviour than design B has the same meaning as design A being of higher
quality.

Accuracy and precision

When discussing the quality of a design, the two terms accuracy and precision are
two ways to reason about error. Accuracy is the closeness of the measured values
to a specific, predefined value. When reasoning on approximated circuit designs,
the preferred value of error is generally zero. Therefore, an accurate design is a
design that, on average, has an error near or around zero.

Precision means the closeness of the measurements to eachother. A precise
design has all error values somewhat equal, where for a less precise design, the
individual error values are more spread out.

2.1.2 Performance

All designs considered are evaluated for their quality(error) and cost(area). With
all these designs, a tradeoff between quality and cost is presented. The tradeoff
between these two metrics is also referred to as the performance of these designs.
Therefore, when a certain design A performs better than a design B, design A yields
a better tradefoff between the quality and cost factors.

2.2 Quality analysis

In any approximate circuit the output is subject to the error introduced in the design.
The quality analysis that is performed to quantify this error behaviour utilizes the
following basic settings.

2.2.1 Input distribution

The error behaviour of a circuit is strongly influenced by the distribution of the input
data supplied to that circuit. Unless otherwise specified, in this thesis the range of
the input values is defined by eight bits and the inputs are unsigned. The range of
input values in base 10 is therefore any integer between 0 and 255. Throughout this
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thesis, two probability distributions of the input values are considered. These are
the uniform distribution and a normal or Gaussian distribution.

If the input distribution is uniform, every input value is equally likely. For a nor-
mal distribution the values around the mean value (µ) are more likely, whereas the
more extreme values are much rarer. Whenever a normal distribution of inputs is
mentioned, the following properties apply. The mean value (µ) = 127.5 and and the
standard deviation (σ) = 42.5. This distribution covers µ +/- 3 ∗ σ, meaning that the
entire range of values from 0 to 255 is covered. The distribution is also truncated
at these values, as usually the normal distribution would continue indefinitely. The
probability graphs corresponding to these distributions are given in Figure 2.1.
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Figure 2.1: Input value probability for: (a) uniform input distribution (b) normal input
distribution (µ = 127.5, σ = 42.5)
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2.2.2 Hardware function differences

Multipliers and multiply-accumulators are the two types of hardware functions that
are subject to quality analysis in this thesis. Both are analyzed in a different manner.

Multipliers

The number of possible outcomes of an 8-bit multiplier is relatively small. Therefore,
the entire solution space of an approximate multiplier can be analyzed completely in
a result matrix and the deviation with respect to the correct solution can be presented
in an error matrix. An example of the correct result matrix, an arbitrary approximate
matrix and the corresponding error matrix is given in Table 2.1. The value of each
cell is the result of the multiplication of its coordinates. Related to the error ma-
trix, an error probability matrix can be calculated. To calculate the error probability
matrix, the error matrix is multiplied elementwise with an input-probability matrix for
either (uniform or normal) input distribution. Within that input-probability matrix the
value in every cell equals the product of the probabilities of both of the inputs that
form the cell’s coordinates. With this method two error-probability matrices for each
approximate multiplier are calculated. One for the case where the inputs are dis-
tributed normally, and one for uniformly distributed input. From the error and the
error-probability matrices a variety of error metrics for this multiplier can be derived.

Multiply-accumulators

The multiply-accumulate operation is an iterative operation, as it sums all the results
of individual multiplications together. This makes it difficult to generate a result and
error matrix, as the result depends on the number of input pairs of which the prod-
uct should be accumulated (shortly ’inputs’), instead of just the value of the inputs.
Therefore, the multiply accumulators are analyzed by averaging a large number of
accumulation results for specific input sizes.

2.3 Error metrics

The main concept of approximate computing is to reduce the power consumption
and area requirements of a design. This reduction is traded off with a loss of accu-
racy in the result of the function that is performed by the design.

For a reduction in power consumption and area required for a design, some
error can be tolerated in the approximate designs. When a larger power reduction
is required, the error that has to be allowed is likely greater in return. Plotting the
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a
b

0 1 2 . . . 255

0 0 0 0 . . . 0
1 0 1 2 . . . 255
2 0 2 4 . . . 510
...

...
...

... . . . ...
255 0 255 510 . . . 65025

(a)

a
b

0 1 2 . . . 255

0 0 0 0 . . . 0
1 0 1 2 . . . 250
2 0 2 4 . . . 500
...

...
...

... . . . ...
255 0 250 500 . . . 62500

(b)

a
b

0 1 2 . . . 255

0 0 0 0 . . . 0
1 0 0 0 . . . -5
2 0 0 0 . . . -10
...

...
...

... . . . ...
255 0 -5 -10 . . . -2525

(c)

Table 2.1: Result matrices of (a) an accurate 8-bit multiplier, (b) some arbitrary ap-
proximate multiplier and (c) the corresponding error matrix ((b) - (a))

area gains against certain error metrics of a design, gives a good insight in the
quality-cost tradeoff of a proposed design.

In determining the quality of a design, several metrics are used for analyzing
error behaviour in approximate designs [11].

2.3.1 Error rate

Error rate, also referred to as error frequency, is the fraction of the incorrect out-
comes over the total number of outcomes.

2.3.2 Error magnitude

Error magnitude refers to the numerical deviation of an approximation from the ac-
curate result. This metric can be defined by various different values, which show
statistical properties of the quality of a design. For each metric mentioned, the for-
mulas for calculating them are given in de equations below.

First of all the mean error (ME) is an indication of the accuracy an individual
operation. It is computed by summing all individual errors and dividing by the number
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of values that were summed.
Also, methods for indicating the precision of the error are used. The values

resulting from these methods are an indication of the difference between individual
errors and the mean error of all errors. Examples of such methods are the root mean
square (RMS) of the error and the mean error distance (MED) [12]. Also the mean
square error (MSE) [11] is used in literature to indicate the precision of a design.

yi = approximated result of the operation i
xi = accurate result of the operation i
n = number of operations

ME =

∑i=1
n yi − xi
n

MED =

∑i=1
n abs(yi − xi)

n

MSE =

∑i=1
n (yi − xi)2

n

RMS =

√∑i=1
n (yi − xi)2

n

2.4 Approximate Computing Strategies on the Hard-
ware Level

Various means to achieve the desired approximation are available, but the methods
that will be discussed here are only concerned with approximations on the hardware
level. While approximation strategies on the software or architecture level also exist,
they are outside the scope of this research.

The strategies on the hardware level entail both approximations on the gate level
and on the transistor level. On the gate level, the approximation of computation of
occurs by removing gates from an accurate design in order to increase efficiency.
On the transistor level the removal of transistors has a similar effect, but scaling the
input voltage supplied to the circuit is also an option.

2.4.1 Voltage over-scaling

Voltage over-scaling entails lowering the voltage over the circuitry in order to put
transistors out of order or in a slower operating mode. [13]

The idea behind this technique is to lower the voltage over a circuit to a value
below a certain threshold which inherently decreases the power consumption of the
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circuit. The negative side effect is that the behaviour of the individual transistors
is influenced. With a lower than required voltage supplied, one of two things can
happen. Firstly, the voltage over the circuit is too low compared to the threshold volt-
age of the transistor. Therefore, there will never be a current flow from the source
to the drain, turning the transistor off. The second possible consequence is that a
selected set of transistors is put in a slower operating mode. When these transistors
are responding slower, they might become too slow and produce a result after the
value is already read from the circuit. When individual gates are no longer opera-
tional, the switching activity of the transistors is reduced and therefore the design
dissipates less power. However, timing errors are introduced because certain gates
are operating too slow or not all, which makes errors imminent.

2.4.2 Approximate Adders

Gupta et al. [5] propose a method for designing an approximate full adder (FA) on
the transistor level for digital signal processing (DSP) applications. By carefully re-
moving transistors from an accurate mirror adder, three approximate adder designs
are given. These approximations lead to a significant reduction of both the area
requirement and the power consumption.

Another approach with transistor based adders is shown in [6]. In this case the
accurate adder design is an accurate XOR based or XNOR based adder. The three
approximated variants proposed show strong power reduction.

2.4.3 Approximate Multipliers

Various approximating techniques are applied to construct approximate multiplier
designs. Examples of these techniques are truncation and the approximated addi-
tion tree.

A truncated design performs approximation by reducing the number of bits that is
used in calculating the result. This can be applied to both the inputs and the partial
product matrix (PPM) of a multiplier. An example of both of these truncation options
is shown in Figure 2.2.

[8] applies the method of truncation, combined with some error correction fea-
tures, in order to design multipliers with a low mean error. Due to the low mean
error and low mean square error, these multipliers are shown to be feasible for use
in MAC designs.

In [14] an approximate multiplier design is proposed that reduces the area of the
multiplier by replacing a selected subset of the half adders in the addition tree with
logic OR gates. This results in a signifcant reduction of area requirement for an 8-bit
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∗

Final product

(a)

∗

Final product

(b)

∗

Final product

(c)

Figure 2.2: Truncation on an 8-bit multiplier: (a) A normal partial product matrix (b)
Truncated PPM with all partial products in the five least significant bits
removed (c) The least significant input bit removed.

multiplier.

The [15] paper presents a new technique to design signed and unsigned trun-
cated multipliers. Simple formulas are developed in the paper to describe the trun-
cated multiplier with minimum mean square error.

Another multiplier with approximation introduced in the addition tree is proposed
by [16]. They employ a new approximate adder that limits its carry propagation to
the nearest neighbours. The error recovery strategy that is added to the multiplier
can be configured, so different levels of accuracy can be achieved.

Finally, [7] proposes constructing large multipliers with smaller ones. This means
that an n-bit multiplier is constructed using four n/2 multipliers. These smaller mul-
tipliers are then approximated. In this paper they present 4-bit, 8-bit and 16-bit
multipliers that are constructed using 2-bit multipliers, where they introduce approx-
imation in a subset of these smaller 2-bit multipliers.

2.4.4 Approximate Multiply Accumulators

As mentioned in the previous section, [8] proposes a number of multiplier designs for
application in a multiply accumulate (MAC) structure. These multipliers are suitable
for MAC application due to their low mean error and low mean square error.

A full example of an approximate MAC is proposed in [9]. In this paper a MAC
is constructed with an approximate multiplier, using a combination of the multiplier
of [14] and introducing some truncation to this multiplier. Static error compensation,
as explained in the next section, is applied to reduce the magnitude of the error.
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2.5 Error correction

Extra circuitry can be added to an approximate design to improve on the error in-
troduced by the approximating components, while keeping in mind that the goal is
still to use less area than the accurate designs. Two methods for compensating
for errors found in literature are evaluated, static error correction (SEC) [9] and self
healing (SH) [11].

2.5.1 Static error correction

Static error correction is a method for compensating for the error of an approximated
design, by adding the mean error of that design to the result of every approximated
result. This approach is depicted in Figure 2.3. The figure shows the multiplier M1
with input values a and b. The result of this multiplication yields some error εa∗b. The
mean error of this multiplier, εmean M1, is then added to the multiplication result. The
average error εaverage of the complete design should therefore be approximately zero.

This approach to error compensation is also applicable in multiply accumulate
architectures. For example, consider a MAC that deploys the same multiplier M1 as
in figure 2.3. The static error correction value (SECV) in the resulting MAC will be
equal to εmeanM1 ∗ l, with l the number of values to be accumulated. Over a large
number of inputs, the mean error of the MAC with error compensation should thus
approach zero. The method of static error addition for MAC is applied in [9]. The
downside to static error compensation is the requirement for additional hardware to
implement the compensating circuitry.

a

b
M1

εa∗b
+

εmean M1

εaverage

Figure 2.3: Multiply structure with static error correction

2.5.2 Self healing

When a design is based on an iterative algorithm and the operation is paralleliz-
able, the self healing approach to error correction is an option. An implementation
of this error correction technique can be found in [10], applied to a square accumu-
late architecture. In this paper, the self healing square accumulate structure that
is proposed has a better quality output than conventional approximate computing
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methodology. This technique is also applicable in MAC architectures by using two
approximate multipliers. These two multipliers M1 and M2 have an inverse mean
error ε. The accumulation stage acts as the self healing step, where the results from
M1 and M2 are added together and their individual error should cancel out.

Figure 2.4 shows this approach. The multipliers M1 and M2 in this figure have
an equal, but opposite error ε. The individual results are added together, before the
values are accumulated. The resulting error εmac of MAC circuit should therefore
approach zero.

multiply

a

b
M1

c

d
M2

self healing

+

−ε

+ε

accumulate

Σ εmac ≈ 0

Figure 2.4: Self healing MAC structure with multipliers M1 and M2, having inverse
error ε



Chapter 3

Approximate multipliers for self
healing MAC

In order to apply the self healing strategy to a MAC structure as in figure 2.4, we
need to find a pair of compatible multipliers M1 and M2. Compatibility in this sense
means the error behaviour of the multipliers is equal but opposite, meaning that at
least the mean error εM1 = −εM2. The method for building self healing structures in
hardware is conventionally with absolute mirror pairs, as utilized by [10]. An absolute
mirror pair of multipliers in an approximate MAC is achieved when M1 and M2 are
perfect opposites. This means that for every pair of inputs a, b, the result of a ∗ b with
multiplier M1 will generate a result with an error magnitude of −ε. The result of the
same multiplication using multiplier M2 will give a result with error +ε. The error is
thus not only equal but opposite on average, but for every case.

3.1 Absolute mirror multipliers

In literature [11], examples exist for an absolute mirror pair using a recursive multi-
plier as shown in figure 3.1. In this multiplier, an 8-bit multiplier is constructed using
2-bit multiplier components. These 2-bit components are approximated. In figure
3.2, the 2-bit multipliers that are proposed are shown, with their corresponding re-
sults in table 3.1.

Both approximate 2-bit multipliers have exaclty one error case, when both inputs
are 3 (or 11 in binary). In case of M1 in figure 3.2b, the error magnitude is −2 and
the error of M2 in figure 3.2c is +2. Besides this perfect opposite error behaviour,
both designs are also smaller in area compared to an accurrate 2-bit multiplier, as
shown in table 3.2. Therefore, they are good candidate designs for application in
absolute mirror multipliers.

The next task is finding the best designs of these 8-bit multipliers, which have the

15
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Figure 3.2: Logic diagrams of 2bit multipliers: (a) Accurate 2bit multiplier, (b) Ap-
proximate multiplier APXM1 where 3x3 maps to 7 and (c) APXM2, the
absolute mirror of APXM1, where 3x3 maps to 11

a
b

0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 7

(a)

a
b

0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 11

(b)

Table 3.1: Result tables for approximate multipliers: (a) APXM1 where 3x3=7 (b)
APXM2 with 3x3=11

best tradeoff between area reduced and mean error introduced. The goal is to find
two 8-bit multipliers, where one is approximated using the 2-bit multiplier from figure
3.2b and the other uses the 2-bit multiplier from figure 3.2c. With this method, the
pairs of absolute mirror multipliers are derived.

In order to find the designs with the best area to mean error tradeoff for the larger
8-bit recursive multipliers of figure 3.1, this thesis performs an exhaustive search on
the design space of the unsigned recursive 8-bit multipliers.

The error behaviour of these 8-bit multipliers is simulated by calculating the sum
of the error of each individual 2-bit multiplier as shown in equation 3.1.

Design Area (µm2)
Accurate 9.64
APXM1 7.06
APXM2 8.46

Table 3.2: Area comparison for approximate 2-bit multipliers
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ε2−bit = magnitude of the error of an individual 2-bit multiplier. If the
multiplier is accurate, ε2−bit=0, otherwise, ε2−bit = +/-2

M2−bit = magnitude of this 2-bit multiplier
P = probability that the error case occurs

Error2−bit = ε2−bit ∗M2−bit ∗ P (3.1)

Error8−bit =
i=0∑
15

Error2−biti (3.2)

For each 2-bit multiplier the error case occurs when both inputs are 310. The
magnitude is determined by the column in the 8-bit multiplier where the approxi-
mated design is inserted, as the expected error will be larger if bits with a higher
significance are approximated.

The probability of each input occurring is determined by the distribution of the
inputs for the multiplier. The designs with the best tradeoff are determined for both
a uniform and a normal distribution of input values.

For the area characteristic, the difference in area between an accurate and an
approximate 2-bit multiplier is subtracted from the total area of an accurate design,
for each instance of an approximate multiplier appearing in the design. The area of
each of the 2-bit multiplier designs is given in table 3.2. The area of the addition tree
of the multiplier is ignored for this comparison, since it is not affected by a change in
the type of 2-bit multiplier.

These error and area characteristics are determined for each combination of
accurate and approximate 2-bit multipliers in the overall 8-bit design. For example,
lets examine the case where only the top right 2-bit multiplier in the overall 8bit
design is approximated with the multiplier from figure 3.2b, and the distribution of
input values is uniform. The maximum error ε = −2, the probability of this error case
occuring P = 1

16
and the magnitude M = 1, giving an expected error Error2−bit of

this 2-bit multiplier of Error2−bit = 1
8
. Since the rest of the 2-bit multipliers in this

example are accurate, the Error8−bit(y) of the overall multiplier is also 1
8
. The area

x of this multiplier is equal to x = areaaccurate − 1 ∗ areadifference = 16 ∗ 9.64 − 1 ∗
(9.64 − 7.06) = 151.66. These points x and y are plotted in the graph in figure 3.3
(green dot), together with the value pairs of the complete design space exploration
for this method. Each of the points represents the area and mean error of a design
with a certain subset of the sixteen 2-bit multipliers approximated. From this graph,
sixteen designs are shown to have a best tradeoff between area and error for this
approximation strategy.

Sixteen designs appear, because for every design that is analyzed, anywhere be-
tween one and sixteen of the 2-bit multipliers are approximated. The upper leftmost
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dot on the red line indicates the only, and therefore automatically the best, design
that has all sixteen smaller multipliers approximated. Therefore, the area is the low-
est, but the error introduced is the largest of all designs. The rightmost column of
blue marks indicate all designs where just one 2-bit multiplier is approximated. All
of the designs in this column have an equal area. Their respective mean error is
different however, because the error depends on the magnitude of the multiplier that
was approximated. The single design with the lowest mean error in this column is of
course the design with the best tradeoff in this column.

One feature that stands out in figure 3.4 is the appearance of two point clouds
in both graphs. This clear distinction between the upper and lower point clouds
is caused by the approximation of the most significant 2-bit multiplier. Using the
formula from equation 3.1 and knowing that the magnitude for the most significant
2-bit multiplier equals 4096, the contribution to the error by the most significant 2-bit
multiplier is 512 (ε2−bit = 2, P = 1

16
).
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Figure 3.3: Design space overview of approximate 8bit recursive multiplier: (a) Us-
ing design APXM1 from 3.2b. (b) Using design APXM2 from 3.2c.
Pareto optimal designs are indicated with the red line. The green dot
is the example calculation from the text.

The same exploration is performed with the use of multiplier APXM2. This again
leads to sixteen multipliers with a best area versus mean error tradeoff. The sixteen
best designs from both APXM1 and APXM2 analysis are shown in figure 3.4. Each
combination of a red and a blue dot in this graph that have equal absolute mean
error, can be combined in an absolute mirror self healing MAC. This leads to a total
of sixteen MAC designs from this design strategy.
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Figure 3.4: Pareto optimal designs for 8bit recursive multipliers with uniform input
distribution

3.2 Mean error mirror multipliers

The previous process described a method of determining best designs for a given
approximation strategy. This resulted in the selection of multipliers for use in an ab-
solute mirror MAC. However, various multiplier designs have already been proposed
that have a better area error tradeoff than the recursive 8-bit designs [14]. The down-
side to these multiplier designs is that it is not straightforward to design an absolute
mirror for these multipliers. If they can even be constructed, their area can be much
larger, sometimes even larger than the area of an accurate multiplier. One such mul-
tiplier is the proposed design from [14], of which the design is depicted in figure 3.5.
In this multiplier the additions of certain pairs of partial products are approximated
by utilizing OR gates instead of accurate half adders, so it will be referred to as the
OR gate multiplier.

The comparison of the mean error and area characteristics of this multiplier to
the earlier derived features of the recursive multipliers is shown in figure 3.6. The
absolute mirror of the OR gate multiplier, which is designed as part of this thesis,
is depicted too. This time, the area of addition tree for the recursive multipliers is
included. It is clear that the OR gate multiplier (green dot) performs better than the
recursive multipliers, but its absolute mirror (black dot) does not.

Developing an absolute mirror multiplier for this OR gate multiplier design is pos-
sible, but not directly straightforward. The approximation in this design is introduced
in the addition tree, by approximating the half adder with logic OR gates. Compared
to an accurate half adder which consists of an XOR gate and an AND gate this ap-
proach using an OR gate for the approximation is clearly saving area. As for the
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Figure 3.5: From an accurate multiplier (top) to an approximate multiplier (bottom)
using logic OR-gates instead of half-adders in the blocked spaces
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Figure 3.6: Pareto optimal designs for 8-bit recursive multipliers(blue and red), com-
pared with the OR gate multiplier (green) and the absolute mirror of the
OR gate multiplier (black)

error behaviour, the truth tables for both designs are shown in table 3.3. From this
table it is clear that there exists one error case being when both inputs are 1. In this
case the OR gate approximation makes and error of magnitude −1. The gate level
designs of all the half adders in the table are shown in figure 3.7.

a b a+b a OR b abs mirror OR

0 0 00 00 00
0 1 01 01 01
1 0 01 01 01
1 1 10 01 11

Table 3.3: Truth tables for half adder function and or gate approximation for inputs a
and b

In order to create an absolute mirror multiplier we need to invert the error intro-
duced by this approximation exactly. The error made by the OR-gate approximation
is in one case, and always on the most significant bit of the two bit outcome. In the
resulting absolute mirror design, it is desirable that the mirroring behaviour is abso-
lute, independent on the input distribution. Therefore, the mirror design of this OR
gate-adder must make an equal, but opposite error on the same input case of both
inputs a and b being 1. Also the magnitude of the error must be equal. The design
of this approximate half adder (HA) will therefore be equal to an accurate HA, except
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Figure 3.7: 2bit Half Adders(HA): (a) Accurate HA (b) Approximate HA using an OR
gate [14] (c) Absolute mirror HA of (b) introduced in this thesis

when both inputs are 1, where the absolute mirror HA will return 11 instead of 10.
The resulting absolute mirror HA thus uses an OR gate and an AND gate, as shown
in 3.7c. Implementing these absolute mirror HAs into the OR gate multiplier yields
the multiplier that corresponds with the black dot in the graph 3.6. This is clearly
worse that the recursive designs and another approach is needed if we want to use
the OR gate multiplier for a self healing MAC.

The observation can be made that a self healing MAC design can still work with
a self healing approach, even when the multipliers are not absolute mirrors. If the
number of inputs is large enough, the mean error of the MAC should still approach
zero, if the pair of multipliers used in the self healing MAC have an inverse mean
error. The OR gate multiplier has already been used in an approximate MAC design
in [9]. However, some static error correction value was added and the multipliers
partial product matrix was truncated. Moreover, it was not a parallel MAC, but a
serial one.

3.2.1 Mean error mirror MAC

If all these techniques are combined, a design with a better tradeoff compared to
the discussed absolute mirror MAC may be found. As a proof of concept, a design
example is proposed that combines the OR gate multiplier from figure 3.5 with the
techniques of self healing, truncation and static error correction. The multiplier it is
paired with, in order to create a self healing MAC design, will be an input truncated
multiplier with the four least significant bits truncated from the inputs. The advantage
of this multiplier is its small size, but it also generates a large error. To compensate
for this error, static error correction is applied to this multiplier. The static error
correction value (SECV) added to the result of this multiplier is chosen specifically,
such that the resulting mean error of the input truncated multiplier after static error
correction is exactly the inverse of the mean error of the OR gate multiplier(equation
3.3). The exact value SECV also depends on the input distribution, since the mean
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error of both multipliers in this design changes depending on this distribution. These
two multipliers are combined in a self healing MAC, as shown in figure 3.8. In this
figure, the OR gate multiplier is M1, and the input truncated multiplier is M2.

multiply
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b
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c

d
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static ec

SECV

+

self healing

+

−ε

+ε

accumulate

Σ ε ≈ 0

Figure 3.8: Self healing MAC structure with multipliers M1 and M2. M1 is imple-
mented with the OR gate multiplier from 3.5, with mean error −ε. M2
is implemented as an input truncated multiplier like Figure 2.2c. Static
error correction is applied to the result from M2 to get the desired error
+ε for the self healing stage.

εM1 = mean error of Multiplier M1
εM2 = mean error of Multiplier M2

SECV = abs(εM1) + abs(εM2) (3.3)



Chapter 4

Proof of concept

This chapter aims to show the feasibility of the mean error mirror design approach
for MAC as proposed at the end of the previous chapter. To support this design
approach, a proof of concept (POC) mean error mirror design is compared with two
existing design approaches. These two approaches are the absolute mirror MAC
(two designs) and the static error correction MAC (one design). The POC combines
multiple techniques for approximation and error correction. One specific design is
chosen to show the effectiveness of the mean error mirror approach.

4.1 Experimental setup and tool flow

Figure 4.1 shows the experimental setup to study the quality-efficiency trade-off.
Quality analysis has been performed by implementing behavioural models of the
proposed designs in Matlab. Accuracy results are generated by calculating a multi-
ply accumulate result for specific input vector lengths repeatedly.

The Synopsys Design Compiler has been used to assess the area costs for the
TSMC 40nm Low Power technology library. For verification of the functionality of the
designs and generation of SDF files, Questasim has been used in a combination
with Matlab models of all proposed MAC designs.

4.1.1 Considered MAC designs

The MAC designs that are evaluated are constructed for the following four cate-
gories, based on the results from the multiplier analysis in the previous chapter. The
basic architecture of each category is shown in Figure 4.7. A more detailed overview
of these MAC designs is given in Appendix A.

Firstly for the absolute mirror multiplier (AMM) strategy, the sixteen pareto optimal
multiplier pairs from figure 3.4 are combined into sixteen self healing MACs. The

25
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Figure 4.1: Experimental setup for area and error analysis

number given to the design indicates the number of smaller 2bit multipliers that is
approximated each of both the 8bit multipliers. These designs are referred to as the
MAC REC x designs.

Secondly, six designs are evaluated which apply the static error correction method,
referred to as MAC SEC x designs. These six designs all use the OR gate multi-
plier from Figure 3.5. Each design has zero to five bits truncated from the PPM of
both multipliers. The truncation level is indicated by the number in the name of the
design. Two multipliers of the same truncation level are paired to reach the design
of a parallel MAC, and this MAC will implement static error correction on the accu-
mulator. The static error correction value is adjusted for vector length and truncation
level.

The third design that is shown utilizes the OR gate multiplier and its absolute mir-
ror, as described in the previous chapter. This design has the name MAC OR ABS.

Finally the mean error mirror designs as proposed in this thesis are chosen as a
proof of concept. These designs have the MAC MEM x as a reference name, where
the number in the design name again represents the truncation level. These self
healing MACs are implemented with the OR gate multiplier and the input truncated
multiplier. The truncation level only applies to the OR gate multplier. The static error
correction value is adjusted for each combination of input distribution and truncation
level.

4.2 Quality analysis

To evaluate the error behaviour of these circuits, a Matlab simulation is performed
on all designs. In these simulations every design is provided with input vectors of
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Figure 4.2: Considered parallel MAC designs: (a) and (c) use the same absolute
mirror strategy, but (a) utilizes the recursive multipliers from 3.6 and
(c) utilizes the OR gate multiplier and its absolute mirror. (b) Applies
static error correction and (d) implements the proposed mean error mir-
ror strategy

various sizes. For each vector size, each datapoint in the result graphs present an
average over a thousand complete MAC operations. The vector sizes range from 20

to 210, where a vector size of 2x means that each of the four inputs of the parallel
MAC designs receives 2x inputs. The results of these simulations are analyzed to
determine the Mean Error (ME) of each design, as well as the Root Mean Square
(RMS) of the error of each design. Both the ME and the RMS values are normalized
for their input vector lengths, meaning these error metrics are divided by the length
of the input vector. The ME value is chosen to indicate the expected size of the error,
which is a measure for the accuracy of the design. The RMS values is chosen to
show the spread of the error around the mean, as a way to indicate precision.

yi = approximated value of MAC operation i
xi = accurate value of MAC operation i
n = number of MAC operations, in this case always 1000.

ME =

∑i=1
n yi − xi
n

RMS =

√∑i=1
n (yi − xi)2

n

Both a normal and a uniform distribution of input values are considered. The
results are shown in graphs that are split by design strategy for readability.
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The graphs in figures 4.3 and 4.4 show the development of the normalized ME
and RMS over increasing vector lengths. The values in these input vectors are
normally distributed. The graphs in figures 4.5 and 4.6 show the same metrics, but
this time for a uniformly distributed input.

The graphs 4.3 and 4.5 that represent the mean error, show that the mean error
stabilizes if the vector lenghts are increasing. Also, the more aggressive approximat-
ing designs have a higher mean error, especially when the input vector is relatively
small.

The figures 4.4 and 4.6 that depict the development of the RMS value, all show
a decrease that corresponds nicely to the increase in vector length. The MAC SEC
and MAC OR ABS designs show very similar values, whereas the MAC MEM de-
signs are less predictable, especially for smaller input vector sizes. This is caused
by both multipliers in the MEM design, which generate a relatively large error for low
input values. With small input vectors, the probility that a combination of high and
low inputs occurs together is smaller, thus the spread of the error will be larger. For
the MAC REC designs, this strongly depends on which design is picked. The three
designs with the highest number of approximated 2-bit multipliers start off much
worse for smaller vector sizes when compared to the MAC SEC and MAR OR ABS
designs. The designs with very few approximated multipliers show a much better
error behaviour with respect to the RMS value.
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Figure 4.3: Development of Normalized Mean Error (ME) for normal distribution of
inputs for the (a) Recursive MACs (b) Static error correction MACs (c)
Absolute Mirror MAC (d) Mean Error Mirror MAC
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Figure 4.4: Development of Normalized Root Mean Square (RMS) for normal dis-
tribution of inputs for the (a) Recursive MACs (b) Static error correction
MACs (c) Absolute Mirror MAC (d) Mean Error Mirror MAC
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Figure 4.5: Development of Normalized Mean Error (ME) for uniform distribution of
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tribution of inputs for the (a) Recursive MACs (b) Static error correction
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4.3 Area vs. Error analysis

Using the Synopsys design compiler, the area of each design is determined using
a clock speed of 50MHz. These area characteristics are combined with the quality
analysis to show their comparative results. These results are shown in the graph in
Figure 4.8, where the x axis shows the area of each design, and the y axis shows
the mean error (ME). In Figure 4.9 the area of the design is shown on the x axis with
the y axis representing the RMS of the designs.

Figure 4.10 again shows the ME against the area, but this time the inputs are
normally distributed. Figure 4.11 shows the corresponding graph for the RMS value
of the error. The designs shown in these figures are MAC REC (4.7a), MAC SEC
(4.7b), MAC OR ABS (4.7c) and MAC MEM (4.7d).

Considering the information in the four graphs that represent the area vs. the
error metrics, it is clear that the MEM strategy generates the smallest designs, but at
the cost of a worse error precision, represented by the RMS value. Still, at least one
of the designs can be considered a new contribution, as none of the other design
strategies has a better error performance for this small area. Both the MAC SEC
and MAC MEM designs have a very good error behaviour, since the static error
correction has a great effect on reducing the mean error of these designs. The
absolute mirror designs of both the MAC REC and MAC OR ABS strategies have a
similar low error behaviour, but at the cost of extra area required for these designs.
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Figure 4.7: Considered parallel MAC designs: (a) and (c) use the same absolute
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(c) utilizes the OR gate multiplier and its absolute mirror. (b) Applies
static error correction and (d) implements the proposed mean error mir-
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Chapter 5

Conclusions and recommendations

The main question this thesis has tried to answer, was when considering paral-
lel MAC structures, whether a self healing design utilizing the mean error mirror
principle can perform better than similar designs using strategies already shown in
literature. The already proven quality of the recursive multiplier design has been
tested against three approaches of constructing a self healing MAC with the OR
gate multiplier. First, the absolute mirror strategy for self healing was used, sec-
ondly a design with static error correction was implemented and finally a mean error
mirror (MEM) design was built. The OR gate multiplier was used, as it has a better
quality-area tradeoff than the recursive multiplier, thus making it a good candidate
for implementing in a self healing MAC.

The mean error mirror MAC as proposed in this thesis combined the OR gate
multiplier and an input truncated multiplier. The input truncated multipier was de-
signed with static error correction. The error correction value was set to compensate
for both the error introduced by the truncated multiplier, as well as for the error of the
MAC structure as a whole.

The proposed MEM design approach yielded one design with a better quality-
area tradeoff than existing strategies. Concluding, a new pareto optimal design has
been added to the field of existing parallel approximate MAC design strategies.
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5.1 Future work

The approach chosen for constructing a mean error mirror MAC was ambitious, but
the idea of utilizing two inverse mean error multipliers together which are not an
absolute mirror of one another is promising for further investigation. This thesis
presents a proof of concept of this design strategy, so the next step is to devise
a method for a design space exploration of mean error mirror MACs. Using this
method should result in a more complete insight in the viability of the mean error
mirror design approach.

A limitation of this research was that the modelling has only been performed on
uniform and normal distributions of unsigned inputs. Expanding to signed inputs and
including more distributions in the determination of the quality of the designs, might
bring some new insights on how to approach this strategy in the future.

Another extension to this research could be the inclusion of power simulations.
Although the area results give an indication of the power consumption of the IC
designs, performing these power simulations would certainly increase the value of
the results presented in this thesis.
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Appendix A

Overview of the multiplier designs
for approximate MAC

This appendix gives a detailed overview of the approximate multipliers that make
up the approximate MAC designs as presented and proposed in this thesis. Of
these multipliers their respective mean error is given. With the mean errors of these
multipliers, that SECV values of the resulting MACs can be verified. The multipliers
that are mentioned are the recursive multiplier, the OR gate multiplier and the input
truncated multiplier used in the proposed mean error mirror MAC design.

A.1 Recursive multiplier

The 8-bit multiplier that was analyzed is constructed using sixteen smaller 2-bit mul-
tipliers, as shown in figure 3.1. A more simplistic depiction is shown in figure A.1. For
each of these 2-bit multipliers, a reference number and their magnitude is shown,
which is used in the error calculation as shown in chapter 3.
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Figure A.1: Simplified depiction of the 8-bit recursive multiplier. Each block repre-
sents a 2-bit multiplier with its reference number and magnitude (M).
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Uniform input Normal input
Model name Approximated

2-bit multipli-
ers

Mean error Approximated
2-bit multipli-
ers

Mean error

mult rec apxm1 1 1 −0.125 1 −0.125

mult rec apxm1 2 1,2 −0.625 1-2 −0.625

mult rec apxm1 3 1-3 −1.125 1-3 −1.125

mult rec apxm1 4 1-4 −3.125 1-4 −3.125

mult rec apxm1 5 1-5 −5.125 1-4,6 −5.12

mult rec apxm1 6 1-6 −7.125 1-6 −7.12

mult rec apxm1 7 1-7 −15.125 1-7 −9.197

mult rec apxm1 8 1-8 −23.125 1-7,10 −11.274

mult rec apxm1 9 1-9 −31.125 1-8,10 −19.264

mult rec apxm1 10 1-10 −39.125 1-10 −27.255

mult rec apxm1 11 1-11 −71.125 1-11 −35.562

mult rec apxm1 12 1-12 −103.125 1-11,13 −43.869

mult rec apxm1 13 1-13 −135.125 1-13 −75.792

mult rec apxm1 14 1-14 −263.125 1-14 −108.981

mult rec apxm1 15 1-15 −391.125 1-15 −142.170

mult rec apxm1 16 1-16 −903.125 1-16 −176.675

Table A.1: The approximate recursive multiplier designs and their mean error val-
ues. Approximation using APXM1

The overview of the multipliers approximated and the resulting error is given in
table A.1. In this table, the 2-bit multiplier that was used for the approximation is
the APXM1 from figure 3.2b. The results for approximation with APXM2 gives the
same results, but with positive mean error. The multiplier models using APXM2 will
be referred to as mult rec apxm2 (1-16).
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A.2 OR gate multiplier

The basic multiplier that is used for the MAC SEC, MAC OR ABS and MAC MEM
design is the OR gate multiplier from figure 3.5. Truncation is applied to the PPM
of this multiplier, like in figure 2.2b. The models and their mean error are shown in
table A.2.

Model name Truncation level Mean error (uniform) Mean error (normal)
mult or 0 0 -229 -137
mult or 1 1 -229 -138
mult or 2 2 -230 -139
mult or 3 3 -233 -141
mult or 4 4 -240 -148
mult or 5 5 -256 -166

Table A.2: Approximate OR gate multipliers used in approximate MAC designs.

A.2.1 Absolute mirror of OR gate multiplier

The absolute mirror of the OR gate multiplier was only developed for the mult or 0
model, as described in chapter 3. As it was developed as an absolute mirror, the
mean error are exactly the positive values of the mult or 0 model. This model is
referred to as mult or 0 abs.
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A.3 Input truncated multiplier

Finally, for the proof of concept MAC MEM designs, an input truncated multiplier is
used. The method for generating this multiplier was already shown in figure 2.2c,
but for this purpose the four least significant bits were truncated from the input. This
multiplier is shown in A.2, and has a mean error of −1856 for both a uniform and a
normal input distribution. The name of this multiplier is mult input trunc.

∗

Final product

Figure A.2: The input truncated multiplier used in the proposed MAC MEM designs.
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A.4 MAC designs

The table below shows which multipliers make up the various MAC designs of which
the area and error characteristics where analyzed in chapter 4. If no SECV is given
in the table, no static error correction was applied to this design. The designs and
names correspond to the designs in figure 4.7.

MAC design name M1 M2 SECVuniform SECVnormal

MAC REC 1 mult rec apxm1 1 mult rec apxm2 1
MAC REC 2 mult rec apxm1 2 mult rec apxm2 2
MAC REC 3 mult rec apxm1 3 mult rec apxm2 3
MAC REC 4 mult rec apxm1 4 mult rec apxm2 4
MAC REC 5 mult rec apxm1 5 mult rec apxm2 5
MAC REC 6 mult rec apxm1 6 mult rec apxm2 6
MAC REC 7 mult rec apxm1 7 mult rec apxm2 7
MAC REC 8 mult rec apxm1 8 mult rec apxm2 8
MAC REC 9 mult rec apxm1 9 mult rec apxm2 9
MAC REC 10 mult rec apxm1 10 mult rec apxm2 10
MAC REC 11 mult rec apxm1 11 mult rec apxm2 11
MAC REC 12 mult rec apxm1 12 mult rec apxm2 12
MAC REC 13 mult rec apxm1 13 mult rec apxm2 13
MAC REC 14 mult rec apxm1 14 mult rec apxm2 14
MAC REC 15 mult rec apxm1 15 mult rec apxm2 15
MAC REC 16 mult rec apxm1 16 mult rec apxm2 16

MAC SEC 0 mult or 0 mult or 0 +458 +274

MAC SEC 1 mult or 1 mult or 1 +458 +276

MAC SEC 2 mult or 2 mult or 2 +460 +279

MAC SEC 3 mult or 3 mult or 3 +460 +282

MAC SEC 4 mult or 4 mult or 4 +480 +296

MAC SEC 5 mult or 5 mult or 5 +512 +332

MAC OR ABS mult or 0 mult or 0 abs

MAC MEM 0 mult or 0 mult input trunc +2085 +1993

MAC MEM 1 mult or 1 mult input trunc +2085 +1994

MAC MEM 2 mult or 2 mult input trunc +2086 +1995

MAC MEM 3 mult or 3 mult input trunc +2089 +1997

MAC MEM 4 mult or 4 mult input trunc +2096 +2004

MAC MEM 5 mult or 5 mult input trunc +2112 +2022

Table A.3: Combination of multipliers forming the approximate MAC designs
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