
 

 

 

  
MASTER THESIS 

 

Construction of a proactive alert 

management model by using 

artificial intelligence 

P. C. Ventevogel (Pim Cornelis)    s1600672 

 

Examination Committee 

Dr. M. C. van der Heijden    University of Twente 

Dr. E. Topan      University of Twente 

Ir. K. Alizadeh Independent 

Aerospace Company 

 

Educational Institution 

University of Twente 

Faculty of Behavioural Management and Social Sciences 

Department of Industrial Engineering and Business Information Systems 

 

Educational Program 

MSc. Industrial Engineering and Management 

Specialisation: Production and Logistics Management 

Orientation: Supply Chain & Transport Management 

 



1 

 

Preface 

Dear reader,  

This thesis is the result of my master graduation assignment for the Production & Logistics Management 

specialization of the Industrial Engineering and Management Master’s degree at the University of 

Twente. While being immensely challenging and frustrating at times, executing this graduation 

assignment has taught me a lot and has been a delightful ending for my time as a student. 

In this preface I would like to take the opportunity to express my gratitude to the people who assisted 

me with the realization of this thesis. First, I would like to thank Kaveh Alizadeh for being my 

intellectual sparring partner, his guidance, and feedback throughout the assignment.  

Second, I would like to thank Dr. Matthieu van der Heijden and Dr. Engin Topan for their support, 

valuable input, and feedback on my draft reports.  

Finally, I want to thank family, friends, and girlfriend for their support and help.  

 

Pim Ventevogel 

Utrecht, The Netherlands  

18-11-2020   



2 

 

Executive Summary 

Introduction 

The following graduation thesis ‘Construction of a proactive alert management model by using 

artificial intelligence’ elaborates the process of incorporating a machine learning algorithm in an 

alerting generating tool. This thesis is conducted at an Independent Aerospace Company (IAC), more 

specifically for the Component Maintenance & Availability (CMA) program. The CMA program 

concerns rotable parts of aircraft, which are parts for which is it economically worthwhile to restore 

them to a ‘as good as new’ condition upon failure. The CMA program consists of two sub-programs, 

which are the forward exchange (FE) and the performance exchange (PE) program. The FE program is 

a program where the IAC keeps inventory, on behalf of its customers. If customers require a spare part, 

they can order it from the IAC, and the IAC will send the part to the customer. The PE program is a 

program which promises in time delivery of repairs, even if repair shops are slacking. To achieve this 

the IAC uses its inventory pool to ensure in time delivery. As the IAC is currently facing backorders on 

a frequent bases, the IAC aims to improve their performance. To aid in this process, they have requested 

the creation of a proactive alerting model, which notifies operational planners of potential future 

problems. 

To assist in the construction of this model, the following main research question is defined: 

“How can the Independent Aerospace Company construct a proactive alert generation tool, 

which automatically recognizes and prioritizes potential problematic situations and notifies the 

operational planners?” 

Status Quo 

Historically, the majority of demand came from the FE program. However, due to the changing 

landscape in the aviation industry, the demand for the FE program is decreasing, while the demand for 

PE is increasing. As the existing alerting tool is created during the time when the majority of 

transactions came from the FE program, it is no longer appropriate, as it does not incorporate the PE 

demand. To determine the influence on the inventory pool for the PE program, the IAC has to determine 

whether they will finish the repair within the agreed time or not, as failing to do so, will result in a 

delivery from the inventory pool.   

Methodology 

To determine whether the contracted turnaround time will be met, a machine learning algorithm is used. 

From the literature review, the Artificial Neural Network, which is a deep learning algorithm, seemed 

the most promising. The classifier uses historical repair shop information, repair type information and 

contracted turnaround times to predict whether the agreed turnaround time will be exceeded or not. The 

artificial neural network is able to predict with an accuracy of 75% if an order will be finished in time. 

The output of this classification model, together with existing forecasting tools for the FE demand are 

used to determine the likelihood of backorders. This likelihood is approximated using a Monte Carlo 

simulation, which simulates the development of the inventory level over a two-week time scope. For 

the orders which have the highest chance of facing backorders, an alert is generated. 

Results 

To validate the quality of the Artificial Neural Network, its performance is compared against a random 

forest. Similar to results found in literature, the random forest outperformed the neural network, and 

achieved an accuracy of 75.5%. Furthermore, features regarding the historical performance of the repair 

shops were highly correlated. By dropping the less important, highly correlated features the 

performance was increased to 76.7% accuracy. 

From evaluation of the input of the classification model, the most important input variables appeared to 

be the turnaround time which is contracted with the customer, and the short-term performance of the 

executing repair shop. These results are intuitive, as a shorter agreed turnaround time means that there 

is less room for error. Furthermore, if a repair shop has recently been performing well, it is likely that 

for the new repair order, this trend will continue. 
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The model is evaluated against the judgement of the planners at the IAC by creation of 50 fictional 

scenarios. These scenarios where then evaluated by two operational planners and a tactical planner of 

the IAC. A high correlation was found between the scores provided by the planners, and the chance of 

backorders put out by the model. Furthermore, the mean absolute deviation between the output of the 

planners and the new model was 45% lower than the mean absolute deviation between the planners and 

the old reactive model. Showing that the new model is more in line with the estimates of the planners, 

and thus is more suitable for providing alerts to the operational planners. 

Recommendations 

First, should try to make use of repair shop data. Although external shops are reluctant to share 

data, the internal data should be available. From this data, important determinants for turnaround times 

can be deducted, such as: availability of shop replaceable units, number of items in queue and scheduled 

date of repair. This data can all be used to determine if a repair will be finished in time, and thus if a 

performance exchange is likely to happen or not. Inclusion of these metrics is likely to improve the 

quality of the classification model. 

Second, the IAC should investigate methods to include the core return times. The core return 

times, are the times between delivery by the IAC, and receiving the broken part back from the customer. 

In this research these are neglected, which limits the time scope that can be considered. 

Third, the IAC could research the inclusion of customer desire for performance exchanges. 

Currently, the model assumes that every contracted repair that is exceeding the agreed TAT, will result 

in a performance exchange. In reality this is not the case, as customers get the option to obtain a 

performance exchange, but do not have to accept this. Therefore, the impact on the inventory pool of 

the IAC is currently overestimated. 

Limitations 

The first limitation to the results is the noise in the dependent variable of the classification 

models. This noise is caused interventions executed by the operational planners, reducing throughput 

times of contracted repairs. This caused shorter turnaround times than would have occurred if no 

intervention were used. This causes confusion to the model, as almost identical situations have different 

class labels.  

The second limitation is the access to data. Due to covid-19, and the strict regulations of data 

sharing within the IAC, access to data was limited. During the initial stages of this thesis, a dataset was 

constructed, with all information that seemed relevant at that time. However, in later stages more insight 

in the processes was obtained, creating demand for new data. This data, however, could no longer be 

obtained.  
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1 Problem introduction 

This Master Thesis encompasses research conducted for an Independent Aerospace Company. The 

main subject of this Thesis is the Component Maintenance & Availability (CMA) program. This chapter 

of the Thesis further introduces the company, its history, and its way of conducting business (section 

1.1), the content of the CMA program (section 0),  and the challenges concerning the CMA program, 

which motivated the IAC to initialize this project (section 1.3). In section 1.4 the problem statement is 

conducted, based on initial conversations with my company supervisor. Section 1.5 elaborates how the 

problem is approached and discusses the (sub) research questions. Finally, in section 1.6 the theoretical 

scope is explained.  

1.1 Company description 

  

  

This section is removed in the public version of this Thesis 
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1.2 Component Maintenance and Availability Programs 

The CMA program concerns rotable parts of aircraft, which are parts for which is it economically 

worthwhile to restore them to a ‘as good as new’ condition upon failure. The CMA programs consists 

of three different subprograms which are: The Forward Exchange (FE) program, the Performance 

Repair (PR) Program, and the Performance Exchange (PE) program. In the remainder of this section of 

these programs is shortly discussed, furthermore in Figure 1 a schematic overview of the three programs 

is given. In this figure, the numbers represent the order in which the flows of goods or information 

occur. 

1.2.1 Forward Exchange Program 

The first program that is incorporated in the CMA program, is the Forward Exchange (FE) program. 

The FE program, as shown in Figure 1, is a basic version of the program, which will be further extended 

in section 2.1. The flow of goods and information is as follows: A customer orders a serviceable part 

from the inventory pool of the IAC, which is then sent to the customer. Then, once the part arrives at 

the customer, the part is replaced in the aircraft, upon which they sent their unserviceable part to one of 

the repair shops that are part of the supply chain of the IAC. The part is then repaired and sent back to 

the inventory pool, where it will stay until a customer requires another part. Unfortunately, this is only 

a basic version of the FE Program, and the real supply network is a lot more complex. 

1.2.2 Performance Repair Program 

The Performance Repair (PR) program is a program where the IAC repairs part for external customers. 

On these repairs, maximum turnaround times are contracted. The PR program is backed by the 

Performance Exchange, so when the repair shops are unable to meet these turnaround times, the 

Performance Exchange program ensures intime deliveries. In Figure 1, the flow of goods is shown. For 

this program, the flow of goods is fairly simple, the customer sends an unserviceable part to the IAC 

repair shop, and the repaired part is sent back to the customer. 

1.2.3 Performance Exchange Program 

The Performance Exchange (PE) Program is used in two different situations. The first is as introduced 

in the PR program, where the IAC does not meet de agreed turnaround time, and an exchange part is 

Figure 1 Component Maintenance & Availability Programs 
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offered instead. So, in this case the PE program forms a buffer for problems occurring at the IAC repair 

shops. About 9.5% of the repairs over the last thirteen years have been filled by performance exchanges. 

A flow-diagram of how information and physical goods flow through the supply chain can be observed 

in Figure 1. First, the customer sends an unserviceable part to the repair shop of the IAC. Then, when 

the repair shop fails to repair the parts within the agreed turnaround time, the repair shop alerts the 

operational planners. They will offer a performance exchange to the respective customer, which comes 

from the inventory pool located at the IAC. The repair shop will continue the repair of the part, and 

when the part is finished, the inventory pool located at the IAC is replenished.  

Another scenario when the PE program is used, is when the customer requires delivery before the agreed 

turnaround time is reached, for example in an Aircraft On Ground (AOG) situation. For an additional 

fee, the IAC might decide to help the customer and send an exchange part from the inventory pool. The 

flow of information and goods is the same as in the previous scenario, except for extra information 

coming from the customer to inform the IAC about its problems. 

1.3 Motivation for research 

The incentive for the IAC to initialize this Thesis, is a company review by Topan, Eruguz, Ma, van der 

Heijden, and Dekker (2019), who reviewed operational spare parts service logistics in service control 

towers. From this review, the importance of alignment between tactical and operational decision making 

became apparent, as it might lead to higher service levels (Topan et al., 2019). For the tactical planning, 

previous Master Thesis assignments have been used to find improvements. For the operational planning, 

on the other hand, this is not the case. Decision making is solely to resolve problems and based on 

experience of the operational planners. 

As the parts involved in the CMA programs are of key importance for the IACs customers business, the 

IAC has strict service contracts with its customers. In these service contracts, several affairs are agreed 

upon, such as maximum turnaround times, service levels, fill-rates, and response times. To meet these 

agreements, the IAC currently has two full-time operational planners. These try to maintain component 

availability in the inventory pool and solve problems that arise in the supply network. Furthermore, they 

judge repair quotes by external repair shops, and make make/buy decisions. To assist in this process, 

the IAC has developed a Service Control Tower (SCT), which aims to provide insight into the current 

status of the supply chain and the performance concerning the customers in real-time. The SCT is 

specifically designed for the CMA programs, mainly for managing the inventory level of the pool.  

This SCT currently is purely descriptive, meaning that it only is a visualization tool for the current state 

of the network. Furthermore, the SCT only considers information of the IAC, as customers and suppliers 

are reluctant to share data with the IAC. Because the service control tower and the physical stock are 

the only ways the supply chain is monitored, the operational planners are currently only notified once 

a stock-out occurs. This has two implications, the first being that as the stock-out already has occurred, 

the planner has to come up with a quick solution to meet the contract requirements. These interventions 

are often more expensive than the interventions that require earlier execution. The second implication 

is that, as the operational planners are always notified late, the service levels are lower than they can be 

with the invested capital. Another problem further amplifying the costs incurred by stockouts is that the 

operational planners have difficulty with seeing the impact of their decisions. This causes them to use 

interventions that are unnecessarily expensive or ineffective. 

Furthermore, the components involved in the CMA programs are expensive. Therefore, management is 

reluctant to agree to the acquisition of new parts. The operational planners indicated that this is the main 

cause of problems, as often demand simply exceeds supply. However, they have to make the best out 

of this situation, with the means they have available. Thus, identifying potential problems in advance 

would enable the operational planners to do this. 
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1.4 Problem statement 

I defined the problem as follows: 

 “The Independent Aerospace Company misses a proactive monitoring tool, causing them to 

incur higher operational costs than necessary and with a lower service level than achievable with the 

current capital investment.” 

The focus of the IAC should be maximizing the availability of spare parts for the customers while 

minimizing the operational costs incurred to achieve this goal. The current control tower misses the key 

component which is the ability to send alerts (or warnings) when stock-outs, or other problematic 

situations, might be occurring in the near future.  

1.5 Research Questions & Approach 

The main research question of my thesis is: 

“How can the Independent Aerospace Company construct a proactive alerting tool, which 

automatically recognizes and prioritizes potential problematic situations and notifies the operational 

planners?” 

To answer this question, I developed several sub (research) questions, which need to be answered to 

answer the main research question and solve the problem of the Independent Aerospace Company. In 

the remainder of this chapter, I will present my five sub-questions and motivate their relevance. 

“What is the current way of working at the Independent Aerospace Company and what are 

possible events leading to backorders? How are these events currently identified and what is their 

impact?” 

The relevance of this question lies in the importance of understanding the current processes and way of 

working, to determine when backorders are likely to occur. When these situations are identified, I can 

focus my further research on these specific situations. I will do this by mapping out the network of the 

IAC to clarify the way of working and to understand the flow of goods through the supply chain. 

Furthermore, I will perform interviews with the operational planners to determine for which problems 

they receive alerts, how these alerts are received, and how relevant these alerts are. Finally, the current 

performance of the IAC is analysed, to further clarify the need for improvement. 

“Which methods are described in literature for using artificial intelligence for classification. 

Which of those methods are the most suitable for the previously defined problems at the Independent 

Aerospace Company and which steps are described to apply them?” 

When I have identified what information, I need to identify potential stock-outs, I need to come up with 

a decision model which can use this information to generate alerts and provide possible interventions. 

Furthermore, I will have to modify the data in such a way that it can be used as input for a model which 

generates operational alerts.  

“How can machine learning algorithms, as described in the literature, be used to create a 

model which indicates parts most urgently require attention from the operational planners?” 

By answering this research question, I will come up with a model which generates alerts, but also 

recognizes which alerts are more important than others. As Topan et al. (2019) found, many 

organizations have the generation of alerts in place, but do not use this system as too many unnecessary 

alerts are generated. Therefore, management of alerts is important, as people quickly lose their trust in 

a model if it is overly sensitive and generates too many alerts. On the other hand, if too many 

problematic situations are ignored, people lose trust in the model and will be reluctant to use it. 

 “How are the different components of the alert generating tool performing, and what is the 

performance of the alert generating tool as a whole?” 

To validate the added value of making the alert generating tool pro-active, I need to compare the 

performance before and after my interventions. Based on these results, I can write a conclusion and 

provide recommendations to the Independent Aerospace Company and for further research.  
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“How can The Independent Aerospace Company leverage a pro-active alert generating model 

in practice and which additional steps are required to achieve this?” 

The final chapter will answer the sixth question, and in this way provide advice to the Independent 

Aerospace Company. So, it helps them to implement the product I created, and use it to its full potential. 

A user-interface is conducted to allow the operational planners to use the alerting tool and furthermore 

I will provide recommendations to the IAC on how to further improve the alerting tool.  

1.6 Scope 

To limit the size of my thesis, and to make sure I can execute it within the given time-frame, I need to 

determine which things I will be focussing on, and which I will consider being given. Furthermore, 

some preferences have been indicated by the IAC. These decisions and preferences are briefly discussed 

in the remainder of this chapter. 

1.6.1 Use of AI in Service Control Towers 

Historically, the IAC has used several statistical methods to automate and optimize parts of the tactical 

and operational planning in the CMA programs. However, a large part of the daily operations requires 

human reasoning, making the use of basic algorithms ineffective. Therefore, the IAC would like to 

investigate the use of Artificial Intelligence in the operational planning. For this purpose, my company 

supervisor at the IAC has started his PhD to gain knowledge on this topic. His research investigates the 

use of artificial intelligence in a supply chain, more specifically in a Service Control Tower. Hence, the 

preferred solution uses artificial intelligence instead of the conventionally used statistical models. Thus, 

in my thesis, a solution incorporating artificial intelligence is preferred over statistical models, even 

though the performance might currently be underwhelming.  

1.6.2 Operational level 

In this thesis, I will only focus on the operational level of the Service Control Tower. The operational 

time scope embodies short term occurrences, with a maximum time scope of a few weeks. Furthermore, 

this means that the base stock levels are considered to be given and cannot be changed. So, if tactical 

decisions cause operational problems, I will discuss this in my recommendations, but in the solution, I 

will try to make the best out of a bad situation.  

1.6.3 Fixed demand forecasting 

The demand for the FE program has been intensively studied by the tactical planners at the IAC. These 

forecasting methods are based on historical removal/flight hour rates and have proven to be effective. 

Thus, these forecasts can be assumed reliable. So, if the FE demand is of importance for a proactive 

alert generating model, the existing forecasting methods will be used. If the IAC in the future decides 

that the forecasting methods have insufficient performance, the new forecasting methods need to be 

implemented in my final solution to ensure coherence between the operational and tactical decisions. 
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2 Present situation 

In this chapter, I will provide a schematic overview of the business processes involved in the CMA 

programs. Moreover, I will provide the results of my data analysis, to see which disruptions occur in 

the supply chain and how often these occur. Finally, I will discuss the current activities of the 

operational planners, and what role the current SCT is playing.  

In section 2.1 I will discuss several special situations in the Forward Exchange program. Then, in section 

2.2, I will discuss the increasing demand for the Performance Exchange program. Next, in section 2.3 

the situations that are the main causes of disruptions are elaborated. The main performance indicators 

for the performance of the CMA program, are discussed in section 2.4. Section 2.5, briefly discusses 

which methods the operational planners have at hand to resolve such situations and section 2.6 explains 

how alerts currently are received by the operational planners. Finally, in section 2.7 I will briefly discuss 

which data is available to base a solution on and in section 2.8 I will provide the main conclusions of 

this chapter. 

2.1 Special situations in Forward Exchange program 

In section 0, basic situations of the exchange programs have been described. In reality, there are a lot 

more variations to the CMA programs. These are ‘Lease parts at customer’, ‘Beyond economical repair’ 

and ‘Inaccurate Customer Diagnostics’, which will concisely be discussed in the remainder of this 

chapter. 

2.1.1 Lease parts at customer 

The first extension is that about 1% of the customers have some located on their site, called lease parts. 

When they require a spare part, they will take it from their pool, which is then restocked from the 

inventory pool managed by the IAC. Leasing of parts is mostly done for SKUs that are critical to the 

working of an aircraft, as it can result in a high reduction of lead times. For each part leased by the 

customer, an additional fee is paid, so the customer has to decide if they think it is worth it, which SKUs 

they want to lease, and how many they want to lease.  

A schematic overview of the process is found in Figure 2. Once such a customer requires a part, they 

will obtain it from the inventory pool located at their site and inform the IAC on this. They will then 

swap the part with the broken part in one of their aircraft and send this broken part to a repair shop. the 

IAC replenishes the inventory located at the customer with an item from its own inventory pool.  

Figure 2 Forward Exchange with lease illustration 
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2.1.2 Irrecoverable parts 

The second extension concerns parts that are irrecoverable. Sometimes, it is not economically 

worthwhile, or technically impossible to repair a part. Historically, this has happened for about 3.5% of 

all orders since 2007. When such a situation occurs, the part is sent back to the CMA inventory pool 

and the operational planners have three options. They can either cannibalize the part, scrap the part, or 

(temporarily) store the part. Unfortunately, no data is collected on this decision, so it remains unknown 

how often each option is used.  

When an item is cannibalized, the item is torn apart in such a way that the smaller components from 

which the part is made can be used as scrap parts for other parts. If already a surplus of scrap parts is 

available, the planners will likely decide to scrap the parts, which requires less time from the repair 

shop, however it causes complete loss of the part. Finally, the operational planners might decide that 

the repair is currently economically unviable but might become viable in the future, in which case the 

part is temporarily stored. 

Another decision the operational planners now have to make, is whether they want to replace the unit. 

Generally, this is the case, however the operational planners indicated that sometimes this way is also 

used to reduce the number of parts in inventory, for example when a type of aircraft is no longer used. 

The economic value of the part is then set to €0, and every returning repair is scrapped to reduce 

inventory. If the operational planners decide that the part should be replaced, the part is procured from 

an available supplier, through a tender offer. Figure 3 shows a schematic overview of this situation.  

Figure 3 Beyond economical repair part (FE Program) 

2.1.3 Inaccurate customer diagnostics 

The final extension of the FE program is regarding the behaviour of the customer. Customers might 

wrongfully diagnose a part as unserviceable. This can be caused by a mistake of the customers’ 

diagnostic team but could also be caused by unclear reasons where a part seems to be faulty, while in 

other tests it appears to be working. Moreover, an aircraft might be grounded, and the responsible 

mechanic orders several parts, to ensure delivery of the required part. Due to this behaviour, 

occasionally serviceable parts are sent to the repair shop, where during the diagnosis no failures are 

found. Or customers might send serviceable parts back to the pool, as they are not required to repair 

their aircraft. About 3.5% of all orders is returned as is (RAI).  
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Figure 4 shows a schematic overview of this situation, again with the numbers representing the order 

in which the flows of either goods of information take place. The number ‘3’ is given to three different 

streams, as these are the possible flows due to inaccurate customer diagnostics. Which are: 

- Customer sends an unserviceable part to the repair shop (red line to repair shop) 

- Customers sends a serviceable part to the repair shop (black line to repair shop) 

- Customer sends back a serviceable part to the CMA inventory pool  

 These three possibilities are all indicated with the number “3”, in, which shows a schematic overview 

of this situation. 

Figure 4 Inaccurate customer diagnostics (FE Program) 

2.2 Increasing demand of Performance Exchange Program 

While the CMA program originally only existed of the FE program, during the last few years, the 

number of performance exchanges has rapidly increased. Initially, the PE program was only used for 

exceptional cases, and only a fraction of the customers was willing to pay an additional fee to have a 

performance guarantee. However, since 2017, less customers make use of the FE program, and instead 

keep their own inventory while outsourcing the repairs, with performance guarantee, to the IAC.  

Figure 5 Percentage of performance exchanges of the total number of exchanges 
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Figure 5 shows the percentage of performance exchanges, with respect to the total number of exchanges. 

It is clear that this percentage has increased drastically, and thus, that the impact on the CMA inventory 

pool has been increasing. Currently, almost 40% of the exchanges performed monthly are exchanges 

for the PE program.  

This increase in performance exchanges has two reasons. The first, is a changing business landscape. 

More carriers keep their own stock, and only outsource the repairing of parts, so the number of FE 

contracts has dropped. The second reason is the increasingly competitive business environment, 

resulting in more competitive agreements on turnaround times. The operational planners indicated that 

the sales department offer shorter turnaround times than are generally achieved by the repair shop. 

Which in turn decreases the likelihood that the repair shop will repair the part in time, and thus increases 

the likelihood on performance exchanges. 

2.3 Situations causing disruptions 

2.3.1 Direct Backorders 

This situation is the most critical, as backorders have a direct impact on the performance of the CMA 

program. Whenever these occur, the operational planners will take extreme measures to resolve the 

problem as quickly as possible. This often means leasing an item from another supplier, or, if a part is 

being repaired internally, ask the repair shop to immediately repair that part.  

Figure 6 shows the percentage of orders that is delivered late, aggregated per month. Although the 

performance has increased since 2007, it is still rather poor. Considering all orders since 2007, about 

36% has been delivered late.  

Contracts of the IAC are on an Ex Works basis, which means that the order is considered ‘delivered’ as 

soon as the IAC hand the order over to the carrier. Furthermore, no service differentiation is applied by 

the IAC, thus every situation in which the IAC has delivered late, can be considered a situation with 

backorders, as they were unable to deliver. 

An important note to this section, is that these metrics are based on internal business rules. These 

business rules are set by the IAC, to aim for operational excellence, and thus are strict. From an external 

view, the performance is a lot better, as often the internal due date is several days before the external 

due date. Furthermore, late deliveries are always discussed with the customer, who regularly indicates 

that delivering a few days late is no problem.  

Figure 6 Percentage of orders delivered late (monthly) 
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2.3.2 No stock on hand 

Although no stock on hand does not directly mean that there are performance problems, the likelihood 

that problems are occurring soon is high. In the interview, the operational planner mentioned that he 

considered no on hand stock almost as worse as having direct backorders. The only difference is how 

extreme the measures are that are taken to resolve the situation, as there is no immediate performance 

loss. Unfortunately, there is no documentation on how often no stock on hand occurs. However, the 

operational planners mentioned that much of their time is spent on resolving such situations. 

2.3.3 High turnaround time (repair shop) 

Currently, when repair shops are experiencing high turnaround times, it is only recognised when the 

operational planners are reviewing other problems. Upon further investigation, they find the sources of 

these problems to be the turnaround times of the repair shops. When repair shops take too long to repair 

parts of the CMA inventory pool, the on-hand inventory will gradually drop, eventually causing back 

orders.  

Whenever this occurs, the operational planners will contact internal repair shops to prioritize parts for 

which the current on hand stock is low. However, external repair shops rarely want to do this, as they 

have more customers who also have contracted turnaround times and changing up the repairing order 

might cause them to breach other contracts.  

The shops that are compared here, all have fulfilled at least 5% of the orders since 2007 and the last 

repair has been registered after 01-01-2018. This filter is applied as the IAC uses many shops, but some 

shops only fulfilled some incidental orders, making statistical assumptions very inaccurate, or have 

gotten out of business. Furthermore, I made a distinction between internal and external shops, as these 

shops have different ways of working and can be managed in different ways. From the pareto diagram 

presented in Figure 7, it can be observed that about 35 (10%) external repair shops performed 70% of 

the orders.  

The performance of the 10% most commonly used shops varies a lot. The best performing shop only 

delivers 15% of the order too late. However, the worst performing shop delivered 85% of the orders too 

late and is 39 days overdue on average. These disruptions in the supply to inventory pool, lower the 

inventory availability. Therefore, the operational planners will have to perform more interventions to 

prevent drops in customer satisfaction or breaches of their contracts. 

  

Figure 7 Pareto diagram of external repair shops 
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2.3.4 High customer return time 

The final common situation which might cause problems in the supply chain, is that customers are late 

with returning the (broken) part, when they received an exchange part by the forward exchange 

program. Similar to the throughput time of the repair shops, when customers are late with returning 

their parts, the number of parts on hand is negatively affected. This problem is currently only identified 

when problems such as backorders are arising, and further analysis by the operational planners is 

conducted. 

There are clauses in the contracts stating that the customer has to return the replaced part within a certain 

timeframe. However, many customers fail to meet these terms. The operational planners state that this 

is due to the IAC not issuing penalties for long return times, making the customers less eager to send 

their units back to the IAC. Currently, about half (49.1%) of the parts is returned late by customers, 

with an average return performance of five days after the due date. Some of the worst performing 

customers return the cores late in more than 75% of the cases and have an average return performance 

of over 40 days late. 

 

2.4 Performance Indicators 

As described in the previous section, there are four situations which are likely to cause disruptions in 

the supply chain of the IAC. However, while it is inconvenient when a repair shop has longer turnaround 

times, or a customer is late with the returning of a core unit, it is not directly problematic. Situations are 

only problematic for the performance of the IAC, if they cause the IAC to be unable to deliver parts in 

time, as late deliveries will eventually lead to breach of contracts.  

While in most retail supply chains, sales are lost when no stock is available when an order is placed, as 

the customer can easily go to another retail store. The same situation does not hold for the IAC, as 

customers pay a fee to use the FE program, and demand (in time) delivery from the IAC. So, when the 

IAC fails to meet the initial order, the order will be added to the backlog, and is fulfilled as soon as a 

part becomes available.  

As the time it takes the IAC to fulfil the order is of importance, the most suitable performance indicator 

is the number of backorders. Backorders are defined as ‘Orders for a good or service that cannot be 

filled at the current time due to a lack of available supply’ (Kenton, 2019). The aim of the operational 

planners is to minimize backorders, so this is the main performance indicator. 

 

2.5 Available interventions 

To prevent, or resolve, backorder situations, the operational planners have several available 

interventions. These interventions are ‘Doing nothing’, ‘Asking a repair shop to prioritize an order’, 

‘Asking a repair shop to drop ship an order’, ‘Lateral transhipments’ and ‘Leasing a part’, or a 

combination of multiple interventions. No data is available on how much each intervention costs, how 

much time is won by performing the intervention, or how long performing an intervention takes. 

Furthermore, these properties are very item specific, as some parts require almost 40 man-hours to 

repair, while other only take a few hours. Therefore, the properties given for each intervention are only 

an indication.  

2.5.1 Doing nothing 

The simplest intervention is ‘Doing nothing’, which as the name implies means the operational planner 

will analyse the situation and decides that no intervention is required. Currently this happens only very 

rarely, as the alerts are generated reactive, meaning in almost every case an intervention is required due 

to the urgency of the alert. When the operational planner decides to do nothing, it is possible that at a 

later point in time, another intervention is used. For example, the operational planner expects a part to 
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return within several days, so demand can be met, but it turns out that the part is delayed. Now, an 

intervention is actually required to prevent backorders. 

2.5.2 Asking a repair shop to prioritize an order 

When an operational planner is ‘Asking a repair shop to prioritize an order’, the operational planner 

will ask the executing repair shop to move an order up in the repair sequence. For internal shops, this 

intervention is frequently used, for external shops however, the repair shops often do not want to do 

this. External shops have contracts defining the return times for repairs and changing the sequence in 

favour of the IAC might cause them to breach other contracts. For this reason, an extra fee is paid 

whenever the IAC wants an external repair shop to prioritize their order.  

For internal repair shops, this intervention is free and (depending on the required repair time of a part) 

will often result in same-day delivery. For external repair shops a fee of around €500-€1000 is paid to 

prioritize the order. Moreover, it takes several days before the part is ready to be shipped to the IAC, 

after 2-3 days of shipping the part is finally available for the IAC to fulfil demand or restock their 

warehouse.   

2.5.3 Asking a repair shop to drop ship an order 

When there is no on hand stock, and an forward exchange order comes in for a part, the operational 

planners can ask a repair shop that is currently processing that part, to deliver it directly to the customer, 

instead of the pool of the IAC. This shortens the delivery time by a few days, as less shipping and 

processing is required. For this intervention, rarely any costs are incurred, or these are neglectable as 

the IAC does not have to ship the part by themselves anymore, resulting in cost savings. 

2.5.4 Lateral transhipments 

The next intervention that is discussed is the lateral transhipment. The operational planners can relocate 

a functioning component from one to another location. There are three different options for relocating 

components, which are from the commercial warehouse, from lease stock, and from the quarantine 

warehouse.  

The commercial warehouse is a different warehouse than the warehouse where the CMA stock is 

located. As for the FE and PE programs, strict agreements are made, sometimes the commercial stock 

is used for fulfilling the demand of the CMA programs. Once a repair for that particular part is finished, 

the part is sent back to the commercial warehouse instead of the commercial warehouse.  

The second option is the use of lease stock of customers. These customers are then asked to make their 

lease stock available for fulfilment of orders of other customers. Generally, this option is disliked by 

the customer that owns the lease stock, as they pay a large fee to have these lease parts. Furthermore, 

this option is only viable when the customer is located close to the customer with a malfunctioning part, 

as otherwise long lead times nullify the effect. 

The final option is using the quarantine warehouse. The quarantine warehouse is the warehouse where 

unserviceable parts are stored, that yet have to be repaired, but the repair did not seem worthwhile yet. 

Once backorders occur, the operational planner can check if the part is available in the quarantine 

warehouse and decide if it is worthwhile to execute the repair for this part to fulfil the demand. 

2.5.5 Vendor exchange 

The final option for the operational planners is using the exchange programs of competitors. However, 

as the IAC is not under contract for such exchanges, the costs of this intervention is remarkably high 

(about 1/3-1/4 of purchasing price). Therefore, this intervention is only used as a last resort to meet 

contract requirements.  
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2.5.6 Other options 

Next to the aforementioned interventions, operational planners have a few other options that are cannot 

be used to directly solve problems but can be used to prevent problems from happening in the future. 

Therefore, they are not considered interventions, as using them to resolve backorders is either 

impossible or impractical. The first option is asking a customer to send back core units. As seen in 

chapter 0, some customers are slow with returning their core units. Reminding them to send them back 

can increase the number of parts that is kept in stock (after they have been repaired). The second option 

is procuring an item from the market. As this is a process which requires quite a lot of time, resolving 

backorders with this option is impractical. However, if a part is often backordered, even though the 

supply chain is running smoothly, it might be that demand simply exceeds supply, and therefore an 

extra part should be acquired.   

2.5.7 Combination of interventions 

Finally, the operational planners indicated on a regular basis, combinations of interventions are used. 

Several reasons have been demonstrated by the operational planners why interventions are combined. 

For example, increasing the chance of success, by executing multiple interventions, the chance of 

resolving or preventing backorders is increased. Another example is asking a repair shop to prioritize 

an order and ask them to dropship the order directly to the customer.  

2.5.8 Costs of interventions 

As mentioned before, the costs for performing interventions, increase when the response time is shorter. 

This is due to the limited number of interventions that remains available on a short term. When a 

problem is discovered late, only the more rigorous interventions remain available. Figure 8 shows a 

schematic overview of how costs exponentially increase from time (days) 0 till 14, where day 14 is the 

day on which an item is backordered. From this figure it is amazingly simple to observe that early 

executed interventions are cheaper than just in time interventions. But to be able to know that an 

intervention is required, the operational planner needs to be aware of the problem. 

Figure 8 Exponentially rising costs for interventions 
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2.6 Means of receiving alerts 

The operational planners currently receive alerts through the ERP system of the Independent Aerospace 

Company. This ERP system generates alerts when backorders occur. Furthermore, a reporting tool has 

been programmed to evaluate the current state of the supply chain. This tool considers the current (on 

hand) stock, the open requests, the criticality of a part and based on these criteria gives parts a priority 

rating. In this tool past performance is only incorporated by reporting the number of backorders for a 

specific part over the last three years. This tool is executed manually daily and produces about two 

alerts on a weekly basis.  

Figure 9 provides a flowchart in which the prioritization logic can be observed in more detail. Note that 

the tool only considers historical backorders and the current state, and no predictions are incorporated. 

The only way the chance of backorders is incorporated, is with the ratio between OH and IP that is 

calculated. However, this ratio completely ignores the forecasting methods the IAC has in place. 

Furthermore, the price, importance, and contracted delivery times are not considered. Although the 

alerts generated by this tool works correctly for a large portion of the different parts, the operational 

planners indicated that based on their experience, they often change the priority listing. These situations 

often incorporate problematic parts, which have high failure rates, unreliable customers, and specific 

knowledge of an aircraft (e.g. parts that are often replaced together). Furthermore, the operational 

planners indicated that the tool is not proactive, as it only lists parts that are currently encountering 

problems, and not parts that have a high probability to encounter problems in the near future.  

Furthermore, the performance exchanges are not considered in this alerting tool. As the demand of 

performance exchanges is rapidly increasing, this leads to underestimation of the total pool demand. 

Finally, the returning repairs are not considered in this tool. When parts are returning, future demand 

might be covered with parts that are currently being repaired. Therefore, these should be considered in 

the alerting tool.  

2.6.1 What-if scenarios 

Currently the tool also lacks the flexibility to evaluate different scenarios. For example, the operational 

planner might have asked an internal repair shop to prioritize an order, for an item that has zero on hand 

stock and has experienced backorders in the past three years. The repair shop agreed to prioritize and 

promises delivery on the next day. According to the current alerting tool, the part should still receive a 

‘Priority 1’, as the on-hand stock is still zero. However, the operational planner knows that a part will 

Figure 9 Flowchart priority selection 
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be received the next day. Therefore, it is more relevant to evaluate the situation where the on-hand stock 

is one, to see if more interventions are required.  

Moreover, now, and then an external customer wants to make use of the forward exchange program. 

As these customers often require these parts on a short notice, high premiums are paid if the IAC decides 

to deliver the part. In this situation, the operational planner would like to evaluate if temporarily 

reducing the on-hand stock is likely to cause trouble. Based on how likely the exchange will cause 

trouble, and the premium the customer is willing to pay, a decision can be made if the risk is worth the 

premium or not.  

 

2.7 Availability of Data 

In this chapter the available data to base the solution upon will be described. Most of the data comes 

from a data set drawn from the ERP-system of the IAC. This data set contains historical data on 

exchanges and repairs performed by the IAC and will be the main input for the tools created to predict 

problematic situations. The technical planner indicated that since 2007 the data has become a lot cleaner, 

as since then data entry rules where enforce more strongly. When only data entered after 2007 is 

included, the data set consists of 272,163 instances (order lines). The relevant columns are described in 

Table 1, a more detailed description of these fields can be found in APPENDIX A: Detailed Description 

of Available Data. 

Column name Feature name Data type % Missing values 

CUSTNAME Customer name Categorical 0 

PRIORITY Priority indicator Categorical 0 

TRANS_TYPE Transaction type 

(Repair/Exchange) 

Categorical 0 

EXCH_TYPE Exchange type  

(Performance/Forward) 

Categorical 0 

PARTNUMBER Unique part number Categorical 0 

PRODUCT_ID Unique product identifier Categorical 0 

KEYWORD Product description keyword Categorical 0 

COND Product Condition Categorical 0 

LINE_ADDED Repair shop entry date Datetime 0 

DELIVERED Delivery date Datetime 0 

DEL_DUE_DATE  Delivery due date Datetime 0.14% 

CORE_RCVD Returning part receive date Datetime 29.57% 

STOCK_UPDATED Warehouse stock update Datetime 5.43% 

WORK_PERF Work performed Categorical 0 

SHOP Repair shop number Categorical 0 

PROD_GROUP Product group keyword Categorical 0 

MAINT_TAT_AGR Agreed turnaround time Numerical 89.56% 

Table 1 Database overview 

Upon the first exploration of the data, quite a lot of noise was experienced. First, quite some duplicates 

are found, so multiple lines in the database represent the same order. Next, extreme values were found 

for, for example, the realised TAT. For this metric, values over 700 are present, indicating that outliers 

are persistent in the data set. Furthermore, data entry errors were experienced, e.g. in the work 

performed column ‘MOD and ‘MOR’ were used interchangeably, while they both mean ‘Repair plus 

modification’. So, before the data can be used, the data should be thoroughly cleaned. 
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2.7.1 Unavailability of Data 

Unfortunately, there is also a lot of data unavailable, meaning that alternative ways must be found to 

gather this information. Firstly, the used interventions are not documented as such, so in the dataset it 

cannot be traced back for which orders an intervention was required. If this data were available, 

situations with high risk of backorders could be predicted by identifying which situations historically 

led to interventions. If a similar situation would occur, this could lead to an alert. 

Furthermore, both suppliers and customers are reluctant in sharing data. So, data regarding the status of 

an external repair is unavailable. For internal repairs, the data is available, but of low value. For internal 

repairs, most of the total turnaround time comes from the queue of parts that are waiting for a repair. 

Once the diagnosis for a part is done, it is most of the time finished on the same day. Only in case of 

unavailability of scrap parts or other exceptions, the repair is not directly finished. So, the status updates 

within a repair shop is often meaningless and thus cannot be used for status updates of repairs. 

 

2.8 Conclusion 

In this chapter, the present way of working and the performance of the Component Maintenance & 

Availability (CMA) program at the Independent Aerospace Company (IAC) are discussed. The CMA 

program can be divided into two subprograms, which are the Forward Exchange (FE) program, and the 

Performance Exchange (PE) program. The inventory pool for the CMA program is shared by the PE 

and the FE program. At present, the IAC is experiencing a lot of backorders (36% of orders is delivered 

late), which causes the operational planners to use expensive interventions to resolve these backorder 

situations. So, proactively generating alerts for stock keeping units (SKUs) that will potentially face 

backorders would allow the operational planners to prevent backorders from occurring soon. 

Currently, a reactive alert generating model is in place, which only considers historical backorders, the 

present inventory level, and the inventory position of each Stock Keeping Unit (SKU). If the inventory 

level for a SKU is too low with respect to the inventory position, an alert is generated. While previously 

most claims of inventory came from the FE program, nowadays an increasing fraction of the claims 

comes from performance exchanges. However, these are not incorporated in the existing alert 

generating model. Furthermore, the existing alert generating model does not incorporate parts that are 

in repair, which will return to the CMA inventory pool upon finishing.  

So, to make the alert generating model more proactive, means must be found to incorporate the orders 

for the inventory pool caused by performance exchanges. Furthermore, a way should be found to 

incorporate returning repairs in the alert generating model, as neglecting these would lead to 

underestimation of the supply of the inventory pool. Finally, a way should be found to use these 

components to estimate the chance of backorders, as this is the most important performance indicator 

for the performance of the IAC.  

Unfortunately, the available data only consists of historical performance on different repair and forward 

exchange orders. So, no data is available on the states of a repair, nor historical interventions which 

took place. The performance on the historical repair orders can be used to predict which repair will not 

be finished in time, and thus results in an order for the CMA inventory pool. Furthermore, historical 

turnaround times may provide information on the returning repairs, which will replenish the CMA 

inventory pool.  

In the next chapter, the following topics are discussed, based on a review of the available literature. 

First, how a classification model can be constructed, which is able to identify which repairs will finish 

in time, and which will be finished late. Secondly, how historical turnaround times can be used to model 

the returning repairs process. Thirdly, how these different stochastic components can be incorporated 

in a model, which is able to approximate the chance of backorders for each SKU.  
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3 Literature review 

In this chapter I will conduct a literature review to identify which steps are required to construct a more 

proactive alert generating model, which incorporates the performance exchange orders and the returning 

repairs. To achieve this, the following three sub-questions are defined: 

- What artificial intelligence algorithms are described in literature, which can be used to 

identify which repair will be finished in time, and which repair will be late? 

- What methods are available to approximate the distribution of historical turnaround times? 

- How can multiple stochastic variables be used to approximate the chance of backorders? 

The first question will be the most challenging, and the answer to this question forms the largest portion 

of this chapter. Section 3.1 gives an overview of available machine learning methods and elaborates 

what machine learning is. The remaining sections answering the first sub-questions follow the seven 

steps to successfully conduct a machine learning project, as defined by Chollet (2018). These steps are: 

data collection, data preparation (3.2), model selection (3.3), training the model (3.4), evaluation of the 

model (3.5), parameter tuning (3.6), making predictions based on the model. As data is collection is 

already conducted prior to the start of this research, this step is not included in the literature review. 

The second question is accessed in section 3.7, and the third question is elaborated in section 3.8. 

Finally, in section 3.9 the main findings of this chapter are discussed. 

3.1 What is machine learning? 

The first question to answer, is what is machine learning. El Naqa and Murphy (2015) define Machine 

Learning as ‘an evolving branch of computational algorithms that are designed to emulate human 

intelligence by learning from the surrounding environment’. So, it be an application that provides 

systems the ability to automatically learn and improve from experience without being explicitly 

programmed. Well-known examples of the use of ML are the recommendation systems used by Netflix 

or Bol.com.  A figure created by MIT gives a nice visualisation on how Machine Learning differs from 

traditional programming. 

Roughly said, there are three forms of Machine Learning, these are: Supervised Learning, Unsupervised 

Learning, and Reinforcement learning. Each of these types has its own requirements regarding the 

required nature of the problem you are trying to tackle, the amount of data that is available, and finally 

the nature of the data that is available.  

3.1.1 Types of machine learning 

3.1.1.1 Supervised Learning 

The most prevalent kind of ML is Supervised learning, where data is labelled in order to tell the machine 

exactly what types of patters it should look for (Fumo, 2017). In essence, the machine is learned to, 

based on input (X), predict the outcome (Y). To be able to learn the machine how to predict Y, we are 

required to have historical data for which we now know the outcome, so we have a means to provide 

Figure 10 Traditional programming vs machine learning 
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feedback to the model on how it did. In short, supervised learning is trying to ‘model relationships and 

dependencies between the target prediction output and the input features’ (Fumo, 2017). 

3.1.1.2 Unsupervised Learning 

Whereas in supervised learning, data is labelled, for unsupervised learning the data is presented to the 

machine as unlabelled. The machine will then classify groups of data, based on the data, without a 

direction on what the data means. This method of machine learning is most suitable for classifying 

groups, which are not easily identified by humans. Unsupervised learning has been used by the Dutch 

government to identify tax-fraud cases, as the model was able to identify ‘odd cases’ from the dataset 

it was provided. 

3.1.1.3 Reinforcement Learning 

Reinforcement learning is a form of learning in which trial and error plays a large role. The machine 

will perform an action and will receive feedback on how good this action was. For next time, when it 

is confronted with a similar situation, it will know if its previous action was good or not and whether it 

should be repeated. The goal of reinforcement learning is optimizing the outcome, based on a given 

state, by selecting the best decision for that state. This kind of machine learning is mostly used in the 

operations research, where a true optimal solution exists, but is unlikely to be found, due to the size of 

the problem. Reinforcement learning can be an effective way of finding a solution that is good, without 

fully exploring every option. 

3.1.2 Conclusion 

Both for identifying performance exchanges and predicting repair throughput times, supervised learning 

is the most suitable approach. We have a clear variable which we want to explain, with the data which 

is already available. Therefore, in the remainder of this literature review, I will only focus on supervised 

machine learning methods.  

 

3.2 Data preparation 

Data preparation forms the second step of the process. It is highly dependent of the problem at hand 

(Bohanec, Borštnar, & Robnik-Šikonja, 2016), but should be handled with care. If data preparation is 

not conducted properly, the model is likely to have bad performance (Garbage in, garbage out). 

Therefore, about 60% of the time for solving such a problem, is spent on data cleaning and organising 

(Press, 2016). During the data preparation, data is cleaned, transformed, and validated to form a high-

quality training set. 

3.2.1 Data cleaning 

3.2.1.1 Missing data 

One of the first steps in data pre-processing is determining what to do with missing values in the dataset. 

García, Luengo, and Herrera (2015) discuss several ways in which missing values can be treated. The 

first is discarding the features or instances for which missing values (MVs) are observed. This approach 

can only be used if the data is Missing Completely At Random (MCAR), as otherwise removing this 

feature will cause bias to be induced in the data. Fully discarding a feature is also an approach which 

can be used, when a lot of MVs are observed for one feature. A rule of thumb is that if about more than 

60-70% of the values is missing, it is better to remove the feature. 

The second approach is imputation by means of sampling. This approach is most suitable for non-

categorical features. When applying this approach, maximum likelihood procedures are used to estimate 
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the parameters of the complete portion of the data. Using these parameters, the MVs are then filled by 

sampling from this estimated distribution. 

The third approach is to keep the instances with MVs but encoding these. For example, for categorical 

features, an ‘other’ category can be created, or for (positive) numerical features, a -1 can be used to 

illustrate that the value is missing. However, not all models are able to deal with having a -1 in a positive 

numerical feature, as they might try to establish formulas based on these numerical values and the -1 

skews the distribution. 

The final approach discussed by García et al. (2015) is multiple imputation. Where relationships 

between features are identified and used to estimate the values of the MVs. When this approach is 

applied, it is important to note that multiple values are estimated to represent the same feature. This way 

the uncertainty induced by estimating the MVs is accounted for. So, multiple datasets are generated, in 

which the MVs are receiving a different estimate. The results of the training and validation of these 

datasets can then be pooled to obtain results. 

3.2.1.2 Outlier detection 

When performing outlier detection, we are trying to identify examples in the data which behaviours are 

quite different from the expected behaviour. These examples are called outliers, or anomalies. For 

outlier detection, unsupervised learning can be used. Outlier detection has a high relationship with 

cluster analysis, as clustering is the process of finding majority patterns in the data and organise it 

accordingly. Outlier detection, on the other hand, attempts to catch the exceptional cases present in the 

data, which have significant deviations from the majority patterns (García et al., 2015).  

Furthermore, statistical methods are available for detection of outliers. For example, the Z-score can be 

used to identify observations that are outliers, by calculating how many standard deviations a data point 

is from the sample mean. As a rule of thumb, 2.5, 3, and 3.5 are threshold z-scores to drop instances if 

the z-score is above these values. This results in approximately 3.4%, 1%, 0.2% being dropped 

respectively (Santoyo, 2017).   

3.2.1.3 Noise reduction 

This chapter focuses on the noise imperfections of the data, and how to deal with them. Noise in data 

is almost unavoidable and can have several negative consequences in classification problems. 

Performance of classification and regression models is highly dependent of training data, especially in 

supervised problems, where noise alters the relationship between the features and the dependent 

variable. Noise hinders the knowledge extraction from the data and spoils the models obtained using 

that noisy data when they are compared to the models learned from clean data from the same problem, 

which represent the real implicit knowledge of the problem (Zhu & Wu, 2004). 

Broadly, there are two types of noise in data; the first is attribute noise, the second is class noise. 

Attribute noise occurs when one or more attributes of an instance are corrupted (missing, unknown, 

incomplete). Class noise (or label noise) refers to incorrectly labelling of classes in the training dataset. 

Many reasons for this kind of noise are present, such as subjective labelling, data entry errors, and 

inadequacy of the information used to label. Class noise can be subdivided into two sub-categories 

(Catal, Alan, & Balkan, 2011), being contradictory examples and misclassifications. The first occurs 

when duplicate (or remarkably similar) features represent a different class label (e.g. round and green 

once representing an apple, and in the second occurrence a pear). The misclassifications occur when 

labels are assigned wrongly (e.g. apple labelled as pear).  

Several ways have been identified for dealing with noisy data, the most relevant are: 

 Using robust learners, these learning models are designed to be less influenced by noisy data. 

 Such models often implement a purifying strategy, which reduces the possibility of overfitting 

 to noise that is present in the training data. Note that when too much noise is present in the data 

 set, a robust learner may also have poor performance. 
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 Implementing data polishing methods, which aim at correcting noisy instances, before the 

 model is confronted with the training data. As this method is very time consuming, it is most 

 suitable for small datasets. Teng (1999) found that, when data polishing is applied to the training 

 set, and the test set still contains noise, the performance is higher than when no noise reduction 

 is applied.  

 Applying noise filters, which aim at identifying noisy instances in the data, and removing them 

 from the training set. Most models require such an approach, as they are not very capable of 

 handling noisy data.  

As for the situation at the IAC we are dealing with a lot of data, data polishing is not a viable method. 

Moreover, from the data description provided in chapter 2.7, there is a lot of noise in the data set. 

Therefore, the most suitable approach to deal with noise is by applying noise filters. 

Applying noise filters to the data, before the data is presented to the model has the advantage that the 

model selection is not influenced by the presence of noise in the dataset (Gamberger, Lavrac, & 

Dzeroski, 2000). García et al. (2015) discuss the three most common methods of applying noise filters 

to data, these are ‘Ensemble Filter’, ‘Cross-validated Committees Filter’, and ‘Iterative-partitioning 

Filter’. All these three methods use a voting scheme to determine which instances should be eliminated 

from the dataset. For this voting, two possible schemes are available. The first is a consensus scheme, 

which removes an instance if it is misclassified by all classifiers. The second is a majority scheme, 

which removes the instance if more the half of the classifiers misclassify the instance. The consensus 

scheme is more conservative, and is less likely to reject good data, but might retain bad data. The 

majority filter, on the other hand, is better at detecting bad data, at the expense of having a higher 

probability of rejecting good data.  

In the following section, each of the noise filters mentioned above is shorty discussed, for a more 

detailed explanation, please refer to García et al. (2015), chapter 5. 

The Ensemble Filter attempts to improve the quality of the training data by detecting and 

eliminating mislabelled instances. It uses a set of learning algorithms to create classifiers in 

several subsets of the training data that serve as noise filters for the training set. This is done by 

dividing the data in Г subsets. The identification of potentially noisy instances is carried out by 

performing an Γ – Fold Cross Validation (FCV) on the training data with µ classification 

algorithms, called filter algorithms. 

The Cross-Validated Committees Filter (CVCF) makes use of ensemble methods to identify 

and exclude instances which have been mislabelled. CVCF is mainly based on performing an 

Γ - FCV to split the full training data and on building classifiers using decision trees in each 

training subset (Verbaeten & Van Assche, 2003).  

The Iterative-Partitioning Filter (IPF) is based on the Partitioning Filter. The Partitioning Filter 

is a scheme developed by Zhu, Wu, and Chen (2003), and is very effective for identifying and 

removing mislabelled data from large data sets. Large data sets cannot be learned after one 

time, while this is an assumption for most noise filters. The IPF iteratively removes noisy 

instances, until a certain stopping criterion is met (e.g. less than a certain percentage of instances 

identified as noisy).  

As IPF is the most suitable for handling large datasets, this approach seems most promising for the case 

of the IAC. 

3.2.2 Data transformation 

After filtering out noise of the dataset, the data might still not useful enough for a learning model. The 

attributes in the data are often raw, meaning that it comes directly from databases or from the system 

where the data is currently being used. Therefore, the attributes likely must be transformed into 

attributes which can be used by a learning model. What kind of transformation is required, depends on 

the nature of the data and the distribution of this data.  
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3.2.2.1 Types of data 

Broadly speaking, there are four types of data, split in two categories; categorical’ and ‘numerical’ 

(Donges, 2018). Categorical data represents characteristics, like gender or language. Categorical data 

can be split into two types, which are ‘nominal’ and ordinal’. Nominal data represents discrete units 

and are used to label data that have no qualitative value. Nominal data, however, do not have an order. 

Ordinal data is similar to nominal data, as it also has no quantitative value. Nonetheless, for ordinal 

data, the order matters (e.g. highest level of education). 

Two types of numerical data have also been identified, these are ‘interval’ and ‘ratio’. Interval values 

represent units that are ordered and have the same difference. So, a unit is interval data when it contains 

numeric values that are ordered, and the exact differences between values are known. For ratio data, 

this same rule holds, but in addition it also has an absolute zero (starting point).  

3.2.2.2 Numerical data 

For numeric columns, normalization is required when features in the dataset have different ranges (e.g. 

age and income). The goal of normalization is to change the values of numeric columns in the dataset, 

to a common scale, but without distorting the differences in the ranges of values (Jaitley, 2018). So, 

normalizing data does not create new attributes, it just transforms the existing attributes into a new set 

of values which have the desired properties (García et al., 2015). The tree mostly adopted normalization 

techniques are ‘Min-Max Normalization’, ‘Z-score Normalization’, and ‘Decimal Scaling’.  

Min-Max Normalization is the process of scaling the values of an attribute with respect to the 

minimal and maximal value observed in the attributes. The new range which is most widely used 

is [0,1], however, this is not necessary. To transform a value v of column i (vi) by applying Min-

Max Normalization, the following formula is applied: 𝑣𝑖` =  
𝑣𝑖 − 𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖
. One of the downsides 

of Min-Max Normalization, is that it cannot handle outliers in a column very well. Therefore, it 

should always be checked if these are present in the column that needs to be normalized. Another 

downside is that the minimum and maximum value might be unknown.  

The second form of normalization, Z-score Normalization  ̧is better at handling outliers. Z-score 

normalization is based on the mean and standard deviation of the column and will therefore be 

more robust if outliers are present in the column. It is applied by calculating the sample mean 

(µi) and sample standard deviation (σi), and applying the following formula: 𝑣𝑖
′ =  

𝑣𝑖− µ𝑖

σ𝑖
 . By 

applying this, the new µi will become 0 and the σi will become 1, which are properties of the 

standard normal distribution.  

The final form of scaling is decimal scaling, which is a simple way for reducing absolute 

numerical values. It normalizes values, by shifting the decimal point by dividing the values by a 

power of ten. So, 𝑣𝑖′ =
𝑣𝑖

10𝑗 for which j is increased until the absolute max value in i < 1.  

3.2.2.3 Categorical data 

For categorical data, the type of transformation depends on the type of data, as different approaches 

need to be used for both types. Ordinal data is mostly encoded by assigning integers to each unique 

value that is present in the attribute (Brownlee, 2020). Therefore, it can only be used for attributes that 

have a (weak) ordinal relationship (e.g. bad = 0, normal = 1, good = 2). Whenever this method is used 

for variables that have no ordinal relationship, the variable might be misleading to the model. Instead, 

one-hot encoding should be used when no ordinal relationship exists between the values. This is where 

the integer encoded variable is removed and one new binary variable is added for each unique integer 

value in the variable. For example, if we have a colour attribute, with three values (red, green, blue), 

this will result in three columns. For the value ‘red’, the values in columns green and blue would be 0, 

the value in the column red would be 1. The only downside to this kind of encoding, is the increased 

memory usage. 
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3.2.3 Data reduction 

Nowadays, it is not difficult to imagine the disposal of a data warehouse for an analysis which contains 

millions of samples, thousands of attributes, and complex domains. Data sets will likely be huge, thus 

the data analysis and mining would take a long time to give a respond, making such analysis infeasible 

and even impossible (García et al., 2015). A high dimensionality in a data set increases the 

computational complexity, as there are many possible predictor variables. Fukunaga (2013) argues that 

there is a linear relationship between the number of training samples required and the dimensionality 

for obtaining high quality models. Therefore, the size of the data set increases exponentially with the 

dimensionality, as a higher dimensionality also implies more training samples (Hwang, Lay, & 

Lippman, 1994). In the original data set provided by the IAC, there also is a high level of dimensionality. 

Therefore, data reduction might be required to reduce the memory usage, and improve the efficiency of 

the learning model (Han, Pei, & Kamber, 2011). García et al. (2015) define three categories of data 

reduction, which are ‘Dimensionality Reduction (DR)’, ‘sample numerosity reduction’, and ‘cardinality 

reduction’.  

DR aims to reduce the number of attributes or random variables in the dataset, so it reduces the 

number of columns in the dataset. It incorporates methods such as Feature Selection and Feature 

extraction/construction, which detect, remove, and combine irrelevant dimensions. This is done 

by creating parametric models (such as regression) which predicts an attribute, based on lower 

dimensional, for which only the parameters need to be stored, instead of the actual data. 

Transformation of the original data into a smaller space  can be done by Principal 

Components Analysis (PCA), factor analysis, Multi-Dimensional Scaling (MDS) and Locally 

Linear Embedding (LLE), which are the most relevant techniques currently present (García et 

al., 2015). The most commonly used a described method is the PCA, thus, this method will be 

used to reduce the number of attributes and random variables in the dataset. A more extensive 

explanation of PCA is given in chapter 3.2.3.1.. 

Sample numerosity reduction (SNR) is a method which aims at replacing the original data by a 

smaller data representation. While DR can only use parametric methods, requiring a model 

estimation that fits the original data, sample numerosity reduction can also be non-parametric. 

Non-parametric models work with the original data itself, and return other representations of 

the data, while maintaining similar structures. Methods for sample numerosity reduction are 

data sampling, data grouping, data sampling, and data clustering. An example of sample 

numerosity reduction is instead of using zip codes in the dataset, aggregate the zip codes to 

regions or states, reducing the number of unique values in the attribute. 

Cardinality reduction contains the transformations applied to access a reduced depiction of the 

original data. An example of cardinality reduction is introducing an ‘other’ value, which is 

assigned to values which represent less than a certain threshold in the attribute (Casas, 2019). 

This is especially useful when many values only occur very few times. The transformation of 

variables, as discussed in the previous chapter, are also forms of cardinality reduction. 

3.2.3.1 Principle components analysis (PCA) 

PCA is a technique for reducing the dimensionality of large datasets. It increases interpretability while 

minimizing information loss. This is done by creating new uncorrelated variables that successively 

maximize variance (Jolliffe & Cadima, 2016). The basic idea is to find a set of linear transformations 

of the original variables which could describe most of the variance using a relatively fewer number of 

variables. This is done by figuring out patterns and correlations among various features in the data set. 

When high correlations are found, a decision needs to be made on reducing the dimensions of the data, 

such that the significant data is still retained. Principle components become a new set of variables, 

derived from the original set of variables. They are computed as such, that the newly generated variables 

are highly independent from each other. In their values, the most useful information that was scattered 

among the initial values is included. The whole process of PCA consists of five steps, which are briefly 

discussed below. 
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Step 1: normalization of the data. This step is often already conducted, before the PCA is 

started. As normalization is a highly effective way of improving the quality of the data. 

Normalization is executed by following one of the procedures described in chapter 3.2.2.2.  

Step 2: creating covariance matrix. A covariance matrix is used to express the correlation 

between the different variables in the data set. Identifying highly correlated variables is 

essential, as they are likely to contain biased and redundant information, which reduces the 

overall performance of the model. A dataset with a dimensionality of p, will result in a matrix 

with size p × p, as it expresses the correlation between every variable in the data set. 

Step 3: Calculating Eigenvectors and Eigenvalues. These need to be calculated, that are 

required to be computed from the covariance matrix, to determine the principle components of 

the data set. For every dimension in the data set, an Eigenvector-Eigenvalue set needs to be 

calculated. The Eigenvectors show where the data, the most variance is present. As more 

variance in the data indicates more information in the data, Eigenvectors can be used to identify 

and compute the Principal Components. 

Step 4: Computation of Principal Components. Once the Eigenvectors and Eigenvalues are 

computed, they need to be ordered in descending order based on the Eigenvalues. The 

Eigenvector with the highest Eigenvalue is the most significant, and thus forms the first 

principal component. Based on this order, the Eigenvectors with the lowest Eigenvalues have 

the lowest significance and can thus be removed to reduce the dimensionality of the data.  

Step 5: Reducing Dimensions. Finally, we can re-arrange the original data, with the final 

principal components representing the most significant information of the dataset. This is done 

by transposing the original data and multiplying it with the obtained feature vector. 

3.2.4 Data sampling 

To ease the analysis and modelling of large data sets, sampling methods are used. García et al. (2015) 

identify four purposes of data sampling. These are ‘Reducing the number of instances submitted to the 

DM algorithm’, ‘Supporting the selection of only those cases in which the response is relatively 

homogeneous’, ‘Assisting with respect to the balance of data and occurrence of rare events’, and finally 

‘Dividing a data set into three data sets to carry out the subsequent analysis of DM algorithms’. Thus, 

it is particularly useful for reducing the memory usage of the data set, and run analytical models more 

quickly, while retaining accurate predictions. Furthermore, sampling is also used for validating the 

model. This is done by creating a training set and a test set. The model is then trained on the training 

set, then its performance is analysed by predicting the test set and validating the output with the correct 

output.  

 The five most used ways for sampling are discussed in the following section: 

Simple random sample, without replacement (SRSWOR) is generated by drawing s instances from 

the entire data set, with an equal probability for each instance to be drawn. As the instance is not 

replaced, the same instance cannot be drawn twice. 

Simple random sample, with replacement (SRSWR) is very comparable to the SRSWOR method, 

however, this time instances are replaced after being drawn. Meaning, that these instances can 

be drawn more than once. 

Balanced sample is a sampling method designed based on the target value.  When the target value 

contains imbalanced classes (one class occurs way more than other classes), simple random 

sampling will likely result in a sample containing many instances for that class. This hinders 

learning, as the model will get limited information on the other classes. Balances sampling 

overcomes this problem, by incorporating a similar number of instances for every class. This 

type of sampling is especially useful for imbalanced learning (García et al., 2015). 
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Cluster sample can be applied if the data set can be grouped into several disjointed groups 

(clusters). From each cluster a random number of instances can be drawn by using SRSWOR or 

SRSWR.  

Stratified sample divides the entire data set into mutually disjoint parts (strata). From each of 

these strata, an SRS is drawn, to obtain a sample. This method is similar to the balanced sample; 

however, the predefined composition of the final results now depends on the distribution of the 

dependent variable. 

To remove the probability of observing good results by chance, a k-fold cross validation can be 

executed. This process is illustrated in Figure 11 (Niu, Li, Wang, & Han, 2018), where each iteration 

𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 =  
1

𝑛𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
, and the performance is the average performance over the ten iterations. 

Figure 11 k-fold cross validation 

3.2.5 Conclusion 

The first step to take, for cleaning the data set, will be identifying missing values. If features are showing 

a high level of missing values (>70%), it is better to drop those features, as they are unlikely to provide 

useful information to the model. Furthermore, we must think about how the missing values can be filled 

with either interpolation or business rules. For example, in the Agreed TAT towards the customer, the 

missing values can be filled with a ‘default contract length’. Next, the outliers should be identified, as 

they are likely to distort the data. For this process I will make use of statistical methods to filter outliers, 

as the unsupervised learning version will take too much time. The drawback of using these statistical 

methods, is that they are only capable of identifying univariate outliers, while the unsupervised learning 

methods would also be capable of identifying multivariate outliers. 

The models that are selected in chapter 3.3, all are capable of handling noise well. So, the choice for 

using robust learners is implied. However, as mentioned in section 3.2.1.3, even robust learners lose 

performance if too much noise is present in the data. Therefore, some form of noise reduction still must 

be applied. The most promising form of noise reduction found, due to the large data set involved in this 

problem, was the IPF, which will be used to reduce noise. The numerical columns will be transformed 

with either a min-max scaler or a z-score scalar, depending on the distribution of the data. For the 

categorical features, one-hot coding is the most suitable, as for most of the categorical features, no 

ordinal relationship exists. As discussed in chapter 3.2.3, for the reducing of the dimensionality of the 

data a Principle Component Analysis will be conducted. 

As the performance exchange classification is dealing with an imbalanced dataset, the balanced 

sampling method is the most suitable. Furthermore, in both cases the k-fold cross validation will be 

used to improve the validation quality. 
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3.3 Model Selection 

After the data has been fully processed and prepared for the training, the model which is used for 

learning and predicting should be selected. The selection of the model depends on several factors, such 

as the size, nature and quality of the data, the available computation time, the urgency of the task, and 

what is the desired goal with the data. The best way of determining which model is most suitable, is by 

trial and error, as it is nearly impossible which model will perform best without trying first. However, 

the following cheat-sheet (Figure 12) is developed by Li (2017), gives a nice overview of available 

supervised learning methods, and simple questions to determine which models are most suitable. 

Figure 12 Machine Learning Algorithms Cheat Sheet 

Following this cheat sheet, the first question we must answer is if the problem is regarding dimension 

reduction. Meaning, we would like to identify clusters of similar data points. As we want to predict a 

target value, this is not the case, we move downward to the second question. The second question is 

whether the target value is known or not (if responses are known). As this is the case, we move 

downward to the third question, which is if we want to predict numeric data or not. This answer to this 

question is no, as for the IAC the problem at hand is a classification problem. The final question is 

whether we prefer speed or accuracy. Because the model is not continuously running, but is ran at 

weekly intervals, we are more interested in accuracy than speed. This results in four models that are 

suitable for our situation. However, Kernel SVM training time increases quadratically, making the 

approach inappropriate for large datasets. Therefore, the ‘Kernel SVM’ method will not be further 

elaborated. The other three models (‘Random Forest’, ‘Neural Network’, ‘Gradient Boosting Tree’) are 

discussed in the following section.  

3.3.1 Random Forest (RF) 

A RF is built from a larger collection of decision trees, which are well-known for their ability to classify 

classes based on their features. It consists of many nodes, which all have a decision rule to divide 

classes. In each node, the model will try to ask a question, such that the resulting groups are is different 

from each other as possible (while the members of each group are as similar as possible). These nodes 

are connected by branches, which form the logical flow of the tree (Yiu, 2019). Decision trees are 

known for their easy interpretability, as it is quite easy to follow the logic by which the decision tree 

performs its classification.  

Implied from its name, a RF is a collection of these decision trees. These decision trees all spit out a 

classification, and the class that is spit out most often, is the class that is selected. According to (Yiu, 

2019) a RF uses ‘A large number of relatively uncorrelated models (trees) operating as a committee 

will outperform any of the individual constituent models.’ For the model to be effective, it is important 
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that the individual trees are uncorrelated. If the trees are highly correlated, they are likely to make the 

same mistakes, which causes the wisdom of the cloud principle to vanish.  

To ensure the trees have a low correlation, two procedures are used. The first is called ‘Bagging’ (or 

Bootstrap Allocation), which makes use of the fact that decision trees are overly sensitive to the data 

which they are trained on. When applying bootstrap allocation, we allow trees to overfit the data on 

which they are trained, so they can grow very deep and are not pruned. The resulting trees will have 

high variance and low bias. Small differences in the used data, can lead to quite different tree structures. 

By drawing random samples (with replacement) from the data, many different trees can be created. 

Each of these trees is then used to predict the outcome, given certain input features, and the output with 

the most votes is selected. 

The second process is called feature randomness. In a normal decision tree, which is not part of a RF, 

every feature is considered when a new node is created. For creating RF trees, when a node is created, 

a random subset of features is drawn, which that node can use to divide the groups. This ensures that a 

higher variation between trees is achieved, which in turn results in lower correlation between trees. 

The use of RF has many advantages, and a few disadvantages. The first advantage is the versatility of 

the model, as it can be used for both classification and regression problems. Furthermore, they can be 

used without many pre-processing of the data, as they are very well at handling outliers, missing values, 

and noise. Furthermore, rescaling and transformation of data is often not required. Downsides to R the 

IAC are memory usage when a large dataset is used, overfitting when hyperparameters are incorrectly 

tuned, and interpretability problems, as RFs become a black box for classification (Kho, 2018). 

3.3.2 Artificial Neural Network (ANN) 

Artificial Neural Networks are part of a machine learning stream called deep learning. They are inspired 

by the structure and functioning of the brain. So, it tries to simulate a network of neurons like in the 

human brain, such that a computer will be able to learn things and make decisions in a humanlike 

manner (Marr, 2018). In essence, neural networks are multi-layer networks of neurons that are used to 

classify things or make predictions. In this section I will first briefly discuss how (forward feeding) 

artificial neural networks work, and then how they can be leveraged in practice. Finally, I will present 

some (dis)advantages of using neural networks. 

In general, a neural network consists of at least one input layer, at least one hidden layer, and at least 

one output layer. In Figure 13 (Vieira, Pinaya, & Mechelli, 2017) a simplistic overview is given of the 

layout of a neural network. On the far left, the input layer is shown. It consists of data presented by the 

user, on which the model should base its decisions. Neural networks are known to require a lot of data 

to learn, so a large data set should be used as input. 

Figure 13 Simple Forward Feeding Artificial Neural Network 

The arrows between the nodes describe how all neurons (nodes) are interconnected, and how data flows 

from the input layer, through the hidden layers, to the output layer. To each of those connections a 

weight is assigned, which indicates how much influence a one node has on another, depicted as wi in 

Figure 13. Each connection of neurons has its own weight, and these are the only values that are 

modified while the model is learning. As more data is processed by the model, the network is learning 

more about the data, with each hidden layer adding some form of ‘understanding’ of the data. 



32 

 

 

Figure 14 Working of a Neuron in a ANN (Arnx, 2019) 

Each node of the ANN works in the following way. First, all values of every neuron from the previous 

layer that are connected to this neuron are summed. In Figure 14 there are three inputs (x1, x2, x3), which 

means three neurons from the previous layer are connected to this example neuron. Before these inputs 

are added, they are multiplied with the connection weight (w1, w2, w3). Furthermore, a Bias term is 

added to the total calculated value. This value is chosen before the learning phase and can give the 

model information on the learning data (e.g. if the sample is unbalanced, a bias term can be added). 

After performing the summation, an activation function is applied to the calculated value. The goal of 

this function usually is to transform the calculated value to a number on the range [0,1]. This process is 

executed for every neuron in a layer, and when the calculations are finished, the output forms the input 

for the next layer. 

The learning of the ANN is done by minimization of a loss function, depending on the problem at hand. 

As we are dealing with a binary classification problem, the most appropriate loss function is a cross-

entropy function, also known as logarithmic loss. The loss function is as follows: 

𝐿𝑜𝑠𝑠 =  −(𝑦 ∗ log(𝑝) + (1 − 𝑦) ∗ log(1 − 𝑝)) 

Where y is the correct class label, p is the predicted probability that the target variable belongs in a 

class, and log is the natural logarithm. By minimizing this loss function, the distance between the correct 

labels and the predicted labels is minimized (Brownlee, 2019).  

The forward feeding model learns through backpropagation. This process incorporates comparing the 

predicted value with the actual value. If the model gave a wrong prediction, it would adjust weights and 

thresholds to minimize the difference between the actual and predicted value. These weights and 

threshold values are usually adjusted very gradually, therefore training takes so long for neural 

networks. The speed of learning can be adjusted, by adjusting the learning rate parameter. This 

parameter determines how it will modify a weight, either very gradually or by bigger steps. Correctly 

setting this parameter is important, as too high might make the model less robust against outliers, while 

too low might mean the model is not able to learn (Arnx, 2019). 

An advantage of used ANNs over other machine learning algorithms, is the self-organisation that they 

possess. Which means that an ANN can create its own organisation or representation while learning 

about the data. Another advantage is that neural networks can be trained in parallel, which allows for 

distributed computation (Maind & Wankar, 2014). Another advantage is that ANNs can automatically 

approximate whatever functional form is best characterizing the data. For simple forms (e.g. linear), 

this property is of little value. But for more complex forms it allows ANNs to extract more signal from 

complex underlying functional forms (Hill, Marquez, O'Connor, & Remus, 1994). 

Although ANNs have been proved very promising, there are several drawbacks to using ANNs. The 

first is the volatility of the development of ANNs. Compared to established, statistical methods, ANNs 

are very novel and undergoing a lot of changes (Hill et al., 1994). So, current best practices might be 

discontinued within a relatively short period of time. Another drawback is the difficulty to interpret 

ANNs, as they perform lots of computations and transformations to the input data, leaving almost no 

way to trace the way decisions are made. Furthermore, ANNs contain a lot of parameters that need to 

be tuned, such as number of layers, number of nodes, learning rates, activation functions and biases. 
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Due to this high amount of parameter tuning required, ANNs are very susceptible to overfitting to the 

training data. The final drawback is that ANNs are very computational heavy, and dedicated hardware 

is required to successfully leverage them.  

3.3.3 Gradient Boosting Tree (GBT) 

The final method for high accuracy, supervised machine learning is the use of Gradient Boosting Trees. 

These are often used due to their efficiency, accuracy, and interpretability. In this section, I will briefly 

discuss how GBTs work, and what their (dis) advantages are. 

A GBT is an ensemble model of decision trees (see chapter 3.3.1), which are trained in sequence. For 

each training iteration, a GBT learns the decisions trees by fitting the negative gradients (residual errors) 

(Ke et al., 2017). In general, Gradient Boosting involves three key elements. The first is a loss function, 

which is the optimization target. The second is a weak learner (simple decision tree), which is used to 

make predictions. The final element is an additive model to add weak learners and minimize the loss 

function. 

The Loss Function is depending on the type of problem that needs to be solved. The key is that it should 

be differentiable, as the differentiation of the loss function allows the determination of the gradient. The 

gradient boosting framework is very generic, so every loss function can be used, as long as it has a 

derivative (Brownlee, 2016a). For the weak learner, generally a decision tree is used. More specifically, 

regression trees are used, which output real values for splits, which can be added together. This allows 

subsequent models outputs to be added, which corrects the residuals in the predictions. The generation 

of trees is a greedy procedure, where split points are selected based on minimization of the loss. It is 

important that the weak learners are very limited to their size and depth, as increasing these too much, 

will result in too much computing power required to generate the weak learners, reducing the efficiency 

of the model. Finally, an additive model can be generated, where trees are added one at a time, and 

existing trees in the model remain unchanged. A gradient descend method is used to minimize the loss 

while adding trees. However, instead of a set of parameters (like in weight in ANNs), the GBT uses 

decision trees. After calculating the loss, a new tree is added to the model, to perform the gradient 

descend procedure. To achieve this, the tree is parameterized, and these parameters are modified in such 

a way that the residual loss is reduced. When this process is finished, a sequence of trees that which can 

be used to produce predictions for the problem at hand (Brownlee, 2016a). 

An advantage of using GBT is that the model is often able reach extremely high predictive accuracy, 

higher than many other models. Furthermore, it allows for a lot of flexibility, as it can optimize many 

different loss functions without many alterations. Finally, the model requires little pre-processing, as it 

can handle categorical, numerical values, and missing values, as they come. This last property makes 

the GBT a particularly good model for initial exploration of the predictability of a problem, as it is able 

to produce results without much time investment (apart from computing times). 

Disadvantages of GBTs are that the model will continue to improve to minimize all errors. This will 

result in a high probability of overfitting if incorrect validation methods are used. Furthermore, the GBT 

will require a lot of computation power, as many trees need to be generated before reasonable 

performance is achieved. These trees will consume a lot of computing power, time, and memory, 

making hardware requirements rather steep. The final disadvantage comes from the flexibility 

advantage, as the flexibility results in many parameters (number of iterations, regularization parameters, 

tree depth) that interact and influence the behaviour of the approach. Therefore, tuning of this parameter 

to improve learning efficiency and performance requires a lot of time.  

3.3.4 Conclusion 

All three models seem very promising for solving the problem at hand. They are all selected for their 

accuracy over speed, so this disadvantage reported for every model can be neglected. Although GBTs 

and RFs will likely outperform a ANN in a very basic model, a correctly hyper tuned ANN will perform 

significantly better (Haldar et al., 2019). Higher accuracy will reduce the chance of missing parts for 
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which alert were required, and thus is the main aim in for the model. Therefore, in the remainder of this 

thesis, I will focus on the use of ANNs.  

3.4 Training the model 

Now we have selected the model, it is time to trains these models. Training of the models is the process 

of incrementally improve the ability of the model to predict the target variable, by feeding it the 

historical data. At first, the model will predict fully at random, as it has no idea what the data is, and 

how this data can explain the target variable. For a linear regression model, the formula the model 

generates is in the form 𝑦 = 𝑎 ∗ 𝑥 + 𝑏, where the model should predict a and b in such a way that the 

mean square error is minimized. For every x, the model will predict y and based on the difference 

between the predicted and actual value a and b are adjusted. This is the process is called training. 

For machine learning, there are many more parameters involved in the model that can be adjusted. For 

example, the number of weights in an ANN, which is the product of the number of nodes in every 

column. Additionally, every node also has its own bias term. These terms, usually are formed into 

matrices, which W indicating the weights matrix, and B for the bias terms (as shown in matrices below). 
𝑤1,1 𝑤1,2

𝑤2,1 𝑤2,2

𝑤3,1 𝑤3,2

  

𝑏1,1 𝑏1,2

𝑏2,1 𝑏2,2

𝑏3,1 𝑏3,2

 

The training process involves initializing some random values for W and B and using these random 

values to predict the output. As expected, this holds a terrible performance, as randomly filling these 

matrixes provides no information of the correct target values. Now, these predictions are compared to 

the correct output values (that the model should have produced). Finally, the values stored in W and B 

are updated, to improve the quality of the next predictions. The way these values are updated, is different 

for each kind of machine learning model. This process is repeated for a predetermined amount of cycles 

(called steps), with each step updating the values stored in W and B (Yufeng, 2017). 

As discussed in chapter 3.2.4, the full data set needs to be split into a training set and a test set. The 

training set is fed to the model, such as described above, and the test set is used to validate the model, 

which is described in chapter 3.5. 

3.5 Evaluation of the model 

After the model has finished training, the performance should be evaluated. Evaluation of a model is 

performed by feeding the model a dataset that is has not seen yet. This ensures that the model is not 

solely relying on memory of the correct responses but is actually using generalizable rules to predict 

the correct outcome. Therefore, the outcome of the evaluation gives a particularly good indication on 

how the model will be performing in the real world, when it is confronted with real data.  

As stated previously, in classification problems, the goal is to predict the correct class, given a set of 

features. To evaluate the effectiveness of the model, several evaluation techniques are available. Which 

one is the most suitable, depends on the underlying question that is answered using the model. In the 

case of this thesis, for the classification model, the goal is to identify which repairs are likely to result 

in a performance exchange. First, some of the most prevailing evaluation methods are discussed and 

compared, after which the most suitable one is selected. A confusion matrix is a two-dimensional 

matrix, of which the number of rows and columns is equal to the number of available classes in the 

target variable. In our case, there are only two classes, which are ‘performance exchange’ or ‘no 

performance exchange’. Generally, the predicted classes are presented in the rows, and the actual classes 

in the columns, an example of a confusion matrix is shown in Table 2. 

 

 

 

 

N = sample size Predicted: No Predicted: Yes 

Actual: No True negative (TN) False positive (FP) 

Actual: Yes False negative (FN) True positive (TP) 

Table 2 Example Confusion Matrix 
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The confusion matrix shows the performance of the model, by indicating how often classes are predicted 

(in)correctly. The cells marked green are correctly identified classes, while the those marked in red are 

incorrect. Based on these metrics, performance indicators (PIs) can be calculated.  

The simplest PI to measure the performance of the model, is the accuracy. The accuracy is calculated 

as follows 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
∗ 100%, so the correctly identified classes over the total sample 

size. The main drawback to using accuracy as performance indicator, is that it can be very skewed if 

we have an imbalanced sample. For example, if we try to predict a rare form of cancer that only present 

in 1/1000 cases, in a sample of 10,000 cases. The model might predict that zero of the patients has 

cancer, which has 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
9990

10000
∗ 100% = 99.9%, indicating the model is performing very well. 

However, the model did not predict one positive case correctly, meaning it has no practical use at all. 

For this purpose, recall, precision, and F1-score have been developed (Brownlee, 2014). 

Recall (or True Positive Rate) is calculated as 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
, thus, it measures how many of the 

actual positive cases is correctly identified by the model. Therefore, this PI is especially useful if we 

want to identify the minority cases present in the total data set.  

The precision (or Positive Predicted Value), is calculated by 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
, so, it measures how 

many of the positively predicted cases is actually positive. Often, precision is called the classifier 

exactness.  

Most of the time, a trade-off needs to be made between the recall and the precision. If we rather identify 

as many of the positive cases (high recall), we need to accept that this will likely increase the number 

of false positive cases, and thus lowers the precision. A more balanced approach is by using the F1-

score, the F1-score is calculated by 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, which conveys the balance 

between the recall and the precision.  

Another PI is the ‘Receiver Operating Characteristics’ (ROC) Curve, which is the ratio of the True 

Positive Rate and the False Positive Rate. The ROC curve is visualised in Figure 15. The larger the area 

under the curve is, the higher the accuracy of the model. If the area is 1, it means that the model fits the 

data perfectly, making it likely that overfitting took place. On the contrary, if the area is less than 0.5, 

the model is too inaccurate to be used reliably.   

Figure 15 Receiver Operating Characteristics Curve (Bhattacharya, 2018) 

From this ROC curve, the area under the curve (AUC) can be calculated. A theoretically perfect model 

will have an AUC of 1, as it will be a vertical line on FPR = 0, and TPR = 1, thus the area under this 

curve is 1. A receiver operating curve is more likely to look similar to Figure 15, as shown above. The 

ROC provides an indication of the balance between the true positive rate and the false positive rate. 

Selecting a model based on the ROC is produces, will prevent the class imbalance to highly impact the 

performance of the model. 
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3.6 Hyper parameter tuning 

As mentioned in section 3.3.2, ANNs contain a lot of parameters that need to be tuned, to achieve good 

performance. Without proper parameter tuning, ANNs are likely to be outperformed by other, less 

extensive models. The process of tuning these parameters is called (hyper) parameter tuning, and 

involves an iterative, time consuming process in which parameters are altered an the results for different 

settings are compared (Steward, 2019). The parameters that need to be tuned are: ‘Nr of layers’, ‘Size 

of layers’, ‘Activation Function’, ‘Learning rate’, ‘Dropout size’, ‘Batch size’, ‘Nr of epochs’, ‘Batch 

size’. The ANNs are compared on the following four metrics, when parameter tuning is applied: 

‘Converge speed’ and ‘Performance’.  

3.6.1 Description of parameters 

3.6.1.1 Nr of layers 

The number of layers simply refers to the total number of hidden layers that is present in the model. 

More layers allow the model to approximate more complex functions, at the cost of increasing 

computation time. As discussed in 3.3.2, the layers all fully connected, an these connections are the 

weights that need to be updated. Thus, the number of layers has a high influence on the number of 

weights that need to be updated. Having more weights in the model, will allow the model to better 

understand the data, but increases the computation costs and the likelihood of overfitting. 

3.6.1.2 Size of layers 

The size of the layers refers to the number of nodes persistent in each layer. This size can either be 

fixed, for each layer, or varying per layer. When a layer consists of too little nodes, the model will not 

be able to incorporate all available information of the data into the model. However, when the model 

contains too many nodes, the model will start to ‘remember’ the training set, instead of developing 

generalizable rules. Generally, for tabular datasets, the size of the layers decreases with every layer. So, 

the first hidden layer is the largest, and the last hidden layer is the smallest.  

3.6.1.3 Activation function 

As mentioned before, an artificial neuron simply calculates a weighted sum of its input, adds a bias 

term, and decides if it should activate or not. This last part, deciding if it should activate or not, is based 

on the activation function. This activation function activates based on the weighted sum of the input of 

the artificial neuron. Choosing the right activation function is important, as not every function can be 

used in every situation. Furthermore, some activation functions are more computationally heavy than 

other functions (Sharma, 2017).  

3.6.1.4 Dropout size 

Adding a dropout layer to the ANN is a way to prevent overfitting of the model. A dropout layer works 

by randomly setting the outgoing edges of hidden units (neurons that make up hidden layers) to 0 at 

each update of the training phase. This ensures that the model must find a way to generalize, in order 

to achieve high accuracy, instead of ‘remembering’ the training set. The size of the dropout indicates 

how many nodes are dropped. As with the number of layers and the number of nodes, again we have a 

trade-off between over and underfitting. Dropping too little nodes in the dropout layer will allow the 

model to overfit, while dropping too many nodes can cause the loss of useful information. Generally, 

the dropout size is argued to be on the interval (0, 0.5) (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov, 2014).  
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3.6.1.5 Optimizer 

The optimizer is the collection of algorithms that are used to change the attributes of the ANN, such as 

weights and learning rate to reduce the loss of the model, and thus allows the model to ‘learn’. The 

optimizer defines how weights and learning rates should be altered to reduce the loss of the model. 

Selection of the optimizer is mostly based on the availability of time and data. Some optimizers require 

large amounts of data, while others can achieve good results, while data is sparse. As this is the case for 

the IAC, the according to Ruder (2016) the best optimizers to use are adaptive learning-rate methods. 

For these methods, the learning rate decays, based on the number of times the model has seen the 

training set. Furthermore, the ADAM optimizer is argued to be the overall best choice, because of its 

wide usability and lack of extra parameters that require tuning. 

3.6.1.6 Learning rate 

For each optimizer, a learning rate must be determined. This learning rate determines how steep the 

alterations are that are made to the model, based on the loss gradient. Choosing a value that is too small, 

leads to very long learning times and a model that gets stuck in a local optimum, while a too large 

learning rate leads to a sub-optimal set of weights caused by too fast learning. Another option is letting 

the learning rate change based on a learning rate schedule, during the training. The effect of the learning 

rate is illustrated by Zulkifli (2018), shown in Figure 16. While eventually the model with the low 

learning rate might converge to the loss of the good learning rate, it will take way too long, using up 

too much GPU power and time. 

One learning rate schedule is the time-based decay, where the learning rate decreases based on the 

number of epochs the model has trained on. The learning rate is then determined by the following 

formula: 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  
1

(1+𝑑𝑒𝑐𝑎𝑦∗𝑒𝑝𝑜𝑐ℎ𝑠)
. This is the most used learning rate schedule, due to its 

generalizability and ease of use. Another schedule is the step decay, where the learning rate is decreased 

by a factor every few epochs. Common uses are halving the learning rate every ten epochs.  

3.6.1.7 Batch size 

The batch size refers to the size of the sample that is fed to the model, before the weights are updated. 

The samples fed to the model are used to approximate the cost function, which is then minimized to 

improve the model. If too few samples are fed to the model, the model might update the weights based 

on noisy instances, reducing its generalizability. However, using a too large batch size will require a lot 

of processing power, as more predictions must be made before the model weights are updated and the 

effect of the updated weights can be observed. Furthermore, the hardware requirements of using a large 

batch are a lot higher, as the entire batch must be loaded into memory before it can be processed. The 

Figure 16 Effect of various learning rates on convergence 
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most common setting for batch size is 32 (Bengio, 2012), as this setting generally achieves good results, 

while having low hardware requirements. 

3.6.1.8 Number of epochs 

The number of epochs refers to the number of times the model sees the entire training set. As seen in 

Figure 16, the number of epochs required to learning is highly dependent on the setting of the other 

hyperparameters. Therefore, often an ‘early stopping’ decision rule is used. This early stopping rule 

stops the training process, if the model has not improved for a x number of epochs. Stopping the model 

before the full number of available epochs is used, allows us to set the number of epochs to a large 

number, and stop the training once the model is no longer reducing the loss value.  

3.6.2 Tuning of parameters 

The large number of parameters that need to be tuned, with the large set of states the parameter can 

take, in combination with the difficulty of training ANNs, hyper parameter tuning is a computationally 

heavy. The most commonly used approach for parameter tuning is Grid search (Brownlee, 2016b), 

where the grid is formed by possible states for each of the parameters. Due to the sheer size of the grid 

(product of all states of all parameters), not every option can be explored. Therefore, the end user has 

to decide which options are present in the grid (e.g. 100, 200, 300, or 400 nodes for each layer), this 

way the solution space is limited and interesting areas can be found (for example when 300 nodes 

always outperforms the other settings). Then, the grid search can be performed again, but this time with 

250, 275, 300, 325, and 350 nodes, to explore this area in more detail.  

Another proposed method for hyper parameter tuning, is by using random search. Bergstra and Bengio 

(2012) found that randomly selecting hyper parameters outperforms grid search. So, instead of 

systematically exploring promising areas, randomly drawing values from the entire solution space is 

preferred. This approach is especially dominant for problems that have a high dimensionality. The 

drawback of using this approach is that results are unintuitive and thus difficult to understand why 

certain hyperparameters are selected. 

The final method to select hyper parameters is proposed by (Shahriari, Swersky, Wang, Adams, & De 

Freitas, 2015), who argue that Bayesian optimization is the most promising method. Simply put, the 

Bayesian optimization method trains the model with different hyper parameter settings and observes 

the function that is generated by the model. This process is repeated many times, while each time the 

newly selected hyperparameters are only slightly different and help plot the next relevant segment of 

the problem space. By executing this process, the goal is to approximate the optimal function across the 

entire problem set. Shahriari et al. (2015) found that this approach yields significantly better results than 

random search, while using the same number of trails. 

As the results from Bayesian optimization are the most promising, this method will be used for hyper 

parameter tuning in this thesis. 

 

3.7 Distribution Fitting 

Distribution fitting is the process of finding a probability distribution with specific parameters, which 

allows summarization of a large amount of data. One of the main advantages of fitting a probability 

distribution to historical data, is the usability in simulation studies (Ramberg, Dudewicz, Tadikamalla, 

& Mykytka, 1979). With a fitted distribution, instead of drawing randomly from historical values, 

values can be drawn from the fitted distribution. This limits the memory requirement and is often faster 

than drawing from historical values.  

The maximum likelihood estimation (MLE) method is the most popular method for estimating 

distribution parameters from an empirical data sample. The MLE method is based on the philosophy of 

finding the distribution, that has the highest likelihood of producing the empirical sample (Myung, 

2003). With every probability distribution, parameters are associated. As these parameters change in 



39 

 

value, different probability distributions are constructed. Myung (2003) defines the problem as follows: 

‘Given the observed data and a model of interest, find the one Probability Density Function (PDF), 

among all the probability densities that the model prescribes, that is most likely to have produced the 

data.’. A likelihood function, is a function of the parameter, given a particular set of data, defined by 

the parameter scale. So, the likelihood function, is a function which can be maximized, to obtain the 

parameter settings that have most likely provided the observed data. For this process, fully automated 

Python packages exist, and for the practical implementation these will be used. However, I still wanted 

to briefly elaborate the technical background of the MLE approach. 

 

3.8 Function approximation 

Due to the high number of stochastic variables persistent in the supply chain of the IAC, finding a true 

optimal solution is impossible. Furthermore, optimization models often lack an estimation of the 

variability or robustness of a solution in a stochastic environment. Metrics such as lead-time variability, 

percentage of on-time delivery and so on, are hard to obtain, let alone incorporate, when using an 

optimization model (El-Aal, A El-Sharief, Ezz El-Deen, & Nassr, 2008). Simulation in supply chain 

management can offer a complement to the more prevailing modelling using optimization models, since 

simulation is more suited for representing random effects. Furthermore, the purpose of simulation is to 

shed light on the underlying mechanisms that control the behaviour of a supply chain. Which is key for 

obtaining acceptance of the tool by the operational planners. Finally, a simulation can be used to predict 

the way in which the supply chain will behave when underlying factors are changed, allowing for 

effective ways to evaluate what-if scenarios. 

Although there are many strongpoints for using simulations, there are also drawbacks. For example, a 

simulation is very dependent on the quality of the input data. So, again the garbage in leads to garbage 

out principle holds. Additionally, simulations are incapable of providing easy answers to complex 

problems. Finally, simulations are incapable of solving problems by itself. It only is a means for 

predicting outcomes, given certain settings (Cagliano, Rafele, & management, 2008). 

A powerful simulation type is the Monte Carlo simulation, which involves assigning multiple values to 

an uncertain variable to achieve multiple results, which can then be averaged to obtain an estimate. 

Monte Carlo simulation can be viewed as a brute force approach, which can be used when exact 

solutions are unavailable. The advantage of using random variates instead of a single average number, 

is that using random variates allows to incorporate the uncertainty of the random variables. Another 

advantage of using Monte Carlo simulations, is the ability for evaluating what-if scenarios. This allows 

the operational planners to quickly analyse the impact of for example, delivering a part to an external 

party, thus reducing the on-hand stock by one. Furthermore, Monte Carlo simulations allow for easy 

visualisation, which aids in the acceptance of the tool by the operational planners, as alterations of 

underlying parameters visually impact the outcome of the simulation. 

 

3.9 Conclusion 

In the first section of this literature review, the different types of machine learning are discussed. As we 

want to determine if a repair will be finished or not, based on the available features, supervised machine 

learning is the most suitable approach.  

The first step in data preparation is identifying and dealing with missing values. First, missing values 

are, if possible, filled by either business roles or interpolation. If after this process a high level of missing 

values persists (>70%), the feature is dropped. Next, outliers should be identified and removed, to 

prevent them from distorting the data. Identifying outliers using unsupervised learning is a time 

consuming and requires a lot of additional research to be executed correctly. Therefore, simpler 

statistical methods will be used to identify outliers. To reduce the class noise persistent in the dataset, a 

IPF is used, a IPF iteratively removes noisy instances, until a certain stopping criterion is met. To ensure 

that all data is in the same range, a min-max or a z-score transformation is used, depending on the 

statistical distribution of the data. For the categorical features, one-hot coding is the most suitable, as 
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for most of the categorical features, no ordinal relationship exists. Finally, for reducing of the 

dimensionality of the data a Principle Component Analysis will be conducted. As the performance 

exchange classification is dealing with an imbalanced dataset, the balanced sampling method is the most 

suitable. Furthermore, in both cases the k-fold cross validation will be used to improve the validation 

quality. 

The selected machine learning model is the Artificial Neural Network, due to academic interest in the 

topic and the novelty of the method. However, for validation purposes, the Random Forest will also be 

used, albeit with less parameter tuning, to limit the time required to validate the performance of the 

ANN. The models will be validated on the F1-score, which is a score for the balance between the recall 

and the precision. Furthermore, the Area Under the Curve is used to validate the model, which gives 

insight on how well the model can distinguish different classes. The final step before the model can be 

used to make predictions is tuning of the hyper parameters. This will be done using a Bayesian 

optimization, as the number of hyper parameters persistent in the model is huge and Bayesian 

optimization is an efficient way to find good parameters.  

To approximate the statistical distribution of turnaround times of different SKUs, distribution fitting 

based on the Maximum Likelihood Estimation will be used. This statistical distribution can then be 

used to simulate turnaround times of returning repairs, which form the supply of the inventory pool of 

the CMA program. The prediction of the performance exchange orders, the turnaround times of 

historical repairs, and the demand from the FE program are subsequently used as input for a Monte 

Carlo simulation, which is can be used to approximate the chance of backorders. Due to the stochastic 

nature of the performance exchange orders, the turnaround times, and the demand from the FE program, 

an exact solution is not available, which generates the need for an approximation by the Monte Carlo 

simulation. 
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4 Methodology 

In this chapter the question: ‘How can machine learning algorithms, as described in the literature, be 

used to create a model which indicates parts most urgently require attention from the operational 

planners?’ is answered. Furthermore, design decisions and methods used to retrieve the results 

presented in this research are described, as this will enhance the reproducibility of the research.  

In section 4.1, the conceptual solution is discussed, together with the choices and decisions which led 

to this solution. In section 4.2 the available data, and the processing required to be able to use this data 

is described. In section 4.3 the methods used to predict the demand coming from the performance 

exchange program are discussed. Section 0 provides information on how these methods can be used to 

approximate the chance of backorders for the CMA inventory pool. Finally, in section 4.5 the main 

conclusions of this chapter are provided. 

4.1 Conceptual solution design 

4.1.1 Overview 

As discussed in chapter 2, the existing alert generating model does not incorporate the following 

components ‘demand from the performance exchange program’ and ‘repair pipeline’. The lack of 

inclusion of those two components makes the existing alert generating model merely reactive. 

Furthermore, the increase in PE makes the incompatible with the current way of working at the IAC. 

To include the performance exchange orders, and the repair pipeline, the following conceptual design 

has been composed, a schematic overview is found in Figure 17.  

As derived from Figure 17, the first steps are selecting which features from the available data are of 

importance, and checking the quality of the data, to evaluate if pre-processing is required. This step is 

mainly of importance for the classification model, as the historical turnaround times used to model the 

repair shop pipelines are directly available in the (cleaned) dataset. Once the data is sufficiently clean, 

the data is used to assemble an artificial neural network, which has as main goal, identifying which 

orders will not finish in time, and thus need to be fulfilled by an SKU from the inventory pool. This 

identification, together with the repair shop pipeline and the FE demand, are used to model the chance 

of backorders for the CMA pool for a specific SKU, by means of a Monte Carlo simulation. Finally, 

the SKUs with the highest chance of facing backorders are presented to the operational planners.  

Figure 17 Conceptual model for alert generation 
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4.1.2 Design choices 

4.1.2.1 Planning horizon 

In agreement with the operational planners, the scope of the tool is determined to be two weeks. This is 

equal to the operational planning horizon. Furthermore, the planners indicated, that more than two 

weeks in advance, interventions are very rarely required. The first intervention that is used (as it is the 

cheapest) is asking the repair shop if a repair order for a SKU can be prioritized. But due to the planning 

horizon of the repair shops, more than two weeks in advance, this is of no use 

Furthermore the scope of two weeks is selected based on the time between activating an intervention 

and this intervention being effective, the cost savings per unit time as defined in chapter 2.5.8, and the 

time available for the operational planners. When the scope is set too short, say shorter than one week, 

the interventions would still be costly, however, if the scope is set too large, too many alerts would be 

generated, taking up too much time of the operational planners.  

Another factor which limits the scope at two weeks are the returning core units from forward exchanges. 

These returning core units are not incorporated in the model, as the process of returning and repairing 

these parts usually takes longer than two weeks. Whenever a forward exchange is performed, the 

customer generally has five working days before to send the unit back to the IAC. Additionally, lead 

times and time for the inbound warehouse further increase the time before the repair can start. In total, 

this process takes about eight days, if the customer adheres to the contracted return times, which is 

definitely not always the case, as seen in section 0. So, if the scope is less than two weeks, these 

returning repairs are not likely to skew the outcome of the simulation if the scope is limited to two 

weeks. After this period however, parts might be in repair while they are not incorporated in the model. 

Meaning that the model becomes oversensitive, as the modelled supply is lower than the actual supply.  

4.1.2.2 Contracted repairs exceeding TAT 

The output of the ANN is a continuous number on the range [0, 1]. On this range, 0 means the model is 

100% sure the agreed TAT will not be exceeded, while 1 means the model is 100% that the agreed TAT 

will be exceeded. For every repair that has a due date within the considered scope, the model will predict 

whether the due date will be met, and thus, if a performance exchange is required. The model always 

assumes that the performance exchange is only used when the due date is not met. However, historically 

performance exchanges have been sent out weeks before the due date. Furthermore, sometimes 

performance exchanges are offered to the customer, but are rejected, as the customer is not in direct 

need for the part. As the data, nor the operational planners, are able to pinpoint situations in which these 

cases occur, the following assumption is developed: 

‘If the IAC is unable to meet the agreed TAT, a Performance Exchange is obligatory, and the customer 

will always accept this exchange. When the OH-stock is ≤ 0 at a moment a Performance exchange is 

required, it is considered a backorder situation.’ 

Moreover, the agreed due date, is the date on which the demand comes in, if a performance exchange 

is required. E.g. if a repair was due on the 5th of January and the model predicts that a performance 

exchange is required, the demand for the 5th of January increases with 1. 

For simulation of the performance exchange demand, every contracted open repair is evaluated by the 

classification model, to predict the probability that a performance exchange from the inventory pool is 

required. This probability can then be used to randomly select with success probability p (coming from 

the classification model), to simulate whether a repair is finished in time or not. 
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4.1.2.3 New buy 

Two situations have been identified, for when parts are acquired. The first is when a part is scrapped in 

the repair shop, but the operational planners want to keep the inventory position at the previous level. 

A part is then acquired from available sources (market, OEM, competitor etc.), to fill the position 

previously taken by the scrapped part. The second situation is when the tactical planners decide that the 

inventory level should be increased. Again, a part is then procured from available sources.  

Due to the declining demand on the CMA program, a lower inventory position is required to maintain 

performance levels. Hence, when a part is scrapped, the inventory position is not necessarily recovered. 

Furthermore, the management of the IAC is reluctant with investing in acquisition of new parts to 

increase the inventory level, as parts are of high value and require large investments, even though the 

tactical calculations might have shown that the inventory position for a SKU needs to be increased. 

Thus, the management prefers incurring larger operating costs over a long-term investment, resulting 

in short term cash reduction.  

Finally, when the operational planners decide to procure a SKU, and this decision is approved by 

management, a tender offer is opened. According to the tactical planner, these tender offers can be a 

long-lasting process, and historical data on arrival times for procurement parts are unknown. So, 

pipeline stock not visible in the planning horizon, are not included in this thesis, as they will never 

influence the outcome during the planning horizon. 

To not completely neglect the effect of the acquisition of parts the operational planners can manually 

increase the inventory by using the what-if analysis. Now the acquisition of parts can still be considered 

in the model, without having to be specifically modelled. So, if they know about a part that is arriving 

soon, it can still be considered in the simulation. The full implementation of these what-if scenarios are 

discussed in section 6.4.3, where different uses are discussed. 

4.1.2.4 Approximation of repair shop pipeline 

As described in section 2.7.1, no accurate data on the status of repairs is available, so the pipeline needs 

to be approximated. This will be done by using historical turnaround times, and the present duration of 

a repair. A detailed description and the execution of this approach are found in section 4.4.1. 

 

4.2 Data 

4.2.1 Original dataset 

The original data set, as described in section 2.7 is a dataset containing 198 columns and 285,561 rows 

(historical orders). This dataset is used for making tactical decisions and is based on queries from the 

ERP system of the IAC. To reduce the load on the ERP system, this dataset will also be used as basis 

for this thesis, even though some information might be missing. The tactical planner at the IAC argues 

that the data before 2007 is of low value, and upon inspection this seems true, as it has a very high 

percentage of missing values (about 20% of all values is missing). Removing all data from before 2007 

reduces the dataset to 271,163 rows. 

4.2.2 Dependent variable 

Originally, the goal was to predict the total turnaround time for each part that has a PE contract. 

However, during initial exploration of the machine learning models, it turned out that there is too much 

variance in the total turnaround time. The average means absolute deviation observed was 19.61 days, 

which means that on average the model predicted the TAT 19.61 days off. Many of the contracts have 

an agreed TAT of 30 days, meaning that the model is on average way too inaccurate to determine if a 

repair will be finished in time or not.  
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So, a better dependent variable is, if the model predicts if the repair will be finished in time or not. If 

the repair is not finished in time a PE is required, according to the assumption made in section 4.1.2.2. 

Thus, the PE demand can be predicted using the ANN, by letting the model prediction how likely the 

agreed TAT will be exceeded. 

4.2.3 Feature selection 

As the data used in this research, as introduced in section 2.7, is not specifically gathered with this 

research in mind, a lot of features persistent in the data set are of no use (e.g. customer name, account 

number, project etc.).  An overview of the entire available dataset, with a short description of each 

column is found in APPENDIX A: Detailed Description of Available Data. Based on discussions with 

the two operational planners and a tactical planner, potentially useful features have been identified or 

extracted. These features, together with some key characteristics are presented in Table 3.  

4.2.3.1 Exploration of selected features 

In this section, relationship between the dependent variable and the selected features is explored. As the 

dependent variable is a binary variable, exploration of the explaining power of the selected features can 

be challenging. Therefore, the explaining power of the features is evaluated against the total achieved 

turnaround time, from which the dependent variable is derived.  

Numerical data 

For the numerical data, a correlation matrix is created. This matrix shows the correlation between the 

different independent, numerical features and the dependent feature (in this case the TAT). The 

correlation matrix is found in Table 4.  

 

Feature name Description Data type Number of categories 

Shop name The name of the shop that is executing the order Categorical (nominal) 495 

Work performed The work scope of the repair (e.g. Repair, 

modification, overhaul) 

Categorical (nominal) 6 

Condition The condition of the SKU, indicated by the customer 
(e.g. serviceable, overhaul, inspect) 

Categorical (nominal) 9 

Priority Priority as indicated by the customer (e.g. Aircraft on 

ground, critical, routine) 

Categorical (ordinal) 4 

Internal shop Is the executing shop internal (1) or external (0) Categorical (nominal) 2 

Percentage in time Percentage of historical orders for the executing repair 
shop that has been finished in time (at the arrival of the 

respective part), measured over the entire dataset 

Numerical - 

Agreed TAT 

customer 

The agreed total turnaround time as defined in the 
contract with the customer 

Numerical - 

Now in shop The number of the IAC SKUs in the executing repair 

shop, at the moment the respective SKU arrives 

Numerical - 

Weekly aggregated 

TAT 

The average achieved turnaround time of the past 
week, for the executing repair shop, at the moment the 

respective SKU arrives 

Numerical - 

Three months 

aggregated TAT 

The average achieved turnaround time of the past three 

months, for the executing repair shop, at the moment 
the respective SKU arrives 

Numerical - 

Half year 

aggregated TAT 

The average achieved turnaround time of the past half 

year, for the executing repair shop, at the moment the 
respective SKU arrives 

Numerical - 

Year aggregated 

TAT 

The average achieved turnaround time of the past year, 

for the executing repair shop, at the moment the 
respective SKU arrives 

Numerical - 

Table 3 Feature 

description 
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Weekly 

aggregate

d TAT 

Three 

months 

aggregate

d TAT 

Half year 

aggregate

d TAT 

Year 

aggregate

d TAT 

Agreed 

TAT 

customer 

Now in 

shop 

Total 

achieved 

TAT 

Weekly aggregated TAT 1 0.6716 0.6206 0.5528 0.0497 -0.0866 0.2554 

Three months aggregated TAT 0.6716 1 0.9231 0.8199 0.0547 -0.1421 0.2652 

Half year aggregated TAT 0.6206 0.9231 1 0.9081 0.0555 -0.1621 0.2492 

Year aggregated TAT 0.5528 0.8199 0.9081 1 0.0619 -0.1918 0.2297 

Agreed TAT customer 0.0497 0.0547 0.0555 0.0619 1 0.1981 -0.0051 

Now in shop -0.0866 -0.1421 -0.1621 -0.1918 0.1981 1 -0.1634 

Total achieved TAT 0.2554 0.2652 0.2492 0.2297 -0.0051 -0.1634 1 

Table 4 Correlation matrix numerical values 

The first observation is that the correlation between the aggregated TATs over different time periods is 

high, which is expected, as it is the average turnaround time of a shop, averaged out over different 

timespans. So, during the evaluation of the model, it should be evaluated of one (or more) off these 

features can be dropped, or if they all provide useful information to the model. The second observation 

is the low correlation between the Total achieved TAT and the Agreed TAT customer. This can be 

explained by the nature of the agreed TAT variable. This variable contains contracted times, which are 

thus terribly similar, making the variable more categorical than continuous. If it is incorporated as a 

categorical value, the following boxplot (Figure 18) is obtained, showing that the different categorical 

values have different distributions. 

Categorical features 

For evaluation of the categorical data, a two-way Anova (Analysis of Variance) test is conducted on the 

achieved Turn Around Time (TAT). This test identifies if particular instances of the independent 

variable are significantly different from other instances of that independent variable. This is done by 

observing the total variation in TAT in the sample, and then doing the same for one of the categories. 

The results of the Anova-test are presented in Table 5. As the F-values are large, with a high level of 

significance, we can conclude that for every variable, at least one category is significantly different 

from the other categories. Furthermore, I created boxplots for all the categorical values, with respect to 

the TAT, these can be found in   

Figure 18 Boxplot of Agreed TAT customer with normalized achieved  TAT 

Table 5 Two-way ANOVA test of categorical variables 
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APPENDIX C: Box plots of categorical Data. 

Moreover, a large portion of the variance in the Total achieved TAT is explained by the Internal or 

External variable. On the other hand, which shop has executed the repair seems less significant. For 

now, each of the categorical features will be included in the model. After optimization of the model, 

the features will be evaluated, to observe the information that is obtained, by each feature. 

4.2.4 Check data quality 

Upon exploration of the status quo at the IAC, problems were already arising with the quality of the 

data. Many duplicate rows, missing values in features required to obtain the features as selected above 

(e.g. many of the orders did not have a date of entry). Furthermore, in the categorical features, very 

similar occurrences were found such as for the Work performed feature, were ‘Repair’, ‘REP’, ‘RE’, 

‘REPFF’ were all used interchangeably, while all these indicated the same value. So thorough cleaning 

of the dataset is definitely required. 

4.2.5 Data pre-processing 

In this section a brief overview is provided of the steps executed to pre-process the data and what the 

results of these steps are. For more details, please refer to APPENDIX D: Data pre-processing.  

The first step in the data pre-processing is reducing missing data. First by the use of business rules or 

interpolation, missing values are filled. If these methods were deemed inappropriate, or unsuccessful 

and too many missing values remained in either a feature, or an instance, that respective feature or 

instance was removed. Luckily, by means of business rules, all features could be maintained in the 

dataset. However, some instances missed values for key instances (such as arrival date, making 

determination of the dependent variable impossible), and thus were removed. After removing these 

instances, 256,452 instances remained, and all 12 features are included in the dataset. 

Next, noise reduction was required, as duplicated rows and confusing categorical values were persistent 

in the dataset. Furthermore, the majority of the orders was not under a contracted TAT, so for these 

orders turnaround times are less strict. This unfortunately resulted in a major loss of data because the 

dependent could either not be determined or was inappropriate for those cases. After removing all this 

noise, only 54,656 instances remain. 

After removing the noise from the dataset, outlier detection took place. Due to the non-normality of the 

features, a regular z-score outlier detection is inappropriate. To overcome this problem, Leys, Ley, 

Klein, Bernard, and Licata (2013) propose a method where the median and the mean absolute deviation 

(MAD) are used. An outlier is identified as a value xi that lays outside the interval 
𝑥𝑖−𝑀

𝑀𝐴𝐷
 ≤ |∓4|. In 

Table 6, below the threshold values and the number of dropped rows per feature is shown. After 

removing these outliers, a dataset with 48,854 instances remained. 

Feature Name Median MAD Lower Bound Upper Bound Excluded 

AGREED_TAT_CUST 34 5.525586 11.89766 56.10234 679 

NOW_IN_SHOP 57 269.9549 -1022.82 1136.82 742 

Weekly 37.28571 17.98765 -34.6649 109.2363 1431 

half_year 40.06222 13.86099 -15.3817 95.50618 1348 

three_months 38.67201 11.61771 -7.79882 85.14284 676 

yearly 40.77676 12.75443 -10.241 91.7945 926 

Table 6 Outlier detection and removal 

Moreover, data transformation took place, as all features should be on the same scale, and categorical 

features without ordinal relationships should be one-hot encoded. This means that every shop, every 

work performed, and every condition category got its own column. Therefore, the number of columns 
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in the dataset was highly increased, but the number of features remained the same (12 features). 

Furthermore, all the numerical values were scaled to a [0, 1] interval.  

The final step is data reduction, which is aimed at reducing the number of features, based on their 

explaining power of the dependent variable. Based on discussions with the tactical planner at the IAC, 

it was recognised that some repair shops are rarely used or are currently no longer being used. To 

overcome this problem, all repair shops that have not been used for over two years and have less than 

0.05% contribution to the total number of repairs (~140 repairs), are placed in the ‘Other’ shop category. 

This reduction resulted in 143 shops remaining in the dataset. Furthermore, a principle component 

analysis (PCA) has been performed, to identify if numerical features could be removed. However, 

including all numerical features holds the best results, so for now all features are included in the final 

dataset.  

The resulting dataset contains 176 columns (12 features) and 48,854 rows, which all values lay on the 

interval [0,1]. The high number of columns is mostly caused by the high number of different repair 

shops, different types of work performed, and conditions, which are now one-hot encoded. 

4.3 Classification Model 

The goal of the classification model, is to identify which orders with contracted turnaround times, will 

exceed this turnaround time. If such an order exceeds the agreed TAT, a performance exchange is 

delivered from the inventory pool. Therefore, less SKUs remain available for fulfilling regular (forward 

exchange) demand. In this section, the construction, optimization, and the performance of this 

classification model are discussed. 

4.3.1 Construction Artificial Neural Network 

The ANN is created in TensorFlow, which is a free and open-source software library for machine 

learning applications. TensorFlow is used, as it provides a high-level API for creating ANNs, so instead 

of explicitly programming every different activation function or optimizer, these can be called from the 

packages provided by TensorFlow. This decreases the complexity and the time required of 

programming the ANNs, while ensuring the functions are correct as TensorFlow is developed and used 

by professional Machine Learning developers. The programming language that is used for the 

implementation is Python, as this is a programming language supported by both TensorFlow and the 

development server of the IAC.  

For determining and comparing the performance of different settings, the most suitable way as 

described by literature is using a k-fold cross validation method. As a large number of models will be 

validated in the parameter tuning phase, k cannot be too high, as that would lead in too many computing 

times required to calculate the different options. However, selecting k too low would increase the 

variation of the results. In general k = 10 is considered the most appropriate cross validation level 

(Kohavi, 1995)). However, training of the ANN is time consuming and training the same model ten 

times would take too long (one training & validation cycle takes 15 minutes) and would allow me to 

explore less potentially good settings. Therefore, a k of three would be sufficient, as it reduces the 

variation, while not creating exceedingly long runtimes.  
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4.3.2 Initialization of hyper parameters 

The original model consist of an input layer with 175 nodes (equal to the number input columns i.e. 

features), which is fed the dataset as described in the previous chapter, a dense (hidden) layer of 175 

nodes with a rectified linear activation function, a dropout layer, which drops 20% of the existing nodes, 

and an output layer with sigmoid activation function. The optimizer that is used is the ‘Adam’ optimizer, 

which is the most commonly used optimizer for tabular data. The model is trained for a maximum of 

1000 epochs (recall that an epoch means that the model sees the entire training set), with a default batch 

size of 32. The training is stopped if for 10 consecutive epochs no improvements in the loss function 

are found. The original model has an average accuracy (
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝑇𝑃+𝐹𝑁+𝐹𝑃
∗ 100%) of 73.54%, an average 

precision (
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100%) of 73.34%, an average recall (

𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100%) of 58.11%, and an average 

AUC of 0.804, which are promising results for an initial model. The ROC curve and the confusion 

matrix of the last model can be found in Figure 20 and Figure 19. 

4.3.3 Hyper parameter tuning 

As presented in chapter 3.6, there are seven different parameters that require tuning. To limit the state 

space, following (Guillemot et al., 2019), the first step is to set some of the parameters to theoretical 

optimal settings. Next, a random exploration is conducted, to explore promising areas for parameters 

settings. Finally, a Bayesian optimization is executed to find the best hyper parameters, resulting in the 

most accurate model. 

4.3.3.1 Selection of hyper parameters 

The first hyper parameter that can be fixed is the optimizer. In general, the Adam (Adaptive Moment 

estimation), outperforms other optimizers, while having only the learning rate to tune (Wierenga, 2019), 

(Choi et al., 2019). It might be that with specific settings, other optimizers have better performance, but 

this does not outweigh the generally good performance provided by the Adam optimizer, which allows 

for better comparison of the other hyper parameter settings.  

The second hyper parameter that can be fixed is the activation function of the output layer of the model. 

As we are dealing with a binary classification, the most suitable activation function for the output layer 

is the ‘Sigmoid’ function. This activation function provides a number on the interval [0, 1] depending 

on its guess if the TAT of a given order will exceed the agreed TAT or not, and how certain the model 

is. A value close to 0.5 means that the model is unsure regarding the class, a value close to one or zero 

indicates more confidence. For the evaluation, every output value is rounded to either zero or one and 

is compared to the actual class. 

Figure 19 Confusion matrix initial model Figure 20 ROC curve initial model 
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The third hyper parameter that is fixed, is the use of the ‘ReLU’ activation function for the other layers. 

‘ReLU’ stands for Rectified Linear Unit and is the most commonly used activation function in forward 

feeding neural networks. Advantages of using this activation function are fast computation, simplicity 

in use, lack of vanishing gradient problem, and robustness. The fast computation is due to the 

underlaying mathematics, involving only simple multiplications, whereas other functions work with 

natural logarithms, powers, and factors of e, increasing the computational difficulty. The simplicity in 

use is caused by the limited transformation incurred by the function, furthermore, the rectified linear 

activation function requires less transformation of the input, as the input is less bounded than with other 

activation functions. Finally, there is no vanishing gradient problem, as is a frequently occurring 

problem for other activation functions. This is due to the multiplication of layers and the output of the 

activation functions, the sigmoid activation function produces a value on the interval [0, 1], when these 

are continuously multiplied, they converge to 0, making the model unable to learn. 

4.3.3.2 Bayesian optimization 

For the Bayesian optimization, several other parameters are fixed before the optimization starts. First, 

to limit the size of the model due to technical constraints, the maximum number of nodes persistent in 

the model is set to 1000. When this number is exceeded, the hardware requirements to retrain the model 

become too high for implementation at the IAC. Furthermore, the shape of the ANN is somewhat fixed, 

meaning that the commended triangular shape, as discussed in section 3.6.1.2 is used. Meaning that the 

first hidden layer is the largest, and the size decreases with each following layer. Finally, the maximum 

number of layers is set at 10, again to reduce the maximal hardware requirements to train the model. To 

evaluate the performance of settings, the model is running three times, and the average performance in 

terms of binary accuracy is reported. The total Bayesian optimization took 18 hours, for evaluating 110 

models three times. Detailed results for each iteration of the Bayesian optimization are found in 

Appendix D. The best settings found result in an accuracy of 74.99%, a precision of 74.28%,  a recall 

of 58.61%, and an AUC of 0.81, by using the following settings: dropout of 6.2%, learning rate of 

0.024, total number of neurons used of 208, and a shrinkage per layer of 33%.The resulting confusion 

matrix and ROC Curve are presented in Figure 21 and Figure 22 respectively. On each of the provided 

performance indicators, this model achieves a better score. So, this model is objectively better than the 

previous, non-optimized model.   

  

Figure 21 Confusion matrix after hyperparameter tuning Figure 22 ROC curve after parameter tuning 
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4.4 Monte Carlo simulation 

In this section, the alert generating model is described. The goal of this model is to identify which of 

the SKUs have the highest chance of facing backorders, as this is the main performance indicator for 

the IAC. This section is divided into four sub-sections, in which each of the components of the alert 

generating model is discussed and elaborated. 

4.4.1 Statistical distribution turnaround times 

As described in chapter 0, when the IAC delivers a forward exchange to the customer, the customer 

sends back a damaged part (or core unit). This core unit is then repaired, either in house, or by an 

external party if the IAC lacks the capabilities to perform the repair in house. After the core unit has 

been successfully repaired, it is sent back to the CMA inventory pool. For contracted repairs, which 

have exceeded the agreed turnaround time, and thus have been delivered in the form of a performance 

exchange, the repair will continue as a regular repair order. Therefore, these can be modelled in the 

same way as the returning core units are modelled. 

To be able to incorporate the repair shop pipeline, the historical turnaround times of the repair shops 

are used. To these historical turnaround times, a statistical distribution is fitted, to model the pipeline 

as accurately as possible. As the distribution describes the total throughput time, it has to be slightly 

altered for repairs that have already been in the repair shop for, e.g. 30 days. Instead of the entire 

distribution, values should then only be drawn from the conditional probability distribution of P(X=x | 

X >= 30). 

To simulate the turnaround time of the returning repairs, historical data is used to estimate the 

distribution of shop throughput times. A histogram of the distribution is found in Figure 23.  

By using the pypi fitter package, common distributions have been fitted to the historical data. These 

common distributions are defined by the fitter package and are: ‘cauchy’, ‘chi2’, ‘expon’, ‘exponpow’, 

‘gamma’, ‘lognorm’, ‘norm’, ‘powerlaw’, ‘rayleigh’, and ‘uniform’. These are the most commonly 

found distributions, and thus are most likely to fit the historical data of the IAC. For each distribution, 

the fitter package tries to find the best combination of parameters, minimizing the sum of the square 

errors between the data and the fitted distribution (∑ (𝑌𝑖 − 𝑝𝑑𝑓(𝑋𝑖))2
𝑖 )). The results of each distribution 

with the best parameters are found in APPENDIX G: Distribution Fitting, in ascending order. From this 

table, we can conclude that the three-parameter lognormal distribution with parameters (sigma = 0.892, 

mean = -1.22, location = 27.0) fits the historical data the best. So, the lognormal distribution in this case 

is not a standardized lognormal distribution, but a lognormal distribution which has a shifted location. 

Figure 23 Histogram of historical Turn Around Times 
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4.4.1.1 Conditional probability 

To ensure that turnaround times are not shorter than the already passed time, numbers drawn from the 

distribution are rejected if the drawn turnaround time is smaller than time the part currently has spent 

in repair. For repairs that have only ran for a short amount of time, this approach causes no problems. 

However, for repairs that are in the tail of the distribution, a lot of numbers have to be drawn before a 

suitable value is found, which might lead to too long runtimes of the simulation. To test this behaviour 

the procedure is ran for 1000 iterations for every multiple of 50 days, until turnaround time of 1000 is 

encountered. The probability of a repair having such high turnaround time is P(X>1000) = 0.025%. The 

results of this experiment are found in Figure 24, which shows the runtime in seconds of successfully 

drawing 1000 values for the given minimal turnaround time. Furthermore, it shows the probability of 

observing the corresponding minimal turnaround time.  

Although the runtimes are getting rather long, when the turnaround times are getting large, the runtimes 

are not problematic. The tool will be running once per day, probably during the night, so slightly longer 

runtimes do not form a problem. Furthermore, historically, such long turnaround times have been 

observed mostly due to administrative negligence. Where a part was already ordered to be scrapped, 

but was not registered as such, resulting in seemingly long turnaround times. So, although this method 

of drawing conditional values might not be optimal, it is not likely to form any problems with runtimes 

of the tool. However, if in the future problems arise with too long runtimes, in   

Figure 24 Runtime vs minimal turnaround time 
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APPENDIX H: Drawing from conditional probability, a more complicated, yet faster approach is 

discussed. 

4.4.2 Existing FE program demand forecasts 

For the tactical planning, extensive models have already been created in former projects executed by 

the IAC. These models also form the input for the tactical planning of the CMA program, so using these 

as input ensures a well-formed alignment between the operational and tactical planning. The forecasting 

methods are based on the historical removal rate of components per flight hour, multiplied with the 

planned flight hours and the float size reported by the customers. Contractually, the customers are 

obliged to provide accurate predictions of their flight hours, so it can be assumed that the forecasting 

for the tactical planning is accurate. By using the available data on the customer flight hours, customer 

float size, and historical removal rates, daily demand rates can be calculated. the IAC has determined 

that the FE demand follows a Poisson arrival process, which means that the daily demand rate can be 

used to model the demand for the FE program. This can be achieved by drawing random variates from 

the Poisson distribution with λ = demand per day. 

4.4.3 Approximate chance of backorders by Monte Carlo simulation 

As an exact solution for the chance of backorders is unavailable, due to the high level of stochasticity, 

a Monte Carlo simulation will be used to approximate the chance of backorder for a SKU. This is 

achieved by simulating the inventory level over the scope of two weeks and observing in how many 

replications backorders occur. In this section, this approach is described in more detail and finally three 

example replications of a fictional scenario are discussed.  

4.4.3.1 Technical 

To approximate the chance of backorders for a SKU, a Monte Carlo simulation is executed. The input 

for this simulation are: ‘The current inventory level’, ‘The SKUs in the repair shop pipeline, with their 

current repair duration’, ‘The contracted repairs, with their due data, and the likelihood of exceeding 

this due date based on the classification model’, and ‘The forward exchange demand rate’. The output 

of the classification model, is a chance between 0 and 100%, based on the confidence of the model. The 

more confident the model is, the higher its output.  

For 1000 iterations, for every SKU the procedure as schematically displayed in Figure 25. So, every 

replication the inventory level is set to the inventory level as found in the ERP system. Then the two 

weeks loop starts, where t represents the days.  

The first step is determining if FE demand arrives, as discussed this is done by existing forecasting 

models, and using the Passion distribution to draw random variates.  

The second step is determining if contracted repairs have exceeded the agreed TAT, and thus have to 

be delivered from inventory. This is done by checking if one of the open repairs has a due date equal to 

t, and randomly drawing with success probability p, where p comes from the classification model.  

The third step is determining whether a repair is finished, and the inventory is replenished. This is done 

by for every repair in pipeline, drawing a total turnaround time from the fitted distribution (section 

4.4.1), and deducting the current duration of that repair. If the outcome of this calculation is equal to t, 

the part arrives. 
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Finally, the inventory level at the end of day t is calculated. This is done by taking the inventory level 

of the previous day, deducting the FE and PE demand, and adding the returning repairs.  

  

  

Figure 25 Replication overview Monte Carlo simulation 
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4.4.3.2 Examples of simulation replications 

In this chapter the application of the simulation is elaborated by the use of three replications based on 

an example scenario.  

The example scenario is as follows: 

Current inventory level = 1 

Parts in repair shop pipeline = 2, with the following characteristics: 

Repair_1: Time in repair = 20,  

Repair_2: Time in repair = 40 

Nr of contracted repairs = 2, with the following characteristics: 

Contracted_Repair_1: Due date t = 5, prediction model = 0.7 

Contracted_Repair_1: Due date t = 10, prediction model = 0.3 

Forward exchange demand = 0.07 per day  

Based on these inputs, the simulation is ran for three replications, and the inventory levels over time are 

shown in Figure 26 Figure 26. 

In the replication, the following mutations took place during the scope of the simulation. On day 5, a 

performance exchange was required to meet the agreed TAT for the first contracted repair, reducing the 

inventory level to 0. Then, on day 7 and day 9, repairs returned from the shop and increased the 

inventory level to 2. Finally, on day 12 a forward exchange took place, again reducing the inventory 

level to 1. Thus, in this iteration, no backorders took place. 

In the second replication, on day 3 forward exchange demand occurred, reducing the inventory level to 

0. Then, on day 5, a performance exchange was required to meet the agreed TAT for the first contracted 

repair, further reducing the inventory level to -1, thus causing backorders. To make matters worse, on 

day 10 another performance exchange was required to meet the agreed TAT of the second contracted 

repair, and on day 11 another forward exchange took place. The final inventory level is -3, which means 

serious trouble for the operational planners. 

The third replication only has two events, first, a forward exchange on day 1, reducing the inventory 

level to 0. Then, on day 5, a repair returns from the shop, and the inventory level again is one. Which 

means that in the third scenario, no problems arise. 

After running this scenario for 1000 replications, the average inventory levels as shown in Figure 27 

are obtained. Furthermore, in 42.7% of the iterations backorders are experienced, which indicates that 

problematic situations might occur in the (near) future. This is also observed in the figure, as the average 

inventory level is below 0 from day 14.  

Figure 26 Three example replications of fictional scenario 



55 

 

 

 

 

 

 

 

 

 

4.4.4 Determine SKUs with highest backorder chance 

After running the Monte Carlo simulation for every SKU, we can determine which SKU has the highest 

probability of facing backorders in the coming two weeks. The operational planners are most interested, 

in the SKUs that have the highest probability of facing backorders. Therefore, the final output of the 

model will be the list of SKUs, sorted in descending order on the chance of backorders, according to 

the Monte Carlo simulation. 

 

4.5 Conclusions 

In this chapter, several steps are described to answer the sub-research question: “How can machine 

learning algorithms, as described in the literature, be used to create a model which indicates parts most 

urgently require attention from the operational planners?”. The proposed tool, as described in section 

4.1, approximates the chance of backorders by simulating the development of the inventory level of an 

SKU, over a two week period. The mutations in the inventory level that are caused by the repair orders 

exceeding the agreed TAT, are predicted by a machine learning classifier. From the literature review, 

the most promising machine learning algorithm appeared to be an artificial neural network.  

For such an algorithm to work effectively, extensive data pre-processing is required. The steps required, 

according to literature, are executed in section 4.2. These steps include, feature selection, reduction of 

missing data, noise reduction, outlier detection, data transformation and finally data reduction. After 

the data is cleaned, the ANN is constructed and optimized. This optimization is done by a Bayesian 

optimization with a three-fold cross validation. The ANN with the best performance achieved an 

accuracy of 75.0% and an AUC of 0.81.  

To simulate the supply of the inventory pool, distribution fitting is used to approximate the turnaround 

time of returning repairs. This fitted distribution, together with the classification algorithm and existing 

forward exchange demand forecasts form the input of a simulation model. This simulation is executed 

to determine the chance of backorder, by determining in how many replications of the simulation 

backorders are experienced. Parts that have a high chance of backorders more urgently require attention 

of the operational planners than parts with low (or no) chance of backorders.  

Furthermore, additional information on the outcome of the classification tool can be provided. The 

repair that has a high chance of exceeding the agreed TAT, is interesting to the operational planners, 

because an intervention might prevent this from happening. Furthermore, the classification model can 

be consulted to indicate why the model predicts that the agreed TAT might be exceeded. 

  

Figure 27 Average inventory level development over time 
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5 Results 

In this section, the numerical results of the research are presented. First, in section 5.1 the performance 

of the artificial neural network is analysed, by comparing it to a traditional random forest. In section 5.2 

the features persistent in the classification model are evaluated, to see which are of greater importance, 

which could lead to useful insights on why the model makes certain predictions. In section 5.3 the model 

as a whole is validated against input of the operational planners. In section 5.4 the main conclusions of 

this chapter are provided. 

5.1 Performance of the Artificial Neural Network 

To analyse the performance of the Artificial Neural Network, it is compared to a Random Forest. The 

selection for the ANN was mainly based on academic interest in the topic. However, no convincing 

evidence was found that the ANN would outperform other classifiers, when using tabular data. As the 

RF algorithm is specifically designed for analysing tabular data, the RF might even outperform the 

neural network.  

As the Bayesian optimization executed for the ANN takes a lot of time, a simpler approach is selected 

for hyper optimization of the RF. Although this might lead to a worse RF than achievable, it still 

provides a sufficiently strong performance indication for the performance against the ANN. The hyper 

optimization approach used to optimize the RF, is a simple random exploration which is executed 100 

times. Just as with the ANN, the performance for each combination of settings is cross validated three 

times. The results of this optimization are found in APPENDIX F: Hyper parameter tuning of Random 

Forest. The best RF achieved an accuracy of 75.5%, an AUC 0.84, and the ROC curve is found in Figure 

28. Furthermore, in Figure 29 the confusion matrix for the best performing RF classifier is provided. 

The results of the best RF classifier are better than the performance of the optimized ANN. This 

indicates that the use of an ANN in this case might have been excessive, as similar results can be 

achieved with a Random Forest. Moreover, the Random Forest requires less resources to be trained and 

its results are better interpretable than those of an Artificial Neural Network. The hyper-parameter 

tuning of the RF is carried out by a random grid search, with a three-fold cross validation. The grid is 

described in Table 7. 

Hyper parameter Explanation Grid values Step size 

Nr of estimators The number of trees in the forest. 200, 1000 100 

Max features The number of features to consider when looking for the best split. ‘auto’, ‘sqrt’ nan 

Max depth The maximum depth of a single tree. 10, 50 5 

Min_samples_split The minimum number of samples required to split a node 2, 5, 10 nan 

Min samples_leaf The minimum number of samples required to be at a leaf node 1, 2, 4 nan 

Bootstrap Whether bootstrap samples are used when building trees. True, False nan 

Table 7 Grid optimization of random forest 

Figure 28 ROC curve optimized RF classifier Figure 29 Confusion Matrix optimized RF classifier 
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Two reasons for the RF outperforming the ANN can be identified. These are the limited availability of 

data, and the numerical nature of the data. ANNs are known for their high requirement of data 

availability, to achieve a good performance. While initially a lot of data was available, during the pre-

processing steps a lot of instances were dropped, as they were different kinds of orders than the 

contracted repairs we are investigating. Furthermore, RFs are known to achieve the best results when 

data are numerical, which is the case for this research. While ANNs have a broader application, RFs 

are likely to perform better when numerical data is used. In an empirical study by Fernández-Delgado, 

Cernadas, Barro, and Amorim (2014) RFs achieved the best results, when numerical data is used. So, 

the result that the ANN is outperformed by a RF is not surprising. 

 

5.2 Feature evaluation 

As the random forest Classifier achieved the best results and is easier to evaluate, this classifier will be 

used to evaluate the features. For evaluation of the feature importance, a standard feature evaluation 

tool pack constructed by scikit-learn (a python package) is used. This tool pack calculates feature 

importance as the decrease in node impurity weighted by the probability of reaching that node. The 

node probability can be calculated by the number of samples that reach the node, divided by the total 

number of samples. The higher the value the more important the feature (Ronoghan, 2018). 

In Figure 30, the feature importance, with the standard deviation of this feature importance, according 

to the best performing RF classifier are plotted. From this figure, it can be concluded that the short-term 

performance and the workload (now in shop) are the most important features, providing the model with 

the most information. Next are the achieved turnaround times over a longer period, together with the 

agreed turnaround time. The final feature that is somewhat important is the long-term performance of 

the shop in terms of percentage of repairs finished in time. Finally, the type of repair provides some 

information to the model. 

As indicated in section 4.2.3, the individual aggregated TATs are highly correlated with the other 

aggregated TATs. As high correlation might cause confusion to the model, the Random Forest is 

retrained, but this time without the ‘Three months’, ‘Half year’, and ‘Year’ time scopes. This alteration 

holds slight performance increases, as the accuracy is increased to 76.68%, the precision to 68.02% and 

the recall to 73.04%, finally the AUC stays the same, at 0.84. The confusion matrix and the ROC curve 

are presented in  Figure 32 and Figure 33 respectively. Moreover, the feature importance is again 

presented in Figure 31.  

Figure 30 Feature importance Random Forest Classifier 
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While the priority of the order and if the repair shop is internal or external are considered unimportant 

features, removing these from the model reduces the performance. When these features are removed, 

the accuracy drops to 74.5%, the precision to 65.2% and the recall to 71.7%, so it is objectively better 

to keep these features in the model. The low feature importance is likely to be caused by the method 

that is used to evaluate the feature importance. This method is known for prioritizing continuous 

variables, or categorial variables with high cardinality (i.e. high number of categories). 

Finally, a random tree from the forest, in which the max depth = 3 is presented in Figure 34. A decision 

tree should be interpreted in the following way. In the three top rows, a decision criterion is defined. 

This criterion shows based on which feature, and the value of this feature, whether the evaluated 

instance moves to the left (criteria is true) or right (criteria is false). The next value, the ‘Gini’ (Gini 

impurity) is a metric that measures the probability from a randomly chosen element to be incorrectly 

classified (i.e. the probability of choosing an element times the probability of begin misclassified). Next, 

the samples value indicates how many instances were (during the training stage) evaluated at that 

particular node. The ‘value’ row provides an array, which describes how many of each class are in the 

sample. Finally, in the bottom row, the final guesses for the class are provided.  

Figure 32 Confusion Matrix optimized RF classifier, with 

selected features 

Figure 33 ROC curve optimized RF classifier, with selected 

features 

Figure 31 Feature importance Random Forest Classifier, with selected features 
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5.2.1 Weekly Aggregated TAT 

The most important feature, for decision making of the classification model, is the short-term 

aggregated TAT (over a week). In Figure 35 this relationship is visualised, and it is clear that there is a 

relationship between the short term performance of the repair shop, and the likelihood that the order 

will be finished in time.  

Figure 34 Example Tree with fixed depth (max_depth = 3) 

Figure 35 % of orders exceeding agreed TAT, based on short term shop 

performance 
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5.2.2 Agreed TAT customer 

The second most important feature is the Agreed TAT with the customer. From Figure 36 it is easily 

observed that a shorter agreed TAT, leads to a higher percentage of orders that exceeds this TAT. This 

is an intuitive result, as with shorter agreed TATs, less room for error persists. On the other hand, this 

is an important result, as sales keeps setting out contracts with shorter agreed TATs. Therefore, the 

number of orders exceeding the agreed TAT is likely to increase, increasing the demand on the CMA 

inventory pool. 

  
Figure 36 Percentage of orders exceeding agreed TAT by Agreed TAT 
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5.3 Validation of the alert generating model 

5.3.1 Original validation approach 

The original intention for validation of the model, was to bring the model live and let the operational 

planners use the tool in parallel with their normal way of working. For this to work, they would first 

use their usual approach to find potentially problematic situations and document these situations. Then 

they would run the simulation and identify which situations are highlighted by the model. Now they 

can document which situations are selected by the model, and classify them into the following 

categories: 

I. The model correctly identified a potentially problematic situation, which was not identified by 

the operational planners. 

II. The model correctly identified a potentially problematic situation, which was also identified by 

the operational planners. 

III. The model identified a potentially problematic situation, which upon investigation appeared to 

be incorrect. 

IV. The model missed a situation that was marked as potentially problematic by the operational 

planners. 

These categories provide information on how accurately the model can predict problematic situations, 

and where improvements lay (i.e. is the model under- or oversensitive?). Next to verifying the accuracy 

of the model, this approach would also be able to identify what kind of situations cause the model to 

fail. This knowledge would be valuable for providing recommendations for future research and 

improvements of the model. 

Moreover, this approach obliges the operational planner to use the tool. So, they could also provide 

feedback on the usability, dashboard design, and design of the tool as a whole. Although the operational 

planners were still able to provide feedback, based on the proposed dashboard design. Some design 

flaws only become apparent once the tool is used, not when the dashboard is evaluated. 

5.3.2 Challenges in validation of the model 

Unfortunately, a few setbacks were faced during the validation of the model. These challenges and their 

impact on the validation model are discussed in this section. 

5.3.2.1 Covid-19 

The largest impact, which left a mark on the entire Thesis, was the Covid-19 virus. This virus impacted 

the entire way of working for the IAC and required everyone to work from home. This made discussions 

and receiving feedback more difficult. Furthermore, during the writing of the first chapter, the 

operational planners had limited time available for interviews. At that time, they were busy with 

adjusting the CMA program to comply with the newly created regulations and ensuring the continuation 

of business for the IAC.  

Many sectors are impacted by the virus, but the aviation industry is one of the industries that is hit the 

hardest. Therefore, the current way of doing business for the IAC is nowhere near the pre-Covid way 

of working. The repair shops have nothing to do, and the airlines that do use a small portion of their 

float try to delay repairs as much as possible. So, the revenue of the CMA program is currently near 

zero. Therefore, a large part of the CMA inventory is currently being sold, as the IAC requires cash so 

they can stay in business. 

As no repairs are being executed, and the FE demand is currently (near) zero, validation against the 

present situation is of no use. For every part, the situation will be similar i.e. no open repairs with 

contracted throughput times, no returning parts, and a relatively high on hand stock. So, even though 

the model would perform perfectly as no potential problematic situations exists, and no situations are 

identified by the model, this result is useless. 
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Thus, we have to come up with another way to validate the quality of the model. A proposed way is 

bringing the tool live on the development server of the IAC, and instead of using present data, use data 

from a year ago. Now the same approach as discussed in section 5.3 can be used. The only drawback is 

that more time from the operational planners is used as instead of assisting them in doing their job, they 

now actively have to validate the model. However, this approach also faces challenges which were 

insurmountable. These challenges are discussed in the next section. 

5.3.2.2 Bringing the tool live 

For implementation for tools, such as the one constructed in this Thesis, the IAC has a development 

platform. This is a virtual server used for advanced analytics projects. On this platform, Application 

Programming Interfaces (APIs), Web applications, Interactive Notebooks and Static Notebooks can be 

hosted. The data hosted on this server is obtained by constructing custom data pipelines from the ERP 

system to the virtual server.  

The data required for the model, is not yet available on the server and thus the pipelines still have to be 

built. As the advanced analytics team is busy with other projects, they indicated that several weeks, 

maybe months were required before the data is fully available. Only once the data is available on the 

server, the development of the tool on the server can start. Otherwise there is no way to debug or verify 

any sub-stages of the project. When the tool is finally life, the operational planners can start with 

validation of the tool using historical data. However, this entire process will take way too long to be 

part of this Thesis. 

So, another way should be constructed to validate the model. The newly proposed method is using the 

available dataset and trying to find for which orders interventions took place. If the model identifies 

problematic situations for parts which belong to orders for which interventions took place, the model is 

working correctly. Unfortunately, this approach also appeared inappropriate, as discussed in the next 

section. 

5.3.2.3 No data on historical interventions 

As the title indicates, identifying for which orders interventions took place turned out to be impossible. 

The first problem is that interventions are not documented, which is mainly the case with cheaper 

interventions such as prioritizing of orders in internal shops. More expensive interventions are 

documented but happen to rarely to validate the model to. Secondly, interventions are not always 

successful, so sometimes turnaround times can be longer than usual, even though the operational 

planner asked to prioritize the order. On the other hand, sometimes orders are finished very quickly, 

without any intervention by the operational planner. Finally, data on the historical inventory levels are 

unavailable. So, observing when backorders occurred, and using this identification of problematic 

situations is also not possible. In conclusion, this approach is to inaccurate to provide a good validation 

of the alerting model. 

5.3.3 Description of the validation approach 

In this section the selected validation approach is discussed. As mentioned, this way of validation was 

definitely not the first choice, but one of the only possible ways. The selected approach is creating 

hypothetical scenarios based on historical data. These scenarios are then evaluated by both the alerting 

model and the operational planners and the tactical planner. The results of these evaluations are then 

compared, to see if the model acts similar to the operational planners. Each of these steps is discussed 

in more detail in the following subchapters.  

5.3.3.1 Creation of scenarios 

For validation of the model, a ‘present’ situation artificially created. To do this, for 50 SKUs random 

situations are constructed. These situations are based historical information but are not real historical 
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events. Again, the historical inventory levels are unavailable, so therefore alternative means have to be 

found. Each scenario consists of four parts, which are ‘Contracted Repairs’, ‘Returning Repairs’, ‘On 

hand stock’, and ‘Forward Exchange Demand Rate’.  

5.3.3.1.1 Contracted Repairs 

The contracted repairs are randomly drawn from the validation dataset, which was used to analyse the 

performance of the ANN in chapter 5.1. The use of data from the validation set, ensured that the model 

did not ‘remember’ a repair, and thus would be able to perfectly predict the outcome. For each part, 

uniform a number on the interval [1, 4] was drawn, which represents the number of contracted repairs 

that was currently in the IAC repair shop. These repairs are then randomly selected and removed from 

the sample, so no identical cases could exist. Next, for these each of these repairs a number on the 

interval [1, 14] is uniformly drawn. This number represents the due date (given t = 0).  

Furthermore, the operational planners received the same information as the model was given to predict 

if the repair would be finished in time or not. So they received the following metrics ‘Shop Name’, ‘% 

in time delivery’, ‘The agreed turnaround time (with the customer)’, ‘Workload at shop’, ‘The work 

scope’ and the four aggregated historical turnaround times achieved by the relevant shop.  

5.3.3.1.2 Returning repairs 

For the returning repairs, the fitted distribution as discussed in section 4.4.1is used. From this 

distribution, times are drawn, which represent the current duration of the returning repair. This metric 

is mostly of value to the model, as the operational planners, until execution of this project, had no idea 

of the lognormal distribution that the turnaround times followed. How long a repair has been in the 

repair shop, gives an indication for the expected return time, but due to the stochasticity, absolutely no 

certainty.  

5.3.3.1.3 On hand stock 

The on-hand stock is simply the stock at the start of the two-week period. The on-hand stock is an 

important metric, as the operational planners are very risk averse. Seeing that the on-hand stock is zero 

or one in their eyes is a guaranteed ‘prio 1’, except when the FE demand for that part is little. On the 

other hand, if the on-hand stock is too high, the scenario is of little interest, as chance of backorders is 

neglectable. So, to ensure that only somewhat interesting scenarios are created, the on-hand stock is 

draw uniform on the interval [0, 5].  

5.3.3.1.4 Forward Exchange demand 

The final metric provided to the model and the operational planners is the forward exchange demand 

(in demand rate/two weeks). This way of presenting the FE demand is selected to ensure understanding 

of the metric. They stated that the demand rate per day confused them, causing them to make misguided 

decisions.  

5.3.3.2 Evaluation by operational planners 

Each of the 50 scenarios is evaluated by the two operational planners and a tactical planner. To reduce 

the bias, at first three scenarios where discussed plenary, to ensure that everyone correctly interpreted 

the provided metrics. Then they were provided with 50 newly constructed scenarios, which they had to 

analyse individually. For each scenario, the planners had to give an urgency score on the interval [1, 3]. 

Where one means extremely urgent, and five means perfectly fine.  

5.3.3.3 Compare the outcome of the operational planners with the outcome of the model 

The main output of the model is the percentage of iterations in which backorders were experienced. The 

planners, on the other hand, provided a score between one and three to indicate the urgency of the 

situation. Although the percentage of iterations in which backorders occur provides an indication of the 

urgency of the situation, they are not directly comparable. So, a translation function has to be determined 

to allow a fair comparison between the model and the output of the planners. 
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5.3.3.3.1 Transformation of model output 

To match the output of the questionnaire, the output of the model also has to be transformed. As the 

model is created to assist the operational planners, their preferences have to be incorporated in the 

scoring. They indicated that a situation with >10% chance of backorders in their opinion is urgent. On 

the other hand, situations with <1% backorders are not relevant. Based on these thresholds, the 

following transformation is applied to the output of the model: 

 % chance of backorders > 10% → 1 

 1% < % chance of backorders < 10% → 0.5 

 % chance of backorders < 1% → 0 

5.3.3.3.2 Key performance indicators 

The performance of the model is measured in mean absolute deviation between the average score 

provided by the planners and the output of the model. A low mean absolute deviation shows that the 

model and the planners agree on which situations require an alert, a notification, or neither. Moreover, 

a correlation matrix is constructed to measure the correlation between the model and the decisions of 

the planners, as well as the correlation between the different planners. A higher correlation coefficient 

suggest that the model produces similar results to evaluation by the planners. 

5.3.4 Validation results 

In Figure 38 a high correlation between the model (Score Model), the scores of the operational planners 

(Score OP1 & Score OP2), and the score of the tactical planner (Score TP) can be observed. 

Furthermore, the correlations between the different planners are also high, indicating that none of the 

planners had difficulties with understanding the models, or made significantly different decisions than 

the others. As the correlation between the model, and the decisions of the planners is high, it is likely 

that the model identifies the same situations as urgent as the planners. The t-statistic for the correlation 

coefficient between the average score of the planners and the model is 𝑡 =  8.53, which suggest strong 

signification correlation between the output of the planners and the model. In Figure 37, the deviation 

between the output of the model and the planners per scenario can be observed.  

Figure 38 Correlation Matrix Validation Results 

Figure 37 Deviation in score between planners and model 
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The deviation is calculated as follows ∆ = 𝐴𝑣𝑔 𝑠𝑐𝑜𝑟𝑒 𝑝𝑙𝑎𝑛𝑛𝑒𝑟𝑠 − 𝑠𝑐𝑜𝑟𝑒 𝑚𝑜𝑑𝑒𝑙. The delta between 

the two is mostly positive, meaning that the model is more likely to underestimate the urgency than 

overestimate. The mean absolute deviation is 0.113, which demonstrates that the model in general has 

a good performance, as its decisions are in line with the decisions of the planners. 

To compare this outcome with the existing alert generating model, the output of the planners is also 

compared to the outcome of the existing alert generating model. The existing alerting model is a quite 

simple model based on decision rules. A detailed description of the tool is given in the description of 

the current situation (section 2.6). To compare the performance of the newly constructed model and the 

existing model, the existing model is used to generate alerts for the 50 scenarios that are used for the 

validation. As the scenarios provide no information on the historical backorders for the part number, 

every product is assumed to have experienced backorders in the last few years. This assumption is only 

invalid for few parts, as about 
1

3
 of the orders has been delivered late. 

To compare the performance of the existing alerting model with the questionnaires and the new model, 

the outcome of the existing alert generating model needs to be transformed. As nearly every part has 

experienced backorders in the last three years, only three priorities are given by the model. These are 

transformed as follows: Prio 1 → 1, Prio 2 → 0.5, No Prio → 0. When these results are compared to 

the average urgency provided by the planners, the mean absolute deviation (MAD) is 0.207, which 

means that the MAD of the new model is compared to the old model  
0.113−0.207 

0.207
∗ 100 =  −45.4%. 

So, the new model is seemingly more in line with the judgement of the planners. 

Finally, the scenarios where the highest deviation occurred between the evaluation by the planners, and 

the alert generating model, are briefly reviewed to see if potential points of improvement can be 

identified. The scenarios (as shown in Figure 37) that will be discussed are 2, 10, and 35. The main 

findings from analysing these scenarios are: 

 While the model only evaluates if a stockout is likely to occur, the planners also consider when 

a stockout will occur. So, when problems arise at the end of the planning horizon, they receive lower 

priority, than when a stockout might occur in the near future. 

 Furthermore, the pipeline for parts that have spent a long time in the repair shop is considered 

differently by the model and the planners. For example, when a part has spent more than 100 days in 

the planner’s reason something is wrong with the part and assume that it will not return within the 

planning horizon. However, the model uses the conditional probability, as described in section 4.4.1.1, 

for approximating the pipeline. Although the long tail of the distribution incorporates the assumption 

by the planners that a part with a long repair duration is expected to take even longer, it is not a hard 

constraint.  

5.3.5 Limitations to validation approach 

As discussed, the used form of validation was not the first choice, but one of the few available options. 

This is due to the large number of limitations that this form of validation has to cope with. These 

limitations are elaborated in the following sections. 

5.3.5.1 Scenarios an approximation 

The first limitation is that the used scenarios are an approximation, and not real historical situations. 

Therefore, sometimes unrealistic scenarios were created, which would never actually be faced. For 

example, the IAC currently tries to send all parts with the same part number to the same repair shop. 

However, as repair shops sometimes go out of business or new repair shops are started, historically not 

every part was repaired by the same repair shop. As the validation model draws from all historical 

repairs for a certain part, the scenario that three parts with the same part numbers are repaired by three 

different shops. In reality the IAC would send all these repairs to the same shop, and probably make an 

agreement such that all parts are shipped in the same batch. This deviation from reality might have 

caused confusion with the planners, causing them to overestimate the urgency for a situation 
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5.3.5.2 Limited number of scenarios 

The evaluation of scenarios by the planners was quite time consuming. Therefore, only 50 scenarios 

have been created and evaluated, providing a rather small sample to compare the model with. Having a 

smaller sample size, reduces the statistical power of the validation, as the obtained results are more 

likely to be observed by chance. So, although signals have been found that the model provides useful 

alerts and notifications, and ignores the correct situations, hard conclusions cannot be drawn. 

5.3.5.3 Limited time available 

The final limitation is that planners were busy, and thus had limited time available. As they did not want 

to wait too long with providing their results, they might sometimes have been too quick with drawing 

conclusions. This would mean that for some of the scenarios they made incorrect decisions. Although 

the impact of this limitation is limited by taking the average score of the three planners, it might still 

have an effect on the final score of the model. 

5.4 Conclusions 

For validating the performance of the artificial neural network, a random forest has been constructed. 

This random forest outclassed the ANN by a small margin, which is surprising as a lot more advanced 

and time-consuming hyper parameter optimization methods have been used for the ANN. Furthermore, 

the input features of the classification model have been evaluated, and the most important features 

seemed to be the current workload, together with the agreed turnaround time with the customer. 

Furthermore, the highly correlated aggregated turnaround times over different time periods were found 

to be confusing to the model, and only incorporating the short-term performance of the repair shop 

yields better classification results. 

Next to the more proactive outlook of the newly constructed model, several other benefits have been 

identified. The first benefit comes from time savings for the operational planners. Currently, reasonable 

time is spent by the operational planners to diagnose situations that require their attention. However, as 

the alert generating model is able to identify a large portion of the urgent matters, less time might be 

required by the operational planners. Although fully relying on the model is currently too premature, as 

the model is not tested in a live situation, the results of the validation are promising. If the model is able 

to correctly classify potentially problematic situations, and has an extremely low false negative rate, 

operational planners only might have to deal with the situations provided by the model.  

Furthermore, the model is able to identify problems that conceivably occur in the future. In chapter 2 

we have seen that intervention costs increase with later discovery of problems, so early pinpointing of 

probable issues could potentially save the IAC operational costs. If problems are discovered in an earlier 

stage, the range of interventions that can be used is larger, and thus cheaper alternatives can be used. 

Unfortunately, no data is available on the cost of interventions, so quantification of the benefits is not 

possible. 

To evaluate the quality of the alert generating model, two operational planners and one tactical planner 

were asked to evaluate 50 randomly generated scenarios. Their evaluation was then compared to the 

existing alert generating model, and the newly constructed alert generating model. The mean absolute 

deviation between the output of the planners, and the new model was 45% lower than the old, reactive 

model. Showing that the new model is more in line with the estimates of the planners, and thus is more 

suitable for providing alerts to the operational planners.  
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6 Conclusions, limitations, and recommendations 

In this chapter, in the conclusion section, the main research question “How can the Independent 

Aerospace Company construct a proactive alerting tool, which automatically recognizes and prioritizes 

potential problematic situations and notifies the operational planners?” is answered. Furthermore, by 

discussing the limitations to my research, and the recommendations to future research and projects by 

the IAC, I will answer the final sub-research question “How can the Independent Aerospace Company 

leverage a pro-active alert generation model in practice and which additional steps are required to 

achieve this?”. 

6.1 Conclusion 

6.1.1 Current situation 

The need for a proactive alerting tool, mainly comes forward out of the discrepancy between the existing 

alerting tool and the current situation. The existing alerting tool is old and has been developed during 

times when the majority of demand came from forward exchanges. However, due to shifts in the market, 

the number of forward exchanges is decreasing, while the number of performance exchanges is 

increasing. These performance exchanges are not incorporated in the existing alerting tool, meaning 

that demand is generally underestimated. In turn, this underestimation of demand, results in late alerts, 

mostly when things already are going wrong. Due to this late notification, the operational planners have 

to resort to expensive interventions to resolve the problematic situation. 

6.1.2 Prediction of Performance Exchange demand 

Incorporation of the performance exchange demand is one of the most important improvements that 

need to be applied to the alerting tool. Based on interest by the IAC, my company supervisor, and 

myself, the desired way to predict performance exchanges is by use of machine learning algorithms. 

From the literature study, a binary classification model, specifically an Artificial Neural Network or a 

Random Forest, seemed the most promising. These classification models will be used to predict if the 

IAC will manage to repair a part within the agreed TAT, because if the IAC does not manage to do so, 

a performance exchange is required to meet contracted agreements. Both the Artificial Neural Network 

and the Random Forest achieve an accuracy of 75%, but the RF performs slightly better on the receiver 

operating characteristic (ROC) curve, which is an indication for the trade-off between the precision and 

the recall. 

6.1.3 Simulation of demand and supply 

The proactive alerting tool itself is based on a simulation of the demand and the supply of the inventory 

pool. The demand consists of the forward exchange demand, forecasted by existing tactical planning 

models, and the repair orders resulting in a performance exchange, predicted by the machine learning 

algorithm. For the supply, a shifted-lognormal distribution is fitted to historical turnaround times, to 

simulate the total turnaround time, given the current repair time, of repairs that are returning to the IAC 

inventory pool. This simulation simulates the inventory level during the coming two weeks, to 

determine the chance of backorder, by determining in how many replications of the simulation 

backorders are experienced. Parts that have a high chance of backorders more urgently require attention 

of the operational planners than parts with low (or no) chance of backorders. 

6.1.4 Results 

To evaluate the quality of the new alert generation model, 50 scenarios are created based on historical 

transactions and orders. These were analysed by two operational planners and a tactical planner, to 

determine how urgent the situations were. The average judgement of the planners was then compared 

with the output of the new model, and the output of the old model. The mean absolute deviation between 

the output of the planners and the new model was 45% lower than the mean absolute deviation between 
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the planners and the old reactive model. Showing that the new model is more in line with the estimates 

of the planners, and thus is more suitable for providing alerts to the operational planners.  

The main advantage of the new alerting model arises from situations that are currently fine, due to 

potential requirements for performance exchange, face potential problems in the future. The existing 

model would use the current inventory level combined with the inventory position and decide that 

everything is fine. The new model, on the other hand, predicts if the agreed TAT of the contracted 

repairs will be achieved, and uses this as additional input to make decisions. While the old model would 

only provide an alert once the performance exchange has been performed, and the inventory level drops 

below a certain threshold. The new model would already provide an alert upfront, allowing the 

operational planners more time to use interventions, and thus use a wider scale of available 

interventions. 

6.2 Recommendations 

The recommendations section is divided into two parts, the first are recommendations for further 

research or to further improve the model. The second are recommendations to the IAC, based things 

that caught my attention during my internship. 

6.2.1 New directions 

6.2.1.1 Inclusion of core receive times 

The first recommendation for further research and improvement, is the inclusion of the core return 

times. These are completely neglected in my model, limiting the time scope of the simulation. The 

returning core units, sent by a reliable customer, take approximately 10 working days before they arrive 

at the repair shop. Therefore, as long as the time scope is limited at two weeks, the model is accurate. 

After this time, the core could have entered the repair shop and the repair could even have started. 

Leading the model to underestimate the supply of the inventory pool, thus causing the model to be 

conservative. 

6.2.1.2 Use of repair shop data 

Another recommendation is the use of repair shop data. Although external shops are reluctant to share 

data, the internal data should be available. From this data, important determinants for turnaround times 

can be deducted, such as: 

I. Availability of shop replaceable units 

II. Number of items in queue 

III. Scheduled date for repair 

This data can all be used to determine if a repair will be finished in time, and thus if a performance 

exchange is likely to happen or not. 

6.2.1.3 Customer requirement of Performance Exchange 

Currently, the model assumes that every contracted repair that is exceeding the agreed TAT, will result 

in a performance exchange. In reality this is not the case, as customers get the option to obtain a 

performance exchange, but do not have to accept this. Several reasons can be found for customers 

rejecting performance exchanges. For example, the customer wants his own part back, and not an 

exchange part. Another reason might be that the customer wants to create goodwill, such that in the 

future the IAC might return the favour. 

The performance exchange program is based on the idea that the customer always has line replaceable 

units available, as long as the repair is registered in time. So, if customers are willing to share data on 

their current inventory level, the IAC could use this information to determine if performance exchange 

is required or not. Less performance exchanges lead to lower operational costs, which could also benefit 
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the customer, if these lowered operational costs could mean lower fees for the performance exchange 

program. 

6.2.1.4 Precision and recall trade-off 

In this thesis, no preference is given to either precision or recall. However, this could be an interesting 

extension. The decision which of the two is preferred, depends on the costs of missing an alert, 

compared to falsely generating an alert. As the costs were unavailable for this thesis, this decision could 

not be made, but for further research finding this balance could reduce overall operating costs.  

6.2.2 Practical recommendations 

6.2.2.1 Keep track of used interventions 

In conjunction with this thesis, another graduation assignment is currently being executed at the IAC. 

This assignment looks into the possibility of automated decision making for the selection of 

interventions. However, as the use and costs of interventions are badly documented, these assignments 

are unnecessary challenging. Furthermore, quantification of results is not possible, as no specific costs 

are defined per intervention. Even if these are dependent on a lot of factors, documenting them could 

still provide interesting insights, maybe by creating a regression model that predicts the costs and chance 

of success given an intervention, time scope and part number. 

6.2.2.2 Alert shops instead of operational planners 

The final recommendation is that the alerting tool in this thesis is created for the operational planners, 

but in the view of a SCT, the alerts would ideally directly go to the (internal) repair shops. A well-

functioning alert tool would save the operational planners a lot of work. Currently, on a daily basis the 

operational planners are making and sending out priority lists to the internal repair shops. This process, 

however, can be fully automated if the shops see for which parts they are currently repairing, problems 

are arising. 

6.3 Discussion 

6.3.1 Contributions 

Four practical contributions are presented to the Independent Aerospace Company. First, a machine 

learning method is constructed, which allows the prediction of meeting the agreed TAT. With an 

increasing number of customers using contracts with fixed TATs, the need for accurate predictions is 

increasing. Furthermore, as the Independent Aerospace Company previously had minor insight in what 

leads to underperformance, this classification model is a good first step. Secondly, insight is provided 

into which characteristics are often a cause for exceeding this TAT. With the sales teams promising 

increasingly competitive turnaround times, a useful finding has been that with truly short turnaround 

times, the turnaround time is almost always exceeded. Fourth, a methodology is described, which allows 

the approximation of the chance of backorders. Although there is still room for improvement, the model 

performs in line with the desires of the operational planners.  
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6.3.2 Limitations 

6.3.2.1 Noise in dependent variable 

After creation of the ANN for classification and construction of the entire simulation, additional noise 

in the dependent variable was found. This noise has to do with interventions executed by the operational 

planners, reducing throughput times of contracted repairs. Therefore, the model might sometimes 

correctly predict that the agreed TAT will be exceeded, but due to intervening by the operational 

planners, this did not happen. This causes confusion to the model, as almost identical situations have 

different class labels.  

6.3.2.2 Over-interpolation 

For obtaining the historical, aggregated turnaround times of shops, a lot of interpolation took place. For 

shops with a lot of orders, this caused no trouble. However, for shops that are used only several times 

per year, over-interpolation might have taken place, providing confusing data to the classification 

model. Furthermore, this way of interpolating created high correlation between the aggregated 

turnaround times over different time scopes, as for some shops only once every three months a repair 

was completed, meaning that the weekly, and three month TAT would be exactly the same. 

6.3.2.3 Outlier detection with statistical methods 

Due to time limitations, outlier detection only took place using statistical methods. The drawback of 

using these statistical methods, is that they are only capable of identifying univariate outliers, while the 

unsupervised learning methods would also be capable of identifying multivariate outliers. For future 

improvement of data quality, outlier detection by unsupervised learning could be a good addition. 

6.3.2.4 Limited availability of data 

While the IAC has a lot more data than is used in this Thesis, this data was not available to me. Most 

of the data is stored within the ERP system of the IAC, which can only be reached if the IAC workstation 

is used, or the workstation is connected to the IAC network. Due to Covid-19, I was obliged to work 

from home, and as a graduation intern, was not provided with an IAC workstation. Therefore, the only 

data that was available, is based on a dataset which has been drawn from the ERP system. If in a later 

stadium the use of other interesting data was identified, this could no longer be obtained. 
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6.4 User interface design 

In this section the proposed design for the user interface (UI) of the tool is discussed. Note that the data 

shown in the designs are completely fictional and can thus be a bit unrealistic. Furthermore, the what-

if scenarios that are elaborated in more detail are just to provide an idea of how the what-if analysis 

works. The design is divided into three parts, which are the general overview, the part number overview, 

and the what-if analysis interface. These three parts are further elaborated in the remaining sections of 

this chapter. 

6.4.1 General overview 

The first screen the operational planners see when they open the tool, is the general overview. Here all 

part numbers are shown, sorted on the percentage of replications in which backorders occurred during 

the simulation. The rough design, filled with fictional data, is shown in Figure 39. 

As can be observed, the general overview consists of one table, which shows which parts require the 

most attention by the operational planners. Furthermore, the current inventory level, together with the 

demand and supply are presented. These allow the operational planners to quickly pinpoint what might 

be the cause for the potential backorders. By double clicking on one of the parts, they will go to the 

overview of a specific part number. 

Figure 39 UI design general overview 
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6.4.2 Part number overview 

After double clicking on part in the general overview, the operational planners will reach the overview 

at product level, as show in Figure 40. This screen provides more detailed information on which 

contracted repairs are currently open, how many parts are returning and how long they have been in the 

repair shop, the current inventory level, the expected FE demand for two weeks, and the total inventory 

position for this part. Furthermore, the results of the simulation are provided, to show how the inventory 

level changes overtime and in how many of the replications backorders occurred. This way the 

operational planners can get a better idea of where problems lay and get an indication on how these can 

be resolved. The final assistance in this process comes from the What-if Analysis, which can be reached 

by pressing the button on the bottom-right side.  

6.4.3 What-if analysis interface 

The What-if Analysis allows the operational planners to play with possible interventions and see their 

impact. As the goal of this thesis was to create alerts, and not necessarily how to resolve problems, the 

what-if analysis is considerably basic. The operational planners can, for example, remove a contracted 

repair because they contacted the customer, who informed them that the repair has to priority and no 

performance exchange is required. After they remove the contracted repair, the simulation is executed 

again, and the operational planners can view the impact of their intervention. For this specific 

intervention, the results are shown in Figure 41. Another option for the operational planners is to ask a 

repair shop to prioritize their order. For this intervention, the results are show in Figure 42. These two 

Figure 40 UI overview at product level 
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analyses quickly reveal that prioritizing an order has a large reduction in chance of backorders than the 

option of asking the customer for suspension.  

  

Figure 41 What-if Analysis customer rejects Performance Exchange 

Figure 42 What-if Analysis Ask repair shop to prioritize repair 
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APPENDIX 
APPENDIX A: Detailed Description of Available Data 

Column name Feature name Feature Description 

CUSTNAME Customer name Represents the name of the customer by which the order was placed 

PRIORITY Priority indicator Represents the priority, as described by the customer. E.g. routine repair, or 

a AOG situation 

TRANS_TYPE Transaction type 

(Repair/Exchange) 

Indicates the transaction type by which the order is closed. Either repair or 
exchange 

EXCH_TYPE Exchange type  

(Performance/Forward) 

Indicates kind of Exchange by which the order is closed. Forward, Shop, or 

repair 

PARTNUMBER Unique part number Part number of the respective part for which the order is opened. 

PRODUCT_ID Unique product identifier Internal aggregation of part numbers, based on the availability of two-way 

interchangeability 

KEYWORD Product description keyword Keyword which indicates the type of part 

COND Product Condition Product condition as described by the customer.  

LINE_ADDED Repair shop entry date Date on which the order line was created 

DELIVERED Delivery date Date on which the delivery by the IAC took place 

DEL_DUE_DATE  Delivery due date Delivery due date, based on customer contracts, and industry standards 

CORE_RCVD Returning part receive date Date at which the returning core unit was received by the repair shop. 

STOCK_UPDATED Warehouse stock update Replenishment date of the inventory pool of the IAC 

WORK_PERF Work performed The work performed by the repair shop 

SHOP Repair shop number The name of the repair shop that has executed the repair 

PROD_GROUP Product group keyword Product group to which the respective part belongs.  

MAINT_TAT_AGR Agreed turnaround time Contracted turnaround time towards the customer 
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APPENDIX B: Interview questions operational planners 

This interview/survey has been conducted for the operational planners of the Independent Aerospace 

Company. The goal of this interview is to identify: How alerts are received, for which situations alerts 

are received, how/which alerts are prioritized, and finally how the correct response to an alert is 

determined. An alert is defined as a call for action.  

1. By which means do you receive alerts? 

a. Reports (which) 

b. Colleagues (both internal and external) 

c. Other? Please elaborate 

2. For which situations do you get alerts? 

a. Direct backorders 

b. No stock on hand 

c. Turnaround time (repair shop) 

d. Core return time (by customer) 

e. Age of the order 

f. Other? Please elaborate 

3. For which situations would you like to get alerts? 

a. Direct backorders 

b. No stock on hand 

c. Turnaround time (repair shop) 

d. Core return time (by customer) 

e. Age of the order 

f. Other? Please elaborate 

4. Could you distribute 100 points across options below, based on likelihood of occurrence, which 

occur most often? 

a. Direct backorders  

b. No stock on hand 

c. Turnaround time (repair shop) 

d. Core return time (by customer) 

e. Age of the order 

f. Other 

5. Could you distribute 100 points across options below, based on level of impact, which has the 

highest impact? 

Impact is defined as: measures (money, time, resources) required to resolve the disruption 

a. Direct backorders 

b. No stock on hand 

c. Turnaround time (repair shop) 

d. Core return time (by customer) 

e. Age of the order 

f. Other 

6. How to you prioritize alerts? 

a. Impact analysis 

b. Qualitative methods 

c. Quantitative methods 

d. Past experience 

e. Other? Please elaborate? 

7. Could you distribute 100 points across these methods, how alerts are prioritized? 

a. Impact analysis 

b. Qualitative methods 

c. Quantitative methods 

d. Past experience 

e. Other 

8. When you get an alert, how do you determine your response (action)? 
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a. Business rules 

b. Past experience 

c. Other? 

9. Could you distribute 100 points across the following methods, how actions are determined? 

a. Business rules 

b. Past experience 

c. Other 

10. What information would support you in making better (more educated) decisions? 

11. Would you trust a Neural Network (form of AI) as main source of alerts? 

a. Why (not)? 

b. If not → What would help you in gaining more trust in the model? 
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APPENDIX C: Box plots of categorical Data 
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APPENDIX D: Data pre-processing 

In this appendix, a detailed overview of the data pre-processing steps is described. 

Reducing missing data 

In this section, for each column that contains missing data, the approach to deal with these missing 

values is described. For the columns that are not explicitly mentioned, the columns either contained 

none, or very few missing values. If this was, the case (less than 0.5% missing values), the rows 

containing these missing values were dropped. The resulting dataset contains 271,822 rows. 

Core Received Date 

For the Core Received Date, 31% of the values is missing. However, behaviour is expected, as for a 

common repair, there is no Core Received. Therefore, this field expected to be empty for the repairs in 

the data set. Furthermore, there are recent exchanges for which the part has already been delivered, but 

the customer has not send the part back yet (as described in chapter 0, returning the core unit regularly 

takes more than 100 days). When these cases are excluded, the % missing values is lower than 0.1%, 

so these cases can be dropped without significantly harming the training set. After dropping the rows, 

which are missing the Core Received Date, the data set contains 271,364 rows.  

Stock Updated Date 

Another column with a large number of missing values, is the stock updated date. For this feature, 

similar results are found as for the core received date. When looking at the cases for which the feature 

is missing, all cases with stock updated missing are found when the repair for the part is rejected. So, it 

makes sense that the stock is never updated, as the part is not repaired. However, this behaviour is also 

occasionally observed for performance exchanges. This is odd, as that means that the customer receives 

apart from the IAC, as the agreed TAT cannot be met, but the original part is not repaired. However, 

this behaviour occurs rarely, so it is likely that these cases are just an administrative error, and the 

customer pays the IAC for the replacement part.  

As the actual duration of a repair cannot be determined for parts that were not repaired, all cases with 

missing stock updated dates are dropped. After dropping the rows with missing values in the stock 

updated date column, 256,452 rows remain. 

Agreed TAT Customer 

The final column with many missing values, is the Agreed TAT Customer column. According to the 

tactical planner at the IAC, this is due to fact that these times are often not explicitly stated for regular 

repairs. Furthermore, these repairs generally do not fall under a performance exchange contract, so there 

is no obligation to deliver a performance exchange. Therefore, these repairs will only result in 

performance exchanges in rare, unpredictable cases. Furthermore, for the forward exchanges, no repair 

throughput times are contracted, as these are of no use. For the forward exchanges, the IAC has to 

deliver the part within 24 hours, however, the repair has not agreed throughput time, as it the IACs own 

part. 

If the repairs without contracts and the forward exchanges are excluded, there are still 30,200 missing 

values for the Agreed TAT Customer column. Thus, dropping these rows, will cause a loss of more 

than 10 of the remaining data set, and therefore is not desirable. The tactical planner at the IAC said 

that the industry standard for the Agreed TAT Customer is 34 days. Therefore, instead of dropping all 

missing values, these are replaced with the value 34 to act in according with the market. 
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Conclusion 

The final number of rows after removing and cleaning missing values is 256,452. This means that only 

about 5% of the rows has to be removed due to missing data. This is fortunate, as generally more data 

leads to a stronger machine learning model. 

Noise reduction 

Non-contracted repairs 

A large part of the independent value noise arises from the different types of orders that are in the data 

set. The data set is a collection of forward exchanges, regular repairs (without contracts), regular repairs 

(with contracts), and performance exchanges. The repairs that do not have a contract, can generally not 

become performance exchanges, as there are no contracted TAT agreements with the customer. 

However, upon investigation, 4000 instances are found where repairs without a contract resulted in a 

performance exchange. According to the tactical planner at the IAC, this is due to performance 

exchanges being obligatory for contracted repairs, and optional for non-contracted repairs. This means 

that often human interaction is incorporated for such exchanges, making them near impossible to predict 

based on the available data. This will result in a lot noise, as the independent data is unable to explain 

the dependent data. In turn, this will result in a model trying to learn non-existing relationships. 

Therefore, only parts that are under contract will be considered in the training data set. 

Furthermore, forward exchanges and non-contracted repairs are persistent in the data set. Although 

these indeed result in demand for the CMA pool, these do not provide any information on performance 

exchanges. Moreover, these instances are confusing to the model, as way longer turnaround times may 

be experienced than for performance exchanges. Therefore, these orders should also be dropped from 

the data set. Dropping all the forward exchanges and the non-contracted repairs, results in a data set 

containing only 51,180 rows, thus highly reduces the size of the training set.  

Work performed 

Another source of noise is the work performed attribute. This attribute describes the work that is 

performed in the repair shop, such as ‘test’, ‘repair’, ‘repair with modification’. However, the work 

performed is entered by the repair shop employees, and they are free to enter the work performed how 

they want. This results in many variations for the same work performed, e.g. ‘REP MOD’, ‘REP PLUS 

MOD’, REPMOD’ where found in the data set, while each of these obviously mean Repair with 

modification. Luckily, the total number of  

Outlier detection 

The second step in data cleaner is Outlier Detection. As described in chapter 3.2.1.2, this will be done 

using z-scores. However, upon further investigation, the data appears to be non-normal, making the z-

score approach inappropriate. To overcome this problem, Leys et al. (2013) propose a method where 

the median and the mean absolute deviation (MAD) are used. An outlier is identified as a value xi  that 

lays outside the interval 
𝑥𝑖−𝑀

𝑀𝐴𝐷
 ≤ |∓4|.  The deletion and reduction of missing values, and noise 

reduction, left a dataset of 54,656 rows, which have six columns numerical columns that might contain 

outliers. After transforming and filtering each of the columns, the final dataset contains 48,854 rows. 

This means that about 10% of the rows is dropped, due to outlying values.  

Data transformation 

In this section the transformation of the data is discussed, the first section is on categorical data and the 

third is on the numerical data.  
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Categorical data 

Ordinal encoding 

As discussed in chapter 3.2.2.2, categorical data can be transformed in two ways. Either by ordinal 

encoding, or by one-hot encoding. Ordinal encoding is only suitable for attributes where an ordinal 

relationship exists (such as ‘bad’, ‘average’, ‘good’. This relationship only exists for the priority 

attribute, which indicates what the priority of the customer is for the repair.  

Four categories are found in the data set, these are ‘-‘, ‘Routine’, ‘Critical’ and ‘Aircraft On Ground’, 

the ‘-‘ category indicates that the customer has not provided the priority of the order. The numeric 

values for these categories are 0, 1, 2, 3, respectively.   

One Hot encoding 

Three attributes require one-hot encoding, which are ‘Condition’, ‘Shop name’, and ‘Work performed’. 

For these variables, no ordinal relationship exists, so simply assigning a number to each possible value 

will give the model confusing information. As discussed in chapter 3.2.2.3, one-hot encoding means 

that every possible value for the attribute gets its own column, where the column corresponding with 

the original value gets assigned a ‘1’, and the other columns ‘0’. This way the model is still able to 

retrieve the information from the variables, without trying to fit non-existing relationships. 

Numerical data 

There are six numerical columns remaining in the dataset. A short description, together with some 

statistics are presented in Table 8. As none of the attributes follow a normal distribution, and the 

attributes are (mostly) on the same scale, the most suitable transformation is the Min-Max 

transformation. Where the interval, as provided in Table 8, for each attribute is scaled to [0-1].  

 Table 8 Numerical Columns Training data set 

Data reduction 

Repair shops 

As discussed in chapter 2.3.3, the IAC uses many different repair shops. Some of these repair shops are 

used very regularly, while others are rarely used. The shops which are rarely used provide the model 

with statistically insignificant data and might therefore cause unnecessary confusion. To overcome this 

problem, a cut-off percentage has been determined in corporation with the tactical planner of the IAC. 

It is decided that at least 0.05% of the orders has to be executed by a particular repair shop, in order for 

this shop to be significant. This means that about 140 orders have to be executed by a shop before it is 

Column name Description interval median mean 

AGREED_TAT_CUST Contracted throughput time for the 

customer 

[12.00, 50.00] 34.00 30.94 

NOW_IN_SHOP Number of items in shop at the moment of 

entry 

[1.00, 1136.00] 59.00 251 

WEEKLY Weekly moving average of TATs for shop 

of interest 

[1.00, 111.35] 36.91 40.61 

THREE_MONTHS Three months moving average of TATs for 

shop of interest 

[7.00, 88.23] 39.14 42.48 

HALF_YEAR Half year moving average of TATs for shop 

of interest 

[7.00, 98.23] 39.95 43.09 

YEAR Yearly moving average of TATs for shop of 

interest. 

[7.00, 95.19] 41.29 44.12 
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considered in the model. Due to this reduction, 40 less columns are in the data set, as the shop names 

are one hot encoded.  

Principle Component Analysis 

For the numerical columns, the main approach for reducing dimensionality described in literature is the 

PCA. However, due to the filtering and cleaning methods previously applied, the dimensionality has 

become less of an issue. On the other hand, a PCA can also improve accuracy of a model, by removing 

variables that provide little information to the model. To test if this is indeed the case, a simple random 

forests classifier with 100 trees is used to evaluate every possible reduction using PCA. The results of 

this test are found in Figure 43, where on the x-axis is the number of components to which the numerical 

columns are reduced by the PCA, and the y-column the performance indicators of the test are shown. 

From the test, it is clear that performing a PCA only reduces the performance, as the best results are 

found when no PCA is applied. The small performance dip at inclusion of one numerical value in the 

model is probably caused by the way a PCA works. The PCA tries to explain as much variance in the 

variables, in only one variable. When eight variables, have to be reduced into one variable, this variable 

can contain confusing results. As the best performance is achieved when no PCA is applied, all 

numerical values will be included in the model.  

Figure 43 PCA Performance 
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APPENDIX E: Bayesian Optimization 
Iteration Target Value (Accuracy) Dropout % Learning Rate Percentage Neurons Neuron Shrink 

1 0.7204 0.2081 0.07203 0.01011 0.3093 

2 0.7433 0.07323 0.009234 0.1944 0.3521 

3 0.5712 0.198 0.05388 0.425 0.6884 

4 0.5712 0.102 0.08781 0.03711 0.6738 

5 0.5712 0.2082 0.05587 0.149 0.2061 

6 0.5712 0.3996 0.09683 0.3203 0.6954 

7 0.5712 0.4373 0.08946 0.09419 0.04866 

8 0.5712 0.08475 0.08781 0.1074 0.4269 

9 0.5712 0.478 0.05332 0.695 0.3224 

10 0.7192 0.3426 0.08346 0.02811 0.7526 

11 0.7431 0.003852 0.01619 0.7123 0.7671 

12 0.5712 0.2208 0.04135 0.5523 0.7468 

13 0.5712 0.3111 0.02232 0.9595 0.8066 

14 0.5712 0.01058 0.08079 0.9652 0.7051 

15 0.7403 0.1818 0.00224 0.1609 0.9718 

16 0.5712 0.4967 0.03252 0.8187 0.05419 

17 0.7292 0.4896 0.02704 0.8107 0.4521 

18 0.5712 0.1621 0.06358 0.4065 0.754 

19 0.6336 0.4966 0.04256 0.7989 0.4604 

20 0.7208 0.2102 0.06413 0.01915 0.3037 

21 0.737 0.0594 7.24E+00 0.2101 0.3334 

22 0.7345 0.481 0.005133 0.8372 0.4597 

23 0.5712 0.1168 0.0447 0.5546 0.9497 

24 0.5712 0.471 0.03526 0.8614 0.4273 

25 0.7311 0.4854 0.01602 0.8162 0.4551 

26 0.5712 0.09784 0.04004 0.5202 0.07939 

27 0.4288 0.09178 0 0.2259 0.3497 

28 0.5712 0.06672 0.05078 0.8902 0.5715 

29 0.7407 0.04848 0.006358 0.21 0.3558 

30 0.7227 0.4082 0.01635 0.02488 0.1694 

31 0.7405 0.000541 0.000463 0.7055 0.7989 

32 0.7413 0.03407 0.007566 0.1873 0.352 

33 0.7313 0.3501 0.03842 0.2757 0.4943 

34 0.7411 0.05529 0.02207 0.1881 0.3337 

35 0.5712 0.4247 0.0783 0.9032 0.1025 

36 0.7397 0.04802 0.00495 0.1612 0.3329 

37 0.7425 0.1917 0.000623 0.1562 0.9863 

38 0.7129 0.2438 0.006419 0.3363 0.6438 

39 0.5761 0.01039 0.03677 0.7175 0.7989 

40 0.5712 0.3269 0.02178 0.7056 0.9079 

41 0.7294 0.2074 0.02553 0.1667 0.9716 

42 0.5712 0.3693 0.09839 0.1688 0.7437 

43 0.5712 0.1795 0.05069 0.7276 0.5257 

44 0.4288 0 0 0.6846 0.7695 

45 0.5712 0.4644 0.09125 0.7574 0.6925 

46 0.5712 0.05568 0 0.1858 0.3432 

47 0.5712 0.1747 0.09429 0.3856 0.2965 

48 0.5712 0.2155 0.06788 0.9323 0.6788 

49 0.7407 0.3218 0.01252 0.6826 0.2643 

50 0.7282 0.2103 0.04181 0.8267 0.3644 

51 0.7321 0.4826 0.01519 0.8272 0.4679 

52 0.5712 0.4942 0.0644 0.09693 0.07991 

53 0.7372 0.04918 0.00295 0.2322 0.342 

54 0.7372 0.3439 0.01178 0.5481 0.7025 

55 0.5712 0.1897 0.08484 0.4168 0.3791 

56 0.7436 0.04069 0.02224 0.1805 0.35 

57 0.702 0.4772 0.02406 0.8277 0.4505 

58 0.7343 0.03504 0.01915 0.1733 0.331 

59 0.7448 0.143 0.01039 0.855 0.1497 

60 0.5712 0.3592 0.0287 0.2535 0.184 

61 0.7438 0.02673 0.02187 0.2055 0.3508 

62 0.7284 0.2798 0.08159 0.7101 0.1682 

63 0.7436 0.2427 0.002796 0.3359 0.6542 

64 0.5712 0.3594 0.05727 0.6623 0.9914 

65 0.738 0.0513 0.007272 0.2157 0.3398 

66 0.5712 0.4874 0.05389 0.9846 0.794 

67 0.7476 0.04639 0.01939 0.1998 0.373 

68 0.5712 0.03959 0.04147 0.195 0.3599 

69 0.7444 0.05785 0.01842 0.1743 0.3138 
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70 0.5712 0.06021 0.03897 0.157 0.3308 

71 0.7339 0.3989 0.0272 0.7017 0.4495 

72 0.7409 0.00062 0.003938 0.7246 0.782 

73 0.5624 0.3529 8.21E+00 0.5275 0.7065 

74 0.6973 0.3366 0.02113 0.5646 0.6992 

75 0.7413 0.05523 0.01677 0.2295 0.3186 

76 0.7401 0.07259 0.001826 0.1926 0.3553 

77 0.4288 0 0 0.7252 0.8069 

78 0.7429 0.2844 0.003483 0.8401 0.5449 

79 0.7325 0.1806 0.02487 0.1584 0.9944 

80 0.7016 0.4803 0.02082 0.8088 0.4438 

81 0.7444 0.05117 0.01782 0.2053 0.3198 

82 0.6969 0.1913 0.01893 0.1522 0.9764 

83 0.5712 0.2631 0.08081 0.7921 0.6468 

84 0.7358 0.1902 0.01218 0.1743 0.9846 

85 0.7335 0.03451 0.09755 0.938 0.285 

86 0.5712 0.4294 0.0312 0.6811 0.8946 

87 0.7217 0.2081 0.02427 0.1875 0.9789 

88 0.5712 0.3015 0.06901 0.6557 0.4209 

89 0.746 0.09376 0.009769 0.5817 0.9024 

90 0.5712 0.1376 0.03929 0.5725 0.1284 

91 0.7495 0.01713 0.008099 0.1757 0.3535 

92 0.5712 0.3806 0.06583 0.306 0.6894 

93 0.7196 0.2086 0.06449 0.02608 0.3067 

94 0.7499 0.06186 0.02349 0.2082 0.3315 

95 0.7374 0.02297 0.004337 0.1915 0.3684 

96 0.5712 0.119 0.09532 0.9706 0.5436 

97 0.5712 0.2706 0.0627 0.503 0.1909 

98 0.7333 0.05496 0.04872 0.9084 0.2961 

99 0.7444 0.007437 0.01052 0.7258 0.7584 

100 0.7444 0.03621 0.01564 0.1835 0.3919 

101 0.5712 0.2108 0.07201 0.8414 0.4219 

102 0.7472 0.02077 0.003166 0.183 0.3369 

103 0.7374 0.01007 0.01705 0.1914 0.3474 

104 0.7317 0.02667 0.000116 0.2219 0.3407 

105 0.7474 0.05572 0.01239 0.2186 0.3382 

106 0.7407 0.1192 0.03061 0.4848 0.1374 

107 0.7411 0.05518 0.000193 0.2072 0.3883 

108 0.7352 0.1227 0.02027 0.8005 0.8581 

109 0.5712 0.2075 0 0.1733 0.9669 

110 0.5712 0.3211 0.07991 0.2961 0.4397 
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APPENDIX F: Hyper parameter tuning of Random Forest 
Iteration n_estimators Min 

samples 

split 

Min samples 

leaf 

Max features Max 

depth 

bootstrap Mean 

accuracy 

0 400 5 1 sqrt 30 WAAR 0.753525291 

1 2000 5 1 sqrt 10 WAAR 0.724663392 

2 1200 5 2 sqrt 10 ONWAAR 0.724094796 

3 2000 2 4 auto 30 ONWAAR 0.744405022 

4 1600 2 4 sqrt 10 WAAR 0.722070597 

5 800 5 4 sqrt 30 ONWAAR 0.744405022 

6 1000 5 2 sqrt 100 ONWAAR 0.753093159 

7 600 5 1 sqrt 60 ONWAAR 0.74242631 

8 1000 2 1 auto 50 ONWAAR 0.738719068 

9 1800 5 4 auto 10 ONWAAR 0.723276019 

10 400 10 4 auto 70 WAAR 0.740311135 

11 800 5 1 sqrt 90 ONWAAR 0.742653748 

12 2000 10 1 sqrt 10 ONWAAR 0.725504913 

13 1600 5 2 sqrt 10 ONWAAR 0.724185771 

14 800 10 2 sqrt 30 ONWAAR 0.751387373 

15 1800 2 4 auto 50 ONWAAR 0.744996361 

16 600 5 2 auto 70 ONWAAR 0.753002183 

17 1000 2 1 sqrt 20 WAAR 0.752092431 

18 1800 10 2 auto 110 ONWAAR 0.752592795 

19 600 5 1 auto 80 WAAR 0.750068231 

20 1800 10 1 sqrt 30 ONWAAR 0.752911208 

21 1600 5 1 sqrt 70 ONWAAR 0.742812955 

22 1400 5 4 sqrt 80 WAAR 0.739765284 

23 1800 2 2 auto 
 

WAAR 0.751046215 

24 1400 5 1 sqrt 80 ONWAAR 0.742358079 

25 400 2 1 sqrt 
 

ONWAAR 0.73849163 

26 1400 2 1 auto 40 ONWAAR 0.741016194 

27 1000 5 2 sqrt 20 WAAR 0.743927402 

28 2000 10 4 auto 100 ONWAAR 0.744655204 

29 1200 2 2 sqrt 20 WAAR 0.745337518 

30 1200 10 4 sqrt 20 ONWAAR 0.739628821 

31 800 2 2 sqrt 50 ONWAAR 0.752638282 

32 800 5 1 sqrt 100 ONWAAR 0.742016921 

33 800 10 4 sqrt 50 WAAR 0.739333151 

34 1800 2 4 sqrt 90 WAAR 0.739697052 

35 800 10 2 sqrt 20 ONWAAR 0.74540575 

36 1200 5 2 sqrt 20 WAAR 0.74433679 

37 800 2 1 auto 100 WAAR 0.743358806 

38 800 5 2 auto 
 

WAAR 0.751319141 

39 1000 2 2 sqrt 60 WAAR 0.751933224 

40 200 5 4 auto 10 WAAR 0.722275291 

41 600 10 2 sqrt 60 WAAR 0.749954512 

42 800 2 4 sqrt 90 WAAR 0.739947234 

43 400 10 4 sqrt 90 WAAR 0.740129185 

44 200 5 2 auto 90 ONWAAR 0.753661754 

45 1000 2 1 sqrt 110 WAAR 0.743245087 

46 2000 2 2 auto 90 WAAR 0.75250182 

47 400 10 4 sqrt 80 ONWAAR 0.743995633 

48 1200 2 4 sqrt 70 ONWAAR 0.74540575 

49 600 2 2 sqrt 110 ONWAAR 0.753411572 

50 1800 2 1 auto 20 ONWAAR 0.751819505 

51 2000 10 2 auto 50 ONWAAR 0.752888464 

52 1000 10 4 auto 50 ONWAAR 0.744473253 

53 1000 5 4 auto 30 ONWAAR 0.743904658 

54 1400 5 2 sqrt 
 

ONWAAR 0.75316139 

55 600 2 4 sqrt 60 ONWAAR 0.744700691 

56 1600 5 1 auto 10 WAAR 0.724617904 

57 1800 2 2 auto 80 WAAR 0.751887737 

58 1400 2 1 auto 100 WAAR 0.743472525 
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59 1400 10 2 sqrt 80 WAAR 0.75077329 

60 200 2 1 sqrt 50 WAAR 0.743586245 

61 400 2 4 sqrt 10 WAAR 0.72143377 

62 1000 10 4 auto 80 ONWAAR 0.744450509 

63 1200 10 2 auto 
 

ONWAAR 0.752729258 

64 1600 10 1 sqrt 20 WAAR 0.750068231 

65 1600 10 2 auto 
 

WAAR 0.750090975 

66 1800 2 4 auto 10 ONWAAR 0.723185044 

67 1400 2 2 auto 70 WAAR 0.751296397 

68 1000 10 1 sqrt 80 ONWAAR 0.748726346 

69 2000 10 2 auto 60 ONWAAR 0.753024927 

70 1400 2 4 sqrt 80 ONWAAR 0.744791667 

71 800 2 4 sqrt 20 ONWAAR 0.738991994 

72 1800 5 2 sqrt 60 WAAR 0.751592067 

73 400 5 1 auto 90 ONWAAR 0.741584789 

74 1600 5 1 auto 90 WAAR 0.75029567 

75 400 10 2 sqrt 90 ONWAAR 0.753229622 

76 1600 10 1 sqrt 
 

WAAR 0.755276565 

77 2000 5 1 sqrt 100 WAAR 0.750022744 

78 1000 5 2 sqrt 10 WAAR 0.724003821 

79 200 5 4 auto 80 WAAR 0.739674309 

80 2000 2 4 auto 60 ONWAAR 0.745087336 

81 600 10 2 auto 100 WAAR 0.750363901 

82 1000 5 4 auto 100 WAAR 0.740925218 

83 800 10 2 auto 
 

ONWAAR 0.752456332 

84 800 5 4 sqrt 70 ONWAAR 0.744200328 

85 600 10 1 sqrt 40 ONWAAR 0.750977984 

86 400 5 1 sqrt 100 WAAR 0.749636099 

87 1600 2 4 sqrt 80 WAAR 0.740333879 

88 800 10 4 sqrt 100 WAAR 0.739628821 

89 1000 10 2 sqrt 10 WAAR 0.723548945 

90 600 10 1 sqrt 110 WAAR 0.755117358 

91 2000 5 4 sqrt 
 

ONWAAR 0.744768923 

92 800 5 1 sqrt 40 WAAR 0.752228894 

93 600 2 4 auto 40 WAAR 0.740424854 

94 600 2 4 sqrt 30 ONWAAR 0.744723435 

95 400 10 2 auto 40 ONWAAR 0.752797489 

96 1000 2 1 auto 10 ONWAAR 0.725618632 

97 200 5 4 auto 100 ONWAAR 0.744996361 

98 2000 2 2 sqrt 20 WAAR 0.745360262 

99 2000 10 2 auto 40 WAAR 0.749886281 
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APPENDIX G: Distribution Fitting 
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APPENDIX H: Drawing from conditional probability 

If in the future runtimes do cause problems, an alternative way of generating random variates is by 

using the following property:  

𝐿𝑒𝑡 𝑈 𝑏𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑋 = 𝐹−1(𝑈). 𝑇ℎ𝑒𝑛 𝑋 ℎ𝑎𝑠 𝐶𝐷𝐹 𝐹. 

So, to generate random variates of X, we can feed random uniform variates to the inverse Cumulative 

Density Function of X (Clements, 2019).  However, these variates are currently unbounded (e.g. they 

can take values on the entire interval [0, ∞)). To generate random variates that are subject to the minimal 

duration condition, the lower bound of the Uniform distribution is determined by feeding the minimal 

duration to the CDF of X. Now every drawn random variate meets the condition, and only one random 

number has to be drawn for each returning repair. However, as the runtimes of the first approach are 

reasonable, and the implementation much easier, this approach will be used. 

 


