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ABSTRACT 

Ensuring food security remains one of society’s biggest challenges. Rice is a staple food and has an important 

role in the world’s food system. It is engrained in the tradition and culture of many countries. The Philippines 

is one of the major rice-growing countries and one third of their food consumption is based on rice and its 

derived products. The high consumption of rice is not balanced with their rice production. This is because 

there is limited suitable land for rice cultivation, therefore further production growth depends on increasing 

yield in existing areas. The prediction and estimation of rice yield is necessary to strengthen food security. 

One way to predict yield is by monitoring and estimating crop parameters, specifically biomass, as they have 

direct relationship with yield. In addition, crop height as one of the crop parameters is also considered as 

suitable indicator for plant dry weight estimation and crop growth.  

The aim of this study was to accurately estimate the dry weight and height of the rice crop for the early wet 

season 2016 (2016 EWS) and dry season 2017 (2017 DS) in the Long Term Continuous Cropping 

Experiment (LTCCE) field in the International Rice Research Institute (IRRI) Experimental Station, 

Philippines using Unmaned Arial Vehicle (UAV) data, field data and machine learning algorithms. The UAV 

dataset consisted of a timseries of multispectral images of green, red, red edge, near infrared bands and its 

derived products including point cloud and Digital Surface Model (DSM) data. Field data consisted of 72 

samples or subplots within the 1 hectare LTCCE in both the 2016 EWS and 2017 DS. The UAV data was 

conducted from 23 May to 3 August 2016 and 13 January to 11 April 2017. The machine learning algorithms 

used in this study were Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random 

Forest (RF).  

In this study, the machine learning algorithms had four different sets of input variables, consisting of the 

historical total plant dry weight, the average reflectance of four multispectral bands, and vegetation indices. 

The selection of input variables was based on the correlations between field measured data of plant dry 

weight and rice height, to average spectral reflectance and vegetation indices.  

Low correlations between DSM and point cloud height metrics with field measured crop height were 

observed which prevented further analysis with the machine learning methods. Reasons for this are 

discussed and ideas for more representative field measurements of rice crop height are suggested. However, 

for dry weight (our measure of biomass) we demonstrated that for the 2016 EWS dataset, the SVM method 

performed best in terms of its accuracy with R2 = 0.75 and RMSE of 639 kg/ha. As for 2017 DS dataset, 

the best model comes from RF method with R2 = 0.88 and RMSE = 671 kg/ha. We conclude that in this 

study, SVM and RF algorithm have produced better models compare to ANN algorithms  in estimating dry 

weight in rice with high accuracy by using field measured data and UAV data.  

Keywords: rice, UAV, machine learning, crop parameters, sustainable agriculture, food security 
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1. INTRODUCTION 

 Background  

Two of the challenges the world is facing today are growing population and consumption, which are 

increasing the global demand for resources (Foley et al., 2011; Godfray et al., 2010). These phenomena are 

resulting in societal and environmental problems, such as hunger and poverty. According to the Food and 

Agriculture Organization of the United Nations, there are 820 million people in the world who suffer from 

hunger and undernourishment (FAO, IFAD, UNICEF, WFP, & WHO, 2018). Hunger, undernourishment, 

and poverty are three global challenges that relate to food security. Based on the World Food Conference 

in 1996 (FAO, 1996) the definition of food security is: “Food security exists when all people, at all times, 

have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs and 

food preferences for an active and healthy life”. Ensuring food security remains one of society’s biggest 

challenges.  

 

Rice has an important role in the world’s food system. More than a third of the global population, mainly 

in Asia, consumes rice as their staple food (Barker, Herdt, & Rose, 1985). According to Papademetriou, 

Dent, and Herath (2000), the Asia-Pacific region produces and consumes almost 90% of the world’s rice. 

Rice consumption also has increased in sub-Saharan Africa, the Caribbean, and in Latin America in recent 

decades. Particularly in low and lower-middle-income countries, rice is one of the most important foods, 

covering 19% of the total crop area harvested (GRiSP, 2013). Rice is ingrained in the tradition and culture 

of many countries. The 2008 rice price crisis is one example period where rice-producing countries limited 

their exports, which resulted in rice scarcity and a price surge which affected all rice consumers, especially 

the poor. The crisis partially triggered rice-producing and rice-consuming countries to become more self-

sufficient and achieve food security (FAO, 2010; GRiSP, 2013). Therefore, rice plays an important role in 

food security and is considered as a political commodity, with important social and economic aspects to its 

production, trade and consumption (FAO, 2006).  

The Philippines is one of the major rice-growing countries where rice has been cultivated for at least 5,000 

years. Rice is the main staple food, and the demand for rice continues to increase with the rapidly growing 

population (Moya, Dawe, & Casiwan, 2006). By the year 2012, Philippines was the eighth biggest rice 

producer in the world with 18 million tons of rice produced (United Nations Development Programme 

(UNDP), 2015). Figure 1 shows Filipino food consumption patterns with rice accounting for over one third 

of rice production. 
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Figure 1. Average daily consumption per capita by several food groups in Philippines, 2008. Source: 
(Ponce & Inocencio, 2017) 

However, the land that is suitable for cultivating rice in the Philippines is limited to a few lowland areas, 

amounting to only 0.13 ha per capita (OECD, 2017). With little opportunity to expand the area, further 

production growth depends on producing higher yields in existing production areas. Although yield has 

increased from 2.8t/ha in 1995 to 3.6t/ha in 2010 and 4.0t/ha in 2017 (FAO, 2019), it is still substantially 

below the potential yield from modern rice varieties and below that from neighbouring countries such as 

Vietnam and Indonesia (GRiSP, 2013). There are other constraints that limit rice production in the 

Philippines. Extreme weather such as typhoons that often occur lead to heavy rainfall and drought often 

occurs in rainfed areas (GRiSP, 2013).  

Prediction and estimation of rice yield are necessary for strengthening food security. Having better yield 

prediction can help in decision making for optimal planting schedules, marketing, transporting, and storage 

(Tennakoon, Murty, & Eiumnoh, 1992). One way to predict yield is by monitoring and estimating crop 

parameters, specifically dry weight, as is has a direct relationship with yield (Jin & Liu, 1997). Moreover, Lati, 

Filin, and Eizenberg (2013) demonstrated in their study that dry weight values, height, and leaf cover area 

(LCA) are able to model the plant’s growth. Scully and Wallace (1990) also showed that dry weight and dry 

weight growth are able to indicate potential crop yield. In addition, another crop parameter, crop height, is 

considered as a suitable indicator for dry weight estimation and crop growth because crop height 

significantly affects yield potential (Ehlert, Adamek, & Horn, 2009; Lati et al., 2013; Ndikumana et al., 2018). 

Radloff and Mucina (2007) estimate dry weight based on the regression relationship between height 

measurements and dry dry weight. Figure 2 shows the growth duration of transplanted rice. 
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Figure 2. The growth phase of transplanted rice (source: http://www.knowledgebank.irri.org/step-by-
step-production/pre-planting/crop-calendar) 

 Literature Review 

Field measurement of plant dry weight and height are time consuming and costly since they need to cover 

a representative sample of rice crops and environments, and require repeated measures through the season 

to capture changes through the growth cycle. Remote sensing data is an alternative source of information 

to estimate crop dry weight and height. Various passive and active remote sensing sensors on different 

platforms; ground, unmanned aerial vehicle (UAV), airborne, and satellite, have been utilized for monitoring 

these two crop parameters (J. V. Bendig, 2015; Luo et al., 2015; Ndikumana et al., 2018; Reisi-Gahrouei, 

Homayouni, McNairn, Hosseini, & Safari, 2019; Tilly et al., 2014; Xie, Sha, Yu, Bai, & Zhang, 2009). A 

review of the literature is summarised in Table 1 and several of the most relevant studies for this research 

are described in more detail in this section.  

UAVs have become a promising remote sensing platform to capture detailed imagery for agricultural fields 

and for estimating crop parameters (Malambo et al., 2018). The use of UAVs in farming for optimizing 

management has become a major opportunity to obtain field data in a simple and fast way (Bansod, Singh, 

Thakur, & Singhal, 2017). UAV data usually has a very high spatial resolution, ranging from 0.5 – 10 cm 

with a field of view of 50 – 500 m (Candiago, Remondino, De Giglio, Dubbini, & Gattelli, 2015).  

UAV data has been used in many studies for crop monitoring. Vega, Ramírez, Saiz, and Rosúa (2015) used 

UAV data to monitor sunflower properties like leaf area index, water stress, nitrogen content, the yield of 

grains, and dry weight during the growing season. Chang et al. (2017) generated ortho-mosaic and 3D point 

cloud information using a Structure from Motion (SfM) algorithm on 200 overlapping images from an 

altitude of 50 meters, and obtained a very low root mean square error (RMSE) between the estimated height 

and field measured height. Schirrmann et al. (2016) monitored biophysical parameters of winter wheat, 

including height, dry weight, LAI, as well as nitrogen status, using UAV data in an 11 ha field and observed 

high correlation between biophysical parameters and image variables (such as cover coverage, band ratios, 

and plant height), R2 = 0.70 – 0.97. Li et al. (2016) showed that maize height derived from UAV images was 

comparable with the field measurements with an RMSE of 0.11 m. Several studies have successfully 

conducted similar measurements with different crop types, including barley (J. Bendig et al., 2014), soybean 

(Yu et al., 2016), or winter wheat (Schirrmann et al., 2016). Estimation of crop height is essential in precision 



TITLE OF THESIS 

4 

agriculture practices since it can be used to predict yield, irrigation schedule, and application of pesticide and 

fertilizer (A. Chang et al., 2017; Lati et al., 2013). 

Using spectral reflectance extracted from remote sensing data, vegetation indices (VIs) have been used to 

qualitatively and quantitatively evaluate crop parameters like dry weight and crop height (Bannari, Morin, 

Bonn, & Huete, 1995; Jackson & Huete, 1991). Some studies have proved that VIs are able to estimate dry 

weight (Cho, Skidmore, Corsi, van Wieren, & Sobhan, 2007; Devia et al., 2019; Stavrakoudis, Katsantonis, 

Kadoglidou, Kalaitzidis, & Gitas, 2019). However, there are some limitations of using VIs, such as VIs have 

not been calibrated for all crop species, meaning the same coefficients are applied for different crops 

(Gholizadeh, Robeson, & Rahman, 2015).  

Recently, machine learning techniques (Hastie, Tibshirani, & Friedman, 2008) - that can help in finding  

rules and patterns in complex multivariate data (McQueen, Garner, Nevill-Manning, & Witten, 1995) - have 

been applied to find relationships between VI information and field measurements of crop parameters. 

Moeckel et al., (2018) applied Random Forest (RF) and Support Vector Machine (SVM) methods to predict 

the height of crops using  UAV imagery during an entire growing period resulting in a pseudo-R2 of 0.87 

(RMSE = 5.91), 0.91 (RMSE = 7.36), and 0.89 (RMSE = 2.31) for tomato, eggplant, and cabbage, 

respectively for SVM and a pseudo-R2 of 0.89 (RMSE=5.49), 0.93 (RMSE = 6.86) for RF. Ndikumana et 

al., (2018) also performed similar research, estimating rice height and dry weight using Sentinel-1 which 

resulted in a high correlation between estimated measurement and in-situ measurement from dual-

polarization information. Han et al. (2019) also modelled maize dry weight based on Multiple Linear 

Regression (MLR), Artificial Neural Network (ANN), SVM, and RF algorithms using UAV data. They 

found that RF gave the most balanced results with a RMSE = 0.495 and R2 = 0.944 for their training set 

and a RMSE = 1.2 and R2 = 0.699 for their test set. A study by Yue, Feng, Yang, and Li (2018) utilised MLR, 

ANN, RF, SVM, Decision-tree regression (DT), Boosted binary regression tree (BBRT), partial least squares 

regression (PLSR), and principal component regression (PCR) to estimate winter wheat dry weight using 

near spectroscopy hyperspectral data and obtained accurate results (R2  = 0.89 and RMSE = 1.20 t/ha). Ali, 

Cawkwell, Dwyer, and Green (2017) developed a model for dry weight estimation in grassland based on 

MLR, ANN, and adaptive neuro-fuzzy interference system (ANFIS) algorithms and Moderate Resolution 

Imaging Spectroradiometer (MODIS) Terra data. Reisi-Gahrouei et al. (2019) estimated dry weight using 

UAVSAR data and comparing multilinear regression and ANN algorithms in some crops, resulting in ANN 

has higher accuracy with R2  ranging from = 0.72 to 0.92, RMSE = 13.48 g/m2 (soybean), 56.55 g/m2 (canola), 

196.71 g/m2 (corn). A study by Wang et al. (2019) on growth stage development included height as a 

parameter when comparing ANN, SVM, RF, and partial least squares regression (PLSR) and showed that 

RF had the highest accuracy with RMSE of 20.21%. Devia et al. (2019) estimated dry weight in rice crops 

in both dry and wet seasons, using UAV with multispectral sensor, particularly near infra-red (near-infrared). 

The study located in the International Centre for Tropical Agriculture (CIAT) experimental station in 

Colombia and they considered three different crop stages. They applied multivariable regressions to model 

seven VIs and the relations to dry weight and compare the regression method to ANN method. The results 

showed in vegetative and reproductive stages, ANN method performed better with R2 > 0.8, but the 

performance decrease in ripening stage. Overall, multivariable regressions are more reliable than ANN, as 

ANN needs sufficient training data to be utilized. 

 Problem Statement and Justification 

As the result of the literature review of twenty studies (see Table 1), six studies estimated dry weight and/or 

height of rice crop, and three of them were using UAV images as source of input data, but only one study 

used a machine learning algorithm.  
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Based on the aforementioned studies, estimations of dry weight and height in rice crop through the growing 

season have not yet been studied using UAV images with different machine learning approaches. In this 

study, we will utilize field data and UAV data from four different sensors (red-green-blue (RGB), four-band 

multispectral (R-G-RedEdge-Near-infrared), RGNIR, and thermal) and three different machine learning 

algorithms (Artificial Neural Network, Support Vector Machine, and Random Forest) to estimate dry weight 

and height of the rice crop through two consecutive growing seasons. The study area is in the International 

Rice Research Institute (IRRI) Experimental Station, Los Baños, Philippines and all data were collected and 

provided by IRRI. 

 Conceptual Framework 

Figure 3 shows the conceptual diagram of this study. The geographical boundary of the system is Los Baños, 

Philippines, where the IRRI Experimental Station is located. The elements of the system consist of the rice 

fields in IRRI Experimental Station, IRRI, the villages, and also the irrigation system. Key characteristics of 

the rice fields include growing seasons, soil condition, fertilizer water cycle, and rice phenology that are 

related to rice crop growth. As sub-element, there are the two crop parameters of dry weight and height that 

will be observed using UAV images and measured with field measurements and a machine learning approach 

will find relations between these two. The UAV-derived data consists of the spectral reflectance of 

multispectral bands, point cloud, vegetation indices, and DSM. The results of the study are expected to be 

immediately useful for IRRI scientists who are using UAV imagery to efficiently collect data on field 

experiments to understand crop growth under different management conditions. The eventual benefits of 

their research are directed to producers and consumers in terms of higher and more efficient rice 

productivity. 

 

Figure 3. Conceptual diagram of the study 
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Table 1. Related studies estimating crop parameters 
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 Research Identification 

The aim of this study is to accurately estimate the dry weight and height of the rice crop using UAV data 

field measurements and machine learning methods based on observations and measurements obtained 

during the wet season 2016 (2016 EWS) and dry season 2017 (2017 DS) in the IRRI Experimental Station, 

Philippines.  

1.5.1. Research Objectives  

In order to achieve the aim, the objectives of the study are as follow: 

1. To evaluate different machine learning algorithms - ANN, SVM, and RF - for the estimation of dry 

weight in the rice crop in wet and dry seasons using UAV data. 

2. To evaluate different machine learning algorithms - ANN, SVM, and RF - for the estimation of rice 

crop height in wet and dry seasons using UAV data. 

3. To map the dry weight and height of the rice crop in wet and dry seasons using the most accurate 

algorithm (in terms of R2 and RMSE). 

1.5.2. Research Questions and Hypothesis 

Several research questions were formulated to address the objectives:  

1. Which machine learning algorithm has the best accuracy (in terms of R2
 and RMSE) for estimation of 

dry weight in the wet and dry season?  

Hypothesis: Random Forest is the most accurate algorithm for estimating dry weight in both wet and 
dry seasons.  

2. Which machine learning algorithm has the best accuracy (in terms of R2
 and RMSE) for estimation of 

rice height in the wet and dry season?  

Hypothesis: Support vector machine is the most accurate algorithm for estimating rice height in both 
wet and dry season. 
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2. STUDY AREA AND DATA  

 Study Area 

 

The study takes place in the Long-Term Continuous Cropping Experiment (LTCCE) site maintained by 

IRRI, located in Los Baños, Philippines. The LTCCE was established in 1962 with the aim to have a high 

annual rice yield from a unit area of land by testing various rice varieties, irrigation, proper timing and use 

of fertilizer, and agricultural practices (Santiaguel, 2014). The LTCCE has been continuously cultivated with 

two or three crops per year since 1962 providing information on yield trends in intensively cultivated rice 

cropping systems. The LTCCE covers an area of one-hectare with a centre coordinate of 14°10' 05.7"N and 

121°15' 21.2"E (Figure 4). There are two sets of data from this site that this study will focus on, one from 

the year 2016 for the early wet season (2016 EWS) and the other from the year 2017 for the dry season 

(2017 DS).  

 

 

 

 

 

 

 

 
Figure 4. The 
study area is 
located in 
LTCCE at IRRI, 
Los Baños, 
Philippines. Red 
polygons show 
the subplots 
studied in this 
research. The 
image used is an 
RGB image 
taken in 23 
March 2016.  
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The LTCCE site is divided into 108 main plots of 8m × 8 m which are used to measure yield and 72 subplots 
of 4m × 8m used to measure vegetation biophysical parameters (these plots are shown in white in Figure 
5). The LTCCE contains different combinations of rice varieties and nitrogen applications. Based on Figure 
5, this study will focus on 72 white subplots where biophysical parameters were measured, such as plant dry 
weight and rice height for three rice varieities and six nitrogen applications. The details of the field data 
measurements will be explained in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. The layout field of LTCCE in year 2016 EWS and 2017 DS (both seasons have the same field 
layout) (IRRI, 2019). F1 – F4 are the main plots with different rates of nitrogen; v1 – v8 are the rice 

varieties; The N1 – N6 show the nitrogen application rate for each subplot.  

 Field Data 

The variables used in this study are the dry weight and height of rice crop. This section will describe the 

measurement of both variables by IRRI.  

Field data collection was conducted four times during the season for plant dry weight measurements and 

once for rice height. Dry weight data includes dry dry weight of dead-leaf, green leaf, stem, panicle, and total 

plant dry dry weight. These measurements were available for all subplots. Table 2 shows the dates for 

operation and sampling of plant dry weight measurements in each season based on days after transplaning 

(DAT). As for rice height, it was measured once in each season and the measurement took place between 4 

August 2016 – 11 August 2016 and 13 April 2017 – 18 April 2017.  
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Table 2. Dates of dry weight field measurements in 2016 EWS and 2017 DS 

2016 EWS 2017 DS 

Calendar date Days after transplanting 

(DAT) 

Calendar date Days after transplanting 

(DAT) 

26 May 2016 22 27 Jan 2017 23 

15 June 2016 42 16 February 2017 43 

28 June 2016 55 2 March 2017 57 

5 July 2016 62 13 March 2017 68 

    

 

Destructive sampling was conducted in each subplot of 3.4m × 7.6m (smaller than the subplot to exclude 

edge effects from plants at the border of the plot), which contained 17 × 38 rows of rice hills at a spacing 

of 20cm × 20cm. Plant dry weight was measured separately for green leaf, dead leaf, and stem. Panicles were 

sampled at the period between booting and heading stage. The plant samples were oven-dried for three days 

at a temperature of 80°C. However, the calculation involving plant dry weight in this study used the 

accumulation of green leaf, dead leaf, and stem for the first three sampling measurement, plus panicle on 

the last day of the destructive sampling, which is termed “total plant dry weight” in further analysis. Figure 

6 shows the location of the destructive sampling or field measurement of the dry weight in one subplot.  

 

As for the rice crop height, it was measured at four locations within each subplot by stretching up the flag 

leaf (the tallest leaf) of the rice plant. The measurements were obtained at the harvest date, and the mean of 

the four measurements was reported as the average height of the subplot. There were no coordinates 

available for the locations of these mesurements, so subplot averages were used for further analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. The layout of field dry weight measurement within each subplot (IRRI, 2019) 

 UAV Spectral Data  

The UAV multispectral data acquired in two seasons, the wet season in 2016 and the dry season in 2017, 

are the primary remote sensing data for this study. The data were collected using a fixed-wing UAV – 

Sensefly multiSpec4C. The multispectral image consists of red-green-red edge-near infrared bands have 

already been processed into mosaics using Pix4D software and spatially corrected with the GCPs. Figure 7 
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illustrates the wavelength response of multiSpec 4C camera. More details about the UAV multispectral data 

are shown in Table 3 for the specific dates of acquisitions and pixel resolutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. The wavelength response of each sensor in multiSpec 4C camera (senseFly, 2014) 

 

Table 3. The details of UAV image acquisitions and the image resolutions 

Date of 
acqusition 

Pixel 
resolution 

(cm) 

Date of 
acqusition 

Pixel 
resolution 

(cm) 

2016-05-23 7.6 2017-01-13 7.28 

2016-05-25 7.4 2017-01-19 7.05 

2016-06-01 7.4 2017-02-08 7.49 

2016-06-08 7.6 2017-02-16 7.34 

2016-06-14 7.1 2017-02-23 7.37 

2016-06-21 7.3 2017-03-02 7.19 

2016-06-28 7.3 2017-03-08 7.6 

2016-07-05 7.7 2017-03-15 7.6 

2016-07-06 7.4 2017-03-22 6.2 

2016-07-22 7.2 2017-03-29 6.78 

2016-07-27 7.1 2017-04-05 6.98 

2016-08-03 7.4 2017-04-11 7.1 

 

Due to the field measured height only took one measurement, the UAV-derived height data also had to 

choose from one dataset. Table 4 shows the details of the DSM and point cloud data that were used in this 

study. The 2016 EWS took the DSM and point cloud data drom DAT 62, and the 2017 DS took the DSM 

and point cloud data from DAT 68.  
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Table 4. The details of DSM and point cloud data 

Season Date 
Resolution of 

DSM (cm/pixel) 

Number of densified 

points 

Average density (per 

m3) 

2016 EWS 5 July 2016 2.42 1980855 190.55 

2017 DS 15 March 2017 2.46 1505480 217.91 

 

 Software 

The software used in this study are listed in Table 5 below.  

Table 5. The list of software used in this study 

Software Purpose 

Pix4Dmapper Version 4.4.12 
Display and check the UAV orthomosaic project, convert .p4b 

(point cloud data) to .las 

R 3.4.3 and R-studio Version 

1.2.5042 

Spectral reflectance extractions, statistical analysis, machine 

learning algorithms 

ArcMap 10.7.1 Visualization, maps layout 

LAStools Height metrics derivation 

Microsoft Word Report and thesis writing 

Microsoft Excel Statistical analysis, graphs visualization 

Microsoft Powerpoint Thesis presentation 
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3. METHODOLOGY 

This methodology section includes: a flowchart that provides an overview of the steps taken in the study; 

statistical analysis of field and spectral data; vegetation indices calculation; height extraction from DSM and 

height metrics derivation; and rice plant dry weight and height estimation using three machine learning 

algorithms to answer the objectives and research questions. The flowchart of the study is shown in Figure 

8.  

 
Figure 8. Flowchart of the study 
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 Field data and spectral data variables exploration 

This section presents the exploration of field data, consisting of total plant dry weight and rice crop height 

throughout the two seasons. The aim of this analysis was to understand the behaviour of the field and 

spectral data over time and to detect as well as to remove any possible outliers. The analyses were done by 

looking at the boxplots of each variable and at correlations between plant dry weight and rice height. The 

output of these data exploration are presented in Chapter 4.1 Preliminary Analyses Results.  

Data exploration was also conducted for spectral data obtained from the multispectral UAV image. 

According to Curran (1980), multispectral remote sensing is capable of distinguishing and determining the 

state of features on the earth’s surface, including vegetation amount such as dry weight. This is due to the 

fact the energy that reflected back -particularly from red and near-infrared- varies within different 

wavelengths, therefore vegetation features can be differentiated. In this study, the spectral data utilized 

consists of the reflectance of each multispectral band and vegetation indices derived from these bands.  

The average reflectance of the subplots were extracted using a subplot boundaries shapefile, the the average 

reflectance was plotted in a graph in response to the spectral wavelength. The purpose of checking the 

extracted average reflectance and plotting them is to check the quality of the spectral reflectance data before 

using them in machine learning models, and to understand if there is any data that behaved unusually. Any 

unusual data were reported to IRRI for further investigtoin and advice. The plotting of spectral reflectance 

will be included as a preliminary result in Chapter 4.1.  

 Vegetation indices generation 

Vegetation indices have been extensively utilized to estimate crop dry weight and crop height (Bendig, 2015; 

Prabhakara, Hively, & Mccarty, 2015; Silleos, Alexandridis, Gitas, Silleos, & Alexandridis, 2008; Viljanen et 

al., 2018). In addition of including average spectral reflectance as predictors, we also computed vegetation 

indices as inputs to the machine learning algorithms. Six vegetation indices were calculated using R software. 

The six vegetation indices are: 

- Ratio Vegetation Index (RVI), is one of the most commonly used vegetation index. It is calculated 

by simply dividing the spectral reflectance near infra-red band by the red band. The index was 

introduced by Jordan in 1969 with the basic principle that leaves absorbs more red than infrared 

light. Nowadays, due to a good correlation with plant dry weight and its sensitivity to vegetation, 

RVI widely used in monitoring and estimating dry weight.  

- Normalized Difference Vegetation Index (NDVI), is another vegetation index that commonly used 

and first was introduced by Rouse, Haas, Schell, and Deering (1974) with the objective to produce 

a vegetation index that separates the green vegetation in the background from soil brightness. 

However, NDVI saturates at high dry weight values (Mutanga et al. 2004). 

- Simple Ratio Red-Edge (SRRE), is similar to RVI, however it is a near-infrared band divided by the 

red edge band (Gitelson & Merzlyak, 1994).  

- Normalized Difference Red Edge Index (NDRE), is usually used to detect healthy vegetation, as it 

is sensitive to chlorophyll content in leaves. NDRE is also less sensitive to saturation in dense 

vegetation, which can be occurred during the later stage of rice dry weight estimation (Bonfil, 2017).  

- Soil-Adjusted Vegetation Index (SAVI), was developed to improve the sensitivity of NDVI to soil 

background (Huete, 1988). It is important to notice that the study area is an irrigated field, hence 

more water than soil. 

- Modified Triangular Vegetation Index 2 (MTVI2), is one of the indices that is used to determine 

green Leaf Area Index (LAI) (Haboudane, Miller, Pattey, Zarco-tejada, & Strachan, 2004) but also 

has shown a good sensitivity at medium to high dry weight (Xiuliang Jin et al., 2015).  
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Table 6. Vegetation indices used in this study  

Vegetation 

Indices 

Formula Reference 

RVI 𝜌𝑁𝐼𝑅 𝜌𝑅𝑒𝑑⁄  Jordan (1969) 

NDVI 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷 𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷⁄  Rouse et al. (1974) 

SRRE 𝜌𝑁𝐼𝑅 𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒⁄   Gitelson and Merzlyak (1994) 

NDRE 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒⁄  Gitelson and Merzlyak (1994) 

SAVI (
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 + 𝐿⁄ ) (1 + 𝐿) Huete (1988) 

MTVI2 1.5 × [1.2(𝜌𝑁𝐼𝑅 − 𝜌𝐺𝑟𝑒𝑒𝑛) − 2.5(𝜌𝑅𝑒𝑑 − 𝜌𝐺𝑟𝑒𝑒𝑛)]

√(2𝜌𝑁𝐼𝑅 + 1)2 − (6𝜌𝑁𝐼𝑅 − 5√𝜌𝑅𝑒𝑑) − 0.5

 
Haboudane et al. (2004) 

 

  Statistics of field data and spectral data variables 

The correlations between measured field data and mean spectral reflectance extracted from UAV images 

were studied. The aim of this assessment is to understand the relationship between field data and spectral 

data. Two relationships were established: correlations between total plant dry dry weight and average 

reflectance; and between total plant dry dry weight and vegetation indices. A strong correlation means that 

the variables are strong predictors. Strong predictors are expected to produce a model estimation with high 

accuracy. 

  Exploratory Analysis of Rice Height Data  

Both DSM data and point cloud data were analysed and compared with field measured rice crop height to 

determine which if any had the best correlation with field measured height. If the correlations between DSM 

or point cloud data with field measured rice height are considered high, therefore one of the height dataset 

can be used as predictors to estimate rice height using machine learning algorithms. Another objective of 

obtaining rice crop height from DSM or point cloud data is whether one of these data can be predictors to 

improve dry weight estimations using machine learning algorithms. The DSM data was analysed by 

extracting the height information using the subplot boundaries shapefile, and the average height from each 

subplot was obtained. Then the correlation between height derived from DSM and field measured crop 

height data was made.  

  

 

 

 

 



TITLE OF THESIS 

17 

 Machine Learning Algorithms 

Three machine learning regressors (i.e., ANN, SVM, RF) were applied for the estimation of dry weight and 

then the performance of each was evaluated.  

 

3.5.1. Artificial Neural Network (ANN) 

ANN is one of the methods applied in this study to estimate dry weight and rice height. Many studies have 

conducted similar research using this method (Ali, Cawkwell, Dwyer, & Green, 2017; Devia et al., 2019; 

Han et al., 2019; Y. Q. Jin & Liu, 1997; Reisi-Gahrouei, Homayouni, McNairn, Hosseini, & Safari, 2019). In 

this study, the software used to run the ANN method was R with the neuralnet package (Fritsch, Guenther, 

Wright, Suling, & Mueller, 2019). The most commonly used model of a neuron is shown in Figure 9. The 

inputs 𝑥1 … 𝑥𝑛 have connections which are multiplied by the weights 𝑤1 … 𝑤𝑛 . The sum of the weights 

then pass through an activation function, which is used to limit the output of the neuron (Mas & Flores, 

2008) 

 
Figure 9. Anatomy of artificial neuron (Chalupník, 2012) 

Since this is a supervised neural network, the dataset must be split into training and testing set. Splitting the 

dataset is necessary to create a training and testing dataset, and to avoid an overfitting model. Overfitting is 

when a model learns the details and noise in the training data too well, which then negatively impacts the 

model’s performance. Training and testing sets were derived from the data based on a random selction using 

a 70:30 ratio. The training set contains the samples of the dataset used to fit the parameters of the model. 

In the process of training the data, it includes the input data as input layer, hidden layer, and output layer as 

the output of the model. This ANN architecture is commonly known as multilayer perceptrons (MLPs) 

(Figure 10). The neuralnet package is essentially a black box where user cannot determine much about the 

fitting, the weight, and the model. However, the user may define the number of neurons and the number of 

hidden layers. There are no specific rules to determine the hidden layer, it relies on user experience and 

experimentation (Skidmore, Turner, Brinkhof, & Knowles, 1997). After experimenting with several 

numbers of hidden layers, the ANN model in this study was set to have one hidden layer with three neurons. 

Then, the trained dataset was used to validate the model.  

 

 

 

 



TITLE OF THESIS 

 

18 

 

 

Figure 10. An example of the architecture of ANN-MLPs model (Castro, Oblitas, Santa-Cruz, & Avila-
George, 2017) 

3.5.2. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) for regression method used the R software with the caret package 

(Khun et al., 2020). SVM is one of the most widely used machine learning algorithms for estimating crop 

parameters, such as dry weight and height (Han et al., 2019; Karimi, Prasher, Madani, & Kim, 2008; Moeckel 

et al., 2018; Ndikumana et al., 2018). This algorithm was first introduce as a statistical learning theory by 

Vapnik (1995). The SVM algorithm focuses on minimizing the bounds on the risk function, rather than 

minimizing the error on the training data. The main feature of the SVM algorithm is the kernel function. 

The kernel function is used to map the non-linear observations into a higher dimensional space (Murty & 

Raghava, 2016). There are four types of kernel functions including linear, polynomial, RBF, and sigmoid 

kernels. The aim of SVM regression is to build a linear function that can make the closest approximation of 

the dependent variables (Karimi et al., 2008). In this study, the modelling with SVM regression was 

performed using the linear kernel method, as the number of output variables is smaller than the number of 

input variables (Hsu, Chang, & Lin, 2016). Other than choosing the SVM linear method, the other 

parameters of SVM regression that need to be chosen or tuned are the number of k-fold cross-validations 

and c (cost). The same data partitioning as used in ANN was also used in this method, using the 70:30 ratio 

of training and testing data. The modelling of SVM regression in this study used 10-fold cross validation 

repeated 5 times. As for the parameter c, also known as cost, in this study we tested 13 c values, starting 

from 0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, and 5.00. The caret package will 

automatically pick the c value with smallest RMSE.  

3.5.3. Random Forest (RF) 

 
The Random Forest (RF) method used R software, with the caret package. The Random Forest algorithm is 

a combination of many decision trees, where each is trained independently, and the final prediction is made 

by averaging the individual tress (Breiman, 2001). RF is trained with boostrap aggregating, or bagging, where 

subsets of training data are randomely sampled then use this smaller set of data to fit into the model, and 

aggregate the predictions. This is also called as tree bagging. The bagging method is also applied to the 
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feature space. It reduces the correlations between predictor variables by training them, instead of the entire 

set of independent variables or the feature, but on randomly sampled independent variables (Bryll, 

Gutierrez-Osuna, & Quek, 2003). There are some advantages in running the RF algorithm; on a large dataset 

it runs efficiently, has fewer parameters compared to ANN and SVM, it is not sensitive to noise, and it is 

able to handle hundreds or thousands variables without a need to remove some (Xiu liang Jin et al., 2013; 

Wang, Zhou, Zhu, Dong, & Guo, 2016). There are two important parameters in RF method, consisting of 

mtry and ntree. Mtry indicates the number of variables randomly sampled as candidates at each split and 

ntree indicates the number of trees to grow. The caret package will select mtry with the smallest RMSE. As 

for ntree, it was decided to use the default of 500 trees.  

3.5.4. Machine learning generated models  

In this study, there will be four different sets of input variables to run three machine learning algorithms. 

From hereon they will be named as Model 1, Model 2, Model 3, and Model 4. This was repeated for 2016 

and 2017. The aim of producing the four models is to find out which combinations of input variables 

produce the most accurate model. The selections of the input variables were based on the preliminary 

analysis of the field data and spectral data variables (Section 3.5).  

 

The dependent variable for the dry weight model is the total plant dry weight on DAT 62 for 2016 and 

DAT 68 for 2017 from field measurements, representing the measured dry weight closest to harvest date. 

As for the height model, the dependent variable is rice height from the single height measurement taken 

during the season on DAT 62 for 2016 EWS and DAT 68 for 2017 DS. The independent variables are the 

spectral bands and VIs from UAV data through the season and in the case of the dry weight model, 

measured dry weight earlier in the season. As mentioned earlier, before running the models, the dataset was 

divided into two sets, the training set and the testing set with a ratio of 70:30. These models were evaluated 

using the metrics explained in Section 3.8.  

 
Model 1:  

Model 1 used 39 variables as predictors, including the historical data of total plant dry weight throughout 

the season, the mean reflectance of red edge and near-infrared bands, and MTVI2 index data throughout 

the season. The dependent variable here is the total plant dry weight on DAT 62 for 2016 EWS model, and 

total plant dry weight in DAT 68 for 2017 model. Here the red edge and near infra-red bands were selected 

due to the fact both have high correlations to total plant dry weight. The same reason goes for the selection 

of MTVI2 due to its high correlation with plant dry weight. Both mean reflectance data and MTVI2 were 

included from 12 dates of UAV data acquisition.  

 
Table 7. The list of independent variables as input for the model 1 

 
Amounts of 

variables 

Independent 
variable 

Historical total plant dry weight    3 

Mean reflectance of red edge and near infrared 
bands 

2 bands × 12 dates 
(flights) 

24 

MTVI2 12 dates (flights) 12 

Total variables 39 
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Model 2: 

Model 2 used only 16 predictors, including historical data of the total plant dry weight and MTVI2 index 

throughout each season (12).  

Table 8. The list of independent variables as input into model 2 

 
Amounts of 

variables 

Independent 
variable 

Historical total plant dry weight    
3 

MTVI2 12 dates (flights) 12 

Total variables 16 

 

Model 3: 

Model 3 was using 63 variables as predictors, among them are the historical data of total plant dry dry 

weight, the temporal mean reflectance (12) of 4 bands of the multispectral image, and MTVI2 index data 

throughout each season (12).  

Table 9. The list of independent variables as input to model 3 

  Amounts of 
variables 

Independent 
variable 

Historical total plant dry weight  
  

3 

Mean reflectance of green, red, red edge and 
near infrared bands 

4 bands × 12 
dates (flights) 

48 

MTVI2 12 dates (flights) 12 

Total variables 63 

 

 

 

 

Model 4: 

Model 4 used 60 variables as predictors, eliminating the historical data of total plant dry weight, and including 

the temporal mean reflectance (12) of 4 bands of the multispectral image, and MTVI2 index data throughout 

each season (12).  
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Table 10. The list of independent variables as input to model 4 

  Amounts 
of 

variables 

Independent variable 
Mean reflectance of green, red, red edge 
and near infrared bands 

4 bands × 12 dates 
(flights) 

48 

MTVI2 12 dates (flights) 12 

Total variables 60 

 

3.5.5. Variable importance using RF regression algorithm 

The aim of this analysis is to find which input variables is the best performer. Acknowledging the most 

important input variable that explains the variance of response variable will lead to easier understanding in 

building a model with high performance.  

 Model Evaluation 

There are three metrics evaluation to evaluate model performance. Root mean square error (RMSE) is one 

of the most frequently used measurement to evaluate a model. It represents the sample standard deviation 

of the differences between the predicted and observed values. The formula of RMSE is as follow: 

 

 

 

 

 

 

R2 represents the coefficient of how well the predictive values fit compares to the field measured values. 

The metric is expressed: 

 

 

𝑅2 = 1 −  
∑ (𝑦𝑖 −  𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 −  𝑦�̿�)
2𝑛

𝑖=1

 

 
 
Another metric to evaluate the model is Normalized RMSE (NRMSE). By normalizing RMSE, the model 
performance is comparable for analysing models with different units. The formula of NRMSE is as 
follow: 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑂
 

Where 𝑦𝑖 is the predicted value of dry weight and 𝑦𝑖 is the observed value of dry weight, meanwhile O is 
the range of observation data.  
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4. RESULTS 

This chapter starts with the preliminary results from all analyses in preparing the input variables before going 

into the machine learning algorithms, then continues to the results of statistical analyses for variable 

selection, and then the machine learning process in estimating dry weight. After that, the results of the height 

data analysis is presented before the final maps.  

 Preliminary Analyses Results 

This section presents the preliminary results of field data and exploratory analyses of the spectral data.  

4.1.1. Field Data Analysis 

Figure 11 shows the data distribution as boxplots of total plant dry weight of the three rice varieties in each 

season. Figure 11 (a) and Figure 11 (b) show similar trends, in terms of the variability in plant dry weight. 

Towards the end of the season, the variability of plant dry weight values were increasing, from DAT 22 to 

DAT 62 and from DAT 23 and DAT 68. Figure 11(b) showing total plant dry weight for variety 8 in 2017, 

had two points of outliers in which were already removed by this stage after confirmation by Dr. Roland 

Buresh (personal communication with IRRI). These two outliers had very high values of total plant dry 

weight.   

 

  

 

 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

 
Figure 11. Boxplots showing the variation of total plant dry weight of rice at different dates (days after 
transplanting) during the growing season for three different varieties in the two seasons (a) 2016 EWS and 
(b) 2017 DS in the IRRI LTCCE.  

(a) 

 

(b) 

 
Figure 12. Boxplot of rice crop height of the three different varieties in 2016 EWS (a) and 2017 DS (b).  

Figure 12 show boxplots of rice crop height for variety 4, 7, and 8 in the year 2016 EWS (a) and year 2017 

DS (b). The overall picture of these boxplots is that all varieties in both seasons show different distributions 
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of plant height as indicated by the median value and also the range of values in each box (indicating a high 

variability within the datasets). IRRI measured the height by selecting only four plants and stretching the 

tallest leaf within one plot. This may explain the high variability of rice height in each plot and hence for 

each variety. The final number of observations for 2016 EWS is 72 and for 2017 DS is 70 points or samples.  

 

In this section, Pearson’s correlations were made between plant dry weight and plant height during the 

growing season. The correlations presented in Figure 13 for different varieties show similar trends where 

towards the end of the season, the correlations between plant dry weight and plant height are increasing. 

This means the most abundant dry weight occurred at the end of the season when the plant was the tallest. 

Based on this finding, rice plant height can be a reasonable predictor in estimating dry weight as they exhibit 

a strong positive correlation.  

 

 

 

 

  

 

 
 

 

 

 

 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 13. Correlation between plant height and total plant dry weight in the 2016 EWS and 2017 DS  

 

4.1.2. Spectral Data Analysis 

The average reflectance per date was plotted for four bands: green (550 nm), red (660 nm), red edge (735 

nm), and near infrared (790 nm) as shown for three selected subplots in Figure 14 for all three rice varieties 

for 2016 EWS and in Figure 15 for 2017 DS. The plotting of spectral reflectance of both seasons show a 

similar trends. The red band has the lowest reflectance values due to absorption of chlorophyll, meanwhile 

the near infra-red band shows a peak in reflectance values due to the structure of vegetation leaves that 

makes the reflectance high. These two bands which show extreme responses of absorption and reflectance 

were a factor in the selection of vegetation indices for the machine learning algorithms.   
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(c) 
Figure 14. Mean reflectance of rice fields of green, red, red edge, and near infra-red bands throughout the 

2016 EWS. 
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(c) 

 
Figure 15. Mean reflectance of rice fields in green, red, red edge, and near infra-red bands throughout the 

2017 DS 
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 Statistics of Field Data and Spectral Data Related to Plant Dry Weight 

This section presents the correlations between field data variables and spectral data. There are two 

correlation analyses established between these two data, they are between total plant dry weight and 

average spectral reflectance, and between total plant dry weight and vegetation indices.  

4.2.1. Correlations of Total Plant Dry Weight and Spectral Reflectance 

Figure 16 shows the correlations of field measured total plant dry weight and spectral reflectance from UAV 

images in 2016 EWS and 2017 DS for all 72 field plots.  
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Figure 16. Correlations between total plant dry dry weight and multispectral bands in 2016 EWS (a) and 

2017 DS (b) 

Based on Figure 16, it can be seen there are three bands that have strong relationships with the total plant 

dry weight or dry weight. Red band (660 nm) has a strong negative correlation, whereas near infra-red (790 

nm) and red edge (735 nm) have a strong positive correlation. This finding will be considered for spectral 

band selection as input variables in the machine learning models.  
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4.2.2. Correlations of Total Plant Dry Weight and Vegetation Indices 

After calculating six vegetation indices, correlations were established between the vegetation indices and 

total plant dry weight. Figure 17 shows the graphs of the correlations per season. Based on Figure 17 (a) 

and (b), the correlations between total plant dry weight and SAVI and MTVI2 have very similar trends and 

very close correlation values. MTVI2 was chosen as one of the input variables for the machine learning 

models.  
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(b) 

Figure 17. The correlations of total plant dry weight and vegetation indices in 2016 EWS (a) and 2017 DS 
(b). 

 

 Machine Learning Models Results 

This sub-section answers research question 1. There are four different set of data (models 1 to 4) for each 

machine learning algorithm for each each season. As mentioned in Section 3.6.4, four different models were 

produced by using a different set of input variables, and between these models the aim was to achieve the 

best model with the highest accuracy in terms of R2, RMSE, and NRMSE. This sub-section will present the 

model results per season.  
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2016 EWS 

Model 1 used 40 input variables. There was one hidden layer containing three neurons in the ANN model 

and this setting was applied for all subsequent ANN models. The final c value used for the SVM model was 

0.01 which brought the smallest RMSE value, and the final mtry value for RF model was 26. Model 2 used 

16 input variables with same input of hidden layer for ANN model. The final c value for SVM model was 

0.01, and the final mtry value for RF model was 11, which gave the smallest RMSE values. Model 3 with 64 

input variables has the same c value as the other models with 0.01 for SVM model, and for RF model the 

mtry value was 58. The summary of the parameters of each machine learning algorithm and its R2, RMSE 

and NRMSE values for this calibration or training phase is shown in Table 11. 

Table 11. The summary of the calibration results for four models with 2016 EWS dataset 

M
o

d
el

 ANN SVM RF 

RMSE 

(kg/ha) 

NRMSE 

(%) 
R2 Cost 

RMSE 

(kg/ha) 

NRMSE 

(%) 
R2 mtry 

RMSE 

(kg/ha) 

NRMSE 

(%) 
R2 

1 1035 21.5 0.44 0.01 930 15.2 0.59 26 928 15.2 0.56 

2 1476 18.1 0.32 0.01 919 15.0 0.59 11 929 15.2 0.57 

3 982 16.8 0.46 0.01 1009 16.5 0.54 58 907 14.9 0.63 

4 968 17.4 0.48 0.1 929 15.2 0.59 40 899 14.7 0.57 

 

Next the result using testing data for validation are presented in the form of graphs in Figure 18 for Model 

1, Figure 19 for Model 2, Figure 20 Model 3, and Figure 21 for Model 4.  

 

(a)    (b)    (c) 

Figure 18. Model 1 results for predicted dry weight using ANN (a), SVM (b), and RF (c) for 2016 data with 
their R2 and RMSE. Red dotted line is the 1:1 line. 

       



TITLE OF THESIS 

 

30 

 

(a)    (b)    (c) 

Figure 19. Model 2 results for predicted dry weight using ANN (a), SVM (b), and RF (c) for 2016 data with 
their R2 and RMSE. Red dotted line is the 1:1 line. 

(a)    (b)     (c) 

Figure 20. Model 3 resules for predicted dry weight using ANN (a), SVM (b), and RF (c) for 2016 EWS data 
with their R2 and RMSE. Red dotted line is the 1:1 line. 

 

(a)    (b)     (c) 
Figure 21. Model 4 results for predicted dry weight using ANN (a), SVM (b), and RF (c) for 2016 EWS 
data with their R2 and RMSE. Red dotted line is the 1:1 line. 
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The summary of the testing dataset is shown in Table 12, together with the training dataset for comparison.  

 
Table 12. The summary results of ML algorithms when calibration and validation datasets of 2016 EWS 

were used. 

M
et

ri
cs

 

M
L

 

m
o

d
el

 Calibration Validation 

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

R
M

S
E

 

(k
g/

h
a)

 ANN 1035 1476 982 968 1026 1243 957 957 

SVM 930 919 1009 929 845 869 639 877 

RF 928 929 907 899 838 871 671 823 

N
R

M
S
E

 

(%
) 

ANN 21.5 18.1 16.8 17.4 20.3 16.8 15.6 15.6 

SVM 15.2 15.0 16.5 15.2 14.2 13.8 10.4 14.3 

RF 15.2 15.2 14.8 14.7 14.2 13.7 11.0 13.5 

R
2
 

ANN 0.44 0.32 0.46 0.48 0.52 0.34 0.59 0.59 

SVM 0.59 0.59 0.53 0.58 0.67 0.65 0.75 0.63 

RF 0.56 0.57 0.63 0.57 0.67 0.64 0.72 0.68 

 

Based on the result above, we can clearly see that within the 2016 EWS dataset, the SVM regression method 

shows the best result compared to ANN and RF in all three different sets of input variables, even though 

the predicted models of RF have very close evaluation metrics values to SVM regression method. Overall, 

SVM regression with Model 3 as input variables produced the best model (the red-highlighted result). 

 

2017 DS 

The input variables for the models in 2017 DS were kept the same as 2016 EWS. Model 1 with 40 variables 

had a single hidden layer with three neurons in the ANN, which was kept the same for all subsequent 

models. SVM had a c value of 0.05 and RF had an mtry value of 5. For Model 2 with 16 variables, SVM had 

a c value of 0.25 which gave the smallest RMSE value, and RF had an mtry of 2. Model 3 with 64 variables 

had a c value of 0.05 for SVM and an mtry value of 11 for RF. The summary result of the calibration dataset 

is presented in Table 13. 

Table 13. The summary of the calibration results for four models with the 2017 DS dataset. 

Model 

ANN SVM RF 

RMSE 

(kg/ha) 

NRMSE 

(%) 
R2 Cost 

RMSE 

(kg/ha) 

NRMSE 

(%) 
R2 mtry 

RMSE 

(kg/ha) 

NRMSE 

(%) 
R2 

1 1178 17.5 0.67 0.05 835 11.3 0.78 5 872 11.8 0.77 

2 1365 15.2 0.56 0.05 878 11.9 0.76 2 942 12.7 0.69 

3 1594 21.5 0.39 0.05 759 10.2 0.82 11 886 12.0 0.76 

4 1477 18.4 0.54 0.05 725 9.8 0.82 5 849 11.5 0.78 

 
 The result using testing data for validation are presented in the form of graphs in Figure 22 for Model 1, 
Figure 23 for Model 2, Figure 24 for Model 3, and Figure 25 for Model 4.  
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   (a)    (b)     (c) 

 
Figure 22. Model 1 results for predicting dry weight using ANN (a), SVM (b), and RF (c) for 2017 DS data 
with their R2 and RMSE. Red dotted line is the 1:1 line. 

 

 (a)    (b)     (c) 

Figure 23. Model 2 results for predicting dry weight using ANN (a), SVM (b), and RF (c) for 2017 DS data 
with their R2 and RMSE. Red dotted line is the 1:1 line. 
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 (a)     (b)    (c) 
 

Figure 24. Model 3 results for predicting dry weight using ANN (a), SVM (b), and RF (c) for 2017 DS data 
with their R2 and RMSE. Red dotted line is the 1:1 line. 

 

(a)     (b)    (c) 
 

Figure 25. Model 4 results for predicting dry weight using ANN (a), SVM (b), and RF (c) for 2017 DS data 
with their R2 and RMSE. Red dotted line is the 1:1 line. 

The summary of the testing dataset is shown in Table 14 , together with the training dataset for 
comparison.  
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Table 14. The summary results of ML algorithms when calibration and validation datasets of 2017 DS 
were used. 

M
et

ri
cs

 

M
L

 

m
o

d
el

 Calibration  Validation  

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

R
M

S
E

 

(k
g/

h
a)

 ANN  1178 1365 1594 1477 1054 1263 1487 1305 

SVM 835 878 759 725 875 810 703 840 

RF 872 942 886 849 774 850 671 838 

N
R

M
S
E

 

(%
) 

ANN  17.5 15.2 21.5 18.4 17.0 14.2 20.1 17.6 

SVM 11.3 11.9 10.2 9.8 10.9 11.8 9.5 11.3 

RF 11.8 12.7 12.0 11.5 10.5 10.4 9.1 11.3 

R
2
 

ANN  0.67 0.56 0.39 0.54 0.70 0.61 0.42 0.60 

SVM 0.78 0.76 0.82 0.82 0.71 0.74 0.86 0.75 

RF 0.77 0.69 0.76 0.78 0.76 0.74 0.88 0.72 

 

The results of modelling four different sets of input variables for 2017 DS dataset show that RF produced 

better models, in comparison to ANN and SVM in terms of R2, RMSE, and NRMSE. The NRMSE of RF 

method in four models show the lowest values, meaning better estimates of the variables. In addition, Model 

3 with 64 variables also comes up as the set of variables with the highest R2 and lowest NRMSE and RMSE 

values for 2017 DS dataset.  

 

 Variable Importance 

After building models with selecting input variables based on the correlations between field measured data 

and spectral data, the establishment of variable importance using RF regression algorithm allows us to find 

which input variable performs the best. Table 15 shows the list of the variable importance of 2016 EWS 

model 3 which produce the best model. Increase in node purity (IncNodePurity) is measured by the 

reduction in sum of squared errors whenever a variable is chosen to be split.  

Table 15. The list of variable importance of 2016 EWS data 

Code of 
Variables 

Importance 
(IncNodePurity) 

Variables 

mtvi2_5 100 
MTVI2 obtained at 14 June 

2016 (DAT 42) 

re8 87.9 
average reflectance of red 

edge at 5 July 2016 (DAT 62) 

nir8 82.16 

average reflectance of near 
infrared at 5 July 2016 (DAT 

62) 

nir12 59.19 
average reflectance of near 
infrared at 3 August 2016 

nir5 58.19 

average reflectance of near 
infrared at 14 June 2016 

(DAT 42) 

nir6 57.77 
average reflectance of near 

infrared at 21 June 2016 

re12 57.38 
average reflectance of red 

edge at 5 July 2016 (DAT 62) 
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mtvi2_8 54.83 
MTVI2 obtained at 5 July 

2016 

nir7 54.38 

average reflectance of near 
infrared at 28 June 2016 

(DAT 55) 

mtvi2_4 51.57 
MTVI2 obtained at 8 June 

2016 

nir4  51.33 
average reflectance of near 

infrared at 8 June 2016 

re9 50.37 
average reflectance of red 

edge at 6 July 2016 

mtvi2_12 49.93 
MTVI2 obtained at 3 August 

2016 

re6 45.85 
average reflectance of red 

edge at 21 June 2016 

mtvi2_7 43.82 
MTVI2 obtained at 28 June 

2016 (DAT 55) 

r2 42.3 
average reflectance of red at 

25 May 2016 

re10 41.56 
average reflectance of red 

edge at 22 July 2016 

re11 39.93 
average reflectance of red 

edge at 27 July 2016 

r4 27.78 
average reflectance of red at 

8 June 2016 

nir10 26.21 
average reflectance of near 

infrared at 22 July 2016 

 

 Extraction of Digital Surface Model (DSM) for plant height estimation 

In this step, the average height data of the DSM image was extracted using the same plot boundaries 

shapefile during spectral reflectance extraction. A scatterplot of the average values of DSM image and the 

height data from field measurements is shown in Figure 26.  
 

 
Figure 26. Field measured height vs height derived using DSM data (average value). 
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The correlation value between the height from field measurement and the height information extracted 

from DSM in year 2016 EWS was 0.61 meanwhile in the year 2017 DS the correlation value was very low, 

0.27. Based on the scatterplot, it can be seen that height information from field measurements has high 

variability – from around 50cm to 100cm compared to the height information extracted from DSM – around 

61cm.  

 Derivation of height metrics 

After analysing the DSM data, height metrics were derived from the point cloud to see if there was greater 

variability in height information that could be extracted and compared to the field measured height. For 

each sample (subplot), 12 different height metrics were calculated (Table 16). The selection of these metrics 

was based on studies of Moeckel et al. (2018) and Viljanen et al. (2018). The height metrics derivation from 

point cloud data was to see if they provided a better representation of field measured height. The advantage 

of deriving height metrics compare to commonly single metrics method is that the information derived 

about crop height are different in each single metric (Moeckel et al., 2018).  Moeckel et al. (2018) used height 

metric method to estimate the height of eggplant, tomato, and cabbage, meanwhile Viljanen et al. (2018) 

applied height metric method to estimate the height of grass. Both studies estimated crops height that 

considered low, therefore this study applied the same method to estimate rice height.  

Table 16. Height metrics derived from point cloud data 

Metric Description 

min Minimum rice height 

max Maximum rice height 

avg Average rice height 

std Standard deviation of rice height 

ske Skewness of rice height 

kur Kurtosis of rice height 

p25 25th percentile of rice height 

p50 50th percentile of rice height 

p70 70th percentile of rice height 

p90 90th percentile of rice height 

p95 95th percentile of rice height 

p99 99th percentile of rice height 

 

 
Table 17 shows that there was a low correlation between these height metrics derived from the point cloud 

to rice height measured in the field. Based on this finding, both sources of remotely sensed crop height have 

low correlations with field measured height. These weak correlations show that they cannot be used to 

estimate plant height as measured in the field using the field protocol described in Section 3.3, resulting in 

a negative finding for research question 2. The reasons for this negative finding will be discussed in section 

5.  
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Table 17. Correlations between point cloud metrics and height obtained from field measurements 

  Correlation to height 
field measured 

min 0.00 

max 0.12 

avg 0.15 

std 0.00 

ske 0.06 

kur 0.15 

p25 0.16 

p50 0.15 

p75 0.14 

p90 0.13 

p95 0.12 

p99 0.16 

 

However, based on the relationship between field measured total plant dry weight and field measured height 

(Section 4.1), we introduced the height metrics into the plant dry weight model to see if it added any 

additional explanatory power to the models.  

 

Using the best model from 2016 season, model 3 with SVM methods, the new model, with height metrics, 

produced a lower accuracy. The R2 was 0.57 with RMSE of 867 kg/ha compare to the total plant dry weight 

model 3 with R2 = 0.75 and RMSE of 630 kg/ha using 2016 EWS data. Hence, adding height metrics into 

the dry weight model failed to improve the model’s performance. No further analysis was done with the 

height data. 

 Mapping Estimated Dry weight  
 

To deliver the research objective 3, this section will present maps of field measured dry weight compared 

to estimated dry weight using the best machine learning algorithms in terms of R2 and RMSE for season 

2016 and 2017. Figure 27 displays the map with 72 field subplots of field measured dry weight compared to 

estimated dry weight using SVM algorithm in 2016. Figure 28 shows the difference map between field 

measured dry weight and the predicted dry weight in 2016 on the left side, and the percentage map on the 

right side. Meanwhile, Figure 29 displays the map with 70 field subplots of field measured dry weight 

compare to 72 field subplot estimated dry weight using RF algorithm in 2017.  There were fewer field plots 

in 2017 season because two of the outliers in the total plant dry weight were removed. However, using the 

model, it is able to estimate dry weight on two missing subplots, but not on the difference and percentage 

difference map of 2017 (Figure 30). Both maps need the actual dry weight of two missing plots, therefore 

the difference and percentage difference of two missing subplot cannot be produced. 
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Figure 27. The maps of field measured dry weight and estimated dry weight using SVM algorithm in 2016 
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Figure 28. The difference map (field measured – predicted) of dry weight in 2016 (left) and the percentage difference map (100 * (field measured – 

predicted)/predicted) (right) 
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Figure 29. The maps of field measured dry weight and estimated dry weight using RF algorithm in 2017 
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Figure 30. The difference map (field measured – predicted) of dry weight in 2017 (left) and the percentage difference map (100 * (field measured – predicted)/predicted) (right) 
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5. DISCUSSIONS 

The study aim was to estimate and map plant dry weight and rice crop height using UAV data with three 

machine learning algorithms. The aim was driven by the the fact that Philippines’ rice production is still low 

compared to neighbouring countries and it is necessary to increase their rice production by increasing the 

yield on existing land. Monitoring and estimating both plant dry weight and rice height is one way to predict 

and estimate the rice yield. In this study, the estimations were done using three machine learning algorithms, 

ANN, SVM, and RF across two seasons of data from a well managed experimental set up at IRRI.  

 Variable selection and variable importance 

This study confirms that the selection of input variables in the three different machine learning algorithms 

affects the result of model estimations. The selection of variables in this study was done by establishing 

relationships between field measured and UAV spectral data. The first relationship was between total plant 

dry weight and spectral reflectance, to determine which bands had the highest correlation with plant dry 

weight. The result showed that the near infra-red band has the highest correlation with total plant dry weight, 

followed by the red-edge band. Hence, these two bands were the first to be selected as input variables for 

the machine learning algorithms. The second relationship was between total plant dry weight and vegetation 

indices. There were six vegetation indices generated from multispectral bands calculations. MTVI2 was the 

vegetation index with the highest correlation with the total plant dry weight, therefore it was chosen as an 

input variable for the model.  

After running the models with different sets of input variables, resulting in different model performance, 

using variable importance function (varImpPlot) in R, to see which variable had the highest degree of 

importance, or the variable which most affect the model’s performance. Table 15 shows the ranking of 

variable importance with MTVI2 on 14 June 2016 (DAT 42) as the most important variable of the model. 

The second until the fifth most performed variables are red edge on 5 July 2016 (DAT 62), near infrared on 

5 july 2016 (DAT 62), near infrared on 3 August 2016 (end of the season), and near infrared on 14 June 

2016 (DAT 42). The majority of the important variables list are filled with MTVI2, average reflectance of 

red edge, and near infrared bands. This finding is in line with a study by (Osborne, Schepers, Francis, and 

Schlemmer (2002) mentioned that near infrared band reflectance were used to estimated biomass without 

water stress.  

 Performance of ANN, SVM regression, and RF algorithms in dry weight estimation 

Answering the first research question about which machine learning algorithm performs the best in 

estimating the dry weight for 2016 EWS and 2017 DS data, resulted in different algorithms for different 

seasons. The results for 2016 EWS shows that the SVM regression algorithm performed the best with R2 = 

0.75, RMSE = 639 kg/ha, and NRMSE = 10.0% with Model 3 as the input variables. This finding with 

SVM method overperformed RF is rarely to be found in other studies in estimating dry weight in rice. A 

study comparing the SVM regression to RF algorithm in estimating dry weight in rice was done by 

Ndikumana et al., (2018). His findings are more in line with our finding in 2017 DS data that showed RF 

was the best algorithms in 3 out of 4 models in comparison to SVM and ANN algorithms. Model 3 produced 

the best accuracies with R2 = 0.88, RMSE = 671 kg/ha, and NRMSE = 9.06%. Meanwhile Ndikumana et 

al., (2018) obtained model accuracy of R2 = 0.9 with RMSE = 1620 kg/ha in estimating rice dry weight.  
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However, in our models, the SVM and RF algorithms performed similarly in the 2017 DS. This also 

happened in the 2016 EWS. These results suggest that there is no distinct superiority of one machine 

learning algorithm over another. Data skewness and model overfitting might be the reasons of the slightly 

different and better performance between machine learning algorithms (Horning, 2010). Overfiitting is 

when our model does better on the training set than on the testing set, which is not the case in our models. 

Table 12 and Table 14 show the summary of training or calibration result compare to validation or testing 

result in 2016 EWS and 2017 DS.  

Moreover, variation in weather condition from season to season might be one of the reasons that affect the 

models performance. Yang, Peng, Laza, Visperas, and Dionisio-Sese (2008) studied the rice yield gap 

between dry and wet season grown in LTCCE, IRRI. The finding was that higher grain yield was achieved 

in dry season compare to wet season, meaning greater dry weight accumulation. They discussed how high 

solar radiation due to less precipitation and lower atmospheric temperature in dry season are affected the 

yield performance, in which yield performance is determined by dry weight production and harvest index.  

 Negative findings of height data 

This study finds that both UAV derived products for plant height, the DSM and point cloud metrics have 

low correlations to the field measured height data. Looking into the analysis in Section 4.4 Figure 21, the 

field measured height has high variability within the dataset, compare to DSM height data which has very 

low variability. The reason behind this is how the field height data was measured. The height was measured 

four times with four different plants in one field plot by stretching the tallest leaf. Then averaging the four 

height measurements to represent one height for one field plot. First, by stretching and measuring the tallest 

leaf (called the flag leaf) within one plant itself is not a good representation of the crop height (if we consider 

plant height to be a component of canopy height). Comparing to DSM data which generated from UAV 

images from a particular height above the ground and capturing the surface of the field, it is generalizing the 

height data, but it is representing the whole plot canopy. Therefore, it is logical that DSM data does not 

have a high correlation with the field measured data since they are representing two different things.  

The analysis with DSM data then brought us to analyse the point cloud data by deriving height metrics. A 

study by Moeckel et al. (2018) found that the advantages of using multiple height metrics in estimating height 

is that it provides a more complete range of height information. Although several metrics are highly 

correlated with one another, this can be handled by the machine learning algorithms since machine learning 

can handle intercorrelated variables. There are 12 metrics derived from the point cloud and the correlations 

between these metrics to field measured data were also very poor, as shown in Section 4.5. Based on these 

findings, it was decided to not pursue further the estimation of heights using DSM or point cloud data.  

However, since the height and dry weight field measured data shows high correlations (Section 4.1.1), then 

an experiment was done by adding height metrics into the dry weight model. This experiment was to 

understand whether the addition of height metrics will improve the dry weight model performance. The 

result showed the model had a worse performance after adding the height metrics. The findings in this study 

using the height data or relating to height data are not positively answering the second research question.  

One concerning point of the field measurement of rice height is the small number of measurements, which 

is only conducted once at a few days before the harvest day. Given the variation in the field measured 

heights, it may be the case tht four samples per plot is not enough to represent the rice crop height. Also, 

during the end of the rice growing season, the rice plants tend to bend over with the weight of the full rice 

panicles. Therefore, the field measurement which stretch the tallest leaf is uncomparable with DSM or point 

cloud data, which is more representative of the rice crop canopy height.  
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Another challenge that needs to be addressed is the method of measuring ground truth of plant height. The 

field measurement of rice height that was done in this study, by taking four samples within subplot and 

average it, was not representing the whole subplot. A protocol of ground truth measurement of crop height 

needs to be developed. Our recommendation is to include an additional field measure of the rice canopy 

height at harvest time if this is deemed to be a useful parameter for rice yield estimation. This could then be 

compared to the DSM or point cloud metrics 

Alternative ways to remotely sense the height of the rice crop can also be considered. One way of indirect 

measurement is by using a ground terrestrial laser scanner (TLS). As stated by Lumme et al. (2008), TLS is 

a promising method of estimating dry weight and crop height, especially small crops like barley, oat, and 

wheat. The precision of the beam is up to level of a few millimetres. Tilly et al. (2014) measured rice height 

and dry weight estimation using TLS, reporting an R2 of 0.91 between TLS-derived height and manually 

measured rice height. A study by Bareth et al. (2016) compared UAV- and TLS- derived plant height for 

agricultural crop monitoring based on polygon grids and showed that the correlation between the two 

measurements was high with an R2 of 0.91. However, the correlation is lower during the later growth stages. 

Their assumption was this happened due to different viewing geometries, while UAV is a nadir view and 

TLS provides an oblique view. These different vieweing angles result in high variance of UAV-derived plant 

height and also lower mean of plant height values.  

 Limitations  

The followings are limitations that we found in this study that restrict the extent of the findings. 

- Limitations of the input variables: if we include all the input variables, from the historical plant dry 

weight, the average of multispectral bands reflectance, and all the vegetation indices, there are 124 

variables in total. After the correlation analysis between plant dry weight and spectral data and 

vegetation indices, there are many more set combinations of input variables other than the four 

models developed in this study. Other vegetation indices from our list can be an input to the model.  

 

- Limitations of field measured height and UAV-derived height data: due to the low correlations 

between field measured height data and the DSM data or height metrics derived from point cloud, 

the estimation of rice height was not pursue further. The high variability within the field measured 

height was not represent. 

 

- Limitations of machine learning model: the models developed in this study were all using random 

parameters that the SVM and RF algorithms selected the best for models, which produced lowest 

the RMSE. Except ANN that we defined the number of hidden layer. Therefore, the results were 

more driven by the model itself, not ourselves that experience tuning in the parameters.  

 

 

 Recommendation 

From our experience in this study, the followings are some recomemmendations that can be considered in 

the future work. 
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- To explore more vegetation indices that have been identified in previous studies as being suitable 

in estimating dry weight and height. This would require UAV data with more bands or different 

bands to the four used here. 

- To develop height estimation model even though the low correlations between field measured 

height and UAV-derived height data. This would require a different protocol for measuring rice 

crop height that is comparable to the canopy height retreived from the DSM or point cloud. 

-  To explore and experiment the parameters of machine learning algorithms and find which set of 

parameters works the best. This would require further exploration of the parmeter space and the 

model variation in model performance. 
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6. CONCLUSIONS 

The main objective of this study was to accurately estimate the dry weight and height of the rice crop using 

UAV data obtained during the wet season 2016 (2016 EWS) and dry season 2017 (2017 DS) in the IRRI 

Experimental Station, Philippines. Several conclusions to answer two research questions are presented as 

below.  

1. Which machine learning algorithm has the best accuracy (in terms of R2
 and RMSE) for 

estimation of dry weight in the wet and dry season?  

Machine learning algorithms that produce the best accuracy in terms of R2 and RMSE are different for 

2016 EWS and 2017 DS. For the 2016 EWS dataset with 72 samples, SVM regression produced the 

best model with R2 = 0.75 and RMSE = 639 kg/ha (NRMSE = 10.4%). As for the 2017 DS dataset 

with 70 samples, the RF method produced the best accuracy in estimating the dry weight with R2 of 

0.88 and RMSE of 671 kg/ha (NRMSE = 9.1%). The was no single best algorithm in estimating dry 

weight across seasons.  

2. Which machine learning algorithm has the best accuracy (in terms of R2
 and RMSE) for 

estimation of rice height in the wet and dry season?  

Due to the low correlations between DSM height values and the height field measured data, also the 

low correlations between the height metrics and the height field measured data, the assessment of 

estimating rice height using machine learning was dropped from this study. An additional study was 

done by adding the height metrics into the dry weight model to see whether it would improve the 

model’s accuracy. The result shows a decrease in dry weight model’s accuracy, with R2 dropped to 0.57 

and RMSE = 867 kg/ha. The negative funding is attributed to the field measured height representing 

a rice crop height (based on stretching up the tallest leaf) that could never be observed with remote 

sensing methods. 

To conclude, despite some limitations, this study has estimated the dry weight of rice from IRRI LTCCE 

rice field using UAV data from 2016 ESW and 2017 DS data and comparing three machine learning 

algorithms to produce a model with the best accuracy. The UAV data was found to be an adequate dataset 

in deriving important crop parameters information throughout the rice growth period. We tried to estimate 

the rice height but failed to do because of very low correlations between field measured height and UAV-

derived height data. Some recommendations have been proposed and can be considered for the further 

studies.  
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