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ABSTRACT 

Demand for 3D geospatial products such as digital surface models (DSM) has increased rapidly 

over the past decades. They are finding applications in areas such as urban modelling, planning, 

construction and building, environmental mapping etc. Ground surveying, stereo-

photogrammetry, and Airborne Laser Scanning (ALS) are some of the methods that have long 

been used to derive these products, but they are expensive and time-consuming. The emergence 

of Unmanned Aerial Vehicles (UAVs) platforms as a cost-effective mode of capturing aerial 

imagery has gained popularity in the field of geospatial engineering and remote sensing. 

Researchers and professionals are utilizing UAV systems to generate high-resolution 3D models 

for different applications. The automatic and fast generation of high-resolution 3D information 

presents an efficient and reliable alternative to the traditional (hand-crafted) methods. In this 

study, we developed a methodology to generate digital surface models using convolutional neural 

networks (CNNs). CNN's have been widely studied in computer vision for object recognition 

and segmentation tasks. They have also been applied in classification and stereo matching tasks 

and have shown to outperform hand-crafted methods due to their capability to learn high-level 

features. In this work, we designed a CNN architecture, optimized its parameters, and trained it 

end-to-end for disparity estimation using UAV imagery. We then recovered the 3D scenes from 

the disparity images and generated digital surface models. We compared our products with the 

state-of-the-art Pix4D software that relies on hand-crafted features. The results show that deep 

learning approaches are extremely fast than hand-crafted methods. On the quality of the 

products, our experimental results show our method generates a high-density point cloud that 

enables full recovery of scenes. Our DSM has smooth and sharp edges that resolve details in 

objects and structures. On comparison, we conclude that deep learning methods are quite fast 

and perform almost at par with conventional methods and have potential. 

Keywords: convolutional neural networks, unmanned aerial vehicles, digital surface models, deep 

learning, dense image matching, computer vision, LiDAR 
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1. INTRODUCTION 

1.1. Motivation and Problem statement 

3D modeling provides a potential benefit in many geospatial applications. Digital surface models 

(DSM) are increasingly used in many applications such as urban modeling and planning  (Wang & 

Li (2007); Yan, Shaker, & El-Ashmawy (2015); Chai (2017)), disaster management (Bandrova, 

Zlatanova, & Konecny, 2012), building detection (Rottensteiner, Trinder, Clode, & Kubik 2005) 

and environmental mapping (Sadeghi, St-Onge, Leblon, & Simard, 2016). The automatic 

generation of accurate 3D models with complete building shapes and geometries is therefore 

crucial. Airborne Laser Scanning (ALS), Interferometric Synthetic Aperture Radar (InSAR), 

stereo-photogrammetry, and ground surveying are the most popular methods used for generating 

high-resolution 3D information (Jacobsen, 2003). LiDAR and ground surveying techniques have 

the advantage that they generate high quality and detailed 3D information but are costly and time-

consuming (Sefercik, 2013). Compared to optical imagery, SAR imagery can be captured under 

different weather conditions and during day and night. However, due to its side-looking imaging 

system, it doesn’t capture buildings well and therefore leads to poor reconstructions.  

Photogrammetric stereo matching methods generate high-resolution 3D information especially 

when images have no background variations. Background variations such as homogenous areas, 

occlusions, texture, and illumination changes cause matching errors that lead to poor 

reconstructions of objects in the scene. 

The availability of Unmanned Aerial Vehicles (UAVs) platforms has led to fast and cost-

effective image acquisition techniques. These systems capture high-resolution images of a scene 

from different viewpoints thereby minimizing occlusions which pose a challenge in the 

reconstruction of complex scenes from images (Gerke, Nex, & Jende, 2016). This presents a 

potential benefit in the generation of 3D models from 2D images. However, UAV images may 

suffer from complex background variations which may affect 3D mapping. Photogrammetric 

methods derive 3D products through stereo image matching techniques. Image matching is a 

challenging task, especially when using images with background variations such as illumination 

and viewpoint changes, occlusions, and texture-less regions. These variations make it difficult to 

find correspondences in regions affected. They lead to noise in disparity maps that impacts the 

quality of the 3D products.  
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Traditional dense stereo-matching methods consist of matching cost computation, cost 

aggregation, disparity computation, and disparity refinement (Scharstein & Szeliski, 2002). They 

are based on hand-crafted features that rely on set parameters and cannot be easily adapted and 

hence lack flexibility (Verdie, Yi, Fua, & Lepetit, 2015). To estimate disparity, matching 

constraints such as window-based correlation, smoothing and occlusion are applied (Kanade & 

Okutomi (1994); (Jang & Ho (2011)). However, the challenge is that these constraints cannot be 

handcrafted. Window-based algorithms such as sum-of-squared-differences compute disparity 

based on the intensity values within a window and usually make implicit smoothness 

assumptions. Global algorithms, on the other hand, make an explicit smoothness assumption and 

solve an optimization problem. They don’t perform the aggregation step and instead compute a 

disparity that minimizes global cost function (Szeliski, 2010). For real-time applications, global 

optimization is however not possible. Different cost aggregation strategies are applied. For 

instance, Semi-Global Matching (SGM) applies 1D cost aggregations to simulate a 2D 

optimization problem (Hirschmüller, 2008) while Graph Cut (Boykov & Jolly, 2001) employs a 

graph model to minimize energy in a 2D neighborhood. 

Recently, deep learning approaches have successfully been applied in stereo-matching and 

have shown to outperform traditional methods. These methods consist of network layers that 

learn multi-level representations from input data hierarchically and enable predictions to be made 

(Lecun, Bengio, & Hinton, 2015). These multi-level features learned by CNNs have proved to be 

effective than hand-crafted ones. The powerful learning ability of deep convolutional neural 

networks has led to their popularity in stereo-matching and classification. A review of deep 

learning methods for 3D reconstruction was done by (Han, Laga, & Bennamoun, 2019). The 

study highlights the different network architectures and areas they have been applied. 

Various studies have proposed architectures that estimate disparity for single images such 

as (Kuznietsov, Stückler, & Leibe (2017); Eigen, Puhrsch, & Fergus (2014)) while others such as 

(Yang, Manela, Happold, & Ramanan (2019); Žbontar & Lecun (2016)) implement CNNs using 

stereo image pairs. The above architectures have been implemented in a supervised way where a 

vast amount of ground truth labels is used during training. However, the need to acquire labeled 

data for supervised learning is quite challenging especially for realistic image datasets such as 

aerial imagery. Some studies have implemented unsupervised learning methods to train networks 

and use ground truth to evaluate the accuracy of the results. Unsupervised learning methods such 

as (Garg, Vijay Kumar, Carneiro, & Reid (2016); Godard, Mac Aodha, & Brostow (2017); Zhong, 

Dai, & Li (2017) & Mahjourian, Wicke, & Jun (2017)) leverage constraints of stereo geometry 

with image warping loss function to estimate disparity. These studies have shown the capability 
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of deep learning approaches in stereo matching tasks. However, the methods have been applied 

in computer vision using close-range images and therefore their suitability in geospatial 

applications using aerial imagery needs to be investigated. 

1.2. Research Identification 

The availability of high-resolution UAV images presents benefits as well as challenges in 

generating 3D map products. Using these images results in accurate and complete models but 

poses a challenge to algorithms due to the complex variations they suffer from. Approaches that 

are not affected by these variations are therefore needed. End-to-end CNN architectures can 

overcome these variations and have recently shown to achieve improved results in dense disparity 

and flow estimation. They consist of encoder that extracts features from the input and a decoder 

that up samples feature maps from the encoder to the same resolution as input images and make 

predictions. 

Both supervised and unsupervised learning methods have shown good results in stereo 

matching tasks. A major drawback in supervised learning is the need to acquire a large amount of 

labeled data for training (Garg et al., 2016). In areas where there is no labeled data for training or 

the available ground truth is sparse, unsupervised learning methods can be used. A common 

approach mostly applied in deep learning is initially training on large synthetic datasets such as 

Scene flow (Mayer et al., 2016) and fine-tuning on real-world target dataset. Nevertheless, there is 

a challenge of overfitting, where a network trained on synthetic datasets performs poorly when 

tested on realistic data. This means that the network has low generalization ability. In this study, 

we investigate the suitability of deep learning stereo matching methods on aerial images. We 

develop a methodology for 3D reconstruction using UAV images based on CNN by optimizing a 

pre-trained network. A comparison with hand-crafted methods will be done to evaluate the 

performance of deep learning approaches. Figure 1-1 below shows part of SceneFlow dataset. 

 

(a) 

 

(b) 

 

Figure 1-1: Scene Flow dataset (a) FlyingThings3D image and (b) Corresponding dense ground truth by 
(Mayer et al., 2016) 
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1.2.1. Research objectives 

The main objective of this study is to investigate deep learning approaches for 3D reconstruction 

using UAV imagery. The following sub-objectives are derived. 

1. Review convolutional neural networks as applied in stereo matching. 

2. Develop a methodology for disparity estimation from UAV images. 

3. Reconstruct the scene using the estimated disparity images. 

4. Compare the performance of CNN on aerial imagery with handcrafted methods. 

1.2.2. Research questions 

The following research questions are addressed. 

Specific objective 1: 

i. What are the existing networks that have been applied for stereo matching? And what 

network architecture is suitable? 

Specific objective 2: 

i. Do pre-trained CNN models have generalization ability that enables transfer learning to 

target dataset? 

ii. What parameters are to be considered when adapting a CNN model for a specific task?  

Specific objective 3: 

i. What is the quality of the point cloud and DSM? 

Specific objective 4: 

i. What is the performance of deep learning approaches compared to handcrafted methods?  

1.3. Innovation 

The study applies state-of-the-art deep learning approach in generating a digital surface model of 

a scene captured using high-resolution images. Considering the challenges high-resolution 

imagery poses to matching algorithms, this indeed is an innovation geared towards accurate 3D 

geoinformation using cost-effective imagery. 

1.4. Thesis structure 

The thesis consists of six chapters. Chapter 1 presents the motivation of the work and problem 

statement, research identification, research objectives, and questions. Chapter 2 presents an 

overview of stereo matching, convolutional neural networks, and related work. Chapter 3 

describes the methodology followed in the study. In chapter 4, we describe the data used, 

experiments conducted, results obtained and their analysis. Chapter 5 presents the discussions of 

the results. Lastly, chapter 6 presents conclusions drawn from the study and recommendations 

for further work.   
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2. LITERATURE REVIEW 

This chapter briefly reviews stereo matching algorithms and CNN as applied in stereo matching. 

An overview of stereo-vision is presented in section 2.1. A brief introduction to CNNs and 

related work is presented in 2.2 and 2.3 respectively. Finally, transfer learning is discussed in 

section 2.4. 

2.1. Overview of stereo matching 

Stereo vision is the process of recovering the structure of a scene from two or more images by 

matching pixels and estimating a 3D point cloud from their 2D positions (Szeliski, 2010). Given 

stereo image pairs the relative distance from a point  to the focal plane can be recovered using 

equation (2.1) below.    

 
 

(2.1) 

where  is the baseline  the distance between the two camera centers,  is the disparity,  is 

the focal length and  is the corresponding depth. Figure 2-1 below shows how to recover the 

3D position of a point  from two camera positions  and . 

 

 

  Baseline 

 Point on ground 

  Camera 1 center 

 Camera 2 center 

  focal length 

 Projection of  on image 1 

 Projection of  on image 2 

 Distance to the camera plane 
 

                    Figure 2-1: Geometry of stereo vision 

To obtain depth information per pixel, objects captured in the scene should be visible in 

images from both cameras. This results in a dense depth map. However, this process is 

computationally demanding. Additionally, occlusions and texture-less surfaces result in poor 

point matches in both images, therefore, making it difficult to compute disparities. In such cases 

the resultant depth maps are sparse and the quality of the 3D point cloud is affected. To avoid 

errors in the estimation of depth, the correspondences between pixels in both images should be 
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unique, free of noise, illumination changes, and geometric differences. By exploiting epipolar 

geometry, the correspondence search between the stereo pair is reduced to one dimensional. This 

speeds up the disparity computation process.  

Dense correspondence consists of four major steps – matching cost computation, cost 

aggregation, disparity computation, and disparity refinement. The computation of matching cost 

involves the determination of a similarity measure between pixels. Sum of squared differences 

(SSD) (Hannah, 1974) and the sum of absolute intensity differences (SAD) (Takeo Kanade, 1994) 

are some of the most common pixel-based matching costs. Although these algorithms are less 

complex, their drawback is the assumption of constant disparity within the same window. Other 

traditional matching costs are normalized cross-correlation (Hannah, 1974) and binary matching 

costs (Marr & Poggio, 1976) based on binary features such as edges. Binary matching costs have 

low discriminability and hence are no longer used in dense stereo matching.  

Cost aggregation employs local or global information to reduce matching uncertainties. 

Local and window-based cost aggregation methods aggregate cost by summing or averaging over 

a support region in the disparity space. Two-dimensional aggregation methods such as shifting 

windows (Fusiello, Roberto, & Trucco, 1997) where for each pixel, the correlation with nine 

different windows and disparity with the smallest sum of squared differences is retained and 

sliding a low-pass filter overall target regions have been used. Three-dimensional aggregation 

methods such as limited disparity difference (Grimson, 1985) and limited disparity gradient 

(Pollard, Mayhew, & Frisby, 1985) have been proposed. Shah (1993) proposes another method of 

aggregation – iterative diffusion, implemented by repeatedly adding the weighted values of 

neighboring pixels costs to the cost of a pixel. 

Local disparity computation methods emphasize on matching cost computation and cost 

aggregation. They perform a local winner take all (WTA) optimization at each pixel. Their 

drawback is that the uniqueness of matches is only enforced for the reference image while points 

in the other image might match multiple points (Scharstein & Szeliski, 2002). Global methods, on 

the other hand, perform optimization after disparity computation and often skip the aggregation 

step. They are formulated in an energy minimization framework and try to minimize a global 

energy function given by the equation below. 

 
 

(2.2) 

where  is the initial matching cost and  is a smoothness term weighted by . The value 

 encourages neighboring pixels to have similar disparities based on the assumption that the 

disparity map is locally smooth. After defining this global energy, various algorithms can be used 
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to compute the local minimum. Algorithms such as graph cut and belief propagation (Liang, 

Cheng, Lai, Chen, & Chen, 2011) have shown to produce good results as compared to traditional 

algorithms such as simulated annealing (Geman & Geman, 1984). As in local methods, 

refinement is also done to smoothen the disparity map. 

Post-processing of the computed disparities is crucial to get rid of mismatches. This is 

done in the refinement step where disparities are refined to reduce noise by filtering inconsistent 

pixels. Comparing left-to-right and right-to-left disparity maps (left-right consistency check) is 

applied to detect occluded areas (Fua, 1993). Noise reduction approaches such as median filter 

and Gaussian convolution can be applied. The median filter approach cleans up mismatches. In 

Gaussian convolution weights of neighboring pixels are given by a Gaussian distribution. Surface 

fitting can be applied to fill holes due to occlusions or by distributing neighboring disparity 

estimates (Hirschmuller & Scharstein, 2009). Another post-processing technique is associating 

confidence with per-pixel depth estimates by looking at the curvature of the correlation surface 

although it's useful when applied in later processing stages.  

2.2. Review of Convolutional Neural Networks 

Convolutional neural networks are networks that are widely used for processing images and time-

series data. They consist of neurons organized in three dimensions, the spatial dimensionality of 

input image i.e. height and width, and depth. A summing operation applied to inputs to the 

neurons results in linear output. A neuron's output is modeled as a function of its input  using 

activations. The most commonly used activations are hyperbolic tangent given as  

and sigmoidal given as . These saturating activations take a longer time during 

network training with gradient descent than the non-saturating rectified linear units (ReLUs) with 

a function  (Krizhevsky, Sutskever, & Hinton, 2012). Figure 2-2 below shows 

some of the most commonly used activation functions. 
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                Figure 2-2: Most commonly used activation functions in CNNs 

CNN's consist of convolutional, pooling, and fully connected layers. Convolutional layers consist 

of layers of learnable filters that convolve across the height and width of the input volume and 

compute dot products between filter elements and input generating a 2D activation map. For 

example, the th output feature map  in a given convolutional layer is computed as shown by 

equation (2.3) below.                                  

 
 

(2.3) 

where  is the non-linear activation function,  is the input image,  is the convolutional 

filter of th feature map, and  denotes the 2D convolution operator. Using filters with a smaller 

dimension than the input reduces the number of connections and number of parameters to be 

computed resulting in sparse connectivity (Figure 2-3 below). The same set of weights are 

learned for each location in the input in a given layer. This means that the parameters are shared 

during convolutions. Fully connected layers lack these two properties. As shown in Figure 2-4, 

units in a fully connected layer are connected to subsequent layers, and parameters are not shared 

but instead used only once (Bengio, Goodfellow, & Courville, 2015). Another property of 

convolution is equivariance that enables features occurring at different locations to be detected 

effectively. This means that a transformation on the input before applying a function is not 

changed and still exists even after the function is applied (Bengio et al., 2015).  
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                                                                            (a) 

    

                                    

                                                                            (b) 

Figure 2-3: Sparse Connectivity (a) Convolution with a 3x3 kernel, only 3 outputs are affected by  
(b)Using matrix multiplication no sparse connectivity and all outputs are affected by . (Adapted from 
Bengio, Goodfellow, & Courville, 2015) 

 
Pooling layers are used for down-sampling along the spatial dimensionality of the input image. It 

is done through max-pooling and average pooling. Max-pooling takes the maximum over an 

input region while average pooling returns average over the window considered. Pooling with a 

stride  down-samples the input image by a factor of . The effect of pooling by a big factor 

is that it reduces the spatial dimension of the output resulting in loss of crucial information. 

Training CNNs involves feeding the network with inputs  and generating output  

through forward propagation. A backpropagation is done to compute gradients of the layer 

outputs. An optimization procedure is done to update the gradients during backpropagation. 

Stochastic gradient descent (SGD) is commonly applied. SGD consists of learning rate and 

momentum. The learning rate controls the rate at which the learning takes place by accelerating 

training. However, the selection of the value learning rate is quite sensitive. Choosing a larger 

value may cause the network to start diverging rather than converging. On the other hand, a 

smaller value may lead to more training time and the network might get stuck at local minima. A 

common technique is to reduce the learning rate during the training process (Nair & Hinton, 

2010). Momentum accelerates the learning with the SGD approach by using the moving average 

of the gradient instead of the current real value (Bengio et al., 2015). Network training with few 
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samples leads to overfitting where it loses its ability to generalize to new data. Techniques for 

preventing overfitting have been proposed such as data augmentation and drop out techniques. 

Data augmentation involves transforming the dataset through scaling, rotations, flipping, and 

color transformations. Dropout is also used to prevent overfitting by dropping out some units in 

the network (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Layers in a 

CNN  are arranged hierarchically with lower layers extracting low-level features such as edges. 

Deeper layers extract complex and data specific features and therefore have large receptive fields 

(Lecun et al., 2015).  

                                 

                                                                               (a) 

 

                                

                                                                               (b) 

Figure 2-4: Parameter Sharing (a) Convolution with a 3x3 kernel, due to parameter sharing the central 
element of the kernel is used in all input locations. (b) In Fully Connected using the central element of the 
weight matrix, the parameter is used only once. (Adapted from Bengio et al., 2015) 

2.3. Related work on stereo matching using CNN 

Žbontar & Le Cun, (2016) proposed to compute matching cost by multi-layer representations 

learned by a CNN (MC-CNN). They train two networks that differ in complexity to predict how 

well two patches match and initialize the matching cost computation. One of the networks, the 

fast architecture is a Siamese network that computes a cosine similarity score by comparing 
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features vectors from both patches. The other network is a slow network with a fully-connected 

layer that replaces the dot product in the fast architecture. They implement cost aggregation and 

semi-global matching post-processing to refine the cost and left-right consistency check to 

eliminate errors in occluded areas. The fast architecture was 80 times faster than the slow one. It 

also obtained the lowest error rate on the KITTI stereo dataset (A Geiger, Lenz, Stiller, & 

Urtasun, 2013). Figure 2-5 shows the architecture of the accurate CNN proposed by (Žbontar & 

Lecun, 2016). 

               

           Figure 2-5: Architecture of the accurate network by (Žbontar & Lecun, 2016) 

Likewise, Luo, Schwing, & Urtasun, (2016) presented a method (Content-CNN) that employs a 

Siamese network architecture that exploits a product layer to compute the inner product between 

the two representations. The network is trained as a multi-class classification problem where 

possible disparities are treated as classes. Compared to existing approaches, their network 

presented a better matching performance on challenging datasets in less than a second. Patch-

based methods achieve good accuracy but they require exhaustive matching of patches and hence 

slow. They also don’t use the whole image context (Ilg et al., 2017). 

End-to-end network architectures on large datasets to predict disparity have been recently 

proposed. Laina et al. (2016) proposed a fully convolutional network architecture to estimate 

depth maps from a single image. They investigate popular architectures AlexNet (Krizhevsky et 

al., 2012), VGG-16 (Simonyan & Zisserman, 2014), and ResNet-50 (He, Zhang, Ren, & Sun, 

2016) trained on ILSVRC (Russakovsky et al., 2015) as the encoder using their pre-trained 

weights. The decoder comprises of un-pooling and convolutional layers that up-sample feature 
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maps from the contractive part to high-resolution outputs. They apply a data augmentation 

technique to increase the training samples. The network was evaluated on an indoor NYU depth 

dataset (Silberman, Hoiem, Kohli, & Fergus, 2012) and an outdoor Make3D dataset (Saxena, Sun, 

& Ng, 2009) achieving better results and showed high generalization ability. However, networks 

that estimate depth from single images do not exploit stereopsis hence they have poor 

generalization ability to unseen datasets (Ummenhofer et al., 2017). Figure 2-6 shows an NYU 

dataset image and its corresponding disparity map estimated by (Laina et al., 2016). 

            

                                (a) 

 

                         (b) 

Figure 2-6: (a) NYU dataset RGB image and (b) Corresponding depth map estimated by the network 
used in (Laina et al., 2016) 

Kendall et al. (2017) proposed an end-to-end architecture (GC-Net) that incorporates 

geometry and contextual information to estimate disparity from stereo images. They use 2D 

convolutional operations using 5  5 filters followed by residual blocks of 3  3 filters. The left 

and right stereo images are fed through these layers to obtain unary features. These unary features 

are used to compute stereo matching costs by forming a cost volume that enables incorporation 

of context. They extend the idea of encoder-decoder by using 3-D transposed convolutions in 

the decoder that make predictions with the same resolution as input. By incorporating context, 

the method achieves improved accuracy on the challenging KITTI datasets (A Geiger et al., 

2013). 

Fischer et al., (2015) proposed a network to compute optical flow estimation using CNN. 

They employ an encoder-decoder architecture that allows concatenation of feature maps from 

the encoder part in the decoder. The encoder extracts high-level features from the input images 

while the decoder up convolves the coarse feature maps to full resolution of input images. They 

propose two network architectures that differ in the complexity as shown in Figure 2-7 below. 

The generic network named FlowNetSimple consists of encoder that extracts high-level features 

from stacked stereo image pairs and a decoder that up samples coarse feature maps to full 

resolution of input images. This enables fine prediction resulting in accurate disparity maps. The 

other architecture, FlownetCorr consists of two parallel streams that extract features from left 

and right image pairs independently. The feature vectors are then compared by a correlation layer 
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generating a four-dimensional result. For refinement, a decoder that ‘up-convolves’ the resulting 

map and concatenates it with feature maps from the encoder is implemented resulting in a fine 

prediction. The networks are trained on the synthetic Flying chairs dataset and tested on Sintel 

and KITTI benchmark datasets.  

  

          

                                                                   (a) 

 

             

                                                                  (b) 

Figure 2-7: Architecture of (a) FlowNetS and (b) FlowNetCorr by (Fischer et al., 2015) 

Following the idea of FlowNet (Fischer et al., 2015), Mayer et al., (2016) propose a method to 

estimate disparity and scene flow jointly using CNN. They created a large synthetic dataset with 

ground truth for training and evaluation. The joint network is achieved by fine-tuning disparity 

and scene flow pre-trained networks. They performed data augmentation by introducing spatial – 

rotation, translation scaling, and chromatic – color, contrast, brightness transformations for all 

images to obtain diversity. Data augmentation techniques such as rotation and translations are 

not recommended for disparity since they break the epipolar constraint. 

2.4. Transfer learning 

CNN layers learn general features such as edges and color blobs in the first layers regardless of 

the cost function and input images. The features are referred to as general since they are 

independent of dataset and task. Layers on top learn dataset and task-specific features that enable 

accurate predictions to be made. Transfer learning involves training a base network on a given 

dataset and task and transferring the features learned to a target dataset and task. This is quite 
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important especially when the target dataset is small to prevent the network from overfitting 

(Yosinski, Clune, Bengio, & Lipson, 2014). This strategy requires that the features be suitable to 

both datasets otherwise the process will fail.   

The approach in transfer learning is to apply a pre-trained model directly to a target 

dataset without parameter tuning. This only works when the dataset the network was trained on 

is almost similar to the target dataset (Bengio, 2012). Alternatively, the network can be initialized 

with pre-trained weights and update them by fine-tuning on the new target dataset. This can be 

done by freezing the base network and training the parameters of the last layers or train all the 

parameters of the network. However, the choice of whether to fine-tune the last layers or train all 

parameters of the network depends on the target sample size and the depth of the network 

(Yosinski et al., 2014).  A small target dataset may result in overfitting when fine-tuned on a 

deeper network. In this case, it is recommended to fine-tune only the last layers and freeze the 

base network. With the availability of a large target dataset, the whole network can be fine-tuned 

for improved performance. 

The availability of pre-trained models allows the concept of transfer learning to be 

implemented in many tasks. For depth estimation from stereo images, various pre-trained models 

are available publicly and can be used for fine-tuning in datasets different from the one they are 

trained on such as aerial imagery.  
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3. METHODOLOGY 

This chapter describes the set of experiments conducted towards the main objective of 

generating a digital surface model from UAV images. Figure 3-1 below shows an overview of the 

methodology followed in the study. We design a CNN model and train it end-to-end using a 

synthetic dataset. We directly test the trained model on real-world datasets to test its 

generalization ability. We then optimize its parameters and train it on real-world datasets. We test 

our final model and recover scenes from the disparity images. Lastly, we compare our results with 

conventional methods.  

 
 

Figure 3-1: Overview of methodology 



DENSE IMAGE MATCHING USING CONVOLUTIONAL NEURAL NETWORKS 

16 

3.1. CNN architecture 

We design a CNN architecture based on the model proposed by (Chang & Chen, 2018). Our 

model consists of four main modules; feature extraction, spatial pyramid pooling, cost volume, 

and regularization. Because of the nature of our dataset comprising of diverse features, we chose 

this architecture with spatial pyramid pooling that enables us to capture and aggregate context 

information. Figure 3-2 below shows the general architecture of our CNN. Table  3.1 describes 

the final network architecture. 

 

Figure 3-2: General architecture of the designed CNN (Adapted from Chang & Chen, 2018). 

3.1.1. Feature extraction 

The input left and right stereo pairs of size  are passed through small cascaded  

filters that downsample them by a factor of two (see Figure 3-3). They are followed by residual 

blocks of ResNet structure as implemented in (He et al., 2016). To capture a larger receptive field, 

we apply a dilated convolution at the last two blocks of feature extraction. The resulting feature 

maps are  of the input image size. Weights in the parallel CNN and spatial pooling pyramid 

branches are shared. 

 

Figure 3-3: Feature extraction module consisting of cascaded filters and ResNet blocks. 

A spatial pooling pyramid (SPP) module is applied to the feature maps to capture context 

information. We design four average pooling blocks of , , ,  

followed by  convolutions. This was motivated by the work in Zhao, Shi, Qi, Wang, & Jia 

(2017) who observed that average pooling works well than max-pooling while pooling with 

pyramid parsing outperforms global pooling. The pooled feature maps are then upsampled using 

bilinear or cubic interpolation to the input feature map size. Feature maps from the four levels 

are then concatenated to form the final output.  
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Figure 3-4: Spatial pyramid pooling module with four levels of pyramid parsing 

3.1.2. Cost volume  

The 3-dimensional feature maps of the left and right images from the SPP module are aggregated 

to form a 4-dimensional cost volume. The resulting output is a volume of a dimension 

 where  is the height,  is the width,  is the disparity, and  is the number of 

filters. 

3.1.3. 3D CNN 

 

Figure 3-5: Stacked 3D CNN 

As shown in Figure 3-5 above, we use an encoder-decoder network architecture to learn more 

context features. It aggregates features along spatial and disparity dimensions of the cost volume. 

As in (Chang & Chen, 2018), we stack three 3D CNNs each generating a disparity map through 

the disparity regression module. Each of the 3D CNN has a loss. The three losses are summed to 

get the total loss used during training. The final disparity map is obtained from the three refined 

disparity maps. In our final implementation, we use the  also known as 

 to train the network.  is less sensitive to outliers than mean squared error 

, and prevents exploding gradients (Girshick, 2015). The loss function is computed as 

shown in equation 3.1.  
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(3.1) 

where  is the number of labelled pixels,  is the ground truth disparity, and  is the predicted 

disparity. The disparity regression module computes the disparity of each pixel from the 

predicted cost  as the sum of each disparity  weighted by its probability using a softmax 

operation . Equation 3.2 below shows the disparity regression. 

 

 

(3.2) 

3.1.4. Training procedures 

We implement a common strategy to train our designed model. First, we train the model on a 

synthetic dataset from scratch using Adam optimizer for 20 epochs at a learning rate of 0.001. We 

then fine-tune the trained model using the UAV target dataset. In finetuning we first aim to 

determine the optimal parameters that we will use to train our model. We conduct a parameter 

optimization experiment using different parameters that affect the learning and regularization of 

deep networks. We focus on the parameters that influence the quality of disparity maps and 

incorporate the KITTI dataset which has a denser ground truth than ours. We tune these 

parameters over a sample of 400 image pairs (training and validation). The optimal parameters 

determined are used in our fine-tuning experiment (see 4.2.2). Further, we investigate the effect 

of varying training set in transfer learning by using different sample sizes of the training set (see 

4.2.3). 

 

Table  3.1: Final network architecture 

Layer name Description(shape,filters,dilation,stride) Output 

Input  H x W x 3 

Conv1 
              

 H x W x 32 

Conv2 
              

 H x W x 32 

Conv3 
              

 H x W x 32 

Conv_stack_1 

 

 H x W x 32 

Conv_stack_2 

              

 H x W x 64 
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Conv_stack_3 

             

 H x W x 128 

Conv_stack_4 

 

 H x W x 128 

SPP1  

 
Bilinear interpolation 

 H x W x 32 

SPP2  

 
Bilinear interpolation 

 H x W x 32 

SPP3  

 
Bilinear interpolation 

 H x W x 32 

SPP4 
              

 
Bilinear interpolation 

 H x W x 32 

concatenation conv_stack_2, conv_stack_4, SPP1, SPP2, 

SPP3, SPP4 
 H x W x 32 

fusion 

 
 H x W x 32 

Cost volume Concatenated left and right 3D volumes  H x W x 32 

3Dconv0                H x W x 32 

3Dconv1                H x W x 32 

3Dstack1_1 

              
 H x W x  

3Dstack1_2 

 
 H x W x  

3Dstack1_3 
 

            add 3Dstack1_1 

 H x W x  

3Dstack1_4   

add 3Dconv1 

 H x W x 32 

3Dstack2_1 

 
add 3Dstack1_3 

 H x W x  

3Dstack2_2 

 
 H x W x  

3Dstack2_3  
add 3Dstack1_1 

 H x W x  

3Dstack2_4   H x W x 32 
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add 3Dconv1 

3Dstack3_1 

 
add 3Dstack2_3 

 H x W x  

3Dstack3_2 

              
 H x W x  

3Dstack3_3  
add 3Dstack1_1 

 H x W x  

3Dstack3_4  

add 3Dconv1 

 H x W x 32 

Output_1 

 
 H x W x  

Output_2 

 
Add output_1 

 H x W x  

Output_3 

 
Add output_2 

 H x W x  

Disparity regression Upsampling 

regression 

D x H x W 

H x W 

 

3.2. Point cloud generation 

Disparity maps obtained from the trained network are 2D grayscale images. To obtain a 3D point 

cloud, the disparity maps are reprojected using the camera parameters. The general equation that 

describes the mapping of 3D information from 2D images is as shown by the equation below. 

 
 

(3.3) 

where  is a 2D homogeneous image point defined by pixels,  a 3D world point on the terrain, 

and  the camera matrix.  

Figure 3-6 shows camera geometry that describes the relationship between an image point  and 

the corresponding point  on the terrain. 
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Figure 3-6: Camera Geometry (Adapted from Hartley & Zisserman, 2003) 

From Figure 3-6 above the general equation 3.3 can be expanded in matrix notation as shown in 

equation 3.4. 

 

 

(3.4) 

with  a  matrix,   a  matrix, and a camera matrix  a  matrix. The camera 

projective matrix  can be further written as; 

 

 

(3.4) 

Equation 3.4 above can be decomposed into two matrices as; 

 

 

(3.5) 

where  is the focal length of the camera in pixels,  and  are the coordinates of the principal 

point and accounts for different camera and image origins. This can be written as shown in 

equation 3.6 below. 

   (3.6) 

However, there are three different coordinate systems – camera, image, and world coordinate 

systems and therefore, a transformation between them is needed. To align the camera and world 

systems, a 3D rotation and translation is required. The projection matrix now becomes; 
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(3.7) 

 

where  is a  intrinsic calibration matrix,  is a  extrinsic rotation matrix that 

describes the orientation of the camera coordinate system and  is a  extrinsic translation 

vector that relates image and object coordinate systems. The above projective matrix, equation 3.7 

together with equation 2.1(describes how to recover depth from disparity) are used to project a 

2D disparity image to a 3D point cloud.  The point cloud is then triangulated to obtain a digital 

surface model (DSM). We use LAStools (Rapidlasso GmbH, 2020) to remove noise in the cloud 

and create DSM. 

3.3. Conventional methods 

Traditional methods rely on set parameters that are selected by the user and are therefore slow 

and computationally expensive. However, these methods have successfully been implemented in 

commercial software and generate good results. Most of the implementations are based on the 

semi-global matching algorithm. For comparison purposes in this study, we use Pix4Dmapper to 

generate point cloud and DSM. The general pipeline implemented in Pix4D is shown in Figure 

3-7. The three main steps i.e. initial processing, point cloud and mesh, and DSM and Ortho-mosaic are 

described below. 

Initial processing 

In the first step, the user is allowed to select the processing options. The main options are the 

image size to be used in extracting key points and what will be included in the quality report. For 

precise results, Full image size should be selected but takes a longer time than Rapid that has a 

lower image scale. Original image size under Custom is recommended. Matching allows users to 

select images to be matched optimizing for grid or corridor flight paths and terrestrial images. 

Our images are captured in a grid path and we use full image size. Calibration option allows users 

to set the number of key points to be extracted, calibration method, and optimization for internal 

and external parameters. We applied the defaults with the rematch set to automatic to add more 

matches after initial processing for improved quality of reconstruction. 
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Figure 3-7: General pipeline in Pix4D showing the main parameters to be selected by the user in each 
step. (Note: Outputs from each step are exported to be used in next step or saved). 

Point cloud and Mesh 

The second step involves setting parameters to improve the point density for better accuracy of 

DSM and ortho-mosaic. The user is allowed to select parameters for point cloud densification. 

We used the recommended image scale – Half image size, the density of point cloud – Optimal, 

and 3 as the minimum number of matches per 3D point. We didn’t apply classification to the 

generated point cloud. We choose to merge the point cloud into one file and export it as a las file 

for further analysis. 

DSM and Ortho-mosaic 

In the last step, the user selects the parameters for the desired output i.e. DSM or Ortho-mosaic 

such as resolution, filters, and output file format. Here, we set the recommended resolution of 1 

ground sampling distance (GSD) i.e. a DSM of 5cm resolution. To remove erroneous points, we 
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apply noise filtering and smoothen the resulting DSM using surface smoothing. For further 

analysis and comparison, we need a raster DSM and therefore we generate a GeoTIFF file. To 

obtain a raster file, an interpolation algorithm is applied. Two interpolation techniques are 

provided and differ in computation time and quality of results. Inverse distance weighting (IDW) 

which applies a weighted average of all points is suitable for scenes with buildings while 

triangulation which is based on Delaunay triangulation and faster than IDW is recommended for 

flat areas. Lastly, we generate a merged DSM GeoTIFF file that is exported for further analysis. 
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4. EXPERIMENTS 

4.1. Data description 

We use synthetic datasets for training the network from scratch and real-world datasets for fine-

tuning. The synthetic dataset SceneFlow (Mayer et al., 2016) is a collection of more than 39,000 

stereo frames of size  pixels. It consists of three different datasets FlyingThings3D, 

Monkaa, and Driving datasets created using a modified version of the Blender suite. The 

modification is done in such a way that in addition to generating stereo images, it also generates 

three additional passes per frame for each view. This results in 3D positions of all surface points 

providing a dense and complete ground truth even in occluded areas. FlyingThings3D is a 

collection of everyday objects flying along randomized 3D trajectories. It is created by translating 

and rotating 3D objects downloaded from ShapeNet (Savva, Chang, & Hanrahan, 2015) database 

and randomly texturizing the object's material. Monkaa is created by rendering scenes from the 

short film Monkaa while the Driving dataset consists of dynamic street scenes resembling KITTI 

datasets captured from a moving car. It is created by rendering car models and detailed tree 

models. 

Real-world datasets consist of the KITTI benchmark dataset and a UAV dataset. KITTI 

2015 scene flow benchmark dataset (Menze & Geiger, 2015) was created to provide dynamic 

objects and ground truth for the evaluation of scene flow models. This is after the challenging 

KITTI 2012 benchmark dataset (Geiger, Lenz, & Urtasun, 2012) used for evaluation failed to 

provide scene flow ground truth for moving objects. They leveraged the KITTI raw data (Geiger 

et al., 2013) to create a realistic scene flow dataset with independently moving objects and ground 

truth. It comprises of 200 training and 200 test scenes. To generate ground truth disparity maps, 

the vehicles are equipped with a rotating laser scanner. 

The  UAV dataset consists of nadir images taken from a UAV system equipped with an 

RGB camera. The images were captured in Rwanda and Europe. They are acquired with an 80% 

forward and 60% side overlaps at 2~3 cm GSD. We sample 4,000 images from these datasets for 

our experiments. We use 3,500 image pairs for training and 500 image pairs for testing. A 

summary of the datasets used in the study is given in Table  4.1 below. 
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Table  4.1: Description of datasets used in the study 

Dataset  Description           Status          Size 

Scene Flow A synthetic dataset  

consisting of images 

with non-dynamic 

scenes and dense 

ground truth 

          Available Over 39,000 image 

pairs 

KITTI 2015 Close-range images of 

road, vehicles, and 

other objects. Laser 

ground truth 

          Available  400(200 image pairs 

for training  and 200      

image pairs for 

testing) 

UAV dataset Nadir UAV images 

taken with RGB 

camera at 2~3 cm 

GSD with 80% 

forward and 60% side 

overlaps. 

          Available 4,000(3,500   training 

image pairs and 500 

image pairs for 

testing) 

4.1.1. Data preparation 

The images are first rectified to align the epipolar lines in the left and the right images. This 

reduces the computation of disparity to one dimensional hence reducing training time.  

In aerial imagery, there are no publicly available benchmark datasets with ground truth that can 

be used to train stereo matching networks. The acquisition of labeled data is expensive and 

requires conversions and transformations such as camera model registration, coordinate system 

conversions, and projections. For this study, we use an improved variant of semi-global matching 

(SGM) algorithm by (Guo, Xu, & Zheng, 2016) that uses fast census transform which is faster 

than the traditional census transform. SGM fast census transform differs from the traditional 

SGM algorithm in terms of speed and noise sensitivity. Apart from being faster than traditional 

SGM, the fast transform is less sensitive to noise than baseline SGM. It also generates denser and 

more regular disparity maps with fewer artifacts than SGM. Figure 4-1 below shows disparity 

maps obtained from a UAV stereo pair using the above algorithm. 
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Left image Right image Disparity map 

   

   

 

Figure 4-1: UAV stereo pairs and corresponding disparity maps generated by SGM (Guo et al., 2016) 

4.1.2. Software and Implementation 

We implement the model in a PyTorch environment. A graphics processing unit is required to 

speed up computation and reduce training time. We utilize an NVIDIA GeForce RTX 2080i 

GPU card for faster processing. MATLAB R2019a (MathWorks, 2019) is used to rectify stereo 

image pairs while Pix4Dmapper (Pix4D, 2020) is used to generate products for comparison.  

4.2. CNN Experiments  

4.2.1. Direct testing 

In the first experiment, we aim to test the generalization ability of pre-trained CNN models to 

target datasets. In our case, the model is trained on a synthetic dataset and tested on aerial 

imagery. We first train our CNN model on SceneFlow synthetic dataset for 30 epochs using 

Adam optimizer and betas  and  at 0.001 learning rate. We directly apply the 

trained model on our target dataset for testing. 

4.2.2. Parameter optimization 

We carry out a preliminary experiment to determine the optimal parameters to be used in the 

implementation of the model. Since our UAV dataset has a sparse ground truth, we incorporate 

the KITTI 2015 benchmark dataset which has a denser ground truth in the preliminary 

experiment. In the first experiment, we use 200 KITTI training images and sample 200 UAV 

images for parameter tuning. From a total of 400 images, we use 80% for training and 20% for 

validation. In the second experiment, we sample a total of 400 UAV images. As in the first 

experiment, we use 80% for training and 20% for validation. For testing, we use the 200 KITTI 

testing images and sample 100 images from the UAV dataset. 
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In this experiment, we use the pre-trained model from the experiment in 4.2.1 above. We 

tune the parameters over the 400 real-world images in the two experiments. The parameters that 

result in low validation errors in the two experiments are selected for final implementation. 

The parameters used in fine-tuning with both KITTI 2015 and UAV dataset are shown in the 

table below. 

Table  4.2: Parameters used in parameter optimization experiment 

Parameter       Values   

Maximum disparity      192, 256, 320 

Learning rate 0.01, 0.001, 0.0001 

Betas   
  

Optimizer        

Momentum    0.9   

Epochs      300   

Loss        

 

A combination of optimal parameters determined in the parameter optimization experiment are 

used to train the network. After training, the network is evaluated on all the testing dataset. The 

selected parameters for final implementation are shown below in Table  4.3.  

Table  4.3: Final implementation parameters 

Parameter      Value(s)   

Learning rate 0.001, 0.0001   

Maximum disparity      256   

Optimizer     

Betas    

Maximum epochs     400   

Loss    
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4.2.3. Final implementation 

Using the parameters determined in experiment 4.2.2, we implement the network on our target 

UAV dataset. We adopt a training strategy used in most deep learning experiments whereby the 

network is first trained on a synthetic dataset with dense ground truth and finetuned on the target 

dataset. We implement our fine-tuning using the pre-trained model from the experiment above 

and fine-tune on our target UAV dataset. We conduct two experiments as follows; 

First, to evaluate the effect of increasing the sample size in transfer learning, we divide 

our training dataset into four samples. We set the sample sizes to 200, 600, 1200, and 3000 image 

pairs. For all sample sizes, we use the parameters in Table  4.3 for training. The trained models 

are tested on our testing dataset. Second, we train the model on the whole dataset and increase 

the number of epochs to 400 at a learning rate of 0.001. We change the learning rate for the last 

100 epochs to 0.0001 to decrease the learning process. We set the maximum disparity to 256 

since the dataset contains low objects on terrain and tall objects such as houses. The trained 

model is tested on the testing dataset and the disparity maps obtained used to generate a point 

cloud.  

4.2.4. Comparison of CNN and traditional methods 

We conduct a comparison between the CNN method and traditional hand-crafted methods. 

From our experiments in section 4.2.3, we select the strategy that gives the best disparity map i.e. 

training the network with the whole UAV dataset. We reproject the disparity maps to obtain 

point cloud and DSM as explained in section 3.2. For the traditional methods, we sample images 

from our dataset and use Pix4Dmapper (Pix4D, 2020) to generate point clouds and digital 

surface model (described in section 3.3). We assess the quality of the products and conduct an in-

depth comparative analysis of the two methods. 

4.3. Results and Analysis 

4.3.1. Direct testing on target dataset 

We present the results of directly applying a pre-trained model to a target dataset. As shown in 

Figure 4-2 below, deep learning models lack generalization ability and cannot guarantee transfer 

learning from models trained on synthetic datasets to a target dataset. This is especially 

challenging when the datasets differ in features such as in our case of aerial imagery. As noted by 

Yosinski et al. (2014), transfer learning is only possible when the features in the two datasets are 

similar. In our case, the features in UAV imagery are quite different from the features in the 

SceneFlow synthetic dataset, and therefore the network performs poorly. 
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Figure 4-2: Disparity maps generated by directly testing a pre-trained CNN two image pairs.  

4.3.2. CNN optimization 

In determining the optimal hyperparameters for our model, we conducted a preliminary 

experiment to determine the parameters to use in our final implementation. Table  4.4, Table  4.5, 

and Table  4.6 present the different accuracies obtained from the experiment using the UAV 

dataset. For each maximum disparity value, we try different values of learning rate, optimizer, and 

loss. These are the parameters that affect the learning process in deep networks. The number of 

epochs was kept constant i.e. 300. The momentum and the  values for  

were as described in Table  4.3. 

 

Table  4.4: Accuracies obtained for a maximum disparity of 192. 

Max disparity Learning rate Optimizer Loss Accuracy 

192 0.01 Adam 

SGD 

SmoothL1 

MSE 

96.82 

96.54 

192 0.001 Adam 

SGD 

SmoothL1 

MSE 

97.10 

96.94 

192 0.0001 Adam 

SGD 

SmoothL1 

MSE 

97.13 

97.02 
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Table  4.5: Accuracies obtained for a maximum disparity of 256 

Max disparity Learning rate Optimizer Loss Accuracy 

256 0.01 Adam 

SGD 

SmoothL1 

MSE 

97.11 

96.93 

256 0.001 Adam 

SGD 

SmoothL1 

MSE 

97.37 

97.08 

256 0.0001 Adam 

SGD 

SmoothL1 

MSE 

97.24 

97.13 

 

Table  4.6: Accuracy obtained for a maximum disparity of 320 

Max disparity Learning rate Optimizer Loss Accuracy 

320 0.01 Adam 

SGD 

SmoothL1 

MSE 

96.41 

96.18 

320 0.001 Adam 

SGD 

SmoothL1 

MSE 

96.72 

96.59 

320 0.0001 Adam 

SGD 

SmoothL1 

MSE 

96.86 

96.77 

 

We observe that when the maximum disparity is set to 320, the accuracy decreases as compared 

to disparity values of 192 and 256. A value of 0.001 for learning rate and a maximum disparity of 

256 gives the best accuracy as compared to 0.01 and 0.0001. Although a value of 0.0001 has good 

accuracy, it may take longer for larger sample sizes given that the sample size used is only 400 

image pairs. Thus, it may cause the network to take more time to converge. Figure 4-3 below 

shows the accuracies obtained by using different learning rates. 



DENSE IMAGE MATCHING USING CONVOLUTIONAL NEURAL NETWORKS 

32 

 

Figure 4-3: Accuracy obtained by different values of the learning rates. 

From Figure 4-3 above, a large learning rate causes oscillations and is not stable as compared to 

smaller values that enable the model to learn well. As the learning rate gets smaller, the model 

learns slowly and therefore small learning rates are not suitable especially when the sample size is 

large. With our model configuration, the results above show that the model performs well with a 

learning rate of 0.001.    

4.3.3. Varying sample size 

We conducted experiments to determine the effect of the size of the dataset used in transfer 

learning. We set different sample sizes of our UAV dataset and used each sample to train our 

model. We then tested each trained model on our testing dataset. The results are shown in Table  

4.7. 

Table  4.7: Test accuracy of different sample sizes 

Sample Size    200    400    800    1600    3000 

Accuracy (%) 96.48 95.21 96.78 97.23 97.89 

Improvement (%) - -1.27 1.57 0.45 0.66 

When using a small sample size i.e. 200 image pairs for fine-tuning a deep CNN model, the 

performance is poor. We observed that increasing the size of the training dataset increases 

accuracy. This is not the case when using 400 pairs as the performance dropped from 96.48% to 

95.21%. However, as we increased the sample size to 1600 image pairs, the accuracy improved 

significantly from 95.21% to 97.23%. Training with the whole training dataset i.e. 3000 image 

pairs leads to a 97.89% accuracy. The results show that for deeper CNN models to learn features 

effectively, they require a large training dataset. 
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4.3.4. Final experiment 

In the final training experiment, we used all the UAV dataset containing 3000 image pairs and 

3000 labels to train our CNN model. The trained model was tested on our testing dataset. The 

disparity maps obtained from the testing set are shown below. 

 

   

   

   

Figure 4-4: Disparity estimation results: Top row: UAV testing stereo images, Second row: SGM method, 
Last row: Finetuned CNN. 

Figure 4-4 shows disparity maps generated using the SGM and fine-tuned CNN model. The 

result generated by SGM is sparse as compared to the CNN maps. In the SGM method, objects 

such as buildings are not distinguishable as in pre-trained and fine-tuned CNN results. This is 

clear especially in occluded areas and along the edges of objects. Additionally, the SGM maps 

have clutter and artifacts while the fine-tuned CNN maps are smooth and denser. There is 

significant improvement between the CNN pre-trained on synthetic datasets and the CNN fine-

tuned on aerial imagery. However, looking closely at the results in the third column, the disparity 

map from the fine-tuned CNN is poor, especially on the buildings. This is because our training 

dataset consisted of scenes with more vegetation and few buildings in most areas which causes 

the network to overfit. This can be reduced by adding more data during training and 

incorporating data from diverse scenes.  
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4.3.5. 3D point cloud generation 

We reprojected the disparity maps generated by our model to recover the scene. The results are 

presented below. 

 

  

  

  

Figure 4-5: 3D scenes recovered from dense disparity maps: Left: Stereo images and Right: Dense 3D 
point cloud 

From the above results, the dense disparity maps generated a high-density point cloud that 

reveals fine details of objects although some errors are evident. Errors due to occlusions are 

visible in buildings and tall objects. This is due to shadows caused by occlusions that lead to 

matching errors. Gaps are also visible in areas with vegetation and flat areas. This is as a result of 

matching failure in vegetation. Fine details in vegetation are difficult to capture using deep 

learning because of occlusions and hence no penetration. CNN methods leverage stereo 

information and errors such as those caused by occlusions are difficult to avoid when using 

stereo imagery. With multi-view geometry, such errors can be eliminated. 



DENSE IMAGE MATCHING USING CONVOLUTIONAL NEURAL NETWORKS 

35 

4.4. Comparative analysis 

4.4.1. Point cloud evaluation 

We evaluate the results of our model and the conventional methods for 30 image pairs. The point 

cloud obtained from our pre-trained and finetuned models is filtered to remove noise i.e. invalid 

disparities. The clouds were registered in Cloud Compare (Daniel, 2015) and Iterative Closest 

Point (ICP) algorithm (Besl & McKay, 1992) used to improve the registration. Afterward, we 

computed the distance between the two clouds – modified Hausdorff distance i.e. the distance 

between two nearest neighbor points. The results are as shown in Table  4.8 below. 

Table  4.8: Accuracy assessment of point clouds generated by our model compared to conventional 
methods. 

Method Amount of 

points 

Mean STD 

Pre-trained 5,343,851 0.2063 0.2717 

Finetuned 3,145,612 0.1181 0.1425 

 

We segmented a building surface from the two clouds and carried out a comparison against a 

segment from the reference cloud. The accuracy is higher as compared to the whole point cloud. 

The model performs well on building surfaces and edges. Our fine-tuned model outperforms the 

pre-trained one. Both models, however, perform better on building roofs. See Table  4.9 below. 

Table  4.9: Accuracy assessment of point cloud from a building segment 

Method Amount of 

points 

Mean STD 

Pre-trained 12,543 0.1178 0.0825 

Finetuned 9,871 0.0653 0.0317 

 

We conducted a comparison between our method and conventional method based on mean, 

standard deviation, amount of point cloud generated, and runtime (see Table  4.10). We set the 

maximum distance for distance computation to 5. We noted that deep learning methods if pre-

trained are quite fast than conventional methods. For a testing dataset of 30 image pairs, our 

CNN model takes a maximum of 2 minutes to generate a dense point cloud while Pix4D takes a 

minimum of 45 minutes on the same. Thus, in terms of speed, deep learning methods are 20 

times faster than conventional methods. Conventional methods on the other hand generate point 

clouds with a higher point density than deep learning methods. The low point density in deep 
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learning methods is due to matching errors caused by variations such as illumination, occlusions, 

and texture in images. This leads to many invalid points that are removed through filtering.  

Table  4.10: Comparison between deep learning and conventional methods 

Method Mean STD Amount of 

points 

Point 

density ( ) 

Runtime 

(mins) 

Conventional 2.0862 3.5022 3,797,651 24 45 

CNN 1.8916 2.1505 3,145,612 20 2 

 

The large errors in the RMSE of the conventional methods can be attributed to a lack of ground 

control points (GCPs) to improve the accuracy of the products. A study by (Oniga, Breaban, & 

Statescu, 2018) recommended a density of 1 GCP per 0.02 Ha for high accuracy products in UAS 

photogrammetry. With the availability of GCPs, the accuracy of conventional methods is 

expected to be few centimetres. 

4.4.2. Digital surface models 

We generated digital surface models from the point clouds and visualized them in a GIS software 

for analysis.  

  

Figure 4-6: Digital surface models from CNN (Left) and conventional methods (Right) 

DSM generated by our method contains smooth and sharp building edges that resolve details of 

objects and structures. On the other hand, objects surfaces and edges in the DSM from 

conventional methods are fairly sharp and rough especially in tall buildings although, in small 

objects, edges are preserved. In our DSM, chimneys and dormers can be seen clearly while in the 
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other method they cannot be well differentiated. This might be due to the interpolation technique 

used in conventional methods since triangulation doesn’t perform well in areas with tall buildings. 

Furthermore, the lack of GCPs for georeferencing in conventional methods has been found to 

affect the quality of DSM. Martínez-Carricondo et al. (2018) noted that the presence of well-

distributed GCPs leads to accurate photogrammetric products. Further, they demonstrated that 

increasing the number of GCPs improved the quality of digital surface models. Thus, the quality 

of the DSM was affected by a lack of ground control points. On the right, trees along the road 

have been smoothed out while in our method (left image), they have been preserved. Our results 

show that deep learning methods are competitive and have potential in UAS photogrammetry. 

Moreover, they are very fast as compared to conventional methods. 
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5. DISCUSSIONS 

We present discussions drawn from the experiments conducted and the results obtained. 

5.1. CNN features 

We conducted a literature review on CNN models applied in stereo matching that provided 

insights on the architectures suitable for end-to-end disparity regression. Deep networks have 

been found to be suitable in many tasks including stereo matching because of their ability to 

integrate low and high-level features (Zeiler & Fergus, 2014). Although they may suffer from 

accuracy degradation during training, residual connections have enabled these deep networks 

(residual networks) to register increased accuracies with fewer parameters. They are less complex 

as compared to plain networks such as VGG-16 and AlexNet. In this study, we, therefore, 

implemented a residual network and noted that organizing it in blocks enables the extraction of 

different features effectively. We also applied a dilated convolution at the last layers of the feature 

extraction module to ensure features are extracted across a large receptive field.  

The use of encoder-decoder architecture results in smooth and dense disparity maps 

without applying post-processing techniques. However, the design of the architecture may be 

influenced by the input data to be used. Most of the CNN architectures available are designed to 

use close-range images and therefore the use of aerial imagery requires design considerations that 

enable incorporation of different features from the whole image. The introduction of spatial 

pyramid by (Lazebnik, Schmid, & Ponce, 2006) enables the pooling of features from fine regions 

to local features enabling the aggregation of features from the whole image. A similar technique 

was implemented in (He, Zhang, Ren, & Sun, 2014) for classification and semantic segmentation. 

In Liu, Rabinovich, & Berg (2015) pyramid pooling was also used to incorporate global context 

information. The same technique is applied in Chang & Chen (2018) using four blocks of fixed 

size. In this study, we designed the blocks in a way that allows the capturing of low and high 

objects present in our dataset. This improves correspondence computation in occluded areas and 

regions with illumination and texture variations. We noted that these features coupled with 3D 

CNN improved disparity estimation significantly. Undertaking such considerations in the 

selection of deep learning models is beneficial when adapting networks designed for computer 

vision tasks to different domains such as aerial imagery. 
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5.2. Parameter optimization 

We investigated the influence of different parameters on the performance of deep neural 

networks for stereo matching tasks. Key parameters that affect the quality of disparity maps were 

found to be - loss, the maximum number of disparities, optimizer, and learning rate. We noted 

that deep CNN models require a moderate learning rate to be able to learn features effectively. A 

high or low learning rate would, therefore, lead to an increase in training loss and thus reduce the 

accuracy. In our parameter optimization experiments, we used a constant sample size of the data. 

However, the performance of the model is influenced by the amount of data used as noted when 

training with a large sample size in our final implementation. Therefore, in the determination of 

optimal parameters for training a deep neural network, it would be interesting to vary the sample 

size while varying the parameter values. This would result in the best values for the desired 

accuracy. 

We incorporated a close-range dataset with denser ground-truth than our dataset in our 

optimization experiment. It emerged that when using both datasets for parameter search, the 

validation loss was deteriorating as the number of epochs increased. This may have been caused 

by the variations in the dataset features. This implies that CNN models tend to learn well when 

the features or scenes in the data are more or less the same. 

5.3. Size and quality of dataset 

In this study, we used SGM (Guo et al., 2016) to generate ground truth for our training. The 

quality of the ground truth influences the quality of disparity maps generated by the trained 

network. The SGM generated labels were poor and sparse and this had an effect on the 

performance of our model. For further work, it would be beneficial to use ground truth 

generated by methods such as laser (LiDAR), which is denser and would result in improved 

accuracy and quality of maps generated. Another aspect is the size of the training data used in our 

study. As stated before, deep CNN models require a large amount of data with dense ground 

truth for training. In our study, we used a total of 4000 image pairs which is a small dataset 

compared to available synthetic datasets used for training deep neural networks. Although we 

implemented a common strategy in deep learning experiments where we first trained the network 

with a large synthetic dataset and finetuned with our target dataset, the size of the finetuning 

target dataset matters. However, we noted that increasing the sample size during training 

increases the performance of the model.  

In all our experiments, the input images were cropped or downsampled to a smaller size 

during training. This is due to memory constraints since large image sizes demand more memory 
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and computation time. It’s not practical then to use large image sizes given the amount of data 

and number of epochs required for a neural network to be trained fully. However, during testing, 

the network can take a larger image size depending on the available memory card. In this study, 

we had access to limited resources (GPU) and thus we used a small batch size in all experiments. 

Radiuk (2018) investigated the effect of batch size in convolutional neural networks during 

training and testing. The author found that large batch sizes improved the accuracy although too 

large batch sizes led to poor generalization. It would be interesting to try a larger batch size with 

the availability of multiple GPUs. Despite the aforementioned limitations, the performance of the 

model was good in terms of the quality of disparity maps. 

5.4. Evaluation and comparative analysis 

In our study, we conducted a comparison of our method and conventional methods based on the 

final products. However, due to a lack of ground control points, we could not carry out 

georeferencing in conventional methods for improved accuracy and results. We envisage that 

with proper data collection including the establishment of ground control points in the study 

area, the evaluation would be accurate. A better approach would be comparing our method with 

Light Detection and Ranging (LiDAR) methods. This can be explored in the future to see how 

deep learning methods perform compared to LiDAR methods.  
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion  

The main objective of this study was to investigate deep learning approaches based on 

convolutional neural networks for 3D reconstruction from UAV imagery. We tested various 

state-of-the-art CNN models used in computer vision to determine the suitable model to adapt to 

our domain. We developed a methodology to recover 3D scenes and generate a digital surface 

model from UAV imagery using the adapted model. To achieve this, we optimized the 

parameters of the designed CNN model and trained it end-to-end for disparity regression. The 

generated disparity maps were used to recover the 3D scenes and create surface models. Lastly, 

we carried out a comparative analysis of our method and conventional methods. 

 Our results show that deep learning methods outperform conventional methods by far in 

terms of speed during testing. The products generated by CNN methods are comparable to those 

of conventional methods. Therefore, we postulate that deep learning methods have the potential 

to perform better than traditional methods. Answers to the questions posed at the beginning of 

the study are given below. 

6.1.1. Answers to research questions 

Specific objective 1 

i. What are the existing networks that have been applied in stereo matching? And what network 

architecture is suitable? 

 
In section 2.3, we described some of the architectures that have been implemented in stereo 

matching tasks. However, we noted that most of these networks have exploited close-range 

imagery for segmentation and recognition tasks in computer vision. Some of the networks 

compute the matching cost and require cost aggregation and post-processing techniques to refine 

the output. End-to-end architectures with encoder and decoder structure are, however, the best 

suited for disparity regression.  

Specific objective 2 

ii. Do pre-trained CNN models have generalization ability that enables transfer learning to target dataset? 

 
We noted that pre-trained models have poor generalization. This can be attributed to the 

differences in features of the dataset used in training and the target dataset. As Bengio (2012) 

stated, features are only transferable when the two datasets are similar. In our case, the two 

datasets were quite different and thus the network performed poorly. The model performance, 

however, was improved by training the network using the target dataset. 
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iii. What parameters are to be considered when adapting a CNN model for a specific task?  

In section 5.2, we described the parameters that affect the performance of convolutional neural 

networks as applied in stereo matching. They include loss, number of maximum disparities, 

optimizer, and learning rate. In addition, we demonstrated that the training set sample size is very 

crucial in transfer learning. Different tasks will require consideration of different parameters and 

thus they are task-specific. Further, we noted that CNN features such as spatial pooling pyramids 

improved disparity estimation by incorporating contextual features. 

Specific objective 3 

iv. What is the quality of point clouds and DSM?  

The method developed in this study generated accurate results. As shown in our analysis, our 

method generated point clouds with a high-density that enables full recovery of buildings and 

objects. Fine details of objects and structures in the scene are captured accurately. However, 

errors due to noise are visible in occluded areas and flat areas with vegetation. The mean and 

standard deviation obtained for segments of the cloud taken from building surfaces were low 

(Table  4.9). This shows how accurate our method performs well on objects surfaces. Building 

edges and other object features are clearly defined in the digital surface model. Bumps and holes 

can be seen in some areas due to gaps and noise in point clouds. 

Specific objective 4 

v. What is the performance of deep learning approaches compared to handcrafted methods?  

We carried out a comparative analysis of our method and conventional methods. Our method 

outperforms conventional methods in terms of runtime. Conventional methods, on the other 

hand, are quite slow but generate high-quality results. As described in section 4.4, our method is 

accurate on buildings and objects although errors are present in untextured and occluded areas. 

By visual analysis, we noted that our surface models were smooth and complete enabling fine 

details in the scene to be visible. Overall, our method performed well in terms of speed while 

generating almost the same results with conventional methods in terms of quality. 

6.1.2. Limitations  

The following limitations were met during the study. 

• Lack of dense ground truth that ultimately affected the quality of the results obtained. 

• Lack of computation resources such as multiple graphics processing units that inhibited 

the implementation of robust models.  
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• Due to a lack of stereo imagery, our image processing involved rectification and 

computations using different software. This may have introduced errors and distortions 

that may have affected the quality of our final results. 

6.2. Recommendations  

We recommend the following for further research work: 

• Explore ways of collecting aerial imagery using a stereo image setup. This will minimize 

the distortions and errors that may be introduced during image processing. 

• Explore techniques of generating dense and sufficient ground truth from aerial imagery 

for improved results. 

• Investigate the application of multi-view geometry techniques in CNN methods.   

• Incorporating LiDAR data or other high-quality data such as CAD models in the 

comparison metrics. 
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