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ABSTRACT 

Rice as one of the most important food crops feeds more people than any other crops in the world. 

Nitrogen (N) is an essential element during the rice-growing stages which affect rice yield and production. 

Although raised N application is used to increase the yield, in order to meet the demand for food, excess 

of its application would cause a series of environmental problems and even would decrease yield. 

Therefore, estimating nitrogen in rice is important to precision N application, environmental pollution 

reduction, and global carbon and N cycle. This study aims to use time-series multispectral Unmanned 

aerial vehicle (UAV) data and field observations of nitrogen together with multivariate methods and 

machine learning algorithms for estimating and mapping of nitrogen in different rice-growing seasons. 

The study area is in IRRI (International Rice Research Institution) experimental fields in Los Baños, the 

Philippines. Rice N was measured in 2016 early wet season (EWS) and 2017 dry season (DS) destructively 

(referred to as tissue analysis) from different parts of crops (stem, grain and whole plant parts) at the end 

of the growing season. SPAD and leaf colour chart readings (LCC) (as nitrogen proxies) were obtained 

nine times during the growing seasons whereas, other relevant measurements, such as leaf area index 

(LAI) was measured four times during the growing seasons. Further, SPAD and LAI values were used to 

calculate the canopy chlorophyll content (CCC). The relationships between SPAD, LCC and tissue 

analysis of the whole plant parts (referred to as plant nitrogen accumulation) (PNA) were firstly explored 

to understand the relationship between nitrogen measurements obtained destructively and those nitrogen 

proxies obtained non-destructively. In order to choose the best vegetation index (VI) for N estimation, 

the correlation coefficients between VIs and field measurements (PNA, SPAD and CCC) were examined. 

PNA was then used for further analysis, and the VI, which had the highest correlation coefficient with 

PNA was used in simple linear and stepwise regression models for PNA estimation. The partial-least 

square regression (PLSR), support vector machine (SVR) and random forest (RF) were then compared for 

PNA estimation using R2, RMSE and NRMSE between measured and estimated PNA. Finally, the most 

accurate algorithm was used for mapping rice PNA. Results are as follows, 1) Strong correlations were 

observed among the PNA, SPAD and LCC in the rice panicle initiation and heading stages; 2) The 

GNDVI derived from the multispectral UAV images was the best performing VI for PNA estimation in 

both seasons; 3) comparison between simple linear and stepwise regressions revealed that using simple 

linear regression models (SR) and GNDVI from rice panicle initiation and heading stages are sufficient for 

PNA estimation; 4) among the machine learning algorithms, the RF was the most accurate machine 

learning algorithm for PNA estimation in 2016EWS (R2=0.9, RMSE=8.37, NRMSE=10.9%) and 2017DS 

(R2=0.93, RMSE=9.93, NRMSE=8.1%); 5) PNA estimation maps were generated for the whole study site 

using the RF model in both seasons. Further investigation for more accurate N status based on rice hills 

level and different input for machine learning algorithms could be examined in future studies. 

Keywords: machine learning, regression, vegetation index, UAV, multispectral imagery, plant nitrogen 

accumulation, rice 
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1. INTRODUCTION  

1.1. Background  

Population growth and increasing consumption of resources are increasing the global demand for food, 

and this trend is expected to continue (Conforti, 2011). The growing competition for water, land, and 

energy resources will impact current food systems (Godfray et al., 2010). Also, climate change will largely 

have negative effects on crop yield because of extreme abiotic factors like high and low temperatures, 

excess rainfall and droughts (Dabi & Khanna, 2018). Due to these reasons, food security continues to 

attract global attention. The World Food Summit (1996) reinforced the definition of food security: Food 

security exists when all people, at all times have physical and economic access to sufficient, safe and 

nutritious food that meets their dietary needs and food preferences for an active and healthy life. The 

Food and Agriculture Organization (FAO) is a specialized agency of the United Nations that leads 

international efforts to defeat hunger. A recent FAO reports documents that world hunger appears to be 

on the rise again after a prolonged decline. According to this report, the estimated number of 

undernourished people has increased from 777 million in 2015 to 815 million in 2016 (FAO, 2017). 

Besides the demand for increased crop production, to achieve food security, people need to have access to 

healthy and nutritious food from different sources, so food quality is also considered a crucial aspect for 

the agricultural industry. Therefore, it is not hard to see that food security plays a significant role not only 

in crop production but also on human health. 

 

Rice is a staple food for the world’s population. It provides 21% of the global calorific needs and 15% of 

protein (IRRI, n.d.). In the meantime, rice also supplies minerals, vitamins, and fibre. Apart from its 

nutritional value, it is also a source of income for Asian rice farmers (Barker et al.,1985), and its financial 

benefits cannot be underestimated. Culturally, rice is the most important food grain in much of Asia. Rice 

continues to be the primary food (Yoshida, 1981), and it is the most widely cultivated crop in Asia. 

Therefore, maintaining and increasing rice production is an objective in many Asian countries. The 

Philippines, as a major food producer and one of the top rice importers in the world, also faces 

insufficient rice production problems (Manglapus, 1974). The Philippine Statistics Authority has published 

a report about the rice situation and outlook from 2016 to 2018 in rice production. The result shows that 

the country’s palay (rice) production from October to December 2018, at 7.16 million metrics tons 

production in 2017 or by 2.2 percent. Harvest area contracted by 16 thousand hectares from the previous 

year’s level of 1,864 thousand hectares. Yield per hectare dropped from 3.93 metric tons in 2017 to 3.87 

metric tons in 2018 (Philippine Statistics Authority, 2019). 

 

Besides environmental disturbances, nutrient management is an important part of rice crops management 

during the growing season. Nitrogen is the most important mineral nutrient that plants can take up from 

the soil in different growing stages (Zahir, 2014) as it contributes to plant biomass and yield production as 

well as protein. Nitrogen deficiency is a major limiting factor in the productivity of major crops (Glass, 

2003). Because of the lack of nutrients in soils, especially in intensively farmed areas, nitrogen (N) fertilizer 

application is an effective and direct method to increase nutrient availability for the plant and thus increase 

biomass production and eventually yield.  

 

Proper application of N fertilizer in the appropriate quantity and time is vital to increase crop growth and 

grain yields. Although N fertilizer contributes substantially to yield enhancement, its excessive use will 
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cause serious problems and a negative impact on both the environment and human health (Ahmed et al., 

2017). For example, the excessive application of N fertilizer will increase the risk of environmental 

pollution, causing the leakage of N into the water and atmosphere, and it will result in water 

eutrophication, increased nitrate content in the subsurface water and greenhouse gas emission (Ju et al., 

2009). Therefore, knowledge of crop N status is an important aspect of crop management. In the field, 

crop nitrogen can be measured through destructive sampling and tissue analysis of dried leaves, e.g., using 

Kjeldahl Digestion and Dumas Combustion (Muñoz-Huerta et al., 2013). Moreover, various diagnosis 

instruments have been developed for non-destructive measurements in the field, e.g., chlorophyll meter 

(CM) such as SPAD, lead colour chart (LCC) and Green Seeker to represent nitrogen proxies. In this 

regard, Bijay et al. (2002) applied the SPAD chlorophyll meter for N management on rice and wheat, the 

result shows that plant need-based N management through chlorophyll reduces the N requirements on 

rice with no yield loss, which illustrated the potential use of the SPAD chlorophyll meter on N treatment.   

 

Field measurement of nitrogen, through destructive or non-destructive methods, is time-consuming and 

costly and can only be performed for a small scale at limited growing stages. Remote sensing can be used 

as an effective method to monitor crop parameters such as nitrogen during the entire growing season for 

large areas. The next section reviews existing remote sensing-based approaches for estimating crop N 

status, which will then lead to the problem statement and research gap for this research.  

1.2. Literature Review  

Different remote sensing data such as hyperspectral and multispectral images can be used to estimate 

nitrogen status during the rice-growing season. Hyperspectral data, providing large numbers of spectral 

bands, has shown great potential to estimate crop parameters such as crop nitrogen status (Tan et al., 

2018). For multispectral data, a few relevant bands can be used to calculate different vegetation indices, 

which correlate well with N indicators (Brinkhoff et al., 2019). Although satellite remote sensing provides 

a high possibility for large-scale crop growth monitoring and precision management, the quality of remote 

sensing images from passive sensors is affected by unfavourable weather conditions such as the presence 

of fog and clouds. With the rise of drone technology in recent years, Unmanned Aerial Vehicle (UAV)-

based remote sensing has gradually become a promising approach to overcome these problems. The high 

spatial resolution, relatively low operational costs and the near real-time image acquisition can overcome 

the limitations of ground sensing and optical satellite remote sensing. On the other hand, the acquisition 

of UAV imagery is limited by local weather conditions such as wind, heavy rain and changing light 

conditions during a flight. 

 

To estimate crop N status using remote sensing data, various methods can be used. Vegetation indices are 

the most commonly used methods for N estimation. Cao et al. (2013) used the crop circle multispectral 

active canopy sensor to identify vegetation indices by using green, red edge, and near-infrared (NIR) bands 

at key growth stages to estimate N nutrition indices (NNI). Their results according to R2 of the regression 

model indicated that four red edge-based indices, the red edge soil adjusted vegetation index (RESAVI), 

modified RESAVI (MRESAVI), red edge difference vegetation index (REDVI), and red edge re-

normalized difference vegetation index (RERDVI), performed well for estimating NNI across growing 

stages. Zhang et al. (2006) used multispectral data to predict Nitrogen status at the canopy scale based on 

vegetation indices. The result indicated that canopy reflectance measurements converted to ratio 

vegetation index (RVI) and normalized difference vegetation index (NDVI) provided a better prediction 

of rice N status. The developed regression models using RVI and NDVI to predict N status proved a high 

with R2 ranging from 0.82 to 0.94. In addition to rice, this method is also used on other crops. A good 

correlation between leaf area index (LAI) and the green normalized difference vegetation index (GNDVI) 
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was tested by the UAV-camera system over two variably fertilized fields on winter wheat (Zheng et al., 

2018). 

 

Although traditional vegetation indices have been used and compared for nitrogen estimation at different 

rice-growing stages, they have not been used for nitrogen estimation under different seasonal conditions. 

Since remote sensing-based approaches generally require the processing of huge amounts of data from 

different platforms, great attention is currently devoted to machine learning (ML) methods. Machine 

learning-based methods can process a large number of inputs, and also handle the non-linear problems 

using datasets from multiple sources (Chlingaryan et al., 2018). Based on the advantages of machine 

learning, it can be widely used in crop yield prediction and nitrogen state estimation (Shibayama et al., 

2012). 

 

Shao et al. (2012) compared three different methods including partial least square regression (PLSR), and 

least squares support vector (LS-SVM) machine for N status estimation using canopy spectral reflectance 

measured at visible and near-infrared regions through spectroscopy and nitrogen measurements using 

SPAD meter readings in rice fields. Their comparative analysis showed that the LS-SVM was superior in 

predicting SPAD values on rice. Apart from PLSR and SVM methods, the Random Forest (RF) algorithm 

also has shown the potential to accurately predict leaf N concentration using hyperspectral data (Farifteh 

et al., 2007). In another study, Kim et al. (2016) applied satellite remote sensing data to four ML 

techniques, SVM, Random Forest (RF), Extremely Randomized Trees (ERT), and Deep Learning (DL), to 

estimate corn yield in Iowa State. Comparisons of the validation statistics showed that DL provided more 

stable results by overcoming the overfitting problem of generic machine learning approaches. 

 

The review of the above literature further reveals that no study has compared the PLSR, SVM, and RF for 

nitrogen estimation of rice crops in different seasons. Therefore, these multivariate method and machine 

learning algorithms were examined for the first time for the rice N estimation in this research. 

 

1.3. Research aim and objectives  

The aim of the study is to accurately estimate and map the rice nitrogen (N) status during different 

growing seasons (2016 early wet season and 2017 dry season) in IRRI experimental fields using UAV data 

and field observations. Based on the aim and the available datasets of this study, several research 

objectives are proposed:  

 

a. To evaluate the relationships between nitrogen measurements obtained destructively in rice crops 

(from tissue analysis), and nitrogen proxies obtained un-destructively using SPAD readings, and colour 

chart during the dry and wet seasons. 

 

b. To compare the performance of common vegetation indices (such as red-edge index, green index) 

for estimation of plant nitrogen accumulation on rice crops using UAV data for both dry and wet seasons. 

 

c. To evaluate the performance of different multivariate methods such as stepwise and partial least 

square regression, support vector regression and random forest for estimation of plant nitrogen 

accumulation on rice crops using UAV data at dry and wet season. 

 

d. To map the plant nitrogen accumulation of rice crops in both dry and wet seasons using UAV 

data and the most accurate method (based on R2, RMSE and NRMSE of the methods) studied. 
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1.4. Research questions  

a. What is the relationship between different rice nitrogen measurements obtained using tissue 

analysis (destructive) and nitrogen proxies measured using non-destructive methods? 

 

b. What is the optimum vegetation index (in terms of R2) calculated from UAV data for rice plant 

nitrogen accumulation estimation in dry and wet seasons? 

 

c. What is the most accurate machine learning method (in terms of R2, RMSE and NRMSE) to 

estimate plant nitrogen accumulation in the dry season and wet season? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAPPING NITROGEN STATUS  

IN RICE CROPS USING UNMANNED AERIAL VEHICLE (UAV) DATA, MULTIVARIATE METHODS AND MACHINE LEARNING ALGORITHMS 

1 

2. STUDY AREA AND DATA  

This chapter consists of two main sections. Section 2.1 describes the study site, and section 2.2 explains 

the field and UAV data acquisition which were used for the analysis in this study. 

2.1. Study Area  

The study area is in the IRRI (International Rice Research Institution) Zeigler Experiment Station (also 

known as the IRRI farm) in Los Baños, the Philippines. This area is 21m above sea level with a tropical 

climate, which is suitable for rice growth all year round. IRRI established a Long-Term Continuous 

Cropping Experiment (LTCCE) in 1962, which is the longest-running rice field trial in the world. The 

LTCCE covers an area of one hectare and is located at 14° 10' 5.6424'' N, 121° 15' 21.1788'' E (Figure 1). 

It aims to determine the impact of growing irrigated rice continuously, season after season, and year after 

year, on crop productivity and soil health. To apply different rice experiments on the field, the 100m x 

100m LTCCE site is divided into 108 main plots of 8m x 8m and 72 subplots of 4m x 8m. The layout of 

LTCCE may change every season; therefore, field data acquisition (including UAV and field biophysical 

sampling) need to be collected for different wet and dry seasons. In 2016, rice was planted on April 20th 

and harvested in the middle of August. Then, rice was planted again on December 21st and harvested at 

the middle of April in 2017. Due to the precipitation is mainly concentrated from April to October in Los 

Baños (Figure 2), the rice season in 2016 was defined as the early wet season (EWS) and the season in 

2017 was defined as dry season (DS).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 1: The LTCCE in the IRRI (International Rice Research Institution) Zeigler Experiment Station, 
Los Baños, the Philippines and the location of subplots (red polygons) used as samples in this study. The 
background RGB image was obtained by UAV on June 1st, 2016.  
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Figure 2: The average monthly precipitation (mm) in Los Baños, the Philippines in 2016 (a) and 2017 (b) 
(“World Weather Online,” n.d.). 

2.2. Data  

2.2.1. Field data 

The field data was provided as a Microsoft Excel file and contained different components. It included the 

details of field measurement methods, nitrogen (N) treatment dates, metadata for each variable, the 

2016EWS and 2017DS field layout, variety treatment, etc. All the field data information was provided by 

Dr Roland Buresh (IRRI). 

 

Three rice varieties: IRRI 146 (V4), IR111690H (V7), and IR2-10-L1-Y1-L2 (V8) were planted in the 

subplots with eight different N applications. The layouts for the field experiments in 2016EWS and 

2017DS are shown in Figure 3, with the subplots shown in white. In both seasons, the experiments used 

the same rice varieties, but different N applications. Table 1 shows the different N applications in 

2016EWS and 2017DS. It can be observed that N was applied for several times in different rice growth 

stages. The specific N application dates were managed by the crop calendar, and the operation dates are 

listed in Table 2. In this study, all the field operations were taken after the transplanting dates, and 

therefore are referred to as days after transplanting (DAT). For the whole rice-growing season, the sowing, 

transplanting and harvest time was clearly recorded in the field data. However, the rice panicle initiation 

and heading stages dates need to be estimated according to the duration of the rice crops in the field. The 

rice heading started about 30 days before the physiological maturity. As for the panicle initiation stage, it 
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was counted about 60 days before the physiological maturity. Then, Table 3 shows the date for different 

rice-growing stages in 2016EWS and 2017DS. 

 

In the LTCCE, the destructive and non-destructive sampling methods were applied for field 

measurements. These include N tissue analysis, SPAD-502 chlorophyll meter readings, leaf colour chart 

(LCC) readings and leaf area index (LAI) measurement. These parameters were measured on different 

dates during the rice-growing season (Table 4). The LAI and tissue analysis measurements were performed 

using destructive sampling. LAI was measured four times during the rice-growing season and only on 

green leaves using a LI-3000C Portable Leaf Area Meter. As for the tissue analysis, leaves were collected 

from the field and used established equations to retrieve plant N accumulation (PNA) from straw and 

grain dry mass. All samples were oven-dried for 72 hours at 80°C and weighted to determine dry weight, 

and the straw and grain N concentration were measured using micro-Kjeldahl digestion method (Lang, 

1958). Then, using their respective concentration times, their oven-dry weight obtained the straw and 

grain N accumulation. Finally, the PNA was calculated as the sum of the straw and grain N and expressed 

in kg of N per hectare. The tissue analysis was performed only once at the physical maturity stage. PNA 

represents the total amount of N accumulated in the aboveground plant biomass at harvest time, and it is 

more representative and comprehensive to describe the N status of rice crops, it was used for further 

analysis in this study. 

 

The SPAD, and leaf colour chart (LCC) measurements were taken from the leaves of rice crops nine times 

during the growing season. The SPAD chlorophyll meter is a commonly used instrument for non-

destructive chlorophyll measurements. SPAD readings have shown to have a strong correlation with leaf 

chlorophyll concentration (Uddling et al., 2007). Chlorophyll concentration in leaves and canopies can be 

an indicator of photosynthetic capacity, developmental stage, plant productivity, and N concentration 

(Ustin, 1999). Therefore, SPAD readings can be used as a proxy for N status. In this study, SPAD 

readings were used as the proxy for leaf chlorophyll content. The canopy chlorophyll content was then 

calculated by SPAD value times the LAI value. Because the LAI was only measured four times during the 

season in 2016EWS, the CCC values were obtained for the same dates as the LAI measurements. It is 

calculated using LAI times SPAD value. However, in the 2017DS, the CCC values were only calculated 

for three different dates after matching the SPAD and LAI values with the same measurement dates. 

 

The leaf colour chart (LCC) is an inexpensive alternative to the chlorophyll meter (Byju wt al., 2009). The 

LCC measurements were taken using a four-panel colour chart made by IRRI. After comparing the 

greenness of rice leaf with the critical colour shade, the leaf colour threshold could be decided, which 

indicated its N content (Peng et al., 1996).  

 

After acquiring the field data, checking on data distribution and variation is an important step before any 

data analysis. An outlier could indicate that there is an error on the observation during the measurement, 

and this might cause a misleading result (Bansal et al., 2016). Only the field measurements correlated with 

rice N status were used in this study. Exploratory data analysis was performed for SPAD, LCC, and LAI 

time-series data per rice variety using line charts, box plots and histogram distributions. The outliers were 

mainly detected by the time-series data variation of line chart (Figure A3) and boxplots (Figure A4) and 

therefore, were excluded from further analysis. After confirming with Dr Roland Buresh from IRRI, one 

SPAD measurement from V8 on DAT43 in 2016EWS, two LAI measurements from V4 in 2017DS on 

DAT 43 and DAT 68 were detected as outliers and removed from further analysis. 
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Figure 3: LTCCE field layout for 2016EWS and 2017DS in IRRI Block B5-8. The subplots are white. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



MAPPING NITROGEN STATUS  

IN RICE CROPS USING UNMANNED AERIAL VEHICLE (UAV) DATA, MULTIVARIATE METHODS AND MACHINE LEARNING ALGORITHMS 

5 

Table 1: N treatment applications in the subplots in 2016EWS and 2017DS in the LTCCE in the IRRI 
Zeigler Experiment Station, Los Baños, the Philippines. 

 

 
Table 2: N application dates in different rice-growing stages in 2016EWS and 2017DS on LTCCE in IRRI 
Experimental Station in Los Baños, the Philippines. 

 

  Sequence 
Calendar 

date 
Days after 

transplanting (DAT) 

2016EWS 

Basal 2016-05-11 7 

Tillering 2016-05-27 23 

Panicle 
initiation 

2016-06-16 43 

Booting 2016-07-06 63 

2017DS 

Basal 2017-01-11 7 

Tillering 2017-01-28 24 

Panicle 
initiation 

2017-02-17 44 

Booting 2017-03-09 64 

 
Table 3: Rice growth stages in 2016EWS and 2017DS in the LTCCE in the IRRI Zeigler Experiment 
Station, Los Baños, the Philippines. 

Rice growth stage 
2016EWS 2017DS 

Date Date 

Seed sowing 2016-04-20 2016-12-21 

Transplanting 2016-05-04 2017-01-04 

Panicle initiation 2016-06-05 2017-02-12 

Heading  2016-07-05 2017-03-14 

Harvest  2016-08-04 2017-04-13 

Season 
N 

treatment 
N treatment description 

  Fertilizer N applied (kg N/ha) 

N rate Basal Tillering 
Panicle 
initiation 

Booting 

2016EWS 

N1 No added N 0 0 0 0 0 

N2 Low target yield 90 30 30 30 0 

N3 High target yield 135 45 45 45 0 

N4 Intermediate target yield, 3 splits 115 30 43 43 0 

N5 Intermediate target yield, 3 splits 115 30 30 55 0 

N6 Intermediate target yield, 4 splits 115 30 30 40 15 

2017DS 

N1 No added N 0 0 0 0 0 

N2 Low target yield 130 38 38 38 16 

N3 High target yield 195 57 57 57 24 

N4 Intermediate target yield, 3 splits 165 45 60 60 0 

N5 Intermediate target yield, 3 splits 165 45 50 70 0 

N6 Intermediate target yield, 4 splits 165 45 50 50 20 
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Table 4: Dates of different field measurements used in this study taken in the LTCCE in the IRRI Zeigler 
Experiment Station, Los Baños, the Philippines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Field 
Measurement 

Sequence 

2016EWS 2017DS 

Calendar 
date 

Days after 
transplanting 

(DAT) 

Calendar 
date 

Days after 
transplanting 

(DAT) 

LAI 

1 2016-05-26 22 2017-01-27 23 

2 2016-06-15 42 2017-02-16 43 

3 2016-06-28 55 2017-03-02 57 

4 2016-07-05 62 2017-03-13 68 

SPAD & LCC 

1 2016-05-26 22 2017-01-27 23 

2 2016-06-02 29 2017-02-02 29 

3 2016-06-09 36 2017-02-09 36 

4 2016-06-15 42 2017-02-16 43 

5 2016-06-22 49 2017-02-23 50 

6 2016-06-29 56 2017-03-02 57 

7 2016-07-06 63 2017-03-09 64 

8 2016-07-14 71 2017-03-16 71 

9 2016-07-21 78 2017-03-23 78 
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2.2.2. UAV data  

The UAV data was collected with a fixed-wing UAV-Sensefly eBee during two growing seasons. Different 

sensors were used: RGB; 4-band multispectral; and thermal images. The RGB image resolution is 2-3 

cm/px, the multispectral image has 6-8 cm/px and the thermal images have 10-15cm/px. After exploring 

the UAV images with different sensors, the multispectral images with green (550nm), red (660nm), red-

edge (735nm), and near-infrared (190nm) bands were used for data analysis (Figure 4). The images were 

captured weekly during the whole rice-growing season in 2016EWS and 2017DS. In general, the UAV was 

flown 12 times during the season for multispectral image acquisition. 

Table 5 shows the basic information about the UAV images used in this study. All images were corrected 

for radiometric and geometric errors by IRRI using Pix4D software. The mosaics were spatially corrected 

using ground control points, and Pix4D automatically discarded images if they were too blurry. The UAV 

data was already mosaiced by Mr Steve Klassen from IRRI, and it could be directly used for reflectance 

extraction and further analysis.    

  

Figure 4: False colour composites using the near-infrared band as red, the green band as green, and the red 
band as blue. Multispectral images were taken on June 1st, 2016 in the LTCCE in the IRRI Zeigler 
Experiment Station, Los Baños, the Philippines. 
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Table 5: Multispectral UAV images information obtained from IRRI and used in the thesis. 

 

 

 

 

  
Image folder 

   Date of 
acquisition  

Reflectance resolution (cm) 

2016EWS 

2016-05-23_mslte 2016-05-23 7.6 

2016-05-25_mslte 2016-05-25 7.4 

2016-06-01_mslte 2016-06-01 7.4 

2016-06-08_mslte 2016-06-08 7.6 

2016-06-14_mslte 2016-06-14 7.1 

2016-06-21_mslte 2016-06-21 7.3 

2016-06-28_mslte 2016-06-28 7.3 

2016-07-05_mslte 2016-07-05 7.7 

2016-07-06_mslte 2016-07-06 7.4 

2016-07-22_mslte 2016-07-22 7.2 

2016-07-27_mslte 2016-07-27 7.1 

2016-08-03_mslte 2016-08-03 7.4 

2017  
DS 

2017-01-13_mslowland 2017-01-13 7.28 

2017-01-19_mslowland 2017-01-19 7.05 

2017-02-08_mslln 2017-02-08 7.49 

2017-02-16_mslowland 2017-02-16 7.34 

2017-02-23_mslowland 2017-02-23 7.37 

2017-03-02_mslowland 2017-03-02 7.19 

2017-03-08_mslowland 2017-03-08 7.6 

2017-03-15_mslowland 2017-03-15 7.6 

2017-03-22_mslte 2017-03-22 6.2 

2017-03-29_mslowland 2017-03-29 6.78 

2017-04-05_mslowland 2017-04-05 6.98 

2017-04-11_mslowland 2017-04-11 7.1 
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3. METHODS  

This chapter explains the methods used in this study to estimate PNA of rice crops at harvest time. Figure 

5 presents an overview of the methodology used in this thesis. This chapter consists of seven sections. 

Section 3.1 describes the pre-processing procedures of the reflectance extraction from the time-series 

multispectral UAV imagery. Section 3.2 aims to examine the relationship between three field 

measurements (PNA, SPAD and LCC) used to describe the N in the rice fields. Section 3.3 describes the 

VIs selection and their correlation with agronomic parameters (SPAD, CCC and PNA). In section 3.4, 

linear regression models, including simple linear regression (SR) and stepwise multiple linear regression 

(SMLR) were built using the best performance VI to predict PNA. Section 3.5 explains the use of 

multivariate method (PLSR) and machine learning algorithms (SVR and RF) for PNA estimation, 

including the details of model selection and hyperparameter tuning. Section 3.6 describes the validation 

and accuracy assessment of multivariate methods and machine learning algorithms. Section 3.7 explains 

the procedure of mapping the PNA for the 2016EWS and 2017DS using the method with the highest 

accuracy. 

 

 
Figure 5: Methodology flowchart of the study. 
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3.1. Data processing  

Multispectral UAV images (see 2.2) were available for the 100m × 100m experimental field site. In this 

study, samples belong to the subplots where different N treatments were applied on different rice varieties 

and where field measurements have been taken throughout (SPAD, LAI, LCC) and at the end of the 

season (PNA) and represented the average value of each subplot. Therefore, the mean reflectance data of 

each subplot was extracted from all multispectral images. To be able to extract the reflectance at the 

subplot level, the subplot boundaries were digitized in ArcGIS 10.7. To avoid the shadow influence at the 

edge of subplots, inner subplots boundaries were manually digitized. The inner subplots boundaries were 

0.5m away from the main subplot boundaries (Figure 6). After generating the inner subplots boundaries, 

the mean reflectance was extracted using the ‘extract’ function in the raster package in R (Hijmanset al., 

2020). This function could directly extract the reflectance values of pixels within the subplot polygons and 

calculate statistics. In this process, the mean and standard deviation are the main outcomes of the 

extraction process. The mean reflectance values of the spectral bands were then used for the VI 

calculations and models input, and the standard deviations were used to check the variation of the 

reflectance values and to detect the possible outliers per subplot. 

 

Figure 6: Digitized inner subplot boundaries with 0.5m distance away from the subplot boundary (in red). 
The background colour composite image (RGB) shows the LTCCE in the IRRI Experimental Station in 
Los Baños, the Philippines on June 1st, 2016. 
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3.2. Relationships between Agronomic Parameters  

To understand the relationships between field measurements used as N proxies, SPAD and LCC and 

nitrogen measurements obtained destructively, the correlation among them were explored. The Pearson 

correlation coefficients (r) were therefore calculated between SPAD, LCC and PNA. Pearson correlation 

coefficient is a statistical method to judge the linear correlation between two variables. It ranges from -1 

to+1. The higher absolute “r” value refers to two variables have a strong linear relationship with each 

other.   

 

3.3. Relationships between VIs and Agronomic Parameters  

VI is a spectral transformation by combining information from two or more spectral bands for enhancing 

the detection of vegetation properties and comparing the terrestrial photosynthetic activity and canopy 

structural variations (Huete et al., 2002). The VIs selection was based on the reflectance variation (Figure 

A1 and Figure A2) and different VIs characteristics. Seven VIs are selected in this research, and they are 

respectively NDVI, GNDVI, RVI, GRVI, CI, NDRE and RTVI (Table 6). All the VIs were calculated in 

R using the mean reflectance from each subplot. 

 

The agronomic parameters of SPAD, CCC and PNA were correlated with selected VIs in different dates 

during the whole growing season, then the date with the highest correlation coefficient was used for PNA 

estimation. Although LCC is also related to N measurements, the measuring result is largely dependent on 

the subjective judgement of the observer, and it is less accurate compared to SPAD measurements (Duyet 

al., 2019). Therefore, it’s relation with VIs was not considered in this section. In this study, the SPAD and 

CCC were time-series data (measured nine times per season), therefore, they could be correlated with VIs 

from the same date. The PNA was only measured at the harvest time, so the correlations were built 

between VIs in different growing stages with the harvest PNA.  

 
Table 6: Vegetation selected in this study. 

Vegetation Index Formula Reference 

Normalized Difference Vegetation Index (NDVI) (NIR - R) / (NIR + R) (Tucker, 1979) 

Green Normalized Difference Vegetation Index (GNDVI) (NIR - G) / (NIR + G) (Gitelson et al., 1996) 

Ratio Vegetation Index (RVI) NIR / R (Tucker, 1979) 

Green Ratio Vegetation Index (GRVI) NIR / G (Blackmer et al., 1996) 

Chlorophyll Index (CI) NIR / G - 1 (Gitelson, 2005) 

Normalized Difference Red Edge Index (NDRE) (NIR - RE) / (NIR + RE) (Carneiro et al., 2019) 

Red-edge Triangular Vegetation Index (RTVI) 100*(NIR - RE) - 10*(NIR -G) (Chen et al., 2010)  

 

3.4. Linear regression models between best performing VI and PNA  

According to the correlation coefficient between the VIs and agronomic parameters, the best performing 

VI in specific rice-growing date was identified in both the 2016EWS and 2017DS. The crucial dates were 

selected according to the higher correlation coefficient between best performing VI and agronomic 

parameter during the rice-growing season. Then, linear regression models were built using the best 

performing VI in crucial dates for PNA estimation at harvest time.  

 

In addition to estimating PNA using VI from a single date, applying the best performing VI in the whole 

growing season is also worth trying. To understand if all the VIs for the whole rice-growing season are 
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needed or just the crucial date is already sufficient for PNA estimation, the performance of stepwise 

multiple linear regression models was investigated. 

 

Stepwise multiple regression models between the best performing VI for the whole growing season and 

the PNA were built to achieve the goal. Stepwise regression is a method of fitting regression models in 

which the choice of predictive variables is carried out by an automatic procedure (Halinski et al., 1970). In 

each step, the explanatory variables) are added or removed based on a prespecified criterion normally by a 

sequence of F-tests or t-tests, but other metrics are also possible, such as the Akaike information criterion 

(AIC), which is an estimator of out-off-sample prediction error. AIC can also provide information on 

model quality (Aho et al., 2014). In this study, the stepwise multiple regression models were built in R with 

the time-series VIs data as the explanatory variables, and the PNA of the rice crops is the dependent 

variable. With the backward direction setting, the model will remove the best performing VIs in non-

significant date in each step until it got the smallest AIC value, then the remaining best performing VI 

with different dates with the most explanatory power are used for estimating the PNA. The PNA was 

estimated using stepwise multiple linear regression models for 2016EWS and 2017DS. 

 

3.5. Multivariate method and machine learning algorithms 

Machine learning is a study of computer algorithms, and it provides systems with the ability of 

automatically learning and improving from experience (Mitchell et al., 1997). Therefore, machine learning 

is deemed as a subset of artificial intelligence. The main task of machine learning algorithms is to make 

predictions which are closely related to computation statistics. In addition to the strong learning ability, 

machine learning can also handle massive, multi-collinearity, non-linearity and noisy data.  

 

In this study, the input data was the same for all models. It contained the mean reflectance for all 

individual bands and the best performing VI from the previous analysis for the whole rice-growing season 

as the explanatory variables, as well as PNA at harvest time as the independent variable. Once the variable 

data were prepared, multivariate method and machine learning methods were applied to estimate PNA in 

this study. Figure 7 shows the procedure of using multivariate method and machine learning algorithms 

for parameter estimation.  

 

 

 

Figure 7: Multivariate and machine learning methods procedure overview 

 

3.5.1. Model Selection 

In this study, the PNA value was the predicting variable with continuous numeric values, therefore, several 

linear and non-linear models were involved for PNA estimation: the partial least square regression (PLSR), 

the support vector regression (SVR) and random forest (RF). The basic theories of these models were 

explained below:  
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(1) Partial Least Square Regression 

Partial least square regression (PLSR) is a popular linear model, the main idea of this technique is to 

reduce the predictors to a smaller set of uncorrelated components, and then to perform least squares 

regression on these components. It has been used in different field of studies, including remote sensing 

(Geladi et al., 1986). PLSR is an alternative method of multiple linear regression models.  However, PLSR 

is more robust than traditional regression models (Almergren et al., 2009). PLSR finds the 

multidimensional direction in the independent space, which explains the maximum variance direction in 

the dependent space PNA in an iterative manner. In general, the PLSR can fit multiple response variables 

in a single model. In this study, the main parameter used in this algorithm was the ncomp, which refers to 

the component number of the models (Table 7). After applying the input data into the algorithm, the 

package could directly train and select the optimal PLSR model (determined by RMSE) with the best 

ncomp as the result. In the meantime, the importance of input features could also be known as an 

intermediate result in the study. 

 

(2) Support Vector Regression 

Support vector regression (SVR) is a supervised learning model used for regression analysis (Drucker et 

al., 1997). SVR gives flexibility to define how much error is acceptable in the model and will find an 

appropriate line (or hyperplane) in higher dimensions to fit the data (Awad et al., 2015). SVR could 

construct both linear and nonlinear regressions applying different kernels. One of the main benefits of 

SVR is that the computational complexity does not depend on the dimensionality of the input space. In 

addition, SVR offers excellent generalization capability and high prediction accuracy (Wu et al., 2008).  

Table 7 listed the parameters used in the SVR model in this study. e1071 package helped to train and 

determine the optimal SVR algorithm (based on RMSE) after applying the input variables in the algorithm 

for PNA estimation. The parameters of the optimal SVR model could be checked in the model result.  

 

 

(3) Random Forest 

Random forest (RF) is an ensemble learning algorithm for classification and regression, which is a bagging 

technique by constructing masses of decision trees while training and generating a mean prediction 

(regression) of individual trees (Ho, 1995; Ho, 1998). In the standard decision tress, each node was split 

according to the best split among all variables. However, each node in RF is split using the best among a 

subset of randomly selected predictors at that node (Liawwt al., 2002), which highly improves the model’s 

generalization performance and its training accuracy. In addition, RF can handle thousands of input 

variables and list variables importance to the model as the analysis result. Based on the above advantages 

of RF, it is considered as a powerful machine learning algorithm in this study. Some important parameters 

were listed in Table 7 for training RF models in the study. After applying the input variables in RF 

algorithm, the optimal model could be selected and determined (based on RMSE) by grid search method 

by using the Caret package. Then, parameter values of the optimal RF model and the importance of input 

features could be known by checking the summary of the model. 

 

 

3.5.2. Hyperparameter tuning  

Hyperparameter optimization is used to choose various parameters to get the optimal model to solve the 

prediction task. In different models and different statistical packages, the tuning parameters are different. 

Table 7 shows the parameters and packages used in R for different models. In this study, different 
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packages were used to select the best value or methods for significant parameters in multivariate and 

machine learning models. 

 

 
Table 7: Multivariate methods and machine learning algorithms with significant parameters and packages 
used in R. 

 

Tuning 
parameters 

Parameter explanations Packages  

PLSR "ncomp" The number of components to include in the model 
Caret  

(Kuhn et al., 2020)                           

SVR 

"epsilon" Epsilon in the insensitive-loss function 

e1071                        
(Meyer et al., 2019) 

"kernel" 
The kernel used in training and predicting. Different 
kernel type could be selected in the model. 

 "cost" Cost of constraints violation 

RF 

"mtry" 

Number of variables randomly sampled as candidates 
at each split. Note that the default values are different 
for classification (sqrt(p) where p is number of 
variables in x) and regression (p/3) Caret                          

(Kuhn et al., 2020)        

"ntree" 
Number of trees to grow. This should not be set to 
too small a number, to ensure that every input row 
gets predicted at least a few times 

 

3.6. Validation and Accuracy assessment  

In order to have the same sample size for each rice variety, stratified random sampling was used to 

separate the whole dataset into calibration and validation in linear regression models. As for the splitting 

method, 70% of the data was used for training and 30% was used for the validation. Therefore, the 

relationship between best performing VI in crucial dates and PNA were studied using the calibration 

dataset, then the validation data was used for comparing the estimated PNA with the actual PNA.  

 

As for the PLSR and machine learning models, the input data was split into training (70%) and testing 

(30%) datasets by stratified random sampling based on rice varieties. To make the model accurately work 

for prediction, it always needs to validate the stability of the models. It is significant to assure that the 

model has got most of the patterns from the data correctly without too much noise or bias (Cawley et al., 

2010). Cross-validation is a statistical technique for testing the performance models, and it also helps with 

avoiding overfitting. As there are 51 training samples in this study, the 10-fold cross-validation was applied 

for PLSR, SVR and RF training models. In the 10-fold cross-validation, the training data is divided into 10 

subsets, and the holdout method was repeated for ten times. At each time, one of the ten subsets was used 

as the validation set, and other subsets were put as the training set. The error estimation is calculated by 

the average of ten trials error for the final model effectiveness. Using 10-fold cross-validation could 

significantly reduce the bias for the training data fitting and the variance of validation. In conclusion, the 

training dataset was used for training the model for PNA estimation, and the testing data was used for 

comparing the estimated PNA with measured PNA.  

 

The coefficient of determination (R2), root mean square error (RMSE), and normalize root mean square 

error (NRMSE) were calculated for evaluating model performance in this study. R2 represents the 

proportion of the variance for the dependent variable explained by an independent variable or variables in 
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regression models. The R2 value normally ranges from 0-1. The higher R2 indicate a higher correlation 

between observations and estimations. RMSE mainly reflects the difference between the observation and 

prediction value by models. It also explains as the standard deviation of the residuals (prediction errors) 

that shows how the concentration of data is around the best fitting line. The RMSE is commonly used in 

regression analysis. Both R2, RMSE were calculated by the Caret package in R. NRMSE is calculated for 

comparison between different scale models or parameters. The formula is shown below: 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛
 

 

The Omax represents the maximum value of the observation data, and the Omin is the minimum of the 

observation data. 

 

3.7. Mapping N status 

PNA estimation maps were generated based on the most accurate method (based on the lowest RMSE) 

using individual band reflectance with the best performing VI time-series data as input. The predicted and 

actual PNA maps in 2016EWS and 2017DS were generated in ArcGIS 10.7. The PNA values were 

classified into four categories (≤70kg/ha, 70-100kg/ha,100-150kg/ha,>130 kg/ha) to be easily compared 

and explained. The difference between the estimated and measured PNA were also shown in the form of 

maps for 2016EWS and 2017DS. 
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4. RESULTS 

The following section covers the main findings of this research, including those obtained from the analysis 

of field measurements and UAV data. This chapter consists of five sections. Section 4.1 illustrates the 

relationship between different N related agronomic parameters (PNA, SPAD and LCC). Section 4.2 

presents the correlation coefficient tables between VIs and agronomic parameters (SPAD, CCC and PNA) 

in order to select the best performing VI. Section 4.3 shows the results of applying the best performing VI 

for PNA estimation using regression models. The result of using multivariate method and machine 

learning algorithms for PNA estimation are shown in section 4.4. The last section presents the maps of 

actual and estimated PNA using the most accurate model for 2016EWS and 2017DS. 

4.1. Relationship among field agronomic parameters  

Figure 8 shows the variation of the correlation coefficient between different agronomic parameters in wet 

(a) and dry (b) season. As can be observed from this figure, similar trends exist between SPAD and PNA, 

SPAD and LCC in the wet and dry season. The correlation starts increasing in the third week after 

transplanting and becomes stable during the panicle initiation stage (r>0.7). At the end of the season, the 

correlation coefficients decrease but remain at a high value. Based on the different combinations, the 

correlation between SPAD and LCC shows the best performance for both seasons. In conclusion, these 

three field measurements are well correlated in the panicle initiation and heading stage. 

 

Figure 8: Correlation coefficient among SPAD, LCC, and PNA measured in rice fields during 2016EWS 
(a) and 2017DS (b) in LTCCE field in IRRI Zeigler Experiment Station, Los Baños, the Philippines. 

 

4.2. Relationship between vegetation indices and agronomic parameters 

Table 8 and Table 9 list the correlation coefficient of VIs with SPAD and CCC values in critical days in 

2016EWS and 2017DS. The correlation coefficient between VIs and agronomic parameters was calculated 

for the whole rice-growing seasons, then field measurement days with relatively high r-value were deemed 

as crucial days in the rice growing season. They are DAT 56 and DAT 63 in 2016EWS, and DAT 57 and 

DAT 68 in 2017DS. The results indicated that the NDVI, GNDVI, RVI, GRVI, CI, NDRE and RTVI 

had positive relationships with SPAD value and CCC value. In general, the correlation coefficients are 

higher than 0.8, which means that these selected VIs are highly correlated with the chlorophyll content in 
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both leaf and canopy levels, and the correlation with leaf level is better than the canopy level. Figure 9 

shows the significance test between VIs and SPAD on DAT 56 in 2016EWS, the p value shows that the 

calculated correlation is significance with 72 samples in the study. 

 

Table 10 shows the correlation coefficients between VIs in two critical days and PNA measured in harvest 

day in 2016EWS and 2017DS. The correlation between VIs and PNA shows a high correlation in these 

two crucial days. Although the PNA was only measured once at the end of the season, it has a positive 

correlation with the selected two dates. The correlation coefficient is high, such as GNDVI, CI, NDRE, 

RTVI, etc., that the r-value could reach to 0.8. Therefore, the VIs calculated in critical rice-growing days 

could be used for PNA estimation in different seasons.  

 
Table 8: Correlation Coefficients (r) between VIs and SPAD meter readings and CCC for each variety 
(n=24) and all varieties (n=72) in DAT 56 and DAT 63 in 2016EWS. 

 

 

 

 

Figure 9: Correlation significance tests between VIs and SPAD measurements for all rice varieties on 
DAT 56 in 2016EWS (n=72). 

  SPAD   CCC 

 DAT 56   DAT 63   DAT 56   DAT 63 

  All V4 V7 V8   All V4 V7 V8   All V4 V7 V8   All V4 V7 V8 

NDVI 0.94 0.96 0.96 0.93  0.89 0.95 0.96 0.96  0.87 0.81 0.88 0.92  0.84 0.93 0.90 0.90 

GNDVI 0.93 0.95 0.97 0.92  0.93 0.94 0.97 0.96  0.88 0.84 0.90 0.93  0.87 0.92 0.91 0.87 

RVI 0.88 0.91 0.93 0.86  0.79 0.87 0.94 0.90  0.89 0.86 0.88 0.94  0.78 0.91 0.90 0.90 

GRVI 0.88 0.96 0.94 0.87  0.89 0.90 0.96 0.93  0.89 0.85 0.91 0.94  0.85 0.90 0.92 0.86 

CI 0.88 0.90 0.94 0.87  0.89 0.88 0.96 0.93  0.89 0.85 0.91 0.94  0.85 0.90 0.92 0.86 

NDRE 0.90 0.94 0.91 0.88  0.91 0.91 0.92 0.92  0.88 0.82 0.89 0.93  0.89 0.93 0.89 0.92 

RTVI 0.83 0.90 0.86 0.75   0.85 0.89 0.90 0.88   0.83 0.81 0.85 0.83   0.87 0.93 0.88 0.93 
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 Table 9: Correlation Coefficients (r) between VIs and SPAD meter readings and CCC for each variety 
(n=24) and all varieties (n=72) in DAT 57 and DAT 68 in 2017DS. 

 

 
Table 10: Correlation Coefficients (r) between VIs and PNA for each variety (n=24) and all varieties 
(n=72) in DAT 56 and DAT 63 in 2016EWS, DAT 57 and DAT 68 in 2017DS. 

  PNA in 2016EWS   PNA in 2017DS 

 DAT 56   DAT 63   DAT 57   DAT 68 

  All V4 V7 V8   All V4 V7 V8   All V4 V7 V8   All V4 V7 V8 

NDVI 0.86 0.85 0.84 0.90  0.82 0.84 0.79 0.90  0.90 0.89 0.93 0.90  0.90 0.89 0.92 0.90 

GNDVI 0.87 0.87 0.85 0.92  0.83 0.87 0.78 0.90  0.91 0.90 0.95 0.92  0.92 0.91 0.93 0.92 

RVI 0.90 0.88 0.91 0.92  0.79 0.82 0.80 0.91  0.91 0.91 0.96 0.95  0.91 0.91 0.90 0.93 

GRVI 0.89 0.87 0.88 0.94  0.82 0.86 0.77 0.91  0.87 0.88 0.94 0.91  0.84 0.85 0.89 0.89 

CI 0.89 0.87 0.88 0.94  0.82 0.86 0.77 0.91  0.92 0.92 0.96 0.95  0.93 0.93 0.93 0.93 

NDRE 0.86 0.85 0.85 0.91  0.83 0.85 0.80 0.90  0.93 0.91 0.96 0.93  0.94 0.94 0.94 0.94 

RTVI 0.84 0.81 0.86 0.85   0.82 0.81 0.82 0.86   0.93 0.92 0.96 0.94   0.94 0.95 0.95 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  SPAD   CCC 

 DAT 57   DAT 68   DAT 57   DAT 68 

  All V4 V7 V8   All V4 V7 V8   All V4 V7 V8   All V4 V7 V8 

NDVI 0.96 0.98 0.97 0.97  0.85 0.94 0.91 0.95  0.83 0.90 0.86 0.76  0.76 0.63 0.85 0.89 

GNDVI 0.97 0.99 0.98 0.97  0.88 0.95 0.92 0.95  0.84 0.91 0.88 0.78  0.78 0.64 0.87 0.90 

RVI 0.92 0.97 0.97 0.94  0.82 0.95 0.87 0.93  0.88 0.92 0.89 0.82  0.74 0.61 0.85 0.90 

GRVI 0.94 0.97 0.97 0.94  0.89 0.95 0.90 0.94  0.86 0.92 0.89 0.82  0.78 0.65 0.87 0.91 

CI 0.94 0.97 0.97 0.94  0.89 0.95 0.90 0.94  0.86 0.92 0.89 0.82  0.78 0.65 0.87 0.91 

NDRE 0.95 0.96 0.97 0.94  0.87 0.93 0.93 0.94  0.85 0.91 0.91 0.81  0.79 0.65 0.89 0.91 

RTVI 0.94 0.96 0.97 0.94   0.83 0.92 0.94 0.94   0.88 0.92 0.91 0.82   0.78 0.64 0.89 0.92 
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4.3. Traditional Regression models for Nitrogen status estimation using VIs 

Linear regression and multiple linear regression models are firstly used for PNA estimation in this study. 

Figure 10 shows the calibration result of linear regression models using GNDVI in crucial days for PNA 

estimation in 2016EWS and 2017DS. The p-value of all regression models, which are less than 0.05, 

illustrate that the models are significant for PNA estimation. In addition, the significant test for each input 

variable was shown in the model summary. According to the p-value of the input variable, they are 

statistically significant coefficients in the regression models. Figure 11 and Figure 12 demonstrate the 

calibration and validation plots of the linear regression model using GNDVI value in crucial days to 

predict PNA in 2016EWS and 2017DS. The calibration model generates the equation between GNDVI 

and PNA, and then the validation data set was applied in the model and plotted the estimated PNA and 

measured PNA in different days of rice growing season. In 2016EWS, the result shows that the prediction 

in DAT 56 (Figure 11c) is better than in DAT 63 (Figure 11d) according to the R2, RMSE, and NRMSE. 

In 2017DS, the relationship between GNDVI and PNA in DAT 68 (Figure 12c) is stronger than in DAT 

57 (Figure 12d). 
 

 

 
Figure 10: Linear regression model performance using single days for PNA estimation in 2016EWS (a, 
b)(n=51) and 2017DS (c, d) (n=51). 
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Figure 11: Relationships between measured and estimated PNA using GNDVI-based linear regression 
models. Calibration (n=51) and validation (n=21) plots for N status prediction in DAT 56 (a)(c) and DAT 
63 (b)(d) in 2016EWS. 
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Figure 12: Relationships between measured and estimated PNA using GNDVI-based linear regression 
models. Calibration (n=51) and validation (n=21) plots for PNA estimation in DAT 57 (a)(c) and DAT 68 
(b)(d) in 2017DS. 

 

In addition to using simple linear regression on critical days for N status estimation, stepwise multiple 

linear regression models between GNDVI time-series data and PNA were also applied in 2016EWS 

(Figure 13a) and 2017DS (Figure 13b). The p value and F-test for each model describes that the model 

performs well for PNA estimation. It also shows that the GNDVI in different dates as input variables are 

significant for the model according to the p-value which are closed to zero. Figure 14 shows that the 

measured PNA and estimated PNA are highly correlated (R2> 0.75) in both seasons.  

Comparing the simple linear regression models with stepwise multiple linear regression models, they have 

similar R2, RMSE, NRMSE result which means that using GNDVI on a single specific day is already 

sufficient for PNA estimation in rice-growing season. 
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Figure 13: Stepwise multiple linear regression models performance using different days during the rice 
growth season for PNA estimation in 2016EWS(a) (n=51) and 2017DS (b) (n=51). 

 

 
Figure 14: Relationships between measured and estimated PNA using stepwise multiple linear regression 

models based on UAV-derived GNDVI time-series data for estimating PNA at harvest time in 2016EWS 

(a) and 2017DS (b). 
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4.4. Multivariate methods and machine learning algorithms comparison for Nitrogen status 
estimation 

Different methods were applied in the study for PNA estimation, so the model quality and accuracy 

results were judged in this section for the best model selection. 

 

Tuning parameter is always the most important step for training model. Figure 15 shows the PLSR model 

parameter selection, the optimal model which the ncomp equals five with the smallest RMSE was selected 

in both seasons. As for the SVR model tuning, Figure 16 presents important parameters for the best SVR 

model after grid search. It could be noticed that the kernel type of the selected SVR model is radial which 

is non-linear method. The RF algorithm parameter tuning result (Figure 17) shows that when the mtry 

value equals to 47 and 11 in the model, the RMSE value is the lowest. 

 

 
Figure 15: PLSR algorithm for parameter tuning using 10-fold cross-validation and grid search in 
2016EWS(a) and 2017DS(b). 

 

 
Figure 16: SVR algorithm for parameter tuning using 10-fold cross validation and grid search in 2016EWS 
(a) and 2017DS(b). 
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Figure 17: RF algorithm for parameter tuning using 10-fold cross-validation and grid search in 2016EWS 
(a) and 2017DS(b). 

 

With the optimal model selection for different methods, the model performance was assessed in the 

following section. The importance of input variables was firstly ranked for PLSR (Figure 18) and SVR 

(Figure 19) models. Comparing the important variables at the top of the list in same season, there is 

similarity using PLSR and RF models for PNA estimation. In 2016EWS, the GNDVI on June 28th and 

the NIR band reflectance on July 22nd account for large promotion in both PLSR and RF models. As for 

the calibration model in 2017DS, the red and green band reflectance on March 2nd are highly important 

for both algorithms. Moreover, there is also difference between the two models, such as the number of 

highly important variables in PLSR model are more than those in RF models. 
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Figure 18: Feature importance of PLSR model in 2016EWS(a) and 2017DS(b). 
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Figure 19: Feature importance of RF model in 2016EWS(a) and 2017DS(b). 
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The relationship between estimated and measured PNA using PLSR, SVR and RF are shown in Figure 20. 

Models performance were assessed by R2, RMSE and NRMSE in this session. In 2016EWS (Figure 12a-c), 

the best performing model is RF in Figure 3c (R2= 0.9, RMSE=8.37, NRMSE=10.9%), which shows a 

higher correlation and lower error in between estimated and measured PNA. Then, the SVR (Figure 12b) 

also explains a strong relationship between prediction and measurement. In 2017DS (Figure 12d-f), the 

RF is still the most representative algorithm for N status prediction (R2= 0.93, RMSE=9.93, 

NRMSE=8.1%). PLSR model with more than 0.9 correlation between the measured and estimated value 

(R2= 0.91, RMSE=10.65, NRMSE=8.7%) also performs well. 
 

 
 

 
Figure 20: Relationships between measured PNA and estimated PNA using PLSR, SVM and RF in 
2016EWS (a-c) and 2017DS (d-f) based on testing dataset (n=21). 
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Table 11 and Table 12 show all methods for PNA estimation performance in both seasons. Comparing 

with linear regression models with a single vegetation index, the results have improved using machine 

learning algorithms with higher correlation and lower error between measured PNA and estimated PNA. 

The RF is always the optimal algorithm in both wet and dry season. 

 
Table 11: R2, RMSE and NRMSE for all prediction methods (SR, SMLR, PLSR, SVR and RF) used to 
estimate PNA of rice crop in 2016EWS. 

2016EWS 

  SR SMLR PLSR SVR RF 

R² 0.81 0.8 0.8 0.85 0.9 

RMSE 10.4 11.16 10.8 9.94 8.37 

NRMSE (%) 13.5 14.5 14 12.9 10.9 

 
Table 12: R2, RMSE and NRMSE for all prediction methods (SR, MLR, PLSR, SVR and RF) used to 
estimate PNA of rice crop in 2017DS. 

2017DS 

  SR SMLR PLSR SVR RF 

R² 0.89 0.89 0.91 0.88 0.93 

RMSE 13.05 12.37 10.65 13.39 9.93 

NRMSE (%) 10.7 10.1 8.7 11 8.1 
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4.5. Mapping N status for 2016 wet season and 2017 dry season 

Figure 21a and Figure 22a show the estimated PNA maps in subplots using the RF as the most accurate 

method in 2016EWS and 2017DS with four classes. To compare the difference between the estimated and 

measured PNA, difference maps of PNA were generated using the estimated PNA minus measured PNA 

in 2016EWS and 2017DS (Figure 23). In order to compare the difference between two seasons, the 

difference percentage was calculated using the difference value divided by measured PNA for two seasons 

The difference percentage value was classified into four categories to assess the estimation result, the 

closer the percentage is to zero, the better the estimation result. 

 

 
 

Figure 21: Estimated N status map(a) and measured N status map(b) on subplots on August 11th 

(DAT99), 2016 on LTCCE field in the IRRI Zeigler Experiment Station, Los Baños, the Philippines. 
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Figure 22: Estimated N status map(a) and measured N status map(b) for subplots on April 18th (DAT104), 
2017 on LTCCE field in the IRRI Zeigler Experiment Station, Los Baños, the Philippines. 

 

 

Figure 23: Difference map between estimated PNA and measured PNA in 2016EWS(a) and 2017DS(b) 

on LTCCE field in the IRRI Zeigler Experiment Station, Los Baños, the Philippines. 
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Figure 24: Difference percentage maps between estimated PNA and measured PNA in 2016EWS(a) and 
2017DS(b) on LTCCE field in the IRRI Zeigler Experiment Station, Los Baños, the Philippines. 

 
Figure 25: Estimated rice PNA maps for LTCCE field in the IRRI Zeigler Experiment Station, Los Baños, 
the Philippines at harvest time in 2016EWS(a) and 2017DS(b). 
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5. DISCUSSION  

The study aimed to accurately estimate nitrogen accumulation (PNA) of rice crops using time-series UAV 

multispectral images obtained for two growing seasons in IRRI Zeigler Experiment Station, Los Baños, 

the Philippines. Vegetation indices (VIs), linear regression, multivariate models (stepwise and partial least 

square regressions (PLSR)) as well as machine learning algorithms, including  support vector regression 

(SVR) and random forest (RF) were used to estimate PNA of rice crops for 2016 early wet season (EWS) 

and 2017 dry season (DS). The model with the highest accuracy (lowest RMSE and highest R2) was used 

for mapping PNA for both rice seasons. The results showed that the RF model had the highest accuracy 

in estimating PNA on rice and therefore was used for mapping PNA for both growing seasons. 

5.1. Relationships among filed agronomic parameters  

The UAV imagery and field data offered by Dr Roland Buresh and Steve Klassen from IRRI organization 

were well organized. Strong correlations were found among the SPAD values, leaf colour chart readings 

(LCC) and PNA in the rice panicle initiation and heading stages. Suresh et al. (2017) also showed that 

SPAD and LCC measured in rice crops 56 days after transplanting (DAT) on rice had a significant and 

positive correlation with leaf N content on rice. 

 

5.2. Linear regression models using GNDVI for PNA estimation  

Correlation coefficients between the time-series VIs and PNA were calculated for selection of the best 

performing VI in 2016EWS and 2017DS, and the dates in which PNA and VIs had highest correlations 

were selected as the most crucial days (rice panicle initiation and heading stages) for PNA estimation in 

Table 8 and Table 9. Among the studied VIs, GNDVI always had the highest correlation coefficient with 

SPAD, CCC and PNA during the whole growing season. Earlier findings by Gitelson et al. (1996) showed 

that GNDVI is useful for assessing the canopy chlorophyll content (CCC) in rice crops. The CCC has 

been confirmed as an indicator for reflecting the N content on winter wheat by Delloye et al. (2018).  

 

As can be observed from results in Table 8 to Table 10, 56 and 63 DAT in 2016EWS, as well as 57 and 68 

DAT in 2017DS are crucial dates for PNA estimation, therefore, simple linear regression models were 

built using GNDVI calculated for those days and field measurements of PNA for both 2016EWS and 

2017DS (Figure 10). The R2 value and RMSE (R2=0.78-0.89, RMSE=10.4-13.75, NRMSE=10.7%-14.9%) 

of simple regression models illustrated the significance of using GNDVI in crucial days for PNA 

estimation. The feasibility of using VI in regression models for N status estimation has been shown in 

many studies (Noureldin et al., 2013; Maki et al., 2014). In addition, the stepwise multiple linear regression 

models were built using GNDVI time-series data to check if the PNA estimation would improve using 

more dates GNDVI data in the regression models (Figure 13). We found that the model performance of 

stepwise multiple linear regression model is quite similar to the simple linear regression model with R2=0.8 

and RMSE=11.16 in 2016EWS, R2= 0.89 and RMSE=12.37 in 2017DS (Table 11 and Table 12). 
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5.3. Estimating and mapping PNA of rice crops using multivariate methods and machine learning 
models on rice in 2016EWS and 2017DS  

Comparing multivariate method (PLSR) and machine learning algorithms (SVR, RF) performance for 

PNA estimation was an important part of this research. In general, machine learning algorithms improved 

PNA estimation accuracy compared to simple linear and stepwise regression models (Table 11 and 12). 

The PLSR models for PNA estimation performed well in both rice seasons (R2=0.8-0.91. RMSE=10.65-

10.8, NRMSE=8.7%-14%). In PLSR models, the more important input variables were the red band 

reflectance and GNDVI value in panicle initiation stage (Figure 18). Most of the input variables 

importance were larger than 50% in PLSR models. As for SVR models, it also showed good performance 

for PNA estimation (R2=0.85-0.88. RMSE=9.94-13.39, NRMSE=11%-12.9%). Maimaitijiang et al. (2020) 

proved that SVR model has great potential in predicting crop above ground biomass and LAI using UAV 

data. The RF models performed as the most accurate one among all studied machine learning algorithms 

in both the 2016EWS and 2017DS (R2=0.9-0.93, RMSE=8.37-9.93, NRMSE=8.1%-10.9%). Relatively 

more important features in the RF models (Figure 19) were the red band reflectance and GNDVI value in 

panicle initiation stage, which shows similarity to the PLSR models, but the features in RF models with 

high importance percentage is less than in PLSR models. The capability of using RF models to estimate N 

status on rice using GNDVI and individual bands reflectance is also demonstrated in the study by Sun et 

al. (2017). In recent years, the RF algorithm has gradually become popular for different applications such 

as crop parameter estimation, due to the stability with a varying number of base learners (Genuer et al., 

2010). As such, Wang et al. (2016) showed that using different VIs derived from China’s environmental 

satellite (HJ) charged-coupled device (CCD) images in RF regression models produced the most accurate 

estimates of wheat biomass in comparison with SVR and artificial neural network (ANN).  

As can be observed from the PNA map generated by RF models (Figure 21a and Figure 22b), PNA values 

larger than 130g/ha do not exist in 2016EWS, which means the PNA value in 2017DS was generally 

higher than 2016EWS. It can also be observed from the estimated and measured PNA maps in Figure 21 

and Figure 22 that PNA is more affected by N application and less by the varietal differences. The 

subplots with no N treatment always presented a PNA value less than 70kg/ha. Then, PNA started to 

increase when the total N application is 90kg/ha in 2016EWS and 130kg/ha in 2017DS. Since the total N 

application amount in 2017DS was higher than 2016DS, the number of subplots that had more than 

130kg/ha of PNA in 2017EWS were higher than in 2016 DS. The PNA difference (residual) maps 

showed that for most of the subplots, the difference between the estimated and measured PNA value 

were closed to zero (Figure 23), which shows the reliability of the estimated PNA values using RF in both 

seasons. According to difference percentage maps for both seasons, the residuals between most measured 

and estimated subplots were less than 10% (Figure 24). Besides the comparison between the measured 

and estimated PNA, the RF models were further applied to the whole LTCCE site to map the PNA 

distribution (Figure 25). The produced PNA maps could be used for better N treatment and for actual 

field instruction. 

 

5.4. Recommendations  

Field measurements were presented as an average value at the subplots level, however, smaller-scale field 

measurements based on rice hills level could be taken inside the subplots for more accurate 

measurements. Due to the very high resolution of UAV images, there is also scope for further 

improvement on PNA estimation, for example, detailed PNA estimation based on rice hills level could be 

studied. As such, the variation inside the subplots could be studied.  
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The PNA destructive measurements were only made one time at the harvest time, it is suggested to take 

multiple measurements during the whole growing season same as other non-destructive methods. As such, 

the relationships between destructive N measurements and non-destructive measurements in different 

rice-growing stages could be investigated. The PNA value could also been estimated in each rice growth 

stage instead of just once at the harvest time by applying multivariate models.  

 

The study only used linear and stepwise regression models, PLSR, SVR and RF algorithms for the 

selection of the best model for PNA estimation. More algorithms could be examined to select a convinced 

and robust algorithm in future works. Moreover, different scenarios could be tested by applying different 

inputs in machine learning algorithms. For examples, different VI or derivatives of reflectance can be used 

as input to train the models. The remotes sensing data combining with different field measurements such 

as the time-series SPAD value could also been tested as model input for PNA estimation. Based on the 

results of linear and stepwise regressions, it is suggested that instead of using the remote sensing data and 

VI for the whole rice-growing season, only selecting the crucial day's data as input could be sufficient for 

PNA estimation in the future studies. 
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6. CONCLUSION 

In this research, the potential of UAV images was examined in agricultural fields experiments and the 

application for larger-scale agricultural management. The use of traditional vegetation indices to estimate 

PNA were evaluated for different seasons. Multivariate methods and machine learning algorithms 

including PLSR, SVR and RF were also evaluated and compared for PNA estimation. The PNA of rice 

crops under dry and wet seasons were finally mapped using the most accurate machine learning algorithm 

at the end of the study. 

 

The field measurements of SPAD, LCC, and PNA are highly correlated during the rice panicle initiation 

and heading stages. Different VIs related to structure and chlorophyll is selected for rice PNA estimation 

at the harvest time. All the chosen VIs indicated good correlations with PNA in both growing seasons. 

The best performance VI among all VIs was the Green Normalized Difference Vegetation Index 

(GNDVI). It was used in simple linear regression models using crucial days (DAT 56 and DAT63 in 

2016EWS, DAT57 and DAT68 in 2017DS) to estimate PNA is suitable and convincing in both rice-

growing seasons. In addition, the time-series GNDVI data for the whole growing season were applied in 

the stepwise linear regression models for PNA estimation. Moreover, multivariate methods and machine 

learning algorithms (PLSR, SVR and RF) were applied using individual bands reflectance and GNDVI 

time-series data for PNA estimation. Among different machine learning algorithms in this study, the RF as 

the most accurate model (determined by R2, RMSE) was used for rice PNA mapping in 2016EWS and 

2017DS. Further efforts can be made for more accurate N status estimation, including applying the RF 

model in rice hill level to examine the N variation inside each subplot. 
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APPENDICES 

Figure A1: Variation of spectral reflectance per variety during the rice-growing season in 2016EWS. ID represents the subplot number, and five subplots were selected for each 
variety for reflectance checking. 
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Figure A2: Variation of spectral reflectance per variety during the rice-growing season in 2017DS. ID represents the subplot number, and five subplots were selected for each 
variety for reflectance checking. 
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Figure A3: Field measurements (SPAD, LCC and LAI) exploration for trend analysis and outlier detection by variety (n=24) using line charts in 2016EWS and 2017DS. The 
SPAD value for V8 on DAT49 in 2016EWS showed an abnormally high value. Other detected outliers were the LAI value in 2017DS for V4 in DAT 43 and DAT 68. In DAT 
43, the maximum LAI value reached to 10.1, which is not realistic comparing with the nearest measuring dates. In DAT 68, the minimum value is larger than the minimum value 
in DAT 43, which does not accord with the law of LAI changes. Therefore, these outliers were removed from further analysis. 
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Figure A4: Field measurements (SPAD, LCC and LAI) exploration for trend analysis and outlier detection by varieties(n=24) using boxplots in 2016EWS and 2017DS.  
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