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ABSTRACT

Rice as one of the most important food crops feeds more people than any other crops in the world.
Nitrogen (N) is an essential element during the rice-growing stages which affect rice yield and production.
Although raised N application is used to increase the yield, in order to meet the demand for food, excess
of its application would cause a series of environmental problems and even would decrease yield.
Therefore, estimating nitrogen in rice is important to precision N application, environmental pollution
reduction, and global carbon and N cycle. This study aims to use time-series multispectral Unmanned
aerial vehicle (UAV) data and field observations of nitrogen together with multivariate methods and
machine learning algorithms for estimating and mapping of nitrogen in different rice-growing seasons.
The study area is in IRRI (International Rice Research Institution) experimental fields in Los Bafios, the
Philippines. Rice N was measured in 2016 early wet season (EWS) and 2017 dry season (DS) destructively
(referred to as tissue analysis) from different parts of crops (stem, grain and whole plant parts) at the end
of the growing season. SPAD and leaf colour chart readings (LCC) (as nitrogen proxies) were obtained
nine times during the growing seasons whereas, other relevant measurements, such as leaf area index
(LAI) was measured four times during the growing seasons. Further, SPAD and LAI values were used to
calculate the canopy chlorophyll content (CCC). The relationships between SPAD, LCC and tissue
analysis of the whole plant parts (referred to as plant nitrogen accumulation) (PNA) were firstly explored
to understand the relationship between nitrogen measurements obtained destructively and those nitrogen
proxies obtained non-destructively. In order to choose the best vegetation index (VI) for N estimation,
the correlation coefficients between VIs and field measurements (PNA, SPAD and CCC) were examined.
PNA was then used for further analysis, and the VI, which had the highest correlation coefficient with
PNA was used in simple linear and stepwise regression models for PNA estimation. The partial-least
square regression (PLSR), support vector machine (SVR) and random forest (RF) were then compared for
PNA estimation using R2 RMSE and NRMSE between measured and estimated PNA. Finally, the most
accurate algorithm was used for mapping rice PNA. Results are as follows, 1) Strong correlations were
observed among the PNA, SPAD and LCC in the rice panicle initiation and heading stages; 2) The
GNDVI derived from the multispectral UAV images was the best performing VI for PNA estimation in
both seasons; 3) comparison between simple linear and stepwise regressions revealed that using simple
linear regression models (SR) and GNDVI from rice panicle initiation and heading stages are sufficient for
PNA estimation; 4) among the machine learning algorithms, the RF was the most accurate machine
learning algorithm for PNA estimation in 2016EWS (R?=0.9, RMSE=8.37, NRMSE=10.9%) and 2017DS
(R?=0.93, RMSE=9.93, NRMSE=8.1%); 5) PNA estimation maps were generated for the whole study site
using the RF model in both seasons. Further investigation for more accurate N status based on rice hills

level and different input for machine learning algorithms could be examined in future studies.

Keywords: machine learning, regression, vegetation index, UAV, multispectral imagery, plant nitrogen

accumulation, trice
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1. INTRODUCTION

11. Background

Population growth and increasing consumption of resources are increasing the global demand for food,
and this trend is expected to continue (Conforti, 2011). The growing competition for water, land, and
energy resources will impact current food systems (Godfray et al., 2010). Also, climate change will largely
have negative effects on crop yield because of extreme abiotic factors like high and low temperatures,
excess rainfall and droughts (Dabi & Khanna, 2018). Due to these reasons, food security continues to
attract global attention. The World Food Summit (19906) reinforced the definition of food security: Food
security exists when all people, at all times have physical and economic access to sufficient, safe and
nutritious food that meets their dietary needs and food preferences for an active and healthy life. The
Food and Agriculture Organization (FAO) is a specialized agency of the United Nations that leads
international efforts to defeat hunger. A recent FAO reports documents that world hunger appears to be
on the rise again after a prolonged decline. According to this report, the estimated number of
undernourished people has increased from 777 million in 2015 to 815 million in 2016 (FAO, 2017).
Besides the demand for increased crop production, to achieve food security, people need to have access to
healthy and nutritious food from different sources, so food quality is also considered a crucial aspect for
the agricultural industry. Therefore, it is not hard to see that food security plays a significant role not only
in crop production but also on human health.

Rice is a staple food for the world’s population. It provides 21% of the global calorific needs and 15% of
protein (IRRI, n.d.). In the meantime, rice also supplies minerals, vitamins, and fibre. Apart from its
nutritional value, it is also a soutce of income for Asian rice farmers (Batrker et al.,1985), and its financial
benefits cannot be underestimated. Culturally, rice is the most important food grain in much of Asia. Rice
continues to be the primary food (Yoshida, 1981), and it is the most widely cultivated crop in Asia.
Therefore, maintaining and increasing rice production is an objective in many Asian countries. The
Philippines, as a major food producer and one of the top rice importers in the world, also faces
insufficient rice production problems (Manglapus, 1974). The Philippine Statistics Authority has published
a report about the rice situation and outlook from 2016 to 2018 in rice production. The result shows that
the country’s palay (rice) production from October to December 2018, at 7.16 million metrics tons
production in 2017 or by 2.2 percent. Harvest area contracted by 16 thousand hectares from the previous
year’s level of 1,864 thousand hectares. Yield per hectare dropped from 3.93 metric tons in 2017 to 3.87
metric tons in 2018 (Philippine Statistics Authority, 2019).

Besides environmental disturbances, nutrient management is an important part of rice crops management
during the growing season. Nitrogen is the most important mineral nutrient that plants can take up from
the soil in different growing stages (Zahir, 2014) as it contributes to plant biomass and yield production as
well as protein. Nitrogen deficiency is a major limiting factor in the productivity of major crops (Glass,
2003). Because of the lack of nutrients in soils, especially in intensively farmed areas, nitrogen (N) fertilizer
application is an effective and direct method to increase nutrient availability for the plant and thus increase
biomass production and eventually yield.

Proper application of N fertilizer in the appropriate quantity and time is vital to increase crop growth and
grain yields. Although N fertilizer contributes substantially to yield enhancement, its excessive use will
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cause serious problems and a negative impact on both the environment and human health (Ahmed et al.,
2017). For example, the excessive application of N fertilizer will increase the risk of environmental
pollution, causing the leakage of N into the water and atmosphere, and it will result in water
eutrophication, increased nitrate content in the subsurface water and greenhouse gas emission (Ju et al.,
2009). Therefore, knowledge of crop N status is an important aspect of crop management. In the field,
crop nitrogen can be measured through destructive sampling and tissue analysis of dried leaves, e.g., using
Kjeldahl Digestion and Dumas Combustion (Mufioz-Huerta et al., 2013). Moreover, various diagnosis
instruments have been developed for non-destructive measurements in the field, e.g., chlorophyll meter
(CM) such as SPAD, lead colour chart (LCC) and Green Secker to represent nitrogen proxies. In this
regard, Bijay et al. (2002) applied the SPAD chlorophyll meter for N management on rice and wheat, the
result shows that plant need-based N management through chlorophyll reduces the N requirements on
rice with no yield loss, which illustrated the potential use of the SPAD chlorophyll meter on N treatment.

Field measurement of nitrogen, through destructive or non-destructive methods, is time-consuming and
costly and can only be performed for a small scale at limited growing stages. Remote sensing can be used
as an effective method to monitor crop parameters such as nitrogen during the entire growing season for
large areas. The next section reviews existing remote sensing-based approaches for estimating crop N
status, which will then lead to the problem statement and research gap for this research.

1.2 Literature Review

Different remote sensing data such as hyperspectral and multispectral images can be used to estimate
nitrogen status during the rice-growing season. Hyperspectral data, providing large numbers of spectral
bands, has shown great potential to estimate crop parameters such as crop nitrogen status (Tan et al.,
2018). For multispectral data, a few relevant bands can be used to calculate different vegetation indices,
which correlate well with N indicators (Brinkhoff et al., 2019). Although satellite remote sensing provides
a high possibility for large-scale crop growth monitoring and precision management, the quality of remote
sensing images from passive sensors is affected by unfavourable weather conditions such as the presence
of fog and clouds. With the rise of drone technology in recent years, Unmanned Aerial Vehicle (UAV)-
based remote sensing has gradually become a promising approach to overcome these problems. The high
spatial resolution, relatively low operational costs and the near real-time image acquisition can overcome
the limitations of ground sensing and optical satellite remote sensing. On the other hand, the acquisition
of UAV imagery is limited by local weather conditions such as wind, heavy rain and changing light
conditions during a flight.

To estimate crop N status using remote sensing data, various methods can be used. Vegetation indices are
the most commonly used methods for N estimation. Cao et al. (2013) used the crop circle multispectral
active canopy sensor to identify vegetation indices by using green, red edge, and near-infrared (NIR) bands
at key growth stages to estimate N nutrition indices (NNI). Their results according to R2of the regression
model indicated that four red edge-based indices, the red edge soil adjusted vegetation index (RESAVI),
modified RESAVI (MRESAVI), red edge difference vegetation index (REDVI), and red edge re-
normalized difference vegetation index (RERDVI), performed well for estimating NNI across growing
stages. Zhang et al. (2006) used multispectral data to predict Nitrogen status at the canopy scale based on
vegetation indices. The result indicated that canopy reflectance measurements converted to ratio
vegetation index (RVI) and normalized difference vegetation index (NDVI) provided a better prediction
of rice N status. The developed regression models using RVI and NDVI to predict N status proved a high
with R? ranging from 0.82 to 0.94. In addition to rice, this method is also used on other crops. A good
correlation between leaf area index (LAI) and the green normalized difference vegetation index (GNDVI)
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was tested by the UAV-camera system over two variably fertilized fields on winter wheat (Zheng et al.,
2018).

Although traditional vegetation indices have been used and compared for nitrogen estimation at different
rice-growing stages, they have not been used for nitrogen estimation under different seasonal conditions.
Since remote sensing-based approaches generally require the processing of huge amounts of data from
different platforms, great attention is currently devoted to machine learning (ML) methods. Machine
learning-based methods can process a large number of inputs, and also handle the non-linear problems
using datasets from multiple sources (Chlingaryan et al., 2018). Based on the advantages of machine
learning, it can be widely used in crop yield prediction and nitrogen state estimation (Shibayama et al.,

2012).

Shao et al. (2012) compared three different methods including partial least square regression (PLSR), and
least squares support vector (LS-SVM) machine for N status estimation using canopy spectral reflectance
measured at visible and near-infrared regions through spectroscopy and nitrogen measurements using
SPAD meter readings in rice fields. Their comparative analysis showed that the LS-SVM was superior in
predicting SPAD wvalues on rice. Apart from PLSR and SVM methods, the Random Forest (RF) algorithm
also has shown the potential to accurately predict leaf N concentration using hyperspectral data (Farifteh
et al., 2007). In another study, Kim et al. (2016) applied satellite remote sensing data to four ML
techniques, SVM, Random Forest (RF), Extremely Randomized Trees (ERT), and Deep Learning (DL), to
estimate corn yield in Iowa State. Comparisons of the validation statistics showed that DL provided more
stable results by overcoming the overfitting problem of generic machine learning approaches.

The review of the above literature further reveals that no study has compared the PLSR, SVM, and RF for
nitrogen estimation of rice crops in different seasons. Therefore, these multivariate method and machine
learning algorithms were examined for the first time for the rice N estimation in this research.

1.3. Research aim and objectives

The aim of the study is to accurately estimate and map the rice nitrogen (N) status during different
growing seasons (2016 early wet season and 2017 dry season) in IRRI experimental fields using UAV data
and field observations. Based on the aim and the available datasets of this study, several research
objectives are proposed:

a. To evaluate the relationships between nitrogen measurements obtained destructively in rice crops
(from tissue analysis), and nitrogen proxies obtained un-destructively using SPAD readings, and colour
chart during the dry and wet seasons.

b. To compare the performance of common vegetation indices (such as red-edge index, green index)
for estimation of plant nitrogen accumulation on rice crops using UAV data for both dry and wet seasons.

C. To evaluate the performance of different multivariate methods such as stepwise and partial least
square regression, support vector regression and random forest for estimation of plant nitrogen
accumulation on rice crops using UAV data at dry and wet season.

d. To map the plant nitrogen accumulation of rice crops in both dry and wet seasons using UAV
data and the most accurate method (based on R% RMSE and NRMSE of the methods) studied.
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14. Research questions

a. What is the relationship between different rice nitrogen measurements obtained using tissue
analysis (destructive) and nitrogen proxies measured using non-destructive methods?

b. What is the optimum vegetation index (in terms of R?) calculated from UAV data for rice plant
nitrogen accumulation estimation in dry and wet seasons?

c. What is the most accurate machine learning method (in terms of R?, RMSE and NRMSE) to
estimate plant nitrogen accumulation in the dry season and wet season?
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2.  STUDY AREAAND DATA

This chapter consists of two main sections. Section 2.1 describes the study site, and section 2.2 explains
the field and UAV data acquisition which were used for the analysis in this study.

21. Study Area

The study area is in the IRRI (International Rice Research Institution) Zeigler Experiment Station (also
known as the IRRI farm) in Los Bafos, the Philippines. This area is 21m above sea level with a tropical
climate, which is suitable for rice growth all year round. IRRI established a Long-Term Continuous
Cropping Experiment (LTCCE) in 1962, which is the longest-running rice field trial in the world. The
LTCCE covers an area of one hectare and is located at 14° 10' 5.6424" N, 121° 15' 21.1788" E (Figure 1).
It aims to determine the impact of growing irrigated rice continuously, season after season, and year after
year, on crop productivity and soil health. To apply different rice experiments on the field, the 100m x
100m LTCCE site is divided into 108 main plots of 8m x 8m and 72 subplots of 4m x 8m. The layout of
LTCCE may change every season; therefore, field data acquisition (including UAV and field biophysical
sampling) need to be collected for different wet and dry seasons. In 2016, rice was planted on April 20th
and harvested in the middle of August. Then, rice was planted again on December 21st and harvested at
the middle of April in 2017. Due to the precipitation is mainly concentrated from April to October in Los
Baiflos (Figure 2), the rice season in 2016 was defined as the early wet season (EWS) and the season in
2017 was defined as dry season (DS).
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Figure 1: The LTCCE in the IRRI (International Rice Research Institution) Zeigler Experiment Station,
Los Bafios, the Philippines and the location of subplots (red polygons) used as samples in this study. The
background RGB image was obtained by UAV on June 1st, 2016.
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Figure 2: The average monthly precipitation (mm) in Los Bafios, the Philippines in 2016 (a) and 2017 (b)
(“Wortld Weather Online,” n.d.).

2.2 Data

2.241. Field data

The field data was provided as a Microsoft Excel file and contained different components. It included the
details of field measurement methods, nitrogen (N) treatment dates, metadata for each variable, the
2016EWS and 2017DS field layout, variety treatment, etc. All the field data information was provided by
Dr Roland Buresh (IRRI).

Three rice varieties: IRRI 146 (V4), IR111690H (V7), and IR2-10-L1-Y1-L.2 (V8) were planted in the
subplots with eight different N applications. The layouts for the field experiments in 2016EWS and
2017DS are shown in Figure 3, with the subplots shown in white. In both seasons, the experiments used
the same rice varieties, but different N applications. Table 1 shows the different N applications in
2016EWS and 2017DS. It can be observed that N was applied for several times in different rice growth
stages. The specific N application dates were managed by the crop calendar, and the operation dates are
listed in Table 2. In this study, all the field operations were taken after the transplanting dates, and
therefore are referred to as days after transplanting (DAT). For the whole rice-growing season, the sowing,
transplanting and harvest time was clearly recorded in the field data. However, the rice panicle initiation
and heading stages dates need to be estimated according to the duration of the rice crops in the field. The
rice heading started about 30 days before the physiological maturity. As for the panicle initiation stage, it
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was counted about 60 days before the physiological maturity. Then, Table 3 shows the date for different
rice-growing stages in 2016EWS and 2017DS.

In the LTCCE, the destructive and non-destructive sampling methods were applied for field
measurements. These include N tissue analysis, SPAD-502 chlorophyll meter readings, leaf colour chart
(LCC) readings and leaf area index (LAI) measurement. These parameters were measured on different
dates during the rice-growing season (Table 4). The LAI and tissue analysis measurements were performed
using destructive sampling. LAI was measured four times during the rice-growing season and only on
green leaves using a LI-3000C Portable Leaf Area Meter. As for the tissue analysis, leaves were collected
from the field and used established equations to retrieve plant N accumulation (PNA) from straw and
grain dry mass. All samples were oven-dried for 72 hours at 80°C and weighted to determine dry weight,
and the straw and grain N concentration were measured using micro-Kjeldahl digestion method (Lang,
1958). Then, using their respective concentration times, their oven-dry weight obtained the straw and
grain N accumulation. Finally, the PNA was calculated as the sum of the straw and grain N and expressed
in kg of N per hectare. The tissue analysis was performed only once at the physical maturity stage. PNA
represents the total amount of N accumulated in the aboveground plant biomass at harvest time, and it is
more representative and comprehensive to describe the N status of rice crops, it was used for further
analysis in this study.

The SPAD, and leaf colour chart (LCC) measurements were taken from the leaves of rice crops nine times
during the growing season. The SPAD chlorophyll meter is a commonly used instrument for non-
destructive chlorophyll measurements. SPAD readings have shown to have a strong correlation with leaf
chlorophyll concentration (Uddling et al., 2007). Chlorophyll concentration in leaves and canopies can be
an indicator of photosynthetic capacity, developmental stage, plant productivity, and N concentration
(Ustin, 1999). Therefore, SPAD readings can be used as a proxy for N status. In this study, SPAD
readings were used as the proxy for leaf chlorophyll content. The canopy chlorophyll content was then
calculated by SPAD value times the LAI value. Because the LAI was only measured four times during the
season in 2016EWS, the CCC values were obtained for the same dates as the LAI measurements. It is
calculated using LAI times SPAD value. However, in the 2017DS, the CCC values were only calculated
for three different dates after matching the SPAD and LAI values with the same measurement dates.

The leaf colour chart (LCC) is an inexpensive alternative to the chlorophyll meter (Byju wt al., 2009). The
LCC measurements were taken using a four-panel colour chart made by IRRI. After comparing the
greenness of rice leaf with the critical colour shade, the leaf colour threshold could be decided, which
indicated its N content (Peng et al., 1996).

After acquiring the field data, checking on data distribution and variation is an important step before any
data analysis. An outlier could indicate that there is an error on the observation during the measurement,
and this might cause a misleading result (Bansal et al., 2016). Only the field measurements correlated with
rice N status were used in this study. Exploratory data analysis was performed for SPAD, LCC, and LAI
time-series data per rice variety using line charts, box plots and histogram distributions. The outliers were
mainly detected by the time-series data variation of line chart (Figure A3) and boxplots (Figure A4) and
therefore, were excluded from further analysis. After confirming with Dr Roland Buresh from IRRI, one
SPAD measurement from V8 on DAT43 in 2016EWS, two LLAT measurements from V4 in 2017DS on
DAT 43 and DAT 68 were detected as outliers and removed from further analysis.
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Figure 3: LTCCE field layout for 2016EWS and 2017DS in IRRI Block B5-8. The subplots are white.
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Table 1: N treatment applications in the subplots in 2016EWS and 2017DS in the LTCCE in the IRRI
Zeigler Experiment Station, Los Bafios, the Philippines.

Fertilizer N applied (kg N/ha)

N
Season N treatment description i
treatment P Nrate Basal Tillering .P%n.ld.e Booting
initiation
N1 No added N 0 0 0 0 0
N2 Low target yield 90 30 30 30 0
N3 High target yield 135 45 45 45 0
2016EWS . . .
N4 Intermediate target yield, 3 splits 115 30 43 43 0
N5 Intermediate target yield, 3 splits 115 30 30 55 0
No6 Intermediate target yield, 4 splits 115 30 30 40 15
N1 No added N 0 0 0 0 0
N2 Low target yield 130 38 38 38 16
N3 High target yield 195 57 57 57 24
2017DS . . .
N4 Intermediate target yield, 3 splits 165 45 60 60
N5 Intermediate target yield, 3 splits 165 45 50 70
No6 Intermediate target yield, 4 splits 165 45 50 50 20

Table 2: N application dates in different rice-growing stages in 2016EWS and 2017DS on LTCCE in IRRI
Experimental Station in Los Bafios, the Philippines.

S 0 Calendar Days after
cquence date transplanting (DAT)
Basal 2016-05-11 7
Tillering ~ 2016-05-27 23
2016EWS i
Panicle 2016-06-16 43
mitiation
Booting  2016-07-06 63
Basal 2017-01-11 7
Tillering ~ 2017-01-28 24
2017DS ;
Panicle 2017-02-17 44
mitiation
Booting 2017-03-09 64

Table 3: Rice growth stages in 2016EWS and 2017DS in the LTCCE in the IRRI Zeigler Experiment
Station, Los Bafios, the Philippines.

2016EWS 2017DS
Rice growth stage
Date Date
Seed sowing 2016-04-20 2016-12-21

Transplanting 2016-05-04 2017-01-04
Panicle initiation 2016-06-05 2017-02-12
Heading 2016-07-05 2017-03-14
Harvest 2016-08-04 2017-04-13
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Table 4: Dates of different field measurements used in this study taken in the LTCCE in the IRRI Zeigler
Experiment Station, Los Bafios, the Philippines

2016EWS 2017DS
y Field Sequence Calendar Days aft(?r Calendar Days aft('er
easurement date transplanting date transplanting
(DAT) (DAT)
1 2016-05-26 22 2017-01-27 23
2 2016-06-15 42 2017-02-16 43
LAI

3 2016-06-28 55 2017-03-02 57

4 2016-07-05 62 2017-03-13 68

1 2016-05-26 22 2017-01-27 23

2 2016-06-02 29 2017-02-02 29

3 2016-06-09 36 2017-02-09 36

4 2016-06-15 42 2017-02-16 43
SPAD & L.CC 5 2016-06-22 49 2017-02-23 50

6 2016-06-29 56 2017-03-02 57

7 2016-07-06 63 2017-03-09 64

8 2016-07-14 71 2017-03-16 71

9 2016-07-21 78 2017-03-23 78
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22.2. UAV data

The UAV data was collected with a fixed-wing UAV-Sensefly eBee during two growing seasons. Different
sensors were used: RGB; 4-band multispectral; and thermal images. The RGB image resolution is 2-3
cm/px, the multispectral image has 6-8 cm/px and the thermal images have 10-15cm/px. After exploring
the UAV images with different sensors, the multispectral images with green (550nm), red (660nm), red-
edge (735nm), and near-infrared (190nm) bands were used for data analysis (Figure 4). The images were
captured weekly during the whole rice-growing season in 2016EWS and 2017DS. In general, the UAV was
flown 12 times during the season for multispectral image acquisition.

Table 5 shows the basic information about the UAV images used in this study. All images were corrected
for radiometric and geometric errors by IRRI using Pix4D software. The mosaics were spatially corrected
using ground control points, and Pix4D automatically discarded images if they were too blurry. The UAV
data was already mosaiced by Mr Steve Klassen from IRRI, and it could be directly used for reflectance
extraction and further analysis.

N

A

0 10 20 40 Legend

—— — False Color Composites
Coordinate System: WGS 1984 UTM Zone 51N I Red: NIR band
Projection: Transverse Mercator :

Datum: WGS 1984 [ Green: Red bang

I 5iue: Green band

Figure 4: False colour composites using the near-infrared band as red, the green band as green, and the red
band as blue. Multispectral images were taken on June 1st, 2016 in the LTCCE in the IRRI Zeigler
Experiment Station, Los Bafios, the Philippines.
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Table 5: Multispectral UAV images information obtained from IRRI and used in the thesis.

Image folder Da?e'o.f Reflectance resolution (cm)
acquisition
2016-05-23_mslte 2016-05-23 7.6
2016-05-25_mslte 2016-05-25 7.4
2016-06-01_mslte 2016-06-01 7.4
2016-06-08_mslte 2016-06-08 7.6
2016-06-14_mslte 2016-06-14 7.1
2016-06-21_mslte 2016-06-21 7.3
2016EWS

2016-06-28_mslte 2016-06-28 7.3
2016-07-05_mslte 2016-07-05 7.7
2016-07-06_mslte 2016-07-06 7.4
2016-07-22_mslte 2016-07-22 7.2
2016-07-27_mslte 2016-07-27 7.1
2016-08-03_mslte 2016-08-03 7.4
2017-01-13_mslowland 2017-01-13 7.28
2017-01-19_mslowland 2017-01-19 7.05
2017-02-08_mslln 2017-02-08 7.49
2017-02-16_mslowland 2017-02-16 7.34
2017-02-23_mslowland 2017-02-23 7.37

2017 2017-03-02_mslowland 2017-03-02 7.19
DS 2017-03-08_mslowland 2017-03-08 7.6
2017-03-15_mslowland 2017-03-15 7.6
2017-03-22_mslte 2017-03-22 6.2
2017-03-29_mslowland 2017-03-29 6.78
2017-04-05_mslowland 2017-04-05 6.98

2017-04-11_mslowland 2017-04-11 7.1
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3. METHODS

This chapter explains the methods used in this study to estimate PNA of rice crops at harvest time. Figure
5 presents an overview of the methodology used in this thesis. This chapter consists of seven sections.
Section 3.1 describes the pre-processing procedures of the reflectance extraction from the time-seties
multispectral UAV imagery. Section 3.2 aims to examine the relationship between three field
measurements (PNA, SPAD and LCC) used to describe the N in the rice fields. Section 3.3 describes the
VIs selection and their correlation with agronomic parameters (SPAD, CCC and PNA). In section 3.4,
linear regression models, including simple linear regression (SR) and stepwise multiple linear regression
(SMLR) were built using the best performance VI to predict PNA. Section 3.5 explains the use of
multivariate method (PLSR) and machine learning algorithms (SVR and RF) for PNA estimation,
including the details of model selection and hyperparameter tuning. Section 3.6 describes the validation
and accuracy assessment of multivariate methods and machine learning algorithms. Section 3.7 explains
the procedure of mapping the PNA for the 2016EWS and 2017DS using the method with the highest
accuracy.
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Figure 5: Methodology flowchart of the study.
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3.1. Data processing

Multispectral UAV images (see 2.2) were available for the 100m X 100m experimental field site. In this
study, samples belong to the subplots where different N treatments were applied on different rice varieties
and where field measurements have been taken throughout (SPAD, LAI, LCC) and at the end of the
season (PNA) and represented the average value of each subplot. Therefore, the mean reflectance data of
each subplot was extracted from all multispectral images. To be able to extract the reflectance at the
subplot level, the subplot boundaries were digitized in ArcGIS 10.7. To avoid the shadow influence at the
edge of subplots, inner subplots boundaries were manually digitized. The inner subplots boundaries were
0.5m away from the main subplot boundaries (Figure 6). After generating the inner subplots boundaries,
the mean reflectance was extracted using the ‘extract’ function in the raster package in R (Hijmanset al,,
2020). This function could directly extract the reflectance values of pixels within the subplot polygons and
calculate statistics. In this process, the mean and standard deviation are the main outcomes of the
extraction process. The mean reflectance values of the spectral bands were then used for the VI
calculations and models input, and the standard deviations were used to check the variation of the
reflectance values and to detect the possible outliers per subplot.
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Figure 6: Digitized inner subplot boundaries with 0.5m distance away from the subplot boundary (in red).
The background colour composite image (RGB) shows the LTCCE in the IRRI Experimental Station in
Los Bafios, the Philippines on June 1st, 2016.
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3.2 Relationships between Agronomic Parameters

To understand the relationships between field measurements used as N proxies, SPAD and LCC and
nitrogen measurements obtained destructively, the correlation among them were explored. The Pearson
correlation coefficients (r) were therefore calculated between SPAD, LCC and PNA. Pearson correlation
coefficient is a statistical method to judge the linear correlation between two variables. It ranges from -1
to+1. The higher absolute “r” value refers to two variables have a strong linear relationship with each
other.

3.3. Relationships between Vis and Agronomic Parameters

V1 is a spectral transformation by combining information from two or more spectral bands for enhancing
the detection of vegetation properties and comparing the terrestrial photosynthetic activity and canopy
structural variations (Huete et al., 2002). The VIs selection was based on the reflectance variation (Figure
Al and Figure A2) and different VIs characteristics. Seven VIs are selected in this research, and they are
respectively NDVI, GNDVI, RVI, GRVI, CI, NDRE and RTVI (Table 6). All the VIs were calculated in
R using the mean reflectance from each subplot.

The agronomic parameters of SPAD, CCC and PNA were correlated with selected VIs in different dates
during the whole growing season, then the date with the highest correlation coefficient was used for PNA
estimation. Although LCC is also related to N measurements, the measuring result is largely dependent on
the subjective judgement of the observer, and it is less accurate compared to SPAD measurements (Duyet
al.,, 2019). Therefore, it’s relation with VIs was not considered in this section. In this study, the SPAD and
CCC were time-series data (measured nine times per season), therefore, they could be correlated with VIs
from the same date. The PNA was only measured at the harvest time, so the correlations were built
between Vs in different growing stages with the harvest PNA.

Table 6: Vegetation selected in this study.

Vegetation Index Formula Reference

Normalized Difference Vegetation Index (NDVI) (NIR - R) / (NIR + R) (Tucker, 1979)

Green Normalized Difference Vegetation Index (GNDVI)  (NIR - G) / (NIR + G) (Gitelson et al., 1996)

Ratio Vegetation Index (RVI) NIR /R (Tucker, 1979)

Green Ratio Vegetation Index (GRVI) NIR / G (Blackmer et al., 1996)

Chlorophyll Index (CI) NIR/G-1 (Gitelson, 2005)

Normalized Difference Red Edge Index (NDRE) (NIR - RE) / (NIR + RE) (Carneiro et al.,, 2019)

Red-edge Triangular Vegetation Index (RTVI) 100*(NIR - RE) - 10*(NIR -G)  (Chen et al., 2010)
3.4. Linear regression models between best performing VI and PNA

According to the correlation coefficient between the VIs and agronomic parameters, the best performing
VI in specific rice-growing date was identified in both the 2016EWS and 2017DS. The crucial dates were
selected according to the higher correlation coefficient between best performing VI and agronomic
parameter during the rice-growing season. Then, linear regression models were built using the best
performing VI in crucial dates for PNA estimation at harvest time.

In addition to estimating PNA using VI from a single date, applying the best performing VI in the whole
growing season is also worth trying. To understand if all the VIs for the whole rice-growing season are
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needed or just the crucial date is already sufficient for PNA estimation, the performance of stepwise
multiple linear regression models was investigated.

Stepwise multiple regression models between the best performing VI for the whole growing season and
the PNA were built to achieve the goal. Stepwise regression is a method of fitting regression models in
which the choice of predictive variables is carried out by an automatic procedure (Halinski et al., 1970). In
each step, the explanatory variables) are added or removed based on a prespecified criterion normally by a
sequence of F-tests or t-tests, but other metrics are also possible, such as the Akaike information criterion
(AIC), which is an estimator of out-off-sample prediction error. AIC can also provide information on
model quality (Aho et al., 2014). In this study, the stepwise multiple regression models were built in R with
the time-series VIs data as the explanatory variables, and the PNA of the rice crops is the dependent
variable. With the backward direction setting, the model will remove the best performing Vls in non-
significant date in each step until it got the smallest AIC value, then the remaining best performing VI
with different dates with the most explanatory power are used for estimating the PNA. The PNA was
estimated using stepwise multiple linear regression models for 2016EWS and 2017DS.

3.5. Multivariate method and machine learning algorithms

Machine learning is a study of computer algorithms, and it provides systems with the ability of
automatically learning and improving from experience (Mitchell et al., 1997). Therefore, machine learning
is deemed as a subset of artificial intelligence. The main task of machine learning algorithms is to make
predictions which are closely related to computation statistics. In addition to the strong learning ability,
machine learning can also handle massive, multi-collinearity, non-linearity and noisy data.

In this study, the input data was the same for all models. It contained the mean reflectance for all
individual bands and the best performing VI from the previous analysis for the whole rice-growing season
as the explanatory variables, as well as PNA at harvest time as the independent vatiable. Once the variable
data were prepared, multivariate method and machine learning methods were applied to estimate PNA in
this study. Figure 7 shows the procedure of using multivariate method and machine learning algorithms
for parameter estimation.

> Testing data 1

Input variables —» Splitdata —

Hyperparameter

“—>»  Training data —» Models —>» tuning

— Optimal model

|

Results

Figure 7: Multivariate and machine learning methods procedure overview

3.5.1. Model Selection

In this study, the PNA value was the predicting variable with continuous numeric values, therefore, several
linear and non-linear models were involved for PNA estimation: the partial least square regression (PLSR),
the support vector regression (SVR) and random forest (RF). The basic theories of these models were
explained below:
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(1) Partial Least Square Regression

Partial least square regression (PLSR) is a popular linear model, the main idea of this technique is to
reduce the predictors to a smaller set of uncorrelated components, and then to perform least squares
regression on these components. It has been used in different field of studies, including remote sensing
(Geladi et al., 1986). PLSR is an alternative method of multiple linear regression models. However, PLSR
is more robust than traditional regression models (Almergren et al., 2009). PLSR finds the
multidimensional direction in the independent space, which explains the maximum variance direction in
the dependent space PNA in an iterative manner. In general, the PLSR can fit multiple response variables
in a single model. In this study, the main parameter used in this algorithm was the ncomp, which refers to
the component number of the models (Table 7). After applying the input data into the algorithm, the
package could directly train and select the optimal PLSR model (determined by RMSE) with the best
ncomp as the result. In the meantime, the importance of input features could also be known as an
intermediate result in the study.

(2) Support Vector Regression

Supportt vector regression (SVR) is a supervised learning model used for regression analysis (Drucker et
al., 1997). SVR gives flexibility to define how much error is acceptable in the model and will find an
appropriate line (or hyperplane) in higher dimensions to fit the data (Awad et al., 2015). SVR could
construct both linear and nonlinear regressions applying different kernels. One of the main benefits of
SVR is that the computational complexity does not depend on the dimensionality of the input space. In
addition, SVR offers excellent generalization capability and high prediction accuracy (Wu et al., 2008).
Table 7 listed the parameters used in the SVR model in this study. e1071 package helped to train and
determine the optimal SVR algorithm (based on RMSE) after applying the input variables in the algorithm
for PNA estimation. The parameters of the optimal SVR model could be checked in the model result.

(3) Random Forest

Random forest (RF) is an ensemble learning algorithm for classification and regression, which is a bagging
technique by constructing masses of decision trees while training and generating a mean prediction
(regression) of individual trees (Ho, 1995; Ho, 1998). In the standard decision tress, each node was split
according to the best split among all variables. However, each node in RF is split using the best among a
subset of randomly selected predictors at that node (Liawwt al., 2002), which highly improves the model’s
generalization performance and its training accuracy. In addition, RF can handle thousands of input
variables and list variables importance to the model as the analysis result. Based on the above advantages
of RF, it is considered as a powerful machine learning algorithm in this study. Some important parameters
were listed in Table 7 for training RF models in the study. After applying the input variables in RF
algorithm, the optimal model could be selected and determined (based on RMSE) by grid search method
by using the Caret package. Then, parameter values of the optimal RF model and the importance of input
features could be known by checking the summary of the model.

3.5.2. Hyperparameter tuning

Hyperparameter optimization is used to choose vatious parameters to get the optimal model to solve the
prediction task. In different models and different statistical packages, the tuning parameters are different.
Table 7 shows the parameters and packages used in R for different models. In this study, different
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packages were used to select the best value or methods for significant parameters in multivariate and
machine learning models.

Table 7: Multivariate methods and machine learning algorithms with significant parameters and packages
used in R.

Tuning

Parameter explanations Packages
parameters
PLSR "ncomp" The number of components to include in the model (t (uhn(é?rfj.t, 2020)
"epsilon" Epsilon in the insensitive-loss function
SVR Meernel” The kernel used in training agd predicting. Different el071
kernel type could be selected in the model. (Meyer et al., 2019)
"cost" Cost of constraints violation
Number of variables randomly sampled as candidates
"mtry" at each svplit. Note that the default' values are different
for classification (sqrt(p) where p is number of
RF variables in x) and regression (p/3) Caret

(Kuhn et al., 2020)
Number of trees to grow. This should not be set to

"ntree" too small a number, to ensure that every input row
gets predicted at least a few times

3.6. Validation and Accuracy assessment

In order to have the same sample size for each rice variety, stratified random sampling was used to
separate the whole dataset into calibration and validation in linear regression models. As for the splitting
method, 70% of the data was used for training and 30% was used for the validation. Therefore, the
relationship between best performing VI in crucial dates and PNA were studied using the calibration
dataset, then the validation data was used for comparing the estimated PNA with the actual PNA.

As for the PLSR and machine learning models, the input data was split into training (70%) and testing
(30%) datasets by stratified random sampling based on rice varieties. To make the model accurately work
for prediction, it always needs to validate the stability of the models. It is significant to assure that the
model has got most of the patterns from the data correctly without too much noise or bias (Cawley et al.,
2010). Cross-validation is a statistical technique for testing the performance models, and it also helps with
avoiding overfitting. As there are 51 training samples in this study, the 10-fold cross-validation was applied
for PLSR, SVR and RF training models. In the 10-fold cross-validation, the training data is divided into 10
subsets, and the holdout method was repeated for ten times. At each time, one of the ten subsets was used
as the validation set, and other subsets were put as the training set. The error estimation is calculated by
the average of ten trials error for the final model effectiveness. Using 10-fold cross-validation could
significantly reduce the bias for the training data fitting and the variance of validation. In conclusion, the
training dataset was used for training the model for PNA estimation, and the testing data was used for
comparing the estimated PNA with measured PNA.

The coefficient of determination (R?), root mean square error (RMSE), and normalize root mean squate
error (NRMSE) were calculated for evaluating model performance in this study. R? represents the
proportion of the variance for the dependent variable explained by an independent variable or variables in
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regression models. The R? value normally ranges from 0-1. The higher R? indicate a higher correlation
between observations and estimations. RMSE mainly reflects the difference between the observation and
prediction value by models. It also explains as the standard deviation of the residuals (prediction errors)
that shows how the concentration of data is around the best fitting line. The RMSE is commonly used in
regression analysis. Both R2 RMSE were calculated by the Caret package in R. NRMSE is calculated for
comparison between different scale models or parameters. The formula is shown below:

NRMSE RMSE
~ Omax — Omin

The Omax represents the maximum value of the observation data, and the Omin is the minimum of the
observation data.

3.7. Mapping N status

PNA estimation maps were generated based on the most accurate method (based on the lowest RMSE)
using individual band reflectance with the best performing VI time-series data as input. The predicted and
actual PNA maps in 2016EWS and 2017DS were generated in ArcGIS 10.7. The PNA values were
classified into four categories (<70kg/ha, 70-100kg/ha,100-150kg/ha,>130 kg/ha) to be easily compared
and explained. The difference between the estimated and measured PNA were also shown in the form of
maps for 2016EWS and 2017DS.
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4.  RESULTS

The following section covers the main findings of this research, including those obtained from the analysis
of field measurements and UAV data. This chapter consists of five sections. Section 4.1 illustrates the
relationship between different N related agronomic parameters (PNA, SPAD and LCC). Section 4.2
presents the correlation coefficient tables between VIs and agronomic parameters (SPAD, CCC and PNA)
in order to select the best performing VI. Section 4.3 shows the results of applying the best performing V1
for PNA estimation using regression models. The result of using multivariate method and machine
learning algorithms for PNA estimation are shown in section 4.4. The last section presents the maps of
actual and estimated PNA using the most accurate model for 2016EWS and 2017DS.

41. Relationship among field agronomic parameters

Figure 8 shows the variation of the correlation coefficient between different agronomic parameters in wet
(a) and dry (b) season. As can be observed from this figure, similar trends exist between SPAD and PNA,
SPAD and LCC in the wet and dry season. The correlation starts increasing in the third week after
transplanting and becomes stable during the panicle initiation stage (+>0.7). At the end of the season, the
correlation coefficients decrease but remain at a high value. Based on the different combinations, the
correlation between SPAD and LCC shows the best performance for both seasons. In conclusion, these
three field measurements are well correlated in the panicle initiation and heading stage.

(a) (b)

o
[
=]
[

o
o m
Correlation Coefficient (R)
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——SPAD & PNA LCC & PNA SPAD & LCC ——SPAD & PNA LCC & PNA SPAD & LCC

Figure 8: Correlation coefficient among SPAD, LCC, and PNA measured in rice fields during 2016EWS
(a) and 2017DS (b) in LTCCE field in IRRI Zeigler Experiment Station, Los Bafos, the Philippines.

4.2, Relationship between vegetation indices and agronomic parameters

Table 8 and Table 9 list the correlation coefficient of VIs with SPAD and CCC values in critical days in
2016EWS and 2017DS. The correlation coefficient between VIs and agronomic parameters was calculated
for the whole rice-growing seasons, then field measurement days with relatively high r-value were deemed
as crucial days in the rice growing season. They are DAT 56 and DAT 63 in 2016EWS, and DAT 57 and
DAT 68 in 2017DS. The results indicated that the NDVI, GNDVI, RVI, GRVI, CI, NDRE and RTVI
had positive relationships with SPAD value and CCC value. In general, the correlation coefficients are
higher than 0.8, which means that these selected VIs are highly correlated with the chlorophyll content in
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both leaf and canopy levels, and the correlation with leaf level is better than the canopy level. Figure 9
shows the significance test between VIs and SPAD on DAT 56 in 2016EWS, the p value shows that the
calculated correlation is significance with 72 samples in the study.

Table 10 shows the correlation coefficients between VIs in two critical days and PNA measured in harvest
day in 2016EWS and 2017DS. The correlation between VIs and PNA shows a high correlation in these
two crucial days. Although the PNA was only measured once at the end of the season, it has a positive
correlation with the selected two dates. The correlation coefficient is high, such as GNDVI, CI, NDRE,
RTVI, etc., that the r-value could reach to 0.8. Therefore, the VIs calculated in critical rice-growing days
could be used for PNA estimation in different seasons.

Table 8: Correlation Coefficients (r) between VIs and SPAD meter readings and CCC for each variety
(n=24) and all varieties (n=72) in DAT 56 and DAT 63 in 2016EWS.

SPAD CCC
DAT 56 DAT 63 DAT 56 DAT 63
All V4 V7 V8 All V4 V7 V8 All V4 V7 V8 All V4 V7 V8
NDVI 094 096 096 0093 0.89 095 096 0.96 0.87 0.81 0.88 0.92 0.84 093 0.90 0.90
GNDVI 093 095 097 092 093 094 097 096 0.88 0.84 090 0.93 0.87 092 091 0.87
RVI 0.88 091 093 0.86 0.79 0.87 094 090 0.89 0.86 0.88 0.94 0.78 091 0.90 0.90
GRVI 0.88 0.96 094 (.87 0.89 0.90 096 0.93 0.89 0.85 091 0.94 0.85 0.90 0.92 0.86
CI 0.88 0.90 094 (.87 0.89 0.88 096 0.93 0.89 0.85 091 0.94 0.85 0.90 0.92 0.86
NDRE 090 094 091 088 091 091 092 092 0.88 0.82 0.89 0.93 0.89 093 0.89 0.92
RTVI 0.83 090 086 0.75 0.85 0.89 090 0.88 0.83 0.81 085 0.83 0.87 093 0.88 0.93
(a) Pearson's product-moment correlation (k) Pearson’s product-moment correlation
data: NDVI_Z2016% 2016_06_28" and dSSPADSE.DAT data: GNDVI_2016% 2016_06_28" and d$s5PADS6.DAT
t = 23.298, df = 70, p-value < 2.2e-16 t = 21.675, df = 70, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0 alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval: 495 percent confidence interval:
0,9073106 0,9628797 0.80945826 0.9576128
sample estimates: sample estimates:
0.9411?3’5 0.9329%9
{C} Pearson's product-moment cerrelation (d} Pearson's product-moment correlation
data: RVI_20165 2016_06_28" and d3SPADSG.DAT data: GRVI_2016% 2016_06_28" and disPaD36.DAT
t = 15,598, df = 70, p-value < 2, 2e-16 t = 15.681, df = 70, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval: 495 percent confidence interval:
0.8161955 0.9242195 0.8177404 0.9243%40
sample estimates: sample estimates:
cor cor
0.8812343 0.882268
(e) (f)
Pearson's product-moment correlation Pearson's product-moment correlation
data: CI_2016% 2016_06_28" and d3SPADSG.DAT data: NDRE_Z20165 2016_06_28" and disPAD3G.DAT
t = 15.681, df = 70, p-value < 2.2e-16 t = 16.93, df = 70, p-value < 2.2e-16
alternative hypothesis: true correlation is not egual to 0 alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval: 95 percent confidence interval:
0.8177404 0.9248940 0.8391063 0.9341535
sample estimates: sample estimates:
0.882268 0.8965001

Figure 9: Correlation significance tests between VIs and SPAD measurements for all rice varieties on
DAT 56 in 2016EWS (n=72).
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Table 9: Correlation Coefficients (r) between VIs and SPAD meter readings and CCC for each variety

(n=24) and all varieties (n=72) in DAT 57 and DAT 68 in 2017DS.

SPAD CCC
DAT 57 DAT 68 DAT 57 DAT 68

Al V4 V7 V8 Al V4 V7 V8 Al V4 V7 V8 Al V4 V7 V8

NDVI 096 098 097 097 085 094 091 095 0.83 090 0.86 0.76 0.76 0.63 0.85 0.89

GNDVI 097 099 098 0.97 0.88 095 092 095 0.84 091 0.88 0.78 0.78 0.64 0.87 0.90

RVI 092 097 097 094 0.82 095 0.87 093 0.88 092 0.89 0.82 0.74 0.61 0.85 0.90

GRVI 094 097 097 094 0.89 095 090 094 0.86 092 0.89 0.82 0.78 0.65 0.87 091

CI 094 097 097 094 0.89 095 090 094 0.86 092 0.89 0.82 0.78 0.65 0.87 091

NDRE 095 0.96 0.97 0.94 0.87 093 093 094 0.85 091 091 0.81 0.79 0.65 0.89 091

RTVI 094 096 097 094 083 092 094 094 0.88 092 091 082 078 064 089 092

Table 10: Correlation Coefficients (r) between VIs and PNA for each variety (n=24) and all varieties
(n=72) in DAT 56 and DAT 63 in 2016EWS, DAT 57 and DAT 68 in 2017DS.
PNA in 2016EWS PNA in 2017DS
DAT 56 DAT 63 DAT 57 DAT 68

Al V4 V7 V8 Al V4 V7 V8 Al V4 V7 V8 Al V4 V7 V8
NDVI 0.86 0.85 0.84 0.90 082 084 079 090 090 089 093 0.90 090 089 092 0.90
GNDVI 087 0.87 0.85 092 083 087 0.78 0.90 091 090 095 092 092 091 093 092
RVI 090 088 091 0.92 079 082 080 091 091 091 096 095 091 091 09 093
GRVI 0.89 0.87 0.88 094 082 086 077 091 0.87 088 094 091 084 085 0.89 0.89
CI 0.89 0.87 0.88 094 082 086 077 091 092 092 096 095 093 093 093 093
NDRE 086 085 085 091 0.83 085 0.80 0.90 093 091 09 093 094 094 094 094
RTVI 0.84 0.81 0.80 0.85 0.82 0.81 0.82 0.86 093 092 096 094 094 095 095 0.95
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4.3.

Linear regression and multiple linear regression models are firstly used for PNA estimation in this study.

Traditional Regression models for Nitrogen status estimation using Vls

Figure 10 shows the calibration result of linear regression models using GNDVI in crucial days for PNA
estimation in 2016EWS and 2017DS. The p-value of all regression models, which are less than 0.05,
illustrate that the models are significant for PNA estimation. In addition, the significant test for each input
variable was shown in the model summary. According to the p-value of the input variable, they are
statistically significant coefficients in the regression models. Figure 11 and Figure 12 demonstrate the
calibration and validation plots of the linear regression model using GNDVI value in crucial days to
predict PNA in 2016EWS and 2017DS. The calibration model generates the equation between GNDVI
and PNA, and then the validation data set was applied in the model and plotted the estimated PNA and
measured PNA in different days of rice growing season. In 2016EWS, the result shows that the prediction
in DAT 56 (Figure 11c) is better than in DAT 63 (Figure 11d) according to the R?, RMSE, and NRMSE.
In 2017DS, the relationship between GNDVI and PNA in DAT 68 (Figure 12¢) is stronger than in DAT

57 (Figure 12d).

(a) mopEL 1NFO: (b) MODEL INFO:

Observations: 51 Observations: 51

Dependent Variable: Plant.N..kg.ha. Dependent Variable: Plant.N..kg.ha.

Type: OLS Tinear regression Twpe: OLS Tinear regression

MODEL_FIT: MODEL FIT:

F(1,49) = 138.14, p = 0.00 F(1,49) = 91.08, p = 0.00

R? =0.74 R? = 0.65

Adj. R? =0.73 Adj. R? = 0.64

Standard errors: OLS Standard errors: OLS

Est. S.E t val p Est. 5.E t val p

(Intercept) -138.11 20.25  -6.82  0.00 (Intercept) -156.24  26.82  -5.82  0.00

GNDVIZ2016_06_28 309.33  26.32 11.75 0.00 GNDVI2016_07_06 339.58  35.58 9.54  0.00
(C] MODEL INFO: (d} MODEL INFO:

Observations: 51 oObservations: 51

Dependent Variable: Plant.N..kg.ha. Dependent Variable: Plant.N..kg.ha.

Tvpe: OLS linear regression Type: OLS Tinear regression

MODEL FIT: M FIT:

F(1,49) = 234.33, p = 0.00 F(1,49) = 240.13, p = 0.00

R? =0.83 R? =0.83

Adj. R? = 0.82 Adj. R? = 0.83

Standard errors: OLS Standard errors: OLS

Est. S.E t val p Est. S.E t val p
(Intercept) -179.71  19.11 -9.40 0.00 (Intercept) -233.12  22.31 -10.45 0.00
GNDVI2017_03_02 368.42  24.07 15.31  0.00 GNDVI2017_03_15 447.08  28.85 15.50 0.00

Figure 10: Linear regression model performance using single days for PNA estimation in 2016EWS (a,
b)(n=>51) and 2017DS (c, d) (n=51).
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Figure 11: Relationships between measured and estimated PNA using GNDVI-based linear regression
models. Calibration (n=51) and validation (n=21) plots for N status prediction in DAT 56 (a)(c) and DAT
63 (b)(d) in 2016EWS.
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Figure 12: Relationships between measured and estimated PNA using GNDVI-based linear regression
models. Calibration (n=51) and validation (n=21) plots for PNA estimation in DAT 57 (a)(c) and DAT 68
(b)(d) in 2017DS.

In addition to using simple linear regression on critical days for N status estimation, stepwise multiple
linear regression models between GNDVI time-series data and PNA were also applied in 2016EWS
(Figure 13a) and 2017DS (Figure 13b). The p value and F-test for each model describes that the model
performs well for PNA estimation. It also shows that the GNDVI in different dates as input variables are
significant for the model according to the p-value which are closed to zero. Figure 14 shows that the
measured PNA and estimated PNA are highly correlated (R2> 0.75) in both seasons.

Comparing the simple linear regression models with stepwise multiple linear regression models, they have
similar R2, RMSE, NRMSE result which means that using GNDVI on a single specific day is already
sufficient for PNA estimation in rice-growing season.
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MAPPING NITROGEN STATUS

(a)

MODEL INFO:
Observations: 51

(b)

MODEL INFO:
Observations: 51

Dependent Variable: Plant.N..kg.ha. Dependent Variable: Plant.N..kg.ha.
Type: OLS Tlinear regression Type: OLS Tlinear regression
MODEL FIT: MODEL FIT:
F(4,46) = 49.83, p = 0.00 F(4,46) = 115.51, p = 0.00
R? =0.81 R =0.91
Adj. R? = 0.80 Adj. R? =0.90
Standard errors: OLS Standard errors: OLS

Est S.E t val p Est. S.E t val
(Intercept) -227.41 41.92 -5.43  0.00 (Intercept) -251.88 22.70 -11.09
GNDVI2016_06_08 291.74  119.43 2.44  0.02 GNDVI2017_01_13 -91.63 43.51 -2.11
GNDVIZ2016_06_28 442.38 108.29 4.09 0.00 GNDVI2017_02_16 480.02 93.19 5.15
GNDVI2016_07_05 -491.35 139.08 -3.53  0.00 GNDVI2017_02_23 -138.25 75.30 -1.84
GNDVI2016_08_03 240.09 59.62 4.03 0.00 GNDVI2017_04_11 252.63 45.50 5.55

Figure 13: Stepwise multiple linear regression models performance using different days during the rice

growth season for PNA estimation in 2016EWS(a) (n=51) and 2017DS (b) (n=51).
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Figure 14: Relationships between measured and estimated PNA using stepwise multiple linear regression

models based on UAV-derived GNDVI time-series data for estimating PNA at harvest time in 2016EWS
(2) and 2017DS (b).
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4.4, Multivariate methods and machine learning algorithms comparison for Nitrogen status
estimation

Different methods were applied in the study for PNA estimation, so the model quality and accuracy

results were judged in this section for the best model selection.

Tuning parameter is always the most important step for training model. Figure 15 shows the PLSR model
parameter selection, the optimal model which the ncomp equals five with the smallest RMSE was selected
in both seasons. As for the SVR model tuning, Figure 16 presents important parameters for the best SVR
model after grid search. It could be noticed that the kernel type of the selected SVR model is radial which
is non-linear method. The RF algorithm parameter tuning result (Figure 17) shows that when the mtry
value equals to 47 and 11 in the model, the RMSE wvalue is the lowest.

(a) (b)
Partial Least Squares Partial Least Squares
51 samples 51 samples
60 predictors 55 predictors
No pre-processing No pre-processing
Resampling: Cross-validated (10 fold, repeated 5 times) Resampling: Cross-validated (10 fold, repeated 5 times)
Summary of sample sizes: 46, 47, 46, 45, 46, 47, ... Summary of sample sizes: 46, 47, 47, 46, 44, 46, ...
Resampling results across tuning parameters: Resampling results across tuning parameters:
ncomp RMSE Rsquared MAE ncomp RMSE Rsquared MAE
1 11.56981 0.7484220 9.124636 1 12.85374 0.8485335  9.890392
2 11.62899 0.7414061 9.167696 2 12.34476 0.8848043  9.631716
3 11.28021 0.7787987 8.954085 3 12.39895 0.8896602 9.951286
4 10.62907 0.7905111  8.594186 4 12.04003 0.8817021  9.631884
[s 10.36985 0.8071219 8.526157 | [5 10.95724 0.8856203 8.884039 |
6 10.64794 0.8065916 8.851683 6 11.11472 0.8896001 8.978388
7 10.67911 0.8061692 8.830768 7 10.98417 0.8879866  8.830591
8 10.86199 0.7976803  9.003925 8 11.10746 0.8889092  9.060191
9 11.51017 0.7768409  9.548233 9 11.39146 0.8926072  9.438599
10 12.31461 0.7569660 10.304658 10 11.97638 0.8802202 10.048052

RMSE was used to select the optimal model using the smallest value. RMSE was used to select the optimal model using the smallest value.
The final value used for the model was ncomp = 5. The final value used for the model was ncomp = 5.

Figure 15: PLSR algorithm for parameter tuning using 10-fold cross-validation and grid search in
2016EWS(a) and 2017DS(b).

(a) (b)

Parameters: Parameters:
SVM-Type: eps-regression SVM-Type: eps-regression
SW-Kernel: radial SvM-Kernel: radial
cost: 1 cost: 1
gamma: 0.01666667 gamma: 0.01818182
epsilon: 0.1 epsilon: 0.1
Number of Support Vectors: 40 Mumber of Support Vectors: 40

Figure 16: SVR algorithm for parameter tuning using 10-fold cross validation and grid search in 2016EWS
(a) and 2017DS(b).
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(a) (b)
Random Forest Random Forest
51 samples 51 samples
60 predictors 55 predictors
No pre-processing Mo pre-processing
Resampling: Cross-validated (10 fold, repeated 3 times) Resampling: Cross-validated (10 fold, repeated 5 times)
Summary of sample sizes: 46, 47, 47, 44, 45, 46, ... summary of sample sizes: 47, 45, 47, 46, B y e
Resampling results across tuning parameters: Resampling results across tuning parameters:
mtry RMSE Rsquared MAE mtry RMSE Rsquared MAE
5 11.31414 0.7087852 9.250832 10 12.09211 0.8491787 9.365617
9 11.34956 0.7073095 9.275514 [11 12.08119 0.8493948 9.329681 |
13 11.26477 0.7054822 9.179120 12 12.08835 0.8526707 9.411106
16 11.10584 0.7098492 9.007282 23 12.20084 0.8467613 9.439572
21 11.06504 0.7143494 9.008061 24 12.19085 0.8436189 9.437445
22 11.15882 0.7097951 9.113258 30 12.36511 0.8380771 9.555155
23 11.20696 0.7012546 9.143399 32 12.27272 0.8410030 0.451082
24 11.14436 0.7108706 9.043169 33 12.37266 0.8358201 9.558550
25 11.13692 0.7058600 9.066260 34 12.33525 0.8398704 9.552994
27 11.12923 0.7072945 9.067592 39 12.35806 0.8393946 9.553282
28 11.12137 0.7069941 9.078751 42 12.45520 0.8338230 9.608905
4 0.7104 . 43 12.43199 0.8327032 9.610413
47 10.98137 0.7077780 8.874854 47 12.48795 0.8306883 9.618979
59 11.00821 0.7132441 8.871177 53 12.51515 0.8308135 9.626830
RMSE was used to select the optimal model using the smallest value. RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 47, The final value used for the model was mtry = 11.

Figure 17: RF algorithm for parameter tuning using 10-fold cross-validation and grid search in 2016EWS
(a) and 2017DS(b).

With the optimal model selection for different methods, the model performance was assessed in the
following section. The importance of input variables was firstly ranked for PLSR (Figure 18) and SVR
(Figure 19) models. Comparing the important variables at the top of the list in same season, there is
similarity using PLSR and RF models for PNA estimation. In 2016EWS, the GNDVI on June 28th and
the NIR band reflectance on July 22nd account for large promotion in both PLSR and RF models. As for
the calibration model in 2017DS, the red and green band reflectance on March 2nd are highly important
for both algorithms. Moreover, there is also difference between the two models, such as the number of
highly important variables in PLSR model are more than those in RF models.
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Figure 18: Feature importance of PLSR model in 2016EWS(a) and 2017DS(b).
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The relationship between estimated and measured PNA using PLSR, SVR and RF are shown in Figure 20.
Models performance were assessed by Rz, RMSE and NRMSE in this session. In 2016EWS (Figure 12a-c),
the best performing model is RF in Figure 3¢ (R?= 0.9, RMSE=8.37, NRMSE=10.9%), which shows a
higher correlation and lower error in between estimated and measured PNA. Then, the SVR (Figure 12b)
also explains a strong relationship between prediction and measurement. In 2017DS (Figure 12d-f), the
RF is still the most representative algorithm for N status prediction (R?= 0.93, RMSE=9.93,
NRMSE=8.1%). PLSR model with more than 0.9 correlation between the measured and estimated value
(R?=0.91, RMSE=10.65, NRMSE=8.7%) also performs well.

(c)

a b
( ) R'=0.80 RMSE=10.80 NRMSE=14% ( ) R'=0.85 RMSE=9.94 NRMSE=12.9% R'=0.90 RMSE=8.37 NRMSE=10.9%
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Figure 20: Relationships between measured PNA and estimated PNA using PLSR, SVM and RF in
2016EWS (a-c) and 2017DS (d-f) based on testing dataset (n=21).
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Table 11 and Table 12 show all methods for PNA estimation performance in both seasons. Comparing
with linear regression models with a single vegetation index, the results have improved using machine
learning algorithms with higher correlation and lower error between measured PNA and estimated PNA.
The RF is always the optimal algorithm in both wet and dry season.

Table 11: R?, RMSE and NRMSE for all prediction methods (SR, SMLR, PLSR, SVR and RF) used to
estimate PNA of rice crop in 2016EWS.

2016EWS
SR SMLR PLSR SVR RF
R? 0.81 0.8 0.8 0.85 0.9
RMSE 10.4 11.16 10.8 9.94 8.37
NRMSE (%) 13.5 14.5 14 12.9 10.9

Table 12: R2, RMSE and NRMSE for all prediction methods (SR, MLR, PLSR, SVR and RF) used to
estimate PNA of rice crop in 2017DS.

2017DS
SR SMLR PLSR SVR RF
R2 0.89 0.89 0.91 0.88 0.93
RMSE 13.05 12.37 10.65 13.39 9.93
NRMSE (%) 10.7 10.1 8.7 11 8.1
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4.5, Mapping N status for 2016 wet season and 2017 dry season

Figure 21a and Figure 22a show the estimated PNA maps in subplots using the RF as the most accurate
method in 2016EWS and 2017DS with four classes. To compare the difference between the estimated and
measured PNA, difference maps of PNA were generated using the estimated PNA minus measured PNA
in 2016EWS and 2017DS (Figure 23). In order to compare the difference between two seasons, the
difference percentage was calculated using the difference value divided by measured PNA for two seasons
The difference percentage value was classified into four categories to assess the estimation result, the
closer the percentage is to zero, the better the estimation result.

Estimated N status in 2016 EWS

Measured N status in 2016 EWS
(b)

N
0 10 20 40 60 80
- — — Legend A
Coordinate System: WGS 1984 UTM Zone 51N s70 kg/ha
Proj ST M:
Datum: WGS 1984 70 - 100 kg/ha
Units: Meter - 100 - 130 kg/ha

I > 130kgha

Figure 21: Estimated N status map(a) and measured N status map(b) on subplots on August 11t
(DAT99), 2016 on LTCCE field in the IRRI Zeigler Experiment Station, Los Bafios, the Philippines.

30



MAPPING NITROGEN STATUS
IN RICE CROPS USING UNMANNED AERIAL VEHICLE (UAV) DATA, MULTIVARIATE METHODS AND MACHINE LEARNING ALGORITHMS

Estimated N status in 2017 DS Measured N status in 2017 DS
(a)

0 10 20 40 60

N
80 L d
- — — egen A
Coordinate System: WGS 1984 UTM Zone 51N <70 kgha
Projection: T A
Datum: WGS 1984 70 - 100 kgha
Units: Meter I 100- 130 kgha

Il > 130kgha

Figure 22: Estimated N status map(a) and measured N status map(b) for subplots on April 18 (DAT104),
2017 on LTCCE field in the IRRI Zeigler Experiment Station, Los Bafios, the Philippines.

Difference map of PNA in 2016 EWS

Difference map of PNA in 2017 DS

0 10 20 40 60

80 Legend
- — —
Coordinate System: WGS 1984 UTM Zone 51N B <-10kgha
Projection: T A
Datum: WGS 1984 -10 - 0 kg/ha
Units: Meter 0-10kg/ha
I > 10xgha

Figure 23: Difference map between estimated PNA and measured PNA in 2016EWS(a) and 2017DS(b)
on LTCCE field in the IRRI Zeigler Experiment Station, Los Bafios, the Philippines.
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Difference percentage map of PNA in 2016 EWS

Difference percentage map of PNA in 2017 DS
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Figure 24: Difference percentage maps between estimated PNA and measured PNA in 2016EWS(a) and
2017DS(b) on LTCCE field in the IRRI Zeigler Experiment Station, Los Bafios, the Philippines.

Estimated N status in 2016 EWS Estimated N status in 2017 DS
(b)

0 10 20 40 60 80

N
- — — V| Legend A
Ooqui(\ale System: WGS 1984 UTM Zone 51N <70 kg/ha
Datum: WGgr:’:gdm ke 70 - 100 kg/ha
Units: Meter - 100 - 130 kg/ha

I > 130 kgma
Figure 25: Estimated rice PNA maps for LTCCE field in the IRRI Zeigler Experiment Station, Los Bafios,
the Philippines at harvest time in 2016EWS(a) and 2017DS(b).
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5. DISCUSSION

The study aimed to accurately estimate nitrogen accumulation (PNA) of rice crops using time-series UAV
multispectral images obtained for two growing seasons in IRRI Zeigler Experiment Station, Los Bafios,
the Philippines. Vegetation indices (VIs), linear regression, multivariate models (stepwise and partial least
square regressions (PLSR)) as well as machine learning algorithms, including support vector regression
(SVR) and random forest (RF) were used to estimate PNA of rice crops for 2016 eatly wet season (EWYS)
and 2017 dry season (DS). The model with the highest accuracy (lowest RMSE and highest R?) was used
for mapping PNA for both rice seasons. The results showed that the RF model had the highest accuracy
in estimating PNA on rice and therefore was used for mapping PNA for both growing seasons.

5.1. Relationships among filed agronomic parameters

The UAV imagery and field data offered by Dr Roland Buresh and Steve Klassen from IRRI organization
were well organized. Strong correlations were found among the SPAD values, leaf colour chart readings
(LCC) and PNA in the rice panicle initiation and heading stages. Suresh et al. (2017) also showed that
SPAD and LCC measured in rice crops 56 days after transplanting (IDAT) on rice had a significant and
positive correlation with leaf N content on rice.

5.2. Linear regression models using GNDVI for PNA estimation

Correlation coefficients between the time-series VIs and PNA were calculated for selection of the best
performing VI in 2016EWS and 2017DS, and the dates in which PNA and VIs had highest correlations
were selected as the most crucial days (rice panicle initiation and heading stages) for PNA estimation in
Table 8 and Table 9. Among the studied VIs, GNDVI always had the highest correlation coefficient with
SPAD, CCC and PNA during the whole growing season. Eatlier findings by Gitelson et al. (1996) showed
that GNDVI is useful for assessing the canopy chlorophyll content (CCC) in rice crops. The CCC has
been confirmed as an indicator for reflecting the N content on winter wheat by Delloye et al. (2018).

As can be obsetrved from results in Table 8 to Table 10, 56 and 63 DAT in 2016EWS, as well as 57 and 68
DAT in 2017DS are crucial dates for PNA estimation, therefore, simple linear regression models were
built using GNDVI calculated for those days and field measurements of PNA for both 2016EWS and
2017DS (Figure 10). The R? value and RMSE (R2=0.78-0.89, RMSE=10.4-13.75, NRMSE=10.7%-14.9%)
of simple regression models illustrated the significance of using GNDVI in crucial days for PNA
estimation. The feasibility of using VI in regression models for N status estimation has been shown in
many studies (Noureldin et al., 2013; Maki et al., 2014). In addition, the stepwise multiple linear regression
models were built using GNDVI time-series data to check if the PNA estimation would improve using
more dates GNDVI data in the regression models (Figure 13). We found that the model performance of
stepwise multiple linear regression model is quite similar to the simple linear regression model with R?=0.8
and RMSE=11.16 in 2016EWS, R2= 0.89 and RMSE=12.37 in 2017DS (Table 11 and Table 12).
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5.3. Estimating and mapping PNA of rice crops using multivariate methods and machine learning
models on rice in 2016EWS and 2017DS
Comparing multivariate method (PLSR) and machine learning algorithms (SVR, RF) performance for
PNA estimation was an important part of this research. In general, machine learning algorithms improved
PNA estimation accuracy compared to simple linear and stepwise regression models (Table 11 and 12).
The PLSR models for PNA estimation performed well in both rice seasons (R?=0.8-0.91. RMSE=10.65-
10.8, NRMSE=8.7%-14%). In PLSR models, the more important input variables were the red band
reflectance and GNDVI value in panicle initiation stage (Figure 18). Most of the input variables
importance were larger than 50% in PLSR models. As for SVR models, it also showed good performance
for PNA estimation (R?2=0.85-0.88. RMSE=9.94-13.39, NRMSE=11%-12.9%). Maimaitijiang et al. (2020)
proved that SVR model has great potential in predicting crop above ground biomass and LAI using UAV
data. The RF models performed as the most accurate one among all studied machine learning algorithms
in both the 2016EWS and 2017DS (R?=0.9-0.93, RMSE=8.37-9.93, NRMSE=8.1%-10.9%). Relatively
more important features in the RF models (Figure 19) were the red band reflectance and GNDVI value in
panicle initiation stage, which shows similarity to the PLSR models, but the features in RF models with
high importance percentage is less than in PLSR models. The capability of using RF models to estimate N
status on rice using GNDVI and individual bands reflectance is also demonstrated in the study by Sun et
al. (2017). In recent years, the RF algorithm has gradually become popular for different applications such
as crop parameter estimation, due to the stability with a varying number of base learners (Genuer et al.,
2010). As such, Wang et al. (2016) showed that using different VIs derived from China’s environmental
satellite (HJ]) charged-coupled device (CCD) images in RF regression models produced the most accurate
estimates of wheat biomass in comparison with SVR and artificial neural network (ANN).

As can be observed from the PNA map generated by RF models (Figure 21a and Figure 22b), PNA values
larger than 130g/ha do not exist in 2016EWS, which means the PNA value in 2017DS was generally
higher than 2016EWS. It can also be observed from the estimated and measured PNA maps in Figure 21
and Figure 22 that PNA is more affected by N application and less by the varietal differences. The
subplots with no N treatment always presented a PNA value less than 70kg/ha. Then, PNA started to
increase when the total N application is 90kg/ha in 2016EWS and 130kg/ha in 2017DS. Since the total N
application amount in 2017DS was higher than 2016DS, the number of subplots that had more than
130kg/ha of PNA in 2017EWS were higher than in 2016 DS. The PNA difference (residual) maps
showed that for most of the subplots, the difference between the estimated and measured PNA value
were closed to zero (Figure 23), which shows the reliability of the estimated PNA values using RF in both
seasons. According to difference percentage maps for both seasons, the residuals between most measured
and estimated subplots were less than 10% (Figure 24). Besides the comparison between the measured
and estimated PNA, the RF models were further applied to the whole LTCCE site to map the PNA
distribution (Figure 25). The produced PNA maps could be used for better N treatment and for actual
field instruction.

5.4. Recommendations

Field measurements were presented as an average value at the subplots level, however, smaller-scale field
measurements based on rice hills level could be taken inside the subplots for more accurate
measurements. Due to the very high resolution of UAV images, there is also scope for further
improvement on PNA estimation, for example, detailed PNA estimation based on rice hills level could be
studied. As such, the variation inside the subplots could be studied.
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The PNA destructive measurements were only made one time at the harvest time, it is suggested to take
multiple measurements during the whole growing season same as other non-destructive methods. As such,
the relationships between destructive N measurements and non-destructive measurements in different
rice-growing stages could be investigated. The PNA value could also been estimated in each rice growth
stage instead of just once at the harvest time by applying multivariate models.

The study only used linear and stepwise regression models, PLSR, SVR and RF algorithms for the
selection of the best model for PNA estimation. More algorithms could be examined to select a convinced
and robust algorithm in future works. Moreover, different scenarios could be tested by applying different
inputs in machine learning algorithms. For examples, different VI or derivatives of reflectance can be used
as input to train the models. The remotes sensing data combining with different field measurements such
as the time-series SPAD value could also been tested as model input for PNA estimation. Based on the
results of linear and stepwise regressions, it is suggested that instead of using the remote sensing data and
VI for the whole rice-growing season, only selecting the crucial day's data as input could be sufficient for
PNA estimation in the future studies.
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6. CONCLUSION

In this research, the potential of UAV images was examined in agricultural fields experiments and the
application for larger-scale agricultural management. The use of traditional vegetation indices to estimate
PNA were evaluated for different seasons. Multivariate methods and machine learning algorithms
including PLSR, SVR and RF were also evaluated and compared for PNA estimation. The PNA of rice
crops under dry and wet seasons were finally mapped using the most accurate machine learning algorithm
at the end of the study.

The field measurements of SPAD, LCC, and PNA are highly correlated during the rice panicle initiation
and heading stages. Different VIs related to structure and chlorophyll is selected for rice PNA estimation
at the harvest time. All the chosen VIs indicated good correlations with PNA in both growing seasons.
The best performance VI among all VIs was the Green Normalized Difference Vegetation Index
(GNDVI). It was used in simple linear regression models using crucial days (DAT 56 and DATG63 in
2016EWS, DAT57 and DAT68 in 2017DS) to estimate PNA is suitable and convincing in both rice-
growing seasons. In addition, the time-series GNDVI data for the whole growing season were applied in
the stepwise linear regression models for PNA estimation. Moreover, multivariate methods and machine
learning algorithms (PLSR, SVR and RF) were applied using individual bands reflectance and GNDVI
time-series data for PNA estimation. Among different machine learning algorithms in this study, the RF as
the most accurate model (determined by R?, RMSE) was used for rice PNA mapping in 2016EWS and
2017DS. Further efforts can be made for more accurate N status estimation, including applying the RF
model in rice hill level to examine the N variation inside each subplot.
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APPENDICES

Figure Al: Variation of spectral reflectance per variety during the rice-growing season in 2016EWS.

variety for reflectance checking.
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Figure A2: Variation of spectral reflectance per variety during the rice-growing season in 2017DS.

variety for reflectance checking.
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Figure A3: Field measurements (SPAD, LCC and LAI) exploration for trend analysis and outlier detection by variety (n=24) using line charts in 2016EWS and 2017DS. The
SPAD value for V8 on DAT49 in 2016EWS showed an abnormally high value. Other detected outliers were the LAI value in 2017DS for V4 in DAT 43 and DAT 68. In DAT
43, the maximum LAT value reached to 10.1, which is not realistic comparing with the nearest measuring dates. In DAT 68, the minimum value is larger than the minimum value
in DAT 43, which does not accord with the law of LAI changes. Therefore, these outliers were removed from further analysis.
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Figure A4: Field measurements (SPAD, LCC and LAI) exploration for trend analysis and outlier detection by varieties(n=24) using boxplots in 2016EWS and 2017DS.
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