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ABSTRACT 

Smallholder farms play a vital role in agricultural production in many developing countries around the world . 

As basic geographic information of agricultural resources, accurate boundaries of smallholder farm fields 

are important and indispensable geo-information for farmers, managers and policymakers to help them 

manage and utilize their agricultural resource. Beyond that, accurate delineation of smallholder farm fields 

could promote the sustainable development of agriculture. However, traditional manual methods such as 

image digitisation by visual inspection of satellite images or filed campaigns are inefficient and time-

consuming. Therefore, this research aims to propose an automated algorithm by fully convolutional neural 

networks (FCN) in combination with generative adversarial networks (GAN) to improve the delineation 

accuracy of smallholder farms using Very High Resolution (VHR) images. This research consists of two 

parts. In the first part, we investigate three state-of-the-art fully-convolutional deep network architectures 

(U-Net, PSPNet, SegNet) to find the optimal architecture in the contour detection task of smallholder farm 

fields. After that, we aim to conduct the optimal FCN architecture in combination with GAN methods to 

improve the accuracy of contour detection. Thus, the second part explores the potentials of two GAN 

methods (ContourGAN and pixel2pixelGAN) for this specific task.  

The study area is in the Sudano-Sahelian savanna region of northern Nigeria, around the city of Kofa, Bebeji 

Local Government Area, Kano State. It is a 3×2 km area which composes of abundant small fields and 

most of them have three or more crops. The VHR image dataset consists of six 1000×1000 pixels tiles 

extracted from a WorldView-3 image acquired on September 25th 2015. By comparing different methods 

in this research based on the F1-score, we aim to propose an optimal method for this contour detection 

task of smallholder farm fields. 

Keywords 

Smallholder farm, contour detection, fully convolutional neural network, generative adversarial networks 
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1. INTRODUCTION 

Smallholder farms whose areas are from 1 to 10 hectares play a vital role in agricultural production in many 

developing countries around the world. Smallholder farms account for almost 75% of the world's 

agricultural lands, and most of them are less than 2 hectares (Lowder et al., 2016). Smallholder farms often 

take the family as a unit, and most farmers lack professional knowledge about how to manage their farms. 

As basic geographic feature information of precision agriculture, the accurate boundaries of smallholder 

farm fields are indispensable geo-information for farmers, managers, and policymakers to help them manage 

and utilize their agricultural resources. Beyond that, the precise delineation of smallholder farm fields could 

promote the sustainable development of agriculture, which is vital for ensuring food security in developing 

countries.  

 

Based on these objectives, we aim to acquire the spatial delineation information from the Very High 

Resolution (VHR) satellite images because the traditional manual methods are inefficient and time-

consuming (García-Pedrero et al., 2017). Besides, it is a challenging task because their boundaries which 

are based on vague delineation and irregular shapes, are difficult to delineate. Moreover, the complex 

textual patterns and mixed-cropping systems between fields also increase the difficulty of standard 

delineation. Therefore, we need a new automatic and accurate delineation algorithm to deal with these 

problems. 

 

In recent years, deep learning networks are widely applied in contour detection tasks. Compared with 

other methods, deep learning approaches could learn and extract contextual features better at different 

layers based on spatial information (Bergado et al., 2016). However, deep learning models including fully 

convolutional neural networks (FCNs) usually face a thorny problem because these models theoretically 

need an enormous quantity of training samples to learn general models , and this problem will have a bad 

influence on the classification results. In the remote sensing field, it is impractical and time-consuming to 

label all the training images because of its tremendous volume and abundant geographic information, 

especially the contours. Thus, how to increase the number of training data and samples is a topical 

problem. This research aims to introduce generative adversarial networks (GANs) to tackle this problem 

and improve the accuracy of boundary delineation techniques. Since GANs were proposed by Ian 

Goodfellow in 2014 (Goodfellow et al., 2014), GANs give researchers a new and effective method for 

automatic delineation. It is proved that the adversarial training method could be used for semantic 

segmentation models because it could detect and correct the inconsistencies between ground truth and 

segmentation results (Luc et al., 2016). The GANs consist of the a generator and a discriminator, which 

could keep the adversarial improvements. Different from the other generative models, the GANs use the 

generators and discriminators as adversaries with respect to each other to produce the samples so that 

they can improve during the adversarial process (Hong et al., 2017). As an effective learning method, 

GANs could deal with the problems such as limited training samples because its generator could create 

virtual samples for training data, which could improve the classification performance (Lin et al., 2017). 

Based on the strategy of Persello et. al (2019), this research aims to pay more attention to the first step 

which is sparse contour detection in contour detection tasks by introducing GAN.  

 

Based on the above, how to extract accurate contours of smallholder farm fields is a challenging topic and 

here this research aims to propose a high-accuracy algorithm using FCNs in combination with GAN to 

improve the delineation accuracy of smallholder farms from VHR images. 
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1.1. Research objectives and questions 

Firstly, VHR satellite images of smallholder farms include complex geo-information and the delineation is 

difficult due to the specific attributes. In this research, we want to use FCN to extract the preliminary 

boundaries of smallholder farm fields in the VHR images. It is prepared for the following study. However, 

due to the limited training samples in remote sensing data, the accuracy of output still can be improved. 

Thus, we want to combine it with the GAN and improve the accuracy in boundary detection tasks after 

adversarial training. Finally, an effectual method to evaluate the accuracy of automatic delineation is 

required such as precision, error and degree of confidence because the aim is to improve the segmentation 

accuracy.  

 

Therefore, the improved accuracy of delineation is essential. The main objective of this research is to 

develop an automated technique based on GANs to automatically delineate smallholder farms from VHR 

satellite images. This aim could be achieved through several specific objectives as follows: 

1. To perform an automatic delineation by using FCN. 

2. To perform an automatic delineation by introducing GAN. 

3. To choose and improve the FCN and GAN architecture for the delineation of agricultural fields. 

4. To evaluate and compare the delineation results of different methods.   

 

Based on the research gap and the main goal, here we can list four specific research questions as follows:  

1. How to perform automatic delineation by FCN and GAN? 

2. How to combine FCN with GAN for the delineation of agricultural fields? 

3. Which architecture of FCN and GANs could have a better performance in terms of smallholder farm 

fields? 

1.2. Background and related work 

Segmentation algorithms 

Image segmentation aims to divide the image into connected regions or categories which correspond to 

different objects or parts of objects. Some typical algorithms such as mean shift, split and merge, region 

growing and multiresolution segmentation are applied in many fields. Mean shift algorithm seeks modes of 

the given set of points. Given specific kernel and bandwidth, it repeatedly centers the search window by 

mean of the data until convergence and assigns points that lead to nearby modes to the same cluster 

(Comaniciu & Meer, 2002). In split and merge algorithm, 'split' means that the whole image is divided 

iteratively in elementary homogeneous regions on the basis of a predefined criterion and 'merge' means 

that adjacent regions are merged if they satisfy the predefined homogeneity criterion (Chen & Pavlidis, 

1979). As to region growing algorithm,  it means repeatedly label the neighbour of the seed point if their 

attributes are similar until there is no more pixel that could be labelled (Adams & Bischof, 1994). 

 

Contour detection algorithms 

Contour detection aims to detect object contours. For efficient and accurate delineation, many researchers 

proposed a variety of methods based on image segmentation.  Before the deep learning models, contour 

detection has a long history in image processing and computer vision fields and it used to be realized by 

Roberts (Roberts, 1963), Sobel (Sobel, 1972), Canny  and other operators. Some researches aim to extract 

the colour, brightness and texture as features and train an edge classifier for pixels (Martin et al., 2004a). 

The delineation of large and man-made objects can be well extracted with edge detection and region 

segmentation from satellite images (Mueller et al., 2004). From the attributes of the images, a segmentation 

method based on tonal and textural gradients of each region was proposed and Snakes Algorithm can 

improve the detection of their field boundaries (Tiwari et al., 2009). Besides, the field-based sub-

boundaries are used to perform boundary analysis by the perceptual grouping (Turker & Kok, 2013). 
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Martin et. Al (2014) proposed features which are extracted from colour, brightness and texture to train a 

contour based on pixels.  In conclusion, traditional segmentation methods are sensitive to intrinsic 

variability and dependent on parameter selection which will cause an extra error in segmentation 

processing (García-Pedrero et al., 2017). 

 

Based on the above traditional automatic and semiautomatic delineation, more and more researchers turn 

sight to machine learning and neural networks as artificial intelligence technology becomes mature. Short 

and long skip connections are added to extend FCNs to build highly deep FCNs and the results show the 

noticeable improvements in biomedical image segmentation (Drozdzal et al., 2016). The combination of 

FCN and conditional random fields approve its high expansibility and accuracy in CT abdomen images 

(Christ et al., 2016). Since the FCN could be widely applied in biological image processing, it could work 

for delineation of remote sensing images as well (Maggiori et al., 2016). An encoder-decoder FCN called 

FCED was proposed by image-to-image architecture for contour detection (J. Yang et al., 2016). Xie and 

Tu (2015) propose an edge detection algorithm that uses a Fully Convolutional Network (FCN) with 

multiple side outputs, named holistically-nested architecture, for a deeply supervised training and it has a 

promising performance (Xie & Tu, 2015). In this framework, raw images are transformed into contour 

information and nested contours are generated by feature maps. Besides, the FCN has high computational 

efficiency and less information loss because of upsampling and skip structure. Irrelevant edges will be 

discarded when detecting field boundaries by trained FCN and it is proved that FCN for pixel-wise 

classification has good performance in boundary detection tasks (Shelhamer et al., 2017). Persello et. Al 

(2019) proposed an approach which consists of sparse contour detection, closed segment extraction and 

final contour generation for delineation of smallholder farm fields by FCN and combinatorial grouping 

(Persello et al., 2019). 

   

Generative Adversarial Networks 

In recent researches, GANs are one of the exciting methods in many fields including pixel classification. 

Although GAN has shown its great potential in image synthesis and pixel classification, it still faces many 

problems such as training instability and optimization difficulties. More and more architectures were 

proposed for these issues. Deep convolutional GAN is proved as an effective approach to data synthesis 

and pixel classification (Radford et al., 2015). The discriminator of Auxiliary classifier GAN (AC-GAN) is 

modified to be a softmax classifier which means it could output multiclass label probabilities (Zhu et al., 

2018). Zhu et al. (2018) also proposed 1D-GAN and 3D-GAN which are modified by the theory of AC-

GAN for image classification based on hyperspectral satellite images. Multiple-layer feature-matching 

generative adversarial networks (MARTA GANs) which are based on DCGAN is also proposed for 

unsupervised image classification in remote sensing fields (Lin et al., 2017). The MARTA GANs 

introduces a multiple-feature-matching layer by perceptual loss and feature matching loss for high-

resolution remote sensing images. Moreover, Wasserstein GAN (WGAN) and WGAN-Gradient penalty 

(WGAN-GP) gain promising results in hyperspectral image classification (Sun & Bourennane, 2019). In 

ContourGAN architectures, they find the training instability is not only from the generator or 

discriminator but also from the adversarial training procedure (H. Yang et al., 2019). In other study fields, 

Perceptual GAN is used to improve the detection rate of small objects by generating super-resolved 

representations for small objects (Li et al., 2017). FCN and GAN are applied in some specific 

segmentations such as sclera segmentation (Lucio et al., 2018).  
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1.3. Main contributions 

Inspired by these methods and architecture in the above sections, this research aims to propose an 

automated algorithm by combining FCNs with GANs to improve the delineation accuracy of smallholder 

farms using VHR images. This research consists of two parts. In the first part, we investigate three state-

of-the-art fully-convolutional deep network architectures (U-Net, PSPNet, SegNet) to find the optimal 

architecture in the contour detection task of smallholder farm fields. The second part explores the 

potentials of two GAN methods (ContourGAN and pixel2pixelGAN) for this specific task.  

The main contributions of this research can be summarized as follows: 

⚫ An improved approach which performs optimal FCN architecture in combination with GAN 

methods for automatic delineation of smallholder farm fields 

⚫ The introduction of GAN-based technique for VHR satellite images in contour detection tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



TITLE OF THESIS 

11 

2. STUDY AREA AND DATA 

In this research, the study area is in the Sudano-Sahelian savanna region of northern Nigeria, around the 

city of Kofa, Bebeji Local Government Area, Kano State. It is a 3×2 km2 area which composes of 

abundant small fields and most of them have three or more crops. The VHR image dataset consists of six 

1000×1000 tiles extracted from a WorldView-3 image acquired on September 25th 2015. As figure 2-1 

shows, TR data (TR1, TR2 & TR3) is for training and TS data (TS1, TS2 & TS3) is for accuracy 

assessment. 

 

Figure 2-1. study area of Kofa (Persello et al., 2019) 

 

In this dataset, WorldView-3 satellite has one panchromatic band (resolution: 0.31m), 8 multispectral 

visible and near-infrared bands (resolution: 1.24m), 8 short-wave infrared bands (resolution: 3.7m) and 12 

CAVIS bands (resolution: 30m).  

 

 

 

 

 

 

 

 

 

 



TITLE OF THESIS 

12 

3. METHODS 

In this section, we aim to present some methods by GAN-based techniques to improve the delineation 

accuracy of smallholder farms from VHR images. From many state-of-the-art architectures of FCN, we 

select three models which are U-Net, PSPNet and SegNet to do the pixel classification. Then, we will 

explain the details of these methods in the following sub-sections. Some of them will get better results and 

some get worse, but all of them are worthwhile experiments in this new field. 

3.1. FCN 

3.1.1. U-Net 

U-net was originally used for biomedical image segmentation, and its architecture consists of one 

contraction network (encoder) and one expansion network (decoder) (Ronneberger et al., 2015). The main 

idea is to add a network similar to the previous one behind the shrinking network, where the pooling 

operator will be replaced by the up-sampling operator. As a result, these layers increase the resolution of 

the output. For positioning, the high-resolution features from the contraction network are combined with 

the up-sampled output. The continuous convolution layer can then learn to assemble more accurate 

outputs based on this information. 

⚫ The encoder part is similar to a typical convolution network structure like VGG. It consists of two 

repeated 3×3 convolutional kernels (unpadded convolution). The encoder uses the modified linear 

unit (rectified linear unit, ReLU) as activation function and downsampling (step is 2 with 2×2 

convolutional kernel) as biggest pooling operation. Under each sampling steps, the number of all 

channels will be double. 

⚫ In the decoder part, each step includes upsample of the feature graph. Then 2×2 convolutional 

kernels are used for convolution operation (up-convolution) to reduce the number of feature 

channels by half. Then the corresponding clipped feature graph in the cascade contraction network; 

Then, two 3×3 convolutional kernels are used for convolutional operation, and both of them use 

ReLU activation function. In the last layer, the 1×1 convolutional kernel is used for a convolutional 

operation to map the output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1. Architecture of U-Net (Ronneberger et al., 2015) 
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In the figure above, each blue block represents a multi-channel feature graph, the number of channels in 

the feature graph is marked at the top, the x-y size is set at the bottom left edge of the block, and the 

arrows of different colours represent different operations.  

The main idea of FCN in semantic segmentation is to use continuous layers to complement the usual 

shrinkage network, adding sampling layers to the location of the discriminant output, which increases the 

resolution of the output layer for positioning (Long et al., 2014). The high separation rate from the 

contraction path is combined with the up-sampled output, and based on this information, a continuous 

convolution layer can learn to assemble more accurate outputs. The difference between U-net and 

common FCN is that the up-sampling of U-net still has a large number of channels, which enables the 

network to spread the context information to a higher resolution. As a result, the expansion path and the 

contraction path are symmetric, forming a u-shaped shape. The network has no full connection layer, but 

only an effective part of each convolution layer.  

 

3.1.2. PSPNet 

The main problem with the current fcn-based model is the lack of a suitable strategy to take advantage of 

the category clues in the global scenario. For the understanding of typical complex scenes, spatial pyramid 

pooling has been widely used in the past to obtain global image-level features. This spatial statistical 

method provides a good descriptor for the overall scene analysis. In order to combine the appropriate 

global characteristics, the pyramid scenario resolution network (PSPNet) was proposed (Zhao et al., 2017). 

In addition to the traditional convolutional FCN for pixel prediction, it extended the pixel level features to 

the pyramid pooling which is shown in figure 3-2 (c). Local and global clues work together to make the 

final prediction more reliable. 

Figure 3-2. Architecture of PSPNet (Zhao et al., 2017) 

 

From the figure 3-2, we could understand the network architecture of PSPNet. After the input image, the 

feature map is extracted by using the pre-trained image with ResNet. The size of the feature map is 1/8 of 

the input image, as shown in (b). On the feature map, it uses the pyramid pooling module in (c) to collect 

context information. Using a 4-tier pyramid structure, the pooled kernel covers all, half, and small portions 

of the image. They are merged into global prior information. In the last part of (c), it concats the previous 

pyramid feature map with the original feature map. Then convolution is performed to generate the final 

prediction graph in (d). 

PSPNet provides a valid global context prior for pixel-level scene resolution. Pyramid pooling modules 

can collect hierarchical information and are more representative than global pooling. In terms of 

computation, PSPNet is not much more than the original empty convolution FCN network (Zhao et al., 

2017). 
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3.1.3. SegNet 

As shown in the figure above, SegNet is a symmetric network composed of an encoder network (left) and 

a decoder network (right). After inputting an RGB image, the network classifies the objects in the image 

(for example, "road", "car", "building", etc.) according to the semantic information of the objects in the 

image, and finally generates a segmentation image (Badrinarayanan et al., 2017).  

 

 
Figure 3-3. Architecture of SegNet (Badrinarayanan et al., 2017) 

 

⚫ The encoder is a series of convolutional networks. The network consists of a volume base layer, a 

pooling layer and a BatchNormalization layer. The volume base is responsible for obtaining the local 

features of the image, while the pooling layer samples the image and transmits the scale-invariant 

features to the next layer, while BN is mainly used to normalize the distribution of the training image 

and accelerate learning. In a nutshell, encoder classifies and analyzes the low-level local pixel values of 

an image to obtain higher-order semantic information.  

⚫ Decoder collects these semantic information and corresponds the same object to the corresponding 

pixel, each object is represented by a different colour. Now that the Encoder has all the object 

information and the general location information, the next step is to map these objects to specific 

pixels. The work is done by Decoder. Decoder carries out up-sampling on the feature image after the 

reduction and then carries out convolution processing on the image after the reduction. The purpose 

is to improve the geometric shape of the object and make up for the loss of detail caused by the 

object shrinking by pooling layer in Encoder. 

 

The source information for the pooling points is stored in a method called Pooling Indices. In the pooling 

layer processing of the encoder network, it will record which region the 1x1 feature point comes from the 

original layer after each Pooling and this information is called Pooling Indices. Pooling Indices will be 

used in the decoder network. Since SegNet is a symmetric network, when the feature map needs to be 

upsampled in the decoder network, we can use the Pooling Indices of the corresponding Pooling layer to 

determine which position a 1x1 feature point should be placed in the 2x2 region after the upsampling. 

 

 

 

 

 

 

 

 

 



TITLE OF THESIS 

15 

3.2. GAN 

3.2.1. ContourGAN 

The traditional GAN used in pixel-wise classification consists of two parts, which are a generator and a 

discriminator. The generator is to generate realistic samples, and the discriminator is used to determine 

whether a sample is true or false. Based on the traditional architecture of GAN, a GAN-based method 

called ContourGAN was proposed to extract contours by foreground texture rather than noise pixels 

from the background(H. Yang et al., 2019). The traditional image-to-image models only consider the loss 

between the prediction and the real value of the ground and they ignore the similarity between the result 

data distribution and the real value of the ground. On this basis, this generative adversarial network is 

proposed to improve the accuracy of contour detection. 

 

Figure 3-4. Architecture of ContourGAN (H. Yang et al., 2019) 
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3.2.1.1. Generator and discriminator 

 

 

 
Figure 3-5. Generator and discriminator of ContourGAN 

Figure 3-5 shows its architecture. In CountourGAN, the generator is an encoder-decoder model which 

aims to extract contour information from the input, and the discriminator is a CNN that calculates the 

loss of contour results based on ground truth. CountourGAN consists of a generator which is an encoder-

decoder model to extract input image edge information and a discriminator which is a CNN to distinguish 

generated contours from the ground truth. The encoder conducts downstream sampling of the input 

image through the max-pooling layer, while the decoder conducts upstream sampling of the feature map 

calculated from the last layer of the encoder. The convolution layer is transposed to obtain the mapping to 

ensure the consistency with the input size. Each convolution layer in the encoder is connected to the 

corresponding convolution layer in the decoder.  

 

3.2.1.2. Objective and loss function 

⚫ Proposed method 

In the proposed method of ContourGAN, the I and C denotes the raw input images and labels. D and G 

denote the discriminator and generator networks which are used to solve the adversarial minimum 

problem. After we input training images 𝐼 into the generator 𝐺𝜃𝐺 , the results will be input into the 

discriminator 𝐷𝜃𝐷 to calculate the loss for the adversarial training process. 

  

min
𝜃𝐺

max
𝜃𝐷

log 𝐷𝜃𝐷(𝐶) + log(1 − 𝐷𝜃𝐷(𝐺𝜃𝐺 (𝐼)))              Equation 1 

 
⚫ Content loss 

Content loss of the ContourGAN is the pixel-wise value which calculates the weights of positive and 

negative pixels (edge and non-edge). γ and β in Equation 2 respectively denote the weights of non-edge 

and edge pixels. The classification loss is implemented as binary cross-entropy. 
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𝜏(𝐶, �̃�) = −
1

𝑁
∑ 𝛾𝐶𝑗 log 𝐶�̃� + 𝛽(1 − 𝐶𝑗 )log(1 − 𝐶�̃�)𝑁

𝑛=1           Equation 2 

 

 
⚫ Adversarial loss 

Adversarial loss of the ContourGAN is used to estimate the similarity between the predicted contour and 
available contour information. Thus, the adversarial loss will keep increasing if the discriminator could 

distinguish the predicted contour and ground truth. Equation 4 shows the entire loss function of 

ContourGAN consists of content loss, adversarial loss and regularization. ∝ denotes the weight of the 

adversarial loss in the Equation 4 and it could be modified by different datasets. 

 

𝜏𝑎𝑑𝑣
𝐺 = ∑ − log 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝐼))𝑁

𝑛=1                          Equation 3 

 

𝜏𝐺𝐴𝑁 = 𝜏(𝐶, �̃�)+ ∝ 𝜏𝑎𝑑𝑣
𝐺 + 𝜆||𝜃||2                       Equation 4 

 

3.2.2. Pixel2pixel GAN 

However, one problem with this traditional GAN is that all the random noise may produce the same 

sample after each training. In order to produce different samples, the condition GAN comes out, namely 

cGAN. The cGAN is actually exactly the same as GAN in the training process, except that for the input 

sample, there is also an extra condition which can be a label or other generalized things (generalized label). 

In pixel2pixel GAN, we should train the generator and discriminator simultaneously during the adversarial 

process. In this specific case, we aim to take satellite images as real samples and try to generate the ground 

truth during the adversarial training. 

 

3.2.2.1. Generator and discriminator 

Figure 3-6. Generator and discriminator of pixel2pixel GAN  (Isola et al., 2016) 
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From the figure 3-6, the thought of the entire framework based on cGAN. The input of the network is a 

data structure of two images which can be thought of as figure and label. From the discriminator part 

above, our white image acts as the role of noise. In other words, we can change the white image into a 

black image after the generator, and meanwhile, the black image and the white image are superimposed as 

false samples for training. So that we can find that for true and false samples if you want to make the 

discriminator cannot distinguish true and false, the generated black-figure must be more similar to the 

black image of the real sample to meet the conditions because the white figure (such as label) is the same. 

This is also why the combination with black and white as the sample input. 

 

3.2.2.2. Objective and loss function 

The final objective function is expressed as Equation 5, and it consists of common conditional GAN and 

a distance loss. The distance loss could be considered as a function about rebuilding the errors which 

mean the error between the white image generated by the generator (G(x,z)) and the original black image . 

 

 

𝐺 = arg min
𝐺

max
𝐷

𝜏𝑐𝐺𝐴𝑁 (𝐺, 𝐷) +  𝜆𝜏𝐿1(𝐺)                            Equation 5 

 

3.3. Accuracy assessment 

To improve the delineation accuracy of smallholder farms using VHR images., an effective method to 

evaluate the accuracy of automatic delineation is required such as precision, error and degree of 

confidence because the aim is to improve the segmentation accuracy.  In this part, the precision-recall 

framework could be a better choice which is a common method in contour detection evaluation (Martin et 

al., 2004b). Precision means how many selected items are relevant and recall means how many relevant 

items are selected. Beside, it introduces the harmonic mean of precision and recall values as f-

measure/score. The equation of f-measure/score is shown as follows and α is usually evaluated as 1. 

Based on these parameters, precision-recall (PR) curve could be drawn and it visually shows the precision 

and recall performance of the model in the overall samples. The classification performance of a certain 

model will be better if the curve of the model is always above the curves of the other one.  

 

 

 

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                Equation 6 
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4. EXPERIMENT ANALYSIS 

4.1. Experiment setup 

This section describes how we prepare the data and what the architectures of these models are in this 

research. The experiment consists of two parts which are FCN and GAN. The FCN part is to adopt FCN 

network such as U-Net, PSPNet and SegNet to conduct the pixel classification of smallholder farm 

images. The GAN part is to find some methods which could combine with FCN to increase the result of 

the first part. Therefore, we conduct the contour detection based on the U-Net, PSPNet and SegNet to 

find the optimal architecture of FCN in this task. Then, we compare the results of the optimal architecture 

with the different training data by random rotation and GAN. 

4.1.1. Data preparation 

We aim to use FCN and GAN-based techniques to detect the sparse contours by VHR satellite images. 

Therefore, the first thing we should do is to collect the research data.  The VHR image data are six tiles of 

1000×1000 pixels from WorldView-3 data (acquired on September 25th 2015). TR data is for training and 

TS data is for accuracy assessment. In this dataset, the product should be atmospherically corrected, 

orthorectified, and coregistered. After that, it has been corrected that original dataset by human photo-

interpretation and expanded to over 5700 field boundaries. 

 
Table 4-1 Training and testing tiles 

Tile Train Test 

Tile No.1 TR1 -- 

Tile No.2 -- TS1 

Tile No.3 TR2 -- 

Tile No.4 TR3 -- 

Tile No.5 -- TS2 

Tile No.6 -- TS3 

 

Figure 4-1 shows the satellite images and ground truths of Kofa which are the testing data in this research. 

 

           

TR1                                                TR2                                                  TR3 

 
Figure 4-1. Training tiles of Kofa 

 



TITLE OF THESIS 

20 

Figure 4-2 shows the satellite images and ground truths of Kofa which are the testing data in this research. 

 

           

TS1                                              TS2                                                    TS3 

 
Figure 4-2. Testing tiles of Kofa 

 

4.1.2. Model parameters 

In this section, we will discuss about the parameters of different models in this research.  

 

In U-Net, PSPNet and SegNet, we adopt them in this research to conduct pixel-wise classification. Due to 

the limitation of the software usage, the number of training epochs is 200. Patch size of training tiles is 

96×96 and batch size is 32. In addition, the learning rate is 0.0001 and loss function is Categorical cross-

entropy which is often used in single label categorization.  

 

In ContourGAN, we set the global learning rate to 0.00001, and weight decay to 0.00002. Due to the 

limitation of the software usage, the number of training epochs is set to 100. As to the weight of the 

adversarial loss, we set it to 0.01 as initial value.  

 

In pixel2pixel GAN, we set the weight of updating effect to 0.5. The learning rate of this discriminator is 

set to 0.0002. In additional, we set the weight of the adversarial loss to 0.01 as initial value and the training 

epochs is set to 1000 to get a better model. 

4.1.3. software 

Google Colaboratory is an open research tool for machine learning development and research. This tool is 

now free to provide free GPU usage to most AI developers. The neural network framework of this 

research we used is Tensorflow and Keras. The name of GPU is Tesla  T4 and the the memoery of it is 

15079 MiB. 

 

4.2. Results and analysis 

This section will provide all the results of this research. The ground truth is shown as figure 8. Section 

4.2.1 shows the results of FCN architectures (PSPNet, U-Net and SegNet). Section 4.2.2 shows the results 

of optimal FCN architecture in combination with GAN methods. Section 4.2.3 compares and analyze all 

the results of different methods in this research. 
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4.2.1. Results of FCN 

4.2.1.1. PSPNet 

Table 4-2 shows the numerical results for PSPNet including precision, recall and F-score. 

 
Table 4-2 Numerical results of PSPNet 

Tiles Precision Recall F1 score 

TS1 0.746 0.542 0.602 

TS2 0.734 0.543 0.601 

TS3 0.748 0.548 0.611 

Average 0.743 0.544 0.605 

 

Figure 4-3 shows the classification results of PSPNet by three test tiles. The results of three test tiles look 

not very good here because the PSPNet provides global context prior for scenes in pixel-level resolution 

but it is not appropriate for complex satellite images here. 

 

TS1                                              TS2                                                    TS3 

 
Figure 4-3. Results of PSPNet 

4.2.1.2. U-Net 

Table 4-3 shows the numerical results for U-Net including precision, recall and F-score. 

 

Table 4-3 Numerical results of U-Net 

Tiles Precision Recall F1 score 

TS1 0.714 0.572 0.623 

TS2 0.715 0.560 0.613 

TS3 0.729 0.567 0.624 

Average 0.719 0.566 0.620 
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Figure 4-4 shows the classification results of U-Net by three test tiles. The results of three test tiles look 

better than PSPNet because it is originally used for complex biomedical image segmentation and it could 

combine the low-resolution and high-resolution information.  

 

TS1                                              TS2                                                    TS3 

   
Figure 4-4. Results of U-Net 

4.2.1.3. SegNet 

Table 4-4 shows the numerical results for SegNet including precision, recall and F-score. 

 
Table 4-4 Numerical results of SegNet 

Tiles Precision Recall F1 score 

TS1 0.689 0.622 0.651 

TS2 0.704 0.627 0.661 

TS3 0.714 0.617 0.658 

Average 0.702 0.622 0.657 

 

Figure 4-5 shows the classification results of SegNet by three test tiles. Compared with these three 

architectures of FCN, the SegNet performs best in the limited training epochs. Thus, we will adopt the 

SegNet to conduct the pixel classification in this research. 

 

 

TS1                                              TS2                                                    TS3 
Figure 4-5. Results of SegNet 
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4.2.2. Results of GAN 

4.2.2.1. ContourGAN 

During the experiments of ContourGAN, we fix the discriminator network and focus on the generator 

network. In the original architecture of the generator, it is an encoder-decoder FCN architecture with 

some modified layers. For examples, it removed the final pooling layer because it cannot capture 

meaningful information with its small size. Since the SegNet perform best based on the previous 

experiments, we decide to instead the original FCN architecture with SegNet to get contour results.  Figure 

4-6 shows the training curve of this GAN model. We could find that the loss of discriminator doesn’t 

change during the adversarial training and the loss of generator keeps decreasing but it converges to one 

constant at last. It means the whole GAN model cannot perform adversarial training based on this loss 

function. The loss curve of generator which is used to extract contour information from the input means 

that the FCN part could get some contour results but it cannot modify and improve the predictions based 

on this loss function during the adversarial training. Therefore, the discriminator which is used to 

distinguish the predictions and ground truth doesn’t work during the adversarial training. By tuning the 

weight of adversarial loss ∝, the results of this GAN model still perform not good. 

 

 
Figure 4-6. Training loss of ContourGAN 

 

The results of the predictions are too sparse, as shown in figure 4-7. The reason for the bad results might 

be the loss function is not appropriate for the complex satellite images, especially smallholder farms. The 

original loss function is set for the segmentations of the natural image and we haven’t found a better loss 

function for this research so far. In future studies, some other solutions about the loss functions which 

could pay more attention to the complex texture and pattern could be investigated to address this issue, 

especially in complex farm fields. 
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Figure 4-7. Results of ContourGAN 

 

4.2.2.2. Pixel2pixel GAN 

Since the ContourGAN performs not good, then we conduct the pixel2pixel GAN to get better training 

data. In this GAN model, the discriminator defines the relationship between the source images and 

predictions and it is optimized by binary cross entropy and the weight of updating effect is set to 0.5. The 

learning rate of this discriminator is set to 0.0002. The generator part of this GAN model is an U-Net 

architecture mentioned in section 3.1.1. The generator of this GAN model is updated by the adversarial 

loss functions and we set the weight of the adversarial loss to 0.01 as initial value. With the loss functions, 

the generator is forced toward generating more realistic images based on the source images during the 

adversarial training. In this specific research, we take the satellite images of small farmholder fields as real 

samples and the ground truth as targets. We set the number of training epochs to 1000 to get a better 

model. As we know, the training process of GAN model is usually not stable because it aims to find an 

equilibrium between the generator and discriminator models. During the training process, the results 

could be adjusted based on the original ground truth. Therefore, we need to save the weights and models 

every 100 epochs in this experiment to get better outputs and optimal model. 

 

Figure 4-8 shows the training curve of pixel2pixel GAN in this research. We could find that the loss curve 

of generator converges to constant but the loss curve of discriminator is not unstable. Thus, we cannot 

judge it easily. We could review the results of the saved models and choose one of the best models. 
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Figure 4-8. Training loss of Pixel2pixel GAN 

 

Figure 4-9 shows one of the results using pixel2pixel GAN including source images, generated images 

and expected images. The changes between generated images and expected images are based on the 

pixels so that we cannot clarify it by our eyes. Then, we aim to conduct the optimal FCN architecture  

(SegNet) to get better contours by this modified ground truth. 

Figure 4-9. Results of Pixel2pixel GAN 

 

To compare with the original training data, we set 9 contrast experiments. Firstly, we conduct the SegNet 

with one training tile (TR1), two training tiles (TR1, TR2) and three training tiles (TR1, TR2, TR3). Then, 
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we random selection 25% of the whole data to conduct the data augmentation by random rotation and 

pixel2pixel GAN. Then, we combine the contour result with the satellite images, as shown in figure 4-10. 

 

 

 
Figure 4-10. Result images of SegNet with GAN 

 

4.2.3. Comparison of different methods 

From the above, we conduct 11 experiments, and then we increase the proportion of selected data to 

perform data augmentation. In this section, we compare and analyze all the results of different methods in 

this research. As shown in the table, we could get the following conclusions: 

1. Among the three FCN architecture of this research, PSPNet performs worst and SegNet performs 

best. 

2. The more original training data, the better results we will get. 

3. Random rotation and GAN could get higher the accuracy of results than original training data. 

4. The higher proportion of augmented data with GAN doesn’t mean higher accuracy because it 

depends on the performance of GAN training. If the GAN is sufficiently well trained and get good 

results, we will get better training data. Otherwise, the results of GAN cannot increase the accuracy as 

we expect. 

 
Table 4-5 Different methods and accuracy assessment 

 

Method TS1 TS2 TS3 

PSPNet 0.602 0.601 0.611 

U-Net 0.623 0.613 0.624 

SegNet – TR1 0.641 0.653 0.648 

SegNet – TR1 with random rotation 0.643 0.654 0.650 

SegNet – TR1 with pixel2piexlGAN 0.645 0.655 0.652 

SegNet – TR1&2 0.648 0.656 0.657 

SegNet – TR1&2 with random rotation 0.649 0.658 0.657 

SegNet – TR1&2 with pixel2piexlGAN 0.650 0.659 0.658 

SegNet – TR1&2&3 0.651 0.661 0.658 

SegNet – TR1&2&3 with random rotation (25%) 0.653 0.665 0.659 

SegNet – TR1&2&3 with pixel2piexlGAN (25%) 0.654 0.666 0.661 

SegNet – TR1&2&3 with random rotation (50%) 0.654 0.663 0.656 

SegNet – TR1&2&3 with pixel2piexlGAN (50%) 0.652 0.661 0.654 
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5. DISCUSSION 

Contour detection task could be divided into three parts which are sparse contour detection, closed 

segment extraction and final contour generation. This research will pay more attention to propose an 

improved algorithm in the first part which is sparse contour detection by GAN-based techniques. Deep 

convolutional neural networks often have a good performance in this part according to the previous 

researches, especially the FCN. FCN significantly improves the segmentation accuracy and speed with 

multi-resolution layer combinations but the appearance of the GANs also gives people more reflection on 

whether we could improve the segmentation results of the FCN. So far, few researchers have introduced 

GAN in VHR satellite images, especially in contour detection. Smallholder farm fields are worthy of study 

because of their specific geographic features and it is helpful for agricultural management. Besides, GAN-

based techniques are usually applied in small natural images and the introduction of GAN-based 

technology for VHR satellite images in contour detection tasks is also one of the main contributions. 

However, how to combine FCN with GAN for automatic delineation of smallholder farms from VHR 

satellite images is still a difficult problem that needs to be solved. This research could give a new 

perspective on how to improve the existing models with nascent concepts. Therefore, this research will 

focus on FCN in combination with the GAN to improve the delineation accuracy of smallholder farm 

fields. This section discusses the strengths and weakness of the methods in this research. Section 5.1 

analyses the results of FCN methods. Section 5.2 analyses the results of GAN methods. 

5.1. FCN methods 

In this research, we aim to adopt different architectures of FCN to acquire the optimal network for 

contour detection task in the smallholder farm fields. Based on the primary goal of this research, we 

propose three state-of-the-art architectures of FCN (U-Net, PSPNet, SegNet) to find the optimal 

architecture in the contour detection task of smallholder farm fields. After the relevant experiments with 

three different architectures, we conclude that the SegNet architecture acquires the optimal results with 

the same hyperparameters and training epochs. During the training process, the U-Net acquires the 

second-best results and PSPNet acquires the worst results because of the complex geographic information 

and mixed-cropping systems in smallholder farm fields. SegNet obtains the best contour results because it 

uses pooling slices of max-pooling layers to conduct un-linear upsampling rather than deconvolution or 

transposed convolutions. Therefore, the SegNet is the optimal architecture among the three state-of-the-

art FCN architectures for the contour detection task in smallholder farm fields.  

5.2. GAN methods 

In this research, we aim to introduce GAN technology in combination with the optimal FCN architecture 

to increase the accuracy of pixel-wise classification. We try to adopt GAN as a training method and 

introduce the ContourGAN. The generator aims to conduct the pixel-wise classification and the 

discriminator aims to assess the difference between the prediction result and ground truth. Then, we could 

adjust the generator by the loss function. However, the results of ContourGAN are not good as 

mentioned in section 4.2.2.1 because the loss function of the ContourGAN is suited for the natural 

images rather than complex smallholder farms. It cannot adjust the subtle delineation in the complex 

fields. In this research, we have tried many other loss functions and still cannot adjust a suitable loss 

function for the study area. In theory, if we could adjust a suitable loss function of smallholder farm fields, 

the results of ContourGAN will be a better one. In future studies, some other solutions about the loss 

functions which could pay more attention to the complex texture and pattern could be investigated to 

address this issue, especially in complex farm fields. On the other hand, we try to adopt GAN as a data 
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augmentation method and introduce the pixel2pixelGAN. The generator of it aims to generate the fake 

images based on the original data and the discriminator aims to identify these fake images. During the 

training process, the results could be adjusted based on the original ground truth. Based on this method, 

we could adjust some complex textual fields of smallholder farm fields and input them as training data. 

However, the training process of pixel2pixel GAN model is not stable and converge because it aims to 

find an equilibrium between the generator and discriminator. Thus, we should save the model and weights 

by some epochs to get better results. Comparing with original and random-rotated training data, the 

results of pixel2pixelGAN just get a bit higher accuracy. We consider the reason is that the GAN method 

generates the potential features from the original data rather than new data, so the GAN methods cannot 

produce new information from the original data space. Thus, if the GAN methods are sufficiently well 

trained, the results could be a bit better. Otherwise, the results will be worse if the GAN training is not 

performed well. 
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6. CONCLUSION 

In this research, we aim to propose an automated algorithm by GAN-based techniques to improve the 

delineation accuracy of smallholder farms from VHR images. Based on the improved results of sparse 

contours, this research will then extract the closed segments and generate the final delineation by some 

specific methods. The VHR image data of Kofa are six tiles of 1000×1000 pixels from WorldView-3 data 

(acquired on September 25th 2015). The research consists of two parts which are to find the optimal FCN 

architecture and the potential GAN methods. 

 

For FCN architectures, we select three state-of-the-art FCN architectures which are PSPNet, U-Net and 

SegNet from the computer vision field. For this part, firstly we adopt the U-Net for pixel-wise 

classification with original training data. With the same training data and hyperparameters, then we 

conduct contour detection with PSPNet and SegNet. Comparing three experiments with three different 

SOTA FCN architectures, the SegNet performs best. Therefore, we could adopt SegNet as the optimal 

FCN architecture in this research. Based on the SegNet architecture, we could try to conduct potential 

GAN methods in combination with SegNet to increase the accuracy of contour detection. 

 

For GAN methods, we select two potential GAN methods for this specific task. The first one is 

ContourGAN. Its generator aims to get contour results and the discriminator aims to assess the difference 

between the prediction result and ground truth. However, the results of ContourGAN are not well 

because of the loss function is not suitable for complex smallholder farm fields and we cannot find an 

appropriate one. In future studies, some other solutions about the loss functions which could pay more 

attention to the complex texture and pattern could be investigated to address this issue, especially in 

complex farm fields. The second potential GAN method is pixel2pixelGAN. Its generator aims to 

generate the fake images based on the original data and the discriminator aims to identify these fake 

images. The pixel2pixelGAN could adjust the images based on the original ground truth. Therefore, the 

results of pixel2pixelGAN are more suitable for the complex textual patterns. Then, we compare the 

contour detection results with different training data as mentioned in section 4.2.3. Although the results 

are just improved a little, we could consider it as an optional method for other researches.  

 

 

 

 

 

 

 





 

31 

7. REFERENCES 

Adams, R., & Bischof, L. (1994). Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 16(6), 641–647. https://doi.org/10.1109/34.295913 

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder 

Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 

Bergado, J. R., Persello, C., & Gevaert, C. (2016). A deep learning approach to the classification of sub-

decimetre resolution aerial images. 2016 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 1516–1519. https://doi.org/10.1109/IGARSS.2016.7729387 

Chen, P. C., & Pavlidis, T. (1979). Segmentation by texture using a co-occurrence matrix and a split-and-

merge algorithm. Computer Graphics and Image Processing, 10(2), 172–182. 

https://doi.org/10.1016/0146-664X(79)90049-2 

Christ, P. F., Elshaer, M. E. A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster, 

M., Hofmann, F., D’Anastasi, M., Sommer, W. H., Ahmadi, S.-A., & Menze, B. H. (2016). Automatic 

Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional 

Random Fields (pp. 415–423). Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_48 

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. 

https://doi.org/10.1109/34.1000236 

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. (2016). The Importance of Skip Connections 

in Biomedical Image Segmentation (pp. 179–187). Springer, Cham. https://doi.org/10.1007/978-3-319-

46976-8_19 

García-Pedrero, A., Gonzalo-Martín, C., & Lillo-Saavedra, M. (2017). International Journal of Remote Sensing 

A machine learning approach for agricultural parcel delineation through agglomerative segmentation A machine 

learning approach for agricultural parcel delineation through agglomerative segmentation . 

https://doi.org/10.1080/01431161.2016.1278312 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, 

Y. (2014). Generative Adversarial Nets (pp. 2672–2680). http://papers.nips.cc/paper/5423-generative-

adversarial-nets 

Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2017). How Generative Adversarial Networks and Their Variants 

Work: An Overview. https://doi.org/10.1145/3301282 

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-Image Translation with Conditional 

Adversarial Networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, 

CVPR 2017, 2017-January, 5967–5976. http://arxiv.org/abs/1611.07004 

Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., & Yan, S. (2017). Perceptual Generative Adversarial Networks for Small 

Object Detection. http://arxiv.org/abs/1706.05274 

Lin, D., Fu, K., Wang, Y., Xu, G., & Sun, X. (2017). MARTA GANs: Unsupervised Representation 

Learning for Remote Sensing Image Classification. IEEE Geoscience and Remote Sensing Letters, 14(11), 

2092–2096. https://doi.org/10.1109/LGRS.2017.2752750 

Long, J., Shelhamer, E., & Darrell, T. (2014). Fully Convolutional Networks for Semantic Segmentation . 

http://arxiv.org/abs/1411.4038 



 

32 

Lowder, S. K., Skoet, J., & Raney, T. (2016). The Number, Size, and Distribution of Farms, Smallholder 

Farms, and Family Farms Worldwide. World Development, 87, 16–29. 

https://doi.org/10.1016/J.WORLDDEV.2015.10.041 

Luc, P., Couprie, C., Chintala, S., & Verbeek, J. (2016). Semantic Segmentation using Adversarial Networks. 

http://arxiv.org/abs/1611.08408 

Lucio, D. R., Laroca, R., Severo, E., Britto, A. S., & Menotti, D. (2018). Fully Convolutional Networks and 

Generative Adversarial Networks Applied to Sclera Segmentation. http://arxiv.org/abs/1806.08722 

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2016). Fully convolutional neural networks for 

remote sensing image classification. 2016 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 5071–5074. https://doi.org/10.1109/IGARSS.2016.7730322 

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004a). Learning to detect natural image boundaries using local 

brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 

530–549. https://doi.org/10.1109/TPAMI.2004.1273918 

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004b). Learning to detect natural image boundaries using local 

brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 

530–549. https://doi.org/10.1109/TPAMI.2004.1273918 

Mueller, M., Segl, K., & Kaufmann, H. (2004). Edge- and region-based segmentation technique for the 

extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognition, 37(8), 

1619–1628. https://doi.org/10.1016/J.PATCOG.2004.03.001 

Persello, C., Tolpekin, V. A., Bergado, J. R., & de By, R. A. (2019). Delineation of agricultural fields in 

smallholder farms from satellite images using fully convolutional networks and combinatorial 

grouping. Remote Sensing of Environment, 231, 111253. https://doi.org/10.1016/J.RSE.2019.111253 

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional 

Generative Adversarial Networks. http://arxiv.org/abs/1511.06434 

Roberts, L. (1963). Machine perception of three-dimensional solids. 

https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-MIT.pdf 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image 

segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 

Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651. 

https://doi.org/10.1109/TPAMI.2016.2572683 

Sobel, I. (1972). Camera models and machine perception. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-

get.cgi/1972/CS/CS0016.pdf 

Sun, Q., & Bourennane, S. (2019). Unsupervised feature extraction based on improved Wasserstein 

generative adversarial network for hyperspectral classification. In S. Negahdaripour, E. Stella, D. 

Ceglarek, & C. Möller (Eds.), Multimodal Sensing: Technologies and Applications (Vol. 11059, p. 32). SPIE. 

https://doi.org/10.1117/12.2527466 

Tiwari, P. S., Pande, H., Kumar, M., & Dadhwal, V. K. (2009). Potential of IRS P-6 LISS IV for 

agriculture field boundary delineation. Journal of Applied Remote Sensing, 3(1), 033528. 

https://doi.org/10.1117/1.3133306 

Turker, M., & Kok, E. H. (2013). Field-based sub-boundary extraction from remote sensing imagery using 

perceptual grouping. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 106–121. 

https://doi.org/10.1016/J.ISPRSJPRS.2013.02.009 

Xie, S., & Tu, Z. (2015). Holistically-Nested Edge Detection (pp. 1395–1403). 

http://openaccess.thecvf.com/content_iccv_2015/html/Xie_Holistically-

Nested_Edge_Detection_ICCV_2015_paper.html 



 

33 

Yang, H., Li, Y., Yan, X., & Cao, F. (2019). ContourGAN: Image contour detection with generative 

adversarial network. Knowledge-Based Systems, 164, 21–28. 

https://doi.org/10.1016/J.KNOSYS.2018.09.033 

Yang, J., Price, B., Cohen, S., Lee, H., & Yang, M.-H. (2016). Object Contour Detection With a Fully 

Convolutional Encoder-Decoder Network (pp. 193–202). 

http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Object_Contour_Detection_CVPR

_2016_paper.html 

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). PSPNet. Proceedings - 30th IEEE Conference on Computer 

Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 6230–6239. 

https://doi.org/10.1109/CVPR.2017.660 

Zhu, L., Chen, Y., Ghamisi, P., & Benediktsson, J. A. (2018). Generative Adversarial Networks for 

Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5046–

5063. https://doi.org/10.1109/TGRS.2018.2805286 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

8. APPENDIX 

8.1. Appendix 1 

Table 8-1 Architecture of U-Net 

Layer (type) Output shape Param # Connected to 

Img (Inputlayer) 96×96×3 --  

Conv2d_1 (Conv2d) 96×96×16 448 Img 

batch_normalization_1 (BatchNo) 96×96×16 64 Conv2d_1 

Activation_1 (activation) 96×96×16 -- batch_normalization_1 

Conv2d_2 (Conv2d) 96×96×16 2320 Activation_1 

batch_normalization_2 (BatchNo) 96×96×16 64 Conv2d_2 

Activation_2 (activation) 96×96×16 -- batch_normalization_2 

max_pooling2d_1 (MaxPooling2D) 48×48×16 -- Activation_2 

dropout_1 (Dropout) 48×48×16 -- max_pooling2d_1 

Conv2d_3 (Conv2d) 48×48×32 4640 dropout_1 

batch_normalization_3 (BatchNo) 48×48×32 128 Conv2d_3 

Activation_3 (activation) 48×48×32 -- batch_normalization_3 

Conv2d_4 (Conv2d) 48×48×32 9248 Activation_3 

batch_normalization_4 (BatchNo) 48×48×32 128 Conv2d_4 

Activation_4 (activation) 48×48×32 -- batch_normalization_4 

max_pooling2d_2 (MaxPooling2D) 24×24×32 -- Activation_4 

dropout_2 (Dropout) 24×24×32 -- max_pooling2d_2 

Conv2d_5 (Conv2d) 24×24×64 18496 dropout_2 

batch_normalization_5 (BatchNo) 24×24×64 256 Conv2d_5 

Activation_5 (activation) 24×24×64 -- batch_normalization_5 

Conv2d_6 (Conv2d) 24×24×64 36928 Activation_5 

batch_normalization_6 (BatchNo) 24×24×64 256 Conv2d_6 

Activation_6 (activation) 24×24×64 -- batch_normalization_6 

max_pooling2d_3 (MaxPooling2D) 12×12×64 -- Activation_6 

dropout_3 (Dropout) 12×12×64 -- max_pooling2d_3 

Conv2d_7 (Conv2d) 12×12×128 73856 dropout_3 

batch_normalization_7 (BatchNo) 12×12×128 512 Conv2d_7 

Activation_7 (activation) 12×12×128 -- batch_normalization_7 

Conv2d_8 (Conv2d) 12×12×128 147584 Activation_7 

batch_normalization_8 (BatchNo) 12×12×128 512 Conv2d_8 

Activation_8 (activation) 12×12×128 -- batch_normalization_8 

max_pooling2d_4 (MaxPooling2D) 6×6×128 -- Activation_8 

dropout_4 (Dropout) 6×6×128 -- max_pooling2d_4 

Conv2d_9 (Conv2d) 6×6×256 295168 dropout_4 

batch_normalization_9 (BatchNo) 6×6×256 1024 Conv2d_9 

Activation_9 (activation) 6×6×256 -- batch_normalization_9 

Conv2d_10 (Conv2d) 6×6×256 590080 Activation_9 

batch_normalization_10 (BatchNo) 6×6×256 1024 Conv2d_10 

Activation_10 (activation) 6×6×256 -- batch_normalization_10 

conv2d_transpose_1 (Conv2DTrans) 12×12×128 295040 Activation_10 
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concatenate_1 (Concatenate) 12×12×256 -- conv2d_transpose_1 

Activation_8 

dropout_5 (Dropout) 12×12×256 -- concatenate_1 

Conv2d_11 (Conv2d) 12×12×128 295040 dropout_5 

batch_normalization_11 (BatchNo) 12×12×128 512 Conv2d_11 

Activation_11 (activation) 12×12×128 -- batch_normalization_11 

Conv2d_12 (Conv2d) 12×12×128 147584 Activation_11 

batch_normalization_12 (BatchNo) 12×12×128 512 Conv2d_12 

Activation_12 (activation) 12×12×128 -- batch_normalization_12 

conv2d_transpose_2 (Conv2DTrans) 24×24×64 73792 Activation_12 

concatenate_2 (Concatenate) 24×24×128 -- conv2d_transpose_2 

Activation_6 

dropout_6 (Dropout) 24×24×128 -- concatenate_2 

Conv2d_13 (Conv2d) 24×24×64 73792 dropout_6 

batch_normalization_13 (BatchNo) 24×24×64 256 Conv2d_13 

Activation_13 (activation) 24×24×64 -- batch_normalization_13 

Conv2d_14 (Conv2d) 24×24×64 36928 Activation_13 

batch_normalization_14 (BatchNo) 24×24×64 256 Conv2d_14 

Activation_14 (activation) 24×24×64 -- batch_normalization_14 

conv2d_transpose_3 (Conv2DTrans) 48×48×32 18464 Activation_14 

concatenate_3 (Concatenate) 48×48×64 -- conv2d_transpose_3 

Activation_4 

dropout_7 (Dropout) 48×48×64 -- concatenate_3 

Conv2d_15 (Conv2d) 48×48×32 18464 dropout_7 

batch_normalization_15 (BatchNo) 48×48×32 128 Conv2d_15 

Activation_15 (activation) 48×48×32 -- batch_normalization_15 

Conv2d_16 (Conv2d) 48×48×32 9248 Activation_15 

batch_normalization_16 (BatchNo) 48×48×32 128 Conv2d_16 

Activation_16 (activation) 48×48×32 -- batch_normalization_16 

conv2d_transpose_4 (Conv2DTrans) 96×96×16 4624 Activation_16 

concatenate_4 (Concatenate) 96×96×32 -- conv2d_transpose_4 

Activation_2 

dropout_8 (Dropout) 96×96×32 -- concatenate_4 

Conv2d_17 (Conv2d) 96×96×16 4624 dropout_8 

batch_normalization_17 (BatchNo) 96×96×16 64 Conv2d_17 

Activation_17 (activation) 96×96×16 -- batch_normalization_17 

Conv2d_18 (Conv2d) 96×96×16 2320 Activation_17 

batch_normalization_18 (BatchNo) 96×96×16 64 Conv2d_18 

Activation_18 (activation) 96×96×16 -- batch_normalization_18 

conv2d_19 (Conv2D) 96×96×2 34 Activation_18 
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8.2. Appendix 2 

Table 8-2. Architecture of PSPNet 

Layer (type) Output shape Param # Connected to 

Img (Inputlayer) 96×96×3 --  

Conv2d_1 (Conv2d) 48×48×64 1792 Img  

batch_normalization_1 (BatchNo) 48×48×64 256 Conv2d_1 

Activation_1 (activation) 48×48×64 -- batch_normalization_1 

Conv2d_2 (Conv2d) 48×48×64 36928 Activation_1 

batch_normalization_2 (BatchNo) 48×48×64 256 Conv2d_2 

Activation_2 (activation) 48×48×64 -- batch_normalization_2 

Conv2d_3 (Conv2d) 48×48×128 73856 Activation_2 

batch_normalization_3 (BatchNo) 48×48×128 512 Conv2d_3 

Activation_3 (activation) 48×48×128 -- batch_normalization_3 

max_pooling2d_1 (MaxPooling2D) 24×24×128 -- Activation_3 

Conv2d_4 (Conv2d) 24×24×64 8256 max_pooling2d_1 

batch_normalization_4 (BatchNo) 24×24×64 256 Conv2d_4 

Activation_4 (activation) 24×24×64 -- batch_normalization_4 

Conv2d_5 (Conv2d) 24×24×64 36928 Activation_4 

batch_normalization_5 (BatchNo) 24×24×64 256 Conv2d_5 

Activation_5 (activation) 24×24×64 -- batch_normalization_5 

Conv2d_6 (Conv2d) 24×24×256 16640 Activation_5 

Conv2d_7 (Conv2d) 24×24×256 33024 max_pooling2d_1 

batch_normalization_6 (BatchNo) 24×24×256 1024 Conv2d_6 

batch_normalization_7 (BatchNo) 24×24×256 1024 Conv2d_7 

add_1 (Add)   24×24×256 -- batch_normalization_6 

batch_normalization_7 

activation_6 (Activation)   24×24×256 -- Add_1 

Conv2d_8 (Conv2d) 24×24×64 16448 activation_6 

batch_normalization_8 (BatchNo) 24×24×64 256 Conv2d_8 

Activation_7 (activation) 24×24×64 -- batch_normalization_8 

Conv2d_9 (Conv2d) 24×24×64 36928 Activation_7 

batch_normalization_9 (BatchNo) 24×24×64 256 Conv2d_9 

Activation_8 (activation) 24×24×64 -- batch_normalization_9 

Conv2d_10 (Conv2d) 24×24×256 16640 Activation_8 

batch_normalization_10 (BatchNo) 24×24×256 1024 Conv2d_10 

add_2 (Add)   24×24×256 -- batch_normalization_10 

activation_6 

Activation_9 (activation) 24×24×256 -- Add_2 

Conv2d_11 (Conv2d) 24×24×64 16448 activation_9 

batch_normalization_11 (BatchNo) 24×24×64 256 Conv2d_11 

Activation_10 (activation) 24×24×64 -- batch_normalization11 

Conv2d_12 (Conv2d) 24×24×64 36928 Activation_10 

batch_normalization_12 (BatchNo) 24×24×64 256 Conv2d_12 

Activation_11 (activation) 24×24×64 -- batch_normalization_12 

Conv2d_13 (Conv2d) 24×24×256 16640 Activation_11 

batch_normalization_13 (BatchNo) 24×24×256 1024 Conv2d_13 
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add_3 (Add)   24×24×256 -- batch_normalization_13 

activation_9 

Activation_12 (activation) 24×24×256 -- Add_3 

Conv2d_14 (Conv2d) 24×24×128 32896 activation_12 

batch_normalization_14 (BatchNo) 24×24×128 512 Conv2d_14 

Activation_13 (activation) 24×24×128 -- batch_normalization_14 

Conv2d_15 (Conv2d) 12×12×128 147584 Activation_13 

batch_normalization_15 (BatchNo) 12×12×128 512 Conv2d_15 

Activation_14 (activation) 12×12×128 -- batch_normalization_15 

Conv2d_16 (Conv2d) 12×12×512 66048 Activation_14 

Conv2d_17 (Conv2d) 12×12×512 131584 Activation_12 

batch_normalization_16 (BatchNo) 12×12×512 2048 Conv2d_16 

batch_normalization_17 (BatchNo) 12×12×512 2048 Conv2d_17 

add_4 (Add)   12×12×512 -- batch_normalization_16 

batch_normalization_17 

Activation_15 (activation) 12×12×512 -- Add_4 

Conv2d_18 (Conv2d) 12×12×128 65664 activation_15 

batch_normalization_18 (BatchNo) 12×12×128 512 Conv2d_18 

Activation_16 (activation) 12×12×128 -- batch_normalization_18 

Conv2d_19 (Conv2d) 12×12×128 147584 Activation_16 

batch_normalization_19 (BatchNo) 12×12×128 512 Conv2d_19 

Activation_17 (activation) 12×12×128 -- batch_normalization_19 

Conv2d_20 (Conv2d) 12×12×512 66048 Activation_17 

batch_normalization_20 (BatchNo) 12×12×512 2048 Conv2d_20 

add_5 (Add)   12×12×512 -- batch_normalization_20 

activation_15 

Activation_18 (activation) 12×12×512 -- Add_5 

Conv2d_21 (Conv2d) 12×12×128 65664 activation_18 

batch_normalization_21 (BatchNo) 12×12×128 512 Conv2d_21 

Activation_19 (activation) 12×12×128 -- batch_normalization_21 

Conv2d_22 (Conv2d) 12×12×128 147584 Activation_19 

batch_normalization_22 (BatchNo) 12×12×128 512 Conv2d_22 

Activation_20 (activation) 12×12×128 -- batch_normalization_22 

Conv2d_23 (Conv2d) 12×12×512 66048 Activation_20 

batch_normalization_23 (BatchNo) 12×12×512 2048 Conv2d_23 

add_6 (Add) 12×12×512 -- batch_normalization_23 

activation_18 

Activation_21 (activation) 12×12×512 -- Add_6 

Conv2d_24 (Conv2d) 12×12×128 65664 activation_21 

batch_normalization_24 (BatchNo) 12×12×128 512 Conv2d_24 

Activation_22 (activation) 12×12×128 -- batch_normalization_24 

Conv2d_25 (Conv2d) 12×12×128 147584 Activation_22 

batch_normalization_25 (BatchNo) 12×12×128 512 Conv2d_25 

Activation_23 (activation) 12×12×128 -- batch_normalization_25 

Conv2d_26 (Conv2d) 12×12×512 66048 Activation_23 

batch_normalization_26 (BatchNo) 12×12×512 2048 Conv2d_26 

add_7 (Add) 12×12×512 -- batch_normalization_26 



 

38 

activation_21 

Activation_24 (activation) 12×12×512 -- Add_7 

Conv2d_27 (Conv2d) 12×12×256 131328 activation_24 

batch_normalization_27 (BatchNo) 12×12×256 1024 Conv2d_27 

Activation_25 (activation) 12×12×256 -- batch_normalization_27 

Conv2d_28 (Conv2d) 12×12×256 590080 Activation_25 

batch_normalization_28 (BatchNo) 12×12×256 1024 Conv2d_28 

Activation_26 (activation) 12×12×256 -- batch_normalization_28 

Conv2d_29 (Conv2d) 12×12×1024 263168 Activation_26 

Conv2d_30 (Conv2d) 12×12×1024 525312 Activation_24 

batch_normalization_29 (BatchNo) 12×12×1024 4096 Conv2d_29 

batch_normalization_30 (BatchNo) 12×12×1024 4096 Conv2d_30 

add_8 (Add)   12×12×1024 -- batch_normalization_29 

batch_normalization_30 

Activation_27 (activation) 12×12×1024 -- Add_8 

Conv2d_31 (Conv2d) 12×12×256 262400 activation_27 

batch_normalization_31 (BatchNo) 12×12×256 1024 Conv2d_31 

Activation_28 (activation) 12×12×256 -- batch_normalization_31 

Conv2d_32 (Conv2d) 12×12×256 590080 Activation_28 

batch_normalization_32 (BatchNo) 12×12×256 1024 Conv2d_32 

Activation_29 (activation) 12×12×256 -- batch_normalization_32 

Conv2d_33 (Conv2d) 12×12×1024 263168 Activation_29 

batch_normalization_33 (BatchNo) 12×12×1024 4096 Conv2d_33 

add_9 (Add) 12×12×1024 -- batch_normalization_33 

activation_27 

Activation_30 (activation) 12×12×1024 -- Add_9 

Conv2d_34 (Conv2d) 12×12×256 262400 activation_30 

batch_normalization_44 (BatchNo) 12×12×256 1024 Conv2d_34 

Activation_31 (activation) 12×12×256 -- batch_normalization_34 

Conv2d_35 (Conv2d) 12×12×256 590080 Activation_31 

batch_normalization_35 (BatchNo) 12×12×256 1024 Conv2d_35 

Activation_32 (activation) 12×12×256 -- batch_normalization_35 

Conv2d_36 (Conv2d) 12×12×1024 263168 Activation_32 

batch_normalization_36 (BatchNo) 12×12×1024 4096 Conv2d_36 

add_10 (Add) 12×12×1024 -- batch_normalization_36 

activation_30 

Activation_33 (activation) 12×12×1024 -- Add_10 

Conv2d_37 (Conv2d) 12×12×256 262400 activation_33 

batch_normalization_37 (BatchNo) 12×12×256 1024 Conv2d_37 

Activation_34 (activation) 12×12×256 -- batch_normalization_37 

Conv2d_38 (Conv2d) 12×12×256 590080 Activation_34 

batch_normalization_38 (BatchNo) 12×12×256 1024 Conv2d_38 

Activation_35 (activation) 12×12×256 -- batch_normalization_38 

Conv2d_39 (Conv2d) 12×12×1024 263168 Activation_35 

batch_normalization_39 (BatchNo) 12×12×1024 4096 Conv2d_39 

add_11 (Add) 12×12×1024 -- batch_normalization_39 

activation_33 
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Activation_36 (activation) 12×12×1024 -- Add_11 

Conv2d_40 (Conv2d) 12×12×256 262400 activation_36 

batch_normalization_40 (BatchNo) 12×12×256 1024 Conv2d_40 

Activation_37 (activation) 12×12×256 -- batch_normalization_40 

Conv2d_41 (Conv2d) 12×12×256 590080 Activation_37 

batch_normalization_41 (BatchNo) 12×12×256 1024 Conv2d_41 

Activation_38 (activation) 12×12×256 -- batch_normalization_41 

Conv2d_42 (Conv2d) 12×12×1024 263168 Activation_38 

batch_normalization_42 (BatchNo) 12×12×1024 4096 Conv2d_42 

add_12 (Add) 12×12×1024 -- batch_normalization_42 

activation_36 

Activation_39 (activation) 12×12×1024 -- Add_12 

Conv2d_43 (Conv2d) 12×12×256 262400 activation_39 

batch_normalization_43 (BatchNo) 12×12×256 1024 Conv2d_43 

Activation_40 (activation) 12×12×256 -- batch_normalization_43 

Conv2d_44 (Conv2d) 12×12×256 590080 Activation_40 

batch_normalization_44 (BatchNo) 12×12×256 1024 Conv2d_44 

Activation_41 (activation) 12×12×256 -- batch_normalization_44 

Conv2d_45 (Conv2d) 12×12×1024 263168 Activation_41 

batch_normalization_45 (BatchNo) 12×12×1024 4096 Conv2d_45 

add_13 (Add) 12×12×1024 -- batch_normalization_45 

activation_39 

Activation_42 (activation) 12×12×1024 -- Add_13 

Conv2d_46 (Conv2d) 12×12×512 524800 activation_42 

batch_normalization_46 (BatchNo) 12×12×512 2048 Conv2d_46 

Activation_43 (activation) 12×12×512 -- batch_normalization_46 

Conv2d_47 (Conv2d) 12×12×512 2359808 Activation_43 

batch_normalization_47 (BatchNo) 12×12×512 2048 Conv2d_47 

Activation_44 (activation) 12×12×512 -- batch_normalization_47 

Conv2d_48 (Conv2d) 12×12×2048 1050624 Activation_44 

Conv2d_49 (Conv2d) 12×12×2048 2099200 Activation_45 

batch_normalization_48 (BatchNo) 12×12×2048 8192 Conv2d_48 

batch_normalization_49 (BatchNo) 12×12×2048 8192 Conv2d_49 

add_14 (Add) 12×12×2048 -- batch_normalization_48 

batch_normalization_49 

Activation_45 (activation) 12×12×2048 -- Add_14 

Conv2d_50 (Conv2d) 12×12×512 1049088 activation_45 

batch_normalization_50 (BatchNo) 12×12×512 2048 Conv2d_50 

Activation_46 (activation) 12×12×512 -- batch_normalization_50 

Conv2d_51 (Conv2d) 12×12×512 2359808 Activation_46 

batch_normalization_51 (BatchNo) 12×12×512 2048 Conv2d_51 

Activation_47 (activation) 12×12×512 -- batch_normalization_51 

Conv2d_52 (Conv2d) 12×12×2048 1050624 Activation_47 

batch_normalization_52 (BatchNo) 12×12×2048 8192 Conv2d_52 

add_15 (Add) 12×12×2048 -- batch_normalization_52 

activation_45 

Activation_48 (activation) 12×12×2048 -- Add_15 
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Conv2d_53 (Conv2d) 12×12×512 1049088 activation_48 

batch_normalization_53 (BatchNo) 12×12×512 2048 Conv2d_53 

Activation_49 (activation) 12×12×512 -- batch_normalization_53 

Conv2d_54 (Conv2d) 12×12×512 2359808 Activation_49 

batch_normalization_54 (BatchNo) 12×12×512 2048 Conv2d_54 

Activation_50 (activation) 12×12×512 -- batch_normalization_54 

Conv2d_55 (Conv2d) 12×12×2048 1050624 Activation_50 

batch_normalization_55 (BatchNo) 12×12×2048 8192 Conv2d_55 

add_16 (Add) 12×12×2048 -- batch_normalization_55 

activation_48 

Activation_51 (activation) 12×12×2048 -- Add_16 

average_pooling2d_1 (AveragePool) 1×1×2048 -- activation_51 

average_pooling2d_2 (AveragePool) 2×2×2048 -- activation_51 

average_pooling2d_3 (AveragePool) 3×3×2048 -- activation_51 

average_pooling2d_4 (AveragePool) 6×6×2048 -- activation_51 

Conv2d_56 (Conv2d) 1×1×512 1049088 average_pooling2d_1 

Conv2d_57 (Conv2d) 2×2×512 1049088 average_pooling2d_2 

Conv2d_58 (Conv2d) 3×3×512 1049088 average_pooling2d_3 

Conv2d_59 (Conv2d) 6×6×512 1049088 average_pooling2d_4 

lambda_1 (Lambda)   12×12×512 -- conv2d_56 

lambda_2 (Lambda)   12×12×512 -- conv2d_57 

lambda_3 (Lambda)   12×12×512 -- conv2d_58 

lambda_4 (Lambda)   12×12×512 -- conv2d_59 

concatenate_1 (Concatenate) 12×12×4096 -- activation_51 

lambda_1 

lambda_2 

lambda_3 

lambda_4 

Conv2d_60 (Conv2d) 12×12×512 18874880 concatenate_1 

batch_normalization_56 (BatchNo) 12×12×512 2048 Conv2d_60 

Activation_52 (activation) 12×12×512 -- batch_normalization_56 

dropout_1 (Dropout) 12×12×512 -- Activation_52 

Conv2d_61 (Conv2d)   12×12×2 1026 dropout_1 

conv2d_transpose_1 (Conv2DTrans) 96×96×2 1026 Conv2d_61 

Activation_53 (activation) 96×96×2 -- conv2d_transpose_1 
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8.3. Appendix 3 

 
Table 8-3. Architecture of SegNet 

Layer (type) Output shape Param # 

Img (Inputlayer) 96×96×3 -- 

Block1_conv1 (Conv2D) 96×96×64 1792 

Block1_conv2 (Conv2D)  96×96×64 36928 

Block1_pool (MaxPooling2D) 48×48×64 -- 

Block2_conv1 (Conv2D) 48×48×128 73856 

Block2_conv2 (Conv2D)  48×48×128 147584 

Block2_pool (MaxPooling2D) 24×24×128 -- 

Block3_conv1 (Conv2D) 24×24×256 295168 

Block3_conv2 (Conv2D)  24×24×256 590080 

Block3_conv3 (Conv2D) 24×24×256 590080 

Block3_pool (MaxPooling2D) 12×12×256 -- 

Block4_conv1 (Conv2D) 12×12×512 1180160 

Block4_conv2 (Conv2D)  12×12×512 2359808 

Block4_conv3 (Conv2D) 12×12×512 2359808 

Block4_pool (MaxPooling2D) 6×6×512 -- 

Block5_conv1 (Conv2D) 6×6×512 2359808 

Block5_conv2 (Conv2D)  6×6×512 2359808 

Block5_conv3 (Conv2D) 6×6×512 2359808 

Block5_pool (MaxPooling2D) 3×3×512 -- 

dropout_1 (Dropout) 3×3×512 -- 

de_pool2d_1 (DePool2D) 6×6×512 -- 

Conv2d_1 (Conv2d) 6×6×512 2359808 

batch_normalization_1 (BatchNo) 6×6×512 2048 

Activation_1 (activation) 6×6×512 -- 

Conv2d_2 (Conv2d) 6×6×512 2359808 

batch_normalization_2 (BatchNo) 6×6×512 2048 

Activation_2 (activation) 6×6×512 -- 

Conv2d_3 (Conv2d) 6×6×512 2359808 

batch_normalization_3 (BatchNo) 6×6×512 2048 

Activation_3 (activation) 6×6×512 -- 

dropout_2 (Dropout) 6×6×512 -- 

de_pool2d_2 (DePool2D) 12×12×512 -- 

Conv2d_4 (Conv2d) 12×12×512 2359808 

batch_normalization_4 (BatchNo) 12×12×512 2048 

Activation_4 (activation) 12×12×512 -- 

Conv2d_5 (Conv2d) 12×12×512 2359808 

batch_normalization_5 (BatchNo) 12×12×512 2048 

Activation_5 (activation) 12×12×512 -- 

Conv2d_6 (Conv2d) 12×12×512 2359808 

batch_normalization_6 (BatchNo) 12×12×512 2048 

Activation_6 (activation) 12×12×512 -- 

dropout_3 (Dropout) 12×12×512 -- 
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de_pool2d_3 (DePool2D) 24×24×512 -- 

Conv2d_7 (Conv2d) 24×24×256 1179904 

batch_normalization_7 (BatchNo) 24×24×256 1024 

Activation_7 (activation) 24×24×256 -- 

Conv2d_8 (Conv2d) 24×24×256 590080 

batch_normalization_8 (BatchNo) 24×24×256 1024 

Activation_8 (activation) 24×24×256 -- 

dropout_4 (Dropout) 24×24×256 -- 

de_pool2d_4 (DePool2D) 48×48×256 -- 

Conv2d_9 (Conv2d) 48×48×128 295040 

batch_normalization_9 (BatchNo) 48×48×128 512 

Activation_9 (activation) 48×48×128 -- 

Conv2d_10 (Conv2d) 48×48×128 147584 

batch_normalization_10 (BatchNo) 48×48×128 512 

Activation_10 (activation) 48×48×128 -- 

de_pool2d_5 (DePool2D) 96×96×128 -- 

Conv2d_11 (Conv2d) 96×96×64 73792 

batch_normalization_11 (BatchNo) 96×96×64 256 

Activation_11 (activation) 96×96×64 -- 

Conv2d_12 (Conv2d) 96×96×64 36928 

batch_normalization_12 (BatchNo) 96×96×64 256 

Activation_12 (activation) 96×96×64 -- 

Conv2d_13 (Conv2d) 96×96×2 130 

Activation_13 (activation) 96×96×2 -- 

 

8.4. Appendix 4  

 
Figure 8-1 PSPNet training curve 
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8.5. Appendix 5 

 

 
Figure 8-2 U-Net training curve 

8.6. Appendix 6 

 

 

 
Figure 8-3 SegNet training curve 


