
Automated Delineation of

Smallholder Farm Fields using

Generative Adversarial Network

QIUYU YAN

Enschede, The Netherlands, [06, 2020]

Thesis submitted to the Faculty of Geo-Information Science and

Earth Observation of the University of Twente in partial fulfilment of

the requirements for the degree of Master of Science in Geo-

information Science and Earth Observation.

Specialization: [Geoinformation Science and Earth Observation]

SUPERVISORS:

dr. C. Persello

dr. Y. Yang

THESIS ASSESSMENT BOARD:

Prof.dr.ir. A. Stein (Chair)

dr. C. Persello (First supervisor)

dr. Y. Yang (Second supervisor)

dr. M.N. Koeva (External Examiner, ITC, PGM department)

drs. J.P.G. Bakx (Procedural Advisor)

DISCLAIMER

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the

author, and do not necessarily represent those of the Faculty.

i

ABSTRACT

Smallholder farms play a vital role in agricultural production in many developing countries around the world .

As basic geographic information of agricultural resources, accurate boundaries of smallholder farm fields

are important and indispensable geo-information for farmers, managers and policymakers to help them

manage and utilize their agricultural resource. Beyond that, accurate delineation of smallholder farm fields

could promote the sustainable development of agriculture. However, traditional manual methods such as

image digitisation by visual inspection of satellite images or filed campaigns are inefficient and time-

consuming. Therefore, this research aims to propose an automated algorithm by fully convolutional neural

networks (FCN) in combination with generative adversarial networks (GAN) to improve the delineation

accuracy of smallholder farms using Very High Resolution (VHR) images. This research consists of two

parts. In the first part, we investigate three state-of-the-art fully-convolutional deep network architectures

(U-Net, PSPNet, SegNet) to find the optimal architecture in the contour detection task of smallholder farm

fields. After that, we aim to conduct the optimal FCN architecture in combination with GAN methods to

improve the accuracy of contour detection. Thus, the second part explores the potentials of two GAN

methods (ContourGAN and pixel2pixelGAN) for this specific task.

The study area is in the Sudano-Sahelian savanna region of northern Nigeria, around the city of Kofa, Bebeji

Local Government Area, Kano State. It is a 3×2 km area which composes of abundant small fields and

most of them have three or more crops. The VHR image dataset consists of six 1000×1000 pixels tiles

extracted from a WorldView-3 image acquired on September 25th 2015. By comparing different methods

in this research based on the F1-score, we aim to propose an optimal method for this contour detection

task of smallholder farm fields.

Keywords

Smallholder farm, contour detection, fully convolutional neural network, generative adversarial networks

ii

ACKNOWLEDGEMENTS

I am very grateful for my college life and study.

I would like to express my gratitude to my supervisor, Dr. C. Persello, for guiding me in my study, life and

paper writing. At every stage of my paper, from the thesis theme to the mid-term review and the later

revision, he provided me with huge guidance in the whole process.

Also, I would like to express my gratitude to the teachers and classmates who have taught me and helped

me to move forward in the field of geographic information science.

Finally, I would like to express my gratidude to my family. They always support me and care about me

unconditionally.

iii

TABLE OF CONTENTS

1. Introduction .. 7

1.1. Research objectives and questions... 8

1.2. Background and related work .. 8
1.3. Main contributions... 10

2. Study area and data ... 11

3. Methods .. 12

3.1. FCN ... 12

3.2. GAN .. 15
3.3. Accuracy assessment .. 18

4. Experiment analysis .. 19

4.1. Experiment setup ... 19
4.2. Results and analysis .. 20

5. Discussion .. 27

5.1. FCN methods .. 27

5.2. GAN methods ... 27

6. Conclusion ... 29

7. References .. 31

8. Appendix .. 34

8.1. Appendix 1 ... 34
8.2. Appendix 2 ... 36

8.3. Appendix 3 ... 41
8.4. Appendix 4 ... 42

8.5. Appendix 5 ... 43
8.6. Appendix 6 ... 43

iv

LIST OF FIGURES

Figure 2-1. study area of Kofa (Persello et al., 2019) .. 11

Figure 3-1. Architecture of U-Net (Ronneberger et al., 2015) .. 12

Figure 3-2. Architecture of PSPNet (Zhao et al., 2017)... 13

Figure 3-3. Architecture of SegNet (Badrinarayanan et al., 2017) .. 14

Figure 3-4. Architecture of ContourGAN (H. Yang et al., 2019) .. 15

Figure 3-5. Generator and discriminator of ContourGAN... 16

Figure 3-6. Generator and discriminator of pixel2pixel GAN (Isola et al., 2016) 17

Figure 4-1. Training tiles of Kofa .. 19

Figure 4-2. Testing tiles of Kofa .. 20

Figure 4-3. Results of PSPNet.. 21

Figure 4-4. Results of U-Net .. 22

Figure 4-5. Results of SegNet... 22

Figure 4-6. Training loss of ContourGAN .. 23

Figure 4-7. Results of ContourGAN .. 24

Figure 4-8. Training loss of Pixel2pixel GAN ... 25

Figure 4-9. Results of Pixel2pixel GAN ... 25

Figure 4-10. Result images of SegNet with GAN ... 26

Figure 8-1 PSPNet training curve .. 42

Figure 8-2 U-Net training curve .. 43

Figure 8-3 SegNet training curve ... 43

v

LIST OF TABLES

Table 4-1 Training and testing tiles .. 19

Table 4-2 Numerical results of PSPNet.. 21

Table 4-3 Numerical results of U-Net... 21

Table 4-4 Numerical results of SegNet ... 22

Table 4-5 Different methods and accuracy assessment ... 26

Table 8-1 Architecture of U-Net ... 34

Table 8-2. Architecture of PSPNet .. 36

Table 8-3. Architecture of SegNet ... 41

TITLE OF THESIS

7

1. INTRODUCTION

Smallholder farms whose areas are from 1 to 10 hectares play a vital role in agricultural production in many

developing countries around the world. Smallholder farms account for almost 75% of the world's

agricultural lands, and most of them are less than 2 hectares (Lowder et al., 2016). Smallholder farms often

take the family as a unit, and most farmers lack professional knowledge about how to manage their farms.

As basic geographic feature information of precision agriculture, the accurate boundaries of smallholder

farm fields are indispensable geo-information for farmers, managers, and policymakers to help them manage

and utilize their agricultural resources. Beyond that, the precise delineation of smallholder farm fields could

promote the sustainable development of agriculture, which is vital for ensuring food security in developing

countries.

Based on these objectives, we aim to acquire the spatial delineation information from the Very High

Resolution (VHR) satellite images because the traditional manual methods are inefficient and time-

consuming (García-Pedrero et al., 2017). Besides, it is a challenging task because their boundaries which

are based on vague delineation and irregular shapes, are difficult to delineate. Moreover, the complex

textual patterns and mixed-cropping systems between fields also increase the difficulty of standard

delineation. Therefore, we need a new automatic and accurate delineation algorithm to deal with these

problems.

In recent years, deep learning networks are widely applied in contour detection tasks. Compared with

other methods, deep learning approaches could learn and extract contextual features better at different

layers based on spatial information (Bergado et al., 2016). However, deep learning models including fully

convolutional neural networks (FCNs) usually face a thorny problem because these models theoretically

need an enormous quantity of training samples to learn general models , and this problem will have a bad

influence on the classification results. In the remote sensing field, it is impractical and time-consuming to

label all the training images because of its tremendous volume and abundant geographic information,

especially the contours. Thus, how to increase the number of training data and samples is a topical

problem. This research aims to introduce generative adversarial networks (GANs) to tackle this problem

and improve the accuracy of boundary delineation techniques. Since GANs were proposed by Ian

Goodfellow in 2014 (Goodfellow et al., 2014), GANs give researchers a new and effective method for

automatic delineation. It is proved that the adversarial training method could be used for semantic

segmentation models because it could detect and correct the inconsistencies between ground truth and

segmentation results (Luc et al., 2016). The GANs consist of the a generator and a discriminator, which

could keep the adversarial improvements. Different from the other generative models, the GANs use the

generators and discriminators as adversaries with respect to each other to produce the samples so that

they can improve during the adversarial process (Hong et al., 2017). As an effective learning method,

GANs could deal with the problems such as limited training samples because its generator could create

virtual samples for training data, which could improve the classification performance (Lin et al., 2017).

Based on the strategy of Persello et. al (2019), this research aims to pay more attention to the first step

which is sparse contour detection in contour detection tasks by introducing GAN.

Based on the above, how to extract accurate contours of smallholder farm fields is a challenging topic and

here this research aims to propose a high-accuracy algorithm using FCNs in combination with GAN to

improve the delineation accuracy of smallholder farms from VHR images.

TITLE OF THESIS

8

1.1. Research objectives and questions

Firstly, VHR satellite images of smallholder farms include complex geo-information and the delineation is

difficult due to the specific attributes. In this research, we want to use FCN to extract the preliminary

boundaries of smallholder farm fields in the VHR images. It is prepared for the following study. However,

due to the limited training samples in remote sensing data, the accuracy of output still can be improved.

Thus, we want to combine it with the GAN and improve the accuracy in boundary detection tasks after

adversarial training. Finally, an effectual method to evaluate the accuracy of automatic delineation is

required such as precision, error and degree of confidence because the aim is to improve the segmentation

accuracy.

Therefore, the improved accuracy of delineation is essential. The main objective of this research is to

develop an automated technique based on GANs to automatically delineate smallholder farms from VHR

satellite images. This aim could be achieved through several specific objectives as follows:

1. To perform an automatic delineation by using FCN.

2. To perform an automatic delineation by introducing GAN.

3. To choose and improve the FCN and GAN architecture for the delineation of agricultural fields.

4. To evaluate and compare the delineation results of different methods.

Based on the research gap and the main goal, here we can list four specific research questions as follows:

1. How to perform automatic delineation by FCN and GAN?

2. How to combine FCN with GAN for the delineation of agricultural fields?

3. Which architecture of FCN and GANs could have a better performance in terms of smallholder farm

fields?

1.2. Background and related work

Segmentation algorithms

Image segmentation aims to divide the image into connected regions or categories which correspond to

different objects or parts of objects. Some typical algorithms such as mean shift, split and merge, region

growing and multiresolution segmentation are applied in many fields. Mean shift algorithm seeks modes of

the given set of points. Given specific kernel and bandwidth, it repeatedly centers the search window by

mean of the data until convergence and assigns points that lead to nearby modes to the same cluster

(Comaniciu & Meer, 2002). In split and merge algorithm, 'split' means that the whole image is divided

iteratively in elementary homogeneous regions on the basis of a predefined criterion and 'merge' means

that adjacent regions are merged if they satisfy the predefined homogeneity criterion (Chen & Pavlidis,

1979). As to region growing algorithm, it means repeatedly label the neighbour of the seed point if their

attributes are similar until there is no more pixel that could be labelled (Adams & Bischof, 1994).

Contour detection algorithms

Contour detection aims to detect object contours. For efficient and accurate delineation, many researchers

proposed a variety of methods based on image segmentation. Before the deep learning models, contour

detection has a long history in image processing and computer vision fields and it used to be realized by

Roberts (Roberts, 1963), Sobel (Sobel, 1972), Canny and other operators. Some researches aim to extract

the colour, brightness and texture as features and train an edge classifier for pixels (Martin et al., 2004a).

The delineation of large and man-made objects can be well extracted with edge detection and region

segmentation from satellite images (Mueller et al., 2004). From the attributes of the images, a segmentation

method based on tonal and textural gradients of each region was proposed and Snakes Algorithm can

improve the detection of their field boundaries (Tiwari et al., 2009). Besides, the field-based sub-

boundaries are used to perform boundary analysis by the perceptual grouping (Turker & Kok, 2013).

TITLE OF THESIS

9

Martin et. Al (2014) proposed features which are extracted from colour, brightness and texture to train a

contour based on pixels. In conclusion, traditional segmentation methods are sensitive to intrinsic

variability and dependent on parameter selection which will cause an extra error in segmentation

processing (García-Pedrero et al., 2017).

Based on the above traditional automatic and semiautomatic delineation, more and more researchers turn

sight to machine learning and neural networks as artificial intelligence technology becomes mature. Short

and long skip connections are added to extend FCNs to build highly deep FCNs and the results show the

noticeable improvements in biomedical image segmentation (Drozdzal et al., 2016). The combination of

FCN and conditional random fields approve its high expansibility and accuracy in CT abdomen images

(Christ et al., 2016). Since the FCN could be widely applied in biological image processing, it could work

for delineation of remote sensing images as well (Maggiori et al., 2016). An encoder-decoder FCN called

FCED was proposed by image-to-image architecture for contour detection (J. Yang et al., 2016). Xie and

Tu (2015) propose an edge detection algorithm that uses a Fully Convolutional Network (FCN) with

multiple side outputs, named holistically-nested architecture, for a deeply supervised training and it has a

promising performance (Xie & Tu, 2015). In this framework, raw images are transformed into contour

information and nested contours are generated by feature maps. Besides, the FCN has high computational

efficiency and less information loss because of upsampling and skip structure. Irrelevant edges will be

discarded when detecting field boundaries by trained FCN and it is proved that FCN for pixel-wise

classification has good performance in boundary detection tasks (Shelhamer et al., 2017). Persello et. Al

(2019) proposed an approach which consists of sparse contour detection, closed segment extraction and

final contour generation for delineation of smallholder farm fields by FCN and combinatorial grouping

(Persello et al., 2019).

Generative Adversarial Networks

In recent researches, GANs are one of the exciting methods in many fields including pixel classification.

Although GAN has shown its great potential in image synthesis and pixel classification, it still faces many

problems such as training instability and optimization difficulties. More and more architectures were

proposed for these issues. Deep convolutional GAN is proved as an effective approach to data synthesis

and pixel classification (Radford et al., 2015). The discriminator of Auxiliary classifier GAN (AC-GAN) is

modified to be a softmax classifier which means it could output multiclass label probabilities (Zhu et al.,

2018). Zhu et al. (2018) also proposed 1D-GAN and 3D-GAN which are modified by the theory of AC-

GAN for image classification based on hyperspectral satellite images. Multiple-layer feature-matching

generative adversarial networks (MARTA GANs) which are based on DCGAN is also proposed for

unsupervised image classification in remote sensing fields (Lin et al., 2017). The MARTA GANs

introduces a multiple-feature-matching layer by perceptual loss and feature matching loss for high-

resolution remote sensing images. Moreover, Wasserstein GAN (WGAN) and WGAN-Gradient penalty

(WGAN-GP) gain promising results in hyperspectral image classification (Sun & Bourennane, 2019). In

ContourGAN architectures, they find the training instability is not only from the generator or

discriminator but also from the adversarial training procedure (H. Yang et al., 2019). In other study fields,

Perceptual GAN is used to improve the detection rate of small objects by generating super-resolved

representations for small objects (Li et al., 2017). FCN and GAN are applied in some specific

segmentations such as sclera segmentation (Lucio et al., 2018).

TITLE OF THESIS

10

1.3. Main contributions

Inspired by these methods and architecture in the above sections, this research aims to propose an

automated algorithm by combining FCNs with GANs to improve the delineation accuracy of smallholder

farms using VHR images. This research consists of two parts. In the first part, we investigate three state-

of-the-art fully-convolutional deep network architectures (U-Net, PSPNet, SegNet) to find the optimal

architecture in the contour detection task of smallholder farm fields. The second part explores the

potentials of two GAN methods (ContourGAN and pixel2pixelGAN) for this specific task.

The main contributions of this research can be summarized as follows:

⚫ An improved approach which performs optimal FCN architecture in combination with GAN

methods for automatic delineation of smallholder farm fields

⚫ The introduction of GAN-based technique for VHR satellite images in contour detection tasks.

TITLE OF THESIS

11

2. STUDY AREA AND DATA

In this research, the study area is in the Sudano-Sahelian savanna region of northern Nigeria, around the

city of Kofa, Bebeji Local Government Area, Kano State. It is a 3×2 km2 area which composes of

abundant small fields and most of them have three or more crops. The VHR image dataset consists of six

1000×1000 tiles extracted from a WorldView-3 image acquired on September 25th 2015. As figure 2-1

shows, TR data (TR1, TR2 & TR3) is for training and TS data (TS1, TS2 & TS3) is for accuracy

assessment.

Figure 2-1. study area of Kofa (Persello et al., 2019)

In this dataset, WorldView-3 satellite has one panchromatic band (resolution: 0.31m), 8 multispectral

visible and near-infrared bands (resolution: 1.24m), 8 short-wave infrared bands (resolution: 3.7m) and 12

CAVIS bands (resolution: 30m).

TITLE OF THESIS

12

3. METHODS

In this section, we aim to present some methods by GAN-based techniques to improve the delineation

accuracy of smallholder farms from VHR images. From many state-of-the-art architectures of FCN, we

select three models which are U-Net, PSPNet and SegNet to do the pixel classification. Then, we will

explain the details of these methods in the following sub-sections. Some of them will get better results and

some get worse, but all of them are worthwhile experiments in this new field.

3.1. FCN

3.1.1. U-Net

U-net was originally used for biomedical image segmentation, and its architecture consists of one

contraction network (encoder) and one expansion network (decoder) (Ronneberger et al., 2015). The main

idea is to add a network similar to the previous one behind the shrinking network, where the pooling

operator will be replaced by the up-sampling operator. As a result, these layers increase the resolution of

the output. For positioning, the high-resolution features from the contraction network are combined with

the up-sampled output. The continuous convolution layer can then learn to assemble more accurate

outputs based on this information.

⚫ The encoder part is similar to a typical convolution network structure like VGG. It consists of two

repeated 3×3 convolutional kernels (unpadded convolution). The encoder uses the modified linear

unit (rectified linear unit, ReLU) as activation function and downsampling (step is 2 with 2×2

convolutional kernel) as biggest pooling operation. Under each sampling steps, the number of all

channels will be double.

⚫ In the decoder part, each step includes upsample of the feature graph. Then 2×2 convolutional

kernels are used for convolution operation (up-convolution) to reduce the number of feature

channels by half. Then the corresponding clipped feature graph in the cascade contraction network;

Then, two 3×3 convolutional kernels are used for convolutional operation, and both of them use

ReLU activation function. In the last layer, the 1×1 convolutional kernel is used for a convolutional

operation to map the output layer.

Figure 3-1. Architecture of U-Net (Ronneberger et al., 2015)

TITLE OF THESIS

13

In the figure above, each blue block represents a multi-channel feature graph, the number of channels in

the feature graph is marked at the top, the x-y size is set at the bottom left edge of the block, and the

arrows of different colours represent different operations.

The main idea of FCN in semantic segmentation is to use continuous layers to complement the usual

shrinkage network, adding sampling layers to the location of the discriminant output, which increases the

resolution of the output layer for positioning (Long et al., 2014). The high separation rate from the

contraction path is combined with the up-sampled output, and based on this information, a continuous

convolution layer can learn to assemble more accurate outputs. The difference between U-net and

common FCN is that the up-sampling of U-net still has a large number of channels, which enables the

network to spread the context information to a higher resolution. As a result, the expansion path and the

contraction path are symmetric, forming a u-shaped shape. The network has no full connection layer, but

only an effective part of each convolution layer.

3.1.2. PSPNet

The main problem with the current fcn-based model is the lack of a suitable strategy to take advantage of

the category clues in the global scenario. For the understanding of typical complex scenes, spatial pyramid

pooling has been widely used in the past to obtain global image-level features. This spatial statistical

method provides a good descriptor for the overall scene analysis. In order to combine the appropriate

global characteristics, the pyramid scenario resolution network (PSPNet) was proposed (Zhao et al., 2017).

In addition to the traditional convolutional FCN for pixel prediction, it extended the pixel level features to

the pyramid pooling which is shown in figure 3-2 (c). Local and global clues work together to make the

final prediction more reliable.

Figure 3-2. Architecture of PSPNet (Zhao et al., 2017)

From the figure 3-2, we could understand the network architecture of PSPNet. After the input image, the

feature map is extracted by using the pre-trained image with ResNet. The size of the feature map is 1/8 of

the input image, as shown in (b). On the feature map, it uses the pyramid pooling module in (c) to collect

context information. Using a 4-tier pyramid structure, the pooled kernel covers all, half, and small portions

of the image. They are merged into global prior information. In the last part of (c), it concats the previous

pyramid feature map with the original feature map. Then convolution is performed to generate the final

prediction graph in (d).

PSPNet provides a valid global context prior for pixel-level scene resolution. Pyramid pooling modules

can collect hierarchical information and are more representative than global pooling. In terms of

computation, PSPNet is not much more than the original empty convolution FCN network (Zhao et al.,

2017).

TITLE OF THESIS

14

3.1.3. SegNet

As shown in the figure above, SegNet is a symmetric network composed of an encoder network (left) and

a decoder network (right). After inputting an RGB image, the network classifies the objects in the image

(for example, "road", "car", "building", etc.) according to the semantic information of the objects in the

image, and finally generates a segmentation image (Badrinarayanan et al., 2017).

Figure 3-3. Architecture of SegNet (Badrinarayanan et al., 2017)

⚫ The encoder is a series of convolutional networks. The network consists of a volume base layer, a

pooling layer and a BatchNormalization layer. The volume base is responsible for obtaining the local

features of the image, while the pooling layer samples the image and transmits the scale-invariant

features to the next layer, while BN is mainly used to normalize the distribution of the training image

and accelerate learning. In a nutshell, encoder classifies and analyzes the low-level local pixel values of

an image to obtain higher-order semantic information.

⚫ Decoder collects these semantic information and corresponds the same object to the corresponding

pixel, each object is represented by a different colour. Now that the Encoder has all the object

information and the general location information, the next step is to map these objects to specific

pixels. The work is done by Decoder. Decoder carries out up-sampling on the feature image after the

reduction and then carries out convolution processing on the image after the reduction. The purpose

is to improve the geometric shape of the object and make up for the loss of detail caused by the

object shrinking by pooling layer in Encoder.

The source information for the pooling points is stored in a method called Pooling Indices. In the pooling

layer processing of the encoder network, it will record which region the 1x1 feature point comes from the

original layer after each Pooling and this information is called Pooling Indices. Pooling Indices will be

used in the decoder network. Since SegNet is a symmetric network, when the feature map needs to be

upsampled in the decoder network, we can use the Pooling Indices of the corresponding Pooling layer to

determine which position a 1x1 feature point should be placed in the 2x2 region after the upsampling.

TITLE OF THESIS

15

3.2. GAN

3.2.1. ContourGAN

The traditional GAN used in pixel-wise classification consists of two parts, which are a generator and a

discriminator. The generator is to generate realistic samples, and the discriminator is used to determine

whether a sample is true or false. Based on the traditional architecture of GAN, a GAN-based method

called ContourGAN was proposed to extract contours by foreground texture rather than noise pixels

from the background(H. Yang et al., 2019). The traditional image-to-image models only consider the loss

between the prediction and the real value of the ground and they ignore the similarity between the result

data distribution and the real value of the ground. On this basis, this generative adversarial network is

proposed to improve the accuracy of contour detection.

Figure 3-4. Architecture of ContourGAN (H. Yang et al., 2019)

TITLE OF THESIS

16

3.2.1.1. Generator and discriminator

Figure 3-5. Generator and discriminator of ContourGAN

Figure 3-5 shows its architecture. In CountourGAN, the generator is an encoder-decoder model which

aims to extract contour information from the input, and the discriminator is a CNN that calculates the

loss of contour results based on ground truth. CountourGAN consists of a generator which is an encoder-

decoder model to extract input image edge information and a discriminator which is a CNN to distinguish

generated contours from the ground truth. The encoder conducts downstream sampling of the input

image through the max-pooling layer, while the decoder conducts upstream sampling of the feature map

calculated from the last layer of the encoder. The convolution layer is transposed to obtain the mapping to

ensure the consistency with the input size. Each convolution layer in the encoder is connected to the

corresponding convolution layer in the decoder.

3.2.1.2. Objective and loss function

⚫ Proposed method

In the proposed method of ContourGAN, the I and C denotes the raw input images and labels. D and G

denote the discriminator and generator networks which are used to solve the adversarial minimum

problem. After we input training images 𝐼 into the generator 𝐺𝜃𝐺 , the results will be input into the

discriminator 𝐷𝜃𝐷 to calculate the loss for the adversarial training process.

min
𝜃𝐺

max
𝜃𝐷

log 𝐷𝜃𝐷(𝐶) + log(1 − 𝐷𝜃𝐷(𝐺𝜃𝐺 (𝐼))) Equation 1

⚫ Content loss

Content loss of the ContourGAN is the pixel-wise value which calculates the weights of positive and

negative pixels (edge and non-edge). γ and β in Equation 2 respectively denote the weights of non-edge

and edge pixels. The classification loss is implemented as binary cross-entropy.

TITLE OF THESIS

17

𝜏(𝐶, �̃�) = −
1

𝑁
∑ 𝛾𝐶𝑗 log 𝐶�̃� + 𝛽(1 − 𝐶𝑗)log(1 − 𝐶�̃�)𝑁

𝑛=1 Equation 2

⚫ Adversarial loss

Adversarial loss of the ContourGAN is used to estimate the similarity between the predicted contour and
available contour information. Thus, the adversarial loss will keep increasing if the discriminator could

distinguish the predicted contour and ground truth. Equation 4 shows the entire loss function of

ContourGAN consists of content loss, adversarial loss and regularization. ∝ denotes the weight of the

adversarial loss in the Equation 4 and it could be modified by different datasets.

𝜏𝑎𝑑𝑣
𝐺 = ∑ − log 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝐼))𝑁

𝑛=1 Equation 3

𝜏𝐺𝐴𝑁 = 𝜏(𝐶, �̃�)+ ∝ 𝜏𝑎𝑑𝑣
𝐺 + 𝜆||𝜃||2 Equation 4

3.2.2. Pixel2pixel GAN

However, one problem with this traditional GAN is that all the random noise may produce the same

sample after each training. In order to produce different samples, the condition GAN comes out, namely

cGAN. The cGAN is actually exactly the same as GAN in the training process, except that for the input

sample, there is also an extra condition which can be a label or other generalized things (generalized label).

In pixel2pixel GAN, we should train the generator and discriminator simultaneously during the adversarial

process. In this specific case, we aim to take satellite images as real samples and try to generate the ground

truth during the adversarial training.

3.2.2.1. Generator and discriminator

Figure 3-6. Generator and discriminator of pixel2pixel GAN (Isola et al., 2016)

TITLE OF THESIS

18

From the figure 3-6, the thought of the entire framework based on cGAN. The input of the network is a

data structure of two images which can be thought of as figure and label. From the discriminator part

above, our white image acts as the role of noise. In other words, we can change the white image into a

black image after the generator, and meanwhile, the black image and the white image are superimposed as

false samples for training. So that we can find that for true and false samples if you want to make the

discriminator cannot distinguish true and false, the generated black-figure must be more similar to the

black image of the real sample to meet the conditions because the white figure (such as label) is the same.

This is also why the combination with black and white as the sample input.

3.2.2.2. Objective and loss function

The final objective function is expressed as Equation 5, and it consists of common conditional GAN and

a distance loss. The distance loss could be considered as a function about rebuilding the errors which

mean the error between the white image generated by the generator (G(x,z)) and the original black image .

𝐺 = arg min
𝐺

max
𝐷

𝜏𝑐𝐺𝐴𝑁 (𝐺, 𝐷) + 𝜆𝜏𝐿1(𝐺) Equation 5

3.3. Accuracy assessment

To improve the delineation accuracy of smallholder farms using VHR images., an effective method to

evaluate the accuracy of automatic delineation is required such as precision, error and degree of

confidence because the aim is to improve the segmentation accuracy. In this part, the precision-recall

framework could be a better choice which is a common method in contour detection evaluation (Martin et

al., 2004b). Precision means how many selected items are relevant and recall means how many relevant

items are selected. Beside, it introduces the harmonic mean of precision and recall values as f-

measure/score. The equation of f-measure/score is shown as follows and α is usually evaluated as 1.

Based on these parameters, precision-recall (PR) curve could be drawn and it visually shows the precision

and recall performance of the model in the overall samples. The classification performance of a certain

model will be better if the curve of the model is always above the curves of the other one.

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 Equation 6

TITLE OF THESIS

19

4. EXPERIMENT ANALYSIS

4.1. Experiment setup

This section describes how we prepare the data and what the architectures of these models are in this

research. The experiment consists of two parts which are FCN and GAN. The FCN part is to adopt FCN

network such as U-Net, PSPNet and SegNet to conduct the pixel classification of smallholder farm

images. The GAN part is to find some methods which could combine with FCN to increase the result of

the first part. Therefore, we conduct the contour detection based on the U-Net, PSPNet and SegNet to

find the optimal architecture of FCN in this task. Then, we compare the results of the optimal architecture

with the different training data by random rotation and GAN.

4.1.1. Data preparation

We aim to use FCN and GAN-based techniques to detect the sparse contours by VHR satellite images.

Therefore, the first thing we should do is to collect the research data. The VHR image data are six tiles of

1000×1000 pixels from WorldView-3 data (acquired on September 25th 2015). TR data is for training and

TS data is for accuracy assessment. In this dataset, the product should be atmospherically corrected,

orthorectified, and coregistered. After that, it has been corrected that original dataset by human photo-

interpretation and expanded to over 5700 field boundaries.

Table 4-1 Training and testing tiles

Tile Train Test

Tile No.1 TR1 --

Tile No.2 -- TS1

Tile No.3 TR2 --

Tile No.4 TR3 --

Tile No.5 -- TS2

Tile No.6 -- TS3

Figure 4-1 shows the satellite images and ground truths of Kofa which are the testing data in this research.

TR1 TR2 TR3

Figure 4-1. Training tiles of Kofa

TITLE OF THESIS

20

Figure 4-2 shows the satellite images and ground truths of Kofa which are the testing data in this research.

TS1 TS2 TS3

Figure 4-2. Testing tiles of Kofa

4.1.2. Model parameters

In this section, we will discuss about the parameters of different models in this research.

In U-Net, PSPNet and SegNet, we adopt them in this research to conduct pixel-wise classification. Due to

the limitation of the software usage, the number of training epochs is 200. Patch size of training tiles is

96×96 and batch size is 32. In addition, the learning rate is 0.0001 and loss function is Categorical cross-

entropy which is often used in single label categorization.

In ContourGAN, we set the global learning rate to 0.00001, and weight decay to 0.00002. Due to the

limitation of the software usage, the number of training epochs is set to 100. As to the weight of the

adversarial loss, we set it to 0.01 as initial value.

In pixel2pixel GAN, we set the weight of updating effect to 0.5. The learning rate of this discriminator is

set to 0.0002. In additional, we set the weight of the adversarial loss to 0.01 as initial value and the training

epochs is set to 1000 to get a better model.

4.1.3. software

Google Colaboratory is an open research tool for machine learning development and research. This tool is

now free to provide free GPU usage to most AI developers. The neural network framework of this

research we used is Tensorflow and Keras. The name of GPU is Tesla T4 and the the memoery of it is

15079 MiB.

4.2. Results and analysis

This section will provide all the results of this research. The ground truth is shown as figure 8. Section

4.2.1 shows the results of FCN architectures (PSPNet, U-Net and SegNet). Section 4.2.2 shows the results

of optimal FCN architecture in combination with GAN methods. Section 4.2.3 compares and analyze all

the results of different methods in this research.

TITLE OF THESIS

21

4.2.1. Results of FCN

4.2.1.1. PSPNet

Table 4-2 shows the numerical results for PSPNet including precision, recall and F-score.

Table 4-2 Numerical results of PSPNet

Tiles Precision Recall F1 score

TS1 0.746 0.542 0.602

TS2 0.734 0.543 0.601

TS3 0.748 0.548 0.611

Average 0.743 0.544 0.605

Figure 4-3 shows the classification results of PSPNet by three test tiles. The results of three test tiles look

not very good here because the PSPNet provides global context prior for scenes in pixel-level resolution

but it is not appropriate for complex satellite images here.

TS1 TS2 TS3

Figure 4-3. Results of PSPNet

4.2.1.2. U-Net

Table 4-3 shows the numerical results for U-Net including precision, recall and F-score.

Table 4-3 Numerical results of U-Net

Tiles Precision Recall F1 score

TS1 0.714 0.572 0.623

TS2 0.715 0.560 0.613

TS3 0.729 0.567 0.624

Average 0.719 0.566 0.620

TITLE OF THESIS

22

Figure 4-4 shows the classification results of U-Net by three test tiles. The results of three test tiles look

better than PSPNet because it is originally used for complex biomedical image segmentation and it could

combine the low-resolution and high-resolution information.

TS1 TS2 TS3

Figure 4-4. Results of U-Net

4.2.1.3. SegNet

Table 4-4 shows the numerical results for SegNet including precision, recall and F-score.

Table 4-4 Numerical results of SegNet

Tiles Precision Recall F1 score

TS1 0.689 0.622 0.651

TS2 0.704 0.627 0.661

TS3 0.714 0.617 0.658

Average 0.702 0.622 0.657

Figure 4-5 shows the classification results of SegNet by three test tiles. Compared with these three

architectures of FCN, the SegNet performs best in the limited training epochs. Thus, we will adopt the

SegNet to conduct the pixel classification in this research.

TS1 TS2 TS3
Figure 4-5. Results of SegNet

TITLE OF THESIS

23

4.2.2. Results of GAN

4.2.2.1. ContourGAN

During the experiments of ContourGAN, we fix the discriminator network and focus on the generator

network. In the original architecture of the generator, it is an encoder-decoder FCN architecture with

some modified layers. For examples, it removed the final pooling layer because it cannot capture

meaningful information with its small size. Since the SegNet perform best based on the previous

experiments, we decide to instead the original FCN architecture with SegNet to get contour results. Figure

4-6 shows the training curve of this GAN model. We could find that the loss of discriminator doesn’t

change during the adversarial training and the loss of generator keeps decreasing but it converges to one

constant at last. It means the whole GAN model cannot perform adversarial training based on this loss

function. The loss curve of generator which is used to extract contour information from the input means

that the FCN part could get some contour results but it cannot modify and improve the predictions based

on this loss function during the adversarial training. Therefore, the discriminator which is used to

distinguish the predictions and ground truth doesn’t work during the adversarial training. By tuning the

weight of adversarial loss ∝, the results of this GAN model still perform not good.

Figure 4-6. Training loss of ContourGAN

The results of the predictions are too sparse, as shown in figure 4-7. The reason for the bad results might

be the loss function is not appropriate for the complex satellite images, especially smallholder farms. The

original loss function is set for the segmentations of the natural image and we haven’t found a better loss

function for this research so far. In future studies, some other solutions about the loss functions which

could pay more attention to the complex texture and pattern could be investigated to address this issue,

especially in complex farm fields.

TITLE OF THESIS

24

Figure 4-7. Results of ContourGAN

4.2.2.2. Pixel2pixel GAN

Since the ContourGAN performs not good, then we conduct the pixel2pixel GAN to get better training

data. In this GAN model, the discriminator defines the relationship between the source images and

predictions and it is optimized by binary cross entropy and the weight of updating effect is set to 0.5. The

learning rate of this discriminator is set to 0.0002. The generator part of this GAN model is an U-Net

architecture mentioned in section 3.1.1. The generator of this GAN model is updated by the adversarial

loss functions and we set the weight of the adversarial loss to 0.01 as initial value. With the loss functions,

the generator is forced toward generating more realistic images based on the source images during the

adversarial training. In this specific research, we take the satellite images of small farmholder fields as real

samples and the ground truth as targets. We set the number of training epochs to 1000 to get a better

model. As we know, the training process of GAN model is usually not stable because it aims to find an

equilibrium between the generator and discriminator models. During the training process, the results

could be adjusted based on the original ground truth. Therefore, we need to save the weights and models

every 100 epochs in this experiment to get better outputs and optimal model.

Figure 4-8 shows the training curve of pixel2pixel GAN in this research. We could find that the loss curve

of generator converges to constant but the loss curve of discriminator is not unstable. Thus, we cannot

judge it easily. We could review the results of the saved models and choose one of the best models.

TITLE OF THESIS

25

Figure 4-8. Training loss of Pixel2pixel GAN

Figure 4-9 shows one of the results using pixel2pixel GAN including source images, generated images

and expected images. The changes between generated images and expected images are based on the

pixels so that we cannot clarify it by our eyes. Then, we aim to conduct the optimal FCN architecture

(SegNet) to get better contours by this modified ground truth.

Figure 4-9. Results of Pixel2pixel GAN

To compare with the original training data, we set 9 contrast experiments. Firstly, we conduct the SegNet

with one training tile (TR1), two training tiles (TR1, TR2) and three training tiles (TR1, TR2, TR3). Then,

TITLE OF THESIS

26

we random selection 25% of the whole data to conduct the data augmentation by random rotation and

pixel2pixel GAN. Then, we combine the contour result with the satellite images, as shown in figure 4-10.

Figure 4-10. Result images of SegNet with GAN

4.2.3. Comparison of different methods

From the above, we conduct 11 experiments, and then we increase the proportion of selected data to

perform data augmentation. In this section, we compare and analyze all the results of different methods in

this research. As shown in the table, we could get the following conclusions:

1. Among the three FCN architecture of this research, PSPNet performs worst and SegNet performs

best.

2. The more original training data, the better results we will get.

3. Random rotation and GAN could get higher the accuracy of results than original training data.

4. The higher proportion of augmented data with GAN doesn’t mean higher accuracy because it

depends on the performance of GAN training. If the GAN is sufficiently well trained and get good

results, we will get better training data. Otherwise, the results of GAN cannot increase the accuracy as

we expect.

Table 4-5 Different methods and accuracy assessment

Method TS1 TS2 TS3

PSPNet 0.602 0.601 0.611

U-Net 0.623 0.613 0.624

SegNet – TR1 0.641 0.653 0.648

SegNet – TR1 with random rotation 0.643 0.654 0.650

SegNet – TR1 with pixel2piexlGAN 0.645 0.655 0.652

SegNet – TR1&2 0.648 0.656 0.657

SegNet – TR1&2 with random rotation 0.649 0.658 0.657

SegNet – TR1&2 with pixel2piexlGAN 0.650 0.659 0.658

SegNet – TR1&2&3 0.651 0.661 0.658

SegNet – TR1&2&3 with random rotation (25%) 0.653 0.665 0.659

SegNet – TR1&2&3 with pixel2piexlGAN (25%) 0.654 0.666 0.661

SegNet – TR1&2&3 with random rotation (50%) 0.654 0.663 0.656

SegNet – TR1&2&3 with pixel2piexlGAN (50%) 0.652 0.661 0.654

TITLE OF THESIS

27

5. DISCUSSION

Contour detection task could be divided into three parts which are sparse contour detection, closed

segment extraction and final contour generation. This research will pay more attention to propose an

improved algorithm in the first part which is sparse contour detection by GAN-based techniques. Deep

convolutional neural networks often have a good performance in this part according to the previous

researches, especially the FCN. FCN significantly improves the segmentation accuracy and speed with

multi-resolution layer combinations but the appearance of the GANs also gives people more reflection on

whether we could improve the segmentation results of the FCN. So far, few researchers have introduced

GAN in VHR satellite images, especially in contour detection. Smallholder farm fields are worthy of study

because of their specific geographic features and it is helpful for agricultural management. Besides, GAN-

based techniques are usually applied in small natural images and the introduction of GAN-based

technology for VHR satellite images in contour detection tasks is also one of the main contributions.

However, how to combine FCN with GAN for automatic delineation of smallholder farms from VHR

satellite images is still a difficult problem that needs to be solved. This research could give a new

perspective on how to improve the existing models with nascent concepts. Therefore, this research will

focus on FCN in combination with the GAN to improve the delineation accuracy of smallholder farm

fields. This section discusses the strengths and weakness of the methods in this research. Section 5.1

analyses the results of FCN methods. Section 5.2 analyses the results of GAN methods.

5.1. FCN methods

In this research, we aim to adopt different architectures of FCN to acquire the optimal network for

contour detection task in the smallholder farm fields. Based on the primary goal of this research, we

propose three state-of-the-art architectures of FCN (U-Net, PSPNet, SegNet) to find the optimal

architecture in the contour detection task of smallholder farm fields. After the relevant experiments with

three different architectures, we conclude that the SegNet architecture acquires the optimal results with

the same hyperparameters and training epochs. During the training process, the U-Net acquires the

second-best results and PSPNet acquires the worst results because of the complex geographic information

and mixed-cropping systems in smallholder farm fields. SegNet obtains the best contour results because it

uses pooling slices of max-pooling layers to conduct un-linear upsampling rather than deconvolution or

transposed convolutions. Therefore, the SegNet is the optimal architecture among the three state-of-the-

art FCN architectures for the contour detection task in smallholder farm fields.

5.2. GAN methods

In this research, we aim to introduce GAN technology in combination with the optimal FCN architecture

to increase the accuracy of pixel-wise classification. We try to adopt GAN as a training method and

introduce the ContourGAN. The generator aims to conduct the pixel-wise classification and the

discriminator aims to assess the difference between the prediction result and ground truth. Then, we could

adjust the generator by the loss function. However, the results of ContourGAN are not good as

mentioned in section 4.2.2.1 because the loss function of the ContourGAN is suited for the natural

images rather than complex smallholder farms. It cannot adjust the subtle delineation in the complex

fields. In this research, we have tried many other loss functions and still cannot adjust a suitable loss

function for the study area. In theory, if we could adjust a suitable loss function of smallholder farm fields,

the results of ContourGAN will be a better one. In future studies, some other solutions about the loss

functions which could pay more attention to the complex texture and pattern could be investigated to

address this issue, especially in complex farm fields. On the other hand, we try to adopt GAN as a data

TITLE OF THESIS

28

augmentation method and introduce the pixel2pixelGAN. The generator of it aims to generate the fake

images based on the original data and the discriminator aims to identify these fake images. During the

training process, the results could be adjusted based on the original ground truth. Based on this method,

we could adjust some complex textual fields of smallholder farm fields and input them as training data.

However, the training process of pixel2pixel GAN model is not stable and converge because it aims to

find an equilibrium between the generator and discriminator. Thus, we should save the model and weights

by some epochs to get better results. Comparing with original and random-rotated training data, the

results of pixel2pixelGAN just get a bit higher accuracy. We consider the reason is that the GAN method

generates the potential features from the original data rather than new data, so the GAN methods cannot

produce new information from the original data space. Thus, if the GAN methods are sufficiently well

trained, the results could be a bit better. Otherwise, the results will be worse if the GAN training is not

performed well.

TITLE OF THESIS

29

6. CONCLUSION

In this research, we aim to propose an automated algorithm by GAN-based techniques to improve the

delineation accuracy of smallholder farms from VHR images. Based on the improved results of sparse

contours, this research will then extract the closed segments and generate the final delineation by some

specific methods. The VHR image data of Kofa are six tiles of 1000×1000 pixels from WorldView-3 data

(acquired on September 25th 2015). The research consists of two parts which are to find the optimal FCN

architecture and the potential GAN methods.

For FCN architectures, we select three state-of-the-art FCN architectures which are PSPNet, U-Net and

SegNet from the computer vision field. For this part, firstly we adopt the U-Net for pixel-wise

classification with original training data. With the same training data and hyperparameters, then we

conduct contour detection with PSPNet and SegNet. Comparing three experiments with three different

SOTA FCN architectures, the SegNet performs best. Therefore, we could adopt SegNet as the optimal

FCN architecture in this research. Based on the SegNet architecture, we could try to conduct potential

GAN methods in combination with SegNet to increase the accuracy of contour detection.

For GAN methods, we select two potential GAN methods for this specific task. The first one is

ContourGAN. Its generator aims to get contour results and the discriminator aims to assess the difference

between the prediction result and ground truth. However, the results of ContourGAN are not well

because of the loss function is not suitable for complex smallholder farm fields and we cannot find an

appropriate one. In future studies, some other solutions about the loss functions which could pay more

attention to the complex texture and pattern could be investigated to address this issue, especially in

complex farm fields. The second potential GAN method is pixel2pixelGAN. Its generator aims to

generate the fake images based on the original data and the discriminator aims to identify these fake

images. The pixel2pixelGAN could adjust the images based on the original ground truth. Therefore, the

results of pixel2pixelGAN are more suitable for the complex textual patterns. Then, we compare the

contour detection results with different training data as mentioned in section 4.2.3. Although the results

are just improved a little, we could consider it as an optional method for other researches.

31

7. REFERENCES

Adams, R., & Bischof, L. (1994). Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(6), 641–647. https://doi.org/10.1109/34.295913

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

Bergado, J. R., Persello, C., & Gevaert, C. (2016). A deep learning approach to the classification of sub-

decimetre resolution aerial images. 2016 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), 1516–1519. https://doi.org/10.1109/IGARSS.2016.7729387

Chen, P. C., & Pavlidis, T. (1979). Segmentation by texture using a co-occurrence matrix and a split-and-

merge algorithm. Computer Graphics and Image Processing, 10(2), 172–182.

https://doi.org/10.1016/0146-664X(79)90049-2

Christ, P. F., Elshaer, M. E. A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster,

M., Hofmann, F., D’Anastasi, M., Sommer, W. H., Ahmadi, S.-A., & Menze, B. H. (2016). Automatic

Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional

Random Fields (pp. 415–423). Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_48

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

https://doi.org/10.1109/34.1000236

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. (2016). The Importance of Skip Connections

in Biomedical Image Segmentation (pp. 179–187). Springer, Cham. https://doi.org/10.1007/978-3-319-

46976-8_19

García-Pedrero, A., Gonzalo-Martín, C., & Lillo-Saavedra, M. (2017). International Journal of Remote Sensing

A machine learning approach for agricultural parcel delineation through agglomerative segmentation A machine

learning approach for agricultural parcel delineation through agglomerative segmentation .

https://doi.org/10.1080/01431161.2016.1278312

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio,

Y. (2014). Generative Adversarial Nets (pp. 2672–2680). http://papers.nips.cc/paper/5423-generative-

adversarial-nets

Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2017). How Generative Adversarial Networks and Their Variants

Work: An Overview. https://doi.org/10.1145/3301282

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional

Adversarial Networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, 2017-January, 5967–5976. http://arxiv.org/abs/1611.07004

Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., & Yan, S. (2017). Perceptual Generative Adversarial Networks for Small

Object Detection. http://arxiv.org/abs/1706.05274

Lin, D., Fu, K., Wang, Y., Xu, G., & Sun, X. (2017). MARTA GANs: Unsupervised Representation

Learning for Remote Sensing Image Classification. IEEE Geoscience and Remote Sensing Letters, 14(11),

2092–2096. https://doi.org/10.1109/LGRS.2017.2752750

Long, J., Shelhamer, E., & Darrell, T. (2014). Fully Convolutional Networks for Semantic Segmentation .

http://arxiv.org/abs/1411.4038

32

Lowder, S. K., Skoet, J., & Raney, T. (2016). The Number, Size, and Distribution of Farms, Smallholder

Farms, and Family Farms Worldwide. World Development, 87, 16–29.

https://doi.org/10.1016/J.WORLDDEV.2015.10.041

Luc, P., Couprie, C., Chintala, S., & Verbeek, J. (2016). Semantic Segmentation using Adversarial Networks.

http://arxiv.org/abs/1611.08408

Lucio, D. R., Laroca, R., Severo, E., Britto, A. S., & Menotti, D. (2018). Fully Convolutional Networks and

Generative Adversarial Networks Applied to Sclera Segmentation. http://arxiv.org/abs/1806.08722

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2016). Fully convolutional neural networks for

remote sensing image classification. 2016 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), 5071–5074. https://doi.org/10.1109/IGARSS.2016.7730322

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004a). Learning to detect natural image boundaries using local

brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5),

530–549. https://doi.org/10.1109/TPAMI.2004.1273918

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004b). Learning to detect natural image boundaries using local

brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5),

530–549. https://doi.org/10.1109/TPAMI.2004.1273918

Mueller, M., Segl, K., & Kaufmann, H. (2004). Edge- and region-based segmentation technique for the

extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognition, 37(8),

1619–1628. https://doi.org/10.1016/J.PATCOG.2004.03.001

Persello, C., Tolpekin, V. A., Bergado, J. R., & de By, R. A. (2019). Delineation of agricultural fields in

smallholder farms from satellite images using fully convolutional networks and combinatorial

grouping. Remote Sensing of Environment, 231, 111253. https://doi.org/10.1016/J.RSE.2019.111253

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional

Generative Adversarial Networks. http://arxiv.org/abs/1511.06434

Roberts, L. (1963). Machine perception of three-dimensional solids.

https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image

segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651.

https://doi.org/10.1109/TPAMI.2016.2572683

Sobel, I. (1972). Camera models and machine perception. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-

get.cgi/1972/CS/CS0016.pdf

Sun, Q., & Bourennane, S. (2019). Unsupervised feature extraction based on improved Wasserstein

generative adversarial network for hyperspectral classification. In S. Negahdaripour, E. Stella, D.

Ceglarek, & C. Möller (Eds.), Multimodal Sensing: Technologies and Applications (Vol. 11059, p. 32). SPIE.

https://doi.org/10.1117/12.2527466

Tiwari, P. S., Pande, H., Kumar, M., & Dadhwal, V. K. (2009). Potential of IRS P-6 LISS IV for

agriculture field boundary delineation. Journal of Applied Remote Sensing, 3(1), 033528.

https://doi.org/10.1117/1.3133306

Turker, M., & Kok, E. H. (2013). Field-based sub-boundary extraction from remote sensing imagery using

perceptual grouping. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 106–121.

https://doi.org/10.1016/J.ISPRSJPRS.2013.02.009

Xie, S., & Tu, Z. (2015). Holistically-Nested Edge Detection (pp. 1395–1403).

http://openaccess.thecvf.com/content_iccv_2015/html/Xie_Holistically-

Nested_Edge_Detection_ICCV_2015_paper.html

33

Yang, H., Li, Y., Yan, X., & Cao, F. (2019). ContourGAN: Image contour detection with generative

adversarial network. Knowledge-Based Systems, 164, 21–28.

https://doi.org/10.1016/J.KNOSYS.2018.09.033

Yang, J., Price, B., Cohen, S., Lee, H., & Yang, M.-H. (2016). Object Contour Detection With a Fully

Convolutional Encoder-Decoder Network (pp. 193–202).

http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Object_Contour_Detection_CVPR

_2016_paper.html

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). PSPNet. Proceedings - 30th IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 6230–6239.

https://doi.org/10.1109/CVPR.2017.660

Zhu, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2018). Generative Adversarial Networks for

Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5046–

5063. https://doi.org/10.1109/TGRS.2018.2805286

34

8. APPENDIX

8.1. Appendix 1

Table 8-1 Architecture of U-Net

Layer (type) Output shape Param # Connected to

Img (Inputlayer) 96×96×3 --

Conv2d_1 (Conv2d) 96×96×16 448 Img

batch_normalization_1 (BatchNo) 96×96×16 64 Conv2d_1

Activation_1 (activation) 96×96×16 -- batch_normalization_1

Conv2d_2 (Conv2d) 96×96×16 2320 Activation_1

batch_normalization_2 (BatchNo) 96×96×16 64 Conv2d_2

Activation_2 (activation) 96×96×16 -- batch_normalization_2

max_pooling2d_1 (MaxPooling2D) 48×48×16 -- Activation_2

dropout_1 (Dropout) 48×48×16 -- max_pooling2d_1

Conv2d_3 (Conv2d) 48×48×32 4640 dropout_1

batch_normalization_3 (BatchNo) 48×48×32 128 Conv2d_3

Activation_3 (activation) 48×48×32 -- batch_normalization_3

Conv2d_4 (Conv2d) 48×48×32 9248 Activation_3

batch_normalization_4 (BatchNo) 48×48×32 128 Conv2d_4

Activation_4 (activation) 48×48×32 -- batch_normalization_4

max_pooling2d_2 (MaxPooling2D) 24×24×32 -- Activation_4

dropout_2 (Dropout) 24×24×32 -- max_pooling2d_2

Conv2d_5 (Conv2d) 24×24×64 18496 dropout_2

batch_normalization_5 (BatchNo) 24×24×64 256 Conv2d_5

Activation_5 (activation) 24×24×64 -- batch_normalization_5

Conv2d_6 (Conv2d) 24×24×64 36928 Activation_5

batch_normalization_6 (BatchNo) 24×24×64 256 Conv2d_6

Activation_6 (activation) 24×24×64 -- batch_normalization_6

max_pooling2d_3 (MaxPooling2D) 12×12×64 -- Activation_6

dropout_3 (Dropout) 12×12×64 -- max_pooling2d_3

Conv2d_7 (Conv2d) 12×12×128 73856 dropout_3

batch_normalization_7 (BatchNo) 12×12×128 512 Conv2d_7

Activation_7 (activation) 12×12×128 -- batch_normalization_7

Conv2d_8 (Conv2d) 12×12×128 147584 Activation_7

batch_normalization_8 (BatchNo) 12×12×128 512 Conv2d_8

Activation_8 (activation) 12×12×128 -- batch_normalization_8

max_pooling2d_4 (MaxPooling2D) 6×6×128 -- Activation_8

dropout_4 (Dropout) 6×6×128 -- max_pooling2d_4

Conv2d_9 (Conv2d) 6×6×256 295168 dropout_4

batch_normalization_9 (BatchNo) 6×6×256 1024 Conv2d_9

Activation_9 (activation) 6×6×256 -- batch_normalization_9

Conv2d_10 (Conv2d) 6×6×256 590080 Activation_9

batch_normalization_10 (BatchNo) 6×6×256 1024 Conv2d_10

Activation_10 (activation) 6×6×256 -- batch_normalization_10

conv2d_transpose_1 (Conv2DTrans) 12×12×128 295040 Activation_10

35

concatenate_1 (Concatenate) 12×12×256 -- conv2d_transpose_1

Activation_8

dropout_5 (Dropout) 12×12×256 -- concatenate_1

Conv2d_11 (Conv2d) 12×12×128 295040 dropout_5

batch_normalization_11 (BatchNo) 12×12×128 512 Conv2d_11

Activation_11 (activation) 12×12×128 -- batch_normalization_11

Conv2d_12 (Conv2d) 12×12×128 147584 Activation_11

batch_normalization_12 (BatchNo) 12×12×128 512 Conv2d_12

Activation_12 (activation) 12×12×128 -- batch_normalization_12

conv2d_transpose_2 (Conv2DTrans) 24×24×64 73792 Activation_12

concatenate_2 (Concatenate) 24×24×128 -- conv2d_transpose_2

Activation_6

dropout_6 (Dropout) 24×24×128 -- concatenate_2

Conv2d_13 (Conv2d) 24×24×64 73792 dropout_6

batch_normalization_13 (BatchNo) 24×24×64 256 Conv2d_13

Activation_13 (activation) 24×24×64 -- batch_normalization_13

Conv2d_14 (Conv2d) 24×24×64 36928 Activation_13

batch_normalization_14 (BatchNo) 24×24×64 256 Conv2d_14

Activation_14 (activation) 24×24×64 -- batch_normalization_14

conv2d_transpose_3 (Conv2DTrans) 48×48×32 18464 Activation_14

concatenate_3 (Concatenate) 48×48×64 -- conv2d_transpose_3

Activation_4

dropout_7 (Dropout) 48×48×64 -- concatenate_3

Conv2d_15 (Conv2d) 48×48×32 18464 dropout_7

batch_normalization_15 (BatchNo) 48×48×32 128 Conv2d_15

Activation_15 (activation) 48×48×32 -- batch_normalization_15

Conv2d_16 (Conv2d) 48×48×32 9248 Activation_15

batch_normalization_16 (BatchNo) 48×48×32 128 Conv2d_16

Activation_16 (activation) 48×48×32 -- batch_normalization_16

conv2d_transpose_4 (Conv2DTrans) 96×96×16 4624 Activation_16

concatenate_4 (Concatenate) 96×96×32 -- conv2d_transpose_4

Activation_2

dropout_8 (Dropout) 96×96×32 -- concatenate_4

Conv2d_17 (Conv2d) 96×96×16 4624 dropout_8

batch_normalization_17 (BatchNo) 96×96×16 64 Conv2d_17

Activation_17 (activation) 96×96×16 -- batch_normalization_17

Conv2d_18 (Conv2d) 96×96×16 2320 Activation_17

batch_normalization_18 (BatchNo) 96×96×16 64 Conv2d_18

Activation_18 (activation) 96×96×16 -- batch_normalization_18

conv2d_19 (Conv2D) 96×96×2 34 Activation_18

36

8.2. Appendix 2

Table 8-2. Architecture of PSPNet

Layer (type) Output shape Param # Connected to

Img (Inputlayer) 96×96×3 --

Conv2d_1 (Conv2d) 48×48×64 1792 Img

batch_normalization_1 (BatchNo) 48×48×64 256 Conv2d_1

Activation_1 (activation) 48×48×64 -- batch_normalization_1

Conv2d_2 (Conv2d) 48×48×64 36928 Activation_1

batch_normalization_2 (BatchNo) 48×48×64 256 Conv2d_2

Activation_2 (activation) 48×48×64 -- batch_normalization_2

Conv2d_3 (Conv2d) 48×48×128 73856 Activation_2

batch_normalization_3 (BatchNo) 48×48×128 512 Conv2d_3

Activation_3 (activation) 48×48×128 -- batch_normalization_3

max_pooling2d_1 (MaxPooling2D) 24×24×128 -- Activation_3

Conv2d_4 (Conv2d) 24×24×64 8256 max_pooling2d_1

batch_normalization_4 (BatchNo) 24×24×64 256 Conv2d_4

Activation_4 (activation) 24×24×64 -- batch_normalization_4

Conv2d_5 (Conv2d) 24×24×64 36928 Activation_4

batch_normalization_5 (BatchNo) 24×24×64 256 Conv2d_5

Activation_5 (activation) 24×24×64 -- batch_normalization_5

Conv2d_6 (Conv2d) 24×24×256 16640 Activation_5

Conv2d_7 (Conv2d) 24×24×256 33024 max_pooling2d_1

batch_normalization_6 (BatchNo) 24×24×256 1024 Conv2d_6

batch_normalization_7 (BatchNo) 24×24×256 1024 Conv2d_7

add_1 (Add) 24×24×256 -- batch_normalization_6

batch_normalization_7

activation_6 (Activation) 24×24×256 -- Add_1

Conv2d_8 (Conv2d) 24×24×64 16448 activation_6

batch_normalization_8 (BatchNo) 24×24×64 256 Conv2d_8

Activation_7 (activation) 24×24×64 -- batch_normalization_8

Conv2d_9 (Conv2d) 24×24×64 36928 Activation_7

batch_normalization_9 (BatchNo) 24×24×64 256 Conv2d_9

Activation_8 (activation) 24×24×64 -- batch_normalization_9

Conv2d_10 (Conv2d) 24×24×256 16640 Activation_8

batch_normalization_10 (BatchNo) 24×24×256 1024 Conv2d_10

add_2 (Add) 24×24×256 -- batch_normalization_10

activation_6

Activation_9 (activation) 24×24×256 -- Add_2

Conv2d_11 (Conv2d) 24×24×64 16448 activation_9

batch_normalization_11 (BatchNo) 24×24×64 256 Conv2d_11

Activation_10 (activation) 24×24×64 -- batch_normalization11

Conv2d_12 (Conv2d) 24×24×64 36928 Activation_10

batch_normalization_12 (BatchNo) 24×24×64 256 Conv2d_12

Activation_11 (activation) 24×24×64 -- batch_normalization_12

Conv2d_13 (Conv2d) 24×24×256 16640 Activation_11

batch_normalization_13 (BatchNo) 24×24×256 1024 Conv2d_13

37

add_3 (Add) 24×24×256 -- batch_normalization_13

activation_9

Activation_12 (activation) 24×24×256 -- Add_3

Conv2d_14 (Conv2d) 24×24×128 32896 activation_12

batch_normalization_14 (BatchNo) 24×24×128 512 Conv2d_14

Activation_13 (activation) 24×24×128 -- batch_normalization_14

Conv2d_15 (Conv2d) 12×12×128 147584 Activation_13

batch_normalization_15 (BatchNo) 12×12×128 512 Conv2d_15

Activation_14 (activation) 12×12×128 -- batch_normalization_15

Conv2d_16 (Conv2d) 12×12×512 66048 Activation_14

Conv2d_17 (Conv2d) 12×12×512 131584 Activation_12

batch_normalization_16 (BatchNo) 12×12×512 2048 Conv2d_16

batch_normalization_17 (BatchNo) 12×12×512 2048 Conv2d_17

add_4 (Add) 12×12×512 -- batch_normalization_16

batch_normalization_17

Activation_15 (activation) 12×12×512 -- Add_4

Conv2d_18 (Conv2d) 12×12×128 65664 activation_15

batch_normalization_18 (BatchNo) 12×12×128 512 Conv2d_18

Activation_16 (activation) 12×12×128 -- batch_normalization_18

Conv2d_19 (Conv2d) 12×12×128 147584 Activation_16

batch_normalization_19 (BatchNo) 12×12×128 512 Conv2d_19

Activation_17 (activation) 12×12×128 -- batch_normalization_19

Conv2d_20 (Conv2d) 12×12×512 66048 Activation_17

batch_normalization_20 (BatchNo) 12×12×512 2048 Conv2d_20

add_5 (Add) 12×12×512 -- batch_normalization_20

activation_15

Activation_18 (activation) 12×12×512 -- Add_5

Conv2d_21 (Conv2d) 12×12×128 65664 activation_18

batch_normalization_21 (BatchNo) 12×12×128 512 Conv2d_21

Activation_19 (activation) 12×12×128 -- batch_normalization_21

Conv2d_22 (Conv2d) 12×12×128 147584 Activation_19

batch_normalization_22 (BatchNo) 12×12×128 512 Conv2d_22

Activation_20 (activation) 12×12×128 -- batch_normalization_22

Conv2d_23 (Conv2d) 12×12×512 66048 Activation_20

batch_normalization_23 (BatchNo) 12×12×512 2048 Conv2d_23

add_6 (Add) 12×12×512 -- batch_normalization_23

activation_18

Activation_21 (activation) 12×12×512 -- Add_6

Conv2d_24 (Conv2d) 12×12×128 65664 activation_21

batch_normalization_24 (BatchNo) 12×12×128 512 Conv2d_24

Activation_22 (activation) 12×12×128 -- batch_normalization_24

Conv2d_25 (Conv2d) 12×12×128 147584 Activation_22

batch_normalization_25 (BatchNo) 12×12×128 512 Conv2d_25

Activation_23 (activation) 12×12×128 -- batch_normalization_25

Conv2d_26 (Conv2d) 12×12×512 66048 Activation_23

batch_normalization_26 (BatchNo) 12×12×512 2048 Conv2d_26

add_7 (Add) 12×12×512 -- batch_normalization_26

38

activation_21

Activation_24 (activation) 12×12×512 -- Add_7

Conv2d_27 (Conv2d) 12×12×256 131328 activation_24

batch_normalization_27 (BatchNo) 12×12×256 1024 Conv2d_27

Activation_25 (activation) 12×12×256 -- batch_normalization_27

Conv2d_28 (Conv2d) 12×12×256 590080 Activation_25

batch_normalization_28 (BatchNo) 12×12×256 1024 Conv2d_28

Activation_26 (activation) 12×12×256 -- batch_normalization_28

Conv2d_29 (Conv2d) 12×12×1024 263168 Activation_26

Conv2d_30 (Conv2d) 12×12×1024 525312 Activation_24

batch_normalization_29 (BatchNo) 12×12×1024 4096 Conv2d_29

batch_normalization_30 (BatchNo) 12×12×1024 4096 Conv2d_30

add_8 (Add) 12×12×1024 -- batch_normalization_29

batch_normalization_30

Activation_27 (activation) 12×12×1024 -- Add_8

Conv2d_31 (Conv2d) 12×12×256 262400 activation_27

batch_normalization_31 (BatchNo) 12×12×256 1024 Conv2d_31

Activation_28 (activation) 12×12×256 -- batch_normalization_31

Conv2d_32 (Conv2d) 12×12×256 590080 Activation_28

batch_normalization_32 (BatchNo) 12×12×256 1024 Conv2d_32

Activation_29 (activation) 12×12×256 -- batch_normalization_32

Conv2d_33 (Conv2d) 12×12×1024 263168 Activation_29

batch_normalization_33 (BatchNo) 12×12×1024 4096 Conv2d_33

add_9 (Add) 12×12×1024 -- batch_normalization_33

activation_27

Activation_30 (activation) 12×12×1024 -- Add_9

Conv2d_34 (Conv2d) 12×12×256 262400 activation_30

batch_normalization_44 (BatchNo) 12×12×256 1024 Conv2d_34

Activation_31 (activation) 12×12×256 -- batch_normalization_34

Conv2d_35 (Conv2d) 12×12×256 590080 Activation_31

batch_normalization_35 (BatchNo) 12×12×256 1024 Conv2d_35

Activation_32 (activation) 12×12×256 -- batch_normalization_35

Conv2d_36 (Conv2d) 12×12×1024 263168 Activation_32

batch_normalization_36 (BatchNo) 12×12×1024 4096 Conv2d_36

add_10 (Add) 12×12×1024 -- batch_normalization_36

activation_30

Activation_33 (activation) 12×12×1024 -- Add_10

Conv2d_37 (Conv2d) 12×12×256 262400 activation_33

batch_normalization_37 (BatchNo) 12×12×256 1024 Conv2d_37

Activation_34 (activation) 12×12×256 -- batch_normalization_37

Conv2d_38 (Conv2d) 12×12×256 590080 Activation_34

batch_normalization_38 (BatchNo) 12×12×256 1024 Conv2d_38

Activation_35 (activation) 12×12×256 -- batch_normalization_38

Conv2d_39 (Conv2d) 12×12×1024 263168 Activation_35

batch_normalization_39 (BatchNo) 12×12×1024 4096 Conv2d_39

add_11 (Add) 12×12×1024 -- batch_normalization_39

activation_33

39

Activation_36 (activation) 12×12×1024 -- Add_11

Conv2d_40 (Conv2d) 12×12×256 262400 activation_36

batch_normalization_40 (BatchNo) 12×12×256 1024 Conv2d_40

Activation_37 (activation) 12×12×256 -- batch_normalization_40

Conv2d_41 (Conv2d) 12×12×256 590080 Activation_37

batch_normalization_41 (BatchNo) 12×12×256 1024 Conv2d_41

Activation_38 (activation) 12×12×256 -- batch_normalization_41

Conv2d_42 (Conv2d) 12×12×1024 263168 Activation_38

batch_normalization_42 (BatchNo) 12×12×1024 4096 Conv2d_42

add_12 (Add) 12×12×1024 -- batch_normalization_42

activation_36

Activation_39 (activation) 12×12×1024 -- Add_12

Conv2d_43 (Conv2d) 12×12×256 262400 activation_39

batch_normalization_43 (BatchNo) 12×12×256 1024 Conv2d_43

Activation_40 (activation) 12×12×256 -- batch_normalization_43

Conv2d_44 (Conv2d) 12×12×256 590080 Activation_40

batch_normalization_44 (BatchNo) 12×12×256 1024 Conv2d_44

Activation_41 (activation) 12×12×256 -- batch_normalization_44

Conv2d_45 (Conv2d) 12×12×1024 263168 Activation_41

batch_normalization_45 (BatchNo) 12×12×1024 4096 Conv2d_45

add_13 (Add) 12×12×1024 -- batch_normalization_45

activation_39

Activation_42 (activation) 12×12×1024 -- Add_13

Conv2d_46 (Conv2d) 12×12×512 524800 activation_42

batch_normalization_46 (BatchNo) 12×12×512 2048 Conv2d_46

Activation_43 (activation) 12×12×512 -- batch_normalization_46

Conv2d_47 (Conv2d) 12×12×512 2359808 Activation_43

batch_normalization_47 (BatchNo) 12×12×512 2048 Conv2d_47

Activation_44 (activation) 12×12×512 -- batch_normalization_47

Conv2d_48 (Conv2d) 12×12×2048 1050624 Activation_44

Conv2d_49 (Conv2d) 12×12×2048 2099200 Activation_45

batch_normalization_48 (BatchNo) 12×12×2048 8192 Conv2d_48

batch_normalization_49 (BatchNo) 12×12×2048 8192 Conv2d_49

add_14 (Add) 12×12×2048 -- batch_normalization_48

batch_normalization_49

Activation_45 (activation) 12×12×2048 -- Add_14

Conv2d_50 (Conv2d) 12×12×512 1049088 activation_45

batch_normalization_50 (BatchNo) 12×12×512 2048 Conv2d_50

Activation_46 (activation) 12×12×512 -- batch_normalization_50

Conv2d_51 (Conv2d) 12×12×512 2359808 Activation_46

batch_normalization_51 (BatchNo) 12×12×512 2048 Conv2d_51

Activation_47 (activation) 12×12×512 -- batch_normalization_51

Conv2d_52 (Conv2d) 12×12×2048 1050624 Activation_47

batch_normalization_52 (BatchNo) 12×12×2048 8192 Conv2d_52

add_15 (Add) 12×12×2048 -- batch_normalization_52

activation_45

Activation_48 (activation) 12×12×2048 -- Add_15

40

Conv2d_53 (Conv2d) 12×12×512 1049088 activation_48

batch_normalization_53 (BatchNo) 12×12×512 2048 Conv2d_53

Activation_49 (activation) 12×12×512 -- batch_normalization_53

Conv2d_54 (Conv2d) 12×12×512 2359808 Activation_49

batch_normalization_54 (BatchNo) 12×12×512 2048 Conv2d_54

Activation_50 (activation) 12×12×512 -- batch_normalization_54

Conv2d_55 (Conv2d) 12×12×2048 1050624 Activation_50

batch_normalization_55 (BatchNo) 12×12×2048 8192 Conv2d_55

add_16 (Add) 12×12×2048 -- batch_normalization_55

activation_48

Activation_51 (activation) 12×12×2048 -- Add_16

average_pooling2d_1 (AveragePool) 1×1×2048 -- activation_51

average_pooling2d_2 (AveragePool) 2×2×2048 -- activation_51

average_pooling2d_3 (AveragePool) 3×3×2048 -- activation_51

average_pooling2d_4 (AveragePool) 6×6×2048 -- activation_51

Conv2d_56 (Conv2d) 1×1×512 1049088 average_pooling2d_1

Conv2d_57 (Conv2d) 2×2×512 1049088 average_pooling2d_2

Conv2d_58 (Conv2d) 3×3×512 1049088 average_pooling2d_3

Conv2d_59 (Conv2d) 6×6×512 1049088 average_pooling2d_4

lambda_1 (Lambda) 12×12×512 -- conv2d_56

lambda_2 (Lambda) 12×12×512 -- conv2d_57

lambda_3 (Lambda) 12×12×512 -- conv2d_58

lambda_4 (Lambda) 12×12×512 -- conv2d_59

concatenate_1 (Concatenate) 12×12×4096 -- activation_51

lambda_1

lambda_2

lambda_3

lambda_4

Conv2d_60 (Conv2d) 12×12×512 18874880 concatenate_1

batch_normalization_56 (BatchNo) 12×12×512 2048 Conv2d_60

Activation_52 (activation) 12×12×512 -- batch_normalization_56

dropout_1 (Dropout) 12×12×512 -- Activation_52

Conv2d_61 (Conv2d) 12×12×2 1026 dropout_1

conv2d_transpose_1 (Conv2DTrans) 96×96×2 1026 Conv2d_61

Activation_53 (activation) 96×96×2 -- conv2d_transpose_1

41

8.3. Appendix 3

Table 8-3. Architecture of SegNet

Layer (type) Output shape Param #

Img (Inputlayer) 96×96×3 --

Block1_conv1 (Conv2D) 96×96×64 1792

Block1_conv2 (Conv2D) 96×96×64 36928

Block1_pool (MaxPooling2D) 48×48×64 --

Block2_conv1 (Conv2D) 48×48×128 73856

Block2_conv2 (Conv2D) 48×48×128 147584

Block2_pool (MaxPooling2D) 24×24×128 --

Block3_conv1 (Conv2D) 24×24×256 295168

Block3_conv2 (Conv2D) 24×24×256 590080

Block3_conv3 (Conv2D) 24×24×256 590080

Block3_pool (MaxPooling2D) 12×12×256 --

Block4_conv1 (Conv2D) 12×12×512 1180160

Block4_conv2 (Conv2D) 12×12×512 2359808

Block4_conv3 (Conv2D) 12×12×512 2359808

Block4_pool (MaxPooling2D) 6×6×512 --

Block5_conv1 (Conv2D) 6×6×512 2359808

Block5_conv2 (Conv2D) 6×6×512 2359808

Block5_conv3 (Conv2D) 6×6×512 2359808

Block5_pool (MaxPooling2D) 3×3×512 --

dropout_1 (Dropout) 3×3×512 --

de_pool2d_1 (DePool2D) 6×6×512 --

Conv2d_1 (Conv2d) 6×6×512 2359808

batch_normalization_1 (BatchNo) 6×6×512 2048

Activation_1 (activation) 6×6×512 --

Conv2d_2 (Conv2d) 6×6×512 2359808

batch_normalization_2 (BatchNo) 6×6×512 2048

Activation_2 (activation) 6×6×512 --

Conv2d_3 (Conv2d) 6×6×512 2359808

batch_normalization_3 (BatchNo) 6×6×512 2048

Activation_3 (activation) 6×6×512 --

dropout_2 (Dropout) 6×6×512 --

de_pool2d_2 (DePool2D) 12×12×512 --

Conv2d_4 (Conv2d) 12×12×512 2359808

batch_normalization_4 (BatchNo) 12×12×512 2048

Activation_4 (activation) 12×12×512 --

Conv2d_5 (Conv2d) 12×12×512 2359808

batch_normalization_5 (BatchNo) 12×12×512 2048

Activation_5 (activation) 12×12×512 --

Conv2d_6 (Conv2d) 12×12×512 2359808

batch_normalization_6 (BatchNo) 12×12×512 2048

Activation_6 (activation) 12×12×512 --

dropout_3 (Dropout) 12×12×512 --

42

de_pool2d_3 (DePool2D) 24×24×512 --

Conv2d_7 (Conv2d) 24×24×256 1179904

batch_normalization_7 (BatchNo) 24×24×256 1024

Activation_7 (activation) 24×24×256 --

Conv2d_8 (Conv2d) 24×24×256 590080

batch_normalization_8 (BatchNo) 24×24×256 1024

Activation_8 (activation) 24×24×256 --

dropout_4 (Dropout) 24×24×256 --

de_pool2d_4 (DePool2D) 48×48×256 --

Conv2d_9 (Conv2d) 48×48×128 295040

batch_normalization_9 (BatchNo) 48×48×128 512

Activation_9 (activation) 48×48×128 --

Conv2d_10 (Conv2d) 48×48×128 147584

batch_normalization_10 (BatchNo) 48×48×128 512

Activation_10 (activation) 48×48×128 --

de_pool2d_5 (DePool2D) 96×96×128 --

Conv2d_11 (Conv2d) 96×96×64 73792

batch_normalization_11 (BatchNo) 96×96×64 256

Activation_11 (activation) 96×96×64 --

Conv2d_12 (Conv2d) 96×96×64 36928

batch_normalization_12 (BatchNo) 96×96×64 256

Activation_12 (activation) 96×96×64 --

Conv2d_13 (Conv2d) 96×96×2 130

Activation_13 (activation) 96×96×2 --

8.4. Appendix 4

Figure 8-1 PSPNet training curve

43

8.5. Appendix 5

Figure 8-2 U-Net training curve

8.6. Appendix 6

Figure 8-3 SegNet training curve

