
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Master’s Thesis

Mapping dataflow
over multiple FPGAs

in Clash

Sander (D.J.) Bremmer
November 2020

Supervisors:
Prof.Dr.Ing. D.M. Ziener

Ir. H.H. Folmer
Ir. J. Scholten
Dr.Ir. J. Kuper

CAES Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Preface

Right now, you are reading my master’s thesis, in which I tell you how I map dataflow
graphs on multiple FPGAs. This thesis is written for all those interested and familiar
with the designing FPGAs in a Clash. And for those looking for a structure in which
FPGAs communicate with each other in a deterministic way.
This master’s thesis was written for the Embedded System study programme at
the University of Twente and was carried out at the CAES-group. The reason for
me to choose the CAES-group were the courses Embedded computer Architec-
tures 1 and 2.
After some personal setbacks, which delayed the completion of the thesis, I would
like to thank my parents, committee members and fellow students for all the help
and time they have given me to advise and guide me to complete the thesis. Firstly I
would like to thank my parents, who gave me the time and space to study. Secondly,
I would like to thank Hendrik Folmer, who was my daily supervisor for his support,
motivation and critical feedback. The same goes for Jan Kuper, my weekly supervi-
sor, with whom I had a weekly meeting together with Hendrik Folmer, Oguz Meteer,
and other students. I would also like to thank Daniel Ziener for being my overall
supervisor and offering a graduation place. Last but not least, I would like to thank
all my fellow students of the CAES-group for their constructive and moral support.

Sander (D.J.) Bremmer
Vriezenveen, 28 October 2020

iii

Summary

Modern cars have many parts that work, partially, electronically. Miscommunication
between the different parts can result in accidents. Therefore, the communication
time between the various electronic components is critical. Those electronic com-
ponents in a car we represent as a Field Programmable Gate Array (FPGA). An
FPGA is a device with flexible hardware, on which computationally demanding ap-
plications, are more and more implemented these days. FPGA designs also grow
and no longer fit on one FPGA. Spreading tasks over multiple FPGAs can be benefi-
cial for implementations. The distribution of tasks across multiple FPGAs makes that
FPGAs need to interact to solve a problem. While working, they communicate, this
communication time is critical and is complex. To model this interaction and critical
communication time, we use dataflow graphs. Dataflow is a suitable and well-known
communication model to model time and data dependency.

The goal of this thesis is to map a dataflow graph over multiple FPGAs, where
each node of the dataflow graph is assigned his own FPGA. These FPGAs must
then be interconnected. We can use the same structure for the connection as the
dataflow graph. Still, we want to support different dataflow graphs. So, we started
looking for a suitable communication structure, called the hardware topology. After
selecting a topology, we make a design that fits the topology. We implement this in
CAES Language for Synchronous Hardware (Clash). The implementation results in
communication time between the different FPGAs. We, therefore, want to know how
we can display and calculate this communication time.

As a starting point, we choose the ring topology, with the Nebula ring intercon-
nect. The nebula-ring interconnect, is an all to all interconnect. All FPGAs in the
ring can send data to each other via the ring network. In this ring, there are slots,
where every FPGA has its own slot. Those slots shift around. This shifting means
that every FPGA sees its own slot every once in a while. An FPGA can use its own
slot to inject data into the ring. The FPGA for which the data is intended extracts that
data from the ring. Which FPGA is a source for the data and which is the destina-
tion, is modelled by the dataflow graph. After choosing the ring hardware topology,

v

we know how the FPGAs are set up and how they communicate, we design and
implement this in Clash. In the ring topology, every FPGA has the same structure.
Because of this one structure. We design a model for one FPGA, which we can
then apply to the other FPGAs. On one FPGA, there will be several elements that
we connect. An element is an actor representing an actor of the dataflow graph.
The actor is connected to an output memory buffer, which serves as a waiting place
for the messages that enter the ring. The actor is also connected to an input mem-
ory buffer, which is a waiting place for the messages coming from the ring so that
messages from different edges can be consumed at the same time. Both memory
buffers are connected to a router. The router chooses, when the own slot arrives,
which message from the output buffer is injected into the ring. It also routes the
messages coming from the ring into the input memory buffer. If a message is not
destined for the FPGA, the router sends them further over the ring. The routers, and
nebula slots, of different FPGAs, are interconnected, in the ring topology. This ring
structure we simulated in Clash.

The implemented hardware architecture we model as a resulting dataflow graph,
of which we’ve charted the communication path. The communication path is the
path a message travels from source to destination over the ring. These communica-
tion paths are added to the initial dataflow graph as identity actors. An identity actor
is added to each edge of the initial dataflow graph. On the resulting dataflow graph,
the user can perform a post-analysis. We can guarantee deterministic behaviour if
we calculate the Worst-Case Execution Time (WCET) as firing time for the identity
actors. For this purpose, we made two equations. With the first calculation, we are
entirely dependent on the maximum number of messages in the output buffer. With
the second calculation, we are dependent on the maximum number of messages on
one output edge and the number of output edges. After a simulation in Clash, we
see that the simulation results are the same as the calculations.

The conclusion is that we have chosen for a ring topology with the Nebula ring
interconnect. Where each FPGA represents an actor of the initial dataflow graph.
The user can then give an initial dataflow graph to our Clash implementation. This
implementation is modelled as a resulting dataflow graph, in which additional identity
actors are added. These actors represent the network communication time between
two actors of the initial dataflow graph. For these actors, we can calculate the firing
time. The designer can then analyse this model. We also compared the calculated
results with the Clash simulation and found that they are the same.

Contents

Preface iii

Summary v

List of Acronyms xvii

I Introduction, Background and Related work 1

1 Introduction 3
1.1 Context . 3
1.2 Goal . 5
1.3 Research Questions . 6
1.4 Approach and Outline . 7

2 Background 9
2.1 FPGA . 9
2.2 Haskell and Clash . 10

2.2.1 Higher-Order Functions . 10
2.2.2 Data Types . 12
2.2.3 Moore and Mealy . 13

2.3 Dataflow . 14
2.3.1 Synchronous DataFlow (SDF) 14
2.3.2 Self-Timed Schedule . 14
2.3.3 Strongly Connected . 14
2.3.4 Backpressure . 15
2.3.5 Topology Matrix . 15
2.3.6 Repetition Vector . 15

2.4 Network Topology . 16
2.5 Nebula Ring Interconnect . 17

2.5.1 Ringslotting . 17
2.5.2 Hijacking . 18

vii

3 Related Work 19
3.1 Nebula Ring Differences . 19
3.2 FPGA to FPGA Communication . 20
3.3 Dataflow on Hardware . 21

II Design Space Exploration (DSE) 23

4 Topology Choices 25
4.1 Connecting FPGAs . 25

4.1.1 Topologies . 25
4.1.2 Choosing Topology . 27

4.2 Conclusion Topology . 30

5 Realisation and Structural Choices 31
5.1 Dataflow Constraints . 33
5.2 General FPGA Realisation Information 33
5.3 FPGA Elements . 34

5.3.1 The Actor . 34
5.3.2 Memory . 34
5.3.3 The Router . 37
5.3.4 Ring Hop . 37
5.3.5 Controlling . 37
5.3.6 Complete FPGA . 38

5.4 The Ring . 38
5.5 Summary by Example . 39
5.6 Conclusion Realisation . 40

6 Clash Implementation Choices 41
6.1 FPGA Setup . 42
6.2 The Ring Content Type . 44
6.3 Connecting FPGA Elements . 45

6.3.1 Clash Names . 45
6.3.2 Type Parameters . 48

6.4 Elements in Detail . 51
6.4.1 Buffer . 51
6.4.2 The Controller . 56
6.4.3 The router . 57
6.4.4 The Ringhop . 64

6.5 Conclusion Implementation . 65

III Analysis and Simulation Results 67

7 Reconversion 69
7.1 Communication Path . 70
7.2 Identity Actors . 71
7.3 Conclusion Reconversion . 71

8 Timing Analysis 73
8.1 Calculation Introduction . 74

8.1.1 Calculation 1 . 75
8.1.2 Calculation 2 . 76
8.1.3 Example calculation 1 and 2 77
8.1.4 Final WCET . 79

8.2 Conclusion Timing Analysis . 80

9 Simulation Results 81
9.1 Simulation Setup . 81

9.1.1 Clash Setup . 83
9.1.2 Calculation Results . 84
9.1.3 Clash Simulation Results . 85

9.2 Corresponding Results . 88
9.3 Conclusion Simulation . 88

IV Conclusions and Future Work 89

10 Conclusions 91

11 Future Work 95
11.1 Maximum Buffer Occupation . 95
11.2 Actor Location . 95
11.3 Calculation Improvement . 96

11.3.1 Adaption of Existing Calculation 96
11.3.2 Additional Calculations . 96

11.4 Credit Ring . 97
11.4.1 Credit-ring in Clash . 97

11.5 Additional Slots . 99
11.6 Ring-Intermediate Topology . 100
11.7 CSDF Graphs . 101
11.8 Multi-Edged Dataflow Graphs . 101
11.9 (De)serialising . 102

11.10Physical Implementation . 103

References 105

Appendices

V Appendices 109

A Clash Schematics 111
A.1 Regular Ring . 111
A.2 Credit Ring . 112

B Rules Credit Ring Hijacking 113

C Simulation Results 115
C.1 Option 1 . 116

C.1.1 Ringsize(sd)=1, With Hijacking, HopTime(T)=1 116
C.1.2 Ringsize(sd)=1, Without Hijacking, HopTime(T)=1 118
C.1.3 Ringsize(sd)=2, Without Hijacking HopTime(T)=1 119
C.1.4 Ringsize(sd)=2, With Hijacking, HopTime(T)=1 120
C.1.5 Ringsize(sd)=2, Without Hijacking, HopTime(T)=2 121
C.1.6 Ringsize(sd)=2, Without Hijacking, HopTime(T)=3 122
C.1.7 Ringsize(sd)=2, Without Hijacking, HopTime(T =7 123

C.2 Option 2 . 124
C.2.1 Ringsize(sd)=1, Without Hijacking, HopTime(T)=1 124
C.2.2 Ringsize(sd)=1, With Hijacking, HopTime(T)=1 125
C.2.3 Ringsize(sd)=2, Without Hijacking, HopTime(T)=1 126
C.2.4 Ringsize(sd)=2, With ijacking, opTime(T)= 127
C.2.5 Ringsize(sd)=2, Without Hijacking, HopTime(T)=2 128

C.3 Option 3 . 129
C.3.1 Ringsize(sd)=1, Without Hijacking, HopTime(T)=1 129
C.3.2 Ringsize(sd)=1, With Hijacking, HopTime(T)=1 130
C.3.3 Ringsize(sd)=2, Without Hijacking, HopTime(T)=1 131
C.3.4 Ringsize(sd)=2, With Hijacking, HopTime(T)=1 132

C.4 Option 4 . 133
C.4.1 Ringsize(sd)=2, Without Hijacking, HopTime(T)=7 133

D Clash Code 135
D.1 Connecting Elements . 135

D.1.1 DataTypes . 135

D.1.2 NodeConnect . 137
D.2 Simulation Results . 139
D.3 Elements in detail . 139

D.3.1 Controller . 139
D.3.2 Router . 139
D.3.3 Round-Robin . 140
D.3.4 Buffer . 141
D.3.5 FIFO . 141
D.3.6 Ring Hop . 142
D.3.7 Helper Function . 142

D.4 Simulation Example . 143
D.4.1 Option 1, Ring 1, Modes 0, time 1 143

List of Figures

1.1 Airbag dataflow example. 4
1.2 FPGA [1] . 4
1.3 Designflow: Chapters 1, 2, 3 and 10 7

2.1 Higher order function: map . 10
2.2 Higher order function: zipWith . 11
2.3 Higher order function: imap . 11
2.4 Higher order function: mapAccumR 11
2.5 Finite state machines . 13
2.6 Dataflow parts . 14
2.7 Topology matrix example . 15
2.8 Topologies . 16
2.9 Nebula slots . 17
2.10 Nebula ring example . 18

3.1 Hardware architecture [2] . 21

4.1 Designflow: Hardware topology . 25
4.2 Ring-intermediate topology . 29

5.1 Designflow: Initial dataflow graph to ring topology 31
5.2 Brief hardware implementation preview 32
5.3 Simple dataflow graph . 33
5.4 Dataflow graph examples . 33
5.5 Actor models . 34
5.6 Actor and memories . 34
5.7 Basic hardware implementation, actor, memories and router 37
5.8 FPGA implementation . 38
5.9 Hardware ring implementation example 38
5.10 Three node, dataflow graph example 39
5.11 Hardware implementation: Three node, dataflow graph example . . . 39

6.1 Clash implementations schematic . 45

xiii

6.2 Connecting a hardware actor . 50
6.3 ’f’ Executions . 52
6.4 ’g’ Executions . 52
6.5 First In First Out (FIFO) implementation 52
6.6 Buffer structure . 54
6.7 Hijacking . 59
6.8 Round-Robin index selector . 61
6.9 Round-Robin, pointer update examples 62

7.1 Designflow: Ring topology to resulting dataflow graph 69
7.2 Three Node, dataflow graph example 69
7.3 Edge representation . 70
7.4 New edge representation . 70
7.5 Resulting dataflow graph: Three node, dataflow graph example 71

8.1 New extended slot, with sd content places 74
8.2 Timing example . 77
8.3 Buffer occupation, with reserved slots for both calculations 79

9.1 Topology matrices for different implementations 81
9.2 Dataflow graphs of option 1 . 82

11.1 Buffer occupation example . 96
11.2 Credit-ring topology . 97
11.3 Three Node, dataflow graph example 98
11.4 Resulting Dataflow graph: Three node, dataflow graph example with

credit-ringif we summarise the previous slides. 98
11.5 Multiple slots in Nebula ring . 99
11.6 Ring-intermediate example . 100
11.7 Multi-edged dataflow graph example 101
11.8 FPGA with serialiser and deserialiser 102

A.1 Clash implementations schematic . 111
A.2 Clash implementations schematic, with credit-ring 112

C.1 Topology matrices for different implementations 115
C.2 Dataflow graphs: Option 1 . 115

List of Tables

4.1 DSE Topologies . 26

9.1 Calculation results with ring size(sd) = 1 84
9.2 Calculation results with ring size (sd) = 2 84
9.3 Clock cycle explanations . 85
9.4 Result, edge6, option 1, Ringsize(sd)=1, without hijacking 86
9.5 Result, edge6, option 2, ringsize(sd) = 1, without hijacking 87
9.6 Result, edge6, option 2, ringsize(sd) = 2, with hijacking 87
9.7 Edge6 result comparison . 88

C.1 Result edge6, Option 1, Ringsize(sd)=1, With Hijacking, HopTime(T)=1 116
C.2 Result edge6, Option 1, Ringsize(sd)=1, Without Hijacking, HopTime(T)=1118
C.3 Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, HopTime(T)=1119
C.4 Result edge6, Option 1, Ringsize(sd)=2, With Hijacking, HopTime(T)=1 120
C.5 Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, HopTime(T)=2121
C.6 Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, HopTime(T)=3122
C.7 Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, HopTime(T)=7123
C.8 Result edge6, Option 2, Ringsize(sd)=1, Without Hijacking, HopTime(T)=1124
C.9 Result edge6, Option 2, Ringsize(sd)=1, With Hijacking, HopTime(T)=1 125
C.10 Result edge6, Option 2, Ringsize(sd)=2, Without Hijacking, HopTime(T)=1126
C.11 Result edge6, Option 2, Ringsize(sd)=2, With Hijacking, HopTime(T)=1 127
C.12 Result edge6, Option 2, Ringsize(sd)=2, Without Hijacking, HopTime(T)=7128
C.13 Result edge6, Option 3, Ringsize(sd)=1, Without Hijacking, HopTime(T)=1129
C.14 Result edge6, Option 3, Ringsize(sd)=1, With Hijacking, HopTime(T)=1 130
C.15 Result edge6, Option 3, Ringsize(sd)=2, Without Hijacking, HopTime(T)=1131
C.16 Result edge6, Option 3, Ringsize(sd)=2, With Hijacking, HopTime(T)=1 132
C.17 Result edge6, Option 4, Ringsize(sd)=2, Without Hijacking, HopTime(T)=7133

xv

List of Acronyms

ABS Anti-lock Braking System

CAES Computer Architecture for Embedded Systems

Clash CAES Language for Synchronous Hardware

CLB Configurable Logic Block

CSDF Cyclo-Static DataFlow

DSE Design Space Exploration

EDSL Embedded Domain Specific Language

FIFO First In First Out

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HPC High-Performance Computing

HSDF Homogeneous Synchronous DataFlow

LCM Least Common Multiple

NI Network Interface

PCB Printed Circuit Board

SDF Synchronous DataFlow

VHDL VHSIC-HDL, Very High-Speed Integrated Circuit Hardware Description
Language

WCET Worst-Case Execution Time

xvii

Part I

Introduction, Background and
Related work

1

Chapter 1

Introduction

1.1 Context

Modern cars have many parts that work, partially, electronically, such as the airbag,
Anti-lock Braking System (ABS), speed sensor, electronic brakes and clutch system.
Self-driving vehicles have even more sensors and computing devices. Those sen-
sors and computing devices communicate with one and other. Miscommunication
between the different parts can result in accidents and must therefore not happen.
For example, an airbag must deploy within a specified time, an automatic brake sys-
tem must break before an accident occurs and the ABS must react to reduce the
brake distance. Therefore, the communication time between the different electronic
components is critical.
Cars are just one example of critical communication time between the electronic
components in a vehicle, still, there are more time-critical systems, such as medical
implants, e.g. heart-implants and peacemakers, electronic aeroplane control sys-
tems or other industrial process controllers.

An FPGA, see Figure 1.2 is a device with flexible hardware. This flexibility en-
sures that parts of the system can be changed without buying all-new processors.
Implementations on FPGAs are more flexible and often work faster than on a CPU,
because of parallel computation. Therefore, computationally demanding applica-
tions, such as neural networks, learning algorithms, High-Performance Comput-
ing (HPC) and real-time graphics processing are more and more implemented on
FPGAs these days [3]–[7]. FPGA designs Also grow and, therefore, no longer fit on
one FPGA. Because the programmable area of an FPGA is not unlimited, spreading
tasks over multiple FPGAs can be beneficial for implementations. Such as the car
example earlier, where different electronic part are located at different positions in
a car. The distribution of tasks across multiple FPGAs makes that FPGAs need to
work together to solve a problem. While working, they communicate. This commu-

3

Collission

Sensor

Co− driver

Seat
Airbag

Figure 1.1: Airbag dataflow example. Figure 1.2: FPGA [1]

nication takes time and can become complex.
To model the critical communication time between FPGAs, we use dataflow

graphs. Dataflow is a suitable and well-known communication model to model time
and data dependency.
Dataflow graphs consist of three parts, namely actors, which perform tasks, repre-
sented as circles, edges between actors, represented as arrows, which describe the
data dependency between different actors and tokens, which indicate the availabil-
ity of data, represented as dots. Before an actor can start his task, there must be
enough tokens on all incoming edges. The actor consumes these tokens and after
a predetermined time produces those tokens on the outgoing edges.
In the model of Figure 1.1, we use an airbag as illustrative example1. In the dataflow
graph, the airbag actor has issued a token to show that it is enabled. If there is a
collision, the collision sensor produces tokens for the airbag actor and the co-driver
seat actor. If the co-driver seat sensor detects that the seat is occupied, it produces
a token for the airbag. The airbag will then see tokens on both edges after which it
will deploy.

1The example is a fabricated example and not based on reality, but is used to indicate the impor-
tance of a dataflow graph.

1.2 Goal

The goal of this thesis is to map dataflow graphs on multiple FPGAs. Each actor
of the dataflow graph is assigned his own FPGA. These FPGAs must somehow
communicate with each other. For that, we need to know the hardware communi-
cation structure. This structure is the hardware topology we need to find first. After
finding the architecture, we make a design and implement this in CAES Language
for Synchronous Hardware (Clash)2. The spreading over multiple FPGAs causes
that there is communication time between them. We, therefore, want to analyse this.
As a result, we make a new model to calculate and simulate the communication time.

So we are looking for an interface where a user provides an initial dataflow graph,
after which it is mapped over multiple FPGAs. The user gets a resulting dataflow
graph, with the modelled communication time. The user can do a post-analysis
on this new model. The post-analysis allows the user/designer to see whether the
resulting dataflowgraph model still meets the timing requirements. This dataflow
mapping is interesting because it enables designs that do not fit on one FPGA to
be spread over multiple FPGAs, still, creating a dataflow graph model that can be
analysed.

In this thesis, we are not looking for which actor should be placed on which
FPGA. It should work through random assignment, even though this may not be
the optimal setup. Nor is it up to us to provide a dataflow graph and determine the
functions of the actors. Also, we don’t physically link hardware and take into account
the propagation of clock signals, but we do want to find out what happens on one
FPGA and what would happen if multiple FPGAs are linked.

2Clash is a functional hardware description language, well-known at the UT-CAES group. In Clash,
we do simulations and transform High-level descriptions to low-level synthesisable VHSIC-HDL, Very
High-Speed Integrated Circuit Hardware Description Language (VHDL), Verilog or SystemVerilog.

1.3 Research Questions

The following main -and- sub -questions answered to solve the problems.

How do we design and analyse FPGA to FPGA communication in a defined
topology, using dataflow graphs?

Which hardware communication infrastructure is suitable?

Given the topology, how do we map a dataflow graph onto multiple FPGAs?

Are there any dataflow graph constraints, if so, which ones?

How can we model the temporal behaviour of the design, analyse the
communication and guarantee deterministic behaviour?

How do simulation results correspond to analysis results concerning
timing?

1.4 Approach and Outline

Initial
dataflow graph

(a) Chapter 2 (b) Chapters 5, 6

Hardware
topology

(c) Chapter 4 (d) Chapter 7

Resulting
dataflow graph

(e) Chapters 8, 9

Figure 1.3: Designflow: Chapters 1, 2, 3 and 10

In Figure 1.3, we see the design approach of this project. The captions in the figures
refer to the different parts to which it relates. Chapters 1, 2, 3 and 10 discusses the
general project, and the captions in the subfigures refer to different chapters.

Part I In Chapter 2, we present the background information on various aspects
used in this report. In the related work, chapter 3, we compare this project
with the projects of others.

Part II In Chapter 4 we look for a hardware topology, we need this hardware topol-
ogy because we want to know how FPGAs are connected, where the num-
ber of FPGAs is determined by the number of actors of the initial dataflow
graph.
Now that we know how the FPGAs are connected we can, in Chapter 5
map an initial dataflow graph to the hardware topology, where tokens/data
are sent through the communication channels of the topology, but where
the model of the original dataflow graph is preserved. In Chapter 6, we will
implement this in Clash. Still, we will make some implementation choices.

Part III The implemented communication architecture takes time, and we want to
model this by adding actors to the initial dataflow graph. Therefore, we
reconvert the implemented dataflow graph to a resulting dataflow graph in
Chapter 7. Then, in Chapter 8, we look at what equations we can find to
determine the firing time of the new actors. So that, in combination with
the initial dataflow graph, we again have a complete dataflow to analyse.
In Chapter 9, simulation results, we simulate the Clash implementation to
see what time the new actors have so that we can compare this with the
calculation of the equations.

Part IV In Chapter 10, conclusions are given. Finally, in Chapter 11, Future work,
we discuss undiscussed and unimplemented subjects.

Chapter 2

Background

This chapter shows some background information of different aspects used in this
thesis.

2.1 FPGA

FPGA is short for Field Programmable Gate Array and is a circuit of integrated pro-
grammable logic components, such as AND, OR, XOR, etc.

Two major FPGA manufacturers describe FPGAs as follows:

Intel [8] “It is a semiconductor IC where a large majority of the electrical function-
ality inside the device can be changed; changed by the design engineer,
changed during the Printed Circuit Board (PCB) assembly process, or even
changed after the equipment has been shipped to customers out in the
‘field’.”

Xilinx [9] “FPGAs are semiconductor devices that are based around a matrix of
Configurable Logic Blocks (CLBs) connected via programmable intercon-
nects.”

Integrated functions range from simple logic function to complex mathematical ap-
plications. Examples of these applications can be found in aerospace, automotive,
medical applications, video processing, wired communication, etc. To design these
circuits a Hardware Description Language (HDL) such as VHDL or Verilog is usually
used.

9

2.2 Haskell and Clash

In Haskell evaluation of functions are similar to the calculation of mathematical func-
tions. Haskell is a pure Functional programming language. This pure means that
when a function is invoked, the result is the same every time, without side effects.
Haskell is also lazy, that means that a function is only calculated when needed.
Clash is Functional HDL that borrows its syntax from Haskell and can best be de-
scribed by Clash websites [10] or [11]: ”Clash is a functional hardware descrip-
tion language that borrows both its syntax and semantics from the functional pro-
gramming language Haskell. It provides a common structural design approach to
both combinational and synchronous sequential circuits. The Clash compiler trans-
forms these high-level descriptions to low-level synthesisable VHDL, Verilog, or Sys-
temVerilog.” more information, installation instructions or support can be found on
their websites.
Next, an explanation of some used types, for an extensive description of the different
aspects of Haskell and Clash see [12], [13], and [10].

2.2.1 Higher-Order Functions

A function that has a function as a parameter is a higher-order function. Here are
some examples of higher-order functions used in this report explained using figures.

map

f f f f f f

o0 o1 o2 o3 o4 on−1

x0 x1 x2 x3 x4 xn−1

Figure 2.1: Higher order function: map

map, see Figure 2.1, is a higher-order function that applies a function f to every
element of a list xs, to produce a list of outputs os. This is written as os = map f xs or
by using the more abstract fmap function as os = fmap f xs, this can also be written
as follows os = f <$> xs.

zipwith

zipWith, see Figure 2.2, is like map a higher-order function. This function applies a
function f to two arguments xs and ys to produce an output os. This is written as
follows os = zipWith f xs ys.

f f f f f f

o0 o1 o2 o3 o4 on−1

y0 y1 y2 y3 y4 yn−1x0 x1 x2 x3 x4 xn−1

Figure 2.2: Higher order function: zipWith

imap

The imap function, see Figure 2.3, is a higher-order function similar to the zipWith

and map functions and is written as follows os = imap f xs. The difference with the
zipWith function is that with the imap function, one of the arguments is filled in with
a list of numbers representing the index; hence the ’i’ in imap. This leaves only one
argument xs that must be given to the imap. In that respect, it looks like the map

function.

f f f f f f

o0 o1 o2 o3 o4 on−1

0 1 2 3 4 n− 1

x0 x1 x2 x3 x4 xn−1

Figure 2.3: Higher order function: imap

mapAccumR

The mapAccumR, see Figure 2.4 is a higher-order function that applies a function f

to an argument a and a list xs. This, finally, results in a tuple, consisting of an
argument w and a list os. The example from Figure 2.4 can be written as follows
mapAccumR f a xs = (w, os).

f f f f f f

o0 o1 o2 o3 o4 on−1

x0 x1 x2 x3 x4 xn−1

aw

Figure 2.4: Higher order function: mapAccumR

2.2.2 Data Types

A data type is a specific type of data, such as integers and booleans. Each variable
or expression is associated with a datatype. This datatype determines which values
the variable or expression can assume.

Custom DataTypes

It is possible to create a custom data type. By using an Embedded Domain Specific
Language (EDSL) within Haskell, we give value constructors a recognisable name.
On this name, we can then pattern match. In Listing 1, we see an example of a data
type. Connect, on line 1, is the constructor type. a and b are the type of parameters.
|, on line 3, is a separation between value constructors, in this case To, on line 2 and
From on line 3. To has two fields, with the variable type constructors a and b. B has as
fields the type String and a variable type constructor a. The type of constructors a

and b can be chosen when the type is used.

1 data Connect a b =

2 To a b

3 | From String a

Listing 1: Data type example

1 data Connect a b =

2 To { signal1 :: a

3 , signal2 :: b

4 }

5 | From { signal3 :: String

6 , signal1 :: a

7 }

Listing 2: Record syntax

Record Syntax {..}

Listing 2 shows a record syntax version of the Data type example of Listing 1.
The record syntax, the part between { } has accessors. The accessors are the
functions signal1, signal2 and signal3 on lines 2-3 and 5-6 respectively, which allow
us to read individual values from the constructor. Accessors with the same name, in
different value constructors, but within the same data type, are linked to each other.
This is useful to connect different elements. An example is signal1 on lines 2 and 6.

Maybe Type

1 data Maybe a = Nothing | Just a

Listing 3: Maybe type

The Maybe a data type, see Listing 3, is an existing data type, consisting of
two value constructors, namely Just a and Nothing. The type contains either a
value, Just a, or is empty and is displayed as Nothing. This is useful because, during
type matching, we can easily see if something contains data or not.

2.2.3 Moore and Mealy

To transfer data from one clock cycle to the next, we can place a register between
the out-and input of a function. We do this by using Mealy or Moore functions.

fin s′

s

out

(a) Mealy machine

f gin s′

s

out

(b) Moore machine

Figure 2.5: Finite state machines

Figures 2.5a and 2.5b show a Mealy and Moore machine, as implemented in
Clash, respectively.
Mealy functions are functions whose output out and new state s' can depend on
the input inp and the previous state s.
The output out of a Moore function depends only on the previous state(s) (and pos-
sibly applied to second function g) but is in any case independent of the input inp.
The new state s' may be dependent on the state s and input inp.

1 f s inp = (s' ,out)

2 where

3 out = s + inp

4 s' = inp

Listing 4: Mealy example

An example of a function that can be used in a Mealy machine is implemented in
Listing 4 where the new state s' is the input inp and where the output out is equal
to the state s plus the input inp. In the example, it is clear that output depends on
input inp and state s.

2.3 Dataflow

Dataflow is a suitable and well-known communication model to model time and data
dependency. Only the relevant parts of the dataflow are explained in this thesis. The
book of RTS2 [14] gives more comprehensive coverage of dataflow graphs.

A

t

(a) Actor

p c

(b) Edge

T

(c) Token

Figure 2.6: Dataflow parts

2.3.1 SDF

An SDF graph is a directed graph consisting of actors, edges, and tokens, see Fig-
ures 2.6a, 2.6b and 2.6c respectively, where the actors are visualised as nodes, the
edges as red arrows and the tokens as dots. The edges represent First In First
Out (FIFO) queues with unlimited storage space. In the FIFO, tokens are stored. At
time 0 the number of tokens on an edge equals the initial tokens. Multiple tokens
on edges are represented with dots or indicated by a number T close to a token.
A number at the end or beginning of the edge represents the number of tokens the
actor consumes or produces. We indicate the consuming rate with a c and the pro-
ducing rate with a p, where c ≥ 1 and p ≥ 1. The actors have a firing rule that they
may not do anything before the tokens on the edge are equal to the consumption
rates. After firing the actor produces tokens equal to the production rates. The firing
duration t is the time between consuming and producing.
An SDF graph, where every actor only consumes and produces one token per edge,
is called a Homogeneous Synchronous DataFlow (HSDF) graph.

2.3.2 Self-Timed Schedule

If an actor fires as soon as possible, then the schedule is self-timed. Because an
(H)SDF has a monotonic property [15], a shorter firing time of one actor cannot
result in a later start time of another actor.

2.3.3 Strongly Connected

If there is a path, from every node in the graph to every other node, the graph is
strongly connected.

2.3.4 Backpressure

When the producing actor is faster than the consuming actor, the producing actor
experiences resistance, backpressure models this behaviour. Some strategies to
solve backpressure are, dropping tokens, controlling the producing rate by a feed-
back edge or buffering, where produced tokens are stored in some memory unit until
there is no more production but only consumption from another actor.

2.3.5 Topology Matrix

−a b 0
0 −c d
e −f 0
0 g −h

⎡⎢⎢⎣
⎤⎥⎥⎦

edge1
edge2
edge3
edge4

A B C

(a) Topology matrix

qA
qB
qc

[︄]︄
(b) Repetition vector

A B C

e f

edge3

g h
x

edge4

dc

edge2

ba
y

edge1

(c) Dataflow graph

Figure 2.7: Topology matrix example

A topology matrix shows the edges of a dataflow graph. Where the rows show
the edges and the columns show the actors. A positive number in the matrix rep-
resents a producing edge, and a negative number represents a consuming edge.
When the number is 0, it means the edge is not connected to the actor expressed in
the column. An example can be seen in Figure 2.7.

2.3.6 Repetition Vector

With the topology matrix,see 2.7a, there is a way to find the firing rate, which is the
number of times an actor has to fire before it is back in its initial state. This number
of times is the repetition vector, see 2.7b. Finding this can be done by solving the
following formula T

→
q=

→
0 where T is the topology matrix, and

→
q is the repetition vec-

tor. The values of
→
q are both positive integers, and the only factor that divides both

of them is one.
If the topology matrix has rank n − 1, then the repetition vector exists. To find the
rank of a matrix, transform the matrix to its row echelon form and count the number
of non-zero rows. The repetition vector helps indicate the buffer sizes of the FIFO
used between the nodes.

2.4 Network Topology

Different kind of network topologies exist, there are logical-topologies and physical
topologies. The logical topology indicates how it seems that the devices are con-
nected, but the physical topology is the structure of how different devices are con-
nected via wires. Both topologies do not have to be the same. We use the physical
topology as the connection of different FPGAs, and we replace the logical topology
with a dataflow graph.

A

E

D

C

B

(a) Ring

X A

B

C

D

E

(b) Star

A

B

C

D

E

(c) Fully connected

A B C

D E F

G H I

(d) 2D Mesh

A

B

C

D

E

(e) Bus

A

B C

D E

(f) Tree

A

B

C

D

E

(g) Mesh

A B C D E

(h) Line

X A

B

C

D

E

F

G

H

I

J

(i) Hybrid

Figure 2.8: Topologies

From now on, when we use the word topology or hardware topology, we mean
physical topology because we replace the logical topology with a dataflow graph.
There are different topologies to implement, such as Ring, Star, Line, Mesh, Bus,
Fully Connected, Tree and Hybrid, see the topologies of Figure 2.8. A Blue and
open arrow displays the connection between topology nodes.

2.5 Nebula Ring Interconnect

The nebula ring-interconnect is an all to all interconnect. The ring is unidirectional,
and data travels one-hop every cycle until it reaches its destination.
Much of the Nebula ring is eventually used in this project. Therefore, an explanation
in this report, for more information, and the proof, about the nebula-ring, see [16]–
[22].

2.5.1 Ringslotting

A quote of Dekens [18] and a rule that defines ringslotting:

Rule: “If a slot identifier matches the identifier of the Network Interface (NI) it
currently resides in, it is “owned” by that NI. Thus, NIs can always use their
”own” slot to inject data onto the ring.”

slotID:
- A,B,C,etc.
- 0,1,2,etc.

DST Address:
-

data:
-

(a) Old slot

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

(b) New slot

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data1:
-

datan:
-

(c) New extended slot

Figure 2.9: Nebula slots

The functioning of the ring is explained through an example.
In the subfigures of Figure 2.10, we see three nodes A, B, C. In front of that are three
slots, each slot, see Figure 2.9a consists of a slotID, a destination address and a lo-
cation for the data. Each Clock cycle the slots shift. If the slotID is equal to the node
ID, the node can put data in the slot. In the example the clock = 0, see Figure 2.10a
the slot with slotID A is offered to node A. Because slotID A is equal to the node Id A,
A is allowed to place data in the slot, see Figure 2.10b. In this case, the destination
is node C, and the data is the word Hello. At the beginning of the next clock cycle,
slot A including its contents, is offered to node B. Because node B is not the desti-
nation, the data travels further on the ring. At the beginning of the next clock cycle,
slot A is offered to node C, see Figure 2.10c. The destination is node C, so node C
retrieves the data and clears or overwrites the data from the ring. In the example, it
is cleared, see Figure 2.10d. In practice, the other nodes can of course also place
data on the ring if the slot ID is equal to the node ID, but to keep the example simple,
this has not been added. A receiving node always accepts incoming data.

A

slotID:
C

DST Address:
-

data:
-

B

slotID:
B

DST Address:
-

data:
-

C

slotID:
A

DST Address:
-

data:
-

(a) Clock = 0

A

slotID:
A

DST Address:
C-

data:
”HELLO”

B

slotID:
C

DST Address:
-

data:
-

C

slotID:
B

DST Address:
-

data:
-

(b) Clock = 1

A

slotID:
B

DST Address:
-

data:
-

B

slotID:
A

DST Address:
C-

data:
”HELLO”

C

slotID:
C

DST Address:
-

data:
-

(c) Clock = 2

A

slotID:
C

DST Adress:
-

data:
-

B

slotID:
B

DST Adress:
-

data:
-

C

slotID:
A

DST Adress:
-

data:
-

(d) Clock = 3

Figure 2.10: Nebula ring example

2.5.2 Hijacking

A node can now only send data once in the ’n’ number of slots. Slots = 3 in the
example of Figure 2.10. To lower the latency, it is, sometimes, possible to hijack
slots of other nodes. This is best explained by a quote and rule of Dekens [18]:

Rule: ”If a NI is ready to send data, the current slot is empty, and the owner of
the slot is not reached before the destination NI is reached, data can be
injected into that slot.”

Chapter 3

Related Work

This chapter shows and compares the work of others, that relates to our thesis. We
look at the differences between Nebula ring interconnect and our implementation.
We discuss the different, physical and logical, topologies used in different Multi-
FPGA systems. We are also looking at FPGA dataflow implementations, whether or
not made in Clash.

3.1 Nebula Ring Differences

Much of the nebula ring is taken from [16]–[22], but some parts are different. There-
fore, this is related work. The differences are:

• The implementation in this project is not connectionless but connection-oriented,
this means that we use dedicated buffers for each connection, instead of
shared memory.

• We implemented the flow control in hardware and not in software.

• We do not use an external memory location that is sent along with the data,
see Figure 2.9a, but we do send a source address so that the receiver can
determine where the data is stored, see Figure 2.9b.

• We can make a model with multiple slots for every node, this decreases the
latency of the new actor see Figure 2.9b

• The width of the ring is also adjustable, making it possible to place multiple
tokens on the ring at the same time. So only one SlotID, source and destination
is needed for multiple tokens, see Figure 2.9c

• For the implementation, we give up the point of low hardware cost, but for that,
the design is spread over multiple FPGAs.

19

3.2 FPGA to FPGA Communication

In a PhD thesis of Khalid [23], they try to find the best routing architecture topology
concerning cost, speed and routability, using an experimental approach to evaluate
and compare different architectures. The architectures they use are different mesh
structures and crossbar implementations. This is in contrast to our project, where
we also look for a topology and eventually choose a ring topology.

In an Article of Ramezani [24], CPA 1 is presented to schedule task graphs on
multi-FPGA systems. This means that they are looking for the order in which specific
tasks are executed and on which FPGA. They take into account the communication
time between different FPGAs. They can also place multiple tasks on one FPGA. In
their example, in Chapter 3.5, they schedule five functions on two FPGAs.
Although finding the order in which the tasks are executed is not essential in this
project, it is useful to know which actor should be modelled on which FPGA. They
use a separate central controller for managing and scheduling different FPGA tasks.
We use a dataflow graph for the scheduling, where each actor is placed on one
FPGA and, therefore, there is no separate controller.

In a Paper of Owaida and Alonso [25], they use a ring network topology for
distributing data. They have a single master node where all data is stored and dis-
tributes data to slave FPGAs. Eventually, the partial results are propagated and
aggregated over the ring until it reaches the master node. A difference with our im-
plementation is that we don not have a master node where the result ends, but every
actor of the dataflow graph acts as a master node, from where data starts and ends.
Another difference is we do not merge the results, but depending on the slot, send
the results over the ring to the next FPGA until it arrives at the right actor.

In the paper of Mencer et al. [26], they present CUBE, where they have con-
nected 512 FPGAs as a systolic chain with identical interfaces between them. Their
complete system is mostly similar to what we have in mind. Except that they use a
chain where we use a ring and that they want to work, in the future, on deterministic
communication2. We do deterministic communication through dataflow graphs and
use of the Nebula ring Interconnect over the whole hardware topology.

1Critical Path-Aware
2We cannot find their future work on a deterministic communication for the cube.

3.3 Dataflow on Hardware

In Chapter 5 of the Master thesis of van Raalte [2], the generation of hardware
architecture from dataflow is proposed. A similarity with this project is that it also
uses Clash. However, there are also differences, and those differences are:

• He generates a hardware architecture to implement on one FPGA. Contrary
to this thesis, where a dataflow graph is spread over multiple FPGAs.

• He makes uses of a data dependency graph and a separate dataflow graph for
scheduling, see Figure 3.1. Whereas we use the dataflow graph as the data
dependency graph.

• He makes use of a general scheduler connected to all nodes of the dataflow
graph.

• He uses a crossbar to get data from one actor to the other, whereas we use a
ring hardware topology to connect the different FPGAs.

• The firing of the actor and the crossbar is controlled by a separate controller,
whereas we use all FPGAs al partial controllers.

• His implementation only supports a strictly periodic schedule and has to com-
ply with this schedule, always. Our project uses self-scheduling. Thus, it is
allowed to go faster than the WCET, because of the monotonic properties of
an SDF graph.

• His actors have a firing time of at least one clock cycle, where our actors
could have a firing time of zero clock cycles, but we do add extra nodes to the
dataflow graph that take time.

• They have no support for SDF graphs yet. Where we can use SDF graphs.

A

B

C

D

A

B

C

D

A
B
C
D

A

B

C

D

CrossBar

Scheduler

DataDependency DataFlow Control
Data

Figure 3.1: Hardware architecture [2]

In a paper by Liu et al. [27], they map an initial dataflow graph across multiple
processors. They also place new actors between existing actors to model the time
between different processors. They call them network actors; we call them identity
actors. They assume the network actors have a constant delay, something we cal-
culate depending on the buffer sizes. Another project, which has many similarities
with our project is the PhD thesis of Ali [28]. Where they map dataflow graphs on
a 2d-mesh topology, differences are that we use a ring topology, instead of the 2d-
Mesh, so our routing is more straightforward, and we use FPGA where they rely on
CPUs.

Part II

Design Space Exploration (DSE)

23

Chapter 4

Topology Choices

This chapter depicts the design choices of the hardware topology. The topology is
the physical connection of the different FPGAs. This chapter also shows the pros
and cons of different topologies and why a particular topology is chosen. That is
why we are answering the following question:

Which hardware communication infrastructure is suitable?

The topology is needed to give us a general structure on which we can map a
dataflow graph, see the centre cloud of Figure 4.1.

Initial
dataflow graph

Hardware
topology

Resulting
dataflow graph

Figure 4.1: Designflow: Hardware topology

4.1 Connecting FPGAs

4.1.1 Topologies

Table 4.1 shows on which topology a dataflow graph can be mapped most success-
fully. The top row of the table shows an overview of the considered implementation
factors for the different topologies. The scale on the second row shows the im-
portance of each element, where a higher number is more significant than a lower
number.
A plus sign means to add one point and a minus sign means to subtract a point,
this is multiplied with the scale. The total column indicates the value of the various

25

Table 4.1: DSE Topologies

M
od

ul
ar

ity

P
hy

si
ca

ls
et

up

In
pu

t\
ou

tp
ut

pa
ir

s

T
hr

ou
gh

pu
t

Total

Scale 2 2 1 1

Bus +++ +-- +++ --- 4
Fully Connected +++ --- --- +++ 0
Hybrid +- +- +- +- 0
Line ++- ++- ++- +- 5
Mesh +- +-- +-- +-- -4
Ring +++ ++- +++ +- 11
Ring-Intermediate +++ +++ ++- ++- 14
Star ++- +-- ++- ++- 2
Tree +- ++- +-- +-- 0

topologies. A higher value is more positive and therefore, has a better chance of
success.

Modularity

Because of the intention to spread the dataflow over multiple FPGAs, we need an
algorithm that controls the communication. There are three possibilities to do this,
namely:

1. One controller FPGA.

2. A controller on some of all the FPGAs.

3. Splitting the controller (equally) overall FPGAs.

For one FPGA that controls other FPGAs theoretically, all topologies are possible,
but due to physical constraints, it is not possible to implement all topologies. We
could divide the controlling over a part of the FPGAs, but this does not give a uniform
structure for every FPGA. A drawback of splitting the controlling technique overall
FPGAs is that every FPGA needs controlling. Nevertheless, we prefer this option
because every FPGA can be in a uniform structure. We think the uniform structure

is essential because this ensures modularity and helps with the implementation, that
is why we set the scale to 2.

Physical Setup

The physical configuration of the FPGAs is an essential factor to consider because
this is how the FPGAs are drawn up. If we assume, we will place the FPGAs in
the layout of the topology, and we connect the FPGAs with wires, then we need for
some topologies, many wire crossings to connect them, this is inconvenient. Also,
adding a board must be not too cumbersome. Therefore, the scale is set to 2.

I/O Pairs

The combination of an input and an output is called an in/output-pair or link. The
number of connections is also a factor to consider because we do not want a topol-
ogy with many links. After all, there is not one FPGA with unlimited in-output pairs.
So we want a setup with the least amount of links. Although it is essential, it doesn’t
matter whether it is one or two links, this is still comprehensible and, therefore, the
scale is set to 1.

Throughput

The throughput is not the most important. Therefore, the scale is set to 1, because
we want the maximum communication time, a.k.a WCET, to be deterministic. How-
ever, it is still a factor to consider because slow performance can mean that no user
wants to use the system.

4.1.2 Choosing Topology

From Table 4.1 we can see that the total score of four of them come above five
points, so for these topologies, are next some pros and cons explained.

Bus – PROS:

* Only one in/output pair per FPGA.

* Every FPGA has the same structure if connected to one bus.

– CONS:

* The output must be protected from incoming messages from other
devices.

* There should be a protocol in place to decide when an FPGA is
allowed to speak on the bus. This protocol influences the through-
put.

Ring – PROS:

* Only two connections per FPGA.

* Every FPGA has a uniform structure.

* A deterministic solution exists (Nebula ring interconnect).

– CONS:

* The ring communicates in one direction, so communication with a
previous FPGA can be slow.

* One incorrect or broken wire brakes the whole system.

* The first and last FPGA must be connected. This connection can
cause long wires.

Line – PROS:

* Communication in two directions, so a possible faster response
than a ring topology.

* Physical placement, the FPGAs can be next to each other.

– CONS:

* The ends of the structure are not uniform with the inner FPGAs.

Ring
Intermediate

A ring whereby the feedback loop runs through the previous node, see

Figure 4.2.

– PROS:

* Communication in two directions, so a possible faster response
than a ring topology.

– CONS:

* The ends of the topology do have a self-loop.

* It is an improvement from the ring topology. Therefore, the ring
topology should be implemented first.

A B C D

Figure 4.2: Ring-intermediate topology

4.2 Conclusion Topology

Even though the ring does not have the highest score in Table 4.1, as a starting
point, taking into account the developing time, we choose the ring topology, because
a deterministic solution exists. Namely, the Nebula ring interconnect, described in
the Background Chapter 2.5. It has a deterministic implementation and is familiar at
the CEAS-group of the University of Twente. However, for a more accelerated com-
munication and higher throughput, it would be, in the future, an idea to implement
ring-intermediate, whereby the rules of the nebula ring could be adapted to be still
deterministic.

Chapter 5

Realisation and Structural Choices

Initial
dataflow graph

FPGA2

FPGA1

FPGA0

FPGAn−1

Resulting
dataflow graph

Figure 5.1: Designflow: Initial dataflow graph to ring topology

After the choice for a ring topology, with the Nebula ring interconnect. We have a
structure on how the FPGAs are placed and communicate. We answer the following
question.

Given the topology, how do we map a dataflow graph onto multiple FPGAs?

The question represents how to get from the initial dataflow graph to the ring
hardware topology, in which every task modelled in the initial dataflow graph is exe-
cuted on multiple FPGAs, see Figure 5.1. This chapter also explains how an actor
of the initial dataflow graph maps to the FPGAs in the ring. We start with a dataflow
graph and convert it to the ring hardware topology. It also shows what parts of the
dataflow graph correspond with the ring.

31

To give an impression of the realised design, Figure 5.2 shows a ring containing
three FPGAs. It also shows the different realised elements on an FPGA.

Router

Memory Memory

A

Router

Memory Memory

B

Router

Memory Memory

CFPGA0 FPGA1 FPGAn−1

Figure 5.2: Brief hardware implementation preview

However, before that, we answer the following question:

Are there any dataflow graph constraints, if so, which ones?

5.1 Dataflow Constraints

To execute a dataflow graph on the ring topology, we need to come up with a
dataflow graph that we will turn into hardware.
We start with a simple dataflow graph of Figure 5.3. In hardware, we would like to
assign this to a ring topology with two FPGAs.

A B

Figure 5.3: Simple dataflow graph

In dataflow, an actor can place an unlimited amount of tokens on an edge. In
hardware, this is not possible because edges represent memory, and unlimited
memory does not exist. Therefore, we need a feedback link that limits the produc-
tion of an actor. This limitation can come from the receiving actor, see Figure 5.4a,
but in case of another dataflow graph can also come from another Actor, see Fig-
ures 5.4b or 5.4c. So the first constraint was that every edge needed a controlling
backpressure edge, but in our case, this constraint is too strict, and therefore if the
graph is strongly connected, it is also fine.
Another constraint is that a dataflow graph should not have multiple edges from one
actor to another, because we then need an indicator to distinguish between different
edges.1.

A B

3

(a) Example 1

A B

C

(b) Example 2

A B C
1

2

3

(c) Example 3

Figure 5.4: Dataflow graph examples

5.2 General FPGA Realisation Information

Every task, represented by a node in the dataflow graph, is executed on a different
FPGA, where a ring topology physically connects FPGAs. Due to this ring topology,
the in-and outputs of every FPGA are the same. Therefore, the model for every
FPGA is the same. The input and one output of every FPGA consists of parallel
wires connecting them.

1This is because of the implementation

5.3 FPGA Elements

5.3.1 The Actor

Actor

i1

in

o1

ok

(a) Dataflow actor

Actor

(b) Hardware actor

Figure 5.5: Actor models

In this thesis, dataflow actors are modelled and shown by circular nodes. Hard-
ware elements are modelled and shown by a square box. To create a model that
describes the dataflow actors but also the hardware function, we use a red square
node. Not all actors in a dataflow graph have the same incoming and outgoing
edges, see Figure 5.5a. Therefore, in hardware, the edges are bundled and dis-
played as a single red arrow, see Figure 5.5b. So the arrows only represent data
dependency, not the actual data size.

5.3.2 Memory

Actor

Incoming
Memory

Outgoing
Memory

Figure 5.6: Actor and memories

As mentioned earlier, not all actors in a dataflow graph have the same number of
edges. To model these edges, every FPGA has two memory elements. One to
model the input edges and one for output edges.

The outgoing edges of the actor are the incoming edges of another actor on another
FPGA. It seems contradictory to implement two memory element, but this is done
because, in the end, a ring interface is placed between the in and outgoing memory
of two FPGAs. We need the input memory because an actor processes tokens and
is maybe still busy with a previous firing or has to wait for tokens from other edges.
So it can not accept new tokens directly.
We need output memory because not all data can be on the ring at the same time.
So, the memory elements serve as synchronisation.

Figure 5.6 shows how the node of Figure 5.5b connects to the two memory el-
ements. In the memory elements, the edges that run to and from the actor are
described as FIFOs.
These FIFOs can have two different forms, namely bundled or separate. In the
bundled version we combine all edges, so the data goes through one FIFO. In the
separate form, we give every source/destination an own FIFO buffer. Because we
have two memory elements, we have to choose for both a bundled or separate im-
plementation. Therefore, we have listed the pros and cons of bundled and separate
memory elements.

Bundled

A memory element consists of one FIFO in which all tokens/messages go through.

PROS – Uses most likely less memory

CONS – We need a control algorithm that prevents messages from getting
mixed up.

– For the incoming memory. It is difficult for the actor to see if there are
enough tokens available.

– For the outgoing memory, messages that are not in the first place of
the FIFO cannot be put on the ring.

Separate

A memory element consists of parallel FIFOs, where each FIFO represents a dataflow
edge.

PROS – No mix up of tokens/messages.

– With the help of higher-order functions in Clash, we can create one
FIFO buffer, and map this to get the separate FIFO buffer.

– For the incoming memory, the actor knows of every edge if there are
enough tokens available.

– For the outgoing memory, there is a row of ”first” messages in the
FIFOs. So we can choose which message, to what destination, to
insert on the ring.

CONS – More memory is needed 2

– The design loses some flexibility because the input memory can only
receive from the initially designed nodes of the dataflow graph.

Incoming Memory

For the incoming memory, we choose the separate implementation because there is
no mix up of message, and an actor can for every edge see that there are enough
tokens/messages available. From now on, we call the separate incoming FIFOs,
incoming buffer or input buffer.

Outgoing Memory

For the outgoing memory, we also chose for the separate implementation, because
we then have a row of first messages, to choose from, and to put on the ring. From
now on, we call the outgoing separate FIFOs, outgoing buffer or output buffer.

2Due to the Clash implementation, we store all data in separate FIFOs and cannot share the
memory

5.3.3 The Router

Router

Incoming
Memory

Outgoing
Memory

Actor

Figure 5.7: Basic hardware implementation, actor, memories and router

The router is the element between the memory elements and the ring, see Fig-
ure 5.7. The router makes two decisions. The first is to decide whether a message
coming from the ring is addressed to the FPGA or not. If it belongs to the FPGA,
it can store it, depending on the source, in one of the FIFOs of the incoming buffer.
If a message is not addressed to the FPGA, the message will continue on the ring.
The second decision is to select from one of the FIFOs of the outgoing buffer, which
message is allowed on the ring.

5.3.4 Ring Hop

The ring hop displays the time a message spends on the ring between two con-
secutive FPGAs. i.e. the ring Hop it the same as the slot of the nebula ring, see
Figure 2.9b.

5.3.5 Controlling

As explained in Chapter 2.3, the properties of an SDF graph are that they consume
and produce a fixed amount of tokens. The actor must be realised by the designer
that implements the function of the dataflow actor. A controller is placed between
the actor and the buffers, to take some pressure off for the designer. The controller
checks whether the amount of tokens coming and going to the buffers is equal to
the consumption and production rates of the dataflow graph. If there are a sufficient
amount of tokens stored in the input buffer, the controller will signal the actor that it
can fire. If the actor produces a sufficient amount of tokens, only then the controller
will place them in the output buffer.

5.3.6 Complete FPGA

Router

Incoming
Memory

Outgoing
Memory

Controller

RingHop

Actor

In Out

Figure 5.8: FPGA implementation

The implementation of an FPGA is formed by connecting the different elements.3,
see Figure 5.8.

5.4 The Ring
When the different FPGAs are connected, it looks like Figure 5.9, where every FPGA
has its own, on the ring increasing, ID. Tokens from the dataflow graph travel along
the topology ring.

RingHop Router

Incoming
Memory

Outgoing
Memory

Controller

Actor

RingHop Router

Incoming
Memory

Outgoing
Memory

Controller

Actor

RingHop Router

Incoming
Memory

Outgoing
Memory

Controller

Actor

FPGA0 FPGA1 FPGAn−1

Figure 5.9: Hardware ring implementation example

3Actor, controller, incoming buffer, outgoing buffer , router and ringhop

5.5 Summary by Example

Looking at the initial dataflow graph example of Figure 5.10, in Figure 5.11, we
divide the initial tokens between the output buffer of one actor and the input buffer
of another actor. This distribution is to show that an incoming FIFO belongs to an
outgoing FIFO.
If the slotID is equal to the ID of the FPGA, then each router may decide from which
output FIFO a message is placed on the ring 4. When the tokens arrive at their
destination FPGA, the router places it in the correct incoming FIFO. Eventually, the
controller will see that there are enough tokens in the input buffer and presents them
to the function of the FPGA. After the firing time, the function will produce messages
again, which will be placed in the output buffer.

A B C
1

2

3

Figure 5.10: Three node, dataflow graph example

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

Router

Controller

Actor

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

Router

Controller

Actor

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

Router

Controller

Actor

A B C

Figure 5.11: Hardware implementation: Three node, dataflow graph example

4B’s router has nothing to put on the ring yet, and C’s router has only one FIFO to choose from

5.6 Conclusion Realisation

To conclude this chapter, we have seen that the dataflow graph must be strongly
connected. To implement the ring, we place various connected elements on one
FPGA, which we connect to realise a ring. We use a router to receive or forward data
from the previous FPGA. We also use separate FIFOs buffers for synchronisation
between the FPGAs. The controller is used to make it easier for the user of the
system. The user/designer remains responsible for the realisation of the actor, and
the ringhop is used to represent the slots of the nebula ring.

Chapter 6

Clash Implementation Choices

This chapter shows the implementation in Clash. It first describes the setup of an
FPGA. Secondly, it shows the type of ring. Then how to connect the different ele-
ments, such as the router, memory, controller and function to each other. Connecting
is a cumbersome task, and with datatypes, we tried to simplify this. Then it explains
in detail how various elements, and the corresponding choices, are implemented on
one FPGA.

41

6.1 FPGA Setup

Dataflow Setup

On every FPGA we want one actor, an actor has consumption and production rates,
so we have to tell every FPGA what they are. Also, each FPGA has its own identifi-
cation, so the Nebula ring interconnect, knows if a received message belongs to the
FPGA or not. Because the Nebularing permits hijacking and can also be used as a
credit-ring, we use an Embedded Domain Specific Language (EDSL) to indicate the
different modes.

1 data Setup id wd rd s r =

2 Setup { myId :: id

3 , sIds :: Vec s id

4 , amountS :: Vec s (index (wd + 1))

5 , rIds :: Vec r id

6 , amountR :: Vec r (index (rd + 1))

7 , modus :: RoutingMode

8

Listing 5: Default dataflow Data type

In Listing 5, we see the data type Setup. This data type is used to define the three
things, the name/identification of the FPGA, the producing and consumption rates
of the actor, and the mode of the router.

1. myId, on line 2, is the identification of the FPGA. Each FPGA has a different
number, letter, name, etc.

2. On every FPGA, one actor is placed, where each actor has input and output
edges, with respectively consuming and producing rates.

sIds , line 3, represents to which other actors the actor has edges.

amountsS , line 4, represents the corresponding production rates.

rIds , line 5, represents from which other actors the actor has edges.

amountR , line 6, represents the corresponding consumption rates.

3. The modus, on line 7, indicates the direction of the ring and whether hijacking
is used or not. There are four possible options, constructed in a data type
RoutingMode, an overview:

IncreasingWithoutHijack Regular ring (increasing order) without hijacking.

IncreasingWithHijack Regular ring (increasing order) with hijacking.

DecreasingWithoutHijack Credit-ring (decreasing order) without hijacking.

DecreasingWithHijack Credit-ring (decreasing order) with hijacking.

Element States

The different elements have states. By combining them, they are not all over the
place, and it is more convenient for the user/designer to define them. By merging,
we can use the value constructor as one Mealy machine, we do this in Chapter 6.3.1.
This way, we are no longer entirely dependent on the functions bundle and unbundle.

1 data ElementStates id h sd r s d f a =

2 ElementStates { obState :: Vec s (Vec d (Maybe a))

3 , ibState :: Vec r (Vec f (Maybe a))

4 , rState :: Index s

5 , rhState :: Vec h (RingContent id (Vec sd (Maybe a)))

6 }

Listing 6: type of Element States.

Listing 6 shows the type ElementStates and is used to display the states of all the
different elements on one FPGA. The accessors/states of this data type are:

obState , line 2, This is the state of the outgoing buffer. Thus, the states of the
output FIFOs.

ibState , line 3, This is the state of the incoming buffer. Thus, the states of the input
FIFOs.

rState , line 4, This is the state of the pointer in the router. This indicates from
which output FIFO a message can be placed on the ring.

rhState , line 5, This is the state of the ring hop, so the state of the Nebula slot. It
is a vector, so it is possible to put multiple slots in a row.

6.2 The Ring Content Type

Messages stored in the ring hop slots circulate in the ring. The width of the ring is
determined by the size of the slot.

1 data RingContent id c =

2 Invalid

3 | EmptySlot {slotId :: id}

4 | ContentSlot {slotId :: id, source :: id, destination :: id, content:: c }

5

Listing 7: Ring Content type

We made a new data type, RingContent, see line 1 of Listing 7. This RingContent

type has three value constructors 1.
One of the value constructors is the Invalid constructor on line 2. This constructor
can be used in case the transportation time between two FPGA takes more than
one clock cycle.
Another value constructor is the EmptySlot constructor, on line 3, this means, as the
name says, the message on the ring is a valid slot, with slot ID, but is empty. The
last value constructor ContentSlot, on line 4, means that it is a valid slot with content.
The content consists of four accessors. Namely, the slotId, the source that is the
source of the message, the destination where the content heads towards and the
actual message, called content. Type c is a vector containing one or more content
messages for the ring. The type id can be of any kind as long as it is a numeric
type, such as Unsigned ’n’ or Char. Because the ring content is in one type, we can
easily see if a message contains content by pattern matching.

1A value constructor is an EDSL.

6.3 Connecting FPGA Elements

6.3.1 Clash Names

Router

Incoming
Memory

Outgoing
Memory

Controller

RingHop

Actor

cRing
Content id (Vec sd (Maybe a))

cRingHop
Content id (Vec sd (Maybe a))

cRing’
Content id (Vec sd (Maybe a))

vvm
From

Ring

Vec r (Vec sd (Maybe a))

vR
ea

dO
utg

oin
g

Ve
c s (In

de
x d)

vv
mTo

Ring

Vec
s (V

ec
sd

(M
ay

be
a))

vv
m

In
co

m
in

g

Ve
c r (V

ec
rd

(M
ay

be
a)

)

vR
ea

dInco
ming

Vec
r (In

de
x f)

vvmOutgoing

Vec s (Vec wd (Maybe a))

m
vv

m
Fr

om
R

in
g

M
ay

be
(V

ec
r(

Ve
c

rd
(M

ay
be

a)
))

bR
ea

d
B

oo
l

m
vv

m
To

R
in

g
M

ay
be

(V
ec

s
(V

ec
w

d
(M

ay
be

a)
))Setup { myId :: id

, sIds :: Vec s id
, amountS :: Vec s amS
, rIds :: Vec r id
, amountR :: Vec r amR
, modus :: RoutingMode
}

Setup {..}

Setup {..}

Setup {..}

nodeF

Figure 6.1: Clash implementations schematic

The names used, to link the different elements, which are functions in Clash, start
with specific letters that correspond to the types. So when a name begins with:

c Ring Content type.

b Bool type.

v Vector type.

vvm Vector of Vectors with Maybe type.

mvvm Maybe a Vector of Vectors with Maybe type.

This naming is done to make it easier to understand what type goes from one
element to the other and vice versa. To see how the functions and their type are
connected in Clash, see Figure 6.1 or Appendix A.

Connecting Data Type

Value constructors within the same data type can have accessors with the same
name and type. Because Haskell/Clash is a pure language, they should always give
the same result within a function. Because of this, accessors with the same name
are linked to each other. We make use of this to connect different elements.

1 data ElementConnect id d f rd sd wd r s a cr ff =

2 ...

3 | FromFuncCtrl { mvvmFromRing :: Maybe (Vec r (Vec rd (Maybe a)))

4 , vvmOutgoing :: Vec s (Vec wd (Maybe a))

5 , vReadIncoming :: Vec r (index f)

6 , vvmNewCredits :: Vec r (Vec cr (Maybe (index 1)))

7 }

8 ...

9 | ToOutgoingBuffer { vvmOutgoing :: Vec s (Vec wd (Maybe a))

10 , vReadOutgoing :: Vec s (index d)

11 }

12 ...

Listing 8: Part of Connection data type

For connecting the different elements, we made the data type, ElementConnect.
Part of this data type is shown in Listing 8. For the rest of the data, see Ap-
pendix D.1.1. On line 1, the name of the data type is ElementConnect is given. The
type parameters of the data type are id, d, f, rd, sd, wd, r, s, a, cr and ff will be
explained in Chapter 6.3.2. For every different element, we made one input con-
structor and one output constructor. For easy recognition, all input constructors
start with To and output constructors with From. ToOutgoingBuffer, on line 9, and
FromFuncCtrl, on line 3 are examples of an input constructor and output constructor

respectively. They share the common accessor vvmOutgoing, see lines 4 and 9, this
is the link between the controller and the outgoing memory, see Figure 6.1.

Connecting Elements

We use record wildcards to connect the accessors within a function. Using record
wildcards is a trick, where we only have to write {..} after the value constructor,
that makes the values of the accessors within the record syntax available without
writing it all down.

The elements from Chapter 6.3.1 are connected in this chapter. Value construc-
tors of the same type are given to the relevant function/element

The function we created to connect the different elements is nodeF, see Listing 9.
Lines 8-12 show the functions of the different elements we want to connect.

Those functions are funcCtr, inComingBuffer, outgoingBuffer, router and the ringHop.

1 nodeF Setup{..} ElementStates{..} ToNodeF{..} = (newStates, FromNodeF{..})

2 where

3 newStates = ElementStates { obState = obState'

4 , ibState = ibState'

5 , rState = rState'

6 , rhState = rhState'

7 }

8 FromFuncCtrl{..} = funcCtrl Setup{..} ToFuncCtrl{..}

9 (ibState' , FromIncomingBuffer{..})= inComingBuffer ibState ToIncomingBuffer{..}

10 (obState' , FromOutgoingBuffer{..})= outGoingBuffer obState ToOutgoingBuffer{..}

11 (rState' , FromRouter{..})= router Setup{..} rState ToRouter{..}

12 (rhState' , FromRingHop{..})= ringHop rhState ToRingHop{..}

Listing 9: Connecting the Elements

The controller and the router need the data type Setup, why they need it is made
clear in Chapter 6.1. Other inputs of the functions are the (initial) states of the func-
tions that are ibState, obState, rState and rhState. The values are the accessors of
ElementStates\{..\} of line 1.
The last inputs of the functions are the input value Constructors that are ToFuncCtrl,
ToIncomingBuffer, ToOugoingBuffer, ToRouter and ToRingHop. A part as said before, is

shown in Listing 8 and the rest in Appendix D.1.1.

The functions return the output value constructors on lines 8-12 and the new
states on lines 9-12. From the output value constructors, that are: FromFuncCtrl,
FromIncomingBuffer, FromOutgoingBuffer, FromRouter' and FromRingHop. We use record

wildcards again and thus ensure that the output of the functions is the input of other
functions without having written them down. An advantage of this system is that it is
easy to make a new connection between the elements by adding both accessors to
two value constructors of the data type ElementConnect, see Listing 8. This connect-
ing was especially useful during the design of the system. The other outputs of the
functions, on lines 9-12, are the new variables of the states that are packed in a new
data constructor, and also, value constructor, ElementStates on lines 3-7.
The output of the function nodeF on line 1, is the previously mentioned newStates, but
also, the value Constructor FromNodeF which has as accessors the connections to the
other FPGAs, but also to the user-defined ”real” function, that is the function of an
actor in the dataflow graph.

6.3.2 Type Parameters
After the elements are connected, we set up the type of parameters

1 node_0_M ::HiddenClockResetEnable System =>

2 -- ElementConnect id d f rd sd wd r s a cr ff

3 Signal System (ElementConnect Char 30 30 2 1 2 1 1 (Unsigned 100) 1 20)

4 -> Signal System (ElementConnect Char 30 30 2 1 2 1 1 (Unsigned 100) 1 20)

5 node_0_M = Mealy (nodeF def_0) init_0

Listing 10: Mealy node

In Listing 10 we created on line 5 a Mealy machine, Node_0_M, from the function nodeF.
We first give the Setup type, def_0, which is a function consisting of the data type
Setup, as described in Chapter 6.1. As initial state, init_0, we provide a function
consisting of the ElementStates described in Chapter 6.1. In this function, we define
the different type parameters, as indicated in Chapter 6.3.1. Lines 3 and 4 show an
example of a node with filled-in type parameters for the Mealy machine.
Next, the description of the type parameters:

id The type of the identifier of the FPGA, such as Char or (Unsigned 10).

a The type of the transferred data. It is defined by the user/designer and can be
any type.

cr The number of credits to receive from to credit-ring (not used).

ff Depth of the incoming credit buffer (not used).

r Indicates the number of input edges of an actor.

s Indicates the number of output edges of an actor.

wd The maximum producing rate of all the producing edges of an actor. i.e. if an
actor has three producing edges(s= 3) with respectively 5,3,4 as production
rate then wd = max(5, 3, 4) = 5.

rd The maximum consumption rate of all the consuming edges of an actor. i.e.
if an actor has five consuming edges(r = 5) with respectively 3,1,2,7,1 as con-
sumption rate then rd = max(3, 1, 2, 7, 1) = 7.

sd The length of the amount of message/tokens that can be placed on the ring
at the same time. It is also, the number of messages/tokens coming from the
ring, that is transferred to one of the FIFOs of the incoming buffer. Hence, the
same name sd in Figures 6.6a and 6.6b.

d The length of the FIFOs in the outgoing buffer. The length of d is determined
by the maximum messages/token on an edge, so, i.e. if an actor has three
producing edges with the maximum amount of tokens on the edge of 10,11,8,
then the length of the FIFOs are d = max(10, 11, 8) = 11.

f The length of the FIFOs in the incoming buffer. The same principle as d is
applied to the consuming edges with type parameter/length f.

Connecting an Actor/Function

The function to be performed by the actor is not yet connected to the connected
elements nodeF.
To connect them, we need a function for the actor and connect this to the rest. This
results in the implementation of one FPGA. The function was not connected, so, we
can easily swap it.

1 f0 (state) xs =((state'), (output , read))

2 where

3 ...

4 ...

Listing 11: Function

Listing 11 gives an example of the first line of a function f0, which is built as a
Mealy machine.

1 f0M = Mealy f0 (Nothing)

Listing 12: Mealy Function

An example of a used Mealy function is shown in Listing 12, where the initial
state is Nothing.

1 actor0 input = bundle ((cRing' <$> fromNode_)

2 , (vReadCredits <$> fromNode_) -- credits read (not used)

3 , (vvmNewCredits <$> fromNode_) -- new Credits (not used)

4)

5 where

6 (cRing_, vvmCredits_) = unbundle input

7 (toRing_, read_) = unbundle $ f0M (mvvmFromRing <$> fromNode_)

8 fromNode_ = node_0_M (ToNodeF <$> cRing_

9 <*> toRing_

10 <*> read_

11 <*> vvmCredits_ -- Not used)

12)

Listing 13: Function Connect

In Listing 13, we connect the Mealy function, f0M, of Listing 12 and the Mealy
function of the connected elements, node_0_M of Listing 10.
On line 6, we unbundle the input, in content from the ring and the credit-ring 2. On
lines 8-11, we connect the inputs of node_0_M; this results in the outputs of the node.
On line 7, we extract the message for the function, which we then connect to the
function. The results are the outputs of the function, which were already connected
to node_0_M on lines 9 and 10. On lines 1 to 3, we take the results, for the ring (and
the credit part) from the node. For an illustration of the example, see Figure 6.2.

nodeF

f0M

cRing

Content id (Vec sd (Maybe a))

cRing’

Content id (Vec sd (Maybe a))

m
vv

m
Fr

om
R

in
g

M
ay

be
(V

ec
r(

Ve
c

rd
(M

ay
be

a)
))

bR
ea

d

B
oo

l

m
vv

m
To

R
in

g

M
ay

be
(V

ec
s

(V
ec

w
d

(M
ay

be
a)

))

Figure 6.2: Connecting a hardware actor

2The credit-ring is not used or explained and is future work.

6.4 Elements in Detail

This section explains in more detail the different elements used on one FPGA. This
chapter also explains the different type parameters mentioned in Chapter 6.3

6.4.1 Buffer

The buffers consist of multiple First In First Out (FIFO) buffers that are placed side
by side, where every FIFO is an edge of the dataflow graph. The incoming FIFO
buffer is a delayed copy of a FIFO in an outgoing buffer of another FPGA.

FIFO

The buffers consist of parallel FIFOs, and, therefore, we first explain one FIFO. The
primary purpose of each FIFO is to receive and deliver multiple messages at the
same time because we want to model SDF graphs.

1 fifoNN6 :: Vec ls (Maybe a) -- state

2 -> (Vec wd (Maybe a), index ls) -- xs

3 -> (Vec ls (Maybe a), Vec out (Maybe a)) -- (state'' , out)

4 fifoNN6 state xs = (state'' , out)

5 where

6 (inp, didRead) = xs

7 ls = lengthS state

8 state' = imap f state

9 where

10 f idx s | idx < didRead = Nothing

11 | otherwise = s

12 state'' = take ls $ snd $ mapAccumRL g Nothing (state' ++ inp)

13 where

14 g acc x = case x of

15 (Just _) -> (x, acc)

16 _ -> (acc, x)

17 out = takeI state

Listing 14: FIFO implementation

We explain the implementation of this FIFO using Listing 14. For the visual rep-
resentation we use Figures 6.3, 6.4 and 6.5.
The (initial) state on line 4, is the state of the FIFO at the beginning of a clock cycle.
The state is a vector, because its length, ls on line 1, it is the length of the FIFO.
This vector is a Maybe type, so it has Just~a data when occupied or is Nothing when
empty. The other input is xs. xs is an input, consisting of a tuple, see line 6, where
the first variable inp is the input of tokens/messages. It is a vector of length wd, see
line 2, where wd is equal to the producing rate of the actor. The second variable in
the tuple, didRead on line 6, we use to remove messages from the FIFO.

f

n staten

Nothing

(a) f : n < didRead

f

n staten

staten

(b) f : n ≥ didRead

Figure 6.3: ’f’ Executions

Just a

NothingJust a

Nothing

(a) option 1

Just a

Just bJust a

Just b

(b) [option 2

Nothing

Just aJust a

Nothing

(c) option 3

Nothing

NothingNothing

Nothing

(d) option 4

Figure 6.4: ’g’ Executions

f f f

g g g g g

g g g g g

g g g g g

0 1 n− 1

state0 state1 staten−1

inp0 inpn−1

Nothing

Nothing

Nothing

state′′0

state′′1

state′′n−1

state

state”

input

Figure 6.5: FIFO implementation

So, how does the FIFO work?
For this, we use Figure 6.5 as a reference. First, we delete messages from the
FIFO. To do this, we use the imap function of line 8, where the variables of state are
mapped over de function f. For all states where the index is smaller than didRead

value, on line 10, the state is set to Nothing , if the state is greater than or equal
to didRead, the state remains the same, see line 11. The two options of function f

are shown in Figure 6.3.
The output of imap function state' is concatenated to the input inp on line 12. The
result is transferred to the function mapAccumRL on line 12 within it propagates. The
function g used in mapAccumRL function has four options, with two outcomes, these
options are shown on lines 14-16 and in Figure 6.4 and show the propagation route
of the messages.
Eventually, this results in a new state state'', because the length of the state'' is
the length of state + inp3, we need to cut this off to the length of the FIFO, we do
this with the take function on line 12.
The output of the FIFO is the new state state'' on line 12 and the output out of
line 17, which is a part of the (initial) state. The output length is the number of
messages read from the FIFO at the same time. It is defined by the length of out

on line 3. The number of messages read at the same time is equal to the consump-
tion rate 4 of the dataflow graph or the number of messages on the ring at the same
time.

3The figure does not show this.
4Actually , the maximum consumption rate of the whole buffer.

In/output Buffer

The in/output buffer consists of parallel FIFOs, where each FIFO represents part of
a dataflow edge.

1 buffer states inps didRead= (states', o)

2 where

3 (states' , o) = unzip $ zipWith fifoNN6 states (zip inps didRead)

Listing 15: Buffer

s

s0 s1 .. sn−2 sn−1

wd
wd0
..

wdk−1

d

d0
d1
..

dj−2
dj−1

sd
sd0
..

sdm−1

Outgoing
Buffer

Controller

Router

(a) Outgoing

r

r0 r1 .. rn−2 rn−1

rd
rd0
..

rdk−1

f

f0
f1
..

fj−2
fj−1

sd
sd0
..

sdm−1

Incoming
Buffer

Controller

Router

(b) Incoming

Figure 6.6: Buffer structure

We explain the in/output buffer using Figure 6.6 and Listing 15. Because the
buffer function is created by mapping the FIFO in Clash, the FIFOs must have the
same length. In Figures 6.6a and 6.6b, this length is d for the outgoing buffer and f

for the incoming buffer respectively. The states on line 1 indicate the (initial) states
of the FIFOs because one FIFO is a vector, states is a vector of vectors. The inps on
line 1 are the inputs for the FIFOs, and depending on if it is the outgoing buffer or the
incoming buffer, this is wd or sd, respectively, as shown in Figure 6.6. The didRead of
line 1 is a vector with the number of messages read from the FIFOs, as explained
before. On line 3 the buffer is mapped using the zipWith function as a function for
the zipWith the FIFO fifoNN6 is used and has variables states, inps and didread.
They are zipped to get the right type for the FIFO. Eventually after unzipping this
results in the new FIFO state states' and buffer output o, on lines 1 and 3.

In/output Buffer Wrapping

1 outGoingBuffer states ToOutgoingBuffer{..}= (states', FromOutgoingBuffer{..})

2 where

3 (states' , vvmToRing) = buffer states vvmOutgoing vReadOutgoing

Listing 16: Incoming Buffer wrapper

1 inComingBuffer states ToIncomingBuffer{..} = (states', FromIncomingBuffer{..})

2 where

3 (states', vvmIncoming) = buffer states vvmFromRing vReadIncoming

Listing 17: Outgoing buffer wrapper

Listing 16 and 17 are wrapper functions that wrap the buffer so that they become
the elements, incoming buffer and outgoing buffer, as explained in Chapter 6.3.1.
The functions are implemented as a Mealy function. So, on line 1 there is an
(initial) state and a resulting states' on line 3. They also make use of record wild-
cards to define the accessors. For the outgoing buffer, vvmOutgoing and vReadOutgoing

of line 3 are accessors of ToOutgoingBuffer{..} on line 1 whereas vvmToRing of line 3
is an accessor of FromOutgoingBuffer{..} of line 1.
For the incoming buffer, vvmFromRing and vReadIncoming on line 3 are accessors of
ToIncomingBuffer{..} of line 1, while vvmIncoming of line 3 is an accessor of
FromIncomingBuffer{..} of line 1.

6.4.2 The Controller

As explained in 2.3, the properties of an SDF graph are that they consume and
produce a fixed amount of tokens. The controller checks this amount of tokens so
that it takes the pressure off the function.

1 funcCtrl Setup{..} ToFuncCtrl{..} = FromFuncCtrl{..}

2 where

3 checkS = case mvvmToRing of

4 Nothing -> False

5 (Just v) -> validCheck'' (resize <$> amountS) v

6 checkR = validCheck'' (resize <$> amountR) vvmIncoming

7 mvvmFromRing | checkR = Just (selector (resize <$> amountR) vvmIncoming)

8 | otherwise = Nothing

9 vvmOutgoing | checkS = case mvvmToRing of

10 Just v -> v

11 _ -> repeat (repeat Nothing)

12 | otherwise = repeat (repeat Nothing)

13 vReadIncoming | checkR && bRead = resize <$> amountR

14 | otherwise = repeat 0

Listing 18: Clash Controller implementation

Production Control

Listing 18 shows the implementation of the controller. On lines 3-5 we check the
number of tokens/messages produced by the actor. There are two possibilities, the
function offers Nothing, see line 4, so there are not enough messages. Alternatively,
on line 5, the function offers a Just ..., we then check if there are enough messages
produced. If enough messages are provided, lines 9-11 will take the messages out
of the Maybe type, so we deliver the right type to the output buffer. If we do not have
enough messages, we deliver Nothings to the output buffer, see Line 12.

Consumption Control

On line 6, we check if the incoming buffer has enough tokens/messages. After
checking if there are enough messages in the incoming buffer, we still have to be
sure that we do not provide the actor too many messages at once. That is why we
only select, on line 7, the number of messages that the actor consumes. If there are
not enough messages, we send Nothing, see line 8.
On Lines 13 and 14 the controller gives a signal to the buffer of how many messages
it has to remove from the different input FIFOs. Messages are only deleted if there
are enough messages in the input buffer and if the actor gives permission, through
bRead of line 13. Otherwise, see line 14, zero messages will be deleted. bRead is an
accessor of ToFuncCtrl{..}

6.4.3 The router

The router has two main tasks, namely to check if the messages coming from the
ring belongs to the FPGA, and it must determine which message to put on the ring.
The router can be set up to hijacking slots, use a credit-ring or both.

Message for the Ring

First, we are going to figure out from which output buffers we can place a message
on the ring. The outgoing buffer gives us the outputs of the different FIFOs, with a
width of s and length of sd, see Figure 6.6a. The router has to choose from which
FIFOs it can put messages on the ring.

1 a = checkDest <$> sIds

2 b = validForRingCheck vvmToRing

3 c = validForRingCheck vvmCredits

4 v = zipWith3 (\ x y z -> x && y && z) a b c

Listing 19: Routing conditions

In Listing 19, we check for three conditions.

1. If there is data in de FIFO, at least the ring size sd. That is the number of
tokens that are allowed on the ring at once, see line 2.

2. Check if there are enough credit tokens. When there is no credit-ring used,
this should be True, always, see line 3.

3. Which destinations are allowed on the ring? See line 1.

The result, on line 4, is a list of Booleans v, that tells us to which actors we can send
a message.

1 checkDest destinationId =

2 case (modus, cRingHop) of

3 (IncreasingWithHijack, EmptySlot _) -> (a && b) || (b && c) || (c && a)

4 where

5 a = destinationId <= slotId'

6 b = slotId' <= myId

7 c = myId < destinationId

8 (DecreasingWithHijack, EmptySlot _) -> (a && b) || (b && c) || (c && a)

9 where

10 a = destinationId < myId

11 b = slotId' <= destinationId

12 c = myId <= slotId'

13 (_, Invalid) -> False

14 _ -> slotId' == myId

Listing 20: Ring (Hijacking) conditions

This third point is implemented in Listing 20 and has four modes, as explained in
Chapter 6.1.
The listing displays a function, checkDest on line 1, that is located in the router. To
this function, we give a destination ID. From this ID we want to know if it is a valid
destination concerning the incoming slot. The function returns a Boolean value True
or False. The check is done for all possible destinations. The destinations are the
actors to which the edges of the dataflow graph lead.
There is a possibility, shown on line 13, that the message to the router is Invalid.
Invalidity is possible if the ring hop needs more time than one clock cycle, for exam-
ple, if it needs time to (de)serialise messages.
When the modus, on line 2, is IncreasingWithoutHijack, this means that it is a ring
where hijacking is not allowed and, therefore, the slotID slotIdRingHop coming from
the ring hop must be equal to the own id (myID of line 14. The same goes for mode
DecreasingWithoutHijack, that is a credit-ring where hijacking is not allowed.

Hijacking

Another possibility, on line 3, is that the mode is IncreasingWithHijack . This is
a routing mode where, under certain conditions, an FPGA can hijack the slot ID of
another FPGA. This hijacking does not benefit the worst-case execution time but
can decrease the latency. A requirement is that the message, cRinghop of line 2,
coming from the ring, is Empty, it must also meet one of the following conditions:

• Destination ≤ slotID ≤ myID

• myID < Destination ≤ slotID

• slotID ≤ myID < Destination

The previous rules are implemented in Listing 20, on lines 3-7.

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

3

3

3

3

3

4

4

4

4

4

0

1

2

3

4

0

1

2

3

4

MyID MyIDslotID slotIDDestination Destination
0 1 2 3 4 0 1 2 3 4

Figure 6.7: Hijacking

Figure 6.7 shows the setup rules, with modus IncreasingWithHijack, with five des-
tination FPGA (0 - 4), the column myID gives the id of the FPGA, the slot id shows
the ID of the slot, coming from the ring. Depending on the destination, we can decide
if a message is allowed on the ring. If a message is allowed, that box is coloured.
The different coloured boxes correspond with the rules shown before.

The last modus is modus DecreasingWithHijack. This modus is the same as
modus IncreasingWithHijack except that it is used for the credit-ring. It is a ring where
the messages are not sent to a succeeding FPGA ID but a previous decreasing
FPGA ID. The conditions for hijacking, for the credit-ring, and an example can be
found in Appendix B, the same conditions can be found in Listing 20, on lines 8-12.

Round-Robin

We want to distribute the message of the different FIFOs of the outgoing buffer
equally on the ring, where we use every slot available. Therefore, we have to search
the FIFOs for a message to place on the ring.

1 rr4 pointer validList = (pointer' , out)

2 where

3 a = imap (>=) (replicate (lengthS validList) pointer)

4 b = a ++ (not <$> a)

5 c = zipWith (&&) b (validList ++ validList)

6 idx = elemindex True c

7 out = resize <$> (mod <$> idx <*> Just (snatToNum (lengthS validList)))

8 pointer' = case out of

9 (Just x) -> if x >= maxBound then minBound else x + 1

10 Nothing -> pointer

Listing 21: Round-Robin implementation

To do this, we implemented Round-robin, see Listing 21. The function rr4 on line
1, needs a Boolean list, with all valid destinations (v of Listing 19 or validList on
line 1) and an (initial) pointer of line 1. The pointer is used to indicate the starting
position in the list. Initially, the pointer starts at 0. The function returns an index that
refers to a FIFO of the outgoing buffer. It also returns the position from where the
pointer should begin at the next clock cycle.

≥ ≥ ≥ ≥ ≥ ≥

not not not

&& && &&&&&&&&

0 1 n− 1 0 1 n− 1

V
a
li
d
L
is
t 0

V
a
li
d
L
is
t 1

V
a
li
d
L
is
t n

−
1

V
a
li
d
L
is
t 0

V
a
li
d
L
is
t 1

V
a
li
d
L
is
t n

−
1

Find Index of first ′True′

mod

n

out

pointer pointer

Figure 6.8: Round-Robin index selector

This round-robin function, see Listing 21 and Figure 6.8, is implemented as fol-
lows, the pointer is replicated and compared to a list of increasing integer numbers,
equal to the length of the validList on line 3. When the integer number is greater
or equal to the pointer, the result is True, otherwise False, see line 3. We make this
pointer comparison twice, whereby the second part, on line 4, is inverted and added
to the first part. The resulting list that is twice the size of the initial list, we zip with
twice the validList on line 5.
The inversion and adding are done, so we have a list with the first True value starting
at the index of the pointer. On line 6 we, search for the first True value. This result
results in a Maybe index value, but due to the second added list, this index can lay
outside the scope of the possible index. To get the output, that is of type Maybe
index. On line 7, we take the modulus of the found index and the length of the list. It
results in output out of type Maybe index. The index refers to the index of a FIFO in
the outgoing buffer.

Selecting Pointer

The only thing to do now is to determine what the next pointer will be, see pointer'on
line 8. For this next pointer selection, we considered two options.
We could add 1 to the pointer. Thus, pointer' = pointer + 1 and loop around in case
the max bound is reached. Alternatively, we could make it depended on the found
index, and if there is not a message available to send on the ring, we let the pointer
as it is.

16

14

12

10

8

1

17

15

13

11

9

2 3 4 5 6 7

1

8

13

2

9

15

3

10

17

4

12

x

5

14

x

6

16

7

11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

pointer′counter

0 1 2 3 4 5 6

pointer position

buffer occupation

(a) Possibility 1

16

14

12

10

8

1

17

15

13

11

9

2 3 4 5 6 7

1

8

2

9

11

13

15

17

3

10

12

14

16

x

x

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

0

1

2

1

2

1

2

1

2

1

2

2

2

pointer′counter

0 1 2 3 4 5 6

pointer position

buffer occupation

(b) Possibility 2

Figure 6.9: Round-Robin, pointer update examples

Next, we will explain the two different possible pointer updates with the help of
the two images of Figure 6.9.
The upper part of the images shows de buffer occupation of the outgoing buffer. The

columns are the FIFOs, and thus the buffer has a width of seven, this would mean
that the dataflow graph has seven output edges.
The marked boxes(yellow) say that there is a message in that FIFO. The line running
through it indicates the order in which messages are sent over the ring, where we
send one message at the time over the ring.
The (blue) part at the bottom of the images shows the indexes of the pointer (0- 6).
The column on the left side, named counter, counts the amount of time a valid slot
is found.
In the middle part, when the counter is 1, we see that the pointer is set to 0, and
that message one is offered to the ring. The new pointer is 1. This new pointer is
indicated in the right column pointer'(blue). Now the pointer is 1, and message two
is offered to the ring. The pointer is updated to ’2’. Message three is provided, etc.
After message ten is offered, something interesting happens. In Figure 6.9a we see
that pointer is moved to the next position and starts again at the front. By sending
this sequence of messages, the left FIFO has precedence over the other FIFOs, in
this case, the second column.
If instead, of just adding one we make the pointer dependent on the index that
contains the message we want to send, we get to see the pointer updates as in
Figure 6.9b, we do this by adding one to the found index.
In the upper part of Figure 6.9b, we see that the messages are sent horizontally,
without preference for one of the FIFOs. Therefore, this order is chosen and imple-
mented in Listing 21, line 9.

Routing of the Router

We know now which message is being sent to the ring. We also know which mes-
sage is coming from the ring, so we are going to route the messages in the right
direction.

1 (cRing' , toBuffer ,update) = case (cRingHop , rrOutC) of

2 (EmptySlot _, EmptySlot _)-> (EmptySlot slotId', (N , repeat N), N)

3 (EmptySlot _, ContentSlot _ _ d v)-> (rrOutC , (N , repeat N), J d)

4 (ContentSlot _ s b c , EmptySlot _)

5 | b == myId -> (EmptySlot slotId', (J s, c), N)

6 | otherwise -> (cRingHop , (N , repeat N), N)

7 (ContentSlot _ s b c, ContentSlot _ _ d v)

8 | b == myId -> (rrOutC , (J s, c), J d)

9 | otherwise -> (cRingHop , (N , repeat N), N)

10 _ -> (Invalid , (N , repeat N), N)

Listing 22: Routing Conditions

The implementation of the routing in the shown in Listing 22. The N and J are

short for Nothing and Just and are written, so it fits on a page in this report.
There are two content input signals, one from the function/node, rrOutC on line 1,
this is the message found with the Round-robin of Chapter 6.4.3 and one from the
ring, cRingHop on line 1. Both have the option to be Empty, contain Content or be
Invalid. Together they form five possibilities. Namely, both are empty, see line 2,

both contain content, see line 7, one contains content, and the other is empty, see
lines 3 and 4, or the message from the ring is Invalid. If it is an Invalid then there is
no valid slot. Thus, sending to the ring is also not allowed.
If the message from the ring contains content, we have to check if the message be-
longs to this FPGA. We do this by comparing the destination address in the slot with
its ”own” address, myId on line 5 or 8. If it is not equal to the own ID, one of the other
options is invoked on lines 6 or 9 respectively. Depending on these states we obtain,
on line 1, the new message from the ring cRing', the new message to the incoming
buffer toBuffer. If we did read from the output buffer, we also tell from what FIFO we
did read, this update on line 7.
The cRing’ is the new message that will be placed on the ring, due to checks as
shown in Listing 19 and explained in Chapter 6.4.3, we know that the message is
allowed in the slot.

6.4.4 The Ringhop

The ring hop is the slot of the nebula Ring. Or slots if we want to use multiple
consecutive slots.

1 ringHop rhState ToRingHop{..} = (rhState', FromRingHop{..})

2 where

3 cRingHop = last rhState

4 rhState' = cRing +>> rhState

Listing 23: Ringhop implementation

We implemented the ringhop as a Mealy machine in Clash, see Listing 23.
The rhState, on line 1, is the (initial) state. This is a vector of slots. ToRingHop{..} is
the input and has the accessor cRing, see line 1.
The cRing is, on line 4, added to the head of the vector of slots. The last element
is shifted out. This creates the new state rhState'. The last element of the ’old’
vector rhState, we use as output, see line 3. cRingHop on line 3, is an accessor of
FromRingHop{..}.

6.5 Conclusion Implementation

There are some important aspects of the Clash implementation. The controller
checks if there are enough messages in the input buffer. If it is equal to the con-
sumption rate of the dataflow graph, passes them on to the function. It also checks
if the production of messages is equal to the production rate of the dataflow graph.
The FIFOs are implemented in such a way that they accept and provide multiple
messages at the same time. Due to the fixed hardware implementation, these ac-
cept and provide rates are always the same. For the implementation of the buffers,
the FIFOs are placed side by side. It implies that due to higher-order functions, the
separate FIFOs must be equal to each other. By using the Maybe type, we can still
vary the acceptance of messages.
We have implemented the router in such a way that it can also be used as a credit-
ring and allows hijacking of slots. The order in which messages are injected into
the ring has no preference for a particular FIFO. It is also possible to put multiple
messages/tokens on the ring.
We connected the buffers, router, ringhop and controller using custom data types
and record syntax. It ensured that the different elements are ”simply” connected.
For connecting FPGAs, we also made a custom data type, RingContent.

Part III

Analysis and Simulation Results

67

Chapter 7

Reconversion

Initial
dataflow graph

FPGA2

FPGA1

FPGA0

FPGAn−1

Resulting
dataflow graph

Figure 7.1: Designflow: Ring topology to resulting dataflow graph

This chapter shows how to model timing behaviour of the hardware, and get a modi-
fied initial dataflow graph, see Figure 7.1 For this purpose, the communication paths
are added as identity actors to the initial dataflow graph. With this new model, we
answer the following question in this and the next chapter:

How can we model the temporal behaviour of the design, analyse the
communication and guarantee deterministic behaviour?

A B C
1

2

3

Figure 7.2: Three Node, dataflow graph example

69

7.1 Communication Path

In dataflow, an edge between two actors is represented by a FIFO and would not
have any firing time. The edge from A to B of the example in Figure 7.2, would then
look like Figure 7.3, where the edge is a FIFO.
In our hardware design, an edge does not just consist of a FIFO buffer but consists of
various elements that form a communication path from one actor to another. Those
elements are a controller of the sending actor, an outgoing buffer, a router, a slot
in the ringhop, possibly several more ringhops and routers, then an incoming buffer
and finally, a controller of the receiver. Figure 7.4 shows the communication path
containing the various elements of the different edges of Figure 7.2.

A B

Figure 7.3: Edge representation

A ControllerA RouterA

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

RouterB

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

RouterC ControllerC C

(a) A to C

A ControllerA RouterA

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

RouterB ControllerB B

(b) A to B

B ControllerB RouterB

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

RouterC ControllerC C

(c) B to C

C ControllerC RouterC

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

RouterA ControllerA A

(d) C to A

Figure 7.4: New edge representation

7.2 Identity Actors

In our design, the communication path takes time. We model this as a new actor.
The new actor, with one input and output edge, replaces every edge of the original
dataflow graph. This new actor does not change anything to the tokens/messages,
it only has a firing time, and an equal consumption and production rate, equal to the
amount of message allowed in one slot. That is why we call this the identity actor.
We consider the in/output buffers, in the identity actors, as an element that takes
time.

The new edges represent FIFO buffers that do not take time. On these new
edges, we place the initial tokens. The example of Figure 7.2, including the identity
actors and tokens, is shown in Figure 7.5. All tokens on the input edge are consumed
are produced concurrently.

A B C

id2

id1

id0

id3

1

2

3

Figure 7.5: Resulting dataflow graph: Three node, dataflow graph example

7.3 Conclusion Reconversion

We modelled the communication path from one actor to another as a new identity
actor, where an actor is added to each edge of the initial dataflow graph. This
results in a dataflow graph on which the user can perform a post-analysis for the
communication time between FPGAs.

Chapter 8

Timing Analysis

In this chapter, we show the formulas to calculate the WCET as firing time of the
identity actors added to the initial dataflow graph, and we answer the question from
Chapter 7, namely,

How can we model the temporal behaviour of the design, analyse the
communication and guarantee deterministic behaviour?

73

8.1 Calculation Introduction
For calculating the communication time, we take the time from entering the output
buffer from one node up to and including the outcome of the outcoming buffer of the
receiving node, this means we take the WCET as firing time of the identity actor.
For calculating the WCET between the different actors, we made two calculations.
We made two calculations because, for the first calculation, we calculate the time
until all messages/tokens in de buffer are injected into the ring and received at their
destination. For the second calculation, we wait until the tokens/messages of a
single FIFO in the outgoing buffer are sent and received at their destination.

For calculating the WCET, we need to know the different argument used in de
equations;
Bi Time in the incoming buffer.

Bo Time in the output buffer.

E The number of outgoing edges or the amount of FIFOs in the outgoing buffer.

F The maximum amount of tokens in the FIFO. This not the total amount in the
output buffer.

H The number of hops/slots from the source to the destination.

M The maximum amount of tokens in the output buffer.

N The number of hops/slots on the ring.

sd The number of messages send over the ring at the same time/ the number of
tokens consumed or produced concurrently, see Figure 8.1.

T The time it takes for the token to hop from one FPGA to the other.

W Worst-Case Execution Time.
A condition for the equations is:

∀ F

sd
∈ N

This means that for all FIFOs the maximum amount of tokens in one FIFO must
be dividable by the number of messages on the ring at the same time. This is to
prevent the new identity actors, who have sd as consumption and production rate,
from deadlocking. The result is a natural number. If sd is one, there would not be an
issue.

slotID
Src Address
Dst Address
Content0
Content1...

Contentsd−1

Figure 8.1: New extended slot, with sd content places

8.1.1 Calculation 1

This calculation assumes there is a maximum of tokens in the output buffer of an
FPGA. The time it takes before the last message in the output buffer is received at its
destination node, we can interpret as the firing time, of the identity actor. Something
we need to know is the maximum amount of tokens that could be on every edge of
the initial dataflow graph. With the help of the SDF3 tool from [29], we can calculate
this maximum1.

For this calculation, we use Equation 8.1

W1 = Bo +NT − 1 +
NT (M − sd)

sd
+HT +Bi (8.1)

Equation 8.1 is build up as follows. First, we have to wait before a message that has
entered the output buffer is available for the router to send on the ring, this takes
Bo clock cycles. If we are unlucky, we just missed our own slot and have to wait
NT − 1 clocks cycles for the first valid slot is available before we can send the first
sd messages over the ring. Now we have to send the rest of the messages over
the ring. We can do this every time there is a slot available, that is ever NT clocks
cycles. We have to do this a total of M − sd times because that is the number of
messages left in the buffer to send2. We can divide this by sd because that is the
number of messages that can be sent over the ring at the same time. After this we
need the hops, H, a message must take to get to its destination. We have to multiply
this by T . This T is at least one because we need a position for the slot 3. Eventually,
we have to add the time the message is in the incoming buffer, Bi.

After some algebra Equation 8.1 results in Equation 8.2.

W1 = Bo − 1 +
NTM +HTsd

sd
+Bi (8.2)

In our implementation the time of the buffers Bo and Bi are both one, this results in
Equation 8.3.

W1 =
NTM +HTsd

sd
+ 1 (8.3)

1Or at least get an indication.
2We already send the first sd messages after NT − 1 clocks.
3T can be greater than one, e.g. when the messages must be serialized between the nodes.

8.1.2 Calculation 2

With this calculation, we only want to send the message from one FIFO the destina-
tion belonging to that FIFO. For this calculation, we use Equation 8.4.

W2 = Bo +NT − 1 +NT (E − 1) +
ENT (F − sd)

sd
+HT +Bi (8.4)

The equation is build up as follows. Bo, NT − 1 and HT + Bi of Equation 8.4 are
equal to those parts of Equation 8.1. The difference lies in NT (E−1) and NTE(F−sd)

sd
.

Where NT (E − 1) is the time between the first message is allowed on the ring4 and
the first message of the desired destination. After that, we have to wait NT clocks
for the next available slot. Because of the distribution, see Chapter 6.4.3 we have
to multiply this by the amount of outgoing edges E of the source node. In turn, we
want to send the remaining F − sd Messages over the ring, so we multiple this with
F − sd. We can divide this by sd because that is the number of messages we can
send over the ring at the same time

After some algebra Equation 8.4 results in Equation 8.5.

W2 = Bo − 1 +
NTEF +HTsd

sd
+Bi (8.5)

As said before the time of Bo and Bi are both one, and this results in Equation 8.6.

W2 =
NTEF +HTsd

sd
+ 1 (8.6)

4after Bo +NT − 1 clock cycles.

8.1.3 Example calculation 1 and 2

In this section, we explain the Equations 8.1 and 8.4 using an example. We start
with a general explanation and then for the equations specifically.

In General

In Figure 8.2 we see that actor A has two output edges and sends a total of ten mes-
sages to actors B and C. Because in the example sd is two, we put two messages
on the ring at the same time. That is why the messages are divided into five parts.
The time the messages from A are in the output buffer, Bo, is one clock cycle. We
see that after one clock cycle the available slot is C. Therefore, we have to wait for
NT − 1 clock cycles, before the available slot is A, and we can put first messages,
0sd and 01 on the ring. After that we can inject every NT clock cycles messages on
the ring, that is every three clock cycles. It then takes HT time before the messages
reach their destination and are put in the input FIFO of the recipient, depending on
the number of hops this is one or two clock cycles, in the example.

B A C

2 2

66
6

For B
22

4 4
4

For C

(a) Initial dataflow graph

B A C

FB

FC

2
2

6
2

6

2

2

4
24

2
2

2
6 2

2

2
4

(b) Resulting dataflow graph
Clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Input F ifo

Available slot for A C B A C B A C B A C B A C B A C B

Messages for B 4sd 41 2sd 21 0sd 01 0sd 01 2sd 21 4sd 41

0sd 01 2sd 21 4sd 41

4sd 41 2sd 21 0sd 01

Messages for C 3sd 31 1sd 11 1sd 11 3sd 31

1sd 11 3sd 31

1sd 11 3sd 31

3sd 31 1sd 11

Hop time to Destination HT HT HT HT HT

Time to Next valid slot NT − 1 NT NT NT NT

Equation 8.1
Bo = 1

NT − 1 ⇒
3 ∗ 1− 1 = 2

NT (M − sd)

sd
⇒ 3 ∗ 1 ∗ (10− 2)

2
= 12

HT

= 1

Bi

= 1

Equation 8.4
Bo = 1

NT − 1 ⇒
3 ∗ 1− 1 = 2

NT (E − 1) ⇒
3 ∗ 1(2− 1) = 3

ENT (F − sd)

sd
⇒ 2 ∗ 3 ∗ 1(4− 2)

2
= 6

HT ⇒
2 ∗ 1 = 2

Bi

= 1

(c) From A to B and C

Figure 8.2: Timing example

Calculation 1

The time from the first message until the last message is
NT (M − sd)

sd
, where the

number of Slots N is three. This is equal to the number of FPGA in the system,
namely A, B and C. The hop time T is one clock cycle because there is nothing to
(de)serialized. The number of messages M is ten and sd is two, which is the number
of messages placed on the ring at the same time. After 15 clock cycles, we can put
the last messages 4sd and 41 on the ring, after one hop it arrives at B, after which the
last message has arrived. It takes another clock cycle in the Input FIFO of B before
the messages are offered to actor B, so the total is 17 clock cycles.

Calculation 2

For calculation 2 and thus Equation 8.4, we only look at the number of messages
in a FIFO. If we then look at the messages intended for C, we see that we want to
send four messages. We still have to wait for NT − 1 clock cycles before we can put
the first messages, 0sd and 01, on the ring, but these messages are for B. Therefore,
we have to wait for another NT (E − 1) clock cycles before we can put the first mes-
sages for C on the ring. After six clock cycles, we can put the first message 1sd and
11 on the ring. After that ,in case of a valid slot, we inject, once every E edges, a

message for C on the ring. The total time is represented by
ENT (F − sd)

sd
. Where

F − sd is two, and the number of messages is what is still in the FIFO. After 12 clock
cycles, the last message for C is put on the ring. After that, the message has to take
another two hops to arrive at C. It then takes another clock cycle in the Input FIFO
of C before the messages are offered to actor C. The total is 15 clock cycles.

If we would perform the same calculation on the messages from FIFO B, (the
figure is then no longer representative). The result is 20 clock cycles, which is more
than the earlier 17 clock cycles and thus indicates that both have advantages and
disadvantages.

8.1.4 Final WCET
Calculation 1 and calculation 2 both have there pros and cons. With both formulas,
we are looking for the amount of slots needed to inject (all) messages of the output
buffer into the ring. With calculation 1, Equation 8.3, the number of slots reserved
is equal to the maximum number of messages in the output buffer. We neglect the
empty spots in the buffer where there are no messages.
With calculation 2, Equation 8.6, it is as if the calculation draws a rectangle
around/through the buffer and then counts all FIFO spots within this rectangle as
slots reserved. The width of the rectangle is equal to the number of FIFO edges in
the buffer. The length of the rectangle is equal to the maximum number of messages
in that FIFO for which we want to know how long it will take for the last message of
that FIFO to be injected into the ring. With calculation 2 it is possible to make an ex-
cessive calculation if there are fewer messages in all other FIFOs. Therefore taking
the minimum of the two formulas is sufficient.
In Figure 8.3 we see two examples of possible buffer occupations. Both buffers have
a total of eight messages in three FIFOs. In Figure 8.3a, we see that if we calcu-
late the slots with calculation 1, we reserve eight slots for the eight messages in the
buffer. For calculation 2, we reserve 12 slots, before the last message is injected
into the ring. Calculation 1 is, therefore, the better calculation in this case, because
calculation 2 reserves also four slots for the free FIFO spots. In Figure 8.3b, we see
that if we calculate the slots with calculation 1, we reserve eight slots for the eight
message. For calculation 2, we reserve, before the last message injected into the
ring, six slots. Calculation 2 is, therefore, the better calculation in this case, because
calculation 1 also reserves two FIFO spots 5, that are used by later slots.

(a) Calculation 1 = 8 slots,
Calculation 2 = 12 slots

(b) Calculation 1 = 8 slots,
Calculation 2 = 6 slots

Message in FIFO1

Message in FIFO2

Message in FIFOn

Free FIFO spot

Slot reservation calculation 1

Slot reservation calculation 2

Last message of this FIFO

(c) Legend

Figure 8.3: Buffer occupation, with reserved slots for both calculations

In the final equation, see Equation 8.7, we take the minimum of both equations.

Wm = Min(
NTM +HTsd

sd
+ 1,

NTEF +HTsd

sd
+ 1) (8.7)

where,
∀ F

sd
∈ N

5The yellow messages outside the red line.

8.2 Conclusion Timing Analysis

Calculating the WCET as firing time for the identity actors, added to the resulting
dataflow graph, we can guarantee deterministic behaviour and analyse this. For this
purpose, we made two equations. For the first calculation, we are entirely depen-
dent on the maximum number of messages in the output buffer. With the second
calculation, we only depend on the messages in one FIFO, to a certain depth. This
depth is multiplied by the number of edges, to get the amount of own slots. By tak-
ing the minimum of both calculations, we get actual firing time. This firing time per
identity actor is represented as an SDF graph and, therefore, is equal to the WCET.
Some messages arrive earlier. The identity actor can therefore also be expressed
as Cyclo-Static DataFlow (CSDF) actor, but this is something for future work.

Chapter 9

Simulation Results

This chapter shows the results of implemented dataflow graphs and compares it with
the calculated time of Chapter 8. We want to see if the firing time of identity actors
correspond with te WCET formulas found in Chapter 8. Therefore, we answer the
following question:

How do simulation results correspond to analysis results concerning
timing?

We start with an explanation of the simulation setup. Then we calculate the WCET
of some examples. Next, we discuss the Clash simulation results. After that, we
compare the results and conclude the chapter.

9.1 Simulation Setup

2 −2 0 0
−2 2 0 0
0 −2 2 0
0 2 −2 0
0 −6 0 6
0 6 0 −6

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
edge1
edge2
edge3
edge4
edge5
edge6

A B C D

(a) Option 1

2 −2 0 0
−2 2 0 0
0 −6 6 0
0 6 −6 0
0 −2 0 2
0 2 0 −2

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(b) Option 2

6 −6 0 0
−6 6 0 0
0 −2 2 0
0 2 −2 0
0 −2 0 2
0 2 0 −2

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(c) Option 3

2 −2 0 0
−2 2 0 0
0 −6 6 0
0 6 −6 0
0 −2 0 2
0 4 0 −4

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(d) Option 4

Figure 9.1: Topology matrices for different implementations

To simulate in Clash, we designed one dataflow graph, in which we adjusted the
consumption and production rates, to do different tests. The different topology ma-
trices, of the dataflow graphs, we called options and are shown in Figure 9.1.

81

A B

C

D

2 2
2

edge1

22

edge2

2

2

2edge3

2

2

edge4

66 6

edge5

6 6
edge6

(a) Initial dataflow graph

A B

C

D

id1

id2

id3 id4

id5

id6
sd

2
C

2
sd

sd

2
C

2

sd

sd
6
C

6
sd

2
sd

sd
2

2

sd sd

2

6
sd

sd
6

(b) Resulting dataflow graph with identity actors

Figure 9.2: Dataflow graphs of option 1

In Figure 9.2 are of option 1, the original and resulting dataflow graphs shown. The
Clash implementation of option 1 actor B can be seen in Listing 24, as already ex-
plained in Chapter 6.1.
For the test, we test edge6, because actor D is the last actor in the list ”A, C, D”.
We choose the last actor, because that is where the pointer, in the router1, points to
last. In the meantime tokens/messages are sent to other actors over the ring. The
different rates in the options ensure that, e.g. for option 1, six messages go to actor
D, two to actor A and two to actor C. This means that there are more messages sent
to D (6) than the total amount of messages sent to A and C (4). This corresponds
with calculation 1, Equation 8.3.
With option 2, only two messages go to actor D and to actors A and C go two and
six messages respectively. In this case, it is not necessary to take into account all
messages. Because now we do not have to wait until all six messages for actor C
have been sent. Waiting until two messages from actor A and C have been sent is
enough. This corresponds with calculation 2, Equation 8.6.
We also have some simulations in which the ring size, sd, is set to 2. This is to show
what happens when multiple messages are sent over the ring at the same time. We
did a test where we enabled hijacking, and we also increased the hoptime to see
what happens when the ringhop costs more than one clock cycle.

1see Chapter6.4.3

9.1.1 Clash Setup

In Listing 25, we see the initial states of the FPGA with id B. On lines 1-3, we see
the tokens/messages in the incoming buffer. We see that there are multiple Just 0s
offered to B. The amount of Just 0s are exactly equal to the consumption rate of
actor B. So actor B can start firing immediately.
The firing time must not be a factor and, therefore, it is set to 0.

On line 5, we see there is nothing in the initial input of the output buffer. On line 6,
we see the initial pointer of the router. This pointer is 0 and means that it points to
A of the list of ” A, C, D”, this is a list to where actor B has an edge. On line 7, we
chose the first slot id B. This id equals the identifier of actor B. We do this because
after one clock cycle the slot, with id B, is shifted one place. Which is exactly equal
to the minimum time the tokens are in the output buffer. This makes sure that we
have exactly missed our ’own’ slot, which allows us to compare the WCET with the
calculations from Chapter 8.

1 def_1 = D { myId = 'B' --

2 , sIds = 'A' :> 'C' :> 'D' :> Nil -- edge 2 , edge 4 , edge 6

3 , amountS = 2 :> 2 :> 6 :> Nil --

4 , rIds = 'A' :> 'C' :> 'D' :> Nil -- edge 1 , edge 3 , edge 5

5 , amountR = 2 :> 2 :> 6 :> Nil --

6 , modus = IncreasingWithoutHijack --

7 }

Listing 24: Option 1 actor B in Clash

1 init_1 = NodeStates { ibState = ((replicate d2 (Just 0) ++ repeat Nothing) -- From A

2 :> (replicate d2 (Just 0) ++ repeat Nothing) -- From C

3 :> (replicate d6 (Just 0) ++ repeat Nothing) -- From D

4 :> Nil)

5 , obState = repeat (repeat Nothing)

6 , rState = 0

7 , rhState = EmptySlot 'B' :> Nil

8 }

Listing 25: option 1 actor B Initial states

9.1.2 Calculation Results

Of all the edges and options we have calculated in Table 9.1, for Equations 8.4
and 8.1, the WCET. For all options, the ring size, sd, is one, and the hoptime is one
clock cycle. Except for option 4 where the Ringhop time is seven clock cycles. The
last column shows the minimum value as calculated with Equation 8.7. Because
we are interested in edge6, see Figure 9.2, we highlighted it. Table 9.2 is equal to
Table 9.1, except weve now set the ring size sd to 2. We can see that the WCET is
almost halved.

Table 9.1: Calculation results with ring size(sd) = 1
(a) option 1

Formula
Edge

8.6 8.3
Min

1 10 10 10
2 28 44 28
3 12 12 12
4 26 42 26
5 27 27 27
6 75 43 43

(b) option 2

Formula
Edge

8.6 8.3
Min

1 10 10 10
2 28 44 28
3 28 28 28
4 74 42 42
5 11 11 11
6 27 43 27

(c) option 3

Formula
Edge

8.6 8.3
Min

1 26 26 26
2 76 44 44
3 12 12 12
4 26 42 26
5 11 11 11
6 27 43 27

(d) option 4, hoptime:7

Formula
Edge

8.6 8.3
Min

1 36 36 36
2 190 358 190
3 190 190 190
4 512 344 344
5 71 71 71
6 351 351 351

Table 9.2: Calculation results with ring size (sd) = 2
(a) option 1

Formula
Edge

8.6 8.3
Min

1 6 6 6
2 16 24 16
3 8 8 8
4 14 22 14
5 15 15 15
6 39 23 23

(b) option 2

Formula
Edge

8.6 8.3
Min

1 6 6 6
2 16 24 16
3 16 16 16
4 38 22 22
5 7 7 7
6 15 23 15

(c) option 3

Formula
Edge

8.6 8.3
Min

1 14 14 14
2 40 24 24
3 8 8 8
4 14 22 14
5 7 7 7
6 15 23 15

(d) option 4: hoptime:7

Formula
Edge

8.6 8.3
Min

1 36 36 36
2 106 190 106
3 106 106 106
4 260 176 176
5 43 43 43
6 183 183 183

9.1.3 Clash Simulation Results
In Tables 9.42, 9.53 and 9.64, we see three results from different simulations. For
other and elaborate results, see Appendix C. The results in Tables 9.4, 9.5 and 9.6
are explained by describing each column and row.

Column Description

The first and ninth columns show the clock cycles. The second column shows what
is provided to actor B, so this is what is available in the various FIFOs of the incom-
ing buffer. In the third column, we see what the function of actor B produces for the
different receiving actors A, C and D. The fourth column indicates if the function of
actor B has consumed tokens/messages. The fifth column indicates to what actor
the ring sends a message. ”1,0,0” is to actor A, ”0,1,0” is to actor C and ”0,0,1” is
to actor D. The sixth, seventh and eighth columns indicate what the output buffer
offers the router to send over the ring. The tenth column shows which tokens/mes-
sages are offered to actor D. The eleventh column shows what the function of actor
D produces. Column 12 shows whether actor D has read the tokens of the incoming
buffer. Column 13 shows what message comes in from the ring and is put in the
incoming buffer. The last column relates to the equations from Chapter 8.
For Table 9.6, this calculation is not available because there is no formula for hijack-
ing. We also set, for Table 9.6, the ring size to 2, as shown in columns 6 7,8 and 13.

Row Description

For the row description, we describe in Table 9.3, each clock cycle.

Table 9.3: Clock cycle explanations
Clock cycle

Option 1,
Table 9.4

Option 2,
Table 9.5

Option 2,
Table 9.6

Meaning

1 1 1 Tokens are offered to actor B, who claims to have consumed
and produced new tokens after a firing time of 0 clock cycles.

2 2 2 Messages Just 10 for actor A, Just 12 for actor C and Just 13
for actor D are offered to the router, from which it can choose.

5,17 5, 17 2 Messages for A sent.
9, 21 9, 21 3, 4, 6 Messages for C sent.

13, 25, 29,
33, 37, 41

13, 25 5 Messages for D sent.

15, 27, 31,
35, 39, 43

15, 27 7 The previous messages to D, received 2 clock cycles later.

44 28 8 Received messages offered to actor D, who consumes them
and produces immediately.

43 27 7 WCET/firing time of the identity actor.

2see Figures 9.1a and 9.2
3see Figures 9.1b and 9.2
4see Figures 9.1b and 9.2

Table 9.4: Result, edge6, option 1, Ringsize(sd)=1, without hijacking
C
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

Column
8

C
9

Column
10

Column
11

Column
12

Column
13

Column
14

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

,Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N N N 1 N N F N Bo

2 N N F 0,0,0 Just 10 Just 12 Just 13 2 N N F N NT − 1

5 N N F 1,0,0 Just 10 Just 12 Just 13 5 N N F N
9 N N F 0,1,0 Just 10 Just 12 Just 13 9 N N F N
13 N N F 0,0,1 Just 10 Just 12 Just 13 13 N N F N
15 N N F 0,0,0 Just 10 Just 12 Just 13 15 N N F Just 13
17 N N F 1,0,0 Just 10 Just 12 Just 13 17 N N F N
21 N N F 0,1,0 N Just 12 Just 13 21 N N F N
25 N N F 0,0,1 N N Just 13 25 N N F N
27 N N F 0,0,0 N N Just 13 27 N N F Just 13
29 N N F 0,0,1 N N Just 13 29 N N F N
31 N N F 0,0,0 N N Just 13 31 N N F Just 13
33 N N F 0,0,1 N N Just 13 33 N N F N
35 N N F 0,0,0 N N Just 13 35 N N F Just 13
37 N N F 0,0,1 N N Just 13 37 N N F N
39 N N F 0,0,0 N N Just 13 39 N N F Just 13

NT (M − sd)

sd

41 N N F 0,0,1 N N Just 13 41 N N F N HT

43 N N F 0,0,0 N N N 43 N N F Just 13 Bi

44 N N F 0,0,0 N N N 44

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N

Table 9.5: Result, edge6, option 2, ringsize(sd) = 1, without hijacking
C
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

Column
8

C
9

Column
10

Column
11

Column
12

Column
13

Column
14

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N N N 1 N N F N Bo

2 N N F 0,0,0 Just 10 Just 12 Just 13 2 N N F N NT − 1

5 N N F 1,0,0 Just 10 Just 12 Just 13 5 N N F N
9 N N F 0,1,0 Just 10 Just 12 Just 13 9 N N F N

NT (E − 1)

13 N N F 0,0,1 Just 10 Just 12 Just 13 13 N N F N
15 N N F 0,0,0 Just 10 Just 12 Just 13 15 N N F Just 13
17 N N F 1,0,0 Just 10 Just 12 Just 13 17 N N F N
21 N N F 0,1,0 N Just 12 Just 13 21 N N F N

ENT (F − sd)

sd

25 N N F 0,0,1 N Just 12 Just 13 25 N N F N
26 N N F 0,0,0 N Just 12 N 26 N N F N

HT

27 N N F 0,0,0 N Just 12 N 27 N N F Just 13 Bi

28 N N F 0,0,0 N Just 12 N 28
Just 13
Just 13

Just 31
Just 31

TRUE N

Table 9.6: Result, edge6, option 2, ringsize(sd) = 2, with hijacking
C
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

Column
8

C
9

Column
10

Column
11

Column
12

Column
13

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N

2 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 4 N N F N,N
5 N N F 0,0,1 N,N Just 12,Just 12 Just 13,Just 13 5 N N F N,N
6 N N F 0,1,0 N,N Just 12,Just 12 N,N 6 N N F N,N
7 N N F 0,0,0 N,N N,N N,N 7 N N F Just 13,Just 13

8 N N F 0,0,0 N,N N,N N,N 8
Just 13
Just 13

Just 31
Just 31

TRUE N,N

9.2 Corresponding Results

In Table 9.7, we see the results of the equations and Clash simulation. We tested
different options, varied the ring size is, adjusted the Hoptime, and allowed hijacking.
For a system where hijacking is allowed, we cannot do a calculation, so this is not
shown. Table 9.7 also contains references to the results of the previous simulation
and tables, in which the same answer is given. For detailed simulation results, there
is also an Appendix reference.
We see that the minimum result of the equations is equal to the simulation results.

Table 9.7: Edge6 result comparison
Result equation:

Edge Option Ring Size Hijacking Hop Time
8.6 8.3

Equation Table Simulation Result SimulationTable Appendix

1 No 1 75 43 9.1a 43 9.4 C.1.2
1 Yes 1 - - - 15 - C.1.1
2 No 1 39 23 9.2a 23 - C.1.3
2 Yes 1 - - - 9 - C.1.4
2 No 2 77 45 - 45 - C.1.5
2 No 3 115 67 - 67 - C.1.6

1

2 No 7 267 155 - 155 - C.1.7
1 No 1 27 43 9.1b 27 9.5 C.2.1
1 Yes 1 - - - 11 - C.2.2
2 No 1 15 23 9.2b 15 - C.2.3
2 Yes 1 - - - 7 9.6 C.2.4

2

2 No 7 99 155 - 99 - C.2.5
1 No 1 27 43 9.1c 27 - C.3.1
1 Yes 1 - - - 9 - C.3.2
2 No 1 15 23 9.2c 15 - C.3.3

3

2 Yes 1 - - - 7 - C.3.4

6

4 2 No 7 183 183 - 183 - C.4.1

9.3 Conclusion Simulation

From this chapter, it can be concluded that the Clash simulation results are equal to
the calculation of Chapter 8.

Part IV

Conclusions and Future Work

89

Chapter 10

Conclusions

In this chapter, we conclude this report and answer the main question:

How do we design and analyse FPGA to FPGA communication in a defined
topology, using dataflow graphs?

We do this by answering the sub-questions that we asked in the Introduction.

Which hardware communication infrastructure is suitable?

As hardware topology, we have chosen the ring topology because it gives a uni-
form structure for each FPGA, which helps with the modularity and ensures that
each FPGA only needs one Input and output port. There was also a deterministic
implementation available, namely the Nebula ring interconnect.

Are there any dataflow graph constraints, if so, which ones?

The main restrictions for the dataflow graph are that they must be strongly connected
and that is not allowed to have multiple edges from one FPGA to another.

Given the topology, how do we map a dataflow graph onto multiple FPGAs?

On each FPGA in a ring structure, we place an actor of the dataflow graph. To re-
alise the ring, we placed a router, ringhop, controller and buffers on one FPGA. In
Clash, we connected those elements using custom data types and record syntax. To

91

achieve a ring, we connect those FPGAs. For synchronisation between the FPGAs,
we use separate First In First Outs (FIFOs) buffers. In the Clash implementation,
the mapping of FIFOs implies that all FIFOs must be equal to each other, defining
unused FIFO spots. This also means that FIFOs, which accept and provide multiple
messages, must always receive and deliver a fixed number of messages. To bypass
this, we used the Maybe Type. We used a router to receive or forward data from the
previous FPGA. the router also choose which message to inject into te ring. There
is no preference for a particular FIFO for the order in which messages are injected
into the ring. We made it is also possible to put multiple messages/tokens on the
ring. Although this is for future work, we have implemented the router in such a way
that it can also be used as a credit-ring and allows hijacking of slots. The controller is
used to make it easier for the user of the system to know if there are enough tokens
to consume. The user/designer remains responsible for the realisation of the actor
and knowing when there are enough tokens produced. The controller also protects
against a too low production.

How can we model the temporal behaviour of the design, analyse the
communication and guarantee deterministic behaviour?

By modelling the network communication time between two actors as a new ac-
tor, an identity actor is added to each edge of the initial dataflow graph. This creates
a resulting dataflow graph model on which the user can perform an analysis for the
communication time between FPGAs.

By calculating the WCET as firing time for the identity actors, we can guarantee
deterministic behaviour.
We made two equations to calculate this WCET. With the first option, we are en-
tirely dependent on the maximum number of messages in the output buffer. With the
second option, we only depend on the messages in one FIFO, to a certain depth,
multiplied by the number of edges. By taking the minimum of both options we get
actual WCET, as firing time for the identity actor.

How do simulation results correspond to analysis results concerning
timing?

We have seen that the Clash simulation results are equal to de calculation of Chap-
ter 8.

With the answers of the sub-questions, we answer the main question:
We have chosen for a ring topology with the Nebula ring interconnect. Where

each FPGA represents an actor of the initial dataflow graph. The user can then
give an initial dataflow graph to our Clash implementation. This is modelled by a
resulting dataflow graph, in which additional identity actors are added. These actors
represent the network communication time between two actors of the initial dataflow
graph. For these actors, we can calculate the WCET as firing time. The designer
can then analyse this new model. We also compared the calculated results with the
Clash simulation and found that they are the same, for the tests we did.

Chapter 11

Future Work

This chapter presents future work on subjects that have not yet been discussed or
implemented in this thesis. These topics are mainly direction in which the project
can be expanded or optimised.

11.1 Maximum Buffer Occupation

In our calculations, we assume that we know how many messages are maximally
stored in the output buffer. With the help of the SDF3 tool from [29], we can calculate
this maximum or at least get an indication. However, further research is still required
to find this maximum.

11.2 Actor Location

It also has to be determined which actor has to be placed on which FPGA. Closely
linked FPGAs can reduce communication time. It may also be possible to put multi-
ple actors on the same FPGA. An article of Ramezani [24] is a good start.

95

11.3 Calculation Improvement

11.3.1 Adaption of Existing Calculation

6

4

1

X2

X1

2

X3

5

3

level 3

level 2

level 1

(a) Calculation 1 = 6 slots,
Calculation 2 = 6 slots

Message in FIFO1

Message in FIFO2

Message in FIFOn

Free FIFO spot

Slot reservation calculation 1

Slot reservation calculation 2

Last message of this FIFO

(b) Legend

Figure 11.1: Buffer occupation example

It is possible to make, option 2, calculation 8.4 from Chapter 8.1.2 even more strict.
e.g. We assume that Figure 11.1 is the maximum output buffer occupation, where
each column represents a FIFO from the output buffer and a Xi is an empty spot in
the FIFO. If we want to send the messages of the green right column or Figure 11.1
then, without hijacking, we have to send up to level 2. This means we need three
edges times tow levels = six own slots until the last green message, but in practice,
we only need five own slots to send until the last green message. So we took into
account time to send message X1, while this is an unfilled slot. So the calculation
can be stricter.

11.3.2 Additional Calculations

To calculate the firing time of the identity actor, we calculate how long it takes to
receive the last message. This means that moving all tokens from one side of the
identity actor to the other takes the same time. However, in practice, some tokens
have reached their destination earlier. Therefore, we can model this with a CSDF
graph, instead of an SDF graph.

11.4 Credit Ring

Currently, each edge of the initial dataflow graph represents an output FIFO, some
network communication, and an input FIFO. The size of the input FIFO must be
equal to the maximum number of messages in the output FIFO of the other FPGA,
to ensure that the messages can be received. Suppose an actor of the dataflow
graph has multiple input edges. In that case, the input buffer also has multiple
FIFOs, so each FIFO must be equal to the maximum number of messages of its
equivalent output FIFO on the other FPGA. Because of the higher-order functions
in Clash, the FIFOs in the buffers must also be equal to each other. This allocating
memory may cause us to reserve memory we don not use.

A

B

C

D

Figure 11.2: Credit-ring topology

By adding a credit-ring that goes in the opposite direction, see Figure 11.2, we
can make the FIFOs smaller. Thus, saving memory. In this way, we can indicate
when there is a place in the input FIFO available. The credits require memory, but
the credits do not necessarily have the same size as the messages of the original
ring. The implementation of the credit-ring is at the expense of the firing time of the
identity actors. Therefore, the formulas from Chapter 8 are no longer valid and have
to be redefined.

11.4.1 Credit-ring in Clash

In Clash, we have already started implementing the credit-ring. We use the same
implementation as the regular ring, but change the mode to DecreasingWithoutHijack

or DecreasingWithHijack, depending on whether or not the credit-ring is allowed to
hijack. The corresponding rules for the credit-ring are available in appendix 11.3.
To connect the regular ring to the router, we have already modified the router and
controller and added some inputs and outputs. See appendix A.2 how we connect
the credit-ring to the controller. The controller reads from the input FIFO and indi-
cates that places are available again by adding credits to the output buffer of the

credit-ring. The regular router, in turn, sees that credits are available, only in those
cases can it send a message. If it has sent a message, a credit is removed from the
input buffer of the credit-ring. Simulating the credit-ring has not been done and is
something for future work.

A B C
1

2

3

Figure 11.3: Three Node, dataflow graph example

A id1 B id3 C

id0

id2

Cid0

Cid1

Cid2

Cid3

1

2

3

Figure 11.4: Resulting Dataflow graph: Three node, dataflow graph example with
credit-ringif we summarise the previous slides.

If we take the initial dataflow graph from the dataflow graph of Figure 11.3, then
the resulting dataflow graph looks like in Figure 11.4. This transformation shows that
a simple initial dataflow graph quickly becomes complex when a credit-ring is used
as well.

11.5 Additional Slots

A

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

B

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

C

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

Figure 11.5: Multiple slots in Nebula ring

It is possible to place multiple slots one after the other, see Figure 11.5 for an exam-
ple. These multiple slots allow us to provide multiple slots for each FPGA. If the slots
are located one after the other, e.g. A, A, B, B, C, C, ..., then the waiting time until
an own slot is available is longer. This waiting makes the WCET/firing time larger,
but we can also choose to give a certain FPGA multiple ’own’ slots at the expense
of another FPGA. This allocation, in turn, ensures that some FPGAs have a larger
bandwidth and, therefore, faster get all messages to their destination. The calcula-
tions take this partially into account, but it still needs to be redefined and tested in
Clash. In Clash, we did use these multiple slots to simulate hopTime, but then we
set the slots to Invalid.

11.6 Ring-Intermediate Topology

A

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

B

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

C

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

D

slotID:
- A,B,C,etc.
- 0,1,2,etc.

SRC Address
-

DST Address:
-

data:
-

Figure 11.6: Ring-intermediate example

As announced in Chapter 4, we could use the ring-intermediate topology. For this,
we need to change the router and split it, whereby a part of the messages will go to
the nodes with a higher numbers/characters and a part to the lower numbers/char-
acters. This routing ensures that the decision in the router remains trivial. In the
ring-intermediate, there are at least twice as many slots as in the regular ring.
See Figure 11.6 for a topology with four FPGAs, where we usually have four slots,
now we have eight. The path from the last FPGA back to the first one now runs
through all other FPGAs. This makes the communication path longer. However,
for some actors, the communication path has become shorter. Because of this the
communication time changes and the expectation is that the ring-intermediate for
the inner FPGAs has on average a faster firing time 1 and that for the outer FPGAs
the WCET has not increased. e.g. For a Ring with three FPGAs A, B, C there are
two hops from C to B. Further for the ring-intermediate, there are two hops from C
to A.
Again it is possible to replace a slot id with another slot id, so a slot is capable of
sending more data, while another is reduced. The implementation and calculations
of this design are future work.

1This depends on which actor is placed on which FPGA

11.7 CSDF Graphs

In short, Cyclo-Static DataFlow (CSDF) graphs are dataflow graphs that cycle through
different consuming and production rates, and firing times. For now, it is not yet
possible to use CSDF graphs. Because we now have a fixed consumption and pro-
duction rate. If we made the production and consumption rate a vector, we are in
Clash obligated to make each vector equal. This can be solved by using the Least
Common Multiple (LCM). e.g. if an actor has two outgoing edges of which one
edge produces [2,3,5] and the other edge [4,2] then this would be implemented as
[2,3,5,2,3,5] and [4,2,4,2,4,2]. The same principle applies to the incoming edges.
The router, controller and function still need to be adapted to take this cyclic imple-
mentation into account.

11.8 Multi-Edged Dataflow Graphs

It is not yet possible to create a dataflow graph with multiple edges from one FPGA
to another, see 11.7 for an example. This is because the elements on the FPGA do
not know that there are multiple edges. Every message that now enters the router
will be put in the same input FIFO.

A B

Figure 11.7: Multi-edged dataflow graph example

1 data RingContent id a b =

2 Invalid

3 | EmptySlot

4 | ContentSlot { slotId :: id

5 , source :: id

6 , destination :: id

7 , edgeID :: Index b

8 , content :: a

9 }

Listing 26: Ring Content type

There are several ways to indicate that there are multiple edges; one example is
that we can add an edge Id to the Content-type, see Listing 26. So we will indicate to
which edge the message belongs. The router, controller and function must then be
adjusted so that they can handle this.

11.9 (De)serialising

Router

Incoming
Memory

Outgoing
Memory

Controller

deserialize serialize

Actor

In Out

Figure 11.8: FPGA with serialiser and deserialiser

The width of the content of the ring is the number of wires between FPGAs. This
is equal to the number of bits the slot has, see Figure 2.9b. To reduce this number.
The ringhop can be adjusted so that it has a protocol that deserialises the data. A
serialiser still needs to be realised and implemented. An FPGA implementation then
looks similar to Figure 11.8. During the time of deserialisation, we signal the router
with Invalid. We assume that the time of serialising is equal to the deserialisation.
If we, for example, have 160 pins to utilise for every FPGA, we can use eighty
for the input and eighty for the output. If then the slotID and Content-type; thus,
the source, destination and content are bigger than eighty bits or ten bytes. So,
serialising and de serialising is inevitable.

11.10 Physical Implementation

1 --Actor A ---

2 actor0 input = bundle ((cRing' <$> fromNode_)

3 , (slotId' <$> fromNode_)

4 , (vReadCredits <$> fromNode_)

5 , (vvmNewCredits <$> fromNode_)

6)

7 where

8 (cRing_, slotId_, vvmCredits_) = unbundle input

9 (toRing_, read_) = unbundle $ f0M (mvvmFromRing <$> fromNode_)

10 fromNode_ = node_0_M (ToNodeF <$> cRing_

11 <*> slotId_

12 <*> toRing_

13 <*> read_

14 <*> vvmCredits_

15)

Listing 27: Connecting Function to Controller

1 topEntity = actor0

Listing 28: making the topEntity

Actual testing on physical hardware is also something for future work. We can
do this by making a topEntity of an actor. In Listing 27, we see how we connect the
function f0M to our system, creating a complete FPGA implementation. In Listing 28
we create a topentity. From this topEntity we can generate a Verilog or VHDL design.
This generated design can then be programmed on an FPGA, with for example
Quartus or Vivado. This generation and programming have to be done for all actors.
Then they have to be physically connected. Also, clock synchronisation has to be
added between the FPGAs.

Bibliography

[1] fullvector / Freepik, Web, Jul. 2020, designed by fullvector / Freepik. [Online].
Available: https://www.freepik.com/free-photos-vectors/icon

[2] E. Raalte, “Automating system generation in clash,” Master’s thesis, University
of Twente, 2019.

[3] H. Zodpe and A. Sapkal, “Fpga-based high-performance computing platform for
cryptanalysis of aes algorithm,” in Computing in Engineering and Technology.
Springer, 2020, pp. 637–646.

[4] J. H. Oh, Y. Hyun Yoon, J. K. Kim, H. Bin Ihm, S. H. Jeon, T. Heon Kim, and
S. E. Lee, “An FPGA-based Electronic Control Unit for Automotive Systems,”
in 2019 IEEE International Conference on Consumer Electronics (ICCE), Jan.
2019, pp. 1–2, iSSN: 2158-4001.

[5] A. Ling and J. Anderson, “The Role of FPGAs in Deep Learning,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’17. New York, NY, USA:
Association for Computing Machinery, Feb. 2017, p. 3. [Online]. Available:
https://doi.org/10.1145/3020078.3030013

[6] G. A. Constantinides, “FPGAs in the Cloud,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’17. New York, NY, USA: Association for Computing Machinery, Feb.
2017, p. 167. [Online]. Available: https://doi.org/10.1145/3020078.3030014

[7] “Intel Completes Acquisition of Altera.” [Online]. Available: https://newsroom.
intel.com/news-releases/intel-completes-acquisition-of-altera/

[8] “What is an FPGA? Programming and FPGA Basics - INTEL® FP-
GAS.” [Online]. Available: https://www.intel.com/content/www/us/en/products/
programmable/fpga/new-to-fpgas/resource-center/overview.html

[9] “What is an FPGA? Field Programmable Gate Array.” [Online]. Available:
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

105

https://www.freepik.com/free-photos-vectors/icon
https://doi.org/10.1145/3020078.3030013
https://doi.org/10.1145/3020078.3030014
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://www.intel.com/content/www/us/en/products/programmable/fpga/new-to-fpgas/resource-center/overview.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/new-to-fpgas/resource-center/overview.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

[10] “Clash.” [Online]. Available: https://clash-lang.org/

[11] “Qbaylogic.” [Online]. Available: https://qbaylogic.com/

[12] “Haskell,” Online, Jun. 2020. [Online]. Available: https://www.haskell.org/

[13] M. Lipovaca, Learn you a haskell for great good!: a beginner’s guide. no starch
press, 2011.

[14] M. Bekooij, “Datafow analysis for real-time multiprocessor systems,” May 2017,
lecture Notes Real-Time Systems 2 Course.

[15] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: Scheduling
and synchronization. CRC press, 2018.

[16] B. H. Dekens, P. Wilmanns, M. J. Bekooij, and G. J. Smit, “Low-cost
guaranteed-throughput communication ring for real-time streaming mpsocs,” in
2013 Conference on Design and Architectures for Signal and Image Process-
ing. IEEE, 2013, pp. 239–246.

[17] B. H. Dekens, P. S. Wilmanns, G. J. Smit, and M. J. Bekooij, “Low-cost
guaranteed-throughput dual-ring communication infrastructure for heteroge-
neous mpsocs,” in Proceedings of the 2014 Conference on Design and Ar-
chitectures for Signal and Image Processing. IEEE, 2014, pp. 1–8.

[18] B. H. J. Dekens, Low-Cost Heterogeneous Embedded Multiprocessor Archi-
tecture for Real-Time Stream Processing Applications. University of Twente,
2015.

[19] B. H. Dekens, M. J. Bekooij, and G. J. Smit, “Real-time multiprocessor archi-
tecture for sharing stream processing accelerators,” in 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop. IEEE, 2015, pp.
81–89.

[20] G. G. Wevers, “Hardware accelerator sharing within an mpsoc with a
connectionless noc,” September 2014. [Online]. Available: http://essay.
utwente.nl/66088/

[21] D. Veer, “Design of a gmsk receiver prototype on a heterogeneous real-time
multiprocessor platform,” Master’s thesis, University of Twente, 2016.

[22] G. Kuiper, “Guaranteed-throughput improvement techniques for connectionless
ring networks,” Master’s thesis, University of Twente, 2013.

https://clash-lang.org/
https://qbaylogic.com/
https://www.haskell.org/
http://essay.utwente.nl/66088/
http://essay.utwente.nl/66088/

[23] M. A. Khalid, Routing architecture and layout synthesis for multi-FPGA sys-
tems. Ph. D. dissertation, Dept. of ECE, Univ. Toronto, 1999.

[24] R. Ramezani, “Dynamic scheduling of task graphs in multi-fpga systems using
critical path,” The Journal of Supercomputing, pp. 1–22, 2020.

[25] M. Owaida and G. Alonso, “Application partitioning on fpga clusters: Inference
over decision tree ensembles,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2018, pp. 295–2955.

[26] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong, and P. H. W.
Leong, “Cube: A 512-fpga cluster,” in 2009 5th Southern Conference on Pro-
grammable Logic (SPL). IEEE, 2009, pp. 51–57.

[27] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu, “Efficient sat-based mapping and
scheduling of homogeneous synchronous dataflow graphs for throughput opti-
mization.” IEEE, 2008, pp. 492–504.

[28] H. Ali, “Integrating dataflow and non-dataflow real-time application models on
multi-core platforms,” Ph.D. dissertation, Faculdade de Engenharia da Univer-
sidade do Porto, 2017.

[29] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Application of
Concurrency to System Design, 6th International Conference, ACSD 2006,
Proceedings. IEEE Computer Society Press, Los Alamitos, CA, USA, June
2006, pp. 276–278. [Online]. Available: http://www.es.ele.tue.nl/sdf3

http://www.es.ele.tue.nl/sdf3

Part V

Appendices

109

Appendix A

Clash Schematics

A.1 Regular Ring

Router

Incoming
Memory

Outgoing
Memory

Controller

RingHop

Actor

cRing
Content id (Vec sd (Maybe a))

cRingHop
Content id (Vec sd (Maybe a))

cRing’
Content id (Vec sd (Maybe a))

vvm
From

Ring

Vec r (Vec sd (Maybe a))

vR
ea

dO
utg

oin
g

Ve
c s (In

de
x d)

vv
mTo

Ring

Vec
s (V

ec
sd

(M
ay

be
a))

vv
m

In
co

m
in

g

Ve
c r (V

ec
rd

(M
ay

be
a)

)

vR
ea

dInco
ming

Vec
r (In

de
x f)

vvmOutgoing

Vec s (Vec wd (Maybe a))

m
vv

m
Fr

om
R

in
g

M
ay

be
(V

ec
r(

Ve
c

rd
(M

ay
be

a)
))

bR
ea

d
B

oo
l

m
vv

m
To

R
in

g
M

ay
be

(V
ec

s
(V

ec
w

d
(M

ay
be

a)
))Setup { myId :: id

, sIds :: Vec s id
, amountS :: Vec s amS
, rIds :: Vec r id
, amountR :: Vec r amR
, modus :: RoutingMode
}

Setup {..}

Setup {..}

Setup {..}

nodeF

Figure A.1: Clash implementations schematic

111

A.2 Credit Ring

Router

Incoming
Memory

Outgoing
Memory

Controller

RingHop

Actor

Incoming
Memory

Router RingHop

Outgoing
Memory

cRing
Content id (Vec sd (Maybe a))

cRingHop
Content id (Vec sd (Maybe a))

cRing’
Content id (Vec sd (Maybe a))

vvm
From

Ring

Vec r (Vec sd (Maybe a))

vR
ea

dO
utg

oin
g

Ve
c s (In

de
x d)

vv
mTo

Ring

Vec
s (V

ec
sd

(M
ay

be
a))

vv
m

In
co

m
in

g

Ve
c r (V

ec
rd

(M
ay

be
a)

)

vR
ea

dInco
ming

Vec
r (In

de
x f)

vvmOutgoing

Vec s (Vec wd (Maybe a))

m
vv

m
Fr

om
R

in
g

M
ay

be
(V

ec
r(

Ve
c

rd
(M

ay
be

a)
))

bR
ea

d
B

oo
l

m
vv

m
To

R
in

g
M

ay
be

(V
ec

s
(V

ec
w

d
(M

ay
be

a)
))

cRing
Content id (Vec sd (Maybe a))

cRingHop
Content id (Vec sd (Maybe a))

cRing’
Content id (Vec sd (Maybe a))

vv
m

Fro
m

Rin
g

Ve
c r (V

ec
sd

(M
ay

be
a)

)

vReadOutgoing

Vec s (Index d)

vvmToRing

Vec s (Vec sd (Maybe a))

vv
m

C
re

di
ts

Ve
c

s
(V

ec
cr

(M
ay

be
(In

de
x

1)
))

=
vv

m
In

co
m

in
g

Ve
c

r(
Ve

c
rd

(M
ay

be
a)

)

vR
ea

dC
re

di
ts

Ve
c

s
(In

de
x

ff)
=

vR
ea

dI
nc

om
in

g
Ve

c
r(

In
de

x
f)

vv
m

N
ew

C
re

di
ts

Ve
c

r(
Ve

c
cr

(M
ay

be
(In

de
x

1
))

)
=

vv
m

O
ut

go
in

g
Ve

c
s

(V
ec

in
p

(M
ay

be
a)

)

Setup { myId :: id
, sIds :: Vec s id
, amountS :: Vec s amS
, rIds :: Vec r id
, amountR :: Vec r amR
, modus :: RoutingMode
}

Setup {..}

Setup {..}

Setup {..}

Setup {..}

nodeF

node

Figure A.2: Clash implementations schematic, with credit-ring

Appendix B

Rules Credit Ring Hijacking

• myID ≤ slotID ≤ Destination

• Destination < myID ≤ slotID

• slotID ≤ Destination < myID

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

✓ ✓ ✓ ✓ ✓

× ✓ ✓ ✓ ✓

× × ✓ ✓ ✓

× × × ✓ ✓

× × × × ✓

✓ × × × ×

✓ ✓ ✓ ✓ ✓

✓ × ✓ ✓ ✓

✓ × × ✓ ✓

✓ × × × ✓

✓ ✓ × × ×

× ✓ × × ×

✓ ✓ ✓ ✓ ✓

✓ ✓ × ✓ ✓

✓ ✓ × × ✓

3

3

3

3

3

4

4

4

4

4

0

1

2

3

4

0

1

2

3

4

✓ ✓ ✓ × ×

× ✓ ✓ × ×

× × ✓ × ×

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ × ✓

✓ ✓ ✓ ✓ ×

× ✓ ✓ ✓ ×

× × ✓ ✓ ×

× × × ✓ ×

✓ ✓ ✓ ✓ ✓

MyID MyIDslotID slotIDDestination Destination
0 1 2 3 4 0 1 2 3 4

113

Appendix C

Simulation Results

2 −2 0 0
−2 2 0 0
0 −2 2 0
0 2 −2 0
0 −6 0 6
0 6 0 −6

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
edge1
edge2
edge3
edge4
edge5
edge6

A B C D

(a) Option 1

2 −2 0 0
−2 2 0 0
0 −6 6 0
0 6 −6 0
0 −2 0 2
0 2 0 −2

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(b) Option 2

6 −6 0 0
−6 6 0 0
0 −2 2 0
0 2 −2 0
0 −2 0 2
0 2 0 −2

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(c) Option 3

2 −2 0 0
−2 2 0 0
0 −6 6 0
0 6 −6 0
0 −2 0 2
0 4 0 −4

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
(d) Option 4

Figure C.1: Topology matrices for different implementations

A B

C

D

2 2
2

edge1

22

edge2

2

2

2edge3

2

2

edge4

66 6

edge5

6 6
edge6

(a) initial

A B

C

D

id1

id2

id3 id4

id5

id6
sd

2
C

2
sd

sd

2
C

2

sd

sd
6
C

6
sd

2
sd

sd
2

2

sd sd

2

6
sd

sd
6

(b) With identity actors

Figure C.2: Dataflow graphs: Option 1

115

C.1 Option 1

C.1.1 Ringsize(sd)=1, With Hijacking, HopTime(T)=1

Table C.1: Result edge6, Option 1, Ringsize(sd)=1, With Hijacking, HopTime(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing,

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N N N 1 N N F N

2 N N F 1,0,0 Just 10 Just 12 Just 13 2 N N F N
3 N N F 0,1,0 Just 10 Just 12 Just 13 3 N N F N
4 N N F 0,1,0 Just 10 Just 12 Just 13 4 N N F N
5 N N F 0,0,1 Just 10 N Just 13 5 N N F N
6 N N F 1,0,0 Just 10 N Just 13 6 N N F N
7 N N F 0,0,1 N N Just 13 7 N N F Just 13
8 N N F 0,0,0 N N Just 13 8 N N F N
9 N N F 0,0,1 N N Just 13 9 N N F Just 13
10 N N F 0,0,1 N N Just 13 10 N N F N
11 N N F 0,0,1 N N Just 13 11 N N F Just 13
12 N N F 0,0,0 N N Just 13 12 N N F Just 13
13 N N F 0,0,1 N N Just 13 13 N N F Just 13
14 N N F 0,0,0 N N N 14 N N F N
15 N N F 0,0,0 N N N 15 N N F Just 13

16 N N F 0,0,0 N N N 16

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N

N/A

C.1.2 Ringsize(sd)=1, Without Hijacking, HopTime(T)=1

Table C.2: Result edge6, Option 1, Ringsize(sd)=1, Without Hijacking, Hop-
Time(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing,

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N N N 1 N N F N

Bo

2 N N F 0,0,0 Just 10 Just 12 Just 13 2 N N F N
3 N N F 0,0,0 Just 10 Just 12 Just 13 3 N N F N
4 N N F 0,0,0 Just 10 Just 12 Just 13 4 N N F N

NT − 1

5 N N F 1,0,0 Just 10 Just 12 Just 13 5 N N F N
6 N N F 0,0,0 Just 10 Just 12 Just 13 6 N N F N
7 N N F 0,0,0 Just 10 Just 12 Just 13 7 N N F N
8 N N F 0,0,0 Just 10 Just 12 Just 13 8 N N F N
9 N N F 0,1,0 Just 10 Just 12 Just 13 9 N N F N
10 N N F 0,0,0 Just 10 Just 12 Just 13 10 N N F N
11 N N F 0,0,0 Just 10 Just 12 Just 13 11 N N F N
12 N N F 0,0,0 Just 10 Just 12 Just 13 12 N N F N
13 N N F 0,0,1 Just 10 Just 12 Just 13 13 N N F N
14 N N F 0,0,0 Just 10 Just 12 Just 13 14 N N F N
15 N N F 0,0,0 Just 10 Just 12 Just 13 15 N N F Just 13
16 N N F 0,0,0 Just 10 Just 12 Just 13 16 N N F N
17 N N F 1,0,0 Just 10 Just 12 Just 13 17 N N F N
18 N N F 0,0,0 N Just 12 Just 13 18 N N F N
19 N N F 0,0,0 N Just 12 Just 13 19 N N F N
20 N N F 0,0,0 N Just 12 Just 13 20 N N F N
21 N N F 0,1,0 N Just 12 Just 13 21 N N F N
22 N N F 0,0,0 N N Just 13 22 N N F N
23 N N F 0,0,0 N N Just 13 23 N N F N
24 N N F 0,0,0 N N Just 13 24 N N F N
25 N N F 0,0,1 N N Just 13 25 N N F N
26 N N F 0,0,0 N N Just 13 26 N N F N
27 N N F 0,0,0 N N Just 13 27 N N F Just 13
28 N N F 0,0,0 N N Just 13 28 N N F N
29 N N F 0,0,1 N N Just 13 29 N N F N
30 N N F 0,0,0 N N Just 13 30 N N F N
31 N N F 0,0,0 N N Just 13 31 N N F Just 13
32 N N F 0,0,0 N N Just 13 32 N N F N
33 N N F 0,0,1 N N Just 13 33 N N F N
34 N N F 0,0,0 N N Just 13 34 N N F N
35 N N F 0,0,0 N N Just 13 35 N N F Just 13
36 N N F 0,0,0 N N Just 13 36 N N F N
37 N N F 0,0,1 N N Just 13 37 N N F N
38 N N F 0,0,0 N N Just 13 38 N N F N
39 N N F 0,0,0 N N Just 13 39 N N F Just 13
40 N N F 0,0,0 N N Just 13 40 N N F N

NT (M − sd)

sd

41 N N F 0,0,1 N N Just 13 41 N N F N
42 N N F 0,0,0 N N N 42 N N F N

HT

43 N N F 0,0,0 N N N 43 N N F Just 13 Bi

44 N N F 0,0,0 N N N 44

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N

C.1.3 Ringsize(sd)=2, Without Hijacking HopTime(T)=1

Table C.3: Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing,

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 4 N N F N,N

NT − 1

5 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 5 N N F N,N
6 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 6 N N F N,N
7 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 7 N N F N,N
8 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 8 N N F N,N
9 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 9 N N F N,N
10 N N F 0,0,0 N,N N,N Just 13,Just 13 10 N N F N,N
11 N N F 0,0,0 N,N N,N Just 13,Just 13 11 N N F N,N
12 N N F 0,0,0 N,N N,N Just 13,Just 13 12 N N F N,N
13 N N F 0,0,1 N,N N,N Just 13,Just 13 13 N N F N,N
14 N N F 0,0,0 N,N N,N Just 13,Just 13 14 N N F N,N
15 N N F 0,0,0 N,N N,N Just 13,Just 13 15 N N F Just 13,Just 13
16 N N F 0,0,0 N,N N,N Just 13,Just 13 16 N N F N,N
17 N N F 0,0,1 N,N N,N Just 13,Just 13 17 N N F N,N
18 N N F 0,0,0 N,N N,N Just 13,Just 13 18 N N F N,N
19 N N F 0,0,0 N,N N,N Just 13,Just 13 19 N N F Just 13,Just 13
20 N N F 0,0,0 N,N N,N Just 13,Just 13 20 N N F N,N

NT (M − sd)

sd

21 N N F 0,0,1 N,N N,N Just 13,Just 13 21 N N F N,N
22 N N F 0,0,0 N,N N,N N,N 22 N N F N,N

HT

23 N N F 0,0,0 N,N N,N N,N 23 N N F Just 13,Just 13 Bi

24 N N F 0,0,0 N,N N,N N,N 24

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N,N

C.1.4 Ringsize(sd)=2, With Hijacking, HopTime(T)=1

Table C.4: Result edge6, Option 1, Ringsize(sd)=2, With Hijacking, HopTime(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing,

,Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

,Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N

2 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,0,0 N,N N,N Just 13,Just 13 4 N N F N,N
5 N N F 0,0,1 N,N N,N Just 13,Just 13 5 N N F N,N
6 N N F 0,0,1 N,N N,N Just 13,Just 13 6 N N F N,N
7 N N F 0,0,1 N,N N,N Just 13,Just 13 7 N N F Just 13,Just 13
8 N N F 0,0,0 N,N N,N N,N 8 N N F Just 13,Just 13
9 N N F 0,0,0 N,N N,N N,N 9 N N F Just 13,Just 13

10 N N F 0,0,0 N,N N,N N,N 10

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N,N

N/A

C.1.5 Ringsize(sd)=2, Without Hijacking, HopTime(T)=2

Table C.5: Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=2

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ...
8 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 8 N N F N,N NT − 1

9 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 9 N N F N,N
10 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 10 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ...

16 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 16 N N F N,N
17 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 17 N N F N,N
18 N N F 0,0,0 N,N N,N Just 13,Just 13 18 N N F N,N

N N F 0,0,0 N,N N,N Just 13,Just 13 ...
... N N F 0,0,0 N,N N,N Just 13,Just 13 24 N N F N,N

25 N N F 0,0,1 N,N N,N Just 13,Just 13 25 N N F N,N
26 N N F 0,0,0 N,N N,N Just 13,Just 13 26 N N F N,N
27 N N F 0,0,0 N,N N,N Just 13,Just 13 27 N N F N,N
28 N N F 0,0,0 N,N N,N Just 13,Just 13 28 N N F N,N
29 N N F 0,0,0 N,N N,N Just 13,Just 13 29 N N F Just 13,Just 13
30 N N F 0,0,0 N,N N,N Just 13,Just 13 30 N N F N,N
31 N N F 0,0,0 N,N N,N Just 13,Just 13 31 N N F N,N
32 N N F 0,0,0 N,N N,N Just 13,Just 13 32 N N F N,N
33 N N F 0,0,1 N,N N,N Just 13,Just 13 33 N N F N,N
34 N N F 0,0,0 N,N N,N Just 13,Just 13 34 N N F N,N
35 N N F 0,0,0 N,N N,N Just 13,Just 13 35 N N F N,N
36 N N F 0,0,0 N,N N,N Just 13,Just 13 36 N N F N,N
37 N N F 0,0,0 N,N N,N Just 13,Just 13 37 N N F Just 13,Just 13
38 N N F 0,0,0 N,N N,N Just 13,Just 13 38 N N F N,N
39 N N F 0,0,0 N,N N,N Just 13,Just 13 39 N N F N,N
40 N N F 0,0,0 N,N N,N Just 13,Just 13 40 N N F N,N

NT (M − sd)

sd

41 N N F 0,0,1 N,N N,N Just 13,Just 13 41 N N F N,N
42 N N F 0,0,0 N,N N,N N,N 42 N N F N,N
43 N N F 0,0,0 N,N N,N N,N 43 N N F N,N
44 N N F 0,0,0 N,N N,N N,N 44 N N F N,N

HT

45 N N F 0,0,0 N,N N,N N,N 45 N N F Just 13,Just 13 Bi

46 N N F 0,0,0 N,N N,N N,N 46

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N,N

C.1.6 Ringsize(sd)=2, Without Hijacking, HopTime(T)=3

Table C.6: Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=3

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 10
Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Nothing
Nothing
Nothing
Nothing,

Just 12
Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

12 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 12 N N F N,N
NT − 1

13 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 13 N N F N,N
14 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 14 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ... N N F N,N

24 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 24 N N F N,N
25 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 25 N N F N,N
26 N N F 0,0,0 N,N N,N Just 13,Just 13 26 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

36 N N F 0,0,0 N,N N,N Just 13,Just 13 36 N N F N,N
37 N N F 0,0,1 N,N N,N Just 13,Just 13 37 N N F N,N
38 N N F 0,0,0 N,N N,N Just 13,Just 13 38 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

42 N N F 0,0,0 N,N N,N Just 13,Just 13 42 N N F N,N
43 N N F 0,0,0 N,N N,N Just 13,Just 13 43 N N F Just 13,Just 13
44 N N F 0,0,0 N,N N,N Just 13,Just 13 44 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

48 N N F 0,0,0 N,N N,N Just 13,Just 13 48 N N F N,N
49 N N F 0,0,1 N,N N,N Just 13,Just 13 49 N N F N,N
50 N N F 0,0,0 N,N N,N Just 13,Just 13 50 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ...

54 N N F 0,0,0 N,N N,N Just 13,Just 13 54 N N F N,N
55 N N F 0,0,0 N,N N,N Just 13,Just 13 55 N N F Just 13,Just 13
56 N N F 0,0,0 N,N N,N Just 13,Just 13 56 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

60 N N F 0,0,0 N,N N,N Just 13,Just 13 60 N N F N,N

NT (M − sd)

sd

61 N N F 0,0,1 N,N N,N Just 13,Just 13 61 N N F N,N
62 N N F 0,0,0 N,N N,N N,N 62 N N F N,N
... N N F 0,0,0 N,N N,N N,N ... N N F N,N

66 N N F 0,0,0 N,N N,N N,N 66 N N F N,N

HT

67 N N F 0,0,0 N,N N,N N,N 67 N N F Just 13,Just 13 Bi

68 N N F 0,0,0 N,N N,N N,N 68

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N,N

C.1.7 Ringsize(sd)=2, Without Hijacking, HopTime(T =7

Table C.7: Result edge6, Option 1, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=7

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

28 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 28 N N F N,N
NT − 1

29 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 29 N N F N,N
30 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 30 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ... N N F N,N

56 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 56 N N F N,N
57 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 57 N N F N,N
58 N N F 0,0,0 N,N N,N Just 13,Just 13 58 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

84 N N F 0,0,0 N,N N,N Just 13,Just 13 84 N N F N,N
85 N N F 0,0,1 N,N N,N Just 13,Just 13 85 N N F N,N
86 N N F 0,0,0 N,N N,N Just 13,Just 13 86 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

112 N N F 0,0,0 N,N N,N Just 13,Just 13 112 N N F N,N
113 N N F 0,0,1 N,N N,N Just 13,Just 13 113 N N F N,N
114 N N F 0,0,0 N,N N,N Just 13,Just 13 114 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

126 N N F 0,0,0 N,N N,N Just 13,Just 13 126 N N F N,N
127 N N F 0,0,0 N,N N,N Just 13,Just 13 127 N N F Just 13,Just 13
128 N N F 0,0,0 N,N N,N Just 13,Just 13 128 N N F N,N
... N N F 0,0,0 N,N N,N Just 13,Just 13 ... N N F N,N

140 N N F 0,0,0 N,N N,N Just 13,Just 13 140 N N F N,N

NT (M − sd)

sd

141 N N F 0,0,1 N,N N,N Just 13,Just 13 141 N N F N,N
142 N N F 0,0,0 N,N N,N N,N 142 N N F N,N
... N N F 0,0,0 N,N N,N N,N ... N N F N,N

154 N N F 0,0,0 N,N N,N N,N 154 N N F N,N

HT

155 N N F 0,0,0 N,N N,N N,N 155 N N F Just 13,Just 13 Bi

156 N N F 0,0,0 N,N N,N N,N 156

Just 13
Just 13
Just 13
Just 13
Just 13
Just 13

Just 31
Just 31
Just 31
Just 31
Just 31
Just 31

TRUE N,N

C.2 Option 2

C.2.1 Ringsize(sd)=1, Without Hijacking, HopTime(T)=1

Table C.8: Result edge6, Option 2, Ringsize(sd)=1, Without Hijacking, Hop-
Time(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N N N 1 N N F N
Bo

2 N N F 0,0,0 Just 10 Just 12 Just 13 2 N N F N
3 N N F 0,0,0 Just 10 Just 12 Just 13 3 N N F N
4 N N F 0,0,0 Just 10 Just 12 Just 13 4 N N F N

NT − 1

5 N N F 1,0,0 Just 10 Just 12 Just 13 5 N N F N
6 N N F 0,0,0 Just 10 Just 12 Just 13 6 N N F N
7 N N F 0,0,0 Just 10 Just 12 Just 13 7 N N F N
8 N N F 0,0,0 Just 10 Just 12 Just 13 8 N N F N
9 N N F 0,1,0 Just 10 Just 12 Just 13 9 N N F N
10 N N F 0,0,0 Just 10 Just 12 Just 13 10 N N F N
11 N N F 0,0,0 Just 10 Just 12 Just 13 11 N N F N
12 N N F 0,0,0 Just 10 Just 12 Just 13 12 N N F N

NT (E − 1)

13 N N F 0,0,1 Just 10 Just 12 Just 13 13 N N F N
14 N N F 0,0,0 Just 10 Just 12 Just 13 14 N N F N
15 N N F 0,0,0 Just 10 Just 12 Just 13 15 N N F Just 13
16 N N F 0,0,0 Just 10 Just 12 Just 13 16 N N F N
17 N N F 1,0,0 Just 10 Just 12 Just 13 17 N N F N
18 N N F 0,0,0 N Just 12 Just 13 18 N N F N
19 N N F 0,0,0 N Just 12 Just 13 19 N N F N
20 N N F 0,0,0 N Just 12 Just 13 20 N N F N
21 N N F 0,1,0 N Just 12 Just 13 21 N N F N
22 N N F 0,0,0 N Just 12 Just 13 22 N N F N
23 N N F 0,0,0 N Just 12 Just 13 23 N N F N
24 N N F 0,0,0 N Just 12 Just 13 24 N N F N

ENT (F − sd)

sd

25 N N F 0,0,1 N Just 12 Just 13 25 N N F N
26 N N F 0,0,0 N Just 12 N 26 N N F N

HT

27 N N F 0,0,0 N Just 12 N 27 N N F Just 13 Bi

28 N N F 0,0,0 N Just 12 N 28
Just 13
Just 13

Just 31
Just 31

TRUE N

C.2.2 Ringsize(sd)=1, With Hijacking, HopTime(T)=1

Table C.9: Result edge6, Option 2, Ringsize(sd)=1, With Hijacking, HopTime(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N N N 1 N N F N

2 N N F 1,0,0 Just 10 Just 12 Just 13 2 N N F N
3 N N F 0,1,0 Just 10 Just 12 Just 13 3 N N F N
4 N N F 0,1,0 Just 10 Just 12 Just 13 4 N N F N
5 N N F 0,0,1 Just 10 Just 12 Just 13 5 N N F N
6 N N F 1,0,0 Just 10 Just 12 Just 13 6 N N F N
7 N N F 0,1,0 N Just 12 Just 13 7 N N F Just 13
8 N N F 0,1,0 N Just 12 Just 13 8 N N F N
9 N N F 0,0,1 N Just 12 Just 13 9 N N F N
10 N N F 0,1,0 N Just 12 N 10 N N F N
11 N N F 0,1,0 N Just 12 N 11 N N F Just 13

12 N N F 0,0,0 N N N 12
Just 13
Just 13

Just 31
Just 31

TRUE N

N/A

C.2.3 Ringsize(sd)=2, Without Hijacking, HopTime(T)=1

Table C.10: Result edge6, Option 2, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 4 N N F N,N

NT − 1

5 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 5 N N F N,N
6 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 6 N N F N,N
7 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 7 N N F N,N
8 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 8 N N F N,N
9 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 9 N N F N,N
10 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 10 N N F N,N
11 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 11 N N F N,N
12 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 12 N N F N,N

NT (E − 1)

13 N N F 0,0,1 N,N Just 12,Just 12 Just 13,Just 13 13 N N F N,N
14 N N F 0,0,0 N,N Just 12,Just 12 N,N 14 N N F N,N

HT

15 N N F 0,0,0 N,N Just 12,Just 12 N,N 15 N N F Just 13,Just 13 Bi

16 N N F 0,0,0 N,N Just 12,Just 12 N,N 16
Just 13
Just 13

Just 31
Just 31

TRUE N,N

C.2.4 Ringsize(sd)=2, With ijacking, opTime(T)=

Table C.11: Result edge6, Option 2, Ringsize(sd)=2, With Hijacking, HopTime(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N

2 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 4 N N F N,N
5 N N F 0,0,1 N,N Just 12,Just 12 Just 13,Just 13 5 N N F N,N
6 N N F 0,1,0 N,N Just 12,Just 12 N,N 6 N N F N,N
7 N N F 0,0,0 N,N N,N N,N 7 N N F Just 13,Just 13

8 N N F 0,0,0 N,N N,N N,N 8
Just 13
Just 13

Just 31
Just 31

TRUE N,N

N/A

C.2.5 Ringsize(sd)=2, Without Hijacking, HopTime(T)=2

Table C.12: Result edge6, Option 2, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=7

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Nothing
Nothing
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

28 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 28 N N F N,N
NT − 1

29 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 29 N N F N,N
30 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 30 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ... N N F N,N

56 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 56 N N F N,N
57 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 57 N N F N,N
58 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 58 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ... N N F N,N

84 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 84 N N F N,N

NT (E − 1)

85 N N F 0,0,1 N,N Just 12,Just 12 Just 13,Just 13 85 N N F N,N
86 N N F 0,0,0 N,N Just 12,Just 12 N,N 86 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 N,N ... N N F N,N

98 N N F 0,0,0 N,N Just 12,Just 12 N,N 98 N N F N,N

HT

99 N N F 0,0,0 N,N Just 12,Just 12 N,N 99 N N F Just 13,Just 13 Bi

100 N N F 0,0,0 N,N Just 12,Just 12 N,N 100
Just 13
Just 13

Just 31
Just 31

TRUE N,N

C.3 Option 3

C.3.1 Ringsize(sd)=1, Without Hijacking, HopTime(T)=1

Table C.13: Result edge6, Option 3, Ringsize(sd)=1, Without Hijacking, Hop-
Time(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 10
Just 10
Just 10
Just 10
Just 10
Just 10

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N N N 1 N N F N
Bo

2 N N F 0,0,0 Just 10 Just 12 Just 13 2 N N F N
3 N N F 0,0,0 Just 10 Just 12 Just 13 3 N N F N
4 N N F 0,0,0 Just 10 Just 12 Just 13 4 N N F N

NT − 1

5 N N F 1,0,0 Just 10 Just 12 Just 13 5 N N F N
6 N N F 0,0,0 Just 10 Just 12 Just 13 6 N N F N
7 N N F 0,0,0 Just 10 Just 12 Just 13 7 N N F N
8 N N F 0,0,0 Just 10 Just 12 Just 13 8 N N F N
9 N N F 0,1,0 Just 10 Just 12 Just 13 9 N N F N
10 N N F 0,0,0 Just 10 Just 12 Just 13 10 N N F N
11 N N F 0,0,0 Just 10 Just 12 Just 13 11 N N F N
12 N N F 0,0,0 Just 10 Just 12 Just 13 12 N N F N

NT (E − 1)

13 N N F 0,0,1 Just 10 Just 12 Just 13 13 N N F N
14 N N F 0,0,0 Just 10 Just 12 Just 13 14 N N F N
15 N N F 0,0,0 Just 10 Just 12 Just 13 15 N N F Just 13
16 N N F 0,0,0 Just 10 Just 12 Just 13 16 N N F N
17 N N F 1,0,0 Just 10 Just 12 Just 13 17 N N F N
18 N N F 0,0,0 Just 10 Just 12 Just 13 18 N N F N
19 N N F 0,0,0 Just 10 Just 12 Just 13 19 N N F N
20 N N F 0,0,0 Just 10 Just 12 Just 13 20 N N F N
21 N N F 0,1,0 Just 10 Just 12 Just 13 21 N N F N
22 N N F 0,0,0 Just 10 N Just 13 22 N N F N
23 N N F 0,0,0 Just 10 N Just 13 23 N N F N
24 N N F 0,0,0 Just 10 N Just 13 24 N N F N

ENT (F − sd)

sd

25 N N F 0,0,1 Just 10 N Just 13 25 N N F N
26 N N F 0,0,0 Just 10 N N 26 N N F N

HT

27 N N F 0,0,0 Just 10 N N 27 N N F Just 13 Bi

28 N N F 0,0,0 Just 10 N N 28
Just 13
Just 13

Just 31
Just 31

TRUE N

C.3.2 Ringsize(sd)=1, With Hijacking, HopTime(T)=1

Table C.14: Result edge6, Option 3, Ringsize(sd)=1, With Hijacking, HopTime(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From
Router D

to
Incoming

Buffer

Formula

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 10
Just 10
Just 10
Just 10
Just 10
Just 10

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N N N 1 N N F N

2 N N F 1,0,0 Just 10 Just 12 Just 13 2 N N F N
3 N N F 0,1,0 Just 10 Just 12 Just 13 3 N N F N
4 N N F 0,1,0 Just 10 Just 12 Just 13 4 N N F N
5 N N F 0,0,1 Just 10 N Just 13 5 N N F N
6 N N F 1,0,0 Just 10 N Just 13 6 N N F N
7 N N F 0,0,1 Just 10 N Just 13 7 N N F Just 13
8 N N F 0,0,0 Just 10 N N 8 N N F N
9 N N F 1,0,0 Just 10 N N 9 N N F Just 13

10 N N F 1,0,0 Just 10 N N 10
Just 13
Just 13

Just 31
Just 31

TRUE N

N/A

C.3.3 Ringsize(sd)=2, Without Hijacking, HopTime(T)=1

Table C.15: Result edge6, Option 3, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 10
Just 10
Just 10
Just 10
Just 10
Just 10

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 4 N N F N,N

NT − 1

5 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 5 N N F N,N
6 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 6 N N F N,N
7 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 7 N N F N,N
8 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 8 N N F N,N
9 N N F 0,1,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 9 N N F N,N
10 N N F 0,0,0 Just 10,Just 10 N,N Just 13,Just 13 10 N N F N,N
11 N N F 0,0,0 Just 10,Just 10 N,N Just 13,Just 13 11 N N F N,N
12 N N F 0,0,0 Just 10,Just 10 N,N Just 13,Just 13 12 N N F N,N

NT (E − 1)

13 N N F 0,0,1 Just 10,Just 10 N,N Just 13,Just 13 13 N N F N,N
14 N N F 0,0,0 Just 10,Just 10 N,N N,N 14 N N F N,N

HT

15 N N F 0,0,0 Just 10,Just 10 N,N N,N 15 N N F Just 13,Just 13 Bi

16 N N F 0,0,0 Just 10,Just 10 N,N N,N 16
Just 13
Just 13

Just 31
Just 31

TRUE N,N

C.3.4 Ringsize(sd)=2, With Hijacking, HopTime(T)=1

Table C.16: Result edge6, Option 3, Ringsize(sd)=2, With Hijacking, HopTime(T)=1

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 10
Just 10
Just 10
Just 10
Just 10
Just 10

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 12
Just 12
Nothing
Nothing
Nothing
Nothing

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Nothing
Nothing
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N

2 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
3 N N F 0,1,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 3 N N F N,N
4 N N F 0,0,0 Just 10,Just 10 N,N Just 13,Just 13 4 N N F N,N
5 N N F 0,0,1 Just 10,Just 10 N,N Just 13,Just 13 5 N N F N,N
6 N N F 1,0,0 Just 10,Just 10 N,N N,N 6 N N F N,N
7 N N F 0,0,0 Just 10,Just 10 N,N N,N 7 N N F Just 13,Just 13

8 N N F 0,0,0 Just 10,Just 10 N,N N,N 8
Just 13
Just 13

Just 31
Just 31

TRUE N,N

N/A

C.4 Option 4

C.4.1 Ringsize(sd)=2, Without Hijacking, HopTime(T)=7

Table C.17: Result edge6, Option 4, Ringsize(sd)=2, Without Hijacking, Hop-
Time(T)=7

#

Actor B
Consum-

ing
edge(s)

Actor B
Produc-

ing
edge(s)

Actor B
Read

B Writes
To

To Router B from Outgoing Buffer #

Actor D
Consum-

ing
edge(s)

Actor D
Produc-

ing
edge(s)

Actor D
Read

From Router D
to Incoming

Buffer
Formula

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 10
Just 10
Just 10
Just 10
Nothing
Nothing

Just 0
Just 0
Just 0
Just 0
Just 0
Just 0

Just 12
Just 12
Just 12
Just 12
Just 12
Just 12

1

Just 0
Just 0
Nothing
Nothing
Nothing
Nothing

Just 13
Just 13
Just 13
Just 13
Nothing
Nothing

TRUE 0,0,0 N,N N,N N,N 1 N N F N,N
Bo

2 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 2 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

28 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 28 N N F N,N
NT − 1

29 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 29 N N F N,N
30 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 30 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

56 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 56 N N F N,N
57 N N F 0,1,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 57 N N F N,N
58 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 58 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

84 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 84 N N F N,N

NT (E − 1)

85 N N F 0,0,1 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 85 N N F N,N
86 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 86 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

98 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 98 N N F N,N
99 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 99 N N F Just 13,Just 13
100 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 100 N N F N,N
... N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 ... N N F N,N

112 N N F 0,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 112 N N F N,N
113 N N F 1,0,0 Just 10,Just 10 Just 12,Just 12 Just 13,Just 13 113 N N F N,N
114 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 114 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ... N N F N,N

140 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 140 N N F N,N
141 N N F 0,1,0 N,N Just 12,Just 12 Just 13,Just 13 141 N N F N,N
142 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 142 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 ... N N F N,N

168 N N F 0,0,0 N,N Just 12,Just 12 Just 13,Just 13 168 N N F N,N

ENT (F − sd)

sd

169 N N F 0,0,1 N,N Just 12,Just 12 Just 13,Just 13 169 N N F N,N
170 N N F 0,0,0 N,N Just 12,Just 12 N,N 170 N N F N,N
... N N F 0,0,0 N,N Just 12,Just 12 N,N ... N N F N,N

182 N N F 0,0,0 N,N Just 12,Just 12 N,N 182 N N F N,N

HT

183 N N F 0,0,0 N,N Just 12,Just 12 N,N 183 N N F Just 13,Just 13 Bi

184 N N F 0,0,0 N,N Just 12,Just 12 N,N 184

Just 13
Just 13
Just 13
Just 13

Just 31
Just 31

TRUE N,N

Appendix D

Clash Code

D.1 Connecting Elements

D.1.1 DataTypes
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : DataTypes.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : creating datatypes, for connecting , FPGA State and ring Content

8 -- ===

9 -- r = receive from 'r' Nodes

10 -- s = send to 's' Nodes

11 -- sd = send 'sd' messages on the ring at the same Time

12 -- id = the type the nodes have to identify them

13 -- d = depth of outgoing buffer, so fifo size

14 -- f = depth 'f' of incoming buffer, so fifo size

15 -- rd = receive depth of incoming buffer, from the edge

16 -- wd = send depth out outgoing buffer , to the edge,

17 -- a = type of data the nodes send or recieve

18 -- cr = amount of credits to receive from to credit ring

19 -- ff = depth of the incoming credit buffer.

20 -- ===

21

22 {-# LANGUAGE StandaloneDeriving #-}

23 module DataflowMultiFPGA.DataTypes where

24

25 import Clash.Prelude

26 -- ===

27 ---------- DATA ON RING ---------- DATA ON RING ---------- DATA ON RING ---------- DATA ON RING ----------

28 -- ===

29 data RingContent id a = Invalid

30 | EmptySlot {slotId::id}

31 | ContentSlot {slotId :: id, source :: id, destination :: id, content:: (Vec sd (Maybe a)) }

32 deriving (Show , Generic, NFDataX)

33 -- ===

34 ----------- NODE STATES ----------- NODE STATES ----------- NODE STATES ----------- NODE STATES ----------

35 -- ===

36 data ElementStates id h sd r s d f a =

37 ElementStates { obState :: Vec s (Vec d (Maybe a)) -- Out going Buffer state

38 , ibState :: Vec r (Vec f (Maybe a)) -- Incoing Buffer state

39 , rState :: Index s -- Router state = pointer

40 , rhState :: Vec h (RingContent id (Vec sd (Maybe a)))

41 } deriving (Show, Generic)

42

43 deriving instance

44 (NFDataX a, NFDataX id, KnownNat h, KnownNat sd, KnownNat d,KnownNat s, KnownNat f, KnownNat r)

135

45 => NFDataX (ElementStates id h sd r s d f a)

46

47 -- ===

48 ------- ROUTING MODES ----------- ROUTING MODES ----------- ROUTING MODES ----------- ROUTING MODES ------

49 -- ===

50 data RoutingMode = IncreasingWithoutHijack -- regular ring without hijacking

51 | IncreasingWithHijack -- regular ring with hijacking

52 | DecreasingWithoutHijack -- credit ring without hijacking

53 | DecreasingWithHijack -- creditring, with hijacking

54 deriving Show

55

56 -- ===

57 ----------- FIXED VALUE ----------- FIXED VALUE ----------- FIXED VALUE ----------- FIXED VALUE ----------

58 -- ===

59 data Setup id wd rd s r =

60 Setup { myId :: id -- Id of Node

61 , sIds :: Vec s id -- send to these id's

62 , amountS :: Vec s (Index (wd + 1)) -- corresponding production rates sIds

63 , rIds :: Vec r id -- receive from these id's

64 , amountR :: Vec r (Index (rd + 1)) -- corresponding consumtion rates rIds

65 , modus :: RoutingMode --represents the 4 possibilities of routing

66 } deriving (Show)

67

68 -- ===

69 ------------------ COMMUNICATION INSIDE NODE ----------------- COMMUNICATION INSIDE NODE -----------------

70 -- ===

71 data ElementConnect id d f rd sd wd r s a cr ff =

72 ---------- FUNCTION --------- FUNCTION --------- FUNCTION --------- FUNCTION --------- FUNCTION ----------

73 ToFuncCtrl { mvvmToRing :: Maybe (Vec s (Vec wd (Maybe a)))

74 , vvmIncoming :: Vec r (Vec rd (Maybe a))

75 , bRead :: Bool

76 }

77 --

78 | FromFuncCtrl { mvvmFromRing :: Maybe (Vec r (Vec rd (Maybe a)))

79 , vvmOutgoing :: Vec s (Vec wd (Maybe a))

80 , vReadIncoming :: Vec r (Index f)

81 , vvmNewCredits :: Vec r (Vec cr (Maybe (Index 1)))

82 }

83 ---------- RING HOP --------- RING HOP --------- RING HOP --------- RING HOP --------- RING HOP ----------

84 | ToRingHop { cRing :: RingContent id (Vec sd (Maybe a)) --

85 }

86 | FromRingHop { cRingHop :: RingContent id (Vec sd (Maybe a)) --

87 }

88 --------- ROUTER -------- ROUTER -------- ROUTER -------- ROUTER -------- ROUTER -------- ROUTER ---------

89 | ToRouter { cRingHop :: RingContent id (Vec sd (Maybe a)) --

90 , vvmToRing :: Vec s (Vec sd (Maybe a))

91 , vvmCredits :: Vec s (Vec cr (Maybe (Index 1)))

92 }

93 --

94 | FromRouter { cRing' :: RingContent id (Vec sd (Maybe a)) --

95 , vvmFromRing :: Vec r (Vec sd (Maybe a))

96 , vReadOutgoing :: Vec s (Index d) --

97 , vReadCredits :: Vec s (Index ff)

98 }

99 --------- MESSAGE BUFFER -------- MESSAGE BUFFER -------- MESSAGE BUFFER -------- MESSAGE BUFFER ---------

100 | ToIncomingBuffer { vvmFromRing :: Vec r (Vec sd (Maybe a))

101 , vReadIncoming :: Vec r (Index f)

102 }

103 --

104 | FromIncomingBuffer { vvmIncoming :: Vec r (Vec rd (Maybe a))

105 }

106 -- ===

107 | ToOutgoingBuffer { vvmOutgoing :: Vec s (Vec wd (Maybe a))

108 , vReadOutgoing :: Vec s (Index d) --

109 }

110 --

111 | FromOutgoingBuffer { vvmToRing :: Vec s (Vec sd (Maybe a))

112 }

113 -------- NODE -------- NODE -------- NODE -------- NODE -------- NODE -------- NODE -------- NODE --------

114 | ToNode { cRing :: RingContent id a

115 , vReadIncoming :: Vec r (Index f)

116 , vvmOutgoing :: Vec s (Vec wd (Maybe a))

117 , vvmCredits :: Vec s (Vec cr (Maybe (Index 1)))

118 }

119 --

120 | FromNode { cRing' :: RingContent id a

121 , vvmIncoming :: Vec r (Vec rd (Maybe a))

122 , vReadCredits :: Vec s (Index ff)

123 }

124 -- ===

125 | ToNodeF { cRing :: RingContent id a

126 , mvvmToRing :: Maybe (Vec s (Vec wd (Maybe a)))

127 , bRead :: Bool

128 , vvmCredits :: Vec s (Vec cr (Maybe (Index 1)))

129 }

130 --

131 | FromNodeF { cRing' :: RingContent id a

132 , mvvmFromRing :: Maybe (Vec r (Vec rd (Maybe a)))

133 , vReadCredits :: Vec s (Index ff)

134 , vvmNewCredits :: Vec r (Vec cr (Maybe (Index 1)))

135 -- for Debug

136 , vvmFromRing :: Vec r (Vec sd (Maybe a))

137 , vvmToRing :: Vec s (Vec sd (Maybe a))

138 } deriving (Show, Generic, NFDataX)

139 -- ===

D.1.2 NodeConnect
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : NodeConnect.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Connecting the elements/components

8 -- ===

9 {-# LANGUAGE RecordWildCards , ExistentialQuantification #-}

10 module DataflowMultiFPGA.NodeConnect where

11

12 import Clash.Prelude

13 import DataflowMultiFPGA.DataTypes

14 import DataflowMultiFPGA.Buffer

15 import DataflowMultiFPGA.Router

16 import DataflowMultiFPGA.Controller

17 import DataflowMultiFPGA.RoundRobin

18 import DataflowMultiFPGA.RingHop

19

20 --

21 -- ---------- NODE WITHOUT FUCNTION --------------- NODE WITHOUT FUCNTION -----------

22 --

23

24 node :: (Ord id

25 , Show id

26 , Num id

27 , KnownNat d

28 , KnownNat rd

29 , KnownNat sd

30 , KnownNat something0

31 , KnownNat something1

32 , KnownNat wd

33 , KnownNat s

34 , KnownNat r

35 , KnownNat f

36 , KnownNat cr

37 , KnownNat ff

38 , KnownNat n1

39 , (1 <= cr)

40 , 1 <= (s * wd)

41 , 1 <= (r * rd)

42 , 1 <= (rd + sd)

43 , (((rd + sd) - 1) + something1) ~ f

44 , 1 <= (sd + wd)

45 , (((sd + wd) - 1) + something0) ~ d

46 , Div (s + s) 2 ~ s

47 , (n20 + 1) ~ sd

48 , (n1 + 1) ~ h)

49 => Setup id (wd + 1) (rd + 1) s r

50 -> ElementStates id h sd r s d f a

51 -> ElementConnect id d f rd sd wd r s a cr ff

52 -> (ElementStates id h sd r s d f a, ElementConnect id d f rd sd wd r s a cr ff)

53

54 node Setup{..} ElementStates{..} ToNode{..}= (newStates, FromNode{..})

55 where

56 newStates = ElementStates {

57 obState = obState'

58 , ibState = ibState'

59 , rState = rState'

60 , rhState = rhState'

61 }

62 (ibState' , FromIncomingBuffer{..}) = inComingBuffer ibState ToIncomingBuffer{..}

63 (obState' , FromOutgoingBuffer{..}) = outGoingBuffer obState ToOutgoingBuffer{..}

64 (rState' , FromRouter{..}) = router Setup{..} rState ToRouter{..}

65 (rhState', FromRingHop{..}) = ringHop rhState ToRingHop{..}

66

67 --

68 -- ----- NODE WITH FUCNTION ------ NODE WITH FUCNTION ------ NODE WITH FUCNTION -----

69 --

70 nodeF :: (Ord id

71 , Show id

72 , KnownNat d

73 , KnownNat rd

74 , KnownNat sd

75 , KnownNat something0

76 , KnownNat something1

77 , KnownNat wd

78 , KnownNat s

79 , KnownNat r

80 , KnownNat f

81 , KnownNat cr

82 , KnownNat ff

83 , KnownNat n1

84 , (1 <=? cr) ~ 'True

85 , 1 <= (s * wd)

86 , 1 <= (r * rd)

87 , 1 <= (rd + sd)

88 , (((rd + sd) - 1) + something1) ~ f

89 , 1 <= (sd + wd)

90 , (((sd + wd) - 1) + something0) ~ d

91 , Div (s + s) 2 ~ s

92 , (n20 + 1) ~ sd

93 , (n1 + 1) ~ h)

94 => Setup id (wd + 1) (rd + 1) s r

95 -> ElementStates id h sd r s d f a

96 -> ElementConnect id d f rd sd wd r s a cr ff

97 -> (ElementStates id h sd r s d f a, ElementConnect id d f rd sd wd r s a cr ff)

98

99 nodeF Setup{..} ElementStates{..} ToNodeF{..}= (newStates, FromNodeF{..})

100 where

101 newStates = ElementStates {

102 obState = obState'

103 , ibState = ibState'

104 , rState = rState'

105 , rhState = rhState'

106 }

107 FromFuncCtrl{..} = funcCtrl Setup{..} ToFuncCtrl{..}

108 (ibState', FromIncomingBuffer{..}) = inComingBuffer ibState ToIncomingBuffer{..}

109 (obState', FromOutgoingBuffer{..}) = outGoingBuffer obState ToOutgoingBuffer{..}

110 (rState' , FromRouter{..}) = router Setup{..} rState ToRouter{..}

111 (rhState', FromRingHop{..}) = ringHop rhState ToRingHop{..}

112 -- ===

D.2 Simulation Results

D.3 Elements in detail

D.3.1 Controller
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : Controller.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Controller between functional actor and buffers

8 -- ===

9 {-# LANGUAGE RecordWildCards #-}

10 module DataflowMultiFPGA.Controller where

11

12 import Clash.Prelude

13 import DataflowMultiFPGA.DataTypes

14 import DataflowMultiFPGA.HelperFunctions

15

16 funcCtrl Setup{..} ToFuncCtrl{..} = FromFuncCtrl{..}

17 where

18 checkS = case mvvmToRing of

19 Nothing -> False

20 (Just v) -> validCheck'' (resize <$> amountS) v

21 -- checkR = returns boolean if there are enough packages received on all edges.

22 checkR = validCheck'' (resize <$> amountR) vvmIncoming

23

24 mvvmFromRing | checkR = Just (selector (resize <$> amountR) vvmIncoming)

25 | otherwise = Nothing

26

27 vvmOutgoing | checkS = case mvvmToRing of

28 Just v -> v

29 _ -> repeat (repeat Nothing) -- should never be called

30 | otherwise = repeat (repeat Nothing)

31

32 vReadIncoming | checkR && bRead = resize <$> amountR

33 | otherwise = repeat 0

34

35 vvmNewCredits | checkR && bRead = repeat (repeat (Just 0))

36 | otherwise = repeat (repeat Nothing)

37 -- ===

D.3.2 Router
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : Router.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020 31-07-2020

7 -- Purpose : Router of the ring

8 -- ===

9 {-# LANGUAGE RecordWildCards #-}

10 module DataflowMultiFPGA.Router where

11

12 import Clash.Prelude

13 import DataflowMultiFPGA.DataTypes

14 import DataflowMultiFPGA.RoundRobin

15 import DataflowMultiFPGA.HelperFunctions

16

17 router Setup{..} pointer ToRouter{..} = (pointer' ,FromRouter{..})

18 where

19 -- function to check if content with a specified destination id can be placed on the available slot

20 slotId' = slotId cRingHop

21 checkDest destinationId =

22 case (modus, cRingHop) of

23 (IncreasingWithHijack, EmptySlot _) -> (a && b) || (b && c) || (c && a)

24 where

25 a = destinationId <= slotId'

26 b = slotId' <= myId

27 c = myId < destinationId

28 (DecreasingWithHijack, EmptySlot _) -> (a && b) || (b && c) || (c && a)

29 where

30 a = destinationId < myId

31 b = slotId' <= destinationId

32 c = myId <= slotId'

33 (_, Invalid) -> False

34 _ -> slotId' == myId

35

36 a = checkDest <$> sIds

37 b = validForRingCheck vvmToRing

38 c = validForRingCheck vvmCredits

39 v= zipWith3 (\ x y z -> x && y && z) a b c

40

41 (pointer' , idx) = rr4 pointer v

42

43 rrOutC = case idx of

44 (Just i) -> ContentSlot slotId' myId (sIds !! i) (vvmToRing !! i)

45 _ -> EmptySlot slotId'

46 -- rout the content

47 (cRing' , toBuffer ,update) = case (cRingHop , rrOutC) of

48 (EmptySlot _ , EmptySlot _)-> (EmptySlot slotId', (Nothing , repeat Nothing), Nothing)

49 (EmptySlot _ , ContentSlot _ _ d v)-> (rrOutC , (Nothing , repeat Nothing), Just d)

50 (ContentSlot _ s b c , EmptySlot _)

51 | b == myId -> (EmptySlot slotId', (Just s , c), Nothing)

52 | otherwise -> (cRingHop , (Nothing , repeat Nothing), Nothing)

53 (ContentSlot _ s b c, ContentSlot _ _ d v)

54 | b == myId -> (rrOutC , (Just s , c), Just d)

55 | otherwise -> (cRingHop , (Nothing , repeat Nothing), Nothing)

56 _ -> (Invalid , (Nothing , repeat Nothing), Nothing)

57

58 -- amount read from output Message Buffer

59 vReadOutgoing = zipWith3 fg sIds (replicate (lengthS sIds) update)

60 (repeat (snatToNum (lengthS (fl vvmToRing))))

61 vReadCredits = zipWith3 fg sIds (replicate (lengthS sIds) update)

62 (repeat (snatToNum (lengthS (fl vvmCredits))))

63

64 fg sid x lngt = case x of

65 Just i | i == sid -> lngt

66 | otherwise -> 0

67 Nothing -> 0

68 fl ::KnownNat m => Vec n (Vec m a) -> Vec m Bool

69 fl x = repeat True

70

71 -- new Input to Input Message Buffer

72 vvmFromRing = zipWith f (Just <$> rIds) (repeat toBuffer)

73 where

74 f a b | a == fst b = snd b

75 | otherwise = repeat Nothing

76 -- ===

D.3.3 Round-Robin
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : RoundRobin.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Round robin implementation

8 -- ===

9 module DataflowMultiFPGA.RoundRobin where

10

11 import Clash.Prelude

12

13 rr4 pointer validList = (pointer' , out)

14 where

15 a = imap (>=) (replicate (lengthS validList) pointer)

16 b = a ++ (not <$> a)

17

18 c = zipWith (&&) b (validList ++ validList)

19 idx = elemIndex True c

20

21 -- out = case idx of

22 -- Just x -> Just £ resize £ mod x (snatToNum (lengthS validList))

23 -- _ -> Nothing

24

25 out = resize <$> (mod <$> idx <*> Just (snatToNum (lengthS validList)))

26

27

28 pointer' = case out of

29 (Just x) -> if x >= maxBound then minBound else x + 1

30 Nothing -> pointer

31 -- ===

D.3.4 Buffer
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : Buffer.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Creating Input and output Buffers

8 -- ===

9

10 {-# LANGUAGE RecordWildCards #-}

11 module DataflowMultiFPGA.Buffer where

12

13 import Clash.Prelude

14 import DataflowMultiFPGA.DataTypes

15 import DataflowMultiFPGA.Fifo

16

17 buffer states inps didRead= (states', o)

18 where

19 (states' , o) = unzip $ zipWith fifoNN6 states (zip inps didRead)

20

21 outGoingBuffer states ToOutgoingBuffer{..} = (states' ,FromOutgoingBuffer{..})

22 where

23 (states' , vvmToRing) = buffer states vvmOutgoing vReadOutgoing

24

25 inComingBuffer states ToIncomingBuffer{..} = (states' ,FromIncomingBuffer{..})

26 where

27 (states' , vvmIncoming)= buffer states vvmFromRing vReadIncoming

28 -- ===

D.3.5 FIFO
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : Fifo.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Fifo bor the buffers

8 -- ===

9 {-# LANGUAGE RecordWildCards #-}

10 module DataflowMultiFPGA.Fifo where

11

12 import Clash.Prelude

13 import DataflowMultiFPGA.HelperFunctions

14

15 fifoNN6:: (KnownNat out,

16 KnownNat something,

17 KnownNat ls, -- length state

18 KnownNat wd,

19 (out + wd - 1 + something) ~ ls

20) =>

21 Vec ls (Maybe a) -- state

22 -> (Vec wd (Maybe a), -- wd

23 Index ls) -- didread

24 -> (

25 Vec ls (Maybe a), -- state''

26 Vec out (Maybe a) -- out

27)

28

29 fifoNN6 state xs = (state'' , out)

30 where

31 (inp, didRead) = xs

32 ls = lengthS state

33 state' = imap f state

34 where

35 f idx s | idx < didRead = Nothing

36 | otherwise = s

37 state'' = take ls $ snd $ mapAccumRL g Nothing (state' ++ inp)

38 where

39 g acc x = case x of

40 (Just _) -> (x, acc)

41 _ -> (acc, x)

42 out = takeI state

43 -- ===

D.3.6 Ring Hop
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : RingHop.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Slot of nebula ing slot

8 -- ===

9 {-# LANGUAGE RecordWildCards , ExistentialQuantification #-}

10 module DataflowMultiFPGA.RingHop where

11

12 import Clash.Prelude

13 import DataflowMultiFPGA.DataTypes

14

15 ringHop rhState ToRingHop{..} = (rhState', FromRingHop{..})

16 where

17 cRingHop = last rhState

18 rhState' = cRing +>> rhState

19 -- ===

D.3.7 Helper Function
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : HelperFunctions.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020

7 -- Purpose : Functions that help other functions

8 -- ===

9 module DataflowMultiFPGA.HelperFunctions where

10

11 import Clash.Prelude

12

13 --

14 fromJust def a = case a of

15 (Just x) -> x

16 _ -> def

17 --

18 maybeToBool x = case x of

19 (Just _) -> True

20 _ -> False

21 --

22 validForRingCheck inpss = and <$> (maybeToBool <$>) <$> inpss

23 --

24

25 validCheck'' amounts inpss = and (concat o)

26 where

27 inpssB = (maybeToBool <$>) <$> inpss

28 inpssBA = zip <$> inpssB <*> (repeat <$> amounts)

29 o = imap f <$> inpssBA

30 where

31 f idx (inpsB,amount) | idx' idx >= amount = True

32 | otherwise = inpsB

33 where

34 idx'::KnownNat n => Index n -> Index (n + 1)

35 idx' = resize

36 --

37 mapAccumRL :: KnownNat n => (y -> a -> (y , a)) -> y -> Vec n a -> (Vec n a, Vec n y)

38 mapAccumRL f acc e = mapAccumL i e (replicate (lengthS e) acc)

39 where

40 i a b = (b' ,a')

41 where (a' ,b') = mapAccumR f b a

42

43 -- mapAccumRL :: KnownNat n => (y -> a -> (y , a)) -> y -> Vec n a -> (Vec n a, Vec n y)

44 mapAccumRL' :: (y -> x -> (y, x))-> Vec n1 y -> Vec n2 x -> (Vec n2 x, Vec n1 y)

45 mapAccumRL' f acc e = mapAccumL i e acc -- (replicate (lengthS e) acc)

46 where

47 i a b = (b' ,a')

48 where (a' ,b') = mapAccumR f b a

49

50 f acc x = case fst x of

51 (Just _) -> (x, acc)

52 _ -> (acc, x)

53

54 g acc x = case (fst x) of

55 True -> (x, acc)

56 _ -> (acc, x)

57

58

59 selector amounts vss = zipWith ggg amounts vss

60

61 ggg amount vs = init $ imap fff (vs ++ singleton Nothing)

62 where

63 fff idx v | idx < amount = v

64 | otherwise = Nothing

65 -- ===

D.4 Simulation Example

D.4.1 Option 1, Ring 1, Modes 0, time 1
1 -- ===

2 -- Project : Mapping Dataflow graphs on multiple FPGAs

3 -- Faculty : University of Twente, CAES-group

4 -- Program name : TestConnect_4_Opt_1_Ring_1_mod_0_char.hs

5 -- Author : Sander Bremmer

6 -- Date created : 31-07-2020 31-07-2020 31-07-2020

7 -- Purpose : Testing option 1, with ring size 1 , without hijacking , hoptime = 1

8 -- ===

9 {-# LANGUAGE RecordWildCards , ExistentialQuantification #-}

10

11 module TestConnect_4_Opt_1_Ring_1_mod_0_char where

12

13 import Clash.Prelude

14

15 import DataflowMultiFPGA.NodeConnect

16 import DataflowMultiFPGA.DataTypes

17 import DataflowMultiFPGA.RoundRobin

18 import DataflowMultiFPGA.Router

19 import Debug.Trace

20 import qualified Data.List as L

21 import Text.Printf

22 import System.Directory

23 -- ===

24 ------- MAKE NODES -------- MAKE NODES -------- MAKE NODES -------- MAKE NODES -------- MAKE NODES -------

25 -- ===

26 --

27 ---------- INITIAL NODE STATES ----------- INITIAL NODE STATES ------------ INITIAL NODE STATES ----------

28 --

29 init_0 = ElementStates {

30 ibState = repeat (repeat Nothing)

31 , obState = repeat (repeat Nothing)

32 , rState = 0 -- where pointer start for round robin

33 , rhState = EmptySlot 'A' :>Nil

34 }

35

36 init_1 = ElementStates {

37 ibState = ((replicate d2 (Just 0) ++ repeat Nothing)

38 :> (replicate d2 (Just 0) ++ repeat Nothing)

39 :> (replicate d6 (Just 0) ++ repeat Nothing) :> Nil)

40 , obState = repeat (repeat Nothing)

41 , rState = 0

42 , rhState = EmptySlot 'B' :>Nil

43 }

44

45 init_2 = ElementStates {

46 ibState = repeat (repeat Nothing)

47 , obState = repeat (repeat Nothing)

48 , rState = 0

49 , rhState = EmptySlot 'C' :>Nil

50 }

51 init_3 = ElementStates {

52 ibState = repeat (repeat Nothing)

53 , obState = repeat (repeat Nothing)

54 , rState = 0

55 , rhState = EmptySlot 'D':>Nil

56 }

57

58 --

59 ---------- FIXED VALUE ----------- FIXED VALUE ----------- FIXED VALUE ----------- FIXED VALUE -----------

60 --------- DATAFLOW INPUT -------- DATAFLOW INPUT -------- DATAFLOW INPUT -------- DATAFLOW INPUT ---------

61 --

62

63 -- :: Setup id (wd + 1) (rd + 1) s r

64 def_0 = Setup { myId = 'A' -- :: id

65 , sIds = 'B' :> Nil -- :: Vec s id

66 , amountS = 2 :> Nil -- :: Vec s amount

67 , rIds = 'B' :> Nil -- :: Vec r id

68 , amountR = 2 :> Nil -- :: Vec r amount

69 , modus = IncreasingWithoutHijack -- :: RoutingMode

70 }

71

72 def_1 = Setup { myId = 'B' -- :: id

73 , sIds = 'A' :> 'C' :> 'D' :> Nil -- :: Vec s id

74 , amountS = 2 :> 2 :> 6 :> Nil -- :: Vec s amount

75 , rIds = 'A' :> 'C' :> 'D' :> Nil -- :: Vec r id

76 , amountR = 2 :> 2 :> 6 :> Nil -- :: Vec r amount

77 , modus = IncreasingWithoutHijack -- :: RoutingMode

78 }

79

80 def_2 = Setup { myId = 'C' -- :: id

81 , sIds = 'B' :> Nil -- :: Vec s id

82 , amountS = 2 :> Nil -- :: Vec s amount

83 , rIds = 'B' :> Nil -- :: Vec r id

84 , amountR = 2 :> Nil -- :: Vec r amount

85 , modus = IncreasingWithoutHijack -- :: RoutingMode

86 }

87

88 def_3 = Setup { myId = 'D' -- :: id

89 , sIds = 'B' :> Nil -- :: Vec s id

90 , amountS = 6 :> Nil -- :: Vec s amount

91 , rIds = 'B' :> Nil -- :: Vec r id

92 , amountR = 6 :> Nil -- :: Vec r amount

93 , modus = IncreasingWithoutHijack -- :: RoutingMode

94 }

95

96 --

97 --------- MEALY OF NODES -------- MEALY OF NODES -------- MEALY OF NODES -------- MEALY OF NODES ---------

98 --

99 -- ElementConnect id d f rd sd wd r s a

100 node_0_M ::HiddenClockResetEnable System =>

101 Signal

102 System

103 --ElementConnect id d f rd sd wd r s a cr ff

104 (ElementConnect Char 30 30 2 1 2 1 1 (Unsigned 100) 1 20)

105 -> Signal

106 System

107 (ElementConnect Char 30 30 2 1 2 1 1 (Unsigned 100) 1 20)

108 node_0_M = mealy (nodeF def_0) init_0

109

110 node_1_M ::HiddenClockResetEnable System =>

111 Signal

112 System

113 --ElementConnect id d f rd sd wd r s a cr ff

114 (ElementConnect Char 30 30 6 1 6 3 3 (Unsigned 100) 1 20)

115 -> Signal

116 System

117 (ElementConnect Char 30 30 6 1 6 3 3 (Unsigned 100) 1 20)

118 node_1_M = mealy (nodeF def_1) init_1

119

120 node_2_M ::HiddenClockResetEnable System =>

121 Signal

122 System

123 --ElementConnect id d f rd sd wd r s a cr ff

124 (ElementConnect Char 30 30 2 1 2 1 1 (Unsigned 100) 1 20)

125 -> Signal

126 System

127 (ElementConnect Char 30 30 2 1 2 1 1 (Unsigned 100) 1 20)

128 node_2_M = mealy (nodeF def_2) init_2

129

130 node_3_M ::HiddenClockResetEnable System =>

131 Signal

132 System

133 --ElementConnect id d f rd sd wd r s a cr ff

134 (ElementConnect Char 30 30 6 1 6 1 1 (Unsigned 100) 1 20)

135 -> Signal

136 System

137 (ElementConnect Char 30 30 6 1 6 1 1 (Unsigned 100) 1 20)

138 node_3_M = mealy (nodeF def_3) init_3

139

140 --

141 ---------- MAKE Functions ------- MAKE Functions ------- MAKE Functions ------- MAKE Functions ----------

142 --

143

144 f0 (state) wd =((state), (out , read))

145 where

146 (read ,out) = case wd of

147 (Nothing) -> (False , state)

148 (Just x) -> (True , inject)

149 inject = Just ((replicate d2 (Just 01)) :> Nil)

150

151 f1 (state) wd =((state), (out , read))

152 where

153 (read ,out) = case wd of

154 (Nothing) -> (False , state)

155 (Just x) -> (True , inject)

156 inject = Just ((replicate d2 (Just 10) ++ repeat Nothing)

157 :> (replicate d2 (Just 12) ++ repeat Nothing)

158 :> (replicate d6 (Just 13)) :> Nil)

159

160 f2 (state) wd =((state), (out , read))

161 where

162 (read ,out) = case wd of

163 (Nothing) -> (False , state)

164 (Just x) -> (True , inject)

165 inject = Just ((replicate d2 (Just 21)) :> Nil)

166

167 f3 (state) wd =((state), (out , read))

168 where

169 (read ,out) = case wd of

170 (Nothing) -> (False , state)

171 (Just x) -> (True , inject)

172 inject = Just ((replicate d6 (Just 31)) :> Nil)

173

174 f0M = mealy f0 (Nothing)

175 f1M = mealy f1 (Nothing)

176 f2M = mealy f2 (Nothing)

177 f3M = mealy f3 (Nothing)

178

179 --

180 -- ------- Add Actor --------- Add Actor -------- Add Actor -------- Add Actor -------- Add Actor --------

181 --

182 --Actor A ---

183 actor0 input = bundle ((cRing' <$> fromNode_)

184 , (vReadCredits <$> fromNode_)

185 , (vvmNewCredits <$> fromNode_)

186)

187 where

188 -- (cRing_, vvmCredits_) = unbundle input

189 (cRing_, vvmCredits_) = unbundle input

190

191 (toRing_, read_) = unbundle $ f0M (mvvmFromRing <$> fromNode_)

192 fromNode_ = node_0_M (ToNodeF <$> cRing_

193 <*> toRing_

194 <*> read_

195 <*> vvmCredits_

196)

197 -- Actor B ---

198 actor1 input = bundle ((cRing' <$> fromNode_)

199 , (vReadCredits <$> fromNode_)

200 , (vvmNewCredits <$> fromNode_)

201)

202 where

203 (cRing_, vvmCredits_) = unbundle input

204 (toRing_, read_) = unbundle $ f1M (mvvmFromRing <$> fromNode_) -- changed to 1

205 fromNode_ = node_1_M (ToNodeF <$> cRing_ -- changed to 1

206 <*> toRing_

207 <*> read_

208 <*> vvmCredits_

209)

210 -- Actor C ---

211 actor2 input = bundle ((cRing' <$> fromNode_)

212 , (vReadCredits <$> fromNode_)

213 , (vvmNewCredits <$> fromNode_)

214)

215 where

216 (cRing_, vvmCredits_) = unbundle input

217 (toRing_, read_) = unbundle $ f2M (mvvmFromRing <$> fromNode_) -- changed to 2

218 fromNode_ = node_2_M (ToNodeF <$> cRing_ -- changed to 2

219 <*> toRing_

220 <*> read_

221 <*> vvmCredits_

222)

223 -- Actor D ---

224 actor3 input = bundle ((cRing' <$> fromNode_)

225 , (vReadCredits <$> fromNode_)

226 , (vvmNewCredits <$> fromNode_)

227)

228 where

229 (cRing_, vvmCredits_) = unbundle input

230 (toRing_, read_) = unbundle $ f3M (mvvmFromRing <$> fromNode_) -- changed to 3

231 fromNode_ = node_3_M (ToNodeF <$> cRing_ -- changed to 3

232 <*> toRing_

233 <*> read_

234 <*> vvmCredits_

235)

236 --

237 -- ------- TopEntity --------- TopEntity -------- TopEntity -------- TopEntity -------- TopEntity --------

238 --

239 topEntity = actor0 -- FPGA Actor A

240 -- topEntity = actor1 -- FPGA Actor B

241 -- topEntity = actor2 -- FPGA Actor C

242 -- topEntity = actor3 -- FPGA Actor D

243

244

245

246 -- ===

247 ------- SIMULATION -------- SIMULATION -------- SIMULATION -------- SIMULATION -------- SIMULATION -------

248 -- ===

249 --

250 -- --------- CONNECTION NODES ------------- CONNECTION NODES ------------- CONNECTION NODES --------------

251 --

252

253 createRing wd = bundle (mvvmFromRing <$> fromNode_0

254 , vReadCredits <$> fromNode_0

255 , vvmNewCredits <$> fromNode_0

256 , mvvmFromRing <$> fromNode_1

257 , vReadCredits <$> fromNode_1

258 , vvmNewCredits <$> fromNode_1

259 , mvvmFromRing <$> fromNode_2

260 , vReadCredits <$> fromNode_2

261 , vvmNewCredits <$> fromNode_2

262 , mvvmFromRing <$> fromNode_3

263 , vReadCredits <$> fromNode_3

264 , vvmNewCredits <$> fromNode_3

265 --for debug

266 , vvmFromRing <$> fromNode_0

267 , vvmFromRing <$> fromNode_1

268 , vvmFromRing <$> fromNode_2

269 , vvmFromRing <$> fromNode_3

270 , vvmToRing <$> fromNode_0

271 , vvmToRing <$> fromNode_1

272 , vvmToRing <$> fromNode_2

273 , vvmToRing <$> fromNode_3

274)

275 where

276 (wd_0, read_0, wd_1, read_1, wd_2, read_2, wd_3, read_3) = unbundle wd

277

278 fromNode_0 = node_0_M (ToNodeF <$> (cRing' <$> fromNode_3)

279 <*> wd_0

280 <*> read_0

281 <*> pure (repeat (repeat (Just 0))))

282

283 fromNode_1 = node_1_M (ToNodeF <$> (cRing' <$> fromNode_0)

284 <*> wd_1

285 <*> read_1

286 <*> pure (repeat (repeat (Just 0))))

287

288 fromNode_2 = node_2_M (ToNodeF <$> (cRing' <$> fromNode_1)

289 <*> wd_2

290 <*> read_2

291 <*> pure (repeat (repeat (Just 0))))

292

293 fromNode_3 = node_3_M (ToNodeF <$> (cRing' <$> fromNode_2)

294 <*> wd_3

295 <*> read_3

296 <*> pure (repeat (repeat (Just 0))))

297 --

298 --------- Add Functions --------- Add Functions --------- Add Functions --------- Add Functions ---------

299 --

300 wrappFunction n = bundle (f0_in, f0_out, f0_read , readCr_0, newCredits0,

301 f1_in, f1_out, f1_read , readCr_1, newCredits1,

302 f2_in, f2_out, f2_read , readCr_2, newCredits2,

303 f3_in, f3_out, f3_read , readCr_3, newCredits3,

304 --for debugging

305 fr0 , fr1 , fr2 , fr3,

306 tr0 , tr1 , tr2 , tr3)

307 where

308 (f0_in , readCr_0, newCredits0,

309 f1_in , readCr_1, newCredits1,

310 f2_in , readCr_2, newCredits2,

311 f3_in , readCr_3, newCredits3,

312 -- for debugging

313 fr0 , fr1 , fr2 , fr3,

314 tr0 , tr1 , tr2 , tr3

315) = unbundle $ createRing $ bundle (f0_out, f0_read,

316 f1_out, f1_read,

317 f2_out, f2_read,

318 f3_out, f3_read

319)

320 (f0_out,f0_read) = unbundle $ f0M f0_in

321 (f1_out,f1_read) = unbundle $ f1M f1_in

322 (f2_out,f2_read) = unbundle $ f2M f2_in

323 (f3_out,f3_read) = unbundle $ f3M f3_in

324

325

326 --

327 ----------------- CLEAR DISPLAY IN TERMINAL ------------------ CLEAR DISPLAY IN TERMINAL -----------------

328 --

329

330 wrapperFuncOutput = simulate_lazy @System wrappFunction [1..]

331

332 result clocks = unlines [

333 header

334 -- , L.intercalate "" (L.replicate (L.length (header L.++ "")) "-") L.++ ""

335 , unlines $ (formatLine <$> (L.zipWith (,) counter wrapperFuncOutput))

336]

337 where

338 counter = [1..clocks]

339 -- format for screen display

340 -- format = "%-3s|%-80s|%-80s|%-10s|%-20s|%-20s|%-20s|%-20s|" L.++

341 -- " %-3s|%-80s|%-80s|%-10s|%-20s|%-20s|%-20s|%-20s|" L.++

342 -- " %-3s|%-80s|%-80s|%-10s|%-20s|%-20s|%-20s|%-20s|"

343

344 -- format without debug for text file

345 -- format = "%s|%s|%s|%s|%s|%s| %s|%s|%s|%s|%s|%s|" L.++

346 -- " %s|%s|%s|%s|%s|%s| %s|%s|%s|%s|%s|%s|"

347 -- format with debug

348 format = "%s|%s|%s|%s|%s|%s|%s|%s| %s|%s|%s|%s|%s|%s|%s|%s|" L.++

349 " %s|%s|%s|%s|%s|%s|%s|%s| %s|%s|%s|%s|%s|%s|%s|%s|"

350 header = printf format

351 "#"

352 "Actor A Consuming edge(s)"

353 "Actor A Producing edge(s) "

354 "Actor A Read"

355 "A Writes To"

356 "A Produces new Credits"

357 "From Router A to Incoming Buffer" -- debug

358 "To Router A from Outgoing Buffer" -- debug

359

360 "#"

361 "Actor B Consuming edge(s)"

362 "Actor B Producing edge(s) "

363 "Actor B Read"

364 "B Writes To"

365 "B Produces new Credits"

366 "From Router B to Incoming Buffer" -- debug

367 "To Router B from Outgoing Buffer" -- debug

368

369 "#"

370 "Actor C Consuming edge(s)"

371 "Actor C Producing edge(s) "

372 "Actor C Read"

373 "C Writes To"

374 "C Produces new Credits"

375 "From Router C to Incoming Buffer" -- debug

376 "To Router c from Outgoing Buffer" -- debug

377

378 "#"

379 "Actor D Consuming edge(s)"

380 "Actor D Producing edge(s) "

381 "Actor D Read"

382 "D Writes To"

383 "D Produces new Credits"

384 "From Router D to Incoming Buffer" -- debug

385 "To Router D from Outgoing Buffer" -- debug

386

387

388 formatLine (cnt, (f0_in, f0_out, f0_read, readCr_0, newCredits0,

389 f1_in, f1_out, f1_read, readCr_1, newCredits1,

390 f2_in, f2_out, f2_read, readCr_2, newCredits2,

391 f3_in, f3_out, f3_read, readCr_3, newCredits3,

392 fr0,fr1,fr2, fr3,

393 tr0, tr1, tr2,tr3)) = printf format

394 (show cnt) -- clk c

395 (g f0_in) -- to fucntion from ring

396 (g f0_out) -- from function to ring

397 (b f0_read) -- did function read

398 (show readCr_0) -- amount of credits read

399 (show ((map g) <$> newCredits0)) -- new credits after sending something out

400 (show ((map g) <$> fr0)) -- debug -- from router to incoming buffer

401 (show ((map g) <$> tr0)) -- debug

402

403 (show cnt)

404 (g f1_in)

405 (g f1_out)

406 (b f1_read)

407 (show readCr_1)

408 (show ((map g) <$> newCredits1))

409 (show ((map g) <$> fr1))-- debug

410 (show ((map g) <$> tr1))-- debug

411

412 (show cnt)

413 (g f2_in)

414 (g f2_out)

415 (b f2_read)

416 (show readCr_2)

417 (show ((map g) <$> newCredits2))

418 (show ((map g) <$> fr2))-- debug

419 (show ((map g) <$> tr2))-- debug

420

421 (show cnt)

422 (g f3_in)

423 (g f3_out)

424 (b f3_read)

425 (show readCr_3)

426 (show ((map g) <$> newCredits3))

427 (show ((map g) <$> fr3))-- debug

428 (show ((map g) <$> tr3))-- debug

429 where

430 g a = case a of

431 (Just x) -> show a

432 Nothing -> "N"

433 b a = case a of

434 True -> show a

435 _ -> "F"

436 ggg a = case a of

437 (Just x) -> show a

438 Nothing -> "N"

439

440 --

441 ------ Test ----- Test ----- Test ----- Test ----- Test ---- Test ----- Test ----- Test ----- Test -------

442 --

443 -- test to display output on screen

444 testWrappFunc clocks = do putStrLn $ result clocks

445

446 -- test to display output to file

447

448 fileName = "\\Results\\TestConnect_4_opt_1_Ring_1_mod_0_char3333.txt"

449

450 writeToFile fileName clocks= do

451 dir <- getCurrentDirectory

452 appendFile (dir L.++ fileName) ([x | x <- (result clocks)])

453 wrt = writeToFile fileName 250 -- write with predefined filename and clocks

454 -- ===

	Preface
	Summary
	List of Acronyms
	I Introduction, Background and Related work
	Introduction
	Context
	Goal
	Research Questions
	Approach and Outline

	Background
	FPGA
	Haskell and Clash
	Higher-Order Functions
	Data Types
	Moore and Mealy

	Dataflow
	SDF
	Self-Timed Schedule
	Strongly Connected
	Backpressure
	Topology Matrix
	Repetition Vector

	Network Topology
	Nebula Ring Interconnect
	Ringslotting
	Hijacking

	Related Work
	Nebula Ring Differences
	FPGA to FPGA Communication
	Dataflow on Hardware

	II Design Space Exploration (DSE)
	Topology Choices
	Connecting FPGAs
	Topologies
	Choosing Topology

	Conclusion Topology

	Realisation and Structural Choices
	Dataflow Constraints
	General FPGA Realisation Information
	FPGA Elements
	The Actor
	Memory
	The Router
	Ring Hop
	Controlling
	Complete FPGA

	The Ring
	Summary by Example
	Conclusion Realisation

	Clash Implementation Choices
	FPGA Setup
	The Ring Content Type
	Connecting FPGA Elements
	Clash Names
	Type Parameters

	Elements in Detail
	Buffer
	The Controller
	The router
	The Ringhop

	Conclusion Implementation

	III Analysis and Simulation Results
	Reconversion
	Communication Path
	Identity Actors
	Conclusion Reconversion

	Timing Analysis
	Calculation Introduction
	Calculation 1
	Calculation 2
	Example calculation 1 and 2
	Final WCET

	Conclusion Timing Analysis

	 Simulation Results
	Simulation Setup
	Clash Setup
	Calculation Results
	Clash Simulation Results

	Corresponding Results
	Conclusion Simulation

	IV Conclusions and Future Work
	Conclusions
	Future Work
	Maximum Buffer Occupation
	Actor Location
	Calculation Improvement
	Adaption of Existing Calculation
	Additional Calculations

	Credit Ring
	Credit-ring in Clash

	Additional Slots
	Ring-Intermediate Topology
	CSDF Graphs
	Multi-Edged Dataflow Graphs
	(De)serialising
	 Physical Implementation

	References

	V Appendices
	Clash Schematics
	Regular Ring
	Credit Ring

	Rules Credit Ring Hijacking
	Simulation Results
	Option 1
	Ringsize(sd)=1, With Hijacking, HopTime(T)=1
	Ringsize(sd)=1, Without Hijacking, HopTime(T)=1
	Ringsize(sd)=2, Without Hijacking HopTime(T)=1
	Ringsize(sd)=2, With Hijacking, HopTime(T)=1
	Ringsize(sd)=2, Without Hijacking, HopTime(T)=2
	Ringsize(sd)=2, Without Hijacking, HopTime(T)=3
	Ringsize(sd)=2, Without Hijacking, HopTime(T =7

	Option 2
	Ringsize(sd)=1, Without Hijacking, HopTime(T)=1
	Ringsize(sd)=1, With Hijacking, HopTime(T)=1
	Ringsize(sd)=2, Without Hijacking, HopTime(T)=1
	Ringsize(sd)=2, With ijacking, opTime(T)=
	Ringsize(sd)=2, Without Hijacking, HopTime(T)=2

	Option 3
	Ringsize(sd)=1, Without Hijacking, HopTime(T)=1
	Ringsize(sd)=1, With Hijacking, HopTime(T)=1
	Ringsize(sd)=2, Without Hijacking, HopTime(T)=1
	Ringsize(sd)=2, With Hijacking, HopTime(T)=1

	Option 4
	Ringsize(sd)=2, Without Hijacking, HopTime(T)=7

	Clash Code
	Connecting Elements
	DataTypes
	NodeConnect

	Simulation Results
	Elements in detail
	Controller
	Router
	Round-Robin
	Buffer
	FIFO
	Ring Hop
	Helper Function

	Simulation Example
	Option 1, Ring 1, Modes 0, time 1

